Calibration of the muon barrel chambers for the EMMA experiment

Master's thesis, June 16, 2017

Author:

JUKKA SORJONEN

Supervisors:

TIMO ENQVIST (UNIVERSITY OF OULU), PASI KUUSNIEMI (UNIVERSITY OF OULU), KAI LOO

Abstract

Sorjonen, Jukka Calibration of the muon barrel chambers for the EMMA experiment Master's thesis Department of Physics, University of Jyväskylä, 2017, 107 pages.

The topic of this thesis was position calibration of muon barrel chambers used in the EMMA experiment. A detector ergo plank consist of seven chambers, and there were six uncalibrated detectors. The planks were set in a calibration stack, where there were four reference planks and six uncalibrated planks. Every chamber was divided into channels, and for every chamber, there was a specific position in the chamber. The position for each channel was ascertained by using manually calibrated reference planks and atmospheric muons. The calibration table was created for every chamber to obtain corresponding position for every channel in the chamber. The data collection was being done for approximately a month.

There were 42 chambers in total to be calibrated, and it was possible to be created the calibration tables for 31 of them. The failed calibration originated from low statistic, probably due to broken chambers. There were some troublesome planks in the calibration stack, which have been through several calibrations.

The experimental uncertainty was approximated by residual histograms. The residual histograms were done for reference planks, and for uncalibrated planks. When comparing the peak width and mean of these histograms, an information about the quality of the calibration was obtained.

Keywords: cosmic rays, drift chambers, calibration

Tiivistelmä

Sorjonen, Jukka EMMA-kokeen ajautumiskammioiden kalibraatio Pro gradu-tutkielma Fysiikan laitos, Jyväskylän yliopisto, 2017, 107 pages.

Tutkimuksessa paikkakalibroitiin EMMA-kokeessa käytettäviä ajautumiskammioita. Yksi ilmaisin eli plankki koostui seitsemästä kammiosta, ja kalibroitavia ilmaisimia oli yhteensä kuusi. Plankit oli sijoitettu telineeseen, jossa oli neljä referenssiplankkia ja kuusi kalibroimatonta plankkia. Jokainen kammio oli jaettu kanaviin, ja jokaista kanavaa vastasi tietty paikka kammiossa. Kanavaa vastaava paikka pystyttiin selvittämään hyödyntäen manuaalisesti kalibroituja referenssiplankkeja sekä ilmakehän myoneja. Kalibraatiotaulukko luotiin jokaiselle kammiolle siten, että siitä saatiin tiettyä kanavaa vastaava paikka. Dataa kerättiin noin kuukausi.

Kammioita oli yhteensä 42 ja niistä onnistuttiin tekemään kalibraatiotaulukko 31:lle. Epäonnistuneet kalibraatiot johtuivat heikosta statistiikasta, joka johtui toimimattomista kammioista. Kyseisessä kalibraatioasetelmassa oli joitakin ongelmallisia plankkeja, jotka olivat jo käyneet monia kalibraatioita läpi.

Epätarkkuutta arvioitiin residuaali-histogrammilla. Residuaali-histogrammi tehtiin sekä referenssiplankeille että kalibroitaville plankeille. Vertaamalla näiden residuaalihistogrammin piikin leveyttä sekä keskikohdan paikkaa, saatiin tieto kalibraation onnistumisesta.

Avainsanat: kosmiset säteet, ajautumiskammio, kalibraatio

- "Hey, hey, hey. A life. A life, Jimmy, you know what that is? It's the shit that happens while you're waiting for moments that never come."
- Det. Lester Freamon, HBO: The wire, season 3, episode 9.

