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Abstract The invariant differential cross sections for inclu-
sive π0 and η mesons at midrapidity were measured in
pp collisions at

√
s = 2.76 TeV for transverse momenta

0.4 < pT < 40 GeV/c and 0.6 < pT < 20 GeV/c, respec-
tively, using the ALICE detector. This large range in pT

was achieved by combining various analysis techniques and
different triggers involving the electromagnetic calorime-
ter (EMCal). In particular, a new single-cluster, shower-shape
based method was developed for the identification of high-
pT neutral pions, which exploits that the showers originat-
ing from their decay photons overlap in the EMCal. Above
4 GeV/c, the measured cross sections are found to exhibit a
similar power-law behavior with an exponent of about 6.3.
Next-to-leading-order perturbative QCD calculations differ
from the measured cross sections by about 30% for the π0,
and between 30–50% for the η meson, while generator-level
simulations with PYTHIA 8.2 describe the data to better than
10–30%, except at pT < 1 GeV/c. The new data can there-
fore be used to further improve the theoretical description of
π0 and η meson production.

1 Introduction

Measurements of identified hadron spectra in proton–proton
(pp) collisions are well suited to constrain predictions from
Quantum Chromodynamics (QCD) [1]. Such predictions
are typically calculated in the pertubative approximation
of QCD (pQCD) based on the factorization of the elemen-
tary short-range scattering processes (such as quark–quark,
quark–gluon and gluon–gluon scatterings) involving large
momentum transfer (Q2) and long-range universal proper-
ties of QCD that need to be experimentally constrained. The
universal properties are typically modeled by parton distribu-
tion functions (PDFs), which describe the kinematic distribu-
tions of quarks and gluons within the proton in the collinear
approximation, and fragmentation functions (FFs), which
describe the probability for a quark or gluon to fragment

� e-mail: alice-publications@cern.ch

into hadrons of a certain type. The cross section for the pro-
duction of a given hadron of type H can be written as a sum
over parton types

E
d3σH

d �p =
∑

a,b,c

fa(x1, Q
2) ⊗ fb(x2, Q

2)

⊗DH
c (zc, Q

2) ⊗ dσ̂ab→cX (Q2, x1, x2), (1)

where fi (x) denotes the proton PDF of parton i carrying a
fraction x of the proton’s longitudinal momentum, DH

i (zi )
the FF of parton i into hadron H carrying a fraction zi of
the parton’s momentum, and dσ̂i j→kX the inclusive short-
distance scattering cross section of partons i and j into k (see
e.g. [2]).

Measurements of hadron production provide constraints
on the PDFs and FFs, which are crucial for pQCD predictions,
and at LHC energies probe rather low values of x ∼ 0.001
and z ∼ 0.1. The neutral pion (π0) is of special interest
because as the lightest hadron it is abundantly produced, and
at LHC collision energies below a transverse momentum (pT)
of 20 GeV/c dominantly originates from gluon fragmenta-
tion. While the collision energy (

√
s) dependence of π0 cross

sections has been useful for guiding the parametrization of
the FFs [3], experimental data for neutral pions [4,5] at the
LHC are not available above 20 GeV/c, where quark frag-
mentation starts to play a role. The new π0 data presented in
this paper extend our previous measurement [5] in pp colli-
sions at

√
s = 2.76 TeV to pT values of 40 GeV/c allowing

one to investigate the pT dependence of the π0 cross sec-
tion at high transverse momentum. In addition, we present
the cross section of the η meson, which due to its strange
quark content provides access to the study of possible differ-
ences of fragmentation functions with and without strange
quarks [6]. Furthermore, the η meson constitutes the second
most important source of decay photons and electrons after
the π0. Hence, π0 and η meson spectra over a large pT range
are needed for a precise characterization of the decay pho-
ton (electron) background for direct photon (semileptonic
open charm and beauty) measurements.
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The new measurement of the π0 cross section is a result
of five analyses using data from various ALICE detector
systems and different identification techniques. The decay
photons are either measured directly in the Electromagnetic
Calorimeter (EMCal), the Photon Spectrometer (PHOS) or
via the photon conversion method (PCM). In the PCM mea-
surement, the photons are reconstructed via their conversions
into e+e− pairs within the detector material, where the e+e−
pairs are reconstructed with the charged-particle tracking sys-
tems. The π0 is reconstructed statistically using the invariant
mass technique. At high pT, where the decay photons are too
close together to be resolved individually, the π0 can still be
measured via the characteristic shape of their energy depo-
sition in the EMCal. We combine statistically independent
analyses where (1) both photons are individually resolved
in the EMCal (EMC), (2) one photon is identified in the
EMCal and one is reconstructed via its conversion to e+e−
(PCM–EMC), and (3) the photon pair’s energy is merged in
the EMCal (mEMC). Finally, the previously published mea-
surements based on methods where both photons are recon-
structed with (4) PHOS or (5) PCM are included as well [5].
The addition of the EMCal based measurements extends the
pT reach from 12 to 40 GeV/c, the highest pT for identified
hadrons achieved so far. The η meson cross section that was
previously not available at

√
s = 2.76 TeV is measured in the

range from 0.6 to 20 GeV/c using the PCM, PCM-EMC and
EMC methods. Consequently, the η/π0 ratio is measured in
the same pT range.

The article is organized as follows: Sect. 2 briefly
describes the experimental setup. Section 3 describes the data
samples and event selection. Section 4 describes the neutral
meson reconstruction techniques and corresponding correc-
tions for the cross section measurements. Section 5 discusses
the systematic uncertainties of the various measurements.
Section 6 presents the data and comparison with calculations
and Sect. 7 provides a summary.

2 ALICE detector

A detailed description of the ALICE detector systems and
their performance can be found in Refs. [7,8]. The new
measurements primarily use the Electromagnetic Calorime-
ter (EMCal), the Inner Tracking System (ITS), and the Time
Projection Chamber (TPC) at mid-rapidity, which are posi-
tioned within a 0.5 T solenoidal magnetic field. Two forward
scintillator arrays (V0A and V0C) subtending a pseudora-
pidity (η) range of 2.8 < η < 5.1 and −3.7 < η < −1.7,
respectively, provided the minimum bias trigger, which will
be further discussed in the next section.

The ITS [7] consists of two layers of Silicon Pixel Detec-
tors (SPD) positioned at a radial distance of 3.9 and 7.6 cm,
two layers of Silicon Drift Detectors (SDD) at 15.0 and

23.9 cm, and two layers of Silicon Strip Detectors (SSD)
at 38.0 and 43.0 cm from the beamline. The two SPD lay-
ers cover a pseudorapidity range of |η| < 2 and |η| < 1.4,
respectively. The SDD and the SSD subtend |η| < 0.9 and
|η| < 1.0, respectively. The primary vertex can be recon-
structed with a precision of σz(xy) = A/

√
(dNch/dη)β ⊕ B,

where A ≈ 600 (300) µm, for the longitudinal (z) and trans-
verse (xy) directions, respectively, B ≈ 40 µm and β ≈ 1.4.

The TPC [9] is a large (90 m3) cylindrical drift detector
filled with a Ne/CO2 gas mixture. It covers a pseudorapidity
range of |η| < 0.9 over the full azimuthal angle for the maxi-
mum track length of 159 reconstructed space points. The ITS
and the TPC were aligned with respect to each other to a pre-
cision better than 100µm using tracks from cosmic rays and
proton–proton collisions [10]. The combined information of
the ITS and TPC allows one to determine the momenta of
charged particles in the range of 0.05–100 GeV/c with a reso-
lution between 1% at low pT and 10% at high pT. In addition,
the TPC provides particle identification via the measurement
of the specific energy loss (dE /dx) with a resolution of ≈5%.
The tracking detectors are complemented by the Transition
Radiation Detector (TRD) and a large time-of-flight (TOF)
detector. These detectors were used to estimate the system-
atic uncertainty resulting from the non-perfect knowledge of
the material in front of the EMCal.

