

Pentti Koskela

COMPARING RANKING-BASED COLLABORATIVE
FILTERING ALGORITHMS TO A RATING-BASED

ALTERNATIVE IN RECOMMENDER SYSTEMS
CONTEXT

JYVÄSKYLÄN YLIOPISTO

TIETOJENKÄSITTELYTIETEIDEN LAITOS

2017

ABSTRACT

Koskela, Pentti
Comparing ranking-based collaborative filtering algorithms to a rating-based
alternative in recommender systems context
Jyväskylä: University of Jyväskylä, 2017, 51 p.
Information Systems, Master’s Thesis
Supervisor: Rönkkö, Mikko

The vast amount of content on internet services, such as e-commerce sites, can
cause information overflow, which leads to a bad user experience.
Recommender system is technique to support the user’s decision-making by
providing predicted suggestions. It is common that user is provided a list of
items in user’s preference, e.g. top-10 list of movies. Traditionally, these ranked
lists are generated by using rating-based approaches, where ratings are
predicted to unknown items which are then calculated to ranked list. Ranking-
based approach calculates similarities between users and predicts a ranked list
without the middle-step of predicting the ratings first.

There is a number of different collaborative filtering (CF) algorithms for
different use cases. In a context of CF, ranking-based approaches are becoming
more popular as the importance of ranked list accuracy has increased. However,
there are several hybrid implementations where two or more different kind of
recommender systems are combined, which performance cannot be compared
to the algorithms in this thesis due to implementation differences.

This thesis will compare three different ranking-based CF algorithms to
each other and compare the results with the rating-based CF paradigm. The
results will show the prediction accuracy improvement when using ranking-
based approaches compared to a rating-based one. In addition, results will also
show how much the performance have been improved in ranking-based CF
algorithms in the past years.

Excluding the research papers where the selected algorithms were
introduced, I did not find any research publications where the selected
algorithms were compared to each other. I evaluated the results using two
different evaluation methods, of which Mean Average Precision is less common
in this field of study.

Keywords: recommender systems, ranking-oriented collaborative filtering,
rating-oriented collaborative filtering

TIIVISTELMÄ

Koskela, Pentti
Sijoitusperusteisten yhteisöllinen suodatus-algoritmien vertailu
arvosanaperusteiseen vaihtoehtoon suosittelujärjestelmien kontekstissa
Jyväskylä: Jyväskylän Yliopisto, 2017, 51 s.
Tietojärjestelmätiede, Pro Gradu-tutkielma
Ohjaaja: Rönkkö, Mikko

Suuri sisältövalikoima eri internet palveluissa, kuten verkkokaupoissa, voi
aiheuttaa liian suurta informaatiomäärää, mikä heikentää asiakaskokemusta.
Suosittelujärjestelmät ovat teknologioita, jotka tukevat asiakkaan
päätöksentekoa tarjoamalla ennustettuja suosituksia. On yleistä, että asiakkaalle
näytetään lista tuotteista, joista asiakas voisi pitää, esimerkiksi top-10 lista
elokuvista. Perinteisesti nämä listat ovat tuotettu käyttäen perinteistä
arvosanapohjaista menetelmää, missä tuntemattomille tuotteille ennustetaan
arvosana ja järjestetty lista muodostetaan arvosanojen perusteella.
Sijoitusperusteinen lähestyminen laskee käyttäjien väliset samankaltaisuudet ja
ennustaa järjestetyn listan ilman välivaihetta liittyen arvosanojen laskemiseen.

Erilaisia suosittelujärjestelmäalgoritmeja on julkaistu lukuisia eri
käyttötarkoituksia varten. Yhteisöllisen suodatuksen kontekstissa
sijoitusperusteiset menetelmät ovat yleistyneet järjestettyjen listojen tarkkuuden
merkityksen kasvaessa. On olemassa useita hybridivariaatioita missä kaksi tai
useampi eri suosittelujärjestelmätyyppi on yhdistetty. Näiden suorituskykyä ei
voida verrata tässä tutkielmassa käytettyihin algoritmeihin johtuen niiden
erilaisesta toteutustavasta.

Tämä tutkielma vertaa kolmea erilaista sijoitusperusteista yhteisöllistä
suosittelujärjestelmäalgoritmia keskenään, ja vertailee tuloksia perinteisen
arvosanaperusteisen algoritmin kanssa. Tulokset osoittavat parannuksen
ennustustarkkuudessa sijoitusperusteista algoritmia käytettäessä, verrattuna
arvosanaperusteiseen algoritmiin. Lisäksi, tulokset osoittavat
sijoitusperusteisten algoritmien kehityksen parannuksen viime vuosina.

Pois lukien tieteelliset julkaisut, missä valitut algoritmit ovat esitelty, en
löytänyt tutkielmaa, missä algoritmeja olisi vertailtu keskenään. Tarkastelin
tuloksia käyttäen kahta eri arviointimenetelmää, joista Mean Average Precision
on vähemmän käytetty tämänkaltaisissa tutkimuksissa.

Avainsanat: suosittelujärjestelmät, sijoitusperusteinen yhteisöllinen suodatus,
arvosanaperusteinen yhteisöllinen suodatus

FIGURES

FIGURE 1 A decision tree regarding whether a user watches” Melrose Place”. 21

FIGURE 2 Greedy Order algorithm .. 24

FIGURE 3 VSRank-algorithm .. 27

FIGURE 4 ListCF-algorithm ... 30

FIGURE 5 Movielens similarity and neighbor search .. 38

FIGURE 6 EachMovie similarity and neighbor search... 39

FIGURE 7 Netflix similarity and neighbor search .. 39

FIGURE 8 Prediction runtime .. 41

FIGURE 9 Performance on MovieLens data, measured in NDCG....................... 43

FIGURE 10 Performance on EachMovie data, measured in NDCG 44

FIGURE 11 Performance on Netflix data, measured in NDCG 44

FIGURE 12 Performance on EachMovie data, measured in MAP 45

FIGURE 13 Performance on EachMovie data, measured in MAP 45

FIGURE 14 Performance on Netflix data, measured in MAP 46

TABLES

TABLE 1 :Required properties to get CF function properly.................................. 13

TABLE 2 User-Item matrix ... 15

TABLE 3 User-based Pearson correlation .. 15

TABLE 4 Item-based Pearson correlation .. 16

TABLE 5 : Main advantages for memory-based CF ... 18

TABLE 6 Design-science research guidelines .. 32

TABLE 7 Details about datasets... 33

TABLE 8 Ranking performance measured in NDCG... 41

TABLE 9 Ranking performance measured in MAP.. 42

file:///C:/Users/pkoskela/Dropbox/Documents/Gradu/gradu_v.1.0.docx%23_Toc483168452

TABLE OF CONTENTS

ABSTRACT .. 2

TIIVISTELMÄ ... 3

FIGURES .. 4

TABLES .. 4

TABLE OF CONTENTS ... 5

1 INTRODUCTION.. 7

2 RECOMMENDER SYSTEMS... 10

2.1 Background ... 10

2.2 Memory-based Collaborative Filtering .. 14

2.2.1 Pearson Correlation Coefficient ... 14

2.2.2 Vector Space Model.. 16

2.2.3 Ranking-based Collaborative Filtering ... 17

2.2.4 Advantages and Drawbacks ... 18

2.3 Model-based Collaborative Filtering .. 20

2.3.1 Bayesian-Network Model ... 20

2.3.2 Cluster models .. 21

3 SELECTION OF COLLABORATIVE FILTERING ALGORITHMS 22

3.1.1 Rating-oriented CF ... 22

3.1.2 EigenRank.. 23

3.1.3 VSRank ... 25

3.1.4 ListCF ... 27

4 METHODOLOGY ... 31

4.1 Data collection and use ... 33

4.1.1 EachMovie ... 34

4.1.2 MovieLens ... 34

4.1.3 Netflix ... 35

4.2 Tool for the experiment... 35

4.3 Results measurement .. 35

4.3.1 Normalized Discounted Cumulative Gain (NDCG) 36

4.3.2 Mean Average Precision (MAP) ... 36

5 RESULTS .. 37

5.1 Algorithm Training and Similarity Calculation runtime 37

5.2 Prediction Runtime .. 40

5.3 Prediction accuracy comparison .. 41

5.4 Summary of the results ... 46

6 DISCUSSION ... 47

6.1 Key findings.. 48

6.2 Contribution ... 49

6.3 Limitations and evaluation of the research .. 49

6.4 Concluding summary ... 50

REFERENCES .. 51

1 INTRODUCTION

The size of the Internet is about 4.7 billion pages. Besides the number of pages,
amount of information on the web has increased tremendously and it is more
challenging to manage. This information overload offers some serious
challenges to make most of the information manageable (Wang, Sun, Gao & Ma.
2014). One of the techniques to handle this problem is recommender systems.
Recommender systems have become very popular in situations where certain
items ought to be addressed to a target user.

But what are recommender systems? For most people, this term does not
tell anything even though majority of people are dealing with recommender
systems on a daily basis. Nowadays recommender systems are used on vast
amount of web services, e.g. news pages, online stores and streaming services.
Suggestions provided by recommender systems supports user’s decision
making process (Kantor, Rokach, Ricci & Shapira, 2011, p. 6). For example:
customer visits Netflix.com, the online streaming service videos, as a logged in
user. From the user profile, basic demographic information like age, gender and
residence can be gathered. This alone provides a possibility to recommend
items according to a user’s demographic profile. Finnish content for finnish user,
for example. Saved browsing history, watching history and ratings user has
given to products makes more accurate predictions possible. With this kind of
data, we can analyze and predict what kind of items the target user likes and
what should be recommended to him or her. If the user has watched only
comedies, it is most likely that he or she would like to see more comedies.
Perhaps the user has a favorite actor or actress, then content should be
recommended accordingly. The search-function in a web site or in a service is
not considered a recommender system, although it can be implemented as part
of it. The behavior of recommender systems can be called ‘passive’ as it does
not need any explicit activity from the user.

Recommender systems are extremely important business-wise. Most
services have millions of items available, whether they are movies or music for
streaming or physical products in online store. If there were no recommender
systems to highlight to, user might feel anxious about not finding what he or
she was looking for. Recommender systems are valuable for coping with the

8

information overload and they have become one of the most powerful tools in
e-commerce (Kantor et al., 2011, p.6).

Of all recommender systems paradigms, available, this thesis’ focus is on
CF recommender algorithms, which can be divided into smaller segments, in
this case memory-based and model-based methods. Other popular
recommender systems are content-based filtering and various hybrid
techniques combining these two together.

The basic idea of collaborative filtering is to utilize user-item rating matrix
to make predictions and recommendations (Wang et al. 2014). CF does not need
previous information about users or items what makes its implementation far
easier than content-based filtering, which requires proper domain knowledge.

Recommender systems have been a popular topic for the last two-three
decades and it is becoming even more important. Collaborative filtering is
considered to be the first automated recommender system (Konstan & Riedl.
2012) and it is the most popular one (Herlocker, Konstan, & Riedl, 2000). It has
been studied the most and there are many different versions published

When a user makes a search in e.g. Google, he or she is most interested in
the results locating on top of the list and not so interested about the results
below. In most cases, providing a ranked list of items in user preference order
supports his or her decision-making. Ranked list can be produced by using
traditional rating-oriented approach which first predicts the potential ratings a
target user would assign to the items and then rank the items according to the
predicted ratings (Liu & Yang, 2008). However, ranking-oriented CF algorithms
can directly generate a ranked list of items for a target user without the
intermediate step of rating prediction (Huang et al., 2015). This thesis’ focus is
in the ranking problem and the research questions for this paper are as follows:

• Why ranking-based algorithms should provide better results than
traditional rating-oriented algorithms?