Contents

1	Cos	nic radiation	7
	1.1	A brief history of cosmic rays	7
	1.2	Cosmic rays	8
		1.2.1 Classification of cosmic rays	8
		1.2.2 Energy spectrum of cosmic rays	8
		1.2.3 Acceleration mechanisms of cosmic rays	10
	1.3	Extensive air showers	13
	1.4	Hadronic cascade	14
		1.4.1 Electromagnetic part of EAS	15
		1.4.2 Muons of EAS	15
		1.4.3 Propagation of muons throughout medium	16
2	Cos	nic ray experiments	18
_	2.1	Detection of cosmic rays	18
	2.2	Direct experiments	19^{-5}
	2.3	Indirect experiments	20
		1	
3	The	EMMA experiment	21
	3.1	Detectors of the EMMA experiment	22
		3.1.1 SC16 scintillators \ldots	22
		3.1.2 Limited streamer tubes	23
		3.1.3 Muon barrel chambers	23
4	Cali	pration of MUBs	26
4	Cali 4.1	Calibration of MUBs Calibration of reference MUBs	26 26
4	Cali 4.1 4.2	oration of MUBs 2 Calibration set-up and the calibration of reference MUBs 1 Reading of *.emma-files 1	26 26 26
4	Cali 4.1 4.2	Oration of MUBs 2 Calibration set-up and the calibration of reference MUBs	26 26 26 26
4	Cali 4.1 4.2	Oration of MUBs 2 Calibration set-up and the calibration of reference MUBs 1 Reading of *.emma-files 1 4.2.1 Structure of *.emma-files 1 4.2.2 Linking raw data signals to TDCs' channels 1	26 26 26 26 27
4	Cali 4.1 4.2	Oration of MUBs 2 Calibration set-up and the calibration of reference MUBs	26 26 26 26 27 28
4	Cali 4.1 4.2	oration of MUBs 2 Calibration set-up and the calibration of reference MUBs	26 26 26 27 27 28 29
4	Cali 4.1 4.2 4.3	bration of MUBs 2 Calibration set-up and the calibration of reference MUBs	26 26 26 26 27 28 29 29
4	Cali 4.1 4.2 4.3	Description of MUBs2Calibration set-up and the calibration of reference MUBs	26 26 26 27 28 29 29 30
4	Cali 4.1 4.2 4.3	Oration of MUBs2Calibration set-up and the calibration of reference MUBs	26 26 26 27 28 29 29 30 31
4	Cali 4.1 4.2 4.3	Description of MUBs2Calibration set-up and the calibration of reference MUBs	26 26 26 27 28 29 29 30 31 33
4	Cali 4.1 4.2 4.3	Deration of MUBs2Calibration set-up and the calibration of reference MUBs	26 26 26 27 28 29 29 30 31 33 35
4	Cali 4.1 4.2 4.3 4.4 4.5	Oration of MUBs2Calibration set-up and the calibration of reference MUBs1Reading of *.emma-files14.2.1Structure of *.emma-files14.2.2Linking raw data signals to TDCs' channels14.2.3Event jumps and false hits in data1Fit in delay-direction14.3.1Requirements for delay fit14.3.2Construction of delay hit positions14.3.3Construction of delay fit14.3.4Uncertainty of the height of the stack1Fit in anode direction11	26 26 26 27 28 29 29 30 31 33 35 39
4	Cali 4.1 4.2 4.3 4.4 4.5	Oration of MUBs2Calibration set-up and the calibration of reference MUBs	26 26 26 27 28 29 29 30 31 33 35 39 39
4 5	Cali 4.1 4.2 4.3 4.4 4.5 Ana	Deration of MUBs2Calibration set-up and the calibration of reference MUBs	26 26 26 27 28 29 29 30 31 33 35 39 39 42
4 5	Cali 4.1 4.2 4.3 4.4 4.5 Ana 5.1	oration of MUBs 2 Calibration set-up and the calibration of reference MUBs	26 26 26 27 28 29 30 31 33 35 39 39 42 42
4	 Cali 4.1 4.2 4.3 4.4 4.5 Ana 5.1 	cration of MUBs f Calibration set-up and the calibration of reference MUBs f Reading of *.emma-files f 4.2.1 Structure of *.emma-files f 4.2.2 Linking raw data signals to TDCs' channels f 4.2.3 Event jumps and false hits in data f 4.2.3 Event jumps and false hits in data f 4.3.1 Requirements for delay fit f 4.3.2 Construction of delay hit positions f 4.3.3 Construction of delay fit f 4.3.4 Uncertainty of the height of the stack f 4.5.1 Construction of anode fit f 4.5.1 The fit functions in residual histograms f	$\begin{array}{c} 26 \\ 26 \\ 26 \\ 27 \\ 28 \\ 29 \\ 29 \\ 30 \\ 31 \\ 33 \\ 35 \\ 39 \\ 42 \\ 42 \\ 42 \end{array}$
4	Cali 4.1 4.2 4.3 4.3 4.4 4.5 Ana 5.1 5.2	cration of MUBs f Calibration set-up and the calibration of reference MUBs f Reading of *.emma-files f 4.2.1 Structure of *.emma-files f 4.2.2 Linking raw data signals to TDCs' channels f 4.2.3 Event jumps and false hits in data f 4.2.3 Event jumps and false hits in data f 4.3.1 Requirements for delay fit f 4.3.2 Construction of delay fit f 4.3.3 Construction of delay fit f 4.3.4 Uncertainty of the height of the stack f 4.3.4 Uncertainty of the height of the stack f 4.5.1 Construction of anode fit f 4.5.1 The fit functions in residual histograms f 5.1.1 The fit functions in residual histograms f 5.1.1 </th <th>26 26 26 27 28 29 30 31 33 35 39 42 42 42 44</th>	26 26 26 27 28 29 30 31 33 35 39 42 42 42 44
4 5	Cali 4.1 4.2 4.3 4.3 4.4 4.5 Ana 5.1 5.2 5.3	cration of MUBs f Calibration set-up and the calibration of reference MUBs f Reading of *.emma-files f 4.2.1 Structure of *.emma-files f 4.2.2 Linking raw data signals to TDCs' channels f 4.2.3 Event jumps and false hits in data f 4.2.3 Event jumps and false hits in data f 4.3.1 Requirements for delay fit f 4.3.2 Construction of delay hit positions f 4.3.3 Construction of delay fit f 4.3.4 Uncertainty of the height of the stack f Construction of position in delay-direction from parameters of linear fit f Fit in anode direction f f 4.5.1 Construction of anode fit f 4.5.1 Construction of anode fit f 4.5.1 Construction of anode fit f 4.5.1 The fit functions in residual histograms f 5.1.1 The fit functions in residual histograms f 6.1.1 The fit functions in residual histograms f 7.1.1 The fit uncalibrated MUBs f	26 26 26 27 28 29 30 31 33 35 39 42 42 42 44 44
4	Cali 4.1 4.2 4.3 4.3 4.4 4.5 Ana 5.1 5.2 5.3 5.4	cration of MUBs 2 Calibration set-up and the calibration of reference MUBs 1 Reading of *.emma-files 1 4.2.1 Structure of *.emma-files 1 4.2.2 Linking raw data signals to TDCs' channels 1 4.2.3 Event jumps and false hits in data 1 4.2.3 Event jumps and false hits in data 1 4.3.1 Requirements for delay fit 1 4.3.2 Construction of delay hit positions 1 4.3.3 Construction of delay fit 1 4.3.4 Uncertainty of the height of the stack 1 Construction of position in delay-direction from parameters of linear fit 1 Fit in anode direction 1 4.3.1 Construction of anode fit 1 Structure of position in delay-direction from parameters of linear fit 1 Fit in anode direction 1 4.5.1 Construction of anode fit 1 Structure of anode and delay fit in reference MUBs 1 5.1.1 The fit functions in residual histograms 1 Pelay residuals of uncalibrated MUBs 1 Anode residuals of uncalibrated MUBs 1	$\begin{array}{c} 26 \\ 26 \\ 26 \\ 27 \\ 28 \\ 29 \\ 29 \\ 30 \\ 31 \\ 33 \\ 39 \\ 39 \\ 42 \\ 44 \\ 44 \\ 44 \\ 44 \\ 48 \end{array}$