The EMCal [11] is a layered lead-scintillator sampling
calorimeter with wavelength shifting fibers for light col-
lection. The overall EMCal covers 107◦ in azimuth and
−0.7 ≤ η ≤ 0.7 in pseudorapidity. The detector con-
sists of 12,288 cells (also called towers) with a size of
�η × �ϕ = 0.0143 × 0.0143 corresponding to about twice
the effective Molière radius; the cells are read out individ-
ually. With a depth of 24.6 cm, or ≈20 radiation lengths,
2 × 2 cells comprise a physical module. The 3072 modules
are arranged in 10 full-sized and 2 one-third-sized super-
modules, consisting of 12 × 24 and 4 × 24 modules, respec-
tively, of which only the full-sized modules, corresponding
to an azimuthal coverage of 100◦, were readout for the data
recorded in 2011–2013.1 The modules are installed with a
radial distance to the nominal collision vertex of 4.28 m at
the closest point, and assembled to be approximately pro-
jective in η. The scintillation light from each cell is col-
lected with wavelength shifting fibers that are connected to
a 5 × 5 mm2 active-area avalanche photodiode. The rela-
tive energy and position resolutions improve with rising inci-
dent energy of the particle [12]. The energy resolution can
be described by a constant and two energy dependent terms
parametrized as σE

E = A2 ⊕ B2

E ⊕ C2

E2 % with A = 1.7 ± 0.3,
B = 11.3 ± 0.5, C = 4.8 ± 0.8 and E in GeV. The position

1 The detector was installed in its complete configuration by early 2012,
while 4 and 10 full-sized supermodules were present in 2010 and 2011,
respectively.
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Table 1 Approximate trigger threshold and corresponding trigger rejection factor for EMCal triggers, as well as integrated luminosity for minimum
bias and various EMCal triggers

Year Trigger Trigger name Approx. threshold Trigger rejection factor (RTrig) L int (nb−1)

2011 MBOR INT1 0 1 0.524 ± 0.010

EMCal L0 EMC1 3.4 GeV 1217 ± 67 13.8 ± 0.806

2013 MBAND INT7 0 1 0.335 ± 0.013

EMCal L0 EMC7 2.0 GeV 126.0 ± 4.3 1.19 ± 0.062

EMCal L1 (G2) EG2 3.5 GeV 1959 ± 131 6.98 ± 0.542

EMCal L1 (G1) EG1 5.5 GeV 7743 ± 685 47.1 ± 4.57

resolution is linear as a function of 1/
√
E and parametrized

as 1.5 mm + 5.3 mm√
E

with E in GeV. Starting with the highest

cell Eseed > 0.5 GeV, the energy depositions from directly
adjacent EMCal cells with Ecell > 0.1 GeV are combined to
form clusters representing the total energy and physical posi-
tion of incident particles [8]. The clustering algorithm allows
only one local energy maximum in a cluster; if a second is
found a new cluster is initiated. Each cell is restricted to only
be part of one cluster. Individual cells were calibrated using
the π0 mass peak position evaluated cell-by-cell, achieving
a relative variation of below 1%.

3 Data samples and event selection

The data presented in this paper were recorded during the
2011 and 2013 periods with pp collisions at

√
s = 2.76 TeV.

Various EMCal triggers were employed and, while the major-
ity of the minimum bias data were recorded in 2011, the
2013 running period took advantage of higher threshold
EMCal triggers to collect a notable high-pT data sample.
For the pp data collected in 2011, the minimum bias trig-
ger (MBOR) required a hit in either V0 detector or a hit in the
SPD, while it required hits in both V0 detectors for the data
collected in 2013 (MBAND). The respective cross sections
were determined based on van-der-Meer scans, and found
to be σMBAND = 47.7 ± 0.9 mb with σMBAND/σMBOR =
0.8613 ± 0.0006 and σMBAND/σinel = 0.760+0.052

−0.028 [13].
For the normalisation of the 2013 data, for which there
was no vdM scan, the uncertainty σMBAND was conserva-
tively increased to 4%, to account for possible variations of
the MBAND trigger efficiency between 2011 and 2013. The
resulting uncertainty due to the luminosity determination is
2.5% for both datasets together.

The EMCal issues triggers at two different levels, Level 0
(L0) and Level 1 (L1). The events accepted at L0 are further
processed at L1. The L0 decision, issued latest 1.2 µs after
the collision, is based on the analog charge sum of 2×2 adja-
cent cells evaluated with a sliding window algorithm within
each physical Trigger Region Unit (TRU) spanning 4 × 24
cells in coincidence with a minimum bias trigger. The L1

trigger decision, which must be taken within 6.2 µs after the
collision, can incorporate additional information from dif-
ferent TRUs, as well as other triggers or detectors. The data
presented in this paper used the photon (EG) trigger at L1,
which extends the 2×2 sliding window search across neigh-
boring TRUs, resulting in a ≈30% larger trigger area than
the L0 trigger.

In 2011, only the L0 trigger was used with one thresh-
old (EMC1), while in 2013, one L0 (EMC7) and two L1
triggers (EG1, EG2) with different thresholds were used, as
summarized in Table 1. The lower L1 trigger threshold in
2013 was set to approximately match the L0 threshold in
2011 for consistency. In case an event was associated with
several triggers, the trigger with the lowest threshold was
retained.

However, the thresholds are configured in the hardware
via analog values, not actual units of energy. Their transfor-
mation into energy values directly depends on the energy cal-
ibration of the detector. For a reliable normalization of each
trigger, the Trigger Rejection Factor (RTrig) is used. The RTrig

takes into account a combination of the efficiency, accep-
tance and the downscaling of the respective triggers. It can
be obtained from the ratio R of the number of clusters recon-
structed in EMCal triggered events to those in minimum bias
events at high cluster energy E where R should be approxi-
mately constant (plateau region), assuming the trigger does
not affect the cluster reconstruction efficiency, but only the
overall rate of clusters. To reduce the statistical uncertain-
ties on the normalization for the higher threshold triggers,
RTrig was always estimated with respect to the trigger with
the next lower threshold in the EMCal or the respective min-
imum bias trigger if no lower EMCal trigger was available.
By consecutively multiplying the individual rejection factors
up to the minimum bias trigger, the final RTrig was obtained
with respect to the minimum bias trigger. The energy depen-
dence of the ratios between cluster spectra of the relevant trig-
ger combinations (EMC1/INT1, EMC7/INT7, EG2/EMC7
and EG1/EG2) are shown in Fig. 1. At low E , there is a
minimum at roughly the threshold of the lower-level trig-
ger for EG2/EMC7 and EG1/EG2, while at high E there
is a pronounced plateau for every trigger combination. The
averages above the threshold in the plateau region, which
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Fig. 1 Energy dependence of ratios between cluster spectra for
EMC1/INT1, EMC7/INT7, EG2/EMC7 and EG1/EG2. The trigger
names INT1 and INT7 denote the minimum bias triggers MBOR and
MBAND respectively. The trigger names EMC1, EMC7, EG2 and EG1
denote the EMCal triggers at L0 in 2011 and 2013, and the EMCal trig-
gers at L1 in 2013 with increasing threshold respectively. The individ-
ual trigger rejection factors and their respective fit ranges in the plateau
region are indicated as well. The final rejection factors with respect to
the minimum bias trigger are given in Table 1

represent RTrig for the respective trigger combinations, are
indicated by a line whose width represents the respective
statistical uncertainty. The corresponding systematic uncer-
tainties were obtained by varying the range for the fit of
the plateau region. Finally, the values for the average trig-
ger rejection factors above the threshold with respect to the
corresponding minimum bias triggers are given in Table 1.
For the PCM–EMC and EMC analyses, all available triggers
were used, while for mEMC only the EMC1, EG2 and EG1
triggers were included. The collected integrated luminosities
for minimum bias and EMCal triggers

L int = Ntrig

σMB
Rtrig, (2)

where σMB refers to σMBOR for 2011 and σMBAND for 2013,
are summarized in Table 1. The statistical uncertainties on
RTrig are treated as systematic uncertainties on the integrated
luminosity.

Monte Carlo (MC) samples were generated using
PYTHIA8 [14] and PHOJET [15]. The correction factors
obtained independently from the two MC samples were
found to be consistent, and hence combined. For mesons with
pT > 5 GeV/c, as in the triggered or merged cluster analyses,
PYTHIA6 [16] simulations enriched with jets generated in
bins of the hard scattering (pT,hard) were used. All MC sim-
ulations were obtained for a full ALICE detector description
using the GEANT3 [17] framework and reconstructed with
the same algorithms as for the data processing.

