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The vast amount of content on internet services, such as e-commerce sites, can 
cause information overflow, which leads to a bad user experience. 
Recommender system is technique to support the user’s decision-making by 
providing predicted suggestions. It is common that user is provided a list of 
items in user’s preference, e.g. top-10 list of movies. Traditionally, these ranked 
lists are generated by using rating-based approaches, where ratings are 
predicted to unknown items which are then calculated to ranked list. Ranking-
based approach calculates similarities between users and predicts a ranked list 
without the middle-step of predicting the ratings first. 

There is a number of different collaborative filtering (CF) algorithms for 
different use cases. In a context of CF, ranking-based approaches are becoming 
more popular as the importance of ranked list accuracy has increased. However, 
there are several hybrid implementations where two or more different kind of 
recommender systems are combined, which performance cannot be compared 
to the algorithms in this thesis due to implementation differences. 

This thesis will compare three different ranking-based CF algorithms to 
each other and compare the results with the rating-based CF paradigm. The 
results will show the prediction accuracy improvement when using ranking-
based approaches compared to a rating-based one. In addition, results will also 
show how much the performance have been improved in ranking-based CF 
algorithms in the past years. 

Excluding the research papers where the selected algorithms were 
introduced, I did not find any research publications where the selected 
algorithms were compared to each other. I evaluated the results using two 
different evaluation methods, of which Mean Average Precision is less common 
in this field of study.   

Keywords: recommender systems, ranking-oriented collaborative filtering, 
rating-oriented collaborative filtering 
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Koskela, Pentti 
Sijoitusperusteisten yhteisöllinen suodatus-algoritmien vertailu 
arvosanaperusteiseen vaihtoehtoon suosittelujärjestelmien kontekstissa 
Jyväskylä: Jyväskylän Yliopisto, 2017, 51 s.  
Tietojärjestelmätiede, Pro Gradu-tutkielma 
Ohjaaja: Rönkkö, Mikko 

Suuri sisältövalikoima eri internet palveluissa, kuten verkkokaupoissa, voi 
aiheuttaa liian suurta informaatiomäärää, mikä heikentää asiakaskokemusta. 
Suosittelujärjestelmät ovat teknologioita, jotka tukevat asiakkaan 
päätöksentekoa tarjoamalla ennustettuja suosituksia. On yleistä, että asiakkaalle 
näytetään lista tuotteista, joista asiakas voisi pitää, esimerkiksi top-10 lista 
elokuvista. Perinteisesti nämä listat ovat tuotettu käyttäen perinteistä 
arvosanapohjaista menetelmää, missä tuntemattomille tuotteille ennustetaan 
arvosana ja järjestetty lista muodostetaan arvosanojen perusteella. 
Sijoitusperusteinen lähestyminen laskee käyttäjien väliset samankaltaisuudet ja 
ennustaa järjestetyn listan ilman välivaihetta liittyen arvosanojen laskemiseen. 

Erilaisia suosittelujärjestelmäalgoritmeja on julkaistu lukuisia eri 
käyttötarkoituksia varten. Yhteisöllisen suodatuksen kontekstissa 
sijoitusperusteiset menetelmät ovat yleistyneet järjestettyjen listojen tarkkuuden 
merkityksen kasvaessa. On olemassa useita hybridivariaatioita missä kaksi tai 
useampi eri suosittelujärjestelmätyyppi on yhdistetty. Näiden suorituskykyä ei 
voida verrata tässä tutkielmassa käytettyihin algoritmeihin johtuen niiden 
erilaisesta toteutustavasta. 

Tämä tutkielma vertaa kolmea erilaista sijoitusperusteista yhteisöllistä 
suosittelujärjestelmäalgoritmia keskenään, ja vertailee tuloksia perinteisen 
arvosanaperusteisen algoritmin kanssa. Tulokset osoittavat parannuksen 
ennustustarkkuudessa sijoitusperusteista algoritmia käytettäessä, verrattuna 
arvosanaperusteiseen algoritmiin. Lisäksi, tulokset osoittavat 
sijoitusperusteisten algoritmien kehityksen parannuksen viime vuosina. 

Pois lukien tieteelliset julkaisut, missä valitut algoritmit ovat esitelty, en 
löytänyt tutkielmaa, missä algoritmeja olisi vertailtu keskenään. Tarkastelin 
tuloksia käyttäen kahta eri arviointimenetelmää, joista Mean Average Precision 
on vähemmän käytetty tämänkaltaisissa tutkimuksissa. 

 
Avainsanat: suosittelujärjestelmät, sijoitusperusteinen yhteisöllinen suodatus, 
arvosanaperusteinen yhteisöllinen suodatus 
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1 INTRODUCTION 

The size of the Internet is about 4.7 billion pages. Besides the number of pages, 
amount of information on the web has increased tremendously and it is more 
challenging to manage. This information overload offers some serious 
challenges to make most of the information manageable (Wang, Sun, Gao & Ma. 
2014). One of the techniques to handle this problem is recommender systems. 
Recommender systems have become very popular in situations where certain 
items ought to be addressed to a target user. 

But what are recommender systems? For most people, this term does not 
tell anything even though majority of people are dealing with recommender 
systems on a daily basis. Nowadays recommender systems are used on vast 
amount of web services, e.g. news pages, online stores and streaming services. 
Suggestions provided by recommender systems supports user’s decision 
making process (Kantor, Rokach, Ricci & Shapira, 2011, p. 6). For example: 
customer visits Netflix.com, the online streaming service videos, as a logged in 
user. From the user profile, basic demographic information like age, gender and 
residence can be gathered. This alone provides a possibility to recommend 
items according to a user’s demographic profile. Finnish content for finnish user, 
for example. Saved browsing history, watching history and ratings user has 
given to products makes more accurate predictions possible. With this kind of 
data, we can analyze and predict what kind of items the target user likes and 
what should be recommended to him or her. If the user has watched only 
comedies, it is most likely that he or she would like to see more comedies. 
Perhaps the user has a favorite actor or actress, then content should be 
recommended accordingly. The search-function in a web site or in a service is 
not considered a recommender system, although it can be implemented as part 
of it. The behavior of recommender systems can be called ‘passive’ as it does 
not need any explicit activity from the user. 

Recommender systems are extremely important business-wise. Most 
services have millions of items available, whether they are movies or music for 
streaming or physical products in online store. If there were no recommender 
systems to highlight to, user might feel anxious about not finding what he or 
she was looking for. Recommender systems are valuable for coping with the 
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information overload and they have become one of the most powerful tools in 
e-commerce (Kantor et al., 2011, p.6). 

Of all recommender systems paradigms, available, this thesis’ focus is on 
CF recommender algorithms, which can be divided into smaller segments, in 
this case memory-based and model-based methods. Other popular 
recommender systems are content-based filtering and various hybrid 
techniques combining these two together. 

The basic idea of collaborative filtering is to utilize user-item rating matrix 
to make predictions and recommendations (Wang et al. 2014). CF does not need 
previous information about users or items what makes its implementation far 
easier than content-based filtering, which requires proper domain knowledge. 

Recommender systems have been a popular topic for the last two-three 
decades and it is becoming even more important. Collaborative filtering is 
considered to be the first automated recommender system (Konstan & Riedl. 
2012) and it is the most popular one (Herlocker, Konstan, & Riedl, 2000). It has 
been studied the most and there are many different versions published 

When a user makes a search in e.g. Google, he or she is most interested in 
the results locating on top of the list and not so interested about the results 
below. In most cases, providing a ranked list of items in user preference order 
supports his or her decision-making. Ranked list can be produced by using 
traditional rating-oriented approach which first predicts the potential ratings a 
target user would assign to the items and then rank the items according to the 
predicted ratings (Liu & Yang, 2008). However, ranking-oriented CF algorithms 
can directly generate a ranked list of items for a target user without the 
intermediate step of rating prediction (Huang et al., 2015). This thesis’ focus is 
in the ranking problem and the research questions for this paper are as follows: 

• Why ranking-based algorithms should provide better results than 
traditional rating-oriented algorithms? 

• Do the proposed algorithms perform better than rating-based 
algorithm in real-world benchmark datasets? 

The contribution of this thesis will be the results of the three ranking-based CF 
algorithms compared to the traditional rating-based CF. These have not been 
compared to each other before but once, in publication of one of the algorithms. 
Therefore, this thesis provides more objective approach for the comparison. 
This thesis is divided into six chapters: Introduction, Recommender Systems, 
Selection of Collaborative Filtering Algorithms, Methodology, Results and 
Discussion.  

Chapter 2: Recommender Systems, describes the recommender systems in 
general level. A brief background about recommender systems is explained 
with the information about different types of recommender systems. Since this 
thesis is about CF, other types of recommender systems are not explained in 
detail. CF is divided into memory-based (chapter 2.2) and model-based (chapter 
2.3) approaches.  
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The ranking-based CF algorithms used in this thesis are memory-based. 
The more detailed explanation about the functionalities of selected algorithms 
are in chapter 3, which provides reader a basic understanding on how they 
work and differ from each other. For in-depth specifications about the selected 
algorithms, one should consider the research papers where they were 
introduced. 

Chapter 4 is about the methodology about this thesis. The selected 
methodology is Design Science Research Methodology (DSRM). The 
background and details about DSRM are explained based on paper by Hevner, 
March, Park and Ram (2004).  The implementation of DSRM for this thesis is 
explained. Chapter 334.1 introduces the real-world datasets that will be used in 
the experiment. The tool developed and used for the experiment is explained in 
chapter 4.2. The results are evaluated using two different evaluation methods, 
which are explained under chapter 4.3 

The analysis of the results is divided into three subchapters following with 
the summary under chapter 5.  Chapter 5.1 is about training the algorithm with 
training data and calculating the similarities. Chapter 5.2 about analyzing the 
runtime of prediction calculation using the test-data of the dataset. The 
prediction accuracy is evaluated using two different evaluation methods in 
chapter 5.3. Finally, chapter 5.4 concludes this chapter and the test results. 

Chapter 6 concludes the thesis with key findings, contribution and 
limitations of the research. The discussion about how well this thesis answered 
the research questions is in chapter 6.1., following with the contribution in 
chapter 6.2. Limitations and evaluation of the research are explained in chapter 
6.3. Chapter 6.4 concludes chapter 6 and the whole thesis. 
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2 RECOMMENDER SYSTEMS 

 
In this chapter recommender systems are explained in general level. Chapter 2.1 
provides background of recommender systems in general, provides basic 
knowledge for reader to understand the concept better and explaining why 
recommender systems are implemented. Chapters 2.2 and 2.3 provides basic 
level information about memory-based collaborative filtering and model-based 
collaborative filtering, respectively.   

