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A multi-position calibration method for
consumer-grade accelerometers, gyroscopes, and
magnetometers to field conditions

Olli Sarkka, Tuukka Nieminen, Saku Suuriniemi, and Lauri Kettunen

Abstract—This paper presents a calibration method for addition, it is often desirable that the calibration method is
consumer-grade accelerometers, gyroscopes, and magnetometersapplicable on the field. In general, the less is required from
Considering the calibration of consumer-grade sensors, it iS tha reference signals, the better the method is on the field.
essential that no specialized equipment is required to create - . .
reference signals. In addition, the less is required from the A great number of calibration methods concerning the
reference signals, the more suitable the method is on the field. accelerometers, gyroscopes, and magnetometers can be found
In the proposed method, the novelty in the calibration of in the literature. Consumer-grade calibration methods [4]—[23]
the gyroscopes lies in the exploitation of only the known net with the proposed method are summed up in Table I. In
rotations between the positions in a multi-position calibration. general, the calibration measurements, together with the sensor

For accelerometers and magnetometers, the innovation is that dels. det ine th t i that
the direction of reference signals, the gravity and the magnetic error models, aetermine the systematic sensor errors that can

field of the Earth, are estimated with calibration parameters. As be detected.

a consequence, no precise absolute alignment of the sensors is The proposed gyroscope calibration method rely only on
needed in the calibration. The rotations need not be done about known net rotationswhich can take place on the field, for
a constant axis. In the proposed r_nethod, the biases, scale faCtors’exampIe, by exploiting a cube and a jig. This approach differs
misalignments, and cross-coupling errors for all the sensors .

as well as hard iron and soft iron effect for magnetometers from those shown_ in [4]-[8], [14]'_ [15], see Table I: The
were modelled. In addition, the drift of the sensors during Method described in [9] also exploits known net rotations to
the calibration was estimated. As a result, all the sensors were estimate gyroscope scale factors and biases. In addition, the
calibrated at once to the same frame, exploiting only a cube and proposed method models misalignments and cross-coupling
a jig and thus, the method is eligible in the field. To estimate the errors.

quality of the calibratjon r.esults, 95 % confi.dence. intervals were The accelerometers are calibrated with the aid of gravity
calculated for the calibration parameters. Simulations were done ) ) . :
to indicate that the calibration method is unbiased. The direction of gravity need not be known (accurately).
S . Instead, an initial guess indicating the positive direction of the
I ndex Terms—Multi-position calibration, inertial measurement . . . . .
unit (IMU), accelerometer, gyroscope, magnetometer, confidence 9raVity is enough. The calibration parameters and the direction
interval. of the gravity are estimated simultaneously by minimizing the
residual of an overdetermined system of equations obtained
by changing the position of the sensors with rotations. This
is the novelty compared to the methods presented in [4]—[13],
T HIS paper presents a calibration method for consumei]. Again, net rotations need be known. The magnitude of
gradé triaxial accelerometers, gyroscopes, and magngre gravity need also be known to adjust the accelerometers to
tometers. In general, the goal of the calibration is to estimadgecific unit. (For estimation of the gravity, see for example
as many systematic sensor errors as possible. In practice, )
raw output of the sensor is compared with a known input, the Reference [10] presents a nine-parameter calibration method
reference signalto find the errors and adjust the sensor.  jth a necessary and sufficient condition to determine whether
The calibration methods of accelerometers, gyroscopes, af€ calibration of accelerometers is possible or not. In our
magnetometers are often based on multi-position calibratighse a twelve-parameter sensor error model is exploited. The
[2], [3], where the fixed sensor assembly is kept in a numbgality of the parameters is estimated with 95 % confidence
of different attitudes with respect to the reference signahtervals. In addition, the estimated direction of gravity can be
The reference signals can be either artificially created ebmpared to (an externally) measured value.
associated to the Earth or both. For consumer-grade sensorgome calibration methods for magnetometers are presented
it is an advantage if the reference signals require no excessiyg16]-[20]. In [16] an auxiliary vector (for example a known
equipment —such as a turn table or a Helmholtz coil. Igtitude or calibrated sensor measurements), whose component
O. Sarkka, T. Nieminen, and S. Suuriniemi are with the Tampere UniversiIn the. direction of the magnetic field is constant, is needeq
of Technology, Department of Electrical Engineering, P.O. Box 692, F|-33ld% calibrate the magnetometers. References [17]-[20] exploit
Tampere University of Technology, Finland (e-mail: olli.sarkka@gmail.comjhe magnitude of the magnetic field. The adjustment is done

L. Kettunen is with the University of Jyvaskyla, Faculty of Information; i ; ;
Technology, P.O. Box 35, FI-40014, University of Jyvaskyla, Finland In_ %friwe spemﬁe% by t?he ghySITa_lt al[[%nment of tt_hef_STgsofr
1For consumer-grade gyroscopes and accelerometers, the bias instabilit'ir'ip‘é1 : € proposed method exploits the magnetic Tield o

greater than 0.5nrad/s (100 deg/h) and 0.03m/s2, respectively [1]. the Earth as reference signal enabling the adjustment to a

I. INTRODUCTION
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TABLE |
COMPARISON OF CALIBRATION METHODS
Method Sensors  Reference signals Calibration  Calibration Lab only/ Notes
parameters  measurements Field
[4] acc constant position and zero manual motion F no equipment needed
gyro velocity of sensors
5] acc gravity mis positions F no equipment needed
gyro calibrated acc measurements mis arbitrary motion
[6] acc gravity, mis positions L sensors not adjusted
gyro angular velocity mis rate table to the same frame
[7] acc gravity, centripetal mis positions L
gyro acceleration, angular velocity — mis, g-dep  rate table
[8] acc gravity mis positions F (acc) sensors not adjusted
gyro angular velocity mis rate table L (gyro) to the same frame
9] acc gravity positions, F
gyro known rotation angles manual rotations
10 acc gravity mis positions F
11], [12] acc gravity arbitrary movements F
13 acc magnitude of gravity unknown positions F
14 gyro calibrated acc and/or mag mis rotations F
measurements
[15] gyro pseudo observations and acc arbitrary movements F no equipment needed
and mag measurements
[16] acc known attitude or calibrated mis arbitrary rotation F
mag sensor measurements mis, hi, si
[17], [18] mag magnetic field of the Earth mis positions, L
reference magnetometer
19 mag magnetic field of the Earth mis, hi, si rotations F
20 mag magnetic field of the Earth mis, hi, si arbitrary motion F
21 acc gravity mis positions F additional measurements
gyro calibrated acc or mag meas. mis arbitrary motion needed to adjust the
mag magnetic field of the Earth mis, hi, si positions sensors to the same frame
[22] acc gravity mis positions L
gyro known positions mis
mag magnetic field of the Earth mis, hi, si
[23] acc magnitude of gravity, mis unknown positions F all the sensors
gyro orientation differences, mis and rotations calibrated
mag magnitude of magnetic mis, hi, si to the same frame
field of the Earth
Proposed  acc gravity mis positions F all the sensors
method gyro known net rotations mis and rotations calibrated at once
mag magnetic field of the Earth mis, hi, si to the same frame

Note: Calibration parameters in addition to scale-factors and biases.