6	Conclusions
•	Contractorio

 $\mathbf{50}$

References	51
Appendix A	56
Appendix B	59
Appendix C	66
Appendix D	83
Appendix E	96
Appendix F	106

1 Cosmic radiation

In this chapter, concepts of cosmic ray (CR) radiation will be discussed. The first subsection covers briefly about the history of discovering CRs and some notable discoveries. The main bulk of the chapter then describes the core elements of CR radiation: Crs, acceleration mechanism of Crs, extensive air showers, and hadronic cascade in extensive air shower. Studying extensive air showers and respectively their muon component is the key objective of the EMMA experiment [1].

1.1 A brief history of cosmic rays

During the years of 1911-1912 an Austrian physicist Victor Hess did a series of balloon flights to several altitudes to measure the ionizing radiation, or rather "durchdringenden strahlung" (penetration radiation), of the atmosphere with Wulf's devices. He discovered that there was a component in the ionizing radiation that was coming outside of the earth, and it increased as a function of the height [2]. Before the flights of Hess, the general view among scientists was that cosmic radiation was a bare product of the earth's natural radioactivity [3]. Hess received a Nobel prize "for his discovery of cosmic radiation" in 1936 [4].

There were many pioneers before Hess, whose passion for physics paved the way for Hess and his discovery. The first one to be named is Charles Augustin de Coulomb who discovered that electroscope loses its electricity spontaneously over time [5]. William Crookes builds Crookes' tube (discharge tube with partial vacuum) in 1879 [6]. It was used by Wilhelm Röntgen for his experiments for discovery of ionization radiation for the first time in 1895 [7]. Henri Becquerel discovered spontaneous radioactivity by an experiment where he concluded that "...phosporescent substance in question emits radiation..." in 1896 [8]. Slightly later, Thomson discovered electron, or measured mass-to-charge-ratio of electrons to be exact, with an upgraded Crookes' tube in 1897 [9].

The first scientist who discovered that "penetrating radiation" was not purely of terrestrial origin was Theodor Wulf by measuring ionizing radiation on the top of Eiffel's tower using the Wulf electrometer in 1909. Wulf's idea was to prove his theory that penetration radiation was caused by radioactive sources in the upper-levels of the soil. [10] However, there was still radiation on the top of Eiffel tower which made his theory inadequate. Albert Gocke did also a balloon flight to measure the ion density of air, and came to the same conclusions as Wolf that radiation varies as a distance of the ground and source of the radiation was not (only) coming from the earth in 1909-1910 [11] [12].

The "penetration radiation" was named as 'cosmic rays' by an American scientist Robert Millikan in 1926. However, Millikan falsely thought that CRs were mainly γ -rays. [13] This was disproved by Bennett et al. afterwards [14]. It was found out in 1934, Crs are not only γ -rays, but mostly charged particles [15]. In 1937, CR-produced extensive air shower was detected for the first time by Auger [16]. Enrico Fermi published models of acceleration mechanisms of cosmic rays in 1949 [17]. The knee in CR energy spectrum was discovered in 1956 [18]. First experimental evidences of the source of cosmic rays to be supernova remnants was founded in 2002. [19] [20] [21]

Nowadays, it is known that CR's energy spectrum consist of a wide range of energies

and they are entering Earth's atmosphere from multiple sources. The annual exposure of cosmic radiation is approximately 0.33 mSv in Finland [22]. Outside of Earth's atmosphere, as well as at high altitudes, CRs may cause hazards to microelectronic circuits. Thus proper shielding of electronics must be taken into account.