• Do the proposed algorithms perform better than rating-based
algorithm in real-world benchmark datasets?

The contribution of this thesis will be the results of the three ranking-based CF
algorithms compared to the traditional rating-based CF. These have not been
compared to each other before but once, in publication of one of the algorithms.
Therefore, this thesis provides more objective approach for the comparison.
This thesis is divided into six chapters: Introduction, Recommender Systems,
Selection of Collaborative Filtering Algorithms, Methodology, Results and
Discussion.

Chapter 2: Recommender Systems, describes the recommender systems in
general level. A brief background about recommender systems is explained
with the information about different types of recommender systems. Since this
thesis is about CF, other types of recommender systems are not explained in
detail. CF is divided into memory-based (chapter 2.2) and model-based (chapter
2.3) approaches.

9

The ranking-based CF algorithms used in this thesis are memory-based.
The more detailed explanation about the functionalities of selected algorithms
are in chapter 3, which provides reader a basic understanding on how they
work and differ from each other. For in-depth specifications about the selected
algorithms, one should consider the research papers where they were
introduced.

Chapter 4 is about the methodology about this thesis. The selected
methodology is Design Science Research Methodology (DSRM). The
background and details about DSRM are explained based on paper by Hevner,
March, Park and Ram (2004). The implementation of DSRM for this thesis is
explained. Chapter 334.1 introduces the real-world datasets that will be used in
the experiment. The tool developed and used for the experiment is explained in
chapter 4.2. The results are evaluated using two different evaluation methods,
which are explained under chapter 4.3

The analysis of the results is divided into three subchapters following with
the summary under chapter 5. Chapter 5.1 is about training the algorithm with
training data and calculating the similarities. Chapter 5.2 about analyzing the
runtime of prediction calculation using the test-data of the dataset. The
prediction accuracy is evaluated using two different evaluation methods in
chapter 5.3. Finally, chapter 5.4 concludes this chapter and the test results.

Chapter 6 concludes the thesis with key findings, contribution and
limitations of the research. The discussion about how well this thesis answered
the research questions is in chapter 6.1., following with the contribution in
chapter 6.2. Limitations and evaluation of the research are explained in chapter
6.3. Chapter 6.4 concludes chapter 6 and the whole thesis.

10

2 RECOMMENDER SYSTEMS

In this chapter recommender systems are explained in general level. Chapter 2.1
provides background of recommender systems in general, provides basic
knowledge for reader to understand the concept better and explaining why
recommender systems are implemented. Chapters 2.2 and 2.3 provides basic
level information about memory-based collaborative filtering and model-based
collaborative filtering, respectively.

2.1 Background

Recommender systems are software tools and techniques that provide
suggestions for target user (Kantor et al, 2011, p. 28). Recommender systems
assist user in information-seeking tasks by suggesting items, e.g. products,
services, information, that best suit their needs (Mahmood & Ricci, 2009).
Recommender systems have become very popular and they are applied broadly
in e-commerce and streaming services, like Netflix. E-commerce services might
have hundreds of thousands, even millions, of products in their portfolio. While
vast product portfolio is generally a good thing, customer might find itself
surrounded by products not useful to him or her or worse, customer won’t find
the product that he or she is interested in, making customer frustrated and
motivated to exit the online store. Recommender systems are used to suggest
products customer is interested in, based on various types of customer data that
can be gathered in several ways. Type of data gathered and used in
recommendation process depends on recommender system paradigm that has
been used in the situation. Nowadays recommender systems are so popular
that more often than not user does not even notice using one.

In order for recommender system to function properly, it has to predict
correctly the potential items user might want to see. The system must be able to
predict the utility of some of the items and then decide what items to

11

recommend based on item comparison. (Kantor et al., 2011). If recommender
system fails to do so, user sees recommendations annoying rather than useful.
One example is that user gets product recommendations that suits users interest,
but recommender system do not know that user have these products already,
making recommendations pointless. Various user data must be gathered to
avoid these kinds of situations. One option to avoid false recommendations is to
implement filtering tools. Users rate items they have experienced to establish a
profile of interest (Herlocker, Konstan & Riedl, 2000). If recommender system
knows user’s profile, shopping history and/or possible reviews user has given,
it should function far more accurate. In several cases user interaction is needed
also to mark products as “not relevant”.

Before describing how different recommender systems work, one should
know the basic terms concerning the subject. Kantor et al (2011, p. 35) describes
that data used by recommender systems refers to three kinds of objects: items,
users and transactions.

Items
Items are the objects that are recommended (e.g. products in online store). Items
are represented by a set of features. For example, movie and TV-series
recommender describes items with following features: actors, directors, genres,
subject, year of production etc. The value of an item may be positive if the item
is useful for the user, or negative if the item is not appropriate and the user
made a wrong decision when selecting it. When a user is acquiring an item
there will always incur a cost. The cost is a cognitive cost of searching the item
and monetary cost of paying the item. This should be taken into consideration
when implementing recommender systems into a service. There is always a cost
for the user even if user is not buying it. If searching and eventually finding the
item does not end up buying the item, there have been cognitive cost, thus the
value of the item is negative. If the item is useful for the user and he or she will
buy it, the value of the item is positive.

Users
Users are more challenging to define since everyone is an individual with
individual needs and goals. In order to personalize recommender systems to
user, a lot of information about the user must be gathered. User information can
be structured in various ways and the selection of what information to model
depends on the recommendation paradigm. For instance, in collaborative
filtering user profile is basically a simple list of ratings user has provided to
items while content-based filtering requires far more complex user profile in
order to generate accurate predictions. Demographic recommendation uses
sociodemographic attributes such as age, gender, profession and education to
form a user profile.

Managing a user profile contains a lot of challenges. Once a user’s profile
has been established, it is difficult to change one’s preferences. A meat-eater
who becomes vegetarian will continue to get meat-related recommendations for
some time, before preferences have changed enough. This occurs especially in

12

memory based collaborative filtering and content-based filtering. Many
recommender systems have functions to weight older ratings to have less
influence but it risks the system to lose user’s long-term interests that are not in
frequent enough use. (Burke, 2007.).

Transactions
Transactions are referred to a recorded interaction between a user and the
recommender system. Transactions are log-like data for which purpose is to
store important information during the interaction process and which are useful
for the recommendation generation algorithm that the system is using. One
example of transaction data is rating that user has given to a certain item.
Ratings are in fact the most popular form of transaction data. Ratings can be
collected either explicitly or implicitly. The explicit collection relates to situation
where the user is asked to provide an opinion about an item on a rating scale.
Ratings can take a variety of forms:

• Numerical ratings e.g. 1-5 stars

• Ordinal ratings, such as “strongly agree, agree, neutral, disagree,
strongly disagree”

• Binary ratings where user is asked to decide if a certain item is good
or bad

• Unary ratings that can indicate if a user has observed or purchased an
item. For example, browsing behavior or reading an article (staying
on one page for a certain amount of time) is a form of unary rating.

Recommender systems as a research area is relatively new. Earliest scientific
publications about recommender systems are from early 1990s (Konstan &
Riedl, 2012). The interest in recommender systems has increased significantly in
recent years. Kantor et al (2009, p. 30) point out facts to indicate the rising
popularity of recommender systems as a research area. Few of these mentions
are listed as follows:

• Recommender systems play an important role in such highly rated
Internet sites as Amazon.com, YouTube, Netflix, Yahoo,
TripAdvisor, Last.fm, and IMDb

• There are dedicated conferences and workshops related to the field.
For example, ACM Recommender Systems (RecSys), established in
2007. Sessions dedicated to RSs are frequently included in the more
traditional conferences in the area of data bases, information
systems and adaptive systems.

• At institutions of higher education around the world,
undergraduate and graduate courses are now dedicated entirely to
RSs; tutorials on RSs are very popular at computer science
conferences; and recently a book introducing RSs techniques was
published.

13

• There have been several special issues in academic journals
covering research and developments in the RS field.

Two most popular recommender system types are called collaborative filtering
and content-based filtering. In addition, there are also demographic filtering
and knowledge-based filtering. There are also hybrid variations, combining two
or more of these paradigms. Collaborative filtering is considered to be the first
automated recommender system (Konstan & Riedl, 2012) and it is the most
popular and widely implemented recommendation technique (Kantor et al.,
2011). The very first recommender system, called Tapestry, was based on
collaborative filtering and was designed to recommend documents drawn from
newsgroups to a collection of users (Goldberg, Nichols, Obi & Terry, 1992). CF
predicts item recommendations to the user based on collected information
about item ratings user has provided, and then comparing this information to
peer users rating-data (Herlocker, Konstan, Terveen & Riedl, 2004). User’s
rating data is compared to other users’ data, and by finding a user with similar
tastes with the target user, CF can predict items for the target user. The
assumption is that a user would be interested in those items preferred by other
users with similar interests (Liu & Yang, 2008). CF brings together the opinions
of large interconnected communities on the web (Schafer et al., 2007). In other
words, CF is based on “wisdom of the crowd”. In this process, CF uses the
neighborhood approach, which focuses on relationships between items or
between users (Kantor et al., 2011, p. 146)

One of the benefits CF has compared to other techniques is its ability to
recommend items regardless of the type or content, what makes it practical in
various applications. However, there are some properties that needs to be
fulfilled to get CF function properly. Schafer et al. (2007) lists following
required properties in table 1:

TABLE 1 :Required properties to get CF function properly (adapted from Schafer et al. 2007)

Feature Explanation

There are many items If there are few items to choose from, the user can learn about
them all without need for computer support.

There are many ratings
per item

If there are few ratings per item, there may not be enough
information to provide useful predictions or
recommendations.

There are more users
rating than items to be
recommended

A corollary of the previous paragraph is that often you will
need more users than the number of items that you want to
be able to capably recommend. As an example, with one

million users, a CF system might be able to make
recommendations for a hundred thousand items, but may
only be able to make confident predictions for ten thousand
or fewer, depending on the distribution of ratings across
items. The ratings distribution is almost always very skewed:

a few items get most of the ratings, creating a long tail of
items that get few ratings. Items in this long tail will not be
confidently predictable.

14

Users rate multiple items If a user rates only a single item, this provides some
information for summary statistics, but no information for

relating the items to each other.

There are several ways to categorize different CF methods. Another policy is to
split CF techniques into memory-based and model-based methods. Memory-
based methods include both item-based and user-based CF methods and this is
widely used for e.g. e-commerce sites, often with domain-specific variations (Su
& Khoshgoftaar, 2009). Chapters 2.2 and 2.3 will provide more detailed
information about memory-based and model-based CF.

2.2 Memory-based Collaborative Filtering

Memory-based CF (also called as neighborhood-based or heuristic-based) is
considered one of the most popular recommendation approaches. (Kantor et al.,
2011, p.111). Memory-based CF can be divided into item-based or user-based
methods. In user-based-methods focus for CF is to predict user similarities
where item-based methods rely on item similarities (Jian & Qun, 2012).
Popular memory-based technique is to use nearest-neighbor methods, which
means searching for most similar user to a target user from a set of users. This is
popular due to their simplicity, efficiency and ability to produce accurate and
personalized recommendations (Kantor et al., 2011, p.107). User-item ratings
stored in the system are directly used to predict ratings for new items.

