From isolated 1H-pyrazole cryptand anion receptors to hybrid inorganic–organic 1D helical polymeric anion receptors

Pitarch-Jarque, Javier; Belda, Raquel; García-España, Laura; Llinares, José M.; Pan, Fangfang; Rissanen, Kari; Navarro, Pilar; García-España, Enrique

All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
From Isolated $1H$-Pyrazole Cryptand Anion Receptors to Hybrid Inorganic-Organic 1D Helical Polymeric Anion Receptors.

Javier Pitarch-Jarque,a Raquel Belda,a Laura García-España,a José M. Llinares,b FangFang Pan,c Kari Rissanen,c Pilar Navarrod and Enrique García-España.a

We report on a novel 1-D helical coordination polymer formed by protonated polyamine $1H$-pyrazole cryptands interconnected by Cu$^{2+}$ metal ions able to encapsulate anionic species behaving as a multianion receptor. Switching from the monomeric to the polymeric receptor is activated by metal ions and pH.

1D-Coordination polymers (1D-CPs) have been widely explored in the last years.3 However, although several examples of coordination polymers based on macrocycles have been reported,1,2 as far as we know 1D-CPs built up connecting cryptands have not yet been described. On the other hand, as it is known that cryptand receptors when protonated can tightly confine in its interior anionic guest by means of electrostatic attraction and hydrogen bonding interactions,3 the idea of constructing CPs that can serve as multi-anion receptors is very appealing. Here we report on an 1D-CP that fulfils these characteristics.

To achieve this goal we have made use of cryptand 1 consisting of two tren polyamine subunits connected to three $1H$-pyrazole macrocycles through methylene spacers. We had previously proved that this receptor forms above pH 5 binuclear or hexanuclear dimer Cu$^{2+}$ complexes depending on whether the metal:Cryptand ratio is 2 or 3 (see structures 2 and 3 in Scheme 1).4 In such complexes pyrazole was deprotonated behaving as a bis(monodentate) or exobidentate ligand (Scheme 1). However to interconnect cryptands we need to move from this endo coordination, in which the metal ions are located inside the cavity, to an exo coordination with the metal ions placed outside the cavity acting as connectors between different macrocycles.1,2 This change would in principle require of an appropriate acidic pH range so that the amine groups are protonated while the pyrazole groups are in the neutral form and therefore bind the Cu$^{2+}$ ions in a monodentate mode (Scheme 1).5 In this way a polymeric strand of charged cryptands ready to include anions in a multivalent fashion might be fabricated.

Previously to these studies we analysed the ability of the individual cryptands to bind chloride anions. Crystals with a chloride anion included in the protonated macrocycle, $[H_6(1)Cl(H_2O_2)Cl_6H_2O]$ (4) (Tables S1-S2 in the ESI), were obtained by slow evaporation of aqueous solutions of 1 acidified to pH = 3 with HCl. The crystal structure of 4 consists of $[H_6(1)Cl(H_2O_2)]^{3+}$ cations in which a chloride anion (C11) and two water molecules (OW1 and OW2) are fully included in the macrocyclic cavity. The C11, OW1 and OW2 atoms are hydrogen bonded to each other forming a cascade complex (Figure 1).6 Apart from the encapsulated chloride, there are other four chlorides and lattice water molecules at the faces of the cage (see Figure S1 in ESI), chloride counter-anions and bulk water molecules. The chloride anions and water form an intricate hydrogen bonded network. While all six secondary
amino groups of the macrocycle are protonated, the tertiary amino groups and the pyrazole moieties are not protonated at the acidic pH values which the crystals evolved. The included chloride sits off-centre towards one side of the cage cavity: the distance from Cl1 to the bridgehead nitrogen atoms being 3.650(4) and 5.630(4) Å.

Figure 1. Space fill (left) and stick representation (right) of the [(H4Cl)Cl(H2O)2]n cation in 4 showing relevant intramolecular hydrogen bonds.

In addition to OW1 and OW2, the Cl1 is hydrogen bonded to two of the ammonium groups of its macrocyclic side (N2 and N10, Figure 1 right). Moreover, the distance to the third ammonium group of this side (3.349(3) Å) suggests also an additional weak hydrogen bond contact. On the other hand, the water molecules OW1 and OW2 accept hydrogen bonds from the ammonium groups N5, N14 and N7, respectively, all these at the macrocyclic side not occupied by the chloride anion (Figure 1 right). The OW1 and OW2 complete their tetrahedral hydrogen bond arrangement with one exo chloride anion and a water molecule, respectively, both of them placed outside the cage. A list of relevant hydrogen bond contacts is reported in Table S2. Interestingly, the nitrogen atoms at the edges of the 1H-pyrazole moieties point outwards from the macrocyclic cavity establishing two hydrogen bonds to an exo chloride anion and a water molecule while the third one hydrogen bonds to a water molecule and a pyrazole sp² nitrogen of an adjacent cryptand.