2.1 Background 

Recommender systems are software tools and techniques that provide 
suggestions for target user (Kantor et al, 2011, p. 28). Recommender systems 
assist user in information-seeking tasks by suggesting items, e.g. products, 
services, information, that best suit their needs (Mahmood & Ricci, 2009). 
Recommender systems have become very popular and they are applied broadly 
in e-commerce and streaming services, like Netflix. E-commerce services might 
have hundreds of thousands, even millions, of products in their portfolio. While 
vast product portfolio is generally a good thing, customer might find itself 
surrounded by products not useful to him or her or worse, customer won’t find 
the product that he or she is interested in, making customer frustrated and 
motivated to exit the online store. Recommender systems are used to suggest 
products customer is interested in, based on various types of customer data that 
can be gathered in several ways. Type of data gathered and used in 
recommendation process depends on recommender system paradigm that has 
been used in the situation. Nowadays recommender systems are so popular 
that more often than not user does not even notice using one.  

In order for recommender system to function properly, it has to predict 
correctly the potential items user might want to see. The system must be able to 
predict the utility of some of the items and then decide what items to 
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recommend based on item comparison. (Kantor et al., 2011). If recommender 
system fails to do so, user sees recommendations annoying rather than useful. 
One example is that user gets product recommendations that suits users interest, 
but recommender system do not know that user have these products already, 
making recommendations pointless. Various user data must be gathered to 
avoid these kinds of situations. One option to avoid false recommendations is to 
implement filtering tools. Users rate items they have experienced to establish a 
profile of interest (Herlocker, Konstan & Riedl, 2000). If recommender system 
knows user’s profile, shopping history and/or possible reviews user has given, 
it should function far more accurate. In several cases user interaction is needed 
also to mark products as “not relevant”. 

Before describing how different recommender systems work, one should 
know the basic terms concerning the subject. Kantor et al (2011, p. 35) describes 
that data used by recommender systems refers to three kinds of objects: items, 
users and transactions. 
 
Items 
Items are the objects that are recommended (e.g. products in online store). Items 
are represented by a set of features. For example, movie and TV-series 
recommender describes items with following features: actors, directors, genres, 
subject, year of production etc. The value of an item may be positive if the item 
is useful for the user, or negative if the item is not appropriate and the user 
made a wrong decision when selecting it. When a user is acquiring an item 
there will always incur a cost. The cost is a cognitive cost of searching the item 
and monetary cost of paying the item. This should be taken into consideration 
when implementing recommender systems into a service. There is always a cost 
for the user even if user is not buying it. If searching and eventually finding the 
item does not end up buying the item, there have been cognitive cost, thus the 
value of the item is negative. If the item is useful for the user and he or she will 
buy it, the value of the item is positive.  
 
Users 
Users are more challenging to define since everyone is an individual with 
individual needs and goals. In order to personalize recommender systems to 
user, a lot of information about the user must be gathered. User information can 
be structured in various ways and the selection of what information to model 
depends on the recommendation paradigm. For instance, in collaborative 
filtering user profile is basically a simple list of ratings user has provided to 
items while content-based filtering requires far more complex user profile in 
order to generate accurate predictions. Demographic recommendation uses 
sociodemographic attributes such as age, gender, profession and education to 
form a user profile. 

Managing a user profile contains a lot of challenges. Once a user’s profile 
has been established, it is difficult to change one’s preferences. A meat-eater 
who becomes vegetarian will continue to get meat-related recommendations for 
some time, before preferences have changed enough. This occurs especially in 



12 

memory based collaborative filtering and content-based filtering. Many 
recommender systems have functions to weight older ratings to have less 
influence but it risks the system to lose user’s long-term interests that are not in 
frequent enough use. (Burke, 2007.). 
 
Transactions 
Transactions are referred to a recorded interaction between a user and the 
recommender system. Transactions are log-like data for which purpose is to 
store important information during the interaction process and which are useful 
for the recommendation generation algorithm that the system is using. One 
example of transaction data is rating that user has given to a certain item. 
Ratings are in fact the most popular form of transaction data. Ratings can be 
collected either explicitly or implicitly. The explicit collection relates to situation 
where the user is asked to provide an opinion about an item on a rating scale. 
Ratings can take a variety of forms: 

• Numerical ratings e.g. 1-5 stars 

• Ordinal ratings, such as “strongly agree, agree, neutral, disagree, 
strongly disagree” 

• Binary ratings where user is asked to decide if a certain item is good 
or bad 

• Unary ratings that can indicate if a user has observed or purchased an 
item. For example, browsing behavior or reading an article (staying 
on one page for a certain amount of time) is a form of unary rating. 

Recommender systems as a research area is relatively new. Earliest scientific 
publications about recommender systems are from early 1990s (Konstan & 
Riedl, 2012). The interest in recommender systems has increased significantly in 
recent years. Kantor et al (2009, p. 30) point out facts to indicate the rising 
popularity of recommender systems as a research area. Few of these mentions 
are listed as follows: 

• Recommender systems play an important role in such highly rated 
Internet sites as Amazon.com, YouTube, Netflix, Yahoo, 
TripAdvisor, Last.fm, and IMDb 

• There are dedicated conferences and workshops related to the field. 
For example, ACM Recommender Systems (RecSys), established in 
2007. Sessions dedicated to RSs are frequently included in the more 
traditional conferences in the area of data bases, information 
systems and adaptive systems. 

• At institutions of higher education around the world, 
undergraduate and graduate courses are now dedicated entirely to 
RSs; tutorials on RSs are very popular at computer science 
conferences; and recently a book introducing RSs techniques was 
published. 
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• There have been several special issues in academic journals 
covering research and developments in the RS field. 

Two most popular recommender system types are called collaborative filtering 
and content-based filtering. In addition, there are also demographic filtering 
and knowledge-based filtering. There are also hybrid variations, combining two 
or more of these paradigms. Collaborative filtering is considered to be the first 
automated recommender system (Konstan & Riedl, 2012) and it is the most 
popular and widely implemented recommendation technique (Kantor et al., 
2011). The very first recommender system, called Tapestry, was based on 
collaborative filtering and was designed to recommend documents drawn from 
newsgroups to a collection of users (Goldberg, Nichols, Obi & Terry, 1992). CF 
predicts item recommendations to the user based on collected information 
about item ratings user has provided, and then comparing this information to 
peer users rating-data (Herlocker, Konstan, Terveen & Riedl, 2004). User’s 
rating data is compared to other users’ data, and by finding a user with similar 
tastes with the target user, CF can predict items for the target user. The 
assumption is that a user would be interested in those items preferred by other 
users with similar interests (Liu & Yang, 2008). CF brings together the opinions 
of large interconnected communities on the web (Schafer et al., 2007). In other 
words, CF is based on “wisdom of the crowd”. In this process, CF uses the 
neighborhood approach, which focuses on relationships between items or 
between users (Kantor et al., 2011, p. 146)  

One of the benefits CF has compared to other techniques is its ability to 
recommend items regardless of the type or content, what makes it practical in 
various applications. However, there are some properties that needs to be 
fulfilled to get CF function properly.  Schafer et al. (2007) lists following 
required properties in table 1: 

 
TABLE 1 :Required properties to get CF function properly (adapted from Schafer et al. 2007) 

Feature Explanation 

There are many items If there are few items to choose from, the user can learn about 
them all without need for computer support. 
 

There are many ratings 
per item 

If there are few ratings per item, there may not be enough 
information to provide useful predictions or 
recommendations. 

There are more users 
rating than items to be 
recommended 

A corollary of the previous paragraph is that often you will 
need more users than the number of items that you want to 
be able to capably recommend. As an example, with one 

million users, a CF system might be able to make 
recommendations for a hundred thousand items, but may 
only be able to make confident predictions for ten thousand 
or fewer, depending on the distribution of ratings across 
items. The ratings distribution is almost always very skewed: 

a few items get most of the ratings, creating a long tail of 
items that get few ratings. Items in this long tail will not be 
confidently predictable. 
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Users rate multiple items If a user rates only a single item, this provides some 
information for summary statistics, but no information for 

relating the items to each other. 

 
There are several ways to categorize different CF methods. Another policy is to 
split CF techniques into memory-based and model-based methods. Memory-
based methods include both item-based and user-based CF methods and this is 
widely used for e.g. e-commerce sites, often with domain-specific variations (Su 
& Khoshgoftaar, 2009). Chapters 2.2 and 2.3 will provide more detailed 
information about memory-based and model-based CF. 

2.2 Memory-based Collaborative Filtering 

Memory-based CF (also called as neighborhood-based or heuristic-based) is 
considered one of the most popular recommendation approaches. (Kantor et al., 
2011, p.111).  Memory-based CF can be divided into item-based or user-based 
methods. In user-based-methods focus for CF is to predict user similarities 
where item-based methods rely on item similarities (Jian & Qun, 2012).   
Popular memory-based technique is to use nearest-neighbor methods, which 
means searching for most similar user to a target user from a set of users. This is 
popular due to their simplicity, efficiency and ability to produce accurate and 
personalized recommendations (Kantor et al., 2011, p.107). User-item ratings 
stored in the system are directly used to predict ratings for new items.  

This chapter is divided into four sub-chapters: Pearson Correlation 
Coefficient, Vector Space Model, Ranking-based Collaborative Filtering and 
Advantages and Drawbacks. Pearson Correlation Coefficient in chapter 2.2.1 is 
so common way to calculate similarities that it is good to explain in its own 
chapter. Vector Space-model is explained in chapter 2.2.2 and it is used in one 
of the algorithms by Wang, Su, Gao & Ma (2014). Ranking-based Collaborative 
Filtering in general is explained in chapter 2.2.3. The advantages and drawbacks 
of memory-based CF is discussed in chapter 2.2.4. 