This chapter is divided into four sub-chapters: Pearson Correlation
Coefficient, Vector Space Model, Ranking-based Collaborative Filtering and
Advantages and Drawbacks. Pearson Correlation Coefficient in chapter 2.2.1 is
so common way to calculate similarities that it is good to explain in its own
chapter. Vector Space-model is explained in chapter 2.2.2 and it is used in one
of the algorithms by Wang, Su, Gao & Ma (2014). Ranking-based Collaborative
Filtering in general is explained in chapter 2.2.3. The advantages and drawbacks
of memory-based CF is discussed in chapter 2.2.4.

2.2.1 Pearson Correlation Coefficient

One way to measure similarities is to use Pearson correlation coefficient.
Pearson coefficient calculates the correlation between target user and its
neighboring users. For example, Eric has rated four items out of five. User-Item
matrix (Table 2) contains ratings from three other users as well. With this rating
data, it is possible to predict whether Eric likes movie “Titanic” or not, using
Pearson correlation coefficient, and what rating she will most likely provide. In
Pearson correlation coefficient, the result is covariance value between [-1,1],
value 1 representing complete dependence.

15

u,v: users
r u,i: user u rating for item i
I uv: items rated by both u and v

𝑃𝐶(𝑢, 𝑣) =
∑ (𝑟𝑢𝑖 − 𝑟̅𝑢)𝑖 ∈ Iuv

(𝑟𝑣𝑖 − 𝑟̅𝑣)

√∑ (𝑟𝑢𝑖 − 𝑟̅𝑢)2 𝑖 ∈ Iuv
∑ (𝑟𝑣𝑖 − 𝑟̅𝑣)2 𝑖 ∈ Iuv

TABLE 2 User-Item matrix (Kantor et al., 2011, p.126)

 The Matrix Titanic Die Hard Forrest Gump Wall-E

John 5 1 2 2

Lucy 1 5 2 5 5

Eric 2 ? 3 5 4

Diane 4 3 5 3

We can see that Eric’s taste is the most similar to Lucy’s, since both loved
“Forrest Gump” and neither liked “The Matrix”. It would seem like Eric would
like “Titanic” because Lucy rated it for 5, but there might be differences in their
taste in movies. Perhaps Lucy likes more drama movies than Eric. It is
important to notice that table this small works well as an example but not well
in reality. Neighbors with tiny samples, three to five co-rated items, are proved
to be terrible predictors for the active user (Herlocker, Konstan & Riedl, 2002).
In order to get accurate predictions, table size should be between 20 to 50 users,
minimum (Herlocker, Konstan & Riedl., 2000). Nearest-neighbor algorithms
trust that user’s interests and tastes stays the same in the future than they are at
the moment. However, there are systems that weight rating values depending
how old ratings are, offering possibility to update user profile as time goes by.

User-based neighborhood recommendation methods predict the rating rui
of a user u for a new item i using the ratings given to i by users most similar to u,
called nearest-neighbors (Kantor et al., 2011, p.138). By using Pearson
Correlation Coefficient, we can calculate user similarities. In table 3, we can see
that covariance between Eric and Lucy is highest, meaning their taste in movies
is the most similar.

TABLE 3 User-based Pearson correlation (Kantor et al., 2011, p.126)

 John Lucy Eric Diane

John 1.000 -0.938 -0.839 0.659

Lucy -0.938 1.000 0.922 0.994

Eric -0.839 0.992 1.000 -0.659

Diane 0.659 -0.787 -0.659 1.000

Item-based recommendation relies on the ratings given to similar items. If we
look at table 4, you can notice that people who liked “Forrest Gump” and
“Wall-E” also liked “Titanic” and, obviously, vice versa. Since Eric liked

16

“Forrest Gump” and “Wall-E” (Table 2), we can presume that he would also
like “Titanic”. It is notable that these recommendations do not consider any
domain knowledge e.g. genre, director, actors.

TABLE 4 Item-based Pearson correlation (Kantor et al., 2011, p.126)

 The Matrix Titanic Die Hard Forrest Gump Wall-E

Matrix 1.000 -0.943 0.882 -0.974 -0.977

Titanic -0.943 1.000 -0.625 0.931 0.994

Die Hard 0.882 -0.625 1.000 -0.804 -1.000

Forrest Gump -0.974 0.931 -0.804 1.000 0.930

Wall-E -0.977 0.994 -1.000 0.930 1.000

Pearson Correlation Coefficient is only one from many similarity measurement
methods. Mean Squared Difference, Spearman Rank Correlation have also been
used, to name a few (Kantor et al., 2011. p. 127). The used data (e.g. size, type)
has some significance which measurement is the most suitable for target
application. However, Herlocker et al. (2002) note that Pearson Correlation
Coefficient is the most accurate technique for computing similarity.

2.2.2 Vector Space Model

The vector space model is a standard algebraic model commonly used in
information retrieval and it has been used in many applications, such as image
processing, recommender systems, spam detection and song sentiment
classification. It has been used in both collaborative-filtering and content-based
filtering approaches. In content-based filtering, the descriptive user profiles can
be reflected as documents and the vector space model can be applied to make
recommendations based on user similarity. In rating-based CF, the vector space
model can be used to transform vectors of users from the user space into the
item space, and the similarity between users and items can be measured using
cosine similarity. (Wang et al. 2014). User-user or item-item similarity can also
be measured using vector similarity. The idea about vector similarity is to view
each user as a vector in a high dimensional vector space based on user’s ratings.
The similarity between two vectors is calculated from the cosine of the angle of
these vectors, which is a standard measure estimating pairwise document
similarity in the vector space model (Liu & Yang, 2008, Wang et al. 2014).

𝑆𝑢,𝑣 =
∑ 𝑟𝑢,𝑖 ∙ 𝑟𝑣,𝑖𝑖 ∈𝐼𝑢∩ 𝐼𝑣

[∑ 𝑟𝑢,𝑖
2

𝑖 ∈𝐼𝑢∩ 𝐼𝑣
 ∑ 𝑟𝑣,𝑖

2
𝑖 ∈𝐼𝑢∩ 𝐼𝑣

] 1 2⁄

17

When calculating item-item similarity, the adjusted cosine similarity has proven
to be the most effective (Liu & Yang, 2008, p.85). In item-item Vector Similarity
each user’s rating on an item is adjusted by user’s mean rating.

𝑆𝑖,𝑗 =
∑ (𝑟𝑢,𝑖 − 𝑟𝑢̅) (𝑟𝑢,𝑗 − 𝑟𝑢̅)𝑢 ∈𝑈𝑖∩ 𝑈𝑗

[∑ (𝑟𝑢,𝑖 − 𝑟𝑢̅)2
𝑢 ∈𝑈𝑖∩ 𝑈𝑗

 ∑ (𝑟𝑢,𝑖 − 𝑟𝑢̅)2
𝑢 ∈𝑈𝑖∩ 𝑈𝑗

] 1 2⁄

2.2.3 Ranking-based Collaborative Filtering

This chapter explains the basic concept of ranking-based CF. The more detailed
description about ranking-based CF can be obtained in chapter 3 where four
different ranking-based CF algorithms are explained and hence work as an
example.

In rating-based CF approaches, ranked lists are produced from rating
predictions first and generating ranked list from those predictions. The problem
in this approach along with weaker performance is that higher accuracy in item
rating does not necessarily lead to better ranking effectiveness. This can be
explained with following simple example. There are two items, i and j with true
ratings of 3 and 4 respectively. Two different methods have predicted the
ratings for i and j to be {2, 5} and {4, 3} respectively. As one can see, there is no
difference between these two sets of predictions in terms of rating prediction
accuracy since all the values are one unit away from the correct rating. The
difference between these two predictions is that using the prediction {4, 3} will
put items i and j in incorrect order while {2, 5} puts items in correct order.

Liu & Yang (2008) note that the problem in rating-oriented CF is focusing
on approximating the ratings instead of rankings, which is a more important
goal for recommender systems. In addition, most existing methods predict the
ratings for each individual item independently instead of considering the user’s
preferences regarding pairs of items.

The idea behind ranking-based CF is to produce an ordered list of Top-N
recommended items where the highest ranked items are predicted to be most
preferred by the user. Assumption is that the user examines the items in the list
starting from the top positions. (Liu & Yang, 2008.). It is easy to understand and
accept this assumption if one thinks user behavior while e.g. making web-
searches, browsing media-streaming services like Netflix or browsing e-
commerce sites with tens of thousands of articles.

Ranking-based CF is considered to be more effective recommender system
than rating-based CF since it has no need to calculate the ratings of the items for
target user first. The popularity of ranking-based CF has increased over the
years. Building of recommendation problems is changing away from rating-
based to ranking based (Wang et al., 2014). Like rating-based CF, also ranking-
based CF has multiple different variations on how to implement the process.
Common for all ranking-based CF is that they are able to capture the preference

18

similarity between users even if their rating scores differ significantly. First
ranking-based CF is considered CoFiRank (Weimer et al, 2007). CoFiRank uses
maximum margin matrix factorization to optimize ranking of items for CF.
EigenRank, that is included in empirical part of this research, was introduced in
2008 by Liu and Yang. EigenRank measures the similarity between users using
Kendall tau rank correlation for neighborhood selection, much like VSRank
which function is also explained later in this paper.

The rankings are derived from the rating matrix. Popular method to
calculate similarity between users u and v is Kendall Tau rank correlation
coefficient (Wang et al., 2014). Kendall tau rank correlation coefficient is a non-
parametric statistic tool to measure correlation between two ordinal scale
values. In case of ranking-based CF, the values are the two rankings from users
u and v on their common item set:

𝜏𝑢,𝑣 =
𝑁𝑐 − 𝑁𝑑

1
2

 𝑁(𝑁 − 1)

where Nc are the numbers of the concordant pairs and Nd are the numbers of
discordant pairs. 1/2N(N-1) represents the total number of pairs. The value of
Kendall tau is between [-1, 1].

2.2.4 Advantages and Drawbacks

Kantor et al. (2011, p. 135) have listed main advantages for memory-based CF as
follows:

TABLE 5 : Main advantages for memory-based CF (Kantor et al., 2011, p. 113)
Attribute Explanation

Simplicity Neighborhood-based methods are intuitive and relatively simple to
implement. In their simplest form, only one parameter (the number of
neighbors used in the prediction) requires tuning

Justifiability Such methods also provide a concise and intuitive justification for the
computed predictions. This helps to provide recommendation
transparency and hence, more trust. For example, in item-based
recommendation, the list of neighbor items, as well as the ratings given by
the user to these items, can be presented to the user as a justification for the

recommendation.

Efficiency One of the strong points of neighborhood-based systems is their efficiency.
Unlike most model-based systems, they require no costly training phases,
which need to be carried out at frequent intervals in large commercial
applications. While the recommendation phase is usually more expensive
than for model-based methods, the nearest-neighbors can be pre-computed

in an offline step, providing near instantaneous recommendations.
Moreover, storing these nearest neighbors requires very little memory,
making such approaches scalable to applications having millions of users
and items.

Stability Another useful property of recommender systems based on this approach

19

is that they are little affected by the constant addition of users, items and
ratings, which are typically observed in large commercial applications. For

instance, once item similarities have been computed, an item-based system
can readily make recommendations to new users, without having to re-
train the system. Moreover, once a few ratings have been entered for a new
item, only the similarities between this item and the ones already in the
system need to be computed

Investigations have shown that model-based approaches (e.g. latent factor
model) are better than memory-based methods in prediction accuracy (Koren,
2008). However, good prediction accuracy alone does not guarantee users an
effective and satisfying experience (Good et al., 1999). In fact, a very important
role in appreciation of users for the recommender system is serendipitous
recommendations (Good et al., 1999). For instance, a huge fan of Star Wars-saga
does not get excited about movie recommendations of Star Wars-movies.
Serendipitous recommendations help user find an interesting item that would
not have otherwise been discovered.