The different triggers of the EMCal affect the proper-
ties of the reconstructible mesons, like the energy asym-
metry (α = E1−E2

E1+E2
) of the decay photons, and hence sig-

nificantly alter the reconstruction efficiency above the trig-
ger threshold in the trigger turn-on region. The efficiency
biases κTrig induced by the triggers were simulated using the
approximate thresholds and their spread for different TRUs.
The bias was defined as the ratio of the π0 or η reconstruc-
tion efficiency in triggered events over that in minimum bias
events. Figure 2 shows the pT dependence of κTrig for dif-
ferent triggers and reconstruction methods for the π0 and η

meson. While κTrig is unity for the mEMC analysis in the
considered kinematic range, it is significantly below one for
the PCM–EMC and EMC neutral meson reconstruction, and
reaches ≈1 only at about twice the trigger threshold. The
corresponding correction factors are found to be larger for
the PCM–EMC compared to the EMC method, and larger
for the η than the π0 meson. This is a consequence of the
much lower energy threshold imposed on the photons recon-
structed with PCM, which leads to wider opening angle and
asymmetry distributions of the reconstructible mesons. At
low pT, κTrig also exhibits the effect of the trigger on sub-
leading particles, for which the efficiency in triggered events
is strongly reduced. However, the various triggers are only
used if the meson momentum is at least 1.5 times the trig-
ger threshold, thus the effect on the subleading particles is
negligible.

In the offline analysis, only events with a reconstructed
vertex with |zvtx| < 10 cm with respect to the nominal inter-
action vertex position along the beam direction were used.
The finite primary vertex reconstruction efficiency for the
MBOR(MBAND) trigger of about 0.92 (0.98) is taken into
account in the normalization of the respective minimum bias
triggers. Furthermore, only events with exactly one recon-
structed vertex were accepted to remove pileup from in- and
out-of-bunch collisions. While the in-bunch pileup is negli-
gible after the vertex selection, the out-of-bunch pileup accu-
mulating in the TPC due to its readout time of 90 ms, needs
to be subtracted statistically for the mesons measured with
PCM, as described in Ref. [5]. For the π0 (η) mesons recon-
structed with PCM the out-of-bunch pileup correction ranges
from 20% (9%) at low pT to about 3% above 4 GeV/c. Anal-
yses involving the EMCal are not affected because contri-
butions of clusters from different bunch crossings are sup-
pressed by a suitable selection of clusters within a certain
time window around the main bunch crossing.

4 Neutral meson reconstruction

Neutral mesons decaying into two photons fulfill

M = √
2E1E2(1 − cos θ12) (3)

123



Eur. Phys. J. C   (2017) 77:339 Page 5 of 25  339 

Fig. 2 Efficiency bias κTrig induced by different triggers (EMC1, EMC7 and EG1) for neutral pions (left panel) and η mesons (right panel) for
PCM–EMC (open symbols) and EMC (closed symbols)

where M is the reconstructed mass of the meson, E1 and
E2 are the measured energies of two photons, and θ12 is the
opening angle between the photons measured in the labo-
ratory frame. Photon candidates are measured either by a
calorimeter or by PCM. Neutral meson candidates are then
obtained by correlating photon candidates measured either
by EMC, PHOS or PCM exclusively, or by a combination
of them (PCM–EMC). The corresponding π0 and η meson
measurements are described in Sect. 4.1. The typical opening
angle θ12 decreases with increasing pT of the meson due to
the larger Lorentz boost. For π0 mesons with pT above 5–6
GeV/c, the decay photons become close enough so that their
electromagnetic showers overlap in neighboring calorimeter
cells of the EMCal. At pT above 15 GeV/c, the clustering
algorithm can no longer efficiently distinguish the individual
showers in the EMCal, and π0 mesons can be measured by
inspecting the shower shape of single clusters, referred to as
“merged” clusters and explained in Sect. 4.2.

To be able to directly compare the reconstruction perfor-
mances of the various measurement techniques and triggers,
the invariant differential neutral meson cross sections were
expressed as

E
d3σ

dp3 = Nrec

pT �pT κTrig ε

1

L int

1

BR
(4)

with the inverse of the normalized efficiency

1

ε
= 1

2π A�y

P

εrec
(5)

and integrated luminosity (see Eq. 2). The measured cross
sections were obtained by correcting the reconstructed meson
yield Nrec for reconstruction efficiency εrec, purity P and

acceptance A, efficiency bias κTrig, integrated luminos-
ity L int, as well as for the pT and y interval ranges, �pT

and �y, respectively, and the γ γ decay branching ratio BR.
For invariant mass methods, the effect of reconstructed pho-
ton impurities on the meson purity are significantly reduced
due to the subtraction of the combinatorial background, and
hence the resulting meson impurities were neglected. For the
mEMC method, the π0 purity correction was obtained from
MC simulations tuned to data. In the case of neutral pions, the
contribution from secondary π0s was subtracted from Nrec

before applying the corrections. The contribution from weak
decays was estimated for the different methods by simulat-
ing the decays of the K0

S and � using their measured spec-
tra [18], taking into account the reconstruction efficiencies,
as well as resolution and acceptance effects for the respec-
tive daughter particles The contribution from neutral pions
produced by hadronic interactions in the detector material
was estimated based on the full detector simulations using
GEANT3. Finally, the results were not reported at the center
of the pT intervals used for the measurements, but following
the prescription in Ref. [19] at slightly lower pT values, in
order to take into account the effect of the finite bin width
�pT. The correction was found to be less than 1% in every
pT interval for the π0, and between 1–4% for the η meson.

4.1 Invariant mass analyses

Applying Eq. 3, the invariant mass distribution is obtained
by correlating all pairs of photon candidates per event. The
neutral meson yield is then statistically extracted using the
distinct mass line shape for identification of the signal and
a model of the background. In the following, only the new
measurements are described. Details of the PCM and PHOS
π0 measurements can be found in Refs. [4,5].
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Table 2 Criteria for photon
candidate selection for PCM Track selection

Track quality selection pT > 0.05 GeV/c

NTPC cluster/Nreconstructible clusters > 0.6

|η| < 0.9

Electron selection −4 < nσe < 5

Pion rejection nσπ < 1 for 0.4 < p < 3.5 GeV/c,

nσπ < 0.5 for p > 3.5 GeV/c (PCM)

nσπ < 1 for p > 0.4 GeV/c (PCM–EMC)

Photon criteria

Conversion point |ηV0 | < 0.9

5 cm < Rconv < 180 cm

|Zconv| < 240 cm

0 ≤ |ϕconv| ≤ 2π

cos(θpoint) > 0.85

Photon quality |ψpair| < ψpair,max − ψpair,max

χ2
red,max

χ2
red,

with ψpair,max = 0.1 and χ2
red,max = 30

Armenteros-Podolanski qT < qT,max

√
1 − α2

α2
max

,

with qT,max = 0.05 GeV/c and αmax = 0.95

For the reconstruction of photons with PCM, only tracks
from secondary vertices without kinks with a minimum
momentum of 0.05 GeV/c were taken into account. The
tracks had to be reconstructed within the fiducial acceptance
of the TPC and ITS and with at least 60% of the recon-
structible track points in the TPC. The photon momentum
resolution is better than 1.5% at low pT, resulting from the
precise determination of the track momenta by the TPC. Fur-
thermore, the associated energy loss measured in the TPC
was required to be within −4 < nσe < 5 of the elec-
tron expectation, where nσX = (dE/dx − 〈dE/dxX 〉)/σX

with 〈dE/dxX 〉 and σX the average energy loss and reso-
lution for particle X , respectively. The contamination from
charged pions was suppressed by excluding all track candi-
dates within nσπ < 1 of the pion expectation. The charged
pion rejection was applied for track momenta between 0.4 <

p < 3.5 GeV/c for PCM and p > 0.4 GeV/c for PCM–EMC,
while for PCM it was released to nσπ < 0.5 above p =
3.5 GeV/c. Only conversions which were pointing to the pri-
mary vertex and could be reconstructed with a conversion
point with 5 < Rconv < 180 cm within the acceptance of the
ITS and TPC were considered. Compared to previous PCM
standalone measurements [5], the photon candidate selection
criteria were optimized in order to reduce the combinatorial
background. In particular, a two dimensional selection on
the reduced χ2 of the photon conversion fit and the angle
between the plane defined by the conversion pair and the
magnetic field |ψpair| was introduced to suppress random
e+e− pairs. Furthermore, the selection in the Armenteros-
Podolanski variables [20] was tightened to reduce the con-

tamination from K0
S and � decays. A summary of the con-

version photon selection criteria is given in Table 2.
Clusters in the EMCal were reconstructed by aggregat-

ing cells with Ecell > 0.1 GeV to a leading cell energy
with at least Eseed > 0.5 GeV, and were required to
have only one local maximum. Photon candidates were
obtained from reconstructed clusters by requiring a cluster
energy of 0.7 GeV to ensure acceptable timing and energy
resolution and to remove contamination from minimum-
ionizing (