Abbreviations: acc is accelerometer, gyro is gyroscope, and mag is magnetometer. Mis is misalignments (including cross-coupling errors), g-dep is g-depency
of the gyroscopes, and hi and si are the hard iron and soft iron effect in calibration of the magnetometers. The letter L means calibration only in a laboratory
and the letter F in-field calibration.

known sensors’ framgsee Fig.1. As with the accelerometers, tometers enables to estimate the direction of the reference

direction of the reference signal need not be known in advance. signals simultaneously with the calibration parameters. A

This is important since the explicit specification of magnetic  reference or measured value of magnitude is needed only

field direction may not be possible without measurement for the gravity and magnetic field. In addition, there is

equipments. However, to adjust the magnetometers to specific a freedom in choosing the plane, where the calibration

unit, the magnitude of the magnetic field need be known. (For rotations take place, making the approach suitable for

measured data and estimations of the Earth magnetic field, see field conditions.

for example [25].) o The confidence intervals of calibration parameters pro-
The methods presented in [21]-[23] calibrates accelerome- vide us with a quality estimate.

ters, gyroscopes, and magnetometers, which is also the goal

here. In our approach, the calibration of accelerometers, gyro-

scopes and magnetometers do not depend on each other. The

sensors are calibrated all at once to the same frame exploiting,;q paper is organized as follows: A calibration system
only a cube and a jig. This is a step forward to the calibratiqg presented in section Il, and the calibration models and
techniques presented in [21]-{23]. solution methods in section Il and IV. The simulations and
To sum up, the novelties of the proposed method are: (et calibrations are discussed in sections V and VI, and
o The known net rotations in multi-position calibration ar¢he results and conclusions are shown in sections VII and
exploited to calibrate the gyroscopes. A possible mistakéll, respectively. In addition, Appendix A and B present
in the calibration process can be easily detected. the derivation of the confidence intervals for the calibration
o The calibration model for accelerometers and magnparameters.
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[1. CALIBRATION SYSTEM . Zg . . Z% o 10y

In the proposed calibration method the accelerometers, gy- "" Y v
roscopes, and magnetometers are kept in a number of different ¥ |.-- E 7%
positions. The net rotations between the positions are known
accurately and are used as a reference for gyroscopes. For | % T T R DI
accelerometers and magnetometers, the reference signals are . ; A
the gravity and the magnetic field of the Earth, respectively. E‘ ‘ i !

As consumer-grade sensors are considered, the angular ve- =

locity of the Earth is neglected. This is done to keep the x @ @

calibration models simple. However, if more accurate sensors * v R R
are considered, the angular velocity of the Earth should be  — | ! J E’ E‘ ? b zy
modelled. In that case, it may also be reasonable to exploit a - 2 y - :

more accurate sensor error model, for example, to take the g-
dependency of gyroscopes into account. However, this makes
the calibration of the gyroscopes dependent on the acceleration
measurements.

This paper presents an example, where in total 24 different
positions and 23 known net rotations between the positions are
exploited, see Fig. 1. The positions are known with respect
to calibration frame see Fig. 2. The rotations between the
positions can be done manually. The consecutive positions are
chosen to differ 90 deg. from each other to keep the calibration
simple to execute. However, the rotations between the position
can be done freely (need not be done about a constant axis),
provided that the measurement range of the gyroscopes does
not exceed. In practice, the sensor assembly was attached
inside a cube, which was rotated against a jig. Fig. 1. 24 different positions, net rotations, and the axes of sensors’ frame.

In all 24 positions, the sensors are kept stationary for about

5000 samples (5 seconds) to reduce the effect of the noise by ) ) ) _
averaging the acceleration and magnetic field measureme g reference signals are presented in the same frame, implying

The rotations between the positions cover both positive afift all the sensors are calibrated to the same frame (sensors’

negative measurement directions of the gyroscopes and J&ef\_me), see Fig 1. In general, the different sensor triads should

respondingly the positions cover both positive and negati9§ adjusted to the same frame or aIternauver.the rotations
measurement directions of accelerometers and magnetome@?g'."een t_he different frames should be known, if the sensors
The time to carry out the calibration measurements is abdtif exploited togeth(_ar as _for ‘?Xamp'_e qcceleromete_rs and
four minutes. gyroscopes are exploited in inertial navigation. If not adjusted

After the 24th position, the sensors can be rotated back Qp the rotations are not known, inter-sensors alignment errors

the first position to estimate the possible temporal instabiliﬂf;cur'
of the sensors: when a sensor is in the same position again,
the output of the sensor should be the same again in abseAceSensor error model

of drift. This holds for gyroscopes and for accelerometers andTwo calibration parameters, a constant scale maixe
magnetometer in a constant field. For example, rise or decregses 4,4 biasb. c R3 are éstimated for accelerometers
3 H H

of the temperature of consumer-grade sensors can cause dd oscopes, and magnetometers. The sensor error model [2]
Since two positions are exploited to observe drift, it is modeleq, o5ch sensor is

with an affine function. The adjustment is done on raw sensor R

measurements. f(t) = Sif(t) + b; + €(t), (1)

In proposed method, all the sensors will be adjusted to
sensors’ frame, see Fig. 1. Care must be taken when
sembling the measurement device inside the cube to ke
the information about the axes of sensors’ frame of t
measurement device, if the measurement device is remove
from the cube after the calibration.

1ere the elements of(t) € R? are the raw outputs of
triaxial sensorf(t) € R3 is a corresponding adjusted
tput, ande(t) is noise,e(t) ~ N(0,X). In addition, S;
onsingular for nearly orthogonal triad of similar sensors.
0 adjust the output of the sensors, it is enough to find
S; and b;. However, it is possible to choose different de-
compositions forS;, which lead to different interpretations
of the calibration parameters. In this pajsgris chosen to be
In this section the sensor error model is first introduces;, = Di(Di‘lsi), whereD; is a diagonal matrix. Its diagonal
and thereafter the calibration models are constructed for gyelements are the norms of the columns $f that is, the
scopes, accelerometers, and magnetometers. In the modelscalle factors of the sensors. The matiX; 'S;) models the

IIl. CALIBRATION MODELS
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cross-coupling errors and misalignments of the sensors. Ttiie vectors,, € R contains the columns d8!. Equation
approach is unambiguous in the sense that there is no né&dis non-linear, since in addition to the angular velocity
to fix any of the measurement axis of the sensor triad. Foreasurements, the matd¥ depends on unknown calibration
magnetometers(,DngB) andbp model also hard iron and parameters.