2.2.1 Pearson Correlation Coefficient 

One way to measure similarities is to use Pearson correlation coefficient. 
Pearson coefficient calculates the correlation between target user and its 
neighboring users. For example, Eric has rated four items out of five. User-Item 
matrix (Table 2) contains ratings from three other users as well. With this rating 
data, it is possible to predict whether Eric likes movie “Titanic” or not, using 
Pearson correlation coefficient, and what rating she will most likely provide. In 
Pearson correlation coefficient, the result is covariance value between [-1,1], 
value 1 representing complete dependence. 
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u,v: users 
r u,i: user u rating for item i 
I uv: items rated by both u and v 
 

𝑃𝐶(𝑢, 𝑣) =  
∑ (𝑟𝑢𝑖 − 𝑟̅𝑢)𝑖 ∈ Iuv

(𝑟𝑣𝑖 − 𝑟̅𝑣) 

√∑ (𝑟𝑢𝑖 − 𝑟̅𝑢)2 𝑖 ∈ Iuv
∑ (𝑟𝑣𝑖 − 𝑟̅𝑣)2 𝑖 ∈ Iuv

 

TABLE 2 User-Item matrix (Kantor et al., 2011, p.126) 

 The Matrix Titanic Die Hard Forrest Gump Wall-E 

John 5 1  2 2 

Lucy 1 5 2 5 5 

Eric 2 ? 3 5 4 

Diane 4 3 5 3  

 
We can see that Eric’s taste is the most similar to Lucy’s, since both loved 
“Forrest Gump” and neither liked “The Matrix”. It would seem like Eric would 
like “Titanic” because Lucy rated it for 5, but there might be differences in their 
taste in movies. Perhaps Lucy likes more drama movies than Eric. It is 
important to notice that table this small works well as an example but not well 
in reality. Neighbors with tiny samples, three to five co-rated items, are proved 
to be terrible predictors for the active user (Herlocker, Konstan & Riedl, 2002). 
In order to get accurate predictions, table size should be between 20 to 50 users, 
minimum (Herlocker, Konstan & Riedl., 2000). Nearest-neighbor algorithms 
trust that user’s interests and tastes stays the same in the future than they are at 
the moment. However, there are systems that weight rating values depending 
how old ratings are, offering possibility to update user profile as time goes by. 

User-based neighborhood recommendation methods predict the rating rui 
of a user u for a new item i using the ratings given to i by users most similar to u, 
called nearest-neighbors (Kantor et al., 2011, p.138).  By using Pearson 
Correlation Coefficient, we can calculate user similarities. In table 3, we can see 
that covariance between Eric and Lucy is highest, meaning their taste in movies 
is the most similar. 

TABLE 3 User-based Pearson correlation (Kantor et al., 2011, p.126) 

 John Lucy Eric Diane 

John 1.000 -0.938 -0.839 0.659 

Lucy -0.938 1.000 0.922 0.994 

Eric -0.839 0.992 1.000 -0.659 

Diane 0.659 -0.787 -0.659 1.000 

 
Item-based recommendation relies on the ratings given to similar items. If we 
look at table 4, you can notice that people who liked “Forrest Gump” and 
“Wall-E” also liked “Titanic” and, obviously, vice versa. Since Eric liked 
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“Forrest Gump” and “Wall-E” (Table 2), we can presume that he would also 
like “Titanic”. It is notable that these recommendations do not consider any 
domain knowledge e.g. genre, director, actors. 

TABLE 4 Item-based Pearson correlation (Kantor et al., 2011, p.126) 

 The Matrix Titanic Die Hard Forrest Gump Wall-E 

Matrix  1.000 -0.943 0.882 -0.974 -0.977 

Titanic -0.943 1.000 -0.625 0.931 0.994 

Die Hard 0.882 -0.625 1.000 -0.804 -1.000 

Forrest Gump -0.974 0.931 -0.804 1.000 0.930 

Wall-E  -0.977 0.994 -1.000 0.930 1.000 

 
Pearson Correlation Coefficient is only one from many similarity measurement 
methods. Mean Squared Difference, Spearman Rank Correlation have also been 
used, to name a few (Kantor et al., 2011. p. 127). The used data (e.g. size, type) 
has some significance which measurement is the most suitable for target 
application. However, Herlocker et al. (2002) note that Pearson Correlation 
Coefficient is the most accurate technique for computing similarity. 
 

2.2.2 Vector Space Model 

The vector space model is a standard algebraic model commonly used in 
information retrieval and it has been used in many applications, such as image 
processing, recommender systems, spam detection and song sentiment 
classification. It has been used in both collaborative-filtering and content-based 
filtering approaches. In content-based filtering, the descriptive user profiles can 
be reflected as documents and the vector space model can be applied to make 
recommendations based on user similarity. In rating-based CF, the vector space 
model can be used to transform vectors of users from the user space into the 
item space, and the similarity between users and items can be measured using 
cosine similarity. (Wang et al. 2014). User-user or item-item similarity can also 
be measured using vector similarity. The idea about vector similarity is to view 
each user as a vector in a high dimensional vector space based on user’s ratings. 
The similarity between two vectors is calculated from the cosine of the angle of 
these vectors, which is a standard measure estimating pairwise document 
similarity in the vector space model (Liu & Yang, 2008, Wang et al. 2014). 
 

𝑆𝑢,𝑣 =  
∑ 𝑟𝑢,𝑖  ∙  𝑟𝑣,𝑖𝑖 ∈𝐼𝑢∩ 𝐼𝑣

[∑ 𝑟𝑢,𝑖
2

𝑖 ∈𝐼𝑢∩ 𝐼𝑣
 ∑ 𝑟𝑣,𝑖

2
𝑖 ∈𝐼𝑢∩ 𝐼𝑣

] 1 2⁄
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When calculating item-item similarity, the adjusted cosine similarity has proven 
to be the most effective (Liu & Yang, 2008, p.85). In item-item Vector Similarity 
each user’s rating on an item is adjusted by user’s mean rating.  
 

𝑆𝑖,𝑗 =  
∑ (𝑟𝑢,𝑖 − 𝑟𝑢̅) (𝑟𝑢,𝑗 − 𝑟𝑢̅)𝑢 ∈𝑈𝑖∩ 𝑈𝑗

[∑ (𝑟𝑢,𝑖 − 𝑟𝑢̅)2
𝑢 ∈𝑈𝑖∩ 𝑈𝑗

 ∑ (𝑟𝑢,𝑖 − 𝑟𝑢̅)2
𝑢 ∈𝑈𝑖∩ 𝑈𝑗

]  1 2⁄
 

 

2.2.3 Ranking-based Collaborative Filtering 

This chapter explains the basic concept of ranking-based CF. The more detailed 
description about ranking-based CF can be obtained in chapter 3 where four 
different ranking-based CF algorithms are explained and hence work as an 
example. 

In rating-based CF approaches, ranked lists are produced from rating 
predictions first and generating ranked list from those predictions. The problem 
in this approach along with weaker performance is that higher accuracy in item 
rating does not necessarily lead to better ranking effectiveness. This can be 
explained with following simple example. There are two items, i and j with true 
ratings of 3 and 4 respectively. Two different methods have predicted the 
ratings for i and j to be {2, 5} and {4, 3} respectively. As one can see, there is no 
difference between these two sets of predictions in terms of rating prediction 
accuracy since all the values are one unit away from the correct rating. The 
difference between these two predictions is that using the prediction {4, 3} will 
put items i and j in incorrect order while {2, 5} puts items in correct order. 

Liu & Yang (2008) note that the problem in rating-oriented CF is focusing 
on approximating the ratings instead of rankings, which is a more important 
goal for recommender systems. In addition, most existing methods predict the 
ratings for each individual item independently instead of considering the user’s 
preferences regarding pairs of items. 

The idea behind ranking-based CF is to produce an ordered list of Top-N 
recommended items where the highest ranked items are predicted to be most 
preferred by the user. Assumption is that the user examines the items in the list 
starting from the top positions. (Liu & Yang, 2008.). It is easy to understand and 
accept this assumption if one thinks user behavior while e.g. making web-
searches, browsing media-streaming services like Netflix or browsing e-
commerce sites with tens of thousands of articles. 

Ranking-based CF is considered to be more effective recommender system 
than rating-based CF since it has no need to calculate the ratings of the items for 
target user first. The popularity of ranking-based CF has increased over the 
years. Building of recommendation problems is changing away from rating-
based to ranking based (Wang et al., 2014). Like rating-based CF, also ranking-
based CF has multiple different variations on how to implement the process.  
Common for all ranking-based CF is that they are able to capture the preference 
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similarity between users even if their rating scores differ significantly. First 
ranking-based CF is considered CoFiRank (Weimer et al, 2007). CoFiRank uses 
maximum margin matrix factorization to optimize ranking of items for CF. 
EigenRank, that is included in empirical part of this research, was introduced in 
2008 by Liu and Yang. EigenRank measures the similarity between users using 
Kendall tau rank correlation for neighborhood selection, much like VSRank 
which function is also explained later in this paper.  

The rankings are derived from the rating matrix. Popular method to 
calculate similarity between users u and v is Kendall Tau rank correlation 
coefficient (Wang et al., 2014). Kendall tau rank correlation coefficient is a non-
parametric statistic tool to measure correlation between two ordinal scale 
values. In case of ranking-based CF, the values are the two rankings from users 
u and v on their common item set: 

 

𝜏𝑢,𝑣 =
𝑁𝑐 − 𝑁𝑑

1
2

 𝑁(𝑁 − 1)
 

 
where Nc are the numbers of the concordant pairs and Nd are the numbers of 
discordant pairs. 1/2N(N-1) represents the total number of pairs. The value of 
Kendall tau is between [-1, 1]. 

2.2.4 Advantages and Drawbacks 

Kantor et al. (2011, p. 135) have listed main advantages for memory-based CF as 
follows: 

 
TABLE 5 : Main advantages for memory-based CF (Kantor et al., 2011, p. 113) 
Attribute Explanation 

Simplicity Neighborhood-based methods are intuitive and relatively simple to 
implement. In their simplest form, only one parameter (the number of 
neighbors used in the prediction) requires tuning 

Justifiability Such methods also provide a concise and intuitive justification for the 
computed predictions. This helps to provide recommendation 
transparency and hence, more trust. For example, in item-based 
recommendation, the list of neighbor items, as well as the ratings given by 
the user to these items, can be presented to the user as a justification for the 

recommendation. 

Efficiency One of the strong points of neighborhood-based systems is their efficiency. 
Unlike most model-based systems, they require no costly training phases, 
which need to be carried out at frequent intervals in large commercial 
applications. While the recommendation phase is usually more expensive 
than for model-based methods, the nearest-neighbors can be pre-computed 

in an offline step, providing near instantaneous recommendations. 
Moreover, storing these nearest neighbors requires very little memory, 
making such approaches scalable to applications having millions of users 
and items.  