<∼300 MeV) and low-energy hadrons. Furthermore,
a cluster had to contain at least two cells to ensure a minimum
cluster size and to remove single cell electronic noise fluctua-
tions. Clusters which could be matched to a track propagated
to the average shower depth in the EMCal (at 440 cm) within
|�η| and |�ϕ| criteria that depend on track pT as given in
Table 3, were rejected to further reduce contamination by
charged particles. The track-to-cluster matching efficiency
amounts to about 97% for primary charged hadrons at clus-
ter energies of Eclus > 0.7 GeV, decreasing slowly to 92%
for clusters of 50 GeV. The removal of matched tracks is par-
ticularly important for the PCM–EMC method as otherwise a
severe auto-correlation between the clusters originating from
one of the conversion electrons and the conversion photon
would be introduced. Such auto-correlated pairs strongly dis-
tort the shape of the invariant mass distribution between the
π0 and η mass peak region. The standard track matching
applied to each conversion leg allowed for the removal of
these auto-correlation pairs with an efficiency of more than
99% since the corresponding track was already found. An
additional distinction between clusters from mainly photons,
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Table 3 Criteria for photon
candidate selection for
EMCal-based methods

Cluster reconstruction

Minimum cell energy Ecell > 0.1 GeV

Minimum leading cell energy Eseed > 0.5 GeV

Cluster selection

Selection in η |η| < 0.67, 1.40 rad < ϕ < 3.15 rad

Minimum cluster energy Eclus > 0.7 GeV

Minimum number of cells Ncells ≥ 2

Cluster-shape parameter 0.1 < σ 2
long < 0.5 (PCM–EMC)

0.1 < σ 2
long < 0.7 (EMC)

σ 2
long > 0.27 (mEMC)

Cluster time |tclus| ≤ 50 ns (2011)

−35 ns < tclus < 30 ns (2013)

Cluster–track matching |�η| ≤ 0.010 + (pT + 4.07)−2.5

|�ϕ| ≤ 0.015 + (pT + 3.65)−2

electrons and neutrons is based on their shower shape. The
shower shape can be characterized by the larger eigenvalue
squared of the cluster’s energy decomposition in the EMCal
η–ϕ plane. It is expressed as

σ 2
long = 0.5

(
σ 2

ϕϕ + σ 2
ηη +

√
(σ 2

ϕϕ − σ 2
ηη)

2 + 4σ 4
ϕη

)
(6)

where σ 2
xz = 〈x z〉 − 〈x〉〈z〉 and 〈x〉 = 1

wtot

∑
wi xi are

weighted over all cells associated with the cluster in the ϕ

or η direction. The weights wi logarithmically depend on
the ratio of the energy of a given cell to the cluster energy,
as wi = max(0, 4.5 + log Ei/E), and wtot = ∑

wi [21].
Nuclear interactions, in particular for neutrons, create an
abnormal signal when hitting the corresponding avalanche
photodiodes for the readout of the scintillation light. Such
a signal is mainly localized in one high-energy cell with a
few surrounding low-energy cells, and can be removed by
requiring σ 2

long > 0.1. While the showers from electrons and
photons tend to be similar, they can be distinguished based
on their elongation, as most of the low-pT electrons will hit
the EMCal surface at an angle due to the bending in the mag-
netic field. Most of the pure photons are reconstructed with
a σ 2

long ≈ 0.25; only late conversions elongate the showers

beyond this. Thus, rejecting clusters with σ 2
long > 0.7 (0.5)

for EMC (PCM–EMC) rejects the contamination from late
conversion electrons significantly. At very high transverse
momenta (>10 GeV/c), it also rejects part of the contami-
nation from neutral pions for which both photons have been
reconstructed in a single cluster. Contributions of clusters
from different bunch crossings were suppressed by a suitable
selection of clusters within a certain time window around the
main bunch crossing. A summary of the selection criteria for
EMCal photon candidates is given in Table 3.

The good momentum resolution for the PCM photon was
exploited to derive an improved correction for the relative
energy scale, as well as for the residual misalignment of the
EMCal between data and simulation. The neutral pion mass
was evaluated for the PCM–EMC method as a function of
the EMCal photon energy for data and simulation. A correc-
tion for the cluster energy was deduced which for a given
simulation adjusts the neutral pion mass peak position to the
measured position in the data as a function of the cluster
energy. Above 1 GeV, the corrections for the various MC
datasets are typically about 3%.

Example invariant mass distributions obtained by correlat-
ing photons reconstructed with EMCal or by one photon from
PCM and one from EMCal are shown in Fig. 3 for neutral
pions and Fig. 4 for η mesons. The combinatorial background
was calculated using the mixed event technique [22] using
event pools binned by primary vertex position, multiplicity
and transverse momentum. The mixed-event background has
been normalized to the right side of the π0(η) peak. Addition-
ally, a residual correlated background estimated using a linear
fit was subtracted. Only pairs with a minimum opening angle
of 0.02 (0.005) mrad for EMC (PCM and PCM–EMC) meth-
ods were considered for signal and background construction.
Finally, pairs are restricted to rapidity of |y| < 0.8.

A Gaussian with an exponential tail on the left side was
fitted to the subtracted invariant mass distributions, in order
to determine the mass position and width of the peak. The
results of the fits for the mass position and widths of neutral
pions and η mesons are shown in Fig. 5. The performance
of PHOS from Ref. [5] in the case of π0 is added for com-
pleteness. For all systems, the data for both π0 and η are
reproduced by the MC simulations to a precision on average
better than 0.3% for the mass position. For EMC, the pT-
dependence of the mass position is especially pronounced,
due to non-linearity effects for low pT clusters, shower merg-
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Fig. 3 Invariant mass distributions in the π0 peak region for INT1 (left panels) and EG1 (right panels) triggers and EMC (top panels) and
PCM–EMC (bottom panels) methods

ing and shower overlaps, and decay asymmetry enhanced by
the employed triggers at high pT. The widths of the meson
peaks are similarly well described, with the expected order-
ing for the various methods. In particular, the peak widths
of the PCM–EMC fits are between the standalone measure-
ments of PCM and EMC and are comparable to the PHOS
measurement above 7 GeV/c. This illustrates that the inclu-
sion of one photon from PCM significantly improves the
resolution of the neutral meson measurements.

The neutral meson raw yield was extracted by integrat-
ing the background-subtracted invariant mass distributions
around the measured peak mass. The integration windows for
the different reconstruction techniques were adjusted based
on the average width of the meson peaks and their signal
shape: (Mπ0−0.035, Mπ0+0.010), (Mη−0.047, Mη+0.023)
for PCM, (Mπ0 − 0.032, M0

π + 0.022), (Mη − 0.060,
Mη +0.055) for PCM–EMC, and (Mπ0 −0.05, M0

π +0.04),

(Mη − 0.080, Mη + 0.08) for EMC. For both mesons, an
asymmetric range around the measured mass position was
used to account for the low mass tail originating not only
from the bremsstrahlung energy loss of conversion electrons
and positrons, but also from additional missing energy in the
EMCal due to the partial reconstruction of the photon.