soft iron effect caused by magnetic material [20]. However, the The trapezoid rule residual in expression (4) attains the
sensor error model models the hard iron and soft iron effexdro value with a number of arguments, i.e. the corresponding
properly, if magnetic material is "on board” that is, there igquation is underdetermined witliN — 1) residual equations
no translation and no rotation between magnetometers anddinel 4N + 12 unknowns, whereN is the number of time

magnetic materials. indices. The trapezoid rule residual is therefore supplemented
with a residual to account for the known net rotations. The
B. Calibration model for gyroscopes initial attitude in the calibration coincides with a reference

The calibration parameters of the gyroscopes are estimafne (the calibration frame in the next section), hence a
simultaneously with the attitude from the measured anguf@yaternion corresponding the first attitude, is trivial. A forward
velocity data and the known net rotations. The position me@PE solution of (2) with pre-adjusted angular velocity data
surements between the calibration rotations are excluded. THfsPre-adjustment, the gyroscopes are adjusted with the scale
is done to reduce the effect of the possible remaining drift dACtors and biases taken from the data sheet of the sensor
the results and to keep the problem reasonable size. and estimated from static sensor measurements, respectively)

In general, the attitude can be solved from a differenti@PpProximates the quaternion at the end of the first rotation,

equation, if the angular velocity over an interval in questiod"d the exact end attitude can then be represented by the
and the attitude at a single time instant are known. Tiearby quaternion of the correct braAcBubsequent reference
exploitation of the known net rotations within the intervafiuaternions at the end of each net rotation are determined sim-

enables the estimation of the calibration parameters. ilarly and gathered inta*. With this method the determination

The rotation from the reference attitude, i.e. the attitude, c&h réference quaternions can be automated. _
be given as a quaternion-valued functigft) : R — R?. If the All the quaternions to be estimated are includedkjrand
initial attitude q(to) is known, the quaternions can be solve@ binary matrixG is constructed to associate the very first

from aninitial value problemwith the differential equation [2] @nd then the last quaternion estimate of each rotation to the
corresponding 24 reference values. The supplementary attitude

q(t) = %W (w(t)a(t) V telto,t1] (2) residual can be expressed as

where the elements of the mati¥ are the given (adjusted) ro(x) = Gx — x*. (5)

angular velocityw components .
The proposed method integrates the measured angular ve-

0 —we(t)  —wy(t) —wa(t) locity to find the attitude and the calibration parameters.
W (w (1)) = wa (t) 0 we(t)  —wy(t) Possible drift in measurement data can affect the estimated
wy(t)  —w.(t) 0 wq (1) calibration parameters. However, the drift of the sensors is
we(t)  wy(t) —wa(t) O compensated as explained in section I1. In addition, the output
andq is subject to the normality constraint of the gyroscopes need to be integrated only over the each

rotation period between the positions. The rotation time is
la®l =1 v tefto,t]. ®) kept short, about two seconds per rotation. If the integration

Exploiting the sensor error model (1), the adjusted angulime and thus the possible errors caused by the drift are to

velocity w(t) in (2) is w(t) = S, (@(t) — b,). To approx- be reduced, it is also possible to do faster rotations, if the

imate the solution of (2) wittS;* andb,, (for gyroscopes, measurement range of gyroscopes permits. On the other hand,

instead ofS,,, it is more convenient to estimate mati$x;!, if the drift is random, the redundant rotations compensate the

which is actually needed to adjust the gyroscopes), (2) needdftect of the drift to calibration parameters.

given as a discretized system of equations. This can be donén the next section, attitudes and the calibration parameters

by applyinga trapezoidal rule[26] to (2). The trapezoidal (vectorx) are estimated by minimizing the sum of squared

rule is symmetric for forward and backward process and thigsidual normg|r; (x)|| and||r,(x)|| with different weight.

property is natural here, since the attitude for all time instances

and the- calibration paramgters are.estlmat_ed S'muna.neouﬁq,IY'Calibration models for accelerometers and magnetometers

To require that the trapezoidal rule is satisfied approximately ) )

over the time intervalty, 1], the following residual equation Accelerometers and magnetometers are calibrated indepen-

is obtained dently, but the calibration method is the same for both sensor.
LW (w1) + 1] qu + [LAW (ws) — T] g The calibration parameters are estimated from the means of

Ehw (wQ)JrIJ a + Ehw (wg)fl] as the reference signal (the gravity and the magnetic field of

rx) = : . (4 the Earth) measurements made in the 24 different positions.
[LhW (wy—1) +1] av1+ LW (wn) — T an The method also estimates the direction of reference signals

and thus they need be known only approximately in advance.
; ; T T T T1T17 15

wherer; is the residualx = [q{ q3 ... gy sibl] ", Tisa
4 x 4 identity matrix, andh = t; — t;_1 is the step size. Ix, 2The quaterniongy and —q always correspond to the same attitude.
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However, the magnitudes of reference signals must be knoafnunknowns is 14, meaning that the system of equations is
to adjust the sensors to specific units. overdetermined.

To construct the calibration models for accelerometers andDuring the calibration measurements it is assumed that
magnetometers, the rotation between two reference frameseference signals are constant. This holds very accurately for
expressed by direction cosine matrixC(¢) : R — R3*3. The gravity. Instead, the magnetic field of the Earth can change
matrix C{ maps the references frotocal framg where the as a function of position. The changes in position can be
reference signals are presented, to the calibration frame, wheliminated by keeping the magnetometers in the same place in
the calibration rotations, presented in Fig. 1, are specified. Téeery position. This can be done installing the magnetometers
matrix C:(¢,) maps the references from calibration frame tm the centre of the cube and setting the cube to the same place
the sensors’ frame, whose axes are shown in Fig. 1. With tlaiter every rotation.
notation, the calibration models for triaxial accelerometer and
magnetometer at each unkonwn position are IV. SOLUTION METHODS

g(tr) = S.C5(tx)Cig+ by + €, 6 The solution method is first given for the calibration model
Bt ) = SECHt)CSB + by + 7 of the gyroscopes and thereafter for the accelerometers and
(t 5C:(t)Ci BT €B, magnetometers. In both cases, the residual norms of the
respectively. On the left in (6) and (g)andB are the means calibration models are minimized, but different methods are
of the gravity and the magnetic field measurements and @pplied.
the rightg and B are the corresponding references. For the
meaning ofS;, b;, ande;, see eq. (1). A. Gyroscopes

The matrix Cj can be given in terms of two inclination 1o cajiprate the gyroscopes, two residuals were derived,

angles as namely the expression (4) and the expression (5). The norms
[ 1 0 0 cosf 0 —sinf of the residuals can be minimized to find the attitudes and
Cs = 0 cosa sina 0 1 0 especially the calibration parameters. However, if the residual
0 —sina cosa sin3 0 cosf norms are to be satisfied with different accuracy, the weight
r cos 3 0 _sinf between differgnt re_sidual norm can b_e set. Technically, this
_ sinasinf  cosa  sinacosf can bg done with le_hor.lov regularization. _
cosasinf —sina cosacosf A Tikhonov regularization problef27] for residuals (4) and

(8) (5) can be given as

If the calibration frame angl the chal fr_ame c0|.nC|de, thg angles %, = argmin {11 (x)|2 + Allra(x)[|2} (9)

a and 8 are zero andCy is an identity matrix, see Fig. 2. x

This holds approximately for calibration of accelerometesghere the real parameter > 0 is calledthe regularization

considered in the results section VII. The local plane is chosparameter The regularization parameter weights the latter

so that the reference in question is perpendicular to it. residual norm compared to the first residual norm. Accord-

ingly, the greater thg, the more the latter equation is weighted

Calibration plane and thus the more the known positions are trusted. In addition,

all the positions are weighted equally.