Stability Another useful property of recommender systems based on this approach 
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is that they are little affected by the constant addition of users, items and 
ratings, which are typically observed in large commercial applications. For 

instance, once item similarities have been computed, an item-based system 
can readily make recommendations to new users, without having to re-
train the system. Moreover, once a few ratings have been entered for a new 
item, only the similarities between this item and the ones already in the 
system need to be computed 

 
Investigations have shown that model-based approaches (e.g. latent factor 
model) are better than memory-based methods in prediction accuracy (Koren, 
2008). However, good prediction accuracy alone does not guarantee users an 
effective and satisfying experience (Good et al., 1999). In fact, a very important 
role in appreciation of users for the recommender system is serendipitous 
recommendations (Good et al., 1999). For instance, a huge fan of Star Wars-saga 
does not get excited about movie recommendations of Star Wars-movies. 
Serendipitous recommendations help user find an interesting item that would 
not have otherwise been discovered. 

Memory-based CFs one drawback is its poor scalability to larger systems, 
since managing CF requires managing large data tables, which tend to be 
inefficient. For example, big e-commerce providers could have millions of users 
and items and CF provides predictions based on user-item matrix. Memory-
based CF also focuses more on recommending the most popular items since 
they have more rating-information available. (Sarwar, Karypis, Konstan & Riedl, 
2001.). Almost all practical algorithms use some form of pre-processing to 
reduce run-time complexity and to help memory-based CF to scale better 
(Schafer et al., 2007). 

Liu & Yang (2008) state that there are several difficulties when user-user 
approach has been selected for measuring. Firstly, raw ratings may contain 
biases, meaning that users tend to rate items differently. For example, some 
users may tend to give high ratings for most of the items. This can be corrected 
by using data normalization or centering the data prior to measuring user 
similarities, for example. Secondly, user-item ratings data is typically highly 
sparse. This challenges the system to find highly similar neighbors for creating 
accurate predictions. To fix the data, unknown ratings in the user-item matrix 
must be handled.  

Another common CF related problem is the cold start issue. CF requires 
rating data in order provide predictions. When a new item is added to the 
system, it doesn’t have any rating info, naturally. This item can’t be 
recommended to anyone before it gets enough ratings. Same problem bothers 
new user. CF can’t generate user profile before target user has given enough 
ratings for items. In other words, new user doesn’t have neighborhood of 
similar users. There are some solutions that help reduce the cold start issues 
(Schafer et al., 2007.): 

• have the user rate some initial items before they can use the service  
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• display non-personalized recommendations (e.g. most popular 
items in the service) until the user has rated enough items 

• ask the user to describe their taste in aggregate, e.g., “I like science 
fiction movies” 

• ask the user for demographic information 

• using ratings of other users with similar demographics as 
recommendations 

2.3 Model-based Collaborative Filtering 

Memory-based CF algorithms maintain a database of all users’ ratings for all 
items and each prediction performs computation across the entire database. 
Model-based algorithms first compile the user’s preferences into a descriptive 
model of users, items, and ratings. Recommendations are generated by 
appealing to the model. Model-based approach may offer added value beyond 
its predictive capabilities by highlighting certain correlations in the data. 
Prediction can be calculated quickly once the model is generated and it doesn’t 
require as much performance as memory-based CF. However, complexity to 
compile the data into a model may be challenging and adding new item may 
require a full recompilation. (Pennock, Horvitz, Lawrence & Giles, 2000.) 

Model-based CF uses probabilistic models to predict rating values of 
unobserved items for the target user. These probabilistic models used in model-
based CF are for example cluster models and Bayesian Network model. (Breese, 
Heckerman & Kadie, 1998.). The Bayesian network model, the most popular 
probabilistic model (Schafer et al., 2007), is explained in chapter 2.3.1. Cluster 
model is briefly described in chapter 2.3.2. Model-based approach is not 
discovered more specifically as none of the selected algorithms represent 
model-based CF.  

2.3.1 Bayesian-Network Model 

Bayesian-network model derives probabilistic dependencies among users or 
items. Breese et al. (1998) describes a method for deriving and applying 
Bayesian networks using decision trees to compactly represent probability 
tables. A decision tree (FIGURE 1) shows that users who do not watch “Beverly 
Hills 90210” are very likely to not watch “Melrose Place”. There is a separate 
tree for every recommendable item. The branch chosen at a node in the tree is 
dependent on the user’s rating for a particular item. Every node stores a 
probability vector for user’s ratings of the predicted item. (Schafer et al., 2007.) 
Bayesian-network is proven to be more scalable compared to memory-based CF 
methods but prediction accuracy is weaker. In addition, model learning and 
updating is considered expensive if the number of users is large. 
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FIGURE 1 A decision tree regarding whether a user watches” Melrose Place”. (Breese et al., 
1998) 

  

2.3.2 Cluster models 

Cluster models provide facilitation to CF scaling problem by clustering items in 
groups.” Clustering consists of assigning items to groups so that the items in 
the same groups are more similar than items in different groups: the goal is to 
discover natural (or meaningful) groups that exist in the data” (Kantor et al., 
2011, p.86). Clustering is often considered as an intermediate step, for example 
to help memory-based CF scale better. The actual prediction is then made using 
e.g. Pearson correlation coefficient. With clustering models, the 
recommendation process can be done in smaller parts (clusters) rather than the 
entire database, improving performance. This complex and expensive 
clustering computation is run offline. Cluster model’s recommendation quality 
is generally low. The quality can be improved by using numerous fine-grained 
segments. However, the online user-segment classification could become 
almost as expensive as just using memory-based CF only (Su & Khoshgoftaar, 
2009.). 
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3 SELECTION OF COLLABORATIVE FILTERING 
ALGORITHMS 

Algorithms applied and used in this paper are traditional rating-oriented CF, 
EigenRank (Liu & Yang, 2008), VSRank (Wang et al., 2014) and ListCF (Huang 
et al., 2015).  These articles are the main sources for these algorithms in their 
own chapters. If not separately mentioned, the text refers to these publications 
accordingly. 

3.1.1 Rating-oriented CF 

Traditional collaborative filtering algorithms are based on predicting the 
potential ratings that a user would assign to the unrated items. Liu and Yang 
(2008) divide traditional CF into two classes. In the first class, user is presented 
with one individual item at a time along with a predicted rating that indicates 
the user’s potential interest in the item. The second class produces an ordered 
list of Top-N recommended items. The items are ranked and highest-ranked 
items are most preferred by the user. The user is expected to browse predicted 
items from top of the list heading downwards. The latter one appears to be 
more popular, at least in e-commerce (Liu & Yang, 2008).  

The computation of Top-N item list is generated using a rating-oriented 
approach. Rating-oriented approach first predicts the potential ratings a target 
user would assign to the items and then rank the items according to the 
predicted ratings. (Liu & Yang, 2008). Liu and Yang (2008) present a solid 
example about ranking effectiveness in rating-oriented approach: 

Suppose we have two items i and j for which the true ratings are known to be 3 and 4 
respectively and two different methods have predicted the ratings on i and j to be {2, 
5} and {4, 3} respectively. In terms of rating prediction accuracy as measured by the 
absolute deviation from the true rating, there is no difference between the two sets of 
predictions. However, using the predictions {4, 3}, item i and j will be incorrectly 

ordered while the predictions {2, 5} ensures the correct order. 
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Rating-oriented CF approach focuses on approximating the ratings rather than 
the rankings.  The similarity measures in rating-oriented CF are e.g. Pearson 
Correlation Coefficient and Vector Similarity (see Chapter 2.2.1. and 2.2.2).  

3.1.2 EigenRank 

EigenRank represents one of the first ranking-based CF algorithms and it is the 
oldest ranking-based recommendation algorithm presented in this paper. 
EigenRank’s main contribution can be considered similarity measure, greedy 
order algorithm and random walk algorithm.  This chapter presents the main 
idea behind EigenRank and thus the only reference is the article from Liu and 
Yang (2008). EigenRank challenges the problem in rating-oriented CF about 
computing Top-N item list by using a ranking-based approach. 

EigenRank approach describes a user-user similarity measure, which is 
based on two users’ preferences over the items and after that, present two 
methods for ranking items based on the preferences of the set of neighbors of 
the target user. These methods are greedy order algorithm and random walk 
model. EigenRank is not trying to predict user’s ratings on unrated items which 
is an intermediate step in traditional rating oriented CF. User-user similarity 
measurement using Pearson Correlation Coefficient or Vector Similarity are 
rating-based measures and hence, not ideal for ranking-based algorithms. In 
ranking-based algorithms, the similarity between users is determined by their 
ranking of the items.  

Since the goal for EigenRank, and all other ranking-based algorithms, is to 
produce a ranking of the items for a user and not to predict the rating values 
first, user’s preference function needs to be evaluated. Liu & Yang (2008) use 

the following form to model a user’s preference: Ψ: I x I  ℝ, where Ψ(i,j) > 0, 
meaning that item i is more preferable to j for user u and vice versa. The 
magnitude of this function | Ψ (i,j)| explains the strength of preference 
between items i and j, value zero meaning no preference between these two 
items. If user u’s rates items i and j with values 5 and 3 respectively, it indicates 
that Ψ(i,j) > 0 and Ψ(j,i) < 0. This leads to a broader definition of preference 
function where the basic idea is the same as in neighborhood-based 
collaborative filtering, where we need to find users with similar preferences to 
the target user. In the following formula, the set of users is noted Nu: 

 

Ψ (𝑖, 𝑗) =  
∑ 𝑆𝑢,𝑣  ∙  (𝑟𝑣,𝑖 − 𝑟𝑣,𝑗)

𝑣 ∈ 𝑁𝑢
𝑖,𝑗

∑ 𝑆𝑢,𝑣𝑣 ∈ 𝑁𝑢
𝑖,𝑗

 

 
The more often the users in Nu assign i a higher rating than j, the stronger the 
evidence is for Ψ (i,j) > 0 and Ψ (j,i) < 0. The summation of Nui,j is the set of 
neighbors of u who have rated both items i and j. 

This preference function presented above assigns a score to every pair of 

items i, j ∈ I. The goal is to choose a ranking of items in I that approves with the 
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pairwise preferences defined by Ψ as much as possible. Value function VΨ(p) is 
defined such as p is a ranking of item in I when p(i) > p(j) if and only if i is 
ranked higher than j. Value function measures how consistent is the ranking p 
with respect to the preference function Ψ as follows: 

 

𝑉Ψ(𝑝) =  ∑ Ψ (𝑖, 𝑗)

𝑖,𝑗:𝑝(𝑖)>𝑝(𝑗)

 

 
EigenRank value function suggests that solving the ranking problem requires 
searching through the optimal ranking p* that maximizes the function. Finding 
the optimal ranking p* is a NP-complete problem, meaning that the resolution 
time for this problem is exponential. 