1.2 Cosmic rays

1.2.1 Classification of cosmic rays

CRs can be divided into three subcategories on the basis of three different aspects. First, on a most general level, CRs can be divided into primary and secondary CRs. Primary CRs are those particles that are accelerated at astrophysical sources (e.g. supernova remnants) and secondary CRs are particles that are produced in the interaction of the primary CRs with interstellar gas [23]. Second, on the basis of their origin, a separation can be made between solar, galactic and extragalactic cosmic rays [24]. For example, CRs exceeding 10¹⁷ eV, in energy at least part of them, are considered as extragalactic origin [25] [26] [27]. Third, and the most elementary level, CRs can be divided by particle type into nuclei, hadrons, electrons, gammas and neutrinos [28]. The nuclei can be further classified into subgroups, presented in Table 1.

Particle, element	Group	Atomic charge	Element
Protons	_	1	Н
Helium nuclei	-	2	He
Light nuclei	L	$3 \le Z \le 5$	Li, Be, B
Medium nuclei	М	$6 \le Z \le 9$	C, N, O, F
Heavy nuclei	Н	$10 \le Z \le 19$	Ne - K
Very heavy nuclei	VH	$20 \le Z 30$	Ga - Zn
Ultra-heavy nuclei	VHH	Z > 30	Ga - U
Super-heavy nuclei	SH	Z > 92	-
Other occasional used sub groups			
Light group	L	$1 \le Z \le 5$	Н-В
Light heavy (Silicone) group	LH	$10 \le Z \le 14$	Ne - Si
Iron group	-	$15 \le Z \le 26$	P - Fe

Table 1: Classification of primary nuclei [29]

1.2.2 Energy spectrum of cosmic rays

CR energy spectrum consists of a wide range of energies from 10^{10} eV up to 10^{20} eV. Experimental energy spectrum of CR is shown in Figure 1. The spectrum can be expressed using a simple power law $\propto E^{-\gamma}$, where γ is the spectral index. A change of the spectral index around 3 PeV is called the *knee* in CR spectrum. In the knee region, the spectral index increases from $\gamma \approx 2.7$ to $\gamma \approx 3.1$. The second knee is located approximately at 400 PeV, where the spectral index steepens to $\gamma \approx 3.3$. Another change of spectral index takes place around EeV (10^{18} eV), and it is called *ankle*. Knowledge of the origin of cosmic rays can be obtained by studying the features (the *knee*, the 2nd knee and the ankle) in the cosmic ray energy spectrum. [30] The highest energy CR, also known as *Oh-My-God-Particle*, was measured in Utah on 15th of October in 1991, by University of Utah's Fly's Eye Cosmic Ray detector with an energy of approximately 3.2×10^{20} eV. [31] [32]

Figure 1: The cosmic ray all particle flux, multiplied by a factor of $E^{2.5}$, constructed from measured data. The arrows in the bottom indicate the energies used in accelerator experiments. [33]

Still, a half-century later the origin of the knee is shrouded in secrecy. One of the reasons for this is the turbulent magnetic field in our Galaxy (Milky Way), which makes the observed flux identical in all directions on Earth, and hence any specific point source cannot be observed. The knee feature of CR spectrum was the first time deduced by Kulikov et al. from a shower size spectrum in 1956 [18]. According to S.Thoudam et al. [34], the measured cosmic ray energy spectrum and its composition is best explained in the light of current knowledge by a contribution of Wolf-Rayet supernovae. This of course does not explain fully the shape of the knee, because supernova does not produce all CRs. KASKADE-Grande experiment measured a knee-like break for heavier components at 8×10^{16} eV in energy spectrum in 2011 [35]. This suggests that the knee-like behaviour in the cosmic ray energy spectrum would be a superposition of heavy/light CRs. A transition between galactic to extra-galactic CR can explain the shape of the 2nd knee and the ankle in the CR energy spectrum. [36] There are many models for explaining the knee-like behaviour as can be seen in Table 2.

There is a theoretical upper limit (for protons) for the CR energy to be observed at the Earth called Greisen-Zatsepin-Kuzmin-limit (GZK-limit). This limit is $\sim 10^{19}$ eV. GZK-limit is due to the slow-interaction of protons with the photon gas during a long period of time (proton age $\geq 10^8$ y). Interaction of protons with the cosmic background radiation (CMB) resulting Δ -resonance and its subsequent decay can be written as

$$\gamma_{\rm CMB} + \mathbf{p} \to \Delta^+ \to \mathbf{p} + \pi^0,$$

Model	Author(s)
Source Acceleration	
Acceleration in SNR	Berezhko and Ksenofontov
Acceleration in $SNR + radio galaxies$	Stanev et al.
Acceleration by oblique shocks	Kobayakawa et al.
Acceleration in variety of SNR	Sveshnikova
Single source model	Erlukin and Wolfendale
Reacceleration in the galactic wind	Völk and Zirakashvili
Cannonball model	Plaga
Propagation/Leakage from Galaxy	
Minimum pathlength model	Swordy
Anomalous diffusion model	Lagutin et al.
Hall diffusion model	Ptuskin et al., Kalmykov and Pavlov
Diffusion in turbulent magnetic fields	Ogio and Kakimoto
Diffusion and drift	Roulet et al.
Interactions with background particles	
Diffusion model + photo-disintegration	Tkaczyk
Interaction with neutrinos in galactic halo	Dova et al.
Photo-disintegration (optical and UV photons)n	Candia et al.
New interactions in the atmosphere	
Gravitons, SUSY, technicolor	Kazanas and Niclolaidis

Table 2: Models of explaining the knee in the CR energy spectrum. The table modified from [39].

