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Single inclusive particle production cross sections in high energy hadron collisions at forward rapidity
are an important benchmark process for the Color Glass Condensate picture of small x QCD. Recent
calculations of this process have not led to a stable perturbative expansion for this quantity at high
transverse momenta. We consider the quark channel production cross section using the new rapidity
factorization procedure proposed by Iancu et al. We show that for fixed coupling one does indeed obtain a
physically meaningful cross section which is positive and reduces in a controlled way to previous leading
order calculations. We also consider a running coupling that depends on the transverse momentum of the
produced particle. This gives a stable result which, however, is not fully consistent with previous leading
order calculations that use a coordinate space running coupling.
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I. INTRODUCTION

To study the nonlinear gluon saturation regime one needs
to look at processes that involve a momentum fraction x in
the target as small as possible, while still having a large
enough transverse momentum to justify a weak coupling
treatment. At LHC energies a good process to achieve this
is particle production at forward rapidities. In the Color
Glass Condensate (CGC) picture this process can be
calculated using the “hybrid” formalism, where a quark
or a gluon, taken from the usual collinear parton distribu-
tion in the probe at large x, passes through the target color
field. It receives a kick from the intrinsic transverse
momentum of the target gluons, leading to the p⊥ spectrum
of the produced hadrons.
Recently much work has been done to calculate forward

particle production in the hybrid picture to next-to-leading
order (NLO) accuracy in the QCD coupling. Cross sections
for this process were calculated to NLO accuracy in
Refs. [1,2] (see also the earlier works [3–5]), where soft
and collinear divergences in the one-loop calculation were
factorized respectively into the Balitsky-Kovchegov (BK)
[6,7] evolution of the target and the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution of the probe
proton and the fragmentation functions. In the first numeri-
cal implementation [8] of what we denote as the “CXY”
factorization framework after the authors of [1,2] the NLO
corrections turned out to be large and render the total cross
section negative at large transverse momenta of the
produced particle, signaling a problem in the organization
of the perturbative series. Following this observation,
several interpretations of the origin of the problem have
been proposed [9–11].
We recently argued [12] that the origin of the problem lies

in the subtraction procedure where the soft divergence in the
NLO calculation is factorized into the BK evolution of the

target. Following this discussion, Iancu et al. [13] suggested
a new formulation of the NLO cross section in a way that
explicitly yields a positive cross section. The formulation is
based on the observation that in a certain limit which we
discuss in more detail below, the expression for the cross
section involves similar structures as an integral form of the
BK equation. If one takes care not to break this equivalence
by further approximations and chooses a Fourier-positive
initial condition for the BK equation, this guarantees the
positivity of the cross section. The resulting expression can
either be written as a “subtracted” cross section, or in a form
where no explicit subtraction is performed.
The purpose of this paper is to present a practical

numerical implementation of the manifestly positive formu-
lation for the cross section presented in [13]. We first briefly
review the expressions for the cross section in Sec. II. We
then in Sec. III explicitly show that this procedure works at
fixed coupling as anticipated. In Sec. IV we discuss the
problems associated with introducing a running coupling
into the expression. We implement the calculation using
a running coupling that depends on the transverse momen-
tum of the produced particle, which would be the natural
thing to do for a cross section. We show that since the BK
equation, and fits to deep inelastic scattering (DIS) data
using it, are usually implemented in coordinate space, this
introduces a mismatch between the manifestly positive
form of the cross section and a subtracted version where
the separation between LO and NLO contributions is
explicit. We then conclude in Sec. V with a brief outlook
for practical phenomenological applications of the formal-
ism. In Appendix we discuss an alternative coordinate
space formulation of the cross section, which does not
suffer from this mismatch between manifestly positive and
subtracted formulations, but results in unphysically large
values for the NLO corrections to the cross section.
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II. SINGLE INCLUSIVE PARTICLE
PRODUCTION AT NLO

Our starting point is the CXY formulas derived in
Refs. [1,2]. We concentrate here on the quark channel,
for which the leading order cross section is proportional to
the Fourier transform of the dipole operator

Sðk⊥Þ ¼ Sðk⊥;bÞ ¼
Z

d2re−ik·rSðrÞ; ð1Þ

Sðr ¼ x − yÞ ¼
�

1

Nc
TrVðxÞV†ðyÞ

�
; ð2Þ

where VðxÞ is a fundamental representation Wilson line in
the color field of the target. The NLO cross section involves
also adjoint representation Wilson lines from the gluon
interacting with the target color field. Using Fierz identities
and the mean field approximation, which replaces the
expectation value of products of dipole operators by
products of expectation values, also the NLO cross section
can be expressed in terms of Sðk⊥Þ. Since our goal is to
study the negativity problem and how it would be affected
by the proposal of Ref. [13], we leave out the fragmentation
functions which do not play any role here. Following the
notation in [12], the (unsubtracted) CXY quark multiplicity
can be written as