As the minimization problem (9) is non-linear, an iterative
method is needed to find an approximative solution for it.
In this case, Gauss-Newton [28] is applied. For this, the
minimization problem (9) is rewritten in a least squares form

x|

ro(x
Fig. 2. The calibration plane and the local plane with corresponding frames. 2( )
Gauss-Newton needs Jacobian matrix and an initial guess to

The anglesy and 3 of the matrix C{ could be measured operate. The Jacobian matdxof (10) is
with other methods. However, the calibration is to be indepen- d
dent from additional measuring devices and thus the angles J= { ?11;12(3) ] . (11)
are estimated by the calibration routine. The ma@(¢x)
(the mapping between the calibration and sensors’ frame)Tis choose the initial guess, for Gauss-Newton, the quater-
known from Fig. 1, but it can also be determined exploitingions were solved as an initial value problem from (2) with
the angular velocity measurements explained in section lll-Biitial valueqy = [1 OOO]T (for this choice the calibration and
The first position is chosen to be the calibration frame. Hendbge sensor frame are parallel in the first (initial) position in Fig.
the calibration and sensors’ frame are chosen to coincidelaand pre-adjusted angular velocity In pre-adjustment, the
the first position in Fig. 1, implying thafs(¢,) is the identity angular velocity measurements were adjusted with the scale
matrix. factors given by the data sheet of a manufacturer [29] and
As there are three equations per position, the total numlibe biases estimated from static sensor measurements. The
of equations in calibration model 8% 24 = 72. The number solution of the initial value problem with the scale factors

Local plane
(10)

A . r
X) = argmin
A gl A\L/2
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and biases were used as initial guessfor Gauss-Newton  3) Computexy1 = x; — Axy, where Axy, is the linear
(the off-diagonal elements &' were set to zero in initial solution of (J7WJ,) Ax, = JLWp (xi).

guessxp). The more accurate initial guess for attitude can be 4) If stopping criterion ||xx+1 — xx|| < ¢ is not met,
obtained solving the initial value problem (2) over the each  setk = k£ + 1 and continue from step 2). Otherwise
calibration rotation separately exploiting corresponding known  discontinue the iteration.

position as an initial value. In the generalized least squares problem, the weight matrix
The solution method does not guarantee that the normaly is the inverse of the variance-covariance matrix of the
condition (3) holds exactly. However, the norm of estimategheasurementX. In general X is not usually known for sure,
quaternions differed from one in order ®6~° including the but in some case it can be approximated. In this case3
rounding errors. However, if the difference is to be reducegdiagonal blocks of: concerning three sets of measurements
one possibility is to add residuals of pseudo-measuremejiiach position is approximated with their sample covariance
q/ q; = 1 in latter residual norm in (9). This brings the normmatrix multiplied by1/n, wheren is the number of samples
of the quaternion closer to one. in each static sensor measurement. The multiplicatiom /oy
1) Finding regularization parametek: There are several js an effect of the exploitation of the sample means in the
methods to find the regularization paramelerPerhaps the calibration, and is explained more detailed in Appendix A.
most popular ones arguasioptimality criterion generalized The measurements concerning different positions are assumed
cross-validation and L-curve criterion [27]. It turned out independent, meaning that the off-diagonal blocksSbfre
that, in this case, the L-curve criterion did not work. It als@eroes. The method is akin teaximum likelihood estimation
turned out that ifA was changed within the interval—=- The initial guess was chosen by exploiting data sheets
10® the corresponding changes in the calibration parametefsthe sensors and the knowledge that the directions of the
were observed at third decimal. In addition, for small angheasurement axes of the sensors are close to the axes of
great parameter values the calibration parameters saturatgghsors’ frame: The biases and the scale factors given by
that is, they did not change. Since the net rotation and thdsta sheets were used for the initial gues®pfand diagonal
the reference positions are known accurately, indicating a gre#ments o8,. The off-diagonal elements &; and the angles
parameter value, th® was chosen from the greater saturation and 5 were set to zero.
point. In practice, thex was sought by increasing it and If the direction of the sensors’ axes are not close to the
calculating the calibration parameters until they saturated. Fptes of sensors frame, the off-diagonal elementS;aire not
this technique the parameter valde= 10~" was found and approximately zero. If the angles and 5 can be estimated
used to calculate the calibration parameters. roughly with some other method, the problem becomes linear.
The solution of linear estimation problem can be exploited for

B. Accelerometers and magnetometers the initial guess of the non-linear minimization problem.

The calibration parameters of the accelerometers and the V. SIMULATIONS
magnetometers are estimated from the calibration models (6)

and (7), respectively. Since the calibration models are non-Actual sensor measurements cannot be exploited to show if

linear, an iterative method is needed to find the calibraticme proposed calibration method is unbiased or not, since the

parameters. If information about the reliability of the measurd Y€ calibration parameters are not known. To take a stand on

ments is available, a weight matrix can be exploited to tal@e unbiasedness of the method, simulations were done.
the unreliability of the calibration measurements into account.
The measurements of better quality will be weighted mo/ Simulation of gyroscope measurements
than the measurements of lower quality. To test the unbiasedness of the calibration method of the
For presentational reasons, let us write both calibratigfyroscopes, the angular velocity data of calibration rotations
models (6) and (7) in a forny = h(x). Its residualp (x) was generated. Each rotation was generated exploiting Ro-
is drigues’ rotation formula. The rotation axis was made to
change its direction during the rotation to make the generated
p(x)=h(x)—y. (12) angular velocity more realistic. The corresponding angular
To find an estimate for the calibration parametersit is Velocity measurements were created exploiting the sensor error
possible to look for a solution for a non-linear generalize@hodel (1) with the generated angular velocity and the known

least squares problem calibration parameters (shown in the Table VI). The noise
in sensor error model was chosen to be normally distributed
X = argmin {p (x)T Wp (x)} , (13) with a variance of the order of the pre-adjusted measurements
X

. _ . . (4 x 107* (rad/s)? ). With this setup, the simulation was
where W is the weight matrix. The algorithm to solve therepeated 100 times with different noise realizations.
non-linear generalized least squares problem goes as followg separate simulation was done to estimate the 95 % con-