Memory-based CFs one drawback is its poor scalability to larger systems,
since managing CF requires managing large data tables, which tend to be
inefficient. For example, big e-commerce providers could have millions of users
and items and CF provides predictions based on user-item matrix. Memory-
based CF also focuses more on recommending the most popular items since
they have more rating-information available. (Sarwar, Karypis, Konstan & Riedl,
2001.). Almost all practical algorithms use some form of pre-processing to
reduce run-time complexity and to help memory-based CF to scale better
(Schafer et al., 2007).

Liu & Yang (2008) state that there are several difficulties when user-user
approach has been selected for measuring. Firstly, raw ratings may contain
biases, meaning that users tend to rate items differently. For example, some
users may tend to give high ratings for most of the items. This can be corrected
by using data normalization or centering the data prior to measuring user
similarities, for example. Secondly, user-item ratings data is typically highly
sparse. This challenges the system to find highly similar neighbors for creating
accurate predictions. To fix the data, unknown ratings in the user-item matrix
must be handled.

Another common CF related problem is the cold start issue. CF requires
rating data in order provide predictions. When a new item is added to the
system, it doesn’t have any rating info, naturally. This item can’t be
recommended to anyone before it gets enough ratings. Same problem bothers
new user. CF can’t generate user profile before target user has given enough
ratings for items. In other words, new user doesn’t have neighborhood of
similar users. There are some solutions that help reduce the cold start issues
(Schafer et al., 2007.):

• have the user rate some initial items before they can use the service

20

• display non-personalized recommendations (e.g. most popular
items in the service) until the user has rated enough items

• ask the user to describe their taste in aggregate, e.g., “I like science
fiction movies”

• ask the user for demographic information

• using ratings of other users with similar demographics as
recommendations

2.3 Model-based Collaborative Filtering

Memory-based CF algorithms maintain a database of all users’ ratings for all
items and each prediction performs computation across the entire database.
Model-based algorithms first compile the user’s preferences into a descriptive
model of users, items, and ratings. Recommendations are generated by
appealing to the model. Model-based approach may offer added value beyond
its predictive capabilities by highlighting certain correlations in the data.
Prediction can be calculated quickly once the model is generated and it doesn’t
require as much performance as memory-based CF. However, complexity to
compile the data into a model may be challenging and adding new item may
require a full recompilation. (Pennock, Horvitz, Lawrence & Giles, 2000.)

Model-based CF uses probabilistic models to predict rating values of
unobserved items for the target user. These probabilistic models used in model-
based CF are for example cluster models and Bayesian Network model. (Breese,
Heckerman & Kadie, 1998.). The Bayesian network model, the most popular
probabilistic model (Schafer et al., 2007), is explained in chapter 2.3.1. Cluster
model is briefly described in chapter 2.3.2. Model-based approach is not
discovered more specifically as none of the selected algorithms represent
model-based CF.

2.3.1 Bayesian-Network Model

Bayesian-network model derives probabilistic dependencies among users or
items. Breese et al. (1998) describes a method for deriving and applying
Bayesian networks using decision trees to compactly represent probability
tables. A decision tree (FIGURE 1) shows that users who do not watch “Beverly
Hills 90210” are very likely to not watch “Melrose Place”. There is a separate
tree for every recommendable item. The branch chosen at a node in the tree is
dependent on the user’s rating for a particular item. Every node stores a
probability vector for user’s ratings of the predicted item. (Schafer et al., 2007.)
Bayesian-network is proven to be more scalable compared to memory-based CF
methods but prediction accuracy is weaker. In addition, model learning and
updating is considered expensive if the number of users is large.

21

FIGURE 1 A decision tree regarding whether a user watches” Melrose Place”. (Breese et al.,
1998)

2.3.2 Cluster models

Cluster models provide facilitation to CF scaling problem by clustering items in
groups.” Clustering consists of assigning items to groups so that the items in
the same groups are more similar than items in different groups: the goal is to
discover natural (or meaningful) groups that exist in the data” (Kantor et al.,
2011, p.86). Clustering is often considered as an intermediate step, for example
to help memory-based CF scale better. The actual prediction is then made using
e.g. Pearson correlation coefficient. With clustering models, the
recommendation process can be done in smaller parts (clusters) rather than the
entire database, improving performance. This complex and expensive
clustering computation is run offline. Cluster model’s recommendation quality
is generally low. The quality can be improved by using numerous fine-grained
segments. However, the online user-segment classification could become
almost as expensive as just using memory-based CF only (Su & Khoshgoftaar,
2009.).

22

3 SELECTION OF COLLABORATIVE FILTERING
ALGORITHMS

Algorithms applied and used in this paper are traditional rating-oriented CF,
EigenRank (Liu & Yang, 2008), VSRank (Wang et al., 2014) and ListCF (Huang
et al., 2015). These articles are the main sources for these algorithms in their
own chapters. If not separately mentioned, the text refers to these publications
accordingly.

3.1.1 Rating-oriented CF

Traditional collaborative filtering algorithms are based on predicting the
potential ratings that a user would assign to the unrated items. Liu and Yang
(2008) divide traditional CF into two classes. In the first class, user is presented
with one individual item at a time along with a predicted rating that indicates
the user’s potential interest in the item. The second class produces an ordered
list of Top-N recommended items. The items are ranked and highest-ranked
items are most preferred by the user. The user is expected to browse predicted
items from top of the list heading downwards. The latter one appears to be
more popular, at least in e-commerce (Liu & Yang, 2008).

The computation of Top-N item list is generated using a rating-oriented
approach. Rating-oriented approach first predicts the potential ratings a target
user would assign to the items and then rank the items according to the
predicted ratings. (Liu & Yang, 2008). Liu and Yang (2008) present a solid
example about ranking effectiveness in rating-oriented approach:

Suppose we have two items i and j for which the true ratings are known to be 3 and 4
respectively and two different methods have predicted the ratings on i and j to be {2,
5} and {4, 3} respectively. In terms of rating prediction accuracy as measured by the
absolute deviation from the true rating, there is no difference between the two sets of
predictions. However, using the predictions {4, 3}, item i and j will be incorrectly

ordered while the predictions {2, 5} ensures the correct order.

23

Rating-oriented CF approach focuses on approximating the ratings rather than
the rankings. The similarity measures in rating-oriented CF are e.g. Pearson
Correlation Coefficient and Vector Similarity (see Chapter 2.2.1. and 2.2.2).

3.1.2 EigenRank

EigenRank represents one of the first ranking-based CF algorithms and it is the
oldest ranking-based recommendation algorithm presented in this paper.
EigenRank’s main contribution can be considered similarity measure, greedy
order algorithm and random walk algorithm. This chapter presents the main
idea behind EigenRank and thus the only reference is the article from Liu and
Yang (2008). EigenRank challenges the problem in rating-oriented CF about
computing Top-N item list by using a ranking-based approach.

EigenRank approach describes a user-user similarity measure, which is
based on two users’ preferences over the items and after that, present two
methods for ranking items based on the preferences of the set of neighbors of
the target user. These methods are greedy order algorithm and random walk
model. EigenRank is not trying to predict user’s ratings on unrated items which
is an intermediate step in traditional rating oriented CF. User-user similarity
measurement using Pearson Correlation Coefficient or Vector Similarity are
rating-based measures and hence, not ideal for ranking-based algorithms. In
ranking-based algorithms, the similarity between users is determined by their
ranking of the items.

Since the goal for EigenRank, and all other ranking-based algorithms, is to
produce a ranking of the items for a user and not to predict the rating values
first, user’s preference function needs to be evaluated. Liu & Yang (2008) use

the following form to model a user’s preference: Ψ: I x I  ℝ, where Ψ(i,j) > 0,
meaning that item i is more preferable to j for user u and vice versa. The
magnitude of this function | Ψ (i,j)| explains the strength of preference
between items i and j, value zero meaning no preference between these two
items. If user u’s rates items i and j with values 5 and 3 respectively, it indicates
that Ψ(i,j) > 0 and Ψ(j,i) < 0. This leads to a broader definition of preference
function where the basic idea is the same as in neighborhood-based
collaborative filtering, where we need to find users with similar preferences to
the target user. In the following formula, the set of users is noted Nu:

Ψ (𝑖, 𝑗) =
∑ 𝑆𝑢,𝑣 ∙ (𝑟𝑣,𝑖 − 𝑟𝑣,𝑗)

𝑣 ∈ 𝑁𝑢
𝑖,𝑗

∑ 𝑆𝑢,𝑣𝑣 ∈ 𝑁𝑢
𝑖,𝑗

The more often the users in Nu assign i a higher rating than j, the stronger the
evidence is for Ψ (i,j) > 0 and Ψ (j,i) < 0. The summation of Nui,j is the set of
neighbors of u who have rated both items i and j.

This preference function presented above assigns a score to every pair of

items i, j ∈ I. The goal is to choose a ranking of items in I that approves with the

24

pairwise preferences defined by Ψ as much as possible. Value function VΨ(p) is
defined such as p is a ranking of item in I when p(i) > p(j) if and only if i is
ranked higher than j. Value function measures how consistent is the ranking p
with respect to the preference function Ψ as follows:

𝑉Ψ(𝑝) = ∑ Ψ (𝑖, 𝑗)

𝑖,𝑗:𝑝(𝑖)>𝑝(𝑗)

EigenRank value function suggests that solving the ranking problem requires
searching through the optimal ranking p* that maximizes the function. Finding
the optimal ranking p* is a NP-complete problem, meaning that the resolution
time for this problem is exponential.

Ranking-based filtering needs a way to rank items without ratings and
that is why preference functions are used. It is challenging to obtain preference
information about items that the target user has not yet rated. EigenRank
explains two approaches to solve the item-ranking problem. First one is called
Greedy Order Algorithm and second one is named Random Walk Model.
Greedy Order Algorithm is explained in FIGURE 2:

FIGURE 2 Greedy Order algorithm (Liu & Yang, 2008)

Each item i ∈ I have a potential value π (i). Second line of the algorithm
indicates that the more items that are less preferred than i (i.e. Ψ (j,i) > 0) the
higher the potential of i. The item t evaluated in line five presents the current
highest ranked item. The Greedy Order algorithm picks the item t and assigns a
rank to it, which is equal to the number of remaining items in I so that it will be
ranked above all the other remaining items (line six). Item t is then deleted from
items in I and the potential values of the remaining items are updated by

25

removing the effects of t. Greedy order algorithm has a time complexity of O(n2),
where n denotes the number of items.