dNpA→qX

d2kdy
¼ xpqðxpÞ

S0ðk⊥Þ
ð2πÞ2 þ αs

2π2

Z
ξmax

xp

dξ
1þ ξ2

1 − ξ

xp
ξ
q

�
xp
ξ

��
CFIðk⊥; ξ; XðξÞÞ þ

Nc

2
J ðk⊥; ξ; XðξÞÞ

�

−
αs
2π2

Z
ξmax

0

dξ
1þ ξ2

1 − ξ
xpqðxpÞ

�
CFIvðk⊥; ξ; XðξÞÞ þ

Nc

2
J vðk⊥; ξ; XðξÞÞ

�
: ð3Þ

Here we have left ξmax, the upper limit for the ξ-
integrals, unspecified for now as we return to this
question shortly. The kinematical variables are defined
as xp ¼ k⊥ey=

ffiffiffi
s

p
, xg ¼ k⊥e−y=

ffiffiffi
s

p
and k⊥ ¼ jkj. The

most important one for our discussion here is the
momentum fraction ξ: the fragmenting quark carries a
fraction ξ of the incoming quark longitudinal momen-
tum. Thus the incoming quark has a momentum fraction
xp=ξ of the incoming proton, where xp is the probe
momentum fraction in the leading order kinematics. The
radiated gluon in the NLO terms carries a longitudinal
momentum fraction 1 − ξ, i.e. the limit ξ → 1 corre-
sponds to the soft gluon emission that must be resummed
into the BK evolution of the target. For the following

discussion it is important to note the interpretation of the
variable xg: it is easy to see that for producing a final
state quark with transverse momentum k⊥ at leading
order, xg is the fraction of target longitudinal momentum
P− needed to put this quark (with longitudinal momen-
tum xpPþ) on shell. Thus, in a leading order calculation
such as [14], with BK evolution starting from an initial
momentum fraction x0 ∼ 0.01, one would evolve the
target for ln x0=xg units in rapidity (here rapidity is
defined as the logarithm of the inverse of the target
momentum fraction).
The dependence on the Wilson line correlators in the

target comes through transverse momentum integrals that
can be expressed in terms of the dipole operator S,

Iðk⊥; ξ; XðξÞÞ ¼
Z

d2q
ð2πÞ2

	
k − q

ðk − qÞ2 −
k − ξq

ðk − ξqÞ2


2

Sðq⊥; XðξÞÞ; ð4Þ

J ðk⊥; ξ; XðξÞÞ ¼
Z

d2q
ð2πÞ2

2ðk − ξqÞ · ðk − qÞ
ðk − ξqÞ2ðk − qÞ2 Sðq⊥; XðξÞÞ

−
Z

d2q
ð2πÞ2

d2l
ð2πÞ2

2ðk − ξqÞ · ðk − lÞ
ðk − ξqÞ2ðk − lÞ2 Sðq⊥; XðξÞÞSðl⊥; XðξÞÞ; ð5Þ

Ivðk⊥; ξ; XðξÞÞ ¼
Z

d2q
ð2πÞ2

	
k − q

ðk − qÞ2 −
ξk − q

ðξk − qÞ2


2

Sðk⊥; XðξÞÞ; ð6Þ

J vðk⊥; ξ; XðξÞÞ ¼
	Z

d2q
ð2πÞ2

2ðξk − qÞ · ðk − qÞ
ðξk − qÞ2ðk − qÞ2 −

Z
d2q
ð2πÞ2

d2l
ð2πÞ2

2ðξk − qÞ · ðl − qÞ
ðξk − qÞ2ðl − qÞ2 Sðl⊥; XðξÞÞ



Sðk⊥; XðξÞÞ: ð7Þ
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At this stage we have not specified how the dipole
operators depend on the energy or rapidity, but have just
denoted this dependence by XðξÞ. This dependence is
indeed the crux of the argument in Ref. [13], which we
here reproduce in a slightly altered form. As emphasized
e.g. in [10,12], one achieves a more stable perturbative
expansion when this energy dependence is related to the
momentum fraction in the target, i.e. the k− scale in the
scattering. This distinction becomes important at large
transverse momenta for the produced particle [9–12].
However, the formulation of Ref. [13] allows one to get
a physically reasonable cross section even without impos-
ing a separate “kinematical constraint,”within just the usual
“Regge” kinematics, where all transverse momenta are
assumed to be of the same order. Thus we for now keep this
assumption, which allows us to relate the momentum
fraction in the target to the kinematics of the probe,
as XðξÞ ≈ xg=ð1 − ξÞ.
The CXY cross sections have been derived using the