or

$$\gamma_{\rm CMB} + \mathbf{p} \to \Delta^+ \to \mathbf{n} + \pi^+,$$

where γ_{CMB} is cosmic background radiation gamma na **p**, **n**, $\Delta^{+/0}$, and $\pi^{0/+}$ is proton, neutron, Δ -resonance, and π -meson, respectively. The reactions reduce the energy of proton and result in cut-off energy around 10^{19} eV. Nonetheless, the experimental data do not agree with the limit, as the highest measured CR energy is $\sim 3.2 \times 10^{20}$ eV. The reason of this discrepancy might be that the measured high-energy event was due to interaction of heavier nucleus than proton. [37] [38]

1.2.3 Acceleration mechanisms of cosmic rays

There are many ways for acceleration of CRs. As CRs are mostly charged particles. Consequently, what is needed for accelerating them is an electric field, and for creating an electric field a magnetic field is required. In general form, the relativistic equation of motion for a charged particle is

$$\mathbf{F} = \frac{\mathrm{d}}{\mathrm{dt}}(\gamma \mathbf{m} \mathbf{p}) = \mathbf{q}(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{\mathrm{c}}),\tag{1}$$

where $\gamma \equiv (1 - v^2/c^2)^{-1/2}$ is the Lorentz factor and m,q and v are the mass, charge, and velocity of the particle, respectively. Two most general acceleration mechanism, introduced by Enrico Fermi, models are diffusive shock wave acceleration (1st order Fermi acceleration) and turbulent acceleration (2nd order Fermi acceleration). Some other acceleration sources are e.g. spinning magnetized neutron stars (pulsars) and a pulsar or neutron star and a normal star system (binaries). [17] [40]

Diffusive shock wave acceleration

In diffusive shock way acceleration, CR is propagating through a shock wave, generated e.g. by supernova remnants. The shock wave is divided into two parts: upstream and downstream. Upstream is the area before the shock front, and downstream after the shock front, where interstellar gas is streaming away from the shock front. If CR encounters a magnetic field after the shock wave, it can be reflected back (from downstream to upstream) through the shock wave with increased velocity. Consequently, particle can encounter multiple reflections and reach very high gain in kinetic energy. This is called *First order Fermi acceleration*. [41]

Figure 2: Shock wave acceleration where incident particle velocity is v, shock front velocity is u_1 and interstellar gas streaming away from the shock with velocity u_2 . $u_1 - u_2 = \Delta u$ is velocity of the gas in the upstream frame of reference(laboratory frame of reference). A particle with initial velocity v enters the shock front (u_1) from upstream to downstream. The particle then gains kinetic energy $v + (u_1 - u_2)$ and is then reflected back into its arrival direction with velocity -v - $2(u_1 - u_2)$

Energy gain in shock fronts can be demonstrated with simplistic calculations. A particle with velocity \mathbf{v} collides elastically with a shock front with velocity of \mathbf{u}_1 and is being reflected back. \mathbf{u}_2 is velocity of the interstellar gas streaming away from the shock front, and \mathbf{u}_1 is antiparallel with \mathbf{u}_2 as illustrated in Figure 2. Kinetic energy of a reflected particle is

$$\mathbf{E}_2 = \frac{1}{2}\mathrm{m}(-2\Delta\mathbf{u} - \mathbf{v})^2,$$

where $\Delta \mathbf{u} = \mathbf{u_1} \cdot \mathbf{u_2}$ with $\mathbf{u_1} > \mathbf{u_2}$ is the gas front velocity in the laboratory frame. Now the energy difference of the CR particle is

$$\Delta \mathbf{E} = \mathbf{E}_2 - \mathbf{E}_1 = \frac{1}{2}\mathrm{m}(-2\Delta \mathbf{u} - \mathbf{v})^2 - \frac{1}{2}\mathrm{m}\mathbf{v}^2 = \mathrm{m}(2\Delta \mathbf{u}\mathbf{v} + \Delta \mathbf{u}^2).$$

Since $\mathbf{v} \gg \Delta \mathbf{u}$, the linear term dominates $(\frac{\Delta \mathbf{u}^2}{\mathbf{v}^2} \rightarrow 0)$. The energy gain related to the incoming particle's kinetic energy is

$$\frac{\Delta \mathbf{E}}{\mathbf{E}_1} = \frac{\mathrm{m}(2\Delta \mathbf{u}\mathbf{v} + \Delta \mathbf{u}^2)}{\frac{1}{2}\mathrm{m}\mathbf{v}^2} \approx \frac{4\Delta \mathbf{u}}{\mathbf{v}}$$

[40] The result is of the 1st order, hence the name 1st order Fermi acceleration. More detailed calculations can be found in Bell's paper [42], where it is shown that for differential energy spectrum, following formula can be obtained

$$\mathbf{N}(\mathbf{E})\mathbf{d}\mathbf{E} = \frac{\mu - 1}{\mathbf{E}_0} (\frac{\mathbf{E}}{\mathbf{E}_0})^{-\mu} \mathbf{d}\mathbf{E}$$

where μ is a constant, $\mathbf{N}(\mathbf{E})$ is energy density and \mathbf{E}_1 is the system energy where particle is injected. [41]