Since Greedy Order algorithm is not considered as effective way, another
approach is presented in the paper. Random Walk model is based on the
stationary distribution of Markov chain and it is ultimately close to PageRank,
introduced by Brin and Page (2012; originally presented in 1998). Markov chain
is used as a base for Random Walk since it is effective for aggregating partial
and incomplete preference information from many users. Random Walk model
used in EigenRank derives implicit links between items based on the observed
preference information so that a less preferred item j would link to a more
preferred item i and the transition probability p(i|j) would depend on the
strength of the preference which can be told from the value Ψ (i,j). For example,
a user is trying to find his or her favorite item (e.g. a movie) and he or she has
some preferences over the items. The user first chooses an item j randomly and
based on the preferences, he or she would switch to another item i based on the
conditional probability p(i|j) which would be higher for items that are more
preferred than j and naturally lower for items that are less preferred than item j.
Eventually the user should select his or her favorite item most often, explaining
how the stationary distribution could be used to rank items based on
preferences. The transition probability p(i|j) of switching to another item j
given the current item i is defined in next figure:

𝑝 (𝑗 | 𝑖) =
𝑒Ψ (𝑗,𝑖)

∑ 𝑒Ψ (𝑗,𝑖)
𝑗 ∈𝐼

3.1.3 VSRank

VSRank is a ranking-based recommender system approach introduced in 2014
by Wang et al. Their article is the main source for this chapter since this is a
summary of their publication. Idea behind VSRank is to improve
recommendation accuracy for ranking-based CF by adapting vector space
model and considering each user as a document and user’s pairwise relative
preferences as terms. Vector space model have been implemented in content-
based filtering but it has not been investigated before in the context of CF. The
terms are weighted using degree-specialty weighting scheme that in this case is
TF-IDF (term frequency-inverse document frequency) resemblance. After users
are represented as vectors of degree-specialty weights, ranking-based CF
techniques are adopted for making recommendations for a given user.

Conventional ranking-based algorithms, e.g. EigenRank, are based on
similarity measures between two users on the same set of items. These
algorithms treat pairwise relative preferences equally, without considering any
weighting scheme for preferences in similarity measures. That is, if two users
give ratings for same items but other user has given bigger rating for item he or
she liked more, users’ preferences are different although both liked the same

26

item over the other. Weighting is one of the techniques used in data analysis
and machine learning that eliminates irrelevant, redundant and noisy data.

The key component in VSRank is the degree-specialty weighting scheme.
Wang et al. provide following simple example to demonstrate why relative
preferences need weighting; there are two users, u and v, and both have rated
two items {i1, i2} to be {5,1} and {2,1}, respectively. Ratings indicate that both
users have rated item i1 higher than i2 and the scores show that user u prefers i1
over i2 more strongly than user v does. Stronger preferences with larger score
differences should be noted while creating recommendations. Stronger the
score difference between two items means larger degree between them. This
degree between two comparable items resembles term frequency (TF) in TF-IDF
scheme. High degree for a preference term from a user can be understood in a
way the user frequently confirms his or her preference.

Since TF-IDF is originally a numerical statistic tool that reflects how
important a word is to a document, it is naturally not suitable for CF out-of-the-
box. One of the problems TF has is that in original use the value is textual and
undirectional. When implementing TF-IDF in CF, TF-value is directional. This
means it has a value to compare to, which is its opposite preference. Instead of a
literal word for word translation, IDF in VSRank measures the rarity of the
preference in users who hold the same or the opposite preferences on the same
items.

Vector space model is a standard algebraic model commonly used in
information retrieval. Vector space model treats a textual document as a bag of
words. Each document is represented as a vector of TF-IDF weights. Cosine
similarity is used to compute similarity between document vectors and query
vectors. Larger the similarity, higher the relevancy.

27

FIGURE 3 VSRank-algorithm (Wang et al., 2014)

First part of the algorithm (FIGURE 3) (lines 1-14) represent each user as a
vector of relative preference terms based on the vector space model. For each
user u relative preference terms Tu are extracted, forming a preference terms T
(lines 1-5). Next block (lines 6-8) computes the specialty weight for each term t ∈
T. Lines 9-14 compute the degree weights and obtain a vector of degree-
specialty weights for each user.

The latter part (lines 15-23) contains CF procedure to make
recommendations for each user. Similarity between u and the rest of the users
are computed in lines 16-18. The neighborhood users Uu are selected in line 19.
The rest of the algorithm aggregate preferences of the neighborhood users into
a total ranking of items τu for recommendation.

3.1.4 ListCF

ListCF stands for Listwise Collaborative Filtering and it represents a memory-
based ranking-oriented CF approach, which measures the user-user similarity
based on Kullback-Leibler divergence. What makes ListCF different from
previous ranking-based CF algorithms is its function to directly predict a total
order of items for each user based on similar user’s probability distributions
over permutations of commonly rated items.

ListCF predicts item rankings for each user by minimizing the cross-
entropy loss between the target user and his neighboring users with weighted

28

similarities. The advantage in this approach, compared to algorithms that focus
on predicting pairwise preferences between items, is reduced computational
complexity in training and prediction procedures. Ranking performance should
be at the same level or better than on previous memory-based CF algorithms.
(Huang et al., 2015).

Where EigenRank uses Kendall’s tau correlation and VSRank implies
Vector Space model for position ranking, ListCF approach is to utilize Placket-
Luce, widely used permutation probability model, to represent each user as a
probability distribution over the permutations of rated items. The similarity
between two users is measured based on the Kullback-Leibler divergence
between their probability distributions over the set of commonly rated items.
The neighborhood users for the target user are the ones that have higher
similarity scores. ListCF infers predictions by minimizing the cross-entropy loss
between their probability distributions over permutations of items with
gradient descent.

Huang et al. (2015) have considered different variations for calculating
probability of permutations in phase I. For a set of n items, the number of
different permutations is n! and therefore too time-consuming to calculate the
probabilities of all the permutations. This is a problem that effects performance
far too heavily and forces to implement more efficient solutions. Huang et al.
end up using Top-k permutation set, which focuses only on the permutations of
the items within the top-k positions. The number of permutation sets to
consider is n!/(n - k)! , each containing (n – k)! permutations of I (= set of items).
The total probabilities of permutations are n!=(n - k)! x (n - k)! = n!, the same as
in full permutations of all the items. For this problem, Huang et al. (2015) refer
to the probability distribution over the top-k permutation sets as the top-k
probability model, which uses the top-k permutation sets instead of the full
permutations of all the items. Kullback-Leibler divergence based metric is used
for similarity calculation as it is a common measure of the difference between
two probability distributions in probability theory and information theory. The
similarity between each pair of users is between {0, 1}.

In phase II, the goal is to predict a preference ranking of items. The
assumptions are similar to traditional pairwise CF: to make predictions based
on a set of neighborhood users with similar ranking preferences to the target
user. The past ranking preferences affect to the upcoming ranking preferences,
which is normal to memory-based recommender systems. The cross-entropy
loss function, widely-used function for optimizing similarity or distance
between probability distributions, is used for making predictions.

In FIGURE 4, we see ListCF algorithm in pseudocode. The lines 1 – 7
represents the phase I, where the similarities between users are calculated and
neighborhood users discovered. Lines 8-23 represents the phase II where the
ranking of items is predicted for making the recommendations.

It is possible to modify the k-value in top-k permutation set in ListCF.
Huang et al. (2015) tested values 1,2 and 3 with 1000 randomly selected users
from MovieLens-1M dataset. According to the test, the recommendation

29

accuracy improved a little when increasing the k-value. However, the efficiency
suffered a tremendous fall. The calculation time in phase I and phase II of
ListCF algorithm is 433 and 488 times longer, respectively, when k-value was
set to 3 instead of 1. It is safe to say that improved accuracy is not worth the
degenerated efficiency.

When comparing the accuracy of ListCF to traditional pointwise CF and
pairwise CF (e.g. EigenRank), Huang et al. (2015, p.6) demonstrate with a
following example:

Suppose there are three users U = {u1, u2, u3} and three items I = {i1, i2, i3}, where u1

assigned ratings of {5, 3, 4} to items, u2 assigned {5, 4, 3}, and u3 assigned {4, 3, 5}. In
pointwise CF, the similarity (Pearson correlation coefficient) between u1 and u2 and
the similarity between u1 and u3 are ρ(u1, u2) = ρ(u1, u3) = 0.5. In pairwise CF, the
similarity (Kendall's τ correlation coefficient) between u1 and u2 and the similarity
between u1 and u3 are τ(u1, u2) = τ(u1, u3) = 0:333. In ListCF, according to Equation (1),

the top-1 probability distributions of users u1, u2 and u3 are Pu1 = (0:665, 0:090, 0:245),
Pu2 = (0:665, 0:245, 0:090), and Pu3 = (0:245, 0:090, 0:665). According to Equation (2),
s(u1, u2) = 0:776 and s(u1, u3) = 0:395, and thus s(u1, u2) > s(u1, u3).

If we look at the ratings users have given, we can see that user u1 and u2 are
more similar to each other than users u1 and u3. While the rating values are the
same for each user, Pearson correlation coefficient and Kendall’s τ indicate, that
the users are similar to each other. As one can see from the example above,
ListCF is the only one that calculates the user similarities correctly.

30

FIGURE 4 ListCF-algorithm (Huang et al., 2015)

31

4 METHODOLOGY

Since the approach to the subject of recommender systems in this research is
rather technical, I have chosen design science research methodology as a
framework. Design science is fundamentally a problem-solving process
(Hevner et al, 2004). Improving both the effectiveness and prediction accuracy
in recommender systems is without a doubt a problem-solving process as well.
However, the subject in this research is not to construct an artifact but to
compare artifacts to each other.

It was until early 1990s, when DS was considered as a research method for
development in Information Systems (IS). One might note that IS research itself
is only about one-third of a century old (Peffers, Tuunanen, Rothenberger &
Chatterjee, 2008.). DS is relatively young research method for IS but it has got a
solid ground in researches where a design artifact is developed for extending
the boundaries of human and organizational capabilities. “Design science, as
the other side of the IS research cycle, creates and evaluates IT artifacts intended
to solve identified organizational problems.” (Hevner et al., 2004.). In IS
research, technology and human behavior are inseparable and hereafter
scientific research should be assessed considering its practical implications
(Hevner et al., 2004).

Hevner et al. (2004) present guidelines for design-science research (table 6).
First guideline is to design a purposeful IT artifact to address an important
organizational problem. Instead of a whole information system, the artifact can
be one crucial part of it. For example, IT artifact can be a software tool for
improving the process of information system development.

The aim is to do an experiment about the artifacts that are already created
by others. Hence, we are implementing parts of the DSRM approach as a
guideline to fit this experiment under IS research. To be more precise, I am
using guidelines from three to seven of the Design-science research guideline
(table 6).

32

TABLE 6 Design-science research guidelines (adapted from Hevner et al., 2004)

Guideline Description

Guideline 1: Design as an Artifact

Design-science research must produce a viable artifact in
the form of a construct, a model, a method, or an
instantiation.

Guideline 2: Problem Relevance

The objective of design-science research is to develop
technology-based solutions to important and relevant
business problems.

Guideline 3: Design Evaluation

The utility, quality, and efficacy of a design artifact must
be rigorously demonstrated via well-executed evaluation
methods.

Guideline 4: Research Contributions

Effective design-science research must provide clear and
verifiable contributions in the areas of the design artifact,
design foundations, and/or design methodologies.

Guideline 5: Research Rigor

Design-science research relies upon the application of
rigorous methods in both the construction and evaluation
of the design artifact.

Guideline 6: Design as a Search Process The search for an effective artifact requires utilizing
available means to reach desired ends while satisfying
laws in the problem environment.

Guideline 7: Communication of Research Design-science research must be presented effectively
both to technology-oriented as well as management-
oriented audiences.

Guideline 3 describes the utility, quality and efficacy of a design artifact. These
attributes of algorithms used in this paper, except PointCF which is used as a
benchmark, are explained in needed detail on chapter 3. Hevner et al. (2004)
describes five different evaluation methods for design science in IS:
observational, analytical, experimental, testing and descriptive. Of these five
methods, experimental is suitable for evaluating recommender systems
algorithms since it is a test with fixed data and platform.

One example of an artifact in IS-research and DSRM is an algorithm. To be
more precise, algorithm can be defined as a method (Hevner et al., 2004). Since
we are comparing four different algorithms designed to provide a best solution
for predicting recommended items to target user, we are comparing four
different methods of achieving the best viable outcome.