eikonal approximation, which allows one to describe the
interaction with the target in terms of Wilson lines. This
approximation is only valid for sufficiently high energy
scattering, where now “high energy” should refer to the
whole quark-gluon state. This is usually reflected in a
restriction that the momentum fraction XðξÞ at which one
evaluates the dipole cross sections must be smaller than
some limiting value x0 ∼ 0.01. For high energy evolution
this corresponds to a nonperturbative initial condition for
the evolution of the target which is fit to experimental data.
With XðξÞ ¼ xg=ð1 − ξÞ this means that the ξ-integration
must be restricted to ξ < 1 − xg=x0 ≡ ξmax. This now
defines the upper limit of the integration that was left
unspecified in Eq. (3). Note that this restriction implies that
extrapolating beyond the physical region ξmax > xp to the
kinematical limit xg ¼ x0, the NLO corrections are explic-
itly set to approach zero. Calculating NLO corrections
involving larger target longitudinal momenta k− is strictly
speaking not possible in this formalism and would require
going beyond the eikonal approximation. We would argue
that setting these contributions to 0 is a more controlled
approximation than letting them evaluate to some arbitrary
value. This should be kept in mind when comparing these
calculations to experimental data: this restriction means that
when one approaches the kinematical limit xg → x0, the
phase space for NLO contributions in our calculation is cut
off by this constraint. In this limit the calculation could
eventually be matched onto collinear factorization, which
becomes more appropriate when xg is large, as done
in Ref. [15].

A. Nc-terms

In Ref. [12] it was shown that the negativity of the CXY
cross section at large transverse momentum is caused by the
NLO corrections proportional to Nc, which become very

large and negative while the NLO corrections proportional
to CF are positive. Therefore we first consider only the
leading order andNc-terms, as was done in Ref. [13]. These
contributions can be written as

dNLOþNc

d2kdy
¼ xpqðxpÞ

S0ðk⊥Þ
ð2πÞ2

þ αs

Z
1−xg=x0

0

dξ
1 − ξ

Kðk⊥; ξ; XðξÞÞ; ð8Þ

where K is defined as

Kðk⊥; ξ; XðξÞÞ ¼
Nc

ð2πÞ2 ð1þ ξ2Þ

×

	
θðξ − xpÞ

xp
ξ
q

�
xp
ξ

�
J ðk⊥; ξ; XðξÞÞ

− xpqðxpÞJ vðk⊥; ξ; XðξÞÞ


: ð9Þ

At this stage the dipole operator S0 is a “bare” one and does
not evolve with rapidity. Since Kðk⊥; ξ; XÞ approaches a
nonzero value for ξ → 1 at fixed X, the cross section
contains a large logarithmic integral in the high energy limit
xg → 0; this should be resummed using the BK equation.
The bare dipole S0 is then identified with the initial
condition of the BK evolution, formulated at a given initial
rapidity ln 1

x0
. We thus rewrite (8) as

dNLOþNc

d2kdy
¼ xpqðxpÞ

Sðk⊥; x0Þ
ð2πÞ2

þ αs

Z
1−xg=x0

0

dξ
1 − ξ

Kðk⊥; ξ; XðξÞÞ

≡ dNIC

d2kdy
þ dNNc;unsub

d2kdy
; ð10Þ

where “IC” stands for the multiplicity at the initial rapidity
scale x0. As long as the initial dipole amplitude is Fourier
positive (which is a nontrivial requirement [16] that we
however assume to be satisfied here, as it is for the
parametrizations that we use), the multiplicity (10) is
positive up to large transverse momenta. Now, since we
are taking XðξÞ ¼ xg=ð1 − ξÞ as is appropriate in the Regge
kinematics, we have d lnXðξÞ ¼ −d lnð1 − ξÞ. This enables
us to write an integral version of the BK equation as

Sðk⊥; xgÞ ¼ Sðk⊥; x0Þ

þ 2αsNc

Z
1−xg=x0

0

dξ
1 − ξ

½J ðk⊥; 1; XðξÞÞ

− J vðk⊥; 1; XðξÞÞ�; ð11Þ

and to write, assuming that xp < 1 − xg=x0,
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dNLOþNc

d2kdy
¼ xpqðxpÞ

Sðk⊥; xgÞ
ð2πÞ2

þ αs

Z
1−xg=x0

0

dξ
1 − ξ

½Kðk⊥; ξ; XðξÞÞ

−Kðk⊥; 1; XðξÞÞ�

≡ dNLO

d2kdy
þ dNNc;sub

d2kdy
: ð12Þ

Since this equation is equivalent to (10); it is positive
even up to large transverse momenta. Equation (12) is
written explicitly as a sum of a leading order contri-
bution (with a BK-evolved dipole) and a contribution
proportional to αs that has no large energy logarithm
because Kðk⊥; ξ; XðξÞÞ −Kðk⊥; 1; XðξÞÞ vanishes for
ξ → 1. Thus it can be naturally interpreted as the
sum of a LO contribution and a NLO correction. In
the version (10), on the other hand, the way to reduce
the NLO expression to the LO limit is less transparent.
Instead of dropping out a term explicitly proportional
to αs, the LO limit of (10) is taken by replacing
Kðk⊥; ξ; XðξÞÞ with Kðk⊥; 1; XðξÞÞ, i.e. setting ξ ¼ 1
inside the kernel, but without changing the rapidity
scale of the dipole correlators.
To go from (10) or (12) to the CXY expressions