[30]: fidence intervals of the calibration parameters for gyroscopes.
1) Choose an initial guess, and a suitable stopping For this the angular velocity data was created and it was chosen
criteriond. Setk = 0. to be sine and cosine functions. The corresponding angular

2) Compute the Jacobian matrly, = %h (xx) velocity measurements were created exploiting the sensor error
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model (1) with the angular velocity data and the knowmportant to verify and produce information about the quality
calibration parameters. The attitude was estimated from tbethe calibration parameters. In this paper this is done as
adjusted angular velocity measurements (the adjustment vi@léows:

done by exploiting the estimated calibration parameters) with, The estimated anglesr and 3 (the direction of the
the known initial and final attitudes. The confidence intervals gravity) in calibration of accelerometer were used as
were calculated for the estimated calibration parameters with a criterion for a successful Ca"bration, since they can
100 different noise realizations. The simulation results are pe measured with other methods and compared to the

shown in section VII-C. estimated angles. In addition, if more than one mea-
surement unit is calibrated at the same time, the angles
B. Simulation of accelerometer and magnetometer measure- Of different measurement units are the same (if there
ments are no unmodelled sensor errors present) in successful
calibration.
Confidence intervals for calibration parameters of ac-
celerometers, magnetometers, and gyroscopes were also
calculated. Especially, the confidence intervals of biases
give information about the quality of the calibration
parameters.

To study the calibration method of accelerometers and
magnetometer, measurement data was created. The calibra-
tion models (6) and (7) were used with the magnitudes of
referenced|g|| = 9.80665 m/s? and ||B|| = 51000 nT and
the known calibration parameters (presented in the Table VI).
The anglese and g were set 15 and 10 deg. and the noise o )
was normally distributed with variances of the order of the real The calibration method was tested on a horizontal plane and
measurement2(x 10~ V2 for accelerometers arlx 10~ ©nan mc_lmed plane. In addition, the robustness of the method
V2 for magnetometers). The simulations were repeated 1048 studied.
times with different noise realizations. The results are shown
in section VII-C. VII. RESULTS

In this section, the calibration and simulation results are
VI. TESTS given and discussed.

The proposed calibration method was tested with four
custom-built measurement units (size 17 cm by 2 cm apd calibration results of a horizontal plane
mass 13 g without battery), that contained a triaxidlé g An example of calibration parameters of the gyroscopes
accelerometer [31], thre&105rad /s gyroscopes [29], and a P P ay pes,

triaxial 0.6 mT magnetometer [32]. The analog signals Oa[[ccelerometers, and magnetometers (measurement unit 1 in

o . 0 ; .
the sensors were converted to digital form with a 24-bit ADFable IV) are given in Table Il with 95 % confidence intervals.

converter at 1 kHz sampling frequency. The aluminium cube,, _.. ) .
. Lo . - -JOtations made manually on a plane, which was set horizontal
exploited in calibration measurements, is shown in Fig. 3 with,

. . with spirit level with+0.2 deg. accuracy. In the calculation, the
four measurement units. The same measurement unit was us

in [33] to analyse javelin throwing mechanics calibration parameters converged (towards optimal solution)
ysel 9 ' in less than 8 iterations. The magnitudes of the reference

signals were||g|| = 9.80665 m/s?> and ||B| = 51000

nT. The magnitude of|B| was taken from [34]. Derivation

of the confidence intervals is presented in Appendix A for
accelerometers and magnetometers and in Appendix B for
gyroscopes.

In the calibration of the gyroscopes, the calibration param-
etersS_ ! andb,, were first estimated from the pre-adjusted
angular velocity measuremefitsand the known positions.
ThereafterD,, and D 'S,, were calculated fron$_!. Due
to the pre-adjustmeni),, can be interpreted as scale factor
error andD;'S,, as misalignments and cross-coupling errors
of the pre-adjustment. For accelerometers and magnetometers,
the calibration parametei3;, D;lsi, andb; were estimated
from raw sensor measurements.

The confidence intervals of the calibration parameters of
gyroscopes were not calculated from the calibration measure-
ments, since this led to a problem of prohibitive size. For this
reason a separate test measurement, in which the gyroscopes
were randomly rotated for about 5 seconds, was done to
estimate the confidence intervals. The attitude was estimated

he calibration parameters were estimated from calibration

Fig. 3. The cube with four measurement units.

) Since _the estimated callb_rat|0_n parameters do not alone_g_'VQDre-adjustment is done to find an initial value of the attitudes for a non-
information whether the calibration was successful or not, it lisear minimization problem, see section IV-A.
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TABLE Il
A NUMERICAL EXAMPLE OF THE CALIBRATION PARAMETERS OF THE GYROSCOPESCCELEROMETERS AND MAGNETOMETERS WITH95 %
CONFIDENCE INTERVALS ESTIMATED FROM CALIBRATION MEASUREMENTS DONE ON A HORIZONTAL PLANE

diagD,,) D;'S. b, (mrad/s)
0.9392£0.0048 1.000GE0.006 0.0006:0.011  —0.0009£0.0037 0.5603E1.0
0.9404£0.0036 —0.0006£0.015 1.0008-0.004 0.0009:0.0082 | —0.3923£0.8
0.9837-0.0097 0.000G+0.007 —0.0018£0.005 1.0008:0.0098 | —1.6733:1.6
diagD,) (V/m/s?) D.'S, b (MV)

6230.3£0.18 0.9999£0.28¢ ~ 0.0326£0.28¢ 7 0.0002£0.29¢ ¥ | 1617.9:0.0010
6269.9-0.15 | —0.0123+0.23e 4 0.9995+0.24e—%  —0.0024+0.25¢=4 | 1622.6:0.0009
6032.3:0.31 | —0.0024+0.50e 4 0.0021-0.49¢—4 0.9999+0.50e~* | 1608.0:0.0017
diagDp) (V/T) D;'Ss bp (mV)
2749.5£0.067 1.000GE0.25¢ *  —0.0163t0.24¢ 2 0.063GE0.24¢ ¥ | 2588.G:0.0020
2358.3:0.062 | —0.0035+0.27¢ 4 0.9998t0.27¢~4  —0.0044£0.27¢~4 | 2536.8:0.0019
2244.4+0.058 0.005Q£0.26¢ 4 0.0032£0.25¢ 4 0.997G£0.26e~4 | 2544.5:0.0017