Ranking-based filtering needs a way to rank items without ratings and 
that is why preference functions are used. It is challenging to obtain preference 
information about items that the target user has not yet rated. EigenRank 
explains two approaches to solve the item-ranking problem. First one is called 
Greedy Order Algorithm and second one is named Random Walk Model. 
Greedy Order Algorithm is explained in FIGURE 2: 

 

 

FIGURE 2 Greedy Order algorithm (Liu & Yang, 2008) 

Each item i ∈ I have a potential value π (i). Second line of the algorithm 
indicates that the more items that are less preferred than i (i.e. Ψ (j,i) > 0) the 
higher the potential of i. The item t evaluated in line five presents the current 
highest ranked item. The Greedy Order algorithm picks the item t and assigns a 
rank to it, which is equal to the number of remaining items in I so that it will be 
ranked above all the other remaining items (line six). Item t is then deleted from 
items in I and the potential values of the remaining items are updated by 
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removing the effects of t. Greedy order algorithm has a time complexity of O(n2), 
where n denotes the number of items. 

Since Greedy Order algorithm is not considered as effective way, another 
approach is presented in the paper. Random Walk model is based on the 
stationary distribution of Markov chain and it is ultimately close to PageRank, 
introduced by Brin and Page (2012; originally presented in 1998). Markov chain 
is used as a base for Random Walk since it is effective for aggregating partial 
and incomplete preference information from many users.  Random Walk model 
used in EigenRank derives implicit links between items based on the observed 
preference information so that a less preferred item j would link to a more 
preferred item i and the transition probability p(i|j) would depend on the 
strength of the preference which can be told from the value Ψ (i,j). For example, 
a user is trying to find his or her favorite item (e.g. a movie) and he or she has 
some preferences over the items. The user first chooses an item j randomly and 
based on the preferences, he or she would switch to another item i based on the 
conditional probability p(i|j) which would be higher for items that are more 
preferred than j and naturally lower for items that are less preferred than item j. 
Eventually the user should select his or her favorite item most often, explaining 
how the stationary distribution could be used to rank items based on 
preferences. The transition probability p(i|j) of switching to another item j 
given the current item i is defined in next figure:  

 

𝑝 (𝑗 | 𝑖) =  
𝑒Ψ (𝑗,𝑖)

∑ 𝑒Ψ (𝑗,𝑖)
𝑗 ∈𝐼

 

 

3.1.3 VSRank  

VSRank is a ranking-based recommender system approach introduced in 2014 
by Wang et al. Their article is the main source for this chapter since this is a 
summary of their publication.  Idea behind VSRank is to improve 
recommendation accuracy for ranking-based CF by adapting vector space 
model and considering each user as a document and user’s pairwise relative 
preferences as terms. Vector space model have been implemented in content-
based filtering but it has not been investigated before in the context of CF. The 
terms are weighted using degree-specialty weighting scheme that in this case is 
TF-IDF (term frequency-inverse document frequency) resemblance. After users 
are represented as vectors of degree-specialty weights, ranking-based CF 
techniques are adopted for making recommendations for a given user.  

Conventional ranking-based algorithms, e.g. EigenRank, are based on 
similarity measures between two users on the same set of items. These 
algorithms treat pairwise relative preferences equally, without considering any 
weighting scheme for preferences in similarity measures.  That is, if two users 
give ratings for same items but other user has given bigger rating for item he or 
she liked more, users’ preferences are different although both liked the same 
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item over the other. Weighting is one of the techniques used in data analysis 
and machine learning that eliminates irrelevant, redundant and noisy data. 

The key component in VSRank is the degree-specialty weighting scheme. 
Wang et al.  provide following simple example to demonstrate why relative 
preferences need weighting; there are two users, u and v, and both have rated 
two items {i1, i2} to be {5,1} and {2,1}, respectively. Ratings indicate that both 
users have rated item i1 higher than i2 and the scores show that user u prefers i1 
over i2 more strongly than user v does. Stronger preferences with larger score 
differences should be noted while creating recommendations. Stronger the 
score difference between two items means larger degree between them. This 
degree between two comparable items resembles term frequency (TF) in TF-IDF 
scheme. High degree for a preference term from a user can be understood in a 
way the user frequently confirms his or her preference. 

Since TF-IDF is originally a numerical statistic tool that reflects how 
important a word is to a document, it is naturally not suitable for CF out-of-the-
box. One of the problems TF has is that in original use the value is textual and 
undirectional. When implementing TF-IDF in CF, TF-value is directional. This 
means it has a value to compare to, which is its opposite preference. Instead of a 
literal word for word translation, IDF in VSRank measures the rarity of the 
preference in users who hold the same or the opposite preferences on the same 
items.  

Vector space model is a standard algebraic model commonly used in 
information retrieval. Vector space model treats a textual document as a bag of 
words. Each document is represented as a vector of TF-IDF weights. Cosine 
similarity is used to compute similarity between document vectors and query 
vectors. Larger the similarity, higher the relevancy. 
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FIGURE 3 VSRank-algorithm (Wang et al., 2014) 

First part of the algorithm (FIGURE 3) (lines 1-14) represent each user as a 
vector of relative preference terms based on the vector space model. For each 
user u relative preference terms Tu are extracted, forming a preference terms T 
(lines 1-5). Next block (lines 6-8) computes the specialty weight for each term t ∈ 
T. Lines 9-14 compute the degree weights and obtain a vector of degree-
specialty weights for each user. 

The latter part (lines 15-23) contains CF procedure to make 
recommendations for each user. Similarity between u and the rest of the users 
are computed in lines 16-18.  The neighborhood users Uu are selected in line 19. 
The rest of the algorithm aggregate preferences of the neighborhood users into 
a total ranking of items τu for recommendation. 

3.1.4 ListCF 

ListCF stands for Listwise Collaborative Filtering and it represents a memory-
based ranking-oriented CF approach, which measures the user-user similarity 
based on Kullback-Leibler divergence. What makes ListCF different from 
previous ranking-based CF algorithms is its function to directly predict a total 
order of items for each user based on similar user’s probability distributions 
over permutations of commonly rated items.  

ListCF predicts item rankings for each user by minimizing the cross-
entropy loss between the target user and his neighboring users with weighted 



28 

similarities. The advantage in this approach, compared to algorithms that focus 
on predicting pairwise preferences between items, is reduced computational 
complexity in training and prediction procedures. Ranking performance should 
be at the same level or better than on previous memory-based CF algorithms. 
(Huang et al., 2015). 

Where EigenRank uses Kendall’s tau correlation and VSRank implies 
Vector Space model for position ranking, ListCF approach is to utilize Placket-
Luce, widely used permutation probability model, to represent each user as a 
probability distribution over the permutations of rated items. The similarity 
between two users is measured based on the Kullback-Leibler divergence 
between their probability distributions over the set of commonly rated items. 
The neighborhood users for the target user are the ones that have higher 
similarity scores. ListCF infers predictions by minimizing the cross-entropy loss 
between their probability distributions over permutations of items with 
gradient descent.  

Huang et al. (2015) have considered different variations for calculating 
probability of permutations in phase I.  For a set of n items, the number of 
different permutations is n! and therefore too time-consuming to calculate the 
probabilities of all the permutations. This is a problem that effects performance 
far too heavily and forces to implement more efficient solutions. Huang et al. 
end up using Top-k permutation set, which focuses only on the permutations of 
the items within the top-k positions. The number of permutation sets to 
consider is n!/(n - k)! , each containing (n – k)! permutations of I (= set of items). 
The total probabilities of permutations are n!=(n - k)! x (n - k)! = n!, the same as 
in full  permutations of all the items. For this problem, Huang et al. (2015) refer 
to the probability distribution over the top-k permutation sets as the top-k 
probability model, which uses the top-k permutation sets instead of the full 
permutations of all the items. Kullback-Leibler divergence based metric is used 
for similarity calculation as it is a common measure of the difference between 
two probability distributions in probability theory and information theory. The 
similarity between each pair of users is between {0, 1}. 

In phase II, the goal is to predict a preference ranking of items. The 
assumptions are similar to traditional pairwise CF: to make predictions based 
on a set of neighborhood users with similar ranking preferences to the target 
user. The past ranking preferences affect to the upcoming ranking preferences, 
which is normal to memory-based recommender systems. The cross-entropy 
loss function, widely-used function for optimizing similarity or distance 
between probability distributions, is used for making predictions.  

In FIGURE 4, we see ListCF algorithm in pseudocode. The lines 1 – 7 
represents the phase I, where the similarities between users are calculated and 
neighborhood users discovered. Lines 8-23 represents the phase II where the 
ranking of items is predicted for making the recommendations.  

It is possible to modify the k-value in top-k permutation set in ListCF. 
Huang et al. (2015) tested values 1,2 and 3 with 1000 randomly selected users 
from MovieLens-1M dataset. According to the test, the recommendation 
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accuracy improved a little when increasing the k-value. However, the efficiency 
suffered a tremendous fall. The calculation time in phase I and phase II of 
ListCF algorithm is 433 and 488 times longer, respectively, when k-value was 
set to 3 instead of 1. It is safe to say that improved accuracy is not worth the 
degenerated efficiency. 

When comparing the accuracy of ListCF to traditional pointwise CF and 
pairwise CF (e.g. EigenRank), Huang et al. (2015, p.6) demonstrate with a 
following example: 

Suppose there are three users U = {u1, u2, u3} and three items I = {i1, i2, i3}, where u1 

assigned ratings of {5, 3, 4} to items, u2 assigned {5, 4, 3}, and u3 assigned {4, 3, 5}. In 
pointwise CF, the similarity (Pearson correlation coefficient) between u1 and u2 and 
the similarity between u1 and u3 are ρ(u1, u2) = ρ(u1, u3) = 0.5. In pairwise CF, the 
similarity (Kendall's τ correlation coefficient) between u1 and u2 and the similarity 
between u1 and u3 are τ(u1, u2) = τ(u1, u3) = 0:333. In ListCF, according to Equation (1), 

the top-1 probability distributions of users u1, u2 and u3 are Pu1 = (0:665, 0:090, 0:245), 
Pu2 = (0:665, 0:245, 0:090), and Pu3 = (0:245, 0:090, 0:665). According to Equation (2), 
s(u1, u2) = 0:776 and s(u1, u3) = 0:395, and thus s(u1, u2) > s(u1, u3). 

If we look at the ratings users have given, we can see that user u1 and u2 are 
more similar to each other than users u1 and u3. While the rating values are the 
same for each user, Pearson correlation coefficient and Kendall’s τ indicate, that 
the users are similar to each other. As one can see from the example above, 
ListCF is the only one that calculates the user similarities correctly. 