one starts by noting that, because of the subtraction
Kðk⊥; ξ; XðξÞÞ −Kðk⊥; 1; XðξÞÞ, the integral (12) is domi-
nated by the lower limit ξ ≪ 1. Thus one could argue that
the rapidity of the dipole amplitude can be replaced by its
value at ξ¼0, i.e. Sðk⊥;XðξÞÞ by Sðk⊥; Xð0ÞÞ ¼ Sðk⊥; xgÞ
and similarly for Sðq⊥; XðξÞÞ and Sðl⊥; XðξÞÞ. This
approximation

dNLOþNc

d2kdy
¼ xpqðxpÞ

Sðk⊥; xgÞ
ð2πÞ2 þ αs

Z
1−xg=x0

0

dξ
1 − ξ

× ½Kðk⊥; ξ; xgÞ −Kðk⊥; 1; xgÞ� ð13Þ

is perfectly justified in a weak coupling sense. However,
as pointed out in [12,13], it makes the cross section
negative, because at large transverse momentum the sub-
tracted NLO term Kðk⊥; ξ; xgÞ −Kðk⊥; 1; xgÞ is negative
and can dominate over the leading order term. Thus the
necessary ingredient in keeping the result physically mean-
ingful turns out to be to not just evaluate the dipole
amplitude at the rapidity scale xg of the leading order
cross section, but to keep the dependence of XðξÞ on the
integration variable.
In addition to changing the rapidity argument of the

dipole operators, another approximation is needed to
recover the CXY subtraction result, namely to replace
1 − xg=x0 in the upper limit of the integration over ξ in
Eq. (13) by 1. Now that the rapidity argument XðξÞ in
the dipole operators has been replaced by xg, changing

the integration limit is formally possible without extend-
ing the dipole parametrization to the large x region
where the eikonal approximation is not valid. But this
would make the problem disappear only superficially:
any contribution from ξ > 1 − xg=x0 would come from
the region where the derivation of the original expres-
sion (3) is dubious because of the large invariant mass
of the produced quark-gluon system. The question of
the proper value of the upper limit in ξ, or of the
correct dependence XðξÞ, for large transverse momenta
of the produced particle is the “kinematical con-
straint” or “Ioffe time” issue that has been extensively
discussed by several authors [10–12]. We however do
not attempt to take these corrections into account here,
but stay within the Regge kinematical approximation
XðξÞ ¼ xg=ð1 − ξÞ.
In the rest of this paper we refer to the explicitly positive

formulation (10) as the “unsubtracted” and its subtracted
version (12) as the subtracted formulation.

B. CF-terms

Let us now turn to the CF-terms. While they do not
pose similar manifest problems as the Nc-terms, one
nevertheless has to make certain choices concerning the
rapidity dependence of the dipole correlators when evalu-
ating the cross section. Writing explicitly the integration
limits and subtracting the 1=ε poles corresponding to the
DGLAP evolution of the probe quark distributions and
fragmentation functions (which are not written explicitly
here), the CF-terms become

dNCF

d2kdy
≡ αs

2π2
CF

	Z
1−xg=x0

xp

dξ
1þ ξ2

1 − ξ

×
xp
ξ
q
�
xp
ξ

�
I finiteðk⊥; ξ; XðξÞÞ

−
Z

1−xg=x0

0

dξ
1þ ξ2

1 − ξ
xpqðxpÞI finite

v ðk⊥; ξ; XðξÞÞ


;

ð14Þ

where I finite and I finite
v , obtained after subtracting the

collinear divergence from I and Iv, read

I finiteðk⊥; ξ; XðξÞÞ ¼
Z

d2r
4π

Sðr; XðξÞÞ ln c20
r2μ2

×

�
e−ik·r þ 1

ξ2
e−i

k
ξ·r
�

− 2

Z
d2q
ð2πÞ2

ðk − ξqÞ · ðk − qÞ
ðk − ξqÞ2ðk − qÞ2

× Sðq⊥; XðξÞÞ; ð15Þ
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I finite
v ðk⊥; ξ; XðξÞÞ ¼

Sðk⊥; XðξÞÞ
2π

�
ln
k2⊥
μ2

þ lnð1 − ξÞ2
�
:

ð16Þ

To arrive at the expressions (14)–(16) we have adopted
a specific choice for the previously mentioned ambiguity:
namely the rapidity scale at which the dipole operators
are evaluated in the CF-terms. To be more precise: to
get a finite result for the CF-terms one must subtract
from the cross section collinear infrared divergences
that manifest themselves as 1=ε poles in the cross
section. Thus one is subtracting terms that are proportional
to the bare dipole operator S0 from the NLO cross
section (3) and neglecting a collinearly divergent
remainder ∼αsCFð1=εÞðSðXðξÞÞ − S0Þ. Such terms are
formally of next-to-next-to-leading order, since the
difference ðSðXðξÞÞ − Sðx0ÞÞ is proportional to αs. This
difference can, however, be numerically large, indeed the
large difference between SðXðξÞÞ, SðxgÞ and S0 was
essential for understanding the negativity of the Nc-terms.
In the CXY approximation these terms turn into
∼αsCFð1=εÞðSðxgÞ − S0Þ, which can similarly be neglected
at this level of accuracy. For the Nc-terms the choice
between XðξÞ and xg was dictated by the desire to maintain
the relation between the integral form of the BK equation
and the subtraction. For the CF-terms there is no such
requirement. Our choice here is to keep the same energy
dependence XðξÞ, and the same kinematical limit ξ < 1 −
xg=x0 for the CF-terms as for the Nc-terms.
Because I and Iv vanish at ξ ¼ 1, replacing the