The corrections for the geometric acceptance and recon-
struction efficiency for the different mesons were calculated
using MC simulations as mentioned in Sect. 3. The accep-
tance for the EMCal reconstruction techniques was calcu-
lated as the fraction of π0 (η), whose decay photons point to
the EMCal surface (|η| < 0.67, 1.40 rad < ϕ < 3.15 rad),
compared to the π0 (η) generated with |y| < 0.8. In the case
of PCM–EMC, only one photon was required to point to the
EMCal surface, while the other was required to be within the
acceptance of the TPC (|η| < 0.9, 0 rad < ϕ < 2π rad).
The output from the full event MC simulations was recon-
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Fig. 4 Invariant mass distributions in the η peak region for INT1 (left panels) and EG1 (right panels) triggers and EMC (top panels) and
PCM–EMC (bottom panels) methods

structed and analyzed in the same way as the data. The
reconstruction efficiency was calculated as the fraction of
reconstructed mesons compared to the mesons whose decay
photons passed the acceptance criteria. The normalized effi-
ciency ε (see Eq. 5) as a function of meson pT is shown in
Fig. 6 for the various methods. For EMC, ε rises at low pT

and reaches its maximum at about 0.8 at 10 GeV/c. Subse-
quently, ε drops due to the merging of the two clusters, and
is already a factor of 5 smaller at about 15 GeV/c. In the
case of the η, the efficiency at 15 GeV/c is not yet affected
by the cluster merging due to its higher mass. The efficiency
for PCM–EMC is approximately a factor 10 smaller than for
EMC for both mesons due to the conversion probability of
about 0.09 in the respective pseudorapidity window. For the
π0, it is similar to that of PHOS. The small decrease at higher
pT for the PCM–EMC results from shower overlaps of the

EMC photon with one of the conversion legs, and thus a
stronger rejection of the EMCal photons due to track match-
ing. Relative to PCM–EMC, ε for PCM is suppressed by the
conversion probability affecting both decay photons.

The correction for secondaries from hadronic interactions
depends on pT for the EMC-related methods. It ranges from
1.2% at the lowest pT to 0.1% (0.4%) above 3 GeV/c for
the PCM–EMC (EMC) method. For PCM, the correction
amounts to less than 0.2% independent of pT. However,
the contribution of the neutral pions from K0

S is strongly
pT dependent due to the tight selection criteria forcing the
photons to point to the primary vertex. The correction drops
quickly from about 8% to less than 1% at 4 GeV/c. For the
PCM–EMC and EMC, the corresponding correction amounts
to 0.9 and 1.6%, respectively, independent of pT in the mea-
sured pT range. Contributions from other weak decays are
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Fig. 5 Neutral pion (left panels) and η meson (right panels) mass position (bottom panels) and width (top panels) for the PCM, PCM–EMC and
EMC methods. The performance of PHOS for π0 is taken from Ref. [5]. Data are displayed as closed symbols, simulations as open symbols

Fig. 6 Normalized efficiency for different methods of neutral pion (left panel) and η meson (right panel) reconstruction methods. The values for
PHOS are taken from [5]

below 0.1% and thus neglected for all reconstruction tech-
niques.

4.2 Single cluster analysis

At high pT the showers induced by the two decay photons
from a neutral pion merge into a single EMCal cluster, and
therefore are unidentifiable in an invariant mass analysis.
Hence, for π0s above 15 GeV/c we use a different approach,
namely to reconstruct and identify π0s based only on single

clusters, exploiting that clusters at high pT mostly originate
from merged π0 decay photons.

Merged clusters from π0 decays tend to be more elongated
than clusters from photons and electrons, and their deforma-
tion is reflected by the shower shape σ 2

long, defined in Eq. 6.
The shower shape distributions are shown for data and MC in
Fig. 7 for π0 candidates, i.e. clusters fulfilling the selection
criteria listed in Table 3 except σ 2

long. The σ 2
long distribution is

found to be fairly well described by the MC, in particular for
σ 2

long > 0.3. For σ 2
long > 0.3, the dominant contribution to π0

candidates is from merged π0 showers, while for σ 2
long < 0.3
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Fig. 7 Shower shape (σ 2
long) distributions for π0 candidates with 18 < pT < 22 GeV/c compared in data and MC (left panel), and corresponding

signal and background contributions in MC (right panel)

clusters dominate where only the energy of one decay photon
contributed. The most significant background is from decay
photons of the η meson and direct photons, located mainly
at σ 2

long < 0.3. Hence, for the mEMC measurement, π0 can-

didates are simply required to have σ 2
long > 0.27 in order to

discriminate from η decay and direct photons. Only candi-
dates with a rapidity of |y| < 0.6 are considered.

The corrections for the geometric acceptance, reconstruc-
tion efficiency, and purity were calculated using MC simula-
tions as described in Sect. 3. The resulting efficiency is shown
in Fig. 6 compared to the other neutral pion reconstruction
techniques. At high pT, mEMC clearly has an advantage due
to its larger coverage compared to PHOS, and the exploita-
tion of merging of the π0 decay photons in the EMCal.

The π0 reconstruction efficiency was calculated by com-
paring the reconstructed with generator-level pT distributions
within a rapidity of |y| < 0.6. By comparing measured and
generated pT of the neutral pion, the pT resolution correction
is included in the inefficiency correction. The resolution is
significantly different for candidate clusters containing all or
only parts of the decay products, i.e. single photons or con-
versions. If all π0 decay products contribute to the cluster, the
mean momentum difference between reconstructed and gen-
erated pT is smaller than 2% with an RMS of 16–25% above
20 GeV/c. Otherwise, the mean momentum difference can
reach up to 30% depending on the fraction of decay particles
which could be reconstructed and whether they converted in
the detector material.

The purity represents the fraction of reconstructed clus-
ters that pass all the selections and are from a π0 decay. For

pT > 16 GeV/c, it is almost constant at around 90% with
variations of 1–2%. As can be seen in Fig. 7, the largest con-
tamination in the considered σ 2

long window originates from

the η meson decay (≈5% after fine-tuning the η/π0 ratio
to the measured value), closely followed by the hadronic
background consisting mainly of charged pions (≈2%) and
K0

L (≈1.8%). The contamination from η mesons rises by
about 2% towards higher momenta, while the contamination
from the other two sources decrease by about 0.5%. Frag-
mentation photons contribute to the background about 1.2%.
Their contribution was additionally scaled up by up to a fac-
tor 2, given by the ratio of fragmentation photons to direct
photons according to NLO pQCD calculations [23,24], to
account for direct photons which are not included in genera-
tor. Lastly, prompt electrons contribute to the contamination
about 0.7%.

The correction for secondary pions from K0
S decays

amounts to approximately 5%, as their reconstruction effi-
ciency is very similar to that of primary π0s, albeit with
worse resolution. In addition, corrections for π0s from weak
decays from K0

L and � (together only about 0.3%) and from
secondary hadronic interactions (2.2%) were applied.

5 Systematic uncertainties

The sources of systematic uncertainties associated with the
various measurement techniques and their magnitude in dif-
ferent pT ranges, chosen to reflect the strengths of the various
methods, are given in Table 4 for the π0 meson, in Table 5

123



 339 Page 12 of 25 Eur. Phys. J. C   (2017) 77:339 

Ta
bl
e
4

Sy
st

em
at

ic
un

ce
rt

ai
nt

y
fo

r
va

ri
ou

s
so

ur
ce

s
an

d
m

et
ho

ds
as

si
gn

ed
to

th
e

π
0

m
ea

su
re

m
en

ta
td

if
fe

re
nt

p T
in

te
rv

al
s.

Fo
r

co
m

pa
ri

so
n,

th
e

to
ta

ls
ys

te
m

at
ic

an
d

th
e

st
at

is
tic

al
un

ce
rt

ai
nt

ie
s

ar
e

al
so

gi
ve

n.
P–

E
st

an
ds

fo
r

PC
M

–E
M

C

p T
in

te
rv

al
(G

eV
/c

)
1.

4–
1.

6
3.

0–
3.