 
 



30 

 
 
FIGURE 4 ListCF-algorithm (Huang et al., 2015) 
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4 METHODOLOGY 

Since the approach to the subject of recommender systems in this research is 
rather technical, I have chosen design science research methodology as a 
framework. Design science is fundamentally a problem-solving process 
(Hevner et al, 2004). Improving both the effectiveness and prediction accuracy 
in recommender systems is without a doubt a problem-solving process as well. 
However, the subject in this research is not to construct an artifact but to 
compare artifacts to each other.  

It was until early 1990s, when DS was considered as a research method for 
development in Information Systems (IS). One might note that IS research itself 
is only about one-third of a century old (Peffers, Tuunanen, Rothenberger & 
Chatterjee, 2008.). DS is relatively young research method for IS but it has got a 
solid ground in researches where a design artifact is developed for extending 
the boundaries of human and organizational capabilities. “Design science, as 
the other side of the IS research cycle, creates and evaluates IT artifacts intended 
to solve identified organizational problems.” (Hevner et al., 2004.). In IS 
research, technology and human behavior are inseparable and hereafter 
scientific research should be assessed considering its practical implications 
(Hevner et al., 2004). 

Hevner et al. (2004) present guidelines for design-science research (table 6). 
First guideline is to design a purposeful IT artifact to address an important 
organizational problem. Instead of a whole information system, the artifact can 
be one crucial part of it. For example, IT artifact can be a software tool for 
improving the process of information system development. 

The aim is to do an experiment about the artifacts that are already created 
by others. Hence, we are implementing parts of the DSRM approach as a 
guideline to fit this experiment under IS research. To be more precise, I am 
using guidelines from three to seven of the Design-science research guideline 
(table 6). 
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TABLE 6 Design-science research guidelines (adapted from Hevner et al., 2004) 

Guideline Description 

Guideline 1: Design as an Artifact 

Design-science research must produce a viable artifact in 
the form of a construct, a model, a method, or an 
instantiation. 

Guideline 2: Problem Relevance 

The objective of design-science research is to develop 
technology-based solutions to important and relevant 
business problems. 

Guideline 3: Design Evaluation 

The utility, quality, and efficacy of a design artifact must 
be rigorously demonstrated via well-executed evaluation 
methods. 

Guideline 4: Research Contributions 

Effective design-science research must provide clear and 
verifiable contributions in the areas of the design artifact, 
design foundations, and/or design methodologies. 

Guideline 5: Research Rigor 

Design-science research relies upon the application of 
rigorous methods in both the construction and evaluation 
of the design artifact. 

Guideline 6: Design as a Search Process The search for an effective artifact requires utilizing 
available means to reach desired ends while satisfying 
laws in the problem environment. 

Guideline 7: Communication of Research  Design-science research must be presented effectively 
both to technology-oriented as well as management-
oriented audiences. 

 
Guideline 3 describes the utility, quality and efficacy of a design artifact. These 
attributes of algorithms used in this paper, except PointCF which is used as a 
benchmark, are explained in needed detail on chapter 3. Hevner et al. (2004) 
describes five different evaluation methods for design science in IS: 
observational, analytical, experimental, testing and descriptive. Of these five 
methods, experimental is suitable for evaluating recommender systems 
algorithms since it is a test with fixed data and platform. 

One example of an artifact in IS-research and DSRM is an algorithm. To be 
more precise, algorithm can be defined as a method (Hevner et al., 2004). Since 
we are comparing four different algorithms designed to provide a best solution 
for predicting recommended items to target user, we are comparing four 
different methods of achieving the best viable outcome. 

Guideline 4 is about the contributions the artifact should provide to 
research community. The goal in ranking-based algorithms is to improve the 
predicted item list ranking from the results of a one generated by rating-based 
algorithm. When the focus is on a list of predicted items, say top-10 list of 
movies, the effect is more usable to real-world scenarios, compared to 
predicting the best rating of an item for the target user. Not only should 
ranking-based CF provide more accurate predictions for user, but it also brings 
up a new way of approaching the recommendation problem itself. For most 
cases, it is more important for user what item user likes most, rather than what 
rating might be. 

The definition of algorithms in chapter 3 along with the research papers, 
where the algorithms were published, provide a rigor approach that is required 
in guideline 5. All the algorithms are designed to improve the previous 
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approaches in CF-context, which has required a search process for problem 
survey. 

Design as a search process in guideline 6 fits this scenario well, since the 
goal for all algorithms is to be better than previous CF approaches. By 
comparing the algorithms to each other with same data, we are searching for 
the best solution to a problem about item recommendation. 

The benchmark consists of two phases: training phase and test phase. In 
training phase, the selected algorithms are trained for prediction using data-set-
specific training data. The algorithms calculate the similarities between users to 
be able to predict the ranked lists. The training phase produces a table of 
similarities between users which is then used in the test phase. The predictions 
are calculated in test-phase. Selected algorithm predicts the preference ordering 
of unrated items for each target user using data-set-specific test data. Lastly, the 
prediction accuracy is evaluated using specific evaluation methods. 

The methodology chapter is divided into subchapters as follows: chapter 
4.1 introduces selected datasets, chapter 4.2 explains the tool for the experiment, 
chapter 4.3 introduces the selected evaluation methods. 

4.1 Data collection and use 

Selected real-world data sets are MovieLens (Harper & Konstan, 2016), 
EachMovie and Netflix. The datasets used in this work are given to me as part 
of the assignment. All three datasets are popular among research articles about 
recommender systems. For keywords EachMovie, MovieLens and Netflix-data, 
Google Scholar finds 16800, 11600 and 1260 results, respectively. These datasets 
have also been used in algorithm papers that are in use in this research. 
EachMovie and MovieLens datasets have been used in EigenRank (Liu & Yang, 
2008) and VSRank (Wang et al., 2014). ListCF (Huang et al., 2015) used 
EachMovie, MovieLens and Netflix data to test the performance of the 
algorithm.  

The data format in test sets are similar, each containing two files: training 
set and test set. The data files consist of user Id, item Id, rating value between 1-
5 and timestamp. Timestamp is not needed and therefore it is not loaded into 
the program. Files are simple text files in txt-format and values are tab-
separated from each other. More details in table 7 below: 
 

TABLE 7 Details about datasets 

 MovieLens – 1M EachMovie Netflix 

users 6 040 36 656 429 584 

items 3 952 1 623 17 770 

ratings 1 000 209 2 580 222 99 884 940 

ratings/user 165.6 70.4 232.5 

ratings/item 253.1 1 589.8 5 621 

sparsity 95.8% 95.7% 98.7% 
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The selected three datasets provide a good data variation since the number of 
users, items and ratings differs a lot. MovieLens data represents the smallest 
dataset with approximately one million ratings. However, the ratings per user 
ratio is significantly higher than in EachMovie-dataset with approximately 2,6 
million ratings. EachMovie do have higher ratings per item ratio, though. 
Netflix-dataset is the largest in every category with approximately 100 million 
ratings. The data sparsity is calculated as follows: 
 

𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1 − 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑡𝑖𝑛𝑔𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑟𝑠 ×  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠
 

4.1.1 EachMovie 

EachMovie is user-movie ratings data set provided by the Compaq Systems 
Research Center (Melville, Mooney & Nagarajan, 2002). EachMovie was shut 
down in 2004 and dataset became available to public after that. The original 
dataset contains 2,811,983 ratings entered by 72,916 for 1628 different movies 
(http://grouplens.org/datasets/eachmovie). EachMovie dataset is hugely 
popular despite it is not anymore available. Google Scholar returns 15800 
references to search term “eachmovie”.  

Originally MovieLens dataset was based on EachMovie dataset. At the 
time EachMovie was being shut down, it belonged to Digital Equipment 
Corporation (DEC). DEC contacted the recommender systems community for 
finding an organization to continue maintaining and developing the data set. 
GroupLens volunteered for the task. However, legal issues blocked directly 
transferring user accounts and DEC transferred an anonymized dataset to 
GroupLens. GroupLens used this dataset to train the first version of the 
MovieLens (Harper & Konstan, 2016.). 
 

4.1.2 MovieLens 

The MovieLens datasets was first released in 1997. Like Netflix and EachMovie, 
MovieLens describes people’s expressed preferences for movies. The data take 
the form of user, item, rating, timestamp. Each line represents a person expressing 
a preference for a movie at a particular time. Only users with at least 20 ratings 
are included. (Harper & Konstan, 2016). 

The data is collected from a web service movielens.org - a recommender 
system that asks its users to give movie ratings in order to receive personalized 
movie recommendations (Harper & Konstan, 2016). Basically, the web site 
works like Netflix, asking ratings for movies. However, MovieLens is non-
commercial and the ratings are only used for scientific purposes. 

MovieLens dataset is one of the most popular datasets in recommendation 
research. Google Scholar returns over 10300 references to “movielens”. 
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MovieLens can be considered a successor for EachMovie. MovieLens is also 
easy to attain – there are four different-size datasets available, 100k, 1m, 10m 
and 20m, reflecting the approximate number of ratings per dataset. 

4.1.3 Netflix 

The largest dataset in this research is Netflix data with 100 million movie 
ratings. The dataset is released in October, 2006 as a part of The Netflix Prize 
competition. The idea of the competition was to challenge data mining, machine 
learning and computer science communities to develop systems that could beat 
the accuracy of, at that time, current system. (Bennett & Lanning, 2007). 

The main prize for that competition was 1 million dollars for the winning 
team. Netflix’s system to beat was called Cinematch. Cinematch used a variant 
of Pearson’s correlation (see chapter 3.1.1.) to calculate item similarities (Bennett 
& Lanning, 2007). The goal was to produce a 10 percent reduction in the RMSE 
of test data compared to Cinematch score. Not one team achieved this goal. The 
best result was 8.43% from team KorBell of AT&T Labs-Research. (Bell & Koren, 
2007). 

4.2 Tool for the experiment 

The tool that is used in this research measures the performance (resolution time) 
and accuracy of three different CF algorithms. The algorithms are: EigenRank, 
VSRank and ListCF. To give a baseline for the results, there is also a ‘traditional’ 
pointwise CF-algorithm, PointCF.  

I programmed the benchmark tool using Java-language. As this software’s 
purpose is to be a tool for algorithm comparison, the user interface is 
command-line based, which requests three different parameters: algorithm, 
dataset, evaluation method. 