upper limit ξ < 1 − xg=x0 by ξ < 1 would be a rather
good approximation here as long as we are safely inside
the domain of validity of the eikonal approximation
xg ≪ x0. Evaluating the dipoles at different rapidity
arguments XðξÞ vs xg makes a larger difference. How-
ever also here the difference becomes smaller at smaller
xg, because the integral over ξ is increasingly dominated
by smaller ξ where XðξÞ ≈ xg. The extremely forward
kinematical limit xp → 1 is an exception to this argu-
ment, because the vanishing of the collinear quark
distribution at xp=ξ ¼ 1 suppresses the small ξ contri-
bution to the cross section, making the result more
sensitive to the difference between XðξÞ and xg. We
demonstrate the effect of these different choices for
the CF-terms in a particular kinematical configuration
in the next section.

III. NUMERICAL RESULTS: FIXED COUPLING

We now turn to numerical results for the quark
production cross section. In practice we consider up
quark production and use the MSTW2008 NLO para-
metrization [17] for the quark distribution qðxÞ in the
projectile. This distribution is evaluated at the transverse

scale Q ¼ k⊥. The center of mass energy of the collision
and the rapidity of the produced quark are chosen asffiffiffi
s

p ¼ 500 GeV and y ¼ 3.2 respectively. In these kin-
ematics, the limit xp ¼ 1 − xg=x0 is reached when k⊥ ∼
17.5 GeV for x0 ¼ 0.01. As explained previously, we do
not consider our calculation to be reliable for transverse
momenta larger than this value so we do not show
results above this limit.
We first consider a fixed value of the strong coupling,

αs ¼ 0.2. The rapidity dependence of the dipole operator of
the target is obtained by solving numerically the LO BK
equation with αs ¼ 0.2 and a McLerran-Venugopalan
(MV) initial condition [18],

Sðr; x0Þ ¼ exp

	
−
r2Q2

s;0

4
ln

�
1

jrjΛQCD
þ e

�

; ð17Þ

with Q2
s;0¼0.2GeV2 and ΛQCD ¼ 0.241 GeV. Combining

Eqs. (10) and (14), the NLO multiplicity reads

dNNLO

d2kdy
¼ dNIC

d2kdy
þ dNNc;unsub

d2kdy
þ dNCF

d2kdy
: ð18Þ

As discussed above, recovering the LO BK result from
this formulation is not a matter of dropping terms that
are explicitly proportional to αs. Instead this is done by
setting ξ ¼ 1 everywhere in the integrand, except in the
dξ=ð1 − ξÞ term that gives the leading logarithmic con-
tribution, and in XðξÞ which is needed to recover the BK
equation in integral form. The separation between LO
and NLO terms becomes more explicit if we use the
equivalence between (10) and (12) to rewrite (18) as

dNNLO

d2kdy
¼ dNLO

d2kdy
þ dNNc;sub

d2kdy
þ dNCF

d2kdy
: ð19Þ

This last expression is very similar to the subtracted
CXY cross section, except for the rapidity scale at
which the dipole operators in the NLO corrections are
evaluated and the upper limit on the ξ-integrals. We see
in the following that these changes lead to very different
numerical results at large k⊥ compared to the CXY
expressions.
The fact that Eqs. (10) and (12) are equivalent is

demonstrated explicitly in Fig. 1, where we show the
LO+Nc result obtained with these two equations. We
observe that the results obtained with (10) are more stable
numerically at large transverse momentum than when using
(12). This was to be expected since (12) involves a
cancellation between rather large contributions. One can
also note that the NLO corrections proportional to Nc are
rather large and negative at large k⊥ but the LOþ Nc
multiplicity is positive at all transverse momenta. This is in
contrast with the CXY result, also shown on this figure,
which becomes negative around k⊥ ∼ 6 GeV.
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Let us now consider the LOþ CF result,

dNLOþCF

d2kdy
¼ dNLO

d2kdy
þ dNCF

d2kdy
: ð20Þ

As already mentioned, the rapidity scale at which the
dipole correlators are evaluated in the CF-terms is left
unspecified by the proposal [13], and the difference
between evaluating these correlators at XðξÞ or Xð0Þ ¼
xg is formally a higher order effect. In Fig. 2 we show how
the LOþ CF result is affected by these different choices.
Note that at similar rapidities and transverse momenta at
LHC energies xg (and xp) would be smaller, and the
difference between these choices smaller. In the following
we choose to evaluate the dipole correlators of theCF-terms
at XðξÞ since it would be quite unnatural to use different
rapidity scales in the CF and Nc-terms.