5
16

–2
0

30
–3

5

M
et

ho
d

PC
M

(%
)

P–
E

(%
)

E
M

C
(%

)
PC

M
(%

)
P–

E
(%

)
E

M
C

(%
)

P–
E

(%
)

E
M

C
(%

)
m

E
M

C
(%

)
m

E
M

C
(%

)

E
M

C
al

cl
us

te
ri

ng
–

2.
4

4.
9

–
2.

1
2.

3
6.

2
4.

4
4.

6
5.

9

E
M

C
al

en
er

gy
ca

lib
.

–
2.

0
4.

9
–

2.
1

2.
5

5.
4

5.
5

4.
2

4.
8

T
ra

ck
m

at
ch

in
g

–
0.

9
1.

8
–

1.
4

1.
7

6.
9

6.
7

5.
4

6.
1

Se
co

nd
ar

y
tr

ac
k

re
co

.
1.

6
1.

1
–

0.
9

0.
8

–
5.

7
–

–
–

E
le

ct
ro

n
PI

D
1.

3
0.

7
–

1.
5

0.
6

–
12

.7
–

–
–

PC
M

ph
ot

on
PI

D
1.

7
1.

4
–

2.
3

1.
1

–
13

.4
–

–
–

Si
gn

al
ex

tr
ac

tio
n

1.
9

1.
5

2.
4

4.
0

1.
9

1.
5

3.
4

14
.1

–
–

E
ffi

ci
en

cy
–

2.
0

2.
0

–
3.

6
2.

5
2.

1
2.

1
8.

4
7.

1

Se
co

nd
ar

y
co

rr
ec

tio
n

–
–

–
–

–
–

–
–

1.
8

1.
8

In
ne

r
m

at
er

ia
l

9.
0

4.
5

–
9.

0
4.

5
–

4.
5

–
–

–

O
ut

er
m

at
er

ia
l

–
4.

2
4.

2
–

4.
2

4.
2

4.
2

4.
2

4.
2

4.
2

T
ri

gg
er

no
rm

.+
pi

le
up

0.
8

–
–

0.
4

1.
1

0.
5

7.
5

5.
5

8.
0

8.
8

To
t.

sy
s.

un
ce

rt
ai

nt
y

9.
6

7.
6

8.
9

10
.3

8.
3

6.
5

24
.5

18
.6

14
.9

15
.6

St
at

.u
nc

er
ta

in
ty

2.
8

2.
0

6.
5

5.
1

3.
3

2.
8

14
.8

15
.6

5.
7

11
.3

123



Eur. Phys. J. C   (2017) 77:339 Page 13 of 25  339 

Table 5 Systematic uncertainty for various sources and methods assigned to the η measurement at different pT intervals. For comparison, the total
systematic and the statistical uncertainties are also given

pT interval (GeV/c) 1–1.5 3–4 10–12

Method PCM (%) PCM–EMC (%) PCM (%) PCM–EMC (%) EMC (%) PCM–EMC (%) EMC (%)

EMCal clustering – 3.1 – 3.1 2.7 3.6 3.1

EMCal energy calib. – 3.0 – 3.2 4.5 5.0 6.8

Track matching – 8.9 – 4.9 5.7 6.6 8.8

Secondary track reco. 3.7 3.3 1.6 3.3 – 4.1 –

Electron PID 2.1 2.5 2.4 2.2 – 5.2 –

PCM photon PID 3.9 7.7 3.9 7.3 – 11.2 –

Signal extraction 6.0 16.4 6.0 8.1 9.3 11.8 3.5

Efficiency – 5.0 – 5.0 5.7 5.8 5.3

Inner material 9.0 4.5 9.0 4.5 – 4.5 –

Outer material – 4.2 – 4.2 4.2 4.2 4.2

Trigger norm.+pileup 1.8 – 1.9 – 2.8 7.0 7.2

Tot. sys. uncertainty 12.3 22.5 11.9 15.5 14.3 22.6 15.5

Stat. uncertainty 20.4 43.4 17.2 16.7 10.8 21.3 8.9

Table 6 Systematic uncertainty for various sources and methods assigned to the η/π0 measurement at different pT intervals. For comparison, the
total systematic and the statistical uncertainties are also given

pT interval (GeV/c) 1–1.5 3–4 10–12

Method PCM (%) PCM–EMC (%) PCM (%) PCM–EMC (%) EMC (%) PCM–EMC (%) EMC (%)

EMCal clustering – 4.1 – 4.2 2.4 6.0 2.8

EMCal energy calib. – 4.1 – 4.3 4.6 6.6 7.6

Track matching – 8.9 – 4.9 5.7 6.6 9.0

Secondary track reco. 3.7 4.5 1.6 4.2 – 8.1 –

Electron PID 2.1 3.3 2.4 3.2 – 7.0 –

PCM photon PID 3.9 7.7 4.0 6.5 – 12.7 –

Signal extraction 6.1 16.6 7.0 9.1 9.3 10.5 8.5

Efficiency – 5.4 – 5.4 3.8 7.0 4.3

Tot. sys. uncertainty 8.4 22.5 8.5 15.6 12.6 23.8 15.4

Stat. uncertainty 20.4 44.1 17.7 17.9 10.9 22.1 8.8

for η meson and in Table 6 for the η/π0 ratio. Since the mea-
surements obtained with PCM–EMC, EMC and mEMC are
a combination of multiple triggers, the systematic uncertain-
ties associated with each method reflect the contribution of
different triggered data samples weighted by their statistical
uncertainties. The uncertainties for the η/π0 were evaluated
directly on the ratio in order to cancel correlated uncertainties
between the π0 and η measurements. In the following, we
first describe the uncertainties on photon candidates recon-
structed with EMC and PCM, then those on the meson level,
and finally those related to the overall normalization, in the
same order as given in the tables.

EMCal clustering: The uncertainty on clustering quanti-
fies the mismatch in the description of the clusterization pro-
cess between data and simulation. It incorporates the uncer-
tainties arising from the variation of the minimum energy

and time on cluster and cell level, the minimum number of
cells per cluster as well as the variation of the σ 2

long selection

on the clusters. For mEMC, varying the selection on σ 2
long is

especially important since it quantifies the uncertainty of how
well the σ 2

long distributions of the background are described
in the simulation, and was varied from 0.27 to 0.25 and 0.3.
The corresponding uncertainties range between 2.1 and 6.2%
depending on pT and method.

EMCal cluster energy calibration: To estimate the
uncertainty of the cluster energy calibration, the remaining
relative difference between data and simulation in the mass
position of the neutral pion was used. On average, the dif-
ference is 0.3%, which leads to an uncertainty on the spectra
of about 2% taking into account that they approximately fall
with p−6

T . In addition, the correction of the simulations for
relative energy scale and residual misalignment, described in
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Sect. 4.1, was varied by changing the underlying parametriza-
tion of the mass position correction with pT. We chose only
correction factors where the measured neutral pion mass
position could be reproduced by the simulation to better than
1.5% over all pT. The overall resulting uncertainties range
between 2.0 and 5.5% depending on pT and method. For the
η meson (η/π0 ratio), the uncertainties are approximately a
factor 1.5 (2) larger at similar pT due to lower photon ener-
gies entering at the same meson pT.

Track matching to cluster: The uncertainty introduced
by the imperfection of the cluster–track matching procedure
was studied by repeating the measurements with different
track-matching parameters. The criteria were varied from
tight selections, which removed only centrally matched clus-
ters, to rather loose selections allowing a distance of 2–3 cells
depending on ϕ and η. At low pT the uncertainties on the π0

measurement are below 2%, while with increasing pT higher
track densities due to the jettier environment become more
important and lead to uncertainties of about 7%. In the case
of the η, the uncertainties are generally larger, between 4.9
and 8.9%, due to the worse signal-to-background ratio. For
the η/π0 ratio, the uncertainty of the η alone is used, since
part of the uncertainty is expected to cancel.

Secondary track reconstruction: The uncertainty on
the secondary track reconstruction quantifies the uncertainty
related to secondary track finding used in PCM. It is estimated
by variation of the TPC found-over-findable cluster selection
and the minimum pT cut as well as reducing the acceptance
for the conversion photons in ϕconv requiring them to approx-
imately point towards the EMCal direction. The uncertainty
depends on the precision of the relative alignment and track
matching efficiency between TPC and ITS in different sec-
tors of the TPC, and hence can vary for different data taking
periods and trigger conditions. For the EMCal triggers, for
instance, the conversion photons are mainly sampled in the
region directly in front of the EMCal, where the ITS had
larger inefficiencies than in other areas. The uncertainties
range from 0.8 to 5.7%.