Guideline 4 is about the contributions the artifact should provide to
research community. The goal in ranking-based algorithms is to improve the
predicted item list ranking from the results of a one generated by rating-based
algorithm. When the focus is on a list of predicted items, say top-10 list of
movies, the effect is more usable to real-world scenarios, compared to
predicting the best rating of an item for the target user. Not only should
ranking-based CF provide more accurate predictions for user, but it also brings
up a new way of approaching the recommendation problem itself. For most
cases, it is more important for user what item user likes most, rather than what
rating might be.

The definition of algorithms in chapter 3 along with the research papers,
where the algorithms were published, provide a rigor approach that is required
in guideline 5. All the algorithms are designed to improve the previous

33

approaches in CF-context, which has required a search process for problem
survey.

Design as a search process in guideline 6 fits this scenario well, since the
goal for all algorithms is to be better than previous CF approaches. By
comparing the algorithms to each other with same data, we are searching for
the best solution to a problem about item recommendation.

The benchmark consists of two phases: training phase and test phase. In
training phase, the selected algorithms are trained for prediction using data-set-
specific training data. The algorithms calculate the similarities between users to
be able to predict the ranked lists. The training phase produces a table of
similarities between users which is then used in the test phase. The predictions
are calculated in test-phase. Selected algorithm predicts the preference ordering
of unrated items for each target user using data-set-specific test data. Lastly, the
prediction accuracy is evaluated using specific evaluation methods.

The methodology chapter is divided into subchapters as follows: chapter
4.1 introduces selected datasets, chapter 4.2 explains the tool for the experiment,
chapter 4.3 introduces the selected evaluation methods.

4.1 Data collection and use

Selected real-world data sets are MovieLens (Harper & Konstan, 2016),
EachMovie and Netflix. The datasets used in this work are given to me as part
of the assignment. All three datasets are popular among research articles about
recommender systems. For keywords EachMovie, MovieLens and Netflix-data,
Google Scholar finds 16800, 11600 and 1260 results, respectively. These datasets
have also been used in algorithm papers that are in use in this research.
EachMovie and MovieLens datasets have been used in EigenRank (Liu & Yang,
2008) and VSRank (Wang et al., 2014). ListCF (Huang et al., 2015) used
EachMovie, MovieLens and Netflix data to test the performance of the
algorithm.

The data format in test sets are similar, each containing two files: training
set and test set. The data files consist of user Id, item Id, rating value between 1-
5 and timestamp. Timestamp is not needed and therefore it is not loaded into
the program. Files are simple text files in txt-format and values are tab-
separated from each other. More details in table 7 below:

TABLE 7 Details about datasets

 MovieLens – 1M EachMovie Netflix

users 6 040 36 656 429 584

items 3 952 1 623 17 770

ratings 1 000 209 2 580 222 99 884 940

ratings/user 165.6 70.4 232.5

ratings/item 253.1 1 589.8 5 621

sparsity 95.8% 95.7% 98.7%

34

The selected three datasets provide a good data variation since the number of
users, items and ratings differs a lot. MovieLens data represents the smallest
dataset with approximately one million ratings. However, the ratings per user
ratio is significantly higher than in EachMovie-dataset with approximately 2,6
million ratings. EachMovie do have higher ratings per item ratio, though.
Netflix-dataset is the largest in every category with approximately 100 million
ratings. The data sparsity is calculated as follows:

𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1 −
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑡𝑖𝑛𝑔𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑟𝑠 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠

4.1.1 EachMovie

EachMovie is user-movie ratings data set provided by the Compaq Systems
Research Center (Melville, Mooney & Nagarajan, 2002). EachMovie was shut
down in 2004 and dataset became available to public after that. The original
dataset contains 2,811,983 ratings entered by 72,916 for 1628 different movies
(http://grouplens.org/datasets/eachmovie). EachMovie dataset is hugely
popular despite it is not anymore available. Google Scholar returns 15800
references to search term “eachmovie”.

Originally MovieLens dataset was based on EachMovie dataset. At the
time EachMovie was being shut down, it belonged to Digital Equipment
Corporation (DEC). DEC contacted the recommender systems community for
finding an organization to continue maintaining and developing the data set.
GroupLens volunteered for the task. However, legal issues blocked directly
transferring user accounts and DEC transferred an anonymized dataset to
GroupLens. GroupLens used this dataset to train the first version of the
MovieLens (Harper & Konstan, 2016.).

4.1.2 MovieLens

The MovieLens datasets was first released in 1997. Like Netflix and EachMovie,
MovieLens describes people’s expressed preferences for movies. The data take
the form of user, item, rating, timestamp. Each line represents a person expressing
a preference for a movie at a particular time. Only users with at least 20 ratings
are included. (Harper & Konstan, 2016).

The data is collected from a web service movielens.org - a recommender
system that asks its users to give movie ratings in order to receive personalized
movie recommendations (Harper & Konstan, 2016). Basically, the web site
works like Netflix, asking ratings for movies. However, MovieLens is non-
commercial and the ratings are only used for scientific purposes.

MovieLens dataset is one of the most popular datasets in recommendation
research. Google Scholar returns over 10300 references to “movielens”.

35

MovieLens can be considered a successor for EachMovie. MovieLens is also
easy to attain – there are four different-size datasets available, 100k, 1m, 10m
and 20m, reflecting the approximate number of ratings per dataset.

4.1.3 Netflix

The largest dataset in this research is Netflix data with 100 million movie
ratings. The dataset is released in October, 2006 as a part of The Netflix Prize
competition. The idea of the competition was to challenge data mining, machine
learning and computer science communities to develop systems that could beat
the accuracy of, at that time, current system. (Bennett & Lanning, 2007).

The main prize for that competition was 1 million dollars for the winning
team. Netflix’s system to beat was called Cinematch. Cinematch used a variant
of Pearson’s correlation (see chapter 3.1.1.) to calculate item similarities (Bennett
& Lanning, 2007). The goal was to produce a 10 percent reduction in the RMSE
of test data compared to Cinematch score. Not one team achieved this goal. The
best result was 8.43% from team KorBell of AT&T Labs-Research. (Bell & Koren,
2007).

4.2 Tool for the experiment

The tool that is used in this research measures the performance (resolution time)
and accuracy of three different CF algorithms. The algorithms are: EigenRank,
VSRank and ListCF. To give a baseline for the results, there is also a ‘traditional’
pointwise CF-algorithm, PointCF.

I programmed the benchmark tool using Java-language. As this software’s
purpose is to be a tool for algorithm comparison, the user interface is
command-line based, which requests three different parameters: algorithm,
dataset, evaluation method.

4.3 Results measurement

Evaluating prediction accuracy of recommender system algorithms is often
executed using metrics like Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), Normative Discounted Cumulative Gain (NDCG) and Mean
Average Precision (MAP). MAE and RMSE are used when evaluating rating-
oriented algorithms where NDCG and MAP are used when dealing with
ranking-based algorithms. This chapter briefly explains the function of these
evaluations metrics to help understand the results of different algorithms.
Chapter 4.3.1 explains NDCG and chapter 4.3.2 introduces MAP.

36

4.3.1 Normalized Discounted Cumulative Gain (NDCG)

Normalized Discounted Cumulative Gain measures the performance of a
recommender system based on the graded relevance of the recommended items.
Like in previous measurement methods, the result value is between [-1, 1],
value 1 representing the perfect prediction.

The NDCG metric is evaluated over number k which represents the top
items on the ranked list. The variable Q is the set of users used for testing. R(u,p)
is the rating that is assigned by u to the item at the p-th position on the ranked
list produced for user u. The NDCG at the k-th position to the set of Q is shown
in figure 13. Variable Zu is a normalization factor which is calculated so that the
NDCG of the optimal ranking has a value of 1. Value log(1 + p) is a discounting
factor, which increases with the position in the ranking. Discount is by position,
so things at front are more important. These features make it desirable for
measuring ranking quality in recommender systems. This is due to a fact that
most users rarely look past the first few items on a recommendation list. The
relevance of the top items in the list are more important than those at low
positions. (Liu & Yang, 2008). Below is formula of NDCG.

𝑁𝐷𝐶𝐺(𝑄, 𝑘) =
1

|𝑄|
 ∑ 𝑍𝑢

𝑢 ∈𝑄

∑
2𝑅(𝑢,𝑝) − 1

log(1 + 𝑝)

𝑘

𝑝=1

4.3.2 Mean Average Precision (MAP)

MAP is a popular performance measure for calculating the mean of average
precisions scores for each query. MAP is the most commonly used single-value
summary of a run over a set of queries (Agichtein, Brill & Dumalls, 2006).

Average Precision (AP) can be explained as follows: There are correct
rankings {1,2,3,4,5} and predicted rankings {4,2,6,1,7}, then AveP(5), where
number 5 is the threshold, is 3/5 = 0,6. That is because we found correct values
4,2 and 1 and incorrect values 6 and 7. AveP(3) returns 1 correct value, 2, and
two incorrect values, 4 and 6, thus 1/3 = 0,33. MAP is simply an average of the
sum of these queries.

The formula for MAP is:

𝑀𝐴𝑃 =
∑ 𝐴𝑣𝑒𝑃(𝑞)

𝑄
𝑞=1

𝑄

where AveP is average precision, q is current query and Q is the number of
queries. It is good to acknowledge that MAP is macro-averaging measure,
meaning each query is counted equally. MAP also assumes user is interested in
finding many relevant documents for each query.

37

5 RESULTS

The results chapter is divided into four subchapters: Similarity and neighbor
search comparison, runtime comparison and ranking accuracy comparison
following with conclusions. In first two chapters the results are evaluated with
processing speed. The faster the time, the better the performance. In ranking
accuracy comparison, Normative Discounted Cumulative Gain and Mean
Average Precision are used to compare the accuracy of the rankings. These
evaluation methods are explained in chapters 4.3.1. and 4.3.2., respectively.

The tests were run on a computing machine provided by University of
Jyväskylä. The benchmarks were run once per algorithm. Few algorithms were
benchmarked twice to test that the results remained the same. These test
benchmarks are not included in the results. The datasets are MovieLens,
EachMovie and Netflix-data. MovieLens and EachMovie datasets were used as
is but Netflix-dataset was too large to process in its original size. A sample set
was created from Netflix-dataset by selecting only the users that had rated 50 or
more items. The sparsity of the sample set is 99.8%.

5.1 Algorithm Training and Similarity Calculation runtime

Due to the size differences on data sets, results are shown either in seconds or
minutes, depending on a data set. MovieLens data, being the smallest in size, is
measured in seconds where EachMovie and Netflix are measured in minutes.

In MovieLens-dataset (FIGURE 5) the fastest performing algorithm is
PointCF with 180.49 seconds. The second fastest is ListCF with 237,86 seconds.
Clearly the slowest algorithms were EigenRank and VSRank with times 1729.20
seconds and 1771.92 seconds, respectively. Wang et al. (2015) measured PointCF,
EigenRank and ListCF in their paper. Compared to their results, the ranking of
these three algorithms is the same, although times are not similar. Compared to
results made by Wang et a. (2015), PointCF and ListCF performed faster in our

38

test but EigenRank is multiple times slower. That excludes the influence of
better computational power as all the results should have been faster in our test.

FIGURE 5 Movielens similarity and neighbor search

EachMovie-dataset provided contrary results to MovieLens as PointCF proved
to be the slowest of the algorithms and VSRank the fastest (FIGURE 6FIGURE
7). Execution time of VSRank is 191.52 minutes, EigenRank 664.25 minutes,
ListCF 918.25 minutes and PointCF 1096.85 minutes.