Now that we have specified how to evaluate both the Nc
andCF-terms, we can sum these contributions to get the full
NLO result. Since both the LOþ Nc result and the NLOCF
corrections are positive at all k⊥, as shown in Figs. 1 and 2
respectively, the NLO multiplicity is positive as well. This
is shown in Fig. 3, where one can observe that the net
result of adding the Nc and CF NLO corrections makes
the cross section significantly smaller at high k⊥ than the
leading order result. For comparison we also show the
corresponding CXY result which becomes negative above
k⊥ ∼ 10 GeV.

IV. NUMERICALRESULTS: RUNNINGCOUPLING

A realistic QCD calculation must include the running
of the coupling constant as a function of the scale. In the
BK evolution equation this is typically done using the

FIG. 2. The LO and CF parts of the quark production multiplicity calculated with a fixed coupling for
ffiffiffi
s

p ¼ 500 GeV and at rapidity
y ¼ 3.2, showing the NLO result (20) evaluated either with XðξÞ ¼ xg or XðξÞ ¼ xg=ð1 − ξÞ and the CXYapproximation which replaces
the upper limit of the ξ integration by 1 and evaluates the dipole correlators at XðξÞ ¼ xg. On the left is the multiplicity and on the right is
the ratio to the LO result.

FIG. 1. The LO and Nc parts of the quark production multiplicity calculated with a fixed coupling for
ffiffiffi
s

p ¼ 500 GeV and at rapidity
y ¼ 3.2, showing the NLO result using the unsubtracted (10) and subtracted (12) expressions and the CXY approximation which
replaces the upper limit of the ξ integration by 1 and evaluates the dipole correlators at XðξÞ ¼ xg. On the left is the multiplicity and on
the right is the ratio to the LO result.
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“Balitsky” prescription [19], as is the case for the dipole
operators from [14] that we are using here. Other choices
are also possible (see e.g. [20–22]), but the difference
between these is not essential for our discussion here. What
is important is that the BK equation is normally solved in
coordinate space, and therefore also the running coupling
prescription involves a kernel with a coupling constant that
depends on coordinate differences. While momentum space
solutions are also possible, there are several reasons why
the coordinate space formulation is preferable. First, the
initial condition for the evolution needs to be extracted
from a fit to experimental data, typically from DIS, where
the cross section is most naturally expressed in terms of the
coordinate space dipole. The fitting procedure is thus most
naturally done in coordinate space. Secondly, a fundamen-
tal property of the BK equation is gluon saturation, which is
guaranteed by the coordinate space dipole amplitude SðrÞ
taking values between 0 and 1. In a coordinate space
calculation this unitarity requirement is explicitly satisfied
also for running coupling. On the other hand, momentum
space running coupling versions of the equation, at least
known ones, are equivalent to a coordinate space version
only parametrically, but not exactly. They do not therefore
automatically enforce unitarity. Because of these reasons
we also here take the stand that the BK evolution that one
would prefer to use (in our case that of [14]) in conjunction
with the cross section calculation is a coordinate space
running coupling one.
Parametrically the scale of the coupling constant is set in

this case by the transverse momentum of the produced
particle. The procedure suggested in Ref. [13] is to simply
replace the explicit coupling constant αs appearing in
Eqs. (10), (12) and (14) by αsðk2⊥Þ. However, doing
this while using dipole operators S whose energy depend-
ence results from a BK equation with coordinate space
running coupling spoils the exact equivalence between the

manifestly positive (18) and subtracted (19) expressions
for the cross section. This mismatch can be studied by
comparing the LO limits of Eqs. (10) and (12). For this
we use dipole correlators obtained by solving numerically
the LO BK equation with the Balitsky prescription for the
running coupling corrections [19]. The initial condition is
the MVe parametrization introduced in [14],

Sðr; x0Þ ¼ exp

	
−
r2Q2

s;0

4
ln

�
1

jrjΛQCD
þ ec · e

�

; ð21Þ

and the running coupling in coordinate space is taken as

αsðr2Þ ¼
4π

β0 ln
�

4C2

r2Λ2
QCD

� ; ð22Þ

with β0 ¼ ð11Nc − 2nfÞ=3 and ΛQCD ¼ 0.241 GeV. At
large jrj the coupling is frozen at the value 0.7. The values
of the parameters in these expressions were obtained in [14]
by a fit to HERA DIS data [23] asQ2

s;0 ¼ 0.06 GeV2, C2 ¼
7.2 and ec ¼ 18.9. This parametrization describes a target
proton and not a nucleus, but this does not affect our
discussion. More importantly, the MVe parametrization has
a positive Fourier transform.
In Fig. 4 we show the ratio between the LO limits of

Eqs. (10) (involving a momentum space running coupling)
and (12) (BK with Balitsky coordinate space αs). Here we
use the expression

αsðk2⊥Þ ¼
4π

β0 ln
�
C2
momk2⊥
Λ2
QCD

� ð23Þ

for the momentum space running coupling that appears
explicitly in the equations for the cross section, using