Electron PID: Systematic uncertainty on the electron
identification for the PCM photon reconstruction was esti-
mated by varying the TPC dE/dx-based electron inclusion
as well as the pion rejection selections. The correspond-
ing uncertainties are small at low pT (≈1%), where there
is good separation between electrons and pions, but reach up
to 12.7% at high pT, where electrons and pions can not be
efficiently separated any longer.

PCM photon PID: The uncertainty assigned to the PCM
photon reconstruction combines the contributions from vary-
ing the criteria for the photon quality and Armenteros-
Podolanski selections. The uncertainties are slightly larger
than those on the electron PID, with similar pT dependence,
since both the electron and the photon PID selections attempt
to reduce the contamination which increases with increasing

pT. For the η/π0 ratio, it is one of the dominant uncertain-
ties, in particular at high pT, as only a small fraction cancels
in the ratio due to the different decay kinematics of the two
mesons.

Signal extraction: The uncertainties arising from the sig-
nal extraction for the invariant mass analyses were esti-
mated by varying the integration window, the background
normalization region as well as the minimum opening angle,
and requiring a mild asymmetry of the decay photons. For
the neutral pion, the signal extraction uncertainty for PCM
ranges from 1.9% at low pT to 4.0% at higher pT, due to the
good momentum resolution of the tracks. For PCM–EMC,
the equivalent uncertainty ranges from 1.5 to 3.4% at low
and high pT, respectively, while for EMC it ranges from
2.4% at low to 1.5% at intermediate and 14.1% at high pT.
Above 10 GeV/c the signal extraction uncertainty for the
EMC arises from the merging of the two photon clusters,
and the exact dependence of the corresponding description
in the simulation. For the η meson the signal extraction uncer-
tainty generally is larger since the signal-to-background ratio
is smaller, particularly at low pT. For PCM the uncertainty
is 6.0%, for PCM–EMC it ranges from 16.4 to 8.1 to 11.8%
and for EMC from 9.3 to 3.5% GeV/c at low, intermediate
and high pT, respectively. Unlike in the case of the π0, the
uncertainty for EMC decreases with increasing pT since the
merging of the clusters for the η meson only sets in at much
higher pT (around 35 GeV/c). For the η/π0 ratio, the signal
extraction uncertainties of the π0 and η mesons contribute
independently.

Efficiency: The uncertainties on the efficiency were esti-
mated using different MC generators to vary the input spec-
trum for the efficiency calculation, to quantify effects affect-
ing the pT resolution. Also, the uncertainties on the model-
ing of the efficiency bias in the simulation were included.
For PCM–EMC and EMC the uncertainties range from 2.0
to 3.6% depending on pT for the π0, while they are between
5 and 5.8% for the η meson. For the η/π0 measurement,
the uncertainties were added quadratically, without includ-
ing the trigger-related uncertainties, which largely cancel. In
the case of mEMC, the uncertainty on the pT resolution is
particularly important, since it strongly depends on whether
the neutral pion could be reconstructed with all decay parti-
cles contributing to the single cluster or just some of them.
To estimate the uncertainty due to a possible imperfection of
the MC simulation in the contribution of the various possi-
bilities, the fractions of the respective reconstruction possi-
bilities were varied by 20% each, leading to an uncertainty
on the efficiency of 8.4% at mid (17 GeV/c) and 7.1% at high
pT (32.5 GeV/c).

Secondary correction: The correction for secondary π0

was estimated applying the efficiency and acceptance from
the full ALICE GEANT3 simulation to a fast MC simula-
tion of the decay kinematics based on the parametrized K0

S
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(K0
L ) and � spectra [18]. The corresponding uncertainty was

obtained by varying the kaon and � yield within their mea-
sured uncertainties. Since the correction due to the secon-
daries is only 1–2%, for all but the mEMC reconstruction
technique, even a variation of 15% on the input yields leads
to a negligible contribution compared to other uncertainties.
For mEMC, where the correction is about 5%, an uncertainty
of ≈0.5% was obtained. In addition, ≈1.5% were added to
the uncertainty to account for the limited precision in the
shape and size of the correction factors of the full simula-
tions for the pions from K0

S , K0
L and �, which was estimated

by varying the parametrization underlying the efficiencies for
secondary π0.

Inner material: The uncertainty related to the knowl-
edge of the inner (radius <180 cm) material budget reflects
the uncertainty of the conversion probability of photons, and
hence dominantly affects the PCM measurements. It was
estimated to be 4.5% independent of pT based on detailed
comparison between simulation and data for pp collisions at√
s = 7 TeV [4]. Thus, it affects the PCM meson measure-

ments with 9%, while it only contributes 4.5% to PCM–EMC.
In η/π0, the uncertainty cancels as both mesons are affected
in the same way.

Outer material: For the reconstructed photons in the
EMCal, a possible mismatch between the material present in
reality and assumed in the simulation in front of the EMCal
may cause an error in the absorption rate or the production
of secondary pions. In most cases, however, the photon sim-
ply converts and at least one of its daughter electrons can be
reconstructed in the EMCal so that theπ0 likely will be recon-
structed as well, although with degraded pT resolution. The
probability to still reconstruct the neutral meson increases
with increasing conversion radius, i.e. the closer the conver-
sion happens to the surface of the EMCal. Most of the mate-
rial is located at most 1.5 m away from the EMCal, namely
the TPC outer wall, the TRD and the Time-Of-Flight (TOF)
detector plus their support structures. The TRD was only fully
installed in the LHC shutdown period after 2013. For the 2011
and 2013 data there were regions in ϕ without TRD modules
in front of the EMCal. Hence, the net-effect of the material
in front of the EMCal could be studied by comparing fully
corrected π0 yields for different ϕ regions with or without
the TRD in front of the EMCal. From the observed difference
measured using the EMC and PCM–EMC measurements, an
uncertainty on the neutral meson yields of 4.2% indepen-
dent of pT was derived, and assigned to all measurements
involving the EMCal. For η/π0 the uncertainty is assumed
to cancel as both mesons should be affected in a similar way.

Trigger normalization and pileup: The uncertainties
for the trigger normalization were calculated by varying the
range for the fit of the plateau region (see Fig. 1) for the dif-
ferent trigger combinations, leading to the respective rejec-
tion factors with their uncertainties given in Table 1. Since

the final spectra for each measurement technique using the
EMCal are composed of several triggers, the contributions of
the respective trigger rejection uncertainties enter the final
measurement with different magnitudes depending on pT.
The uncertainties range between 0.5 and 8.8%. For η/π0 the
uncertainties cancel as the ratio was measured per trigger and
reconstruction method and combined afterwards. For PCM
only minimum bias triggers were used, and hence no uncer-
tainty due to the trigger rejection was assigned. However,
an uncertainty of 0.8–0.4% was taken into account for the
out-of-bunch pileup subtraction described in [5]. The pileup
uncertainty is about 1.8% for the η meson. It largely cancels
in the η/π0 ratio, however, and the remaining error can be
neglected compared to other error sources.