Turbulent acceleration

In the second model, CRs gain kinetic energy in collisions with moving magnetized interstellar clouds due to magnetic mirror effects. [17] This can be demonstrated with simplistic calculations. Let \mathbf{v} be the velocity of the particle and $\mathbf{u_1}$ to be velocity of a magnetized interstellar cloud. Let us assume that the particle is deflected 90° and the collision is elastic. Then we can have two cases: first where the cloud's velocity is parallel with particle velocity, and secondly, where they are anti-parallel. These two cases are illustrated in Figure 3. [41]

Figure 3: Turbulent acceleration. A particle with velocity v collides with a magnetized cloud head-on (case 1) and tail-on (case 2), the velocity of the cloud being -u and u respectively, and the particle is reflected back in both cases

Let us first assume that the velocity of the cloud is parallel to the particle's velocity (head-on-collision). In this case, the kinetic energy difference of incoming and outgoing particle is

$$\Delta \mathbf{E}_{\text{head}} = \mathbf{E}_2 - \mathbf{E}_1 = \frac{1}{2}m(-\mathbf{v} - 2\mathbf{u})^2 - \frac{1}{2}m\mathbf{v} = \frac{1}{2}m(4\mathbf{u}\mathbf{v} + 4\mathbf{u}^2).$$

When velocities are anti-parallel (tail-on-collision), the kinetic energy difference can be written as

$$\Delta \mathbf{E}_{\text{tail}} = \mathbf{E}_3 - \mathbf{E}_1 = \frac{1}{2}m(-\mathbf{v} + 2\mathbf{u})^2 - \frac{1}{2}m\mathbf{v}^2 = \frac{1}{2}m(-4\mathbf{u}\mathbf{v} + 4\mathbf{u}^2).$$

By using average kinetic energy gain, a relative net gain can be written as

$$\frac{\Delta \mathbf{E}_{tail} + \Delta \mathbf{E}_{head}}{\Delta \mathbf{E_1}} = \frac{\frac{1}{2}m(-4\mathbf{u}\mathbf{v} + 4\mathbf{u}^2) + \frac{1}{2}m(4\mathbf{u}\mathbf{v} + 4\mathbf{u}^2)}{\frac{1}{2}m\mathbf{v}^2} = 8\frac{\mathbf{u}^2}{\mathbf{v}^2}$$

This is called *Second order Fermi acceleration* because of the quadric result. The probability for a particle to collide with head-on is higher than with tail-on, and thus particle accelerates. [17] [40] [41]

1.3 Extensive air showers

An air shower is cascade of ionized particles and electromagnetic radiation produced by CR. It is called extensive air shower (EAS) if it is many kilometres wide. EASs originate from extremely energetic primary CRs ($E > 10^{13}$ eV) entering the atmosphere isotropically from outer space. The EASs can be divided into different categories on the basis of the initiator of the EAS. These categories are: nucleus, hadron, gamma ray, electron and neutrino initiated EAS. A particle that produces an EAS in the atmosphere is called parent particle or primary particle. Particles produced in the interaction of a parent particle with the molecules of the atmosphere are referred to as secondary particles. [28]

In the interstellar medium, CR has a fewer chances to collide with medium's particles. However, when CR enters Earth's atmosphere it's greater chance to collide with particles in the atmosphere. A cosmic ray interacts mainly with O_2 , N_2 and Ar. The interaction produces an immense amount of secondary particles which keep interacting with molecules in the atmosphere producing more and more secondary particles as they propagate deeper in the atmosphere. The first interaction of the primary with the molecules of atmosphere depends on the mass of the primary particle. The more massive (e.g. proton vs. Fenucleus) is the primary, the more rapidly it interacts with the atmosphere, because it has larger inelastic cross-section. This is illustrated by using the **CORSIKA**-simulation program with a proton and an iron-nucleus in Figure 4. Simulations were done by using the **CORSIKA**-program with 5 000 events and primary's energy of $10^{15} - 10^{16}$ eV for both proton and iron. [43]

As a primary particle interacts with the atmosphere's molecules, it generates a hadron cascade. As the hadron cascade propagates in the atmosphere, it generates, as a side product, an electronic cascade, as well as muons and pions. These all together form an extensive air shower. When CRs in the atmosphere are discussed, a parameter called *atmospheric depth* (X) is used. The *atmospheric depth* is measured in g/cm^2 , and it is integral in altitude of the atmospheric density observation level h, i.e.

$$\mathbf{X} \equiv \int_{h}^{\infty} \rho(\tilde{h}) d\tilde{h}.$$

The extensive air shower expands until it reaches its maximum size at X_{max} . After the maximum, it begins to diminish. Extensive air showers of the most energetic primaries

Figure 4: Simulated first interaction height of CR particles in atmosphere. Blue line shows the result for proton and red line for iron, respectively. The energy of the primary CR particle were 10^{15} - 10^{16} eV (knee-region).

reach their maximum size at the sea level. However, there are fluctuations in the shower size with the same primary energy because of the density of air is quite thin at higher altitudes. If considering a size spectra of muons (N_{μ}) , following estimation for relation for primary's energy E_0 to muon shower size is [44]

$$E_0(eV) = 1.7 \times 10^{17} [\frac{N_{\mu}}{10^6}]^{1.21}$$

10^{14.5} eV < $E_0 < 10^{18}$ eV at 920 - 1020^{cm}/₂. [45]