FIG. 3. The complete NLO quark channel multiplicity including both the Nc and CF corrections calculated with a fixed coupling forffiffiffi
s

p ¼ 500 GeV and at rapidity y ¼ 3.2, showing the NLO result using the unsubtracted (18) and subtracted (19) expressions and the
CXYapproximation which replaces the upper limit of the ξ integration by 1 and evaluates the dipole correlators at XðξÞ ¼ xg. On the left
is the multiplicity and on the right is the ratio to the LO result.
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different values of the parameter C2
mom. From Fig. 4 we see

that no value for C2
mom can give a good agreement between

the two results for all k⊥. In the following we fix C2
mom ¼

103 for which the disagreement is smaller than 30% at both
small and large k⊥. This disagreement leads to significantly
different results when evaluating the NLO cross section
using either Eq. (18) or (19), as shown in Fig. 5. One
immediately notices that the equivalence of the two
equations is significantly broken, and the subtracted cross
section (19) again becomes negative, albeit at a higher scale
than in the CXY prescription. This demonstrates the point
emphasized in [13] that the subtraction procedure involves
a difference of two terms that are numerically, although not
parametrically, large and easily becomes unstable with any
further approximations.
To solve this problem, one could, in principle, rewrite

the expression for the cross section in coordinate space.

This would allow us to use a coordinate space running
coupling matching the one used when solving the BK
equation. However, how to implement the running coupling
in a way which is consistent with the prescription [19] is not
unique, and a rather straightforward implementation leads
to troublesome results (see the discussion in Appendix).
Therefore, we consider for now that the most physical
prescription to use running coupling in this process is the
unsubtracted result shown in Fig. 5.

V. OUTLOOK

In conclusion, we have demonstrated that it is possible to
calculate single inclusive particle production in the hybrid
formalism to NLO accuracy in a controlled way. While this
is a promising start, many further improvements need to be
made before a full phenomenological analysis and a
comparison to experimental data can be made.
First it is necessary to also include the other channels in

the calculation. In principle, this should be straightforward.
In particular there is no reason why the same rapidity
factorization procedure as here could not also be used for
the g → g channel, which exhibits a similar large energy
logarithm that needs to be resummed using the BK
equation. One also needs to add fragmentation functions
to the calculation. A successful phenomenology would
require better control of these also, since so far there are
large differences between different sets, in particular, in
LHC kinematics where the gluon channel starts to domi-
nate [24].
For a fully consistent NLO calculation one also needs

to use a NLO version of the BK equation [25–27] or at
least one including the resummed double and single
transverse momentum logarithms [22,28] that can be made
to include most of the NLO effects [27]. Using these
requires the corresponding additional term to be added to

FIG. 5. The complete NLO quark channel multiplicity including both the Nc and CF corrections calculated with a momentum running
coupling (23) with C2

mom ¼ 103 for
ffiffiffi
s

p ¼ 500 GeV and at rapidity y ¼ 3.2, showing the NLO result using the unsubtracted (18) and
subtracted (19) expressions and the CXYapproximation which replaces the upper limit of the ξ integration by 1 and evaluates the dipole
correlators at XðξÞ ¼ xg. On the left is the multiplicity and on the right is the ratio to the LO result.

FIG. 4. Ratio of the LO limits of Eq. (10), involving a
momentum space running coupling (23), and Eq. (12) for

ffiffiffi
s

p ¼
500 GeV and at rapidity y ¼ 3.2, using different values for the
parameter C2

mom.
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the calculation of the single inclusive cross section. One
also needs to obtain the initial condition for the BK
equation from a fit to DIS data in a NLO calculation
[29–33]. Also the issue of momentum vs coordinate space
running coupling merits studying further. A better consis-
tency between calculations of DIS and particle production
cross sections requires a consistent running coupling
scheme between the two.
The NLO corrections almost inevitably decrease the

cross section from the leading order calculation. This is
essentially due to the fact that, as emphasized in [12,15], at
large k⊥ the Nc part of the unsubtracted NLO corrections
behaves like ∼ξ=k4⊥. The LO calculation only uses this
gluon emission in the soft limit ξ ¼ 1 to construct the BK
evolution equation, overestimating the result in exact
kinematics with arbitrary ξ. Considering that the LO
calculations such as [14] typically require “K-factors”
greater than unity to make contact with the data, this might
sound problematic. Here, however, it is important to keep in
mind that also the NLO corrections to DIS cross sections
are presumably negative. Thus a NLO fit to DIS data could
be expected to increase the normalization of the dipole
amplitude compared to the current LO ones. An accurate
assessment of the full phenomenological effect of the NLO
corrections is impossible without a simultaneous calcula-
tion of DIS and forward pA particle production cross
sections.
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APPENDIX: RUNNING COUPLING IN
COORDINATE SPACE