6 Results

Since the meson measurements with PHOS, PCM, EMC,
PCM–EMC and mEMC have partly uncorrelated systematic
uncertainties, their combination will increase the precision
of the respective cross section measurements. The BLUE
method [27–29] was used to calculate the combined spectra
of the π0 and η mesons as well as the η/π0 ratio. For the
combination of the spectra, the full correlation matrix was
taken into account by estimating the correlated and uncor-
related part of the systematics for all pairs of measurements
versus pT. Correlations are most apparent between the three
EMC related measurements (EMC, PCM–EMCand mEMC),
as well as for the PCM–EMC and PCM results. At high pT,
for instance, the uncertainties are dominated by the uncer-
tainty on RTrig which is largely common between the EMCal
triggered analyses. Uncertainties between PHOS, PCM, and
EMC (mEMC) are uncorrelated. The combined spectra were
fitted with a two-component model (TCM)

E
d3σ

dp3 = Ae exp

(
M −

√
p2

T + M2

)

Te
+A

(
1 + p2

T

nbrT 2

)−nbr

(7)

introduced by Bylinkin and Rostovtsev [25] and Bylinkin
and Ryskin [26], which serves as convenient parametriza-
tion of the data without aiming for a physics interpretation.
The parameters for the π0 and η fits are given in Table 7 for
χ2/ndof values of better than 0.5 taking statistical and sys-
tematic uncertainties in quadrature. Unlike for Tsallis [30]
and power-law distributions, which at high and low pT,
respectively, systematically deviate from the data, the TCM
parameterization describes the data over the full measured
range to better than 10%.
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Table 7 Parameters of the two-component model, Eq. 7 [25,26], which are used to parametrize the neutral pion and η meson spectra, respectively,
for the comparisons to models and among the different methods

Meson Ae (pb GeV−2c3) Te (GeV/c) A (pb GeV−2c3) T (GeV/c) nbr

π0 (0.79 ± 0.35) × 109 0.566 ± 0.035 (74.3 ± 12.9) × 109 0.441 ± 0.021 3.083 ± 0.027

η (18.5 ± 22.1) × 109 0.149 ± 0.070 (1.4 ± 1.0) × 109 0.852 ± 0.136 3.318 ± 0.122

Fig. 8 Comparison of the individual measurements in their respective
measured transverse momentum ranges relative to the two-component
model fits [25,26] of the final spectra. The final spectra are obtained by

combining the individual measurements in the overlapping pT regions
with the highest granularity using the full correlation matrix as defined
in the BLUE-algorithm [27–29]

Table 8 Summary of the pT reach (in GeV/c) of the various recon-
struction methods for π0, η and η/π0

Method π0 η η/π0

PCM 0.4–8.0 0.5–6.0 0.5–6.0

PHOS 0.8–12.0 n/a n/a

EMC 1.4–20.0 2.0–20.0 2.0–20.0

PCM–EMC 0.8–20.0 1.0–16.0 1.0–16.0

mEMC 16.0–40.0 n/a n/a

Figure 8 shows a comparison of the individual measure-
ments in their respective measured pT ranges summarized in
Table 8 to the two-component model fits for the π0 and η

mesons. As already mentioned above, the π0 spectrum in pp
collisions at

√
s = 2.76 TeV has been measured by ALICE

using the PHOS and PCM [5]. The new results obtained
with the different EMC measurements and with the hybrid
PCM–EMC method are consistent with these earlier results,
and the combination with the former measurements improves
the precision of the data. The figure also demonstrates an
approximately fourfold extension of the pT reach of the mea-
surement by using the EMCal. The η measurement, which
is the first such measurement at

√
s = 2.76 TeV, spans from

0.6 to 20 GeV/c. There is good agreement within the statis-
tical uncertainties among the different detection techniques.
Above pT > 4 GeV/c, the result is dominated by the EMCal
measurements.

Figure 9 shows the combined π0 and η cross sections
in pp collisions at

√
s = 2.76 TeV, and Fig. 10 the corre-

sponding η/π0 ratio. As mentioned earlier, the data were
parameterized with a two-component model of Bylinkin and
Ryskin [26] (see Table 7) and compared to recent NLO pQCD
calculations [3,6], and PYTHIA 8.2 [31] generator-level sim-
ulations using the widely-used Monash 2013 tune [32]. A
large fraction of hadrons at low pT is produced in pp colli-
sions via soft parton interactions and from resonance decays,
which cannot be well described within the framework of
pQCD, but are taken into account in the event-generator
approach. For the π0, the pQCD calculation [3], which uses
the DSS14 fragmentation functions seems to have a differ-
ent shape than the data. It overpredicts the data by about
30% at intermediate pT (5 GeV/c< pT < 16 GeV/c),
while it agrees with the data at higher pT. The PYTHIA 8.2
calculation describes the data well, except below 1 GeV/c,
where it overpredicts the data by up to 30%. For pT above
15 GeV/c PYTHIA has a tendency to underpredict the data
by about 10%; however this slight difference is covered by
the uncertainties of the measurement. For the η meson, the
data and the NLO pQCD calculation [6], which uses the
AESSS fragmentation functions, agree within the uncertain-
ties for μ = 2pT for factorization and fragmentation scale,
while for μ = 0.5pT the calculation overpredicts the data
by up to a factor of 2–3, leaving room for future improve-
ments in the understanding of the strange versus non-strange
quark fragmentation functions. The PYTHIA 8.2 simulation
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Fig. 9 Invariant differential cross section of the π0 (left, top panel) and
η meson (right, top panel) for pp collisions at

√
s = 2.76 TeV. The data

are compared to PYTHIA 8.2 [31] generator-level simulations using the
Monash 2013 tune as well as recent NLO pQCD calculations [3,6]. The

ratios of the data and the calculations to the respective two-component
model fits [25,26] to the data are shown in the lower panels. The hor-
izontal error bars denote statistical, the boxes systematic uncertainties

with the Monash 2013 tune performs slightly worse for the
η than for the π0, in particular for pT > 3 GeV/c where it
underpredicts the data by about 20–30%. In the η/π0 ratio,
parts of the systematic uncertainties cancel not only for the
data but also for the NLO pQCD calculation. Thus, even
the predictions using older fragmentation functions for the
π0 [33] and the η [6], which can not reproduce the individ-
ual spectra [5], are in good agreement for the η/π0 mea-
surement. PYTHIA 8.2 using the Monash 2013 tune can
reproduce the pT dependence of the ratio; however it under-
predicts the ratio by about 20–30% above 3 GeV/c, albeit
still in agreement with the data to within 1–2σ . The mea-
sured η/π0 ratio is found to agree with previous measure-
ments in pp collisions at

√
s = 0.2 TeV [34] and

√
s = 7

TeV [4] suggesting that η/π0 is collision-energy indepen-
dent. Above 4 GeV/c, both mesons exhibit a similar power-
law behavior with nπ0 = 6.29 ± 0.02stat ± 0.04sys and

nη = 6.38 ± 0.09stat ± 0.15sys with χ2/ndof of below 1.8.
This is also reflected in the η/π0 ratio, which above 4 GeV/c
reaches a value of 0.48 ± 0.02stat ± 0.04sys.

7 Summary

The invariant differential cross sections for inclusive π0and η

production at midrapidity in pp collisions at
√
s = 2.76 TeV

were measured over a large range in transverse momentum
of 0.4 < pT < 40 GeV/c and 0.6 < pT < 20 GeV/c,
respectively. To achieve these measurements, for the π0 (η)
five (three) different reconstruction techniques and multiple
higher-level triggers involving the EMCal in ALICE were
exploited. In particular, a new single-cluster, shower-shape
based method was developed to identify high-pT neutral
pions whose decay photons overlap in the EMCal. Above
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Fig. 10 Measured η/π0 ratio in pp collisions at
√
s = 2.76 TeV

compared to NLO pQCD calculations [6,33] and PYTHIA 8.2 [14]
generator-level simulations using the Monash 2013 tune. The horizon-
tal error bars denote statistical, the boxes systematic uncertainties. The
data at

√
s = 0.2 TeV [34] and

√
s = 7 TeV [4] are shown with statis-

tical and systematic uncertainties added in quadrature

4 GeV/c, both the π0 and η cross sections are found to exhibit
a similar power-law behavior with an exponent of about 6.3.
The data were compared to state-of-the-art NLO pQCD cal-
culations which are found to reproduce the neutral pion cross
section within 30%, while the deviations for the η meson
are significantly larger. Calculations using PYTHIA 8.2 at
generator-level with the Monash 2013 tune turn out to be
consistent with the π0 measurement, except below 1 GeV/c,
where the calculation overpredicts the data by up to 50%.
For the η, the agreement is slightly worse than for the π0,
in particular for pT > 3 GeV/c where the calculation under-
predicts the data by about 20–30%. The η/π0 ratio, which
was found to be described by the calculations to within 1–
2σ , is 0.48 ± 0.02stat ± 0.04sys above 4 GeV/c, consistent
with previous measurements. The new data provide signifi-
cant constraints for future calculations of hadron spectra over
a large range in pT.
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