from adjusted angular velocity and the known initial and findhat the confidence interval includes the true value (not known,
attitudes. The attitude estimation is akin to calibration methduit estimated).
of the gyroscopes, see section IV-A, with a difference that theThe estimated angles and 5 are close to zero degrees
calibration parameters are now known. The estimated attitualed inside the given intervak0.2 deg. The 95 % confi-
and the calibration parameters were used to estimate the codéince intervals are also well inside the interva).2 deg.
dence interval. This approach exaggerates the magnitude of itmvever, the estimated angles with 95 % confidence intervals
confidence intervals, since instead of 24 known positions orfgtween different measurement devices do not overlap. This
two reference attitudes were exploited. For accelerometeen be a result from the fact that there are unmodelled
and magnetometers, the confidence interval of the calibratisensor errors present causing error to the estimated angles
parameters were estimated from the calibration measuremeatsd/or the estimated covariance matrices used in calculations
1) Erroneous positions and robustness of the methbite  of calibration parameters and confidence intervals differ from
expected exact end attitude of each rotation is known froffe true covariance matrices. However, since the angles are of
Fig. 1, but it can be determined from forward ODE solutiofhe same order, the calibration of the accelerometers can be
of (2). If the estimated end quaternion is not near to thg@nsidered successful.
reference quaternion (in calibrations, the estimated elementdable 1V shows also the 95 % confidence intervals for the
of the quaternions differed in maximum 0.05 from the exaéfases of the accelerometers, magnetometers, and gyroscopes
elements and less than 0.1 difference in all elements represé@tsall four measurement units. For accelerometers and mag-
the same nearby quaternion), there is a reason to believe fgiometers the confidence intervals of the biases are given as
the user has done a mistake during the calibration rotatiodgltages and Sl units. The confidence intervals of the biases of
However, if over 0.1 differences are found and the rotatio@§celerometers in different measurement units are close to each
after erroneous rotation do not follow the rotations presentééher. However, in every measurement unit, the confidence
in Fig. 1, but are known, the calibration is possible. Even if tHaterval of the bias of the z-axis accelerometer is about double
rotations cannot be recovered after the erroneous rotation, @enpared with other two axes. This may be because the
rotations before the mistake can be exploited in calibrationspecifications [31] for z-axis accelerometer were different from
To demonstrate this and robustness of the proposed cali?d1ler two axes. These results inQicate that after the a}djustment
tion method, the calibration parameters, shown in the Tadft¢ accuracy of the x- and y-axis of accelerometer is greater
I, were recalculated for the gyroscopes, accelerometers, dR@n the z-axis. The confidence intervals of the biases of the
magnetometers by excluding the positions 21-24 in Fig. 1. r)slagnetornetgrs are close to each other.and no significant or
comparison between calibration parameters with the exclud®$tematic differences occur between different measurement
positions and the parameters calculated by exploiting &its. The same holds also for the gyroscopes.
the positions reveals that the differences in the calibration
parameters are small. Thus, the method can be considdiedCalibration results of inclined plane
robust and the possible error made by the user, especiallyfo demonstrate that the calibration parameters can be esti-
towards the end of the calibration rotations, does not ruin thgated also from measurements made on an inclined plane,
calibration. the calibration was repeated for measurement unit 1 on a
2) The angles and 5 and the biases of the sensors: calibration plane, which deviated from horizontal with the
Since the calibration rotations were done on a plane thatglesa = 14.9 deg. and5 = 10.1 deg. with accuracyt-0.3
was set horizontal with accuracy 6f0.2 deg., the estimated deg., see Fig. 2. The estimated calibration parameters for the
anglesa and s in the calibration of the accelerometers shouldyroscopes, accelerometers, and magnetometers with 95 %
not deviate from zero more thai0.2 deg. in a successful confidence interval are shown in the Table V. The differences
calibration. The angles with 95 % confidence interval afgetween the parameters estimated from calibration measure-
shown in Table IV for four different measurement units. Theents made on the inclined plane and on the horizontal plane
95 % confidence interval means that there is 95 % probabilityclude run-to-run biases.

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2017.2694488

TABLE Il
THE ESTIMATED CALIBRATION PARAMETERS FOR THE GYROSCOPE®CCELEROMETERS AND MAGNETOMETERS WITH95 % CONFIDENCE INTERVAL,
WHEN THE POSITIONS21-24IN FIG. 1 ARE EXCLUDED IN CALIBRATION.

diagD,,) D;'S. b, (mrad/s)
0.940%:0.005 1.000GE0.005 0.0005:0.020 —0.0007:0.004 0.1553F1.1
0.9404£0.004 —0.0008£0.028 1.0008:0.004 0.0028:0.012 | —0.2708:0.9
0.9836+0.018 0.000G£0.008 —0.002G£0.007 1.0008-0.018 | —1.7055+2.8
diagD,) (V/m/s?) D.'S, b (MV)
6228.4£0.28 0.9999£0.45¢  ~ 0.0326£0.28¢ 7 0.0002£0.29¢ ¥ | 1617.9£0.0013
6269.9-0.15 | —0.01200.38¢ 4 0.9995+0.24e—%  —0.0024+0.25¢~4 | 1622.5£0.0011
6032.3:0.31 | —0.0046+0.78¢ 4 0.0026+0.49¢—4 1.00000.50e—* | 1608.0+0.0021
diagDg) (V/T)) D,'Sp bp (MV)
2740.1£0.095 1.000GE0.35¢ 7  —0.0162£0.24¢ 2 0.0632£0.25¢ ¥ | 2587.8:0.0024
2359.6+0.062 | —0.0027-0.40e 4 0.9998t0.27¢~4  —0.0042:0.27¢~4 | 2536.8:0.0023
2245.2+0.058 |  0.0052+0.37¢~4 0.0032£0.25¢ 4 0.997G£0.26e4 | 2544.5:0.0020

TABLE IV
THE ESTIMATED ANGLES WITH95 % CONFIDENCE INTERVAL AND 95 % CONFIDENCE INTERVAL FOR BIASES OF THE ACCELEROMETERS
MAGNETOMETERS, AND GYROSCOPES

Measurement unit 1 2 3 4

a (deg.)

0.03740.0010

0.041Z0.0010

0.04040.0009 _ 0.0346:0.0009

B (deg.) 0.0293:0.0010 0.019%0.0009  0.02180.0009  0.0242-0.0009
accby (uV), (mm/s?) +0.99,4£0.16  +0.92,+£0.15  £0.92,+0.15  +0.88,£0.14
acchy (uV), (mm/s?)  +0.85,+0.14  +0.8540.14  +0.87,4£0.14  +0.84,+0.14
acch, (uV), (mm/s?)  +£1.7,40.28  +17,4028  +1.7,+028  +1.6,+0.26

mag b, (uV), (nT) +2.0,40.71 +1.6,4+0.58 +1.6,+0.56 +1.5,+0.56

magb, (uV), ("T)  +£1.9,40.79  +16,4066  +1.6,+0.67  +1.6,+0.69

magb. (uV), (nT) +1.7,+0.74 +1.5,+0.65 +1.5,+0.64 +1.5,+0.65

Qyro by (mrad/s) 097 10.65 11 10.95

gyro by (mrad/s) +0.80 +0.85 +2.0 +0.94

gyro b. (mrad/s) +1.6 +0.62 +0.75 +0.58
TABLE V

THE CALIBRATION PARAMETERS WITH95 % CONFIDENCE INTERVAL FOR THE GYROSCOPES\CCELEROMETERS AND MAGNETOMETERS ESTIMATED
FROM CALIBRATION MEASUREMENTS DONE ON AN INCLINED PLANE

diag(D.,) D.!S. b., (mrad/s)
0.9451£0.0007 1.000GE0.0007 0.00020.0011  —0.000%:0.0020 —0.95£0.76
0.9435:0.0020 | —0.001G+0.0020 1.0008:0.0020 0.0023:0.0015 2.5+0.81
0.9820Q£0.0011 0.004Q£0.0020  —0.0012+0.0015 1.0008:0.0011 1.7+0.74
diagD,) (pV/m/s?) D, 'S, b (MV)