1.4 Hadronic cascade

for

Hadron initiated EAS can be divided into three parts: hadron core and electromagnetic and muon sub-cascades, illustrated in Figure 5. Hadron cascade undergoes numerous inelastic collision of the molecules in the atmosphere, and in every successful collision an energy dependent number of new particles is generated, until the energy of the particles falls below the one-pion threshold. Usually, the first decay products are pions (π^0, π^{\pm}) and kaons (κ^{\pm}). Neutral pions have a short life time ($\tau_0 = 8.52 \times 10^{-17}$ s) and decay quickly into two gammas ($\pi^0 \rightarrow 2\gamma$ with a branching ratio of 98%) which triggers electromagnetic sub-cascade. Charged pions have a longer lifetime ($\tau_0 = 2.6 \times 10^{-8} \text{ s}$), thus they propagate further away from the shower axis and initiate a muon sub-cascade via decay channels $(\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu}))$ with the branching ratio of 99.9877 %). Consequently, electromagnetic cascade is closer to the hadron core of air shower than muon sub-cascade. Hadronic core is thus responsible for energy transfer within an air shower. The decay of kaons also contributes to the sub-casacdes in the air shower by decaying mainly into muons $(\kappa^{\pm} \to \mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu}))$ with the branching ratio of 63.56 %, into charged pions $(\kappa^{\pm} \to \pi^{\pm} + \pi^{0})$ with branching ratio of 20.67 % or into neutral pions $(\kappa^{\pm} \to \pi^0 + \mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu}))$ with the branching ratio of 5.07 %. [46] [47]

Figure 5: An illustration of the development of a proton initiated air shower in the atmosphere. The hadronic core of the air shower is shown in red, electromagnetic (EM) sub-cascade in blue, and muonic sub-cascade in green, respectively. Here a proton as the primary particle initiates an air shower. The percentages shows the approximate portion of electrons, gammas, muons and other particles at the sea level.[GNU FDL]

1.4.1 Electromagnetic part of EAS

Electromagnetic sub-cascade, as well as muons, are daughter products of a hadronic cascade. As mentioned above, neutral pions decay into gammas. Each gamma produces its own photo-electric cascade through pair production $(\gamma \rightarrow e^+ + e^-)$, which is strengthened by Bremsstrahlung of hadron cascade. Pair production continues until it is below its threshold energy (1.02 MeV). Thereafter, photoelectric effect and Compton scattering makes a low energy contribution to the shower. Moreover, the decay of muons $(\mu^{\pm} \rightarrow e^{\pm} + \overline{\nu}_e(\nu_e) + \nu_{\mu}(\overline{\nu}_{\mu})$ with the branching ratio of $\approx 100\%$) contributes to EM-cascade. Ultimately, the EMcascade magnitude depends on the energy of initial pions and thus the energy of the primary CR particle. [46] [47]

1.4.2 Muons of EAS

Muon sub-cascade of the EAS are initiated mainly by charged pions and kaons, but also charmed particles, such as D^{\pm} , D^{0} , J/ψ and others. In Table 3 the main production channels for muons are listed. Muons have a relatively long life time ($\tau_{0} = 2.2 \ \mu$ s at rest) and small energy loss, when propagating in medium. Consequently, the muon decay rate is low. Thus, a large fraction of muons, generated in the air shower, reach the sea level and even propagate some distance in the ground, depending on the energy of the primary. This is capitalized in underground cosmic ray experiments, such as the EMMA experiment [1], where the rock overburden works as a filter for low energy muons and only high energy muons are able to penetrate the rock and reach the experiment. [1] [46] [47]

Particle symbol	Particle decay modes	Branching fraction [%]	Mean life [s]
π^{\pm}	$\mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu})$	99.99	$2.6 \cdot 10^{-8}$
K [±]	$\mu^{\pm} + u_{\mu}(\overline{ u}_{\mu})$	63.43	$1.2 \cdot 10^{-8}$
	$\pi^0 \mu^{\pm} + \nu_{\mu} (\overline{\nu}_{\mu})$	3.27	
D^{\pm}	$K^0(\overline{K^0}) + \mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu})$	7.0	$1.0 \cdot 10^{-12}$
D^0	μ^{\pm} + Hadrons	6.5	$4.1 \cdot 10^{-13}$
	$\mathrm{K}^- + \mu^+ + \nu_\mu$	3.19	
τ^{\pm}	$\mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu}) + \nu_{\tau}(\overline{\nu}_{\tau})$	17.36	$2.9 \cdot 10^{-13}$
J/ψ	$\mu^+\mu^-$	5.88	$\sim 10^{-20}$

Table 3: Summary of the major muon production channels in the EAS. [48]

1.4.3 Propagation of muons throughout medium

Generally, muons lose their energy by ionization, bremsstrahlung, direct electron pair production or photonuclear interactions. Muon can lose energy also due to direct muon pair production, but the mechanism occurs rarely. Ergo, the energy loss for muon in medium can be formulated as

$$-\frac{\mathrm{d}\mathbf{E}}{\mathrm{d}\mathbf{x}} = \mathbf{a}_{\texttt{ion}}(\mathbf{E}) + [\mathbf{b}_{\texttt{br}}(\mathbf{E}) + \mathbf{b}_{\texttt{pp}}(\mathbf{E}) + \mathbf{b}_{\texttt{ni}}(\mathbf{E})]\mathbf{E},\tag{2}$$

where the terms a_{ion} , b_{br} , b_{pp} and b_{ni} represent energy losses due to ionization, bremsstrahlung, pair production and photonuclear interactions, respectively. The probability of different mechanisms of muon energy losses in standard rock is demonstrated in Figure 6. Values for the coefficients (a_{ion} , b_{br} , b_{pp} and b_{ni}) for muon's energy loss in iron are listed in Table 4. [49]