To evaluate the stability of the included chloride we have first performed potentiometric titrations of the aqueous solutions of the cryptand using sodium trifluoromethanesulfonate (NaTFMS) as background electrolyte since the large size of the TFMS anion prevents its inclusion in the cage cavit y. (NaTFMS) as background electrolyte since the large size of the TFMS anion prevents its inclusion in the cage cavity. Moreover, the distance to the third TFMS anion prevents its inclusion in the cage cavity. (NaTFMS) as background electrolyte since the large size of the TFMS anion prevents its inclusion in the cage cavity.

In addition to OW1 and OW2, the Cl1 is hydrogen bonded to two of the ammonium groups of its macrocyclic side (N2 and N10, Figure 1 right). Moreover, the distance to the third ammonium group of this side (3.349(3) Å) suggests also an additional weak hydrogen bond contact. On the other hand, the water molecules OW1 and OW2 accept hydrogen bonds from the ammonium groups N5, N14 and N7, respectively, all these at the macrocyclic side not occupied by the chloride anion (Figure 1 right). The OW1 and OW2 complete their tetrahedral hydrogen bond arrangement with one exo chloride anion and a water molecule, respectively, both of them placed outside the cage. A list of relevant hydrogen bond contacts is reported in Table S2. Interestingly, the nitrogen atoms at the edges of the 1H-pyrazole moieties point outwards from the macrocyclic cavity establishing two hydrogen bonds to an exo chloride anion and a water molecule while the third one hydrogen bonds to a water molecule and a pyrazole sp² nitrogen of an adjacent cryptand. (NaTFMS) as background electrolyte since the large size of the TFMS anion prevents its inclusion in the cage cavity. Moreover, the distance to the third TFMS anion prevents its inclusion in the cage cavity.

In addition to OW1 and OW2, the Cl1 is hydrogen bonded to two of the ammonium groups of its macrocyclic side (N2 and N10, Figure 1 right). Moreover, the distance to the third ammonium group of this side (3.349(3) Å) suggests also an additional weak hydrogen bond contact. On the other hand, the water molecules OW1 and OW2 accept hydrogen bonds from the ammonium groups N5, N14 and N7, respectively, all these at the macrocyclic side not occupied by the chloride anion (Figure 1 right). The OW1 and OW2 complete their tetrahedral hydrogen bond arrangement with one exo chloride anion and a water molecule, respectively, both of them placed outside the cage. A list of relevant hydrogen bond contacts is reported in Table S2. Interestingly, the nitrogen atoms at the edges of the 1H-pyrazole moieties point outwards from the macrocyclic cavity establishing two hydrogen bonds to an exo chloride anion and a water molecule while the third one hydrogen bonds to a water molecule and a pyrazole sp² nitrogen of an adjacent cryptand. (NaTFMS) as background electrolyte since the large size of the TFMS anion prevents its inclusion in the cage cavity. (NaTFMS) as background electrolyte since the large size of the TFMS anion prevents its inclusion in the cage cavity.

In addition to OW1 and OW2, the Cl1 is hydrogen bonded to two of the ammonium groups of its macrocyclic side (N2 and N10, Figure 1 right). Moreover, the distance to the third ammonium group of this side (3.349(3) Å) suggests also an additional weak hydrogen bond contact. On the other hand, the water molecules OW1 and OW2 accept hydrogen bonds from the ammonium groups N5, N14 and N7, respectively, all these at the macrocyclic side not occupied by the chloride anion (Figure 1 right). The OW1 and OW2 complete their tetrahedral hydrogen bond arrangement with one exo chloride anion and a water molecule, respectively, both of them placed outside the cage. A list of relevant hydrogen bond contacts is reported in Table S2. Interestingly, the nitrogen atoms at the edges of the 1H-pyrazole moieties point outwards from the macrocyclic cavity establishing two hydrogen bonds to an exo chloride anion and a water molecule while the third one hydrogen bonds to a water molecule and a pyrazole sp² nitrogen of an adjacent cryptand. (NaTFMS) as background electrolyte since the large size of the TFMS anion prevents its inclusion in the cage cavity. (NaTFMS) as background electrolyte since the large size of the TFMS anion prevents its inclusion in the cage cavity.

In addition to OW1 and OW2, the Cl1 is hydrogen bonded to two of the ammonium groups of its macrocyclic side (N2 and N10, Figure 1 right). Moreover, the distance to the third ammonium group of this side (3.349(3) Å) suggests also an additional weak hydrogen bond contact. On the other hand, the water molecules OW1 and OW2 accept hydrogen bonds from the ammonium groups N5, N14 and N7, respectively, all these at the macrocyclic side not occupied by the chloride anion (Figure 1 right). The OW1 and OW2 complete their tetrahedral hydrogen bond arrangement with one exo chloride anion and a water molecule, respectively, both of them placed outside the cage. A list of relevant hydrogen bond contacts is reported in Table S2. Interestingly, the nitrogen atoms at the edges of the 1H-pyrazole moieties point outwards from the macrocyclic cavity establishing two hydrogen bonds to an exo chloride anion and a water molecule while the third one hydrogen bonds to a water molecule and a pyrazole sp² nitrogen of an adjacent cryptand.