6227.2£0.13 0.9999£0.21¢ % 0.0332£0.21¢ 2 0.00010.21¢~ % | 1617.9:0.0008
6267.4:0.11 | —0.013H-0.18e—* 0.9995+0.18¢=%  —0.0024+0.19¢—* | 1622.6:0.0007
6031.10.22 | —0.002H-0.37e~* 0.0015+0.37¢ 4 1.00000.36e—* | 1608.1:0.0013
diagDp) (V/T)) D.'Sp bp (mV)
2651.9£0.047 1.000QE0.18¢* —0.0153£0.18¢ ~ 0.0628£0.19¢ ¥ | 2587.9:0.0015
2270.4:0.047 | —0.0021-0.21e~4 0.9998+0.21e=*  —0.0052+0.22¢—4 | 2538.6:0.0014
2160.1-0.044 0.0057:0.20e 4 0.003G+0.20e—4 0.997G:0.21e~* | 2544.9+0.0013

There are small differences between the scale factors avf effect from the fact that on inclined plane the acceleration
magnetometers (diagonal elementsIof) between the cal- measurements in different positions differed more from each
ibration done on the horizontal plane (see Table II) and arther compared to the horizontal plane. The same holds also
the inclined plane. The calibration on the horizontal plane afor the magnetic field measurements. Instead, the angular
on the inclined plane was done on the same place, but oweadocity measurements during the rotations are influenced by
different day. In calculations, the magnitude of the magnetibe user. On the inclined plane, the deviation of the rotations
field of the Earth was assumed to be the safff2||(= 51000 from a constant axis was greater than on the horizontal plane.
nT) in both calibrations. Since the difference in scale factofithus, calibration on an inclined plane with not-too-steady
is of the same order between different measurement axes, thanual rotations is preferable.
indicates that the magnitude of the magnetic field of the Earth
may have slightly changed between the calibrations.

The confidence intervals of the calibration parameters onlin the calibration of the accelerometers the estimated angles
the inclined plane are smaller than the confidence intervalsand g were 15.0269 + 0.0007 deg. and10.0926 + 0.0007
estimated on the horizontal plane. They suggest that makeg. Thus, the method is also able to find the direction of the
accurate calibration is obtained on the inclined plane. This dgsavity.
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C. Simulation results to show unbiasedness of the method APPENDIX A
DERIVATION OF CONFIDENCE INTERVAL FOR CALIBRATION
The method is called unbiased, if the difference between PARAMETERS OF ACCELEROMETERS AND
true value and the expectation value of the parameter being MAGNETOMETERS

estimated is zero. This can be tested with simulations. For,

this, the angular velocity, acceleration, and magnetic field datazhii g?lgft:(raa;gr;nmodel for accelerometers and magnetome-

was created as explained in section V. The true calibrati&f

parameters are shown in the Table VI and the means of the h(x) =y (14)
estimated calibration parameters are shown in the Table VII ’
with the means of 95 % confidence interval. where the actual measuremenjts = y + € contains the

For gyroscopes the differences between the true and gi€or free measuremengsand the measurement errersThe
mean calibration parameters are within a thousandth. Thé&dements of vectok = x+¢ are the calibration parametess,
results indicate that the calibration method of gyroscopes ce@ntains the true calibration parameters gnsl corresponding
be considered unbiased. In the simulations of the confiderff&or due toe. The goal is to find the effect af on &.
intervals, it was noticed that the condition number of the To find the confidence interval for the estimated calibration
matrix C, see Appendix B, was rather great in some noiggrameters, the covariance matrix &fdenoted byV(¢), is
realizations. This increases the confidence intervals. first derived. The cost function of non-linear generalized least

For accelerometers the true and the mean of estimagiyares problem (13) is
calibration parameters are practically equal. The same holds . Txrion—1
also for magnetometers. Thus, the calibration method for ac- fx)=(h(x)-y) VF)~ (h(x) ~y), (15)
celerometers and magnetometers is unbiased. For accelergiere V(§) is the variance-covariance matrix of the mea-

eters the means of the anglesand 5 were 15.0008:0.0011 gsyrements. Since variance-covariance matrix is a symmetric
deg. and 10.00G80.0011 deg. and for magnetometergatrix, the derivative of the cost function is

15.0000£8.2¢~* deg. and 10.00G88.1e~* deg., which are
gqual tq the t.rue angle values= 15 deg. ands = 10 deg. 0f(x) =23"VF) ' (h(x) - y), (16)
in the simulation. Iox
whereJ = h’ (x) is the Jacobian matrix. Since the space of
the calibration parameters is unbounded, the minima of the
function f(x) occur at critical pointsxg, Where% =0
holds.
For the actual measurements and the calibration parameters
This paper presents an enhanced multi-position calibration
method with a sensor error model of the biases, scale factors, JIVE) ' (h(xo+ &) —(y+e€)=0 17)

misalignments, and cross-coupling errors of consumer-grad . . . .
1salig upiing . 9 }\1ds, whereJz = h’(x). Approximating the functionh

VIII. CONCLUSION

accelerometers, gyroscopes, and magnetometers. For mag@es> W "
9y b 9 %cally with Taylor sumh(x+€&) =~ h(x()+J& and exploiting

tometers, hard iron and soft iron effect is also modelled. T
E/fact thatlg = J,

results show that the gyroscopes can be calibrated successfm

explloiting only knqwn net rotations in multi-position cali- ITVE) " (h(xo) —y) +ITV(E) L (JE—e) =0 (18)

bration. In calibration of accelerometers and magnetometers

the direction of the reference signals — the gravity and the obtained. Hence, the errogsand e satisfy

magnetic field of the Earth — need be know only approximately

in advance. JV(E) I =T"V(y) e (19)
The estimgted direction of the gravity, which can be easig/nd subsequently

measured with other method and thus compared to the esti-

mat_ed direction, was exploited to assess t_he success of the cali- ¢ = (ITV(y) 1) -1 ITV(§) e (20)

bration of accelerometers. The 95 % confidence intervals were

calculated for the calibration parameters of the accelerometdtsr the covariances of linear combinations

gyroscopes, and magnetometers to estimate the quality of the "

calibration results. In addition, simulations were done to show(é) = (37V()~3) " 37V(3) V() ((37V(3)3) 3™V ) (21)

the unbiasedness of the method. _ holds [35], [36]. Exploiting the resulv(§) = V(y + €) =
In practice, to calibrate the sensors with proposed methqgée)’ V(£) reduces to

no precise alignment of the sensors with respect to the

reference signals and no additional measurement devices are V() = (JTV(e)—lJ)*l ) (22)

needed: The calibration rotations can be done manually ex-

ploiting only a jig and a cube. Thus, the calibration can be The covariance matrix o¥(e) needs to be carefully ac-

done on the field. As a result, the method calibrates all tleeunted for, since each elementjofs themeanof static sen-

sensors at once to the same frame. sor measurements - and it is, in fact, the maximum likelihood
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TABLE VI
THE CALIBRATION PARAMETERS EXPLOITED TO CREATE SIMULATIONS FOR THE GYROSCOPESCCELEROMETERSAND MAGNETOMETERS.