The equivalence between the unsubtracted (18) and
subtracted (19) expressions for the NLO multiplicity holds
only if the coupling αs used to evaluate these expressions is
the same as the one used when solving the Balitsky-
Kovchegov equation to obtain the rapidity dependence of
the dipole correlators. In particular, as shown in Sec. IV,
this equivalence is broken if one wants to use a momentum
space running coupling when evaluating the multiplicity
while the prescription for the coupling used when solving
the BK equation is formulated in coordinate space. In
principle, this problem could be solved by rewriting the
expression for the multiplicity in coordinate space. A
straightforward calculation shows that we can write the
needed integrals I finite, I finite

v , J and J v as

I finiteðk⊥; ξ; XðξÞÞ ¼
Z

d2r

	
Sðr; XðξÞÞ

4π
ln

c20
r2μ2

�
e−ik·r þ 1

ξ2
e−i

k
ξ·r
�
− 2e−ik·r

Z
d2x
ð2πÞ2

x · ðxþ rÞ
x2ðxþ rÞ2 Sðξr − ð1 − ξÞx; XðξÞÞ



;

ðA1Þ

I finite
v ðk⊥; ξ; XðξÞÞ ¼

Z
d2re−ik·r

Sðr; XðξÞÞ
2π

�
ln
k2⊥
μ2

þ lnð1 − ξÞ2
�
; ðA2Þ

J ðk⊥; ξ; XðξÞÞ ¼
Z

d2re−ik·r ~J ðr; ξ; XðξÞÞ

¼
Z

d2re−ik·r
Z

d2x
ð2πÞ2

2x · ðxþ rÞ
x2ðxþ rÞ2 ½Sðrþ ð1 − ξÞx; XðξÞÞ − Sð−ξx; XðξÞÞSðrþ x; XðξÞÞ�; ðA3Þ

J vðk⊥; ξ; XðξÞÞ ¼
Z

d2re−ik·r ~J vðr; ξ; XðξÞÞ

¼
Z

d2re−ik·r
Z

d2x
ð2πÞ2

2

x2
½Sðr − ð1 − ξÞx; XðξÞÞ − Sð−x; XðξÞÞSðrþ ξx; XðξÞÞ�: ðA4Þ

With these coordinate space expressions it is possible to
move the coupling inside the integrals and replace the
kernels by an expression that (a) reduces to the same
expressions for a fixed coupling and (b) reduces to a desired

coordinate space running coupling BK kernel in the limit
ξ ¼ 1. These two requirements naturally do not uniquely
determine the expression at other values of ξ. In the notations
introduced above the BK equation can be written as
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∂YSðr; XÞ ¼ 2αsNc½ ~J ðr; 1; XÞ − ~J vðr; 1; XÞ� ¼ 2αsNc

Z
d2x
ð2πÞ2

r2

x2ðxþ rÞ2 ½Sð−x; XÞSðrþ x; XÞ − Sðr; XÞ�; ðA5Þ

at the rapidity Y ¼ ln 1
X. The Balitsky prescription [19] for the running coupling consists in making the replacement

αs → αsðr2Þ and in a modification of the kernel, leading to

∂YSðr; XÞ ¼ 2αsðr2ÞNc

Z
d2x
ð2πÞ2 ½Sð−x; XÞSðrþ x; XÞ − Sðr; XÞ�

	
r2

x2ðxþ rÞ2 þ
1

x2

�
αsðx2Þ

αsððxþ rÞ2Þ − 1

�

þ 1

ðxþ rÞ2
�
αsððxþ rÞ2Þ

αsðx2Þ − 1

�

: ðA6Þ

Therefore we find that a rather straightforward way to implement this prescription for arbitrary ξ is to replace ~J v with

~J rc
v ðr; ξ; XÞ ¼

Z
d2x
ð2πÞ2

2

x2

αsðx2Þ
αsððξxþ rÞ2Þ ½Sðr − ð1 − ξÞx; XÞ − Sð−x; XÞSðrþ ξx; XÞ�; ðA7Þ

as well as to move the coupling αs appearing in Eqs. (10),
(12) and (14) inside the r-integrals (A1)–(A4), then
making the replacement αs → αsðr2Þ. It is easy to check
that the two conditions (a) and (b) mentioned previously
are satisfied with this choice, which however is not unique.
The numerical implementation of the unsubtracted (18)
and subtracted (19) expressions for the NLO multiplicity
using this coordinate space formulation is shown in Fig. 6.
This figure demonstrates that, contrary to the results
obtained with a momentum space running coupling shown
in Fig. 5, the unsubtracted and subtracted results are the
same, meaning that our modification of the Nc-terms

matches the Balitsky prescription at ξ ¼ 1. However, these
results are problematic since the behavior of the NLO
multiplicity is totally different from the results obtained at
fixed coupling or with a momentum space running
coupling, with a NLO result orders of magnitude larger
than the LO one. This issue may be related to the fact that
our implementation of the coordinate space running
coupling, while quite straightforward, is not unique and
other choices could give different results. How to
consistently generalize the Balitsky prescription to ξ ≠ 1
is a nontrivial issue that goes beyond the scope of
this work.

FIG. 6. The complete NLO quark channel multiplicity including both the Nc and CF corrections calculated with a coordinate space
running coupling (22) for

ffiffiffi
s

p ¼ 500 GeV and at rapidity y ¼ 3.2, showing the NLO result using the unsubtracted (18) and subtracted
(19) expressions as well as the unsubtracted result obtained with a momentum space running coupling (23). On the left is the multiplicity
and on the right is the ratio to the LO result.
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