4.3 Results measurement 

Evaluating prediction accuracy of recommender system algorithms is often 
executed using metrics like Mean Absolute Error (MAE), Root Mean Square 
Error (RMSE), Normative Discounted Cumulative Gain (NDCG) and Mean 
Average Precision (MAP). MAE and RMSE are used when evaluating rating-
oriented algorithms where NDCG and MAP are used when dealing with 
ranking-based algorithms. This chapter briefly explains the function of these 
evaluations metrics to help understand the results of different algorithms. 
Chapter 4.3.1 explains NDCG and chapter 4.3.2 introduces MAP. 
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4.3.1 Normalized Discounted Cumulative Gain (NDCG) 

Normalized Discounted Cumulative Gain measures the performance of a 
recommender system based on the graded relevance of the recommended items. 
Like in previous measurement methods, the result value is between [-1, 1], 
value 1 representing the perfect prediction.  

The NDCG metric is evaluated over number k which represents the top 
items on the ranked list. The variable Q is the set of users used for testing. R(u,p) 
is the rating that is assigned by u to the item at the p-th position on the ranked 
list produced for user u. The NDCG at the k-th position to the set of Q is shown 
in figure 13. Variable Zu is a normalization factor which is calculated so that the 
NDCG of the optimal ranking has a value of 1. Value log(1 + p) is a discounting 
factor, which increases with the position in the ranking. Discount is by position, 
so things at front are more important. These features make it desirable for 
measuring ranking quality in recommender systems. This is due to a fact that 
most users rarely look past the first few items on a recommendation list. The 
relevance of the top items in the list are more important than those at low 
positions. (Liu & Yang, 2008). Below is formula of NDCG. 

𝑁𝐷𝐶𝐺(𝑄, 𝑘) =  
1

|𝑄|
 ∑ 𝑍𝑢

𝑢 ∈𝑄

∑
2𝑅(𝑢,𝑝) − 1

log(1 + 𝑝)

𝑘

𝑝=1

 

 

4.3.2 Mean Average Precision (MAP) 

MAP is a popular performance measure for calculating the mean of average 
precisions scores for each query. MAP is the most commonly used single-value 
summary of a run over a set of queries (Agichtein, Brill & Dumalls, 2006). 

Average Precision (AP) can be explained as follows: There are correct 
rankings {1,2,3,4,5} and predicted rankings {4,2,6,1,7}, then AveP(5), where 
number 5 is the threshold, is 3/5 = 0,6. That is because we found correct values 
4,2 and 1 and incorrect values 6 and 7.  AveP(3) returns 1 correct value, 2, and 
two incorrect values, 4 and 6, thus 1/3 = 0,33. MAP is simply an average of the 
sum of these queries. 

 
The formula for MAP is: 

𝑀𝐴𝑃 =  
∑ 𝐴𝑣𝑒𝑃(𝑞)

𝑄
𝑞=1

𝑄
 

where AveP is average precision, q is current query and Q is the number of 
queries. It is good to acknowledge that MAP is macro-averaging measure, 
meaning each query is counted equally. MAP also assumes user is interested in 
finding many relevant documents for each query. 
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5 RESULTS 

The results chapter is divided into four subchapters: Similarity and neighbor 
search comparison, runtime comparison and ranking accuracy comparison 
following with conclusions. In first two chapters the results are evaluated with 
processing speed. The faster the time, the better the performance. In ranking 
accuracy comparison, Normative Discounted Cumulative Gain and Mean 
Average Precision are used to compare the accuracy of the rankings. These 
evaluation methods are explained in chapters 4.3.1. and 4.3.2., respectively.  

The tests were run on a computing machine provided by University of 
Jyväskylä. The benchmarks were run once per algorithm. Few algorithms were 
benchmarked twice to test that the results remained the same. These test 
benchmarks are not included in the results. The datasets are MovieLens, 
EachMovie and Netflix-data. MovieLens and EachMovie datasets were used as 
is but Netflix-dataset was too large to process in its original size. A sample set 
was created from Netflix-dataset by selecting only the users that had rated 50 or 
more items. The sparsity of the sample set is 99.8%. 

5.1 Algorithm Training and Similarity Calculation runtime 

Due to the size differences on data sets, results are shown either in seconds or 
minutes, depending on a data set. MovieLens data, being the smallest in size, is 
measured in seconds where EachMovie and Netflix are measured in minutes.  

In MovieLens-dataset (FIGURE 5) the fastest performing algorithm is 
PointCF with 180.49 seconds. The second fastest is ListCF with 237,86 seconds. 
Clearly the slowest algorithms were EigenRank and VSRank with times 1729.20 
seconds and 1771.92 seconds, respectively. Wang et al. (2015) measured PointCF, 
EigenRank and ListCF in their paper. Compared to their results, the ranking of 
these three algorithms is the same, although times are not similar. Compared to 
results made by Wang et a. (2015), PointCF and ListCF performed faster in our 
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test but EigenRank is multiple times slower. That excludes the influence of 
better computational power as all the results should have been faster in our test. 
 

 
FIGURE 5 Movielens similarity and neighbor search 

EachMovie-dataset provided contrary results to MovieLens as PointCF proved 
to be the slowest of the algorithms and VSRank the fastest (FIGURE 6FIGURE 
7). Execution time of VSRank is 191.52 minutes, EigenRank 664.25 minutes, 
ListCF 918.25 minutes and PointCF 1096.85 minutes.  

One possible explanation to this is in dataset details. Ratings per user is 
higher in MovieLens but ratings per item in EachMovie is six-fold compared to 
MovieLens. In this type of data, VSRank proved itself to be fastest performing 
algorithm. 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

MovieLens

MovieLens (seconds) 

PointCF EigenRank VSRank ListCF



39 

 
FIGURE 6 EachMovie similarity and neighbor search 

The ranking of the algorithms stays the same while testing them with Netflix-
data (FIGURE 7). Computation times for PointCF, EigenRank, VSRank and 
ListCF are 463.52, 307.85, 20.35 and 334.22 minutes, respectively. With Netflix-
data, VSRank is the fastest algorithm, being 15 times faster than EigenRank 
which resulted second. 

 

 
FIGURE 7 Netflix similarity and neighbor search 
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It is no surprise that the results of EachMovie and Netflix are close to each other. 
The user counts are 36656 and 32421, respectively. EachMovie has 2580222 
ratings where Netflix-sample data has 906758, which is 2.8 times less. The factor 
in time difference between EachMovie and Netflix-benchmarks are 
approximately the same.  

The vast difference between VSRank and other algorithms is a signal that 
VSRank is remarkably efficient on handling data where ratings per user is low 
and ratings per item is high. This notes that vector space approach with TF-IDF 
weighting scheme is good performance-wise in CF applications. On a sample 
set of Netflix-data there is only 28 ratings per user whereas EachMovie has 70.4. 
Both ratios are significantly lower compared to Movielens’ 165.6 ratings per 
user. VSRank also has an advantage in runtime when datasets are bigger in size, 
according to these three datasets. 

5.2 Prediction Runtime  

In prediction phase, rating-based PointCF is the fastest with a huge margin to 
ranking-based solutions on every data set (FIGURE 8). The results times with 
MovieLens data for PointCF, EigenRank, VSRank and ListCF are 2816, 7429, 
17570 and 7915 milliseconds, respectively. With MovieLens data, VSRank is 
significantly slower than the others. Runtime speed is virtually the same 
between EigenRank and ListCF, latter being 6% slower. 

The results with EachMovie data differs from MovieLens. PointCF is the 
fastest with the runtime of 5212 milliseconds. EigenRank and VSRank share 
almost the same runtime of 32970 and 33924 milliseconds, VSRank being 3% 
slower. ListCF is clearly the slowest with the time of 56 828 milliseconds, being 
1090% slower than PointCF. 

With Netflix-data, the ranking of last three algorithms has changed 
compared to EachMovie which is almost the same in size. The runtimes for 
PointCF, EigenRank, VSRank and ListCF are 4223, 26163, 21141 and 
milliseconds, respectively. VSRank finished second with Netflix-data with a 
clear margin before EigenRank and ListCF. The latter two however predicted 
the ranking in almost same time, with only 57 millisecond difference in favor 
for ListCF. 
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FIGURE 8 Prediction runtime 

It is good to acknowledge that ranking-based algorithms are not designed for 
performing faster but to provide more accurate predictions. Simply put, the 
functionalities of these are much more complex.  

The results for prediction runtime shows that the details of a dataset affect 
a lot for the results, which. PointCF manages to predict the fastest, no matter the 
dataset. However, the ranking based algorithms are more sensitive about the 
dataset. The approaches for the prediction differs a lot between ranking-based 
algorithms. If the performance time is an important factor when selecting the 
algorithm, fastest option is PointCF. If the details of a target data-set are similar 
and previously known, one could select the best performing ranking-based 
algorithm based on that.  

5.3 Prediction accuracy comparison 

The results for accuracy are measured with NDCG and MAP and the results are 
listed below in tables 8 and 9 and with graphs for better readability (Figures 10-
15). The number after the evaluation method shortening means the position of 
the prediction. For example, NDCG@3 tells how accurately algorithm has 
predicted the 3rd ranking for the set of users in data-set. The value is the mean 
value over the set of users. The scale is [-1, 1], number 1 describing the perfect 
ranking. The best results between algorithms are bolded in tables 8 and 9. 
 
TABLE 8 Ranking performance measured in NDCG (bolded values present the best result) 

Dataset Metric PointCF EigenRank VSRank ListCF 

0

10000

20000

30000

40000

50000

60000

MovieLens EachMovie Netflix

Prediction runtime (ms)

PointCF EigenRank VSRank ListCf



42 

MovieLens NDCG@1 0,6749 0,6238 0,7266 0,7196 

NDCG@3 0,7103 0,6504 0,7477 0,7369 

NDCG@5 0,7530 0,6946 0,7838 0,7639 

NDCG@10 0,8777 0,8517 0,8932 0,8872 

EachMovie NDCG@1 0,5762 0,6079 0,7280 0,7450 

NDCG@3 0,6253 0,6391 0,7504 0,7653 

NDCG@5 0,6808 0,6874 0,7898 0,8034 

NDCG@10 0,8289 0,8350 0,8876 0,8950 

Netflix NDCG@1 0,6464 0,6494 0,6726 0,7028 

NDCG@3 0,6744 0,6677 0,6848 0,7114 

NDCG@5 0,7128 0,7040 0,7172 0,7421 

NDCG@10 0,8591 0,8561 0,8633 0,8758 

 
By evaluating the predictions using NDCG, VSRank provided the most accurate 
predictions in MovieLens-dataset. However, the results are not far ahead from 
the accuracy of ListCF. Rating-based PointCF managed to predict with better 
accuracy than ranking-based EigenRank. It is good to mention that runtimes of 
PointCF were also tremendously faster both in similarity and neighbor search 
(FIGURE 5) and prediction runtime (FIGURE 8). 