diagD,,) D;'S. b., (mrad/s)
0.9581| 1.0000  0.0003 —0.0008 —1.0000
0.9539| —0.0021  1.0000  0.0023 2.0000
0.9765| 0.0056 —0.0015 1.0000 5.0000
diagD,) (pV/m/s?) D,'S, b (MV)
5869.3| 0.9964  0.017/0  0.0852 1683.0
6136.6| 0.0652  0.9997 —0.0163 1637.0
6082.0| —0.0493  0.0164  0.9961 1618.0
diagDp) (V/T)) D,'Sp bp (mV)
22464 1.0000  0.0089  0.0089 2535.3
2597.3| 0.0010  1.0000 —0.0007 2514.8
2769.1| —0.0031 —0.0004  1.0000 2487.6
TABLE VI

THE MEANS OF THE ESTIMATED CALIBRATION PARAMETERS FOR THE GYROSCOPESCCELEROMETERS AND MAGNETOMETERS WITH95 %
CONFIDENCE INTERVALS

diagD,,) D;'S. b, (mrad/s)
0.9581:0.018 1.000GE0.019 0.0003:0.020 —0.0009£0.018 | —0.989GE4.0
0.9539:0.016 —0.00210.016 1.0008-0.017 0.0023:0.014 2.00113.8
0.9765£0.015 0.0056£0.011 —0.0015£0.012 1.0008:0.015 5.0073£9.1
diagD,) (V/m/s?) D, 'S, b (MV)
5869.3:0.19 0.9964£0.31c % 0.017Gt0.31e % 0.0852£0.31e % | 1683.G£0.0011
6136.6£0.16 0.0652+0.26¢ 4 0.9997-0.26e—4  —0.0163t0.26¢=* | 1637.0:0.0009
6082.0:0.31 | —0.0493t0.51e~ % 0.0164+0.51e 4 0.9965+0.51e~* | 1618.0£0.0018
diagDp) (V/T)) D,'Sp bp (MV)
2246.4-0.067 1.0006£0.30e % 0.0089+0.30e 4 0.0088:0.30e—* | 2535.3£0.0020
2597.3:0.065 0.0010£0.25¢ % 1.0000£0.25¢~%  —0.0007:0.25¢—* | 2514.8:0.0019
2769.2:0.058 | —0.0031:0.21e=%  —0.0004£0.21e % 1.0000£0.21e~* | 2487.6:0.0017

APPENDIXB
DERIVATION OF CONFIDENCE INTERVAL FOR CALIBRATION
PARAMETERS OF GYROSCOPES

estimator in this case. If the covariance (in this case variance)
of n static sensor measurementss >, the covariance oz is

I 18
V(Z) = cov(z,z) = cov(ﬁ Zzi, o sz) The cost functionf(x,y) of the Tikhonov regularization

problem (9) can be given as
1 - = 1 1
= eov(dom Y z) = 5t =% (23)  fxy) =t (xy)r(xy) + A (Gx—y)T (Gx—y). (24)
i=1 j=1

wherex is unknown (containing the quaternions and calibra-
sincecov(z;, z;) = X andcov(zi, z;) = 0 for 7 # j assuming tion parameters) and the elementsyoéire the measurements
that the measurements are independent. That is, the covarigaggular velocities and reference positions). By exploiting the
of one set of the mean measurements is the covariance of gaet function, the goal is to estimate the effect of the error in
measurements multiplied bl/n. In each position three setsthe measurements on the calibration parameters. For this, the
of dependent measurements are gathered. Accordingly, the gerivative of the cost function is
variance matrix of three sets of the mean measurements is the

covariance matrix of three sets of measureménts: R3*3 M =2J7r(x,y) + 20GT (Gx —y), (25)
multiplied by 1/n. The measurements concerning different po- ox

sitions are independent. Thus, the off-diagonal block¥ @) orT(x,y) - . . .

are zero matrices antd(e) = Ldiag (1, Sa, ... , Spn)). whereJI = =% is the Jacobian matrix. Since the space

of the calibration parameters is unbounded, the minima of the

The diagonal elements of the matiX &) are the estimated function f(x, y) occur at critical pointsco, where 2/ (oy) _

variances of the error in the elements of the calibrati holds Ix
parametersS, and b;. The error variances of the elements ' . .
The errordy in measurements will cause an errx to

of D; were calculated exploiting the fact that the square of . ) .
standard normal distribution is a chi-squared distribution. Tttﬁe solutionx,. To find the relation betweedy andox, (25)

error variances of the elements Bf;lsi were approximated feia%%?rﬁg]oﬁeoc: t\/r\:ghc?ti(::l-:lt c:)ri(:]fr Taylor polynomial in the
by assuming that the errors of the diagonal element®of 9 P

are zero. Thus, for the elements B 'S; only the order of df (xo + 6%,y + dy)

the error variance is given. In general, the square root of the Ox ~
variance is the standard deviatiorand1.960 constitutes the  9r(x,. y)  82f(x0,y) 0*f(x0,y)
95 % confidence interval in normal distribution. T o2 ox + dy =0, (26)

Oy Odx ’
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where 762%(,’:8’” =2 (‘955 r(xo,y) +J1J. + /\GTG) =C [4]
2 f(x0y) _ r _

and S — 2 (Ser(xo,y) + 31T, - /\GT) -D.
With this notation, (26) reduces to
Exploiting the identity (21), the covariance matrix @f is

[17]

V(6x) = C'DV(sy)DT(CT) !, (28)

sinceC is a square matrix. [18]

The diagonal elements of the matiXJx) are the variances
of the errors of the quaternions and the variances of the erygy
in the elements of the calibration paramet&s! and b,,.

The measurement covariance mafiixjy) is chosen to be a

diagonal matrix, whose diagonal elements are the varianggs
of the errors in the angular velocity measurements and the
reference position. The variances of the errors in the angular

To find the error variances of the elements 6f, and 22]
D;lsi, the error variances of the eleme®ts were first esti-
mated exploiting a 1st order Taylor polynomial and assuminiq
that the errors irS;* do not correlate. Thereafter the errof’l
variances of the elements &f,, andD_,'S,, were calculated

as explained in Appendix A. [24]
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