One possible explanation to this is in dataset details. Ratings per user is
higher in MovieLens but ratings per item in EachMovie is six-fold compared to
MovieLens. In this type of data, VSRank proved itself to be fastest performing
algorithm.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

MovieLens

MovieLens (seconds)

PointCF EigenRank VSRank ListCF

39

FIGURE 6 EachMovie similarity and neighbor search

The ranking of the algorithms stays the same while testing them with Netflix-
data (FIGURE 7). Computation times for PointCF, EigenRank, VSRank and
ListCF are 463.52, 307.85, 20.35 and 334.22 minutes, respectively. With Netflix-
data, VSRank is the fastest algorithm, being 15 times faster than EigenRank
which resulted second.

FIGURE 7 Netflix similarity and neighbor search

0

200

400

600

800

1000

1200

EachMovie

EachMovie (minutes)

PointCF EigenRank VSRank ListCF

0

50

100

150

200

250

300

350

400

450

500

Netflix

Netflix (minutes)

PointCF EigenRank VSRank ListCF

40

It is no surprise that the results of EachMovie and Netflix are close to each other.
The user counts are 36656 and 32421, respectively. EachMovie has 2580222
ratings where Netflix-sample data has 906758, which is 2.8 times less. The factor
in time difference between EachMovie and Netflix-benchmarks are
approximately the same.

The vast difference between VSRank and other algorithms is a signal that
VSRank is remarkably efficient on handling data where ratings per user is low
and ratings per item is high. This notes that vector space approach with TF-IDF
weighting scheme is good performance-wise in CF applications. On a sample
set of Netflix-data there is only 28 ratings per user whereas EachMovie has 70.4.
Both ratios are significantly lower compared to Movielens’ 165.6 ratings per
user. VSRank also has an advantage in runtime when datasets are bigger in size,
according to these three datasets.

5.2 Prediction Runtime

In prediction phase, rating-based PointCF is the fastest with a huge margin to
ranking-based solutions on every data set (FIGURE 8). The results times with
MovieLens data for PointCF, EigenRank, VSRank and ListCF are 2816, 7429,
17570 and 7915 milliseconds, respectively. With MovieLens data, VSRank is
significantly slower than the others. Runtime speed is virtually the same
between EigenRank and ListCF, latter being 6% slower.

The results with EachMovie data differs from MovieLens. PointCF is the
fastest with the runtime of 5212 milliseconds. EigenRank and VSRank share
almost the same runtime of 32970 and 33924 milliseconds, VSRank being 3%
slower. ListCF is clearly the slowest with the time of 56 828 milliseconds, being
1090% slower than PointCF.

With Netflix-data, the ranking of last three algorithms has changed
compared to EachMovie which is almost the same in size. The runtimes for
PointCF, EigenRank, VSRank and ListCF are 4223, 26163, 21141 and
milliseconds, respectively. VSRank finished second with Netflix-data with a
clear margin before EigenRank and ListCF. The latter two however predicted
the ranking in almost same time, with only 57 millisecond difference in favor
for ListCF.

41

FIGURE 8 Prediction runtime

It is good to acknowledge that ranking-based algorithms are not designed for
performing faster but to provide more accurate predictions. Simply put, the
functionalities of these are much more complex.

The results for prediction runtime shows that the details of a dataset affect
a lot for the results, which. PointCF manages to predict the fastest, no matter the
dataset. However, the ranking based algorithms are more sensitive about the
dataset. The approaches for the prediction differs a lot between ranking-based
algorithms. If the performance time is an important factor when selecting the
algorithm, fastest option is PointCF. If the details of a target data-set are similar
and previously known, one could select the best performing ranking-based
algorithm based on that.

5.3 Prediction accuracy comparison

The results for accuracy are measured with NDCG and MAP and the results are
listed below in tables 8 and 9 and with graphs for better readability (Figures 10-
15). The number after the evaluation method shortening means the position of
the prediction. For example, NDCG@3 tells how accurately algorithm has
predicted the 3rd ranking for the set of users in data-set. The value is the mean
value over the set of users. The scale is [-1, 1], number 1 describing the perfect
ranking. The best results between algorithms are bolded in tables 8 and 9.

TABLE 8 Ranking performance measured in NDCG (bolded values present the best result)

Dataset Metric PointCF EigenRank VSRank ListCF

0

10000

20000

30000

40000

50000

60000

MovieLens EachMovie Netflix

Prediction runtime (ms)

PointCF EigenRank VSRank ListCf

42

MovieLens NDCG@1 0,6749 0,6238 0,7266 0,7196

NDCG@3 0,7103 0,6504 0,7477 0,7369

NDCG@5 0,7530 0,6946 0,7838 0,7639

NDCG@10 0,8777 0,8517 0,8932 0,8872

EachMovie NDCG@1 0,5762 0,6079 0,7280 0,7450

NDCG@3 0,6253 0,6391 0,7504 0,7653

NDCG@5 0,6808 0,6874 0,7898 0,8034

NDCG@10 0,8289 0,8350 0,8876 0,8950

Netflix NDCG@1 0,6464 0,6494 0,6726 0,7028

NDCG@3 0,6744 0,6677 0,6848 0,7114

NDCG@5 0,7128 0,7040 0,7172 0,7421

NDCG@10 0,8591 0,8561 0,8633 0,8758

By evaluating the predictions using NDCG, VSRank provided the most accurate
predictions in MovieLens-dataset. However, the results are not far ahead from
the accuracy of ListCF. Rating-based PointCF managed to predict with better
accuracy than ranking-based EigenRank. It is good to mention that runtimes of
PointCF were also tremendously faster both in similarity and neighbor search
(FIGURE 5) and prediction runtime (FIGURE 8).

With EachMovie-dataset, the best results were provided by ListCF. Second
is VSRank following with EigenRank and PointCF. Again, ListCF and VSRank
are close to each other and have a big margin for EigenRank and PointCF,
which also are close to each other. This is clearly visible on FIGURE 10.
Although ListCF provided slightly better accuracy, the runtimes compared to
VSRank are much longer.

The order of algorithms is the same with Netflix-data than with
EachMovie-data. However, the difference between results are bigger between
ListCF and VSRank. ListCF is the only algorithm that exceeds 0.7 accuracy in
NDCG@1 and NDCG@3. EigenRank is better than PointCF in NDCG@1 but
worse in other measurement points.

TABLE 9 Ranking performance measured in MAP (bolded values present the best result)

Dataset Metric PointCF EigenRank VSRank ListCF

MovieLens

MAP@1 0,7800 0,7200 0,8298 0,8195

MAP@3 0,7584 0,6911 0,7913 0,7770

MAP@5 0,7306 0,6747 0,7521 0,7257

EachMovie

MAP@1 0,8146 0,8246 0,9156 0,9174

MAP@3 0,7983 0,7986 0,8812 0,8818

MAP@5 0,7799 0,7749 0,8457 0,8466

Netflix

MAP@1 0,7052 0,7111 0,7347 0,7668

MAP@3 0,6825 0,6741 0,6910 0,7164

MAP@5 0,6588 0,6589 0,6577 0,6770

43

The second evaluation method is MAP (Table 9). The selected measurement
points are MAP@1, MAP@3 and MAP@5. For technical reasons MAP@10 is not
selected as the results were identical between algorithms. On the contrary to
NDCG, the results in MAP are higher in top positions and decreasing when the
predicted position increases.

Like with NDCG, VSRank is the most accurate with MovieLens-data.
ListCF is second, PointCF third and EigenRank last. Interestingly, PointCF
outperforms ListCF in MAP@5. ListCF provided most accurate predictions with
EachMovie-data. The results of VSRank are less accurate by 0.2% or less
compared to ListCF in MAP@1,3,5. This minimal improvement comes to a cost
of much longer prediction runtime, which is clearly visible in FIGURE 8.
FIGURE 13 shows how the results are split into two groups. First group
includes PointCF and EigenRank, second VSRank and ListCF. Netflix-data is
the one where ListCF stands out from other algorithms. The results are 2.85%-
4.18% better than the second-best algorithm, VSRank.

FIGURE 9 Performance on MovieLens data, measured in NDCG

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

NDCG@1 NDCG@3 NDCG@5 NDCG@10

Performance on Movielens-1M, NDCG

PointCF EigenRank VSRank ListCF

44

FIGURE 10 Performance on EachMovie data, measured in NDCG

FIGURE 11 Performance on Netflix data, measured in NDCG

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

NDCG@1 NDCG@3 NDCG@5 NDCG@10

Performance on EachMovie, NDCG

PointCF EigenRank VSRank ListCF

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

NDCG@1 NDCG@3 NDCG@5 NDCG@10

Performance on Netflix, NDCG

PointCF EigenRank VSRank ListCF

45

FIGURE 12 Performance on EachMovie data, measured in MAP

FIGURE 13 Performance on EachMovie data, measured in MAP

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

MAP@1 MAP@3 MAP@5

Performance on MovieLens, MAP

PointCF EigenRank VSRank ListCF

0.7000

0.7500

0.8000

0.8500

0.9000

0.9500

MAP@1 MAP@3 MAP@5

Performance on EachMovie, MAP

PointCF EigenRank VSRank ListCF

46

FIGURE 14 Performance on Netflix data, measured in MAP

5.4 Summary of the results

EigenRank is one of the first ranking-based algorithms and it is the oldest
algorithm in this study. It was designed to outperform traditional rating-based
CF. When reading the results of the benchmarks run in this research, one can
notice that EigenRank competes with PointCF. However, both EigenRank and
PointCF are systematically left behind of VSRank and ListCF in a comparison of
prediction accuracy.

VSRank and ListCF represents the newer adaptations of ranking-based CF.
The accuracy results indicate that ranking-based algorithms have been
improved significantly in a last decade. When it comes to prediction accuracy,
rating-based CF performs worse than ranking-based CF. However, the
prediction runtime of rating-based CF is generally much better than in ranking-
based CF approaches. The similarity calculation and neighbor search-phase in
PointCF is faster with MovieLens compared to other algorithms, but slower
with EachMovie and Netflix.

If prediction runtime is not an issue and the number one priority is
prediction accuracy, one should select modern ranking-based CF approaches
like VSRank or ListCF to their applications. That is of course when the usage of
recommender system is to provide ranked list.

0.6000

0.6200

0.6400

0.6600

0.6800

0.7000

0.7200

0.7400

0.7600

0.7800

MAP@1 MAP@3 MAP@5

Performance on Netflix, MAP

PointCF EigenRank VSRank ListCF

47

6 DISCUSSION

From a wide range of recommender systems, this study focused on one of the
first and still popular implementations, the Collaborative Filtering. CF
algorithms have improved both in performance (runtime) and accuracy over
the years. As explained in chapter 2, CF implementations can be divided into
many sub-categories. This study divided CF into memory-based and model-
based filtering and focuses on the memory-based CF. Memory-based CF is
again divided into rating-based and ranking-based approaches.

Rating-based CF is the older of these two approaches and ranking-based
was developed to challenge the recommendation performance. The ranking-
based CF is designed to provide a Top-N list of recommended items, instead of
predicting the ratings for items first and ordering them to descending list
according to predicted rating values second.

The performance of the selected three algorithms in addition to rating-
based PointCF, which worked as a baseline algorithm, were tested using three
real-world datasets: EachMovie, MovieLens and Netflix. These datasets vary in
details from each other, as one can see in table 7. This provided a good base for
comparison as one algorithm might be better in smaller data and another in
larger data. The rating per user-ratio, rating per item-ratio and data sparsity
also affected in performance.