To evaluate the stability of the included chloride we have first performed potentiometric titrations of the aqueous solutions of the cryptand using sodium trifluoromethanesulfonate (NaTFMS) as background electrolyte since the large size of the TFMS anion prevents its inclusion in the cage cavity. From these measurements the protonation constants of 1 were derived. Then, from titrations of the macrocycle in the presence of chloride we obtained the stability constants of the anion complexes formed (Table S3 and Figure S3). At pH 2 the effective binding constant is in the order of 10⁶ and such high values prevented their derivation from ¹H NMR titrations (Figure S5). The JOB plots obtained from the ¹H NMR measurements supported the 1:1 stoichiometry of the complexes formed inferred from the potentiometric titrations (Figure S6). On the other hand, the stability of the chloride complex at pH 2 is higher than that of the fluoride complex as confirmed by ¹⁹F NMR studies. The ¹⁹F NMR spectrum of a solution containing fluoride and the macrocycle at pH=2 in 1:1 molar ratio displays peaks at -118 ppm, -140 ppm and -155 ppm that can be ascribed to F, HF and F-H-F interacting with the macrocycle (Figure S7-S8). Upon addition of sub-stoichiometric amounts of chloride, these signals start to disappear and new signals at -127 and -142 ppm attributable to free F and HF start to appear. When a stoichiometric amount of chloride is added only the signals of the free fluoride are observed (Figure S8).

As mentioned above, switching from an internal coordination of Cu²⁺ as that observed in 2, to an exo coordination of Cu²⁺ through monodentate neutral pyrazole ligands requires of an appropriate pH range. The examination of the distribution diagrams of the Cu²⁺-I system indicates that pH values between 1 and 2 should be used, otherwise either protonation or Cu²⁺-induced deprotonation of the pyrazole heterocycle would occur. Moreover, within these pH values the interior of the macrocyclic cavity is suitable for binding anionic species through the ammonium groups. Mixing aqueous solutions of CuCl₂·2H₂O and of 1 in 3:2 molar ratio acidified to pH ca. 1.5 with aqueous HCl, followed by slow evaporation in an open vessel, led to crystals of (5H₂O₂Cl@Cu₃(H₄Cl)(I)₂Cl₆•14.25H₂O) (5) suitable for X-ray analysis (Table S1). The crystal structure can be defined as a racemic mixture of left- and right-handed helical 1D-coordination polymers (1D-CPs) in which every hexaprotonated macrocycle is connected to its two neighbours through monodentate pyrazole units by alternating sequence of one CuCl₅ (Cu1) and two CuCl₅ (Cu2, Cu3) triangular moieties (Figure 2a). In every macrocycle all the secondary amino groups are protonated as in the case of 4.

The positive charge of the 1-D polymer is compensated by a chloride anion included in each one of the macrocycles and by chloride counter-anions. The coordination geometry around each contacting Cu²⁺ is trigonal bipyramidal with three chloride ligands occupying the equatorial plane and two pyrazole nitrogens at the shortened axial positions. Each helical turn is repeated every five macrocycles (Figure 3). MALDI-TOF spectra show a peak at m/z 1773.32 attributable to [K(Cu₃(H₄Cl)(I)₂Cl₆•14.25H₂O)]⁺ which corresponds to two macrocycles interconnected by two Cu²⁺ ions. A peak at m/z 1512.55 corresponds, on the other hand, to two macrocycles connected by a single Cu²⁺ ion (Figures S10-S14). These are the two basic building blocks of the 1D-chains. Interestingly enough the same crystal structure is obtained when the binuclear Cu²⁺ complex 2 is brought to pH 1.5 with HCl. Therefore, the acidification of the solutions leads to detachment of the metal from the amino groups and to re-organisation of the pyrazole units which change from a bis-monodentate (anionic pyrazolate) to a monodentate coordination mode (neutral pyrazole) (Scheme 1).
There are two different protonated macrocyclic subunits in the helix; one of them includes a chloride anion and two water molecules while the other one encapsulates one chloride anion and three water molecules (Figure 2b).

Each chloride anion is accepting hydrogen bonds from the neighbouring water molecules. In turn, each water molecule accepts hydrogen bonds from two secondary ammonium groups of the cryptand. An intricate hydrogen bonding bond network is thus formed between the chloride anions and the water molecules inside of the macrocyclic cavity.

In summary, pH modulation permits to switch from an endo to an exo coordination of Cu$^{2+}$ that, in this way, interconnects charged cryptand receptors forming a 1D-helical CP able to behave as a multi-anion receptor.

Financial support from the Spanish MINECO and FEDER funds of the E. U. (CONSOLIDER INGENIO 2010 CSD2010-00065 and CTQ2013-48917-C3-1-P), GVA (PROMETEO 2011/008), the Academy of Finland (K.R. grants no. 265328 and 263256) and COST CM1005 Supramolecular Chemistry in Water is gratefully acknowledged.

Notes and references

From Isolated 1H-Pyrazole Cryptand Anion Receptors to Hybrid Inorganic-Organic 1D Helical Polymeric Anion Receptors.

We report a 1-D helical coordination polymer formed by protonated polyamine 1H-pyrazole cryptands interconnected by Cu$^{2+}$ metal ions able to encapsulate chloride anions behaving as a multianion receptor.