With EachMovie-dataset, the best results were provided by ListCF. Second 
is VSRank following with EigenRank and PointCF. Again, ListCF and VSRank 
are close to each other and have a big margin for EigenRank and PointCF, 
which also are close to each other. This is clearly visible on FIGURE 10. 
Although ListCF provided slightly better accuracy, the runtimes compared to 
VSRank are much longer. 

The order of algorithms is the same with Netflix-data than with 
EachMovie-data. However, the difference between results are bigger between 
ListCF and VSRank. ListCF is the only algorithm that exceeds 0.7 accuracy in 
NDCG@1 and NDCG@3. EigenRank is better than PointCF in NDCG@1 but 
worse in other measurement points. 

 
 
 

TABLE 9 Ranking performance measured in MAP (bolded values present the best result) 

Dataset Metric PointCF EigenRank VSRank ListCF 

MovieLens 

MAP@1 0,7800 0,7200 0,8298 0,8195 

MAP@3 0,7584 0,6911 0,7913 0,7770 

MAP@5 0,7306 0,6747 0,7521 0,7257 

EachMovie 

MAP@1 0,8146 0,8246 0,9156 0,9174 

MAP@3 0,7983 0,7986 0,8812 0,8818 

MAP@5 0,7799 0,7749 0,8457 0,8466 

Netflix 

MAP@1 0,7052 0,7111 0,7347 0,7668 

MAP@3 0,6825 0,6741 0,6910 0,7164 

MAP@5 0,6588 0,6589 0,6577 0,6770 
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The second evaluation method is MAP (Table 9). The selected measurement 
points are MAP@1, MAP@3 and MAP@5. For technical reasons MAP@10 is not 
selected as the results were identical between algorithms. On the contrary to 
NDCG, the results in MAP are higher in top positions and decreasing when the 
predicted position increases. 

Like with NDCG, VSRank is the most accurate with MovieLens-data. 
ListCF is second, PointCF third and EigenRank last. Interestingly, PointCF 
outperforms ListCF in MAP@5. ListCF provided most accurate predictions with 
EachMovie-data. The results of VSRank are less accurate by 0.2% or less 
compared to ListCF in MAP@1,3,5. This minimal improvement comes to a cost 
of much longer prediction runtime, which is clearly visible in FIGURE 8. 
FIGURE 13 shows how the results are split into two groups. First group 
includes PointCF and EigenRank, second VSRank and ListCF. Netflix-data is 
the one where ListCF stands out from other algorithms. The results are 2.85%-
4.18% better than the second-best algorithm, VSRank. 
 

 
FIGURE 9 Performance on MovieLens data, measured in NDCG 
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FIGURE 10 Performance on EachMovie data, measured in NDCG  

 
FIGURE 11 Performance on Netflix data, measured in NDCG 
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FIGURE 12 Performance on EachMovie data, measured in MAP 

 
FIGURE 13 Performance on EachMovie data, measured in MAP 
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FIGURE 14 Performance on Netflix data, measured in MAP 

5.4 Summary of the results 

EigenRank is one of the first ranking-based algorithms and it is the oldest 
algorithm in this study. It was designed to outperform traditional rating-based 
CF. When reading the results of the benchmarks run in this research, one can 
notice that EigenRank competes with PointCF. However, both EigenRank and 
PointCF are systematically left behind of VSRank and ListCF in a comparison of 
prediction accuracy. 

VSRank and ListCF represents the newer adaptations of ranking-based CF. 
The accuracy results indicate that ranking-based algorithms have been 
improved significantly in a last decade. When it comes to prediction accuracy, 
rating-based CF performs worse than ranking-based CF. However, the 
prediction runtime of rating-based CF is generally much better than in ranking-
based CF approaches. The similarity calculation and neighbor search-phase in 
PointCF is faster with MovieLens compared to other algorithms, but slower 
with EachMovie and Netflix. 

If prediction runtime is not an issue and the number one priority is 
prediction accuracy, one should select modern ranking-based CF approaches 
like VSRank or ListCF to their applications. That is of course when the usage of 
recommender system is to provide ranked list. 
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6 DISCUSSION 

From a wide range of recommender systems, this study focused on one of the 
first and still popular implementations, the Collaborative Filtering. CF 
algorithms have improved both in performance (runtime) and accuracy over 
the years. As explained in chapter 2, CF implementations can be divided into 
many sub-categories. This study divided CF into memory-based and model-
based filtering and focuses on the memory-based CF. Memory-based CF is 
again divided into rating-based and ranking-based approaches. 

Rating-based CF is the older of these two approaches and ranking-based 
was developed to challenge the recommendation performance. The ranking-
based CF is designed to provide a Top-N list of recommended items, instead of 
predicting the ratings for items first and ordering them to descending list 
according to predicted rating values second. 

The performance of the selected three algorithms in addition to rating-
based PointCF, which worked as a baseline algorithm, were tested using three 
real-world datasets: EachMovie, MovieLens and Netflix. These datasets vary in 
details from each other, as one can see in table 7. This provided a good base for 
comparison as one algorithm might be better in smaller data and another in 
larger data. The rating per user-ratio, rating per item-ratio and data sparsity 
also affected in performance.  

The performance was evaluated by comparing two attributes: runtime and 
accuracy. Runtime comparison is simple, the faster the better. For accuracy, I 
used two evaluation methods: Mean Average Precision and Normative 
Discounted Cumulative Gain. With these three evaluations, we received rigor 
results.  

This study was executed as DSRM since the focus was on artifacts which 
purpose is to solve a problem with prediction accuracy. This study did not 
create a new artifact. Instead, we were comparing already made artifacts and 
their performances. Hence, only selected parts of DSRM were applied to this 
research. 

The literature used in this study was conducted from the most common 
publications related to this subject. The main sources were given in assignment 
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and most of the material was acquired using Google Scholar. Where it was 
necessary, as new as possible sources were used. Since the subject was quite 
limited, there were difficulties in finding academic sources to some of the 
chapters. For example, chapter 3 about selected algorithms is almost entirely 
based on the publication papers about the algorithms itself. 

6.1 Key findings 

The research questions are as follows:  

• Why ranking-based algorithms should provide better results than 
traditional rating-oriented algorithms? 

• Do the proposed algorithms perform better than rating-based 
algorithm in real-world benchmark datasets? 

The fundamental difference between rating-based CF and ranking-based CF is 
that ranking-based CF does not provide a predicted rating to items at all. 
Traditional CF algorithms are based on predicting the potential ratings that a 
user would assign to the unrated items so that they can be ranked by the 
predicted ratings to produce a list of recommended items. Ranking-based CF 
addresses the item ranking problem directly by calculating user preferences 
derived from the ratings users have given before (Liu & Yang, 2008). Ranking-
based CF approaches differ from each other by using different methods on 
similarity calculation between users. The selected three ranking-based CF 
algorithms, EigenRank, VSRank and ListCF are presented in more detail in 
chapter 3. 

The results of the benchmarks executed in this thesis are analyzed in 
chapter Error! Reference source not found.. The outcome of the benchmarks is 
that ranking-based CF algorithms provide better accuracy compared to rating-
based CF, named PointCF in this study. In some cases, ranking-based CF 
provided also faster processing times, although the implementations of 
ranking-based CF tend to be more complex than in rating-based CF variants. 

To answer to the first research question, I did investigation of ranking-
based CF in comparison with rating-based CF and discovered why ranking-
based CF should provide better results than rating-based CF. The summary of 
the benchmark results discussed in chapter 5.4 prove that ranking-based CF 
provides better accuracy than rating-based CF, giving answer to the second 
research question. 
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6.2 Contribution 

The contribution for this study is to show that, when it comes to predicting 
ranked lists, ranking-based CF outperforms rating-based CF. The outcome is a 
result of comparing four algorithms to each other, which has only been done in 
one research paper before this thesis. This study also provided how much 
ranking-based CF have improved from 2008, when EigenRank was introduced. 

Ranking-based CF is one limited subject in recommender systems research 
and there are relatively small amount of research papers regarding this subject. 
Most of the papers are publications of a new ranking-based CF approach and 
the performance is measured by comparing it to rating-based CF and in some 
cases to an older ranking-based CF, e.g. EigenRank. EigenRank is the most 
popular ranking-based CF algorithm in this thesis where VSRank and ListCF 
are less known, partly because they are relatively new. The former is 
introduced in 2014, the latter in 2015 (Wang et al.,2014, Huang et al., 2015).  

I could find only one research paper where these four algorithms were 
compared to each other. The paper is the publication of ListCF, titled Listwise 
Collaborative Filtering (Huang et al., 2015). The difference between my results 
and the ones in paper by Huang et al. (2015) is in slightly different evaluation 
methods. In addition to NDCG, I evaluated the results also with MAP. Huang 
et al. (2015) provided more detailed results in some sections and also added two 
more algorithms, CoFiRank and ListRank-MF, to the comparison. What is 
interesting though is that I got different results than Huang et al. (2015) in some 
sections. Some differences can be explained by different platforms and their 
computational performance. However, the algorithms should be the same as 
are the datasets, apart from the sample-set of Netflix data used in this thesis. 

6.3 Limitations and evaluation of the research 

As briefly explained in chapter 2, there are many different types of 
recommender systems. The subject of this research was limited to cover only a 
small fraction of all the recommender system types available. Also, there are 
many different algorithms that are based on CF and we evaluated only four of 
these. The number of ranking-based CF algorithms is significantly lower than in 
CF in general, but there still is more than the ones covered in this thesis. 

The evaluation methods used for algorithm performance are commonly 
used in similar scientific papers. Similar kind of evaluation had been used in 
scientific papers that published the algorithms used in this study. 
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6.4 Concluding summary 

The ranking problem is common among recommender systems and it has been 
approached by multiple different ways. Instead of seeing a rating one might 
give to an item, end-user is more likely interested on what items he or she 
would like the most. Therefore, predicting top-N ranked lists the most accurate 
way is both challenging and important business-wise. Ranking-based CF 
algorithms are designed for predicting ranked lists to target user. Since users 
are interested on the items that are first on the ranked list, focusing on rankings 
instead of ratings is arguable.  

This thesis provides thorough investigation on ranking-based CF and how 
it differs from traditional rating-based CF. To give a more detailed approach, 
three ranking-based CF algorithms were selected for performance benchmarks 
against rating-based CF. 
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