The performance was evaluated by comparing two attributes: runtime and
accuracy. Runtime comparison is simple, the faster the better. For accuracy, I
used two evaluation methods: Mean Average Precision and Normative
Discounted Cumulative Gain. With these three evaluations, we received rigor
results.

This study was executed as DSRM since the focus was on artifacts which
purpose is to solve a problem with prediction accuracy. This study did not
create a new artifact. Instead, we were comparing already made artifacts and
their performances. Hence, only selected parts of DSRM were applied to this
research.

The literature used in this study was conducted from the most common
publications related to this subject. The main sources were given in assignment

48

and most of the material was acquired using Google Scholar. Where it was
necessary, as new as possible sources were used. Since the subject was quite
limited, there were difficulties in finding academic sources to some of the
chapters. For example, chapter 3 about selected algorithms is almost entirely
based on the publication papers about the algorithms itself.

6.1 Key findings

The research questions are as follows:

• Why ranking-based algorithms should provide better results than
traditional rating-oriented algorithms?

• Do the proposed algorithms perform better than rating-based
algorithm in real-world benchmark datasets?

The fundamental difference between rating-based CF and ranking-based CF is
that ranking-based CF does not provide a predicted rating to items at all.
Traditional CF algorithms are based on predicting the potential ratings that a
user would assign to the unrated items so that they can be ranked by the
predicted ratings to produce a list of recommended items. Ranking-based CF
addresses the item ranking problem directly by calculating user preferences
derived from the ratings users have given before (Liu & Yang, 2008). Ranking-
based CF approaches differ from each other by using different methods on
similarity calculation between users. The selected three ranking-based CF
algorithms, EigenRank, VSRank and ListCF are presented in more detail in
chapter 3.

The results of the benchmarks executed in this thesis are analyzed in
chapter Error! Reference source not found.. The outcome of the benchmarks is
that ranking-based CF algorithms provide better accuracy compared to rating-
based CF, named PointCF in this study. In some cases, ranking-based CF
provided also faster processing times, although the implementations of
ranking-based CF tend to be more complex than in rating-based CF variants.

To answer to the first research question, I did investigation of ranking-
based CF in comparison with rating-based CF and discovered why ranking-
based CF should provide better results than rating-based CF. The summary of
the benchmark results discussed in chapter 5.4 prove that ranking-based CF
provides better accuracy than rating-based CF, giving answer to the second
research question.

49

6.2 Contribution

The contribution for this study is to show that, when it comes to predicting
ranked lists, ranking-based CF outperforms rating-based CF. The outcome is a
result of comparing four algorithms to each other, which has only been done in
one research paper before this thesis. This study also provided how much
ranking-based CF have improved from 2008, when EigenRank was introduced.

Ranking-based CF is one limited subject in recommender systems research
and there are relatively small amount of research papers regarding this subject.
Most of the papers are publications of a new ranking-based CF approach and
the performance is measured by comparing it to rating-based CF and in some
cases to an older ranking-based CF, e.g. EigenRank. EigenRank is the most
popular ranking-based CF algorithm in this thesis where VSRank and ListCF
are less known, partly because they are relatively new. The former is
introduced in 2014, the latter in 2015 (Wang et al.,2014, Huang et al., 2015).

I could find only one research paper where these four algorithms were
compared to each other. The paper is the publication of ListCF, titled Listwise
Collaborative Filtering (Huang et al., 2015). The difference between my results
and the ones in paper by Huang et al. (2015) is in slightly different evaluation
methods. In addition to NDCG, I evaluated the results also with MAP. Huang
et al. (2015) provided more detailed results in some sections and also added two
more algorithms, CoFiRank and ListRank-MF, to the comparison. What is
interesting though is that I got different results than Huang et al. (2015) in some
sections. Some differences can be explained by different platforms and their
computational performance. However, the algorithms should be the same as
are the datasets, apart from the sample-set of Netflix data used in this thesis.

6.3 Limitations and evaluation of the research

As briefly explained in chapter 2, there are many different types of
recommender systems. The subject of this research was limited to cover only a
small fraction of all the recommender system types available. Also, there are
many different algorithms that are based on CF and we evaluated only four of
these. The number of ranking-based CF algorithms is significantly lower than in
CF in general, but there still is more than the ones covered in this thesis.

The evaluation methods used for algorithm performance are commonly
used in similar scientific papers. Similar kind of evaluation had been used in
scientific papers that published the algorithms used in this study.

50

6.4 Concluding summary

The ranking problem is common among recommender systems and it has been
approached by multiple different ways. Instead of seeing a rating one might
give to an item, end-user is more likely interested on what items he or she
would like the most. Therefore, predicting top-N ranked lists the most accurate
way is both challenging and important business-wise. Ranking-based CF
algorithms are designed for predicting ranked lists to target user. Since users
are interested on the items that are first on the ranked list, focusing on rankings
instead of ratings is arguable.

This thesis provides thorough investigation on ranking-based CF and how
it differs from traditional rating-based CF. To give a more detailed approach,
three ranking-based CF algorithms were selected for performance benchmarks
against rating-based CF.

51

REFERENCES

Agichtein, E., Brill, E. & Dumais, S. (2006). Improving web search ranking by

incorporating user behavior information. Proceedings of the 29th Annual
International ACM SIGIR Conference on Research andDevelopment in
Information Retrieval, (1926).ACM.

Bennett, J. & Lanning, S. (2007). The netflix prize. Proceedings of KDD Cup and
Workshop, (35).

Bell, R. M. & Koren, Y. (2007). Lessons from the netflix prize challenge. ACM
SIGKDD Explorations Newsletter,9(2), 7579.

Breese, J. S., Heckerman, D. & Kadie, C. (1998). Empirical analysis of predictive
algorithms for collaborative filtering. Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence, (43-52). Morgan
Kaufmann Publishers Inc.

Brin, S. & Page, L. (2012). Reprint of: The anatomy of a largescale
hypertextual web search engine. Computer Networks, 56(18), 38253833.

Burke, R. (2007). Hybrid web recommender systems. The adaptive web (s. 377-
408) Springer.

Goldberg, D., Nichols, D., Oki, B. M. & Terry, D. (1992). Using collaborative
filtering to weave an information tapestry. Communications of the ACM,
35(12), 6170.

Good, N., Schafer, J. B., Konstan, J. A., Borchers, A., Sarwar, B., Herlocker, J. &
Riedl, J. (1999). Combining collaborative filtering with personal agents for
better recommendations. Aaai/iaai, (439-446).

Harper, F. M. & Konstan, J. A. (2016). The movielens datasets: History and
context. ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4),
19.

Herlocker, J., Konstan, J. A. & Riedl, J. (2002). An empirical analysis of design
choices in neighborhood-based collaborative filtering algorithms.
Information Retrieval, 5(4), 287-310.

Herlocker, J. L., Konstan, J. A. & Riedl, J. (2000). Explaining collaborative
filtering recommendations. Proceedings of the 2000 ACM Conference on
Computer Supported Cooperative Work, (241-250). ACM.

Herlocker, J. L., Konstan, J. A., Terveen, L. G. & Riedl, J. T. (2004). Evaluating co
llaborative filtering recommender systems. ACM Transactions on

 Information Systems (TOIS) 22 (1), 5­53.
Hevner, R., March, S. T., Park, J. & Ram, S. (2004). Design science in information

systems research. MIS Quarterly, 28(1), 75-105.
Huang, S., Wang, S., Liu, T., Ma, J., Chen, Z. & Veijalainen, J. (2015) Listwise

collaborative filtering.

52

Jin, J. & Chen, Q. (2012). A trust-based top-K recommender system using social
tagging network. Fuzzy Systems and Knowledge Discovery (FSKD), 2012
9th International Conference on, (1270-1274). IEEE.

Kantor, P. B., Rokach, L., Ricci, F. & Shapira, B. (2011). Recommender systems
handbook Springer.

Konstan, J. A. & Riedl, J. (2012). Recommender systems: From algorithms to
user experience. User Modeling and User-Adapted Interaction, 22(1-2),
101-123.

Koren, Y. (2008). Factorization meets the neighborhood: A multifaceted
collaborative filtering model. Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, (426-
434). ACM.

Liu, N. N. & Yang, Q. (2008). Eigenrank: A ranking-oriented approach to
collaborative filtering. Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
(83-90). ACM.

Mahmood, T. & Ricci, F. (2009). Improving recommender systems with
adaptive conversational strategies. Proceedings of the 20th ACM
Conference on Hypertext and Hypermedia, (73-82). ACM.

Melville, P., Mooney, R. J. & Nagarajan, R. (2002). Contentboosted collaborative
filtering for improved recommendations. Aaai/iaai, (187192).

Peffers, K., Tuunanen, T., Rothenberger, M. A. & Chatterjee, S. (2007). A design
science research methodology for information systems research. Journal of
Management Information Systems, 24(3), 4577.

Pennock, D. M., Horvitz, E., Lawrence, S. & Giles, C. L. (2000). Collaborative
filtering by personality diagnosis: A hybrid memory-and model-based
approach. Proceedings of the Sixteenth Conference on Uncertainty in
Artificial Intelligence, (473-480). Morgan Kaufmann Publishers Inc.

Sarwar, B., Karypis, G., Konstan, J. & Riedl, J. (2001). Item-based collaborative
filtering recommendation algorithms. Proceedings of the 10th
International Conference on World Wide Web, (285-295). ACM.

Schafer, J. B., Frankowski, D., Herlocker, J. & Sen, S. (2007). Collaborative
filtering recommender systems. The adaptive web (s. 291-324) Springer.

Su, X. & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering
techniques. Advances in Artificial Intelligence, 2009, 4.

Wang, S., Sun, J., Gao, B. J. & Ma, J. (2014). VSRank: A novel framework for
ranking-based collaborative filtering. ACM Transactions on Intelligent
Systems and Technology (TIST), 5(3), 51.

Weimer, M., Karatzoglou, A., Le, Q. V. & Smola, A. (2007). Maximum margin
matrix factorization for collaborative ranking. Advances in Neural
Information Processing Systems, , 18.

	1 INTRODUCTION
	2 RECOMMENDER SYSTEMS
	2.1 Background
	2.2 Memory-based Collaborative Filtering
	2.2.1 Pearson Correlation Coefficient
	2.2.2 Vector Space Model
	2.2.3 Ranking-based Collaborative Filtering
	2.2.4 Advantages and Drawbacks

	2.3 Model-based Collaborative Filtering
	2.3.1 Bayesian-Network Model
	2.3.2 Cluster models

	3 SELECTION OF COLLABORATIVE FILTERING ALGORITHMS
	3.1.1 Rating-oriented CF
	3.1.2 EigenRank
	3.1.3 VSRank
	3.1.4 ListCF

	4 METHODOLOGY
	4.1 Data collection and use
	4.1.1 EachMovie
	4.1.2 MovieLens
	4.1.3 Netflix

	4.2 Tool for the experiment
	4.3 Results measurement
	4.3.1 Normalized Discounted Cumulative Gain (NDCG)
	4.3.2 Mean Average Precision (MAP)

	5 RESULTS
	5.1 Algorithm Training and Similarity Calculation runtime
	5.2 Prediction Runtime
	5.3 Prediction accuracy comparison
	5.4 Summary of the results

	6 DISCUSSION
	6.1 Key findings
	6.2 Contribution
	6.3 Limitations and evaluation of the research
	6.4 Concluding summary