Muon energy [GeV]	a _{ion}	b _{br}	b _{pp}	b _{ni}	Total
1	$1.56 \cdot 10^{-3}$	$5.837 \cdot 10^{-7}$	$5.837 \cdot 10^{-7}$	$4.4145 \cdot 10^{-7}$	$1.561 \cdot 10^{-3}$
10	$1.925 \cdot 10^{-5}$	$1.397 \cdot 10^{-5}$	$1.492 \cdot 10^{-5}$	$4.229 \cdot 10^{-6}$	$1.958 \cdot 10^{-3}$
100	$2.162 \cdot 10^{-3}$	$2.236 \cdot 10^{-4}$	$3.174 \cdot 10^{-4}$	$3.851 \cdot 10^{-5}$	$2.7 \cdot 10^{-3}$
1000	$2.336 \cdot 10^{-3}$	$2.866 \cdot 10^{-3}$	$4.192 \cdot 10^{-3}$	$3.878 \cdot 10^{-4}$	$9.782 \cdot 10^{-3}$
10000	$2.502 \cdot 10^{-3}$	$3.172 \cdot 10^{-2}$	$4.523 \cdot 10^{-2}$	$4.326 \cdot 10^{-3}$	$8.377 \cdot 10^{-2}$

Table 4: Muon's energy loss $\left(-\frac{dE}{dx}\right)$ in iron (GeV g⁻¹ cm²). [50]

Figure 6: The probability of a 2 TeV to lose a fraction ($\mathbf{v} = \mathbf{E}'_{\mu}/\mathbf{E}_{\mu}$) per gram of its energy via bremstrahlung (br), photonuclear reaction (γ ,N), and pair production (pair) in standard rock. [51]

2 Cosmic ray experiments

The variation of CR experiments is large because the CR energy spectrum is wide. CRs can be detected either directly or indirectly - determined by energy of the CR. Direct measurement means detecting primary CR using a satellite or an air balloon. Indirect measurement means measuring extensive air showers produced by primary CR.

Low energy CRs, energy being below the knee, are detected by direct measurements as shown in Figure 7. This is mainly because of the rapid decrease in the flux of cosmic ray radiation as a function of energy, and also the limitations of size, weight and power of onboard equipment. For example, detecting ultra-high energy regime CRs directly by using satellite or air balloons is not sensible, because of extremely low rates. Energies exceeding the knee are measured indirectly as shown in Figure 7. Indirect measurements mean measuring the air shower produced in the interaction of the CR with earth's atmosphere.

Figure 7: The spectrum of CR flux. The arrows indicate the energy gaps where air shower measurements or direct measurements are valid. Regions where cosmic ray flux changes are also marked (the knee, the 2nd knee and the ankle).[33]

2.1 Detection of cosmic rays

CRs are mainly charged particles and they can be detected by using normal particle detectors. Detection method is selected on the basis what is wanted to be measured

and what information is needed to extract. Typical particle detectors are: magnetic spectrometers, calorimeters, Cherenkov detectors, scintillators, and gas filled detectors.

The basic principle of a magnetic spectrometer is based on Lorentzian force. When a charged particle enters constant magnetic field its path curves due to Lorentzian force. Magnetic spectrometer is used to measure energy spectrum of particles, and to identify particles. For example, the alpha magnetic spectrometer which is located in the international space station purpose is understanding of dark matter, anti-matter, the origin of CR and the exploration of new physics phenomena. It measures Crs in the energy range from 0.5 to ~ 2000 GeV. [54]

Calorimeter was originally created for the study CRs. It is a block of instrumented material and when a charged particle enters calorimeter, it loses its energy via interactions with medium by electromagnetic or strong interactions. The entering particle creates a particle shower in the calorimeter, and a fraction of deposited energy of the incoming particle can transform into a signal which can be detected. The signal depends on the instrumented material and it can be scintillation light, Cherenkov ligh, or ionization charge. [55]

Calorimeters can roughly divided into two categories: electromagnetic and hadronic calorimeters. Calorimeter is sensitive for all types of particles - charged and neutral, unlike magnetic spectrometer. It is used for particle energy measurement, to determine the shower position and direction, to identify different particles, and to measure the arrival time of the particle. Depending on the instrumented material, calorimeter allows accept high event rate, and thus it is commonly used for trigger purpose. [55]

Detectors, which use Cherenkov technique, are based on Cherenkov radiation. It is electromagnetic radiation and it is emitted by a charged particle when it passes medium with a greater speed than phase velocity of light in that medium. It was discovered experimentally for the first time by the Union of Socialist Republics physicist Pavel Cherenkov in 1934 [56]. The primary particle interacts with Earth's atmosphere and produces secondary particles with velocity around speed of light, thus they emit Cherenkov light which can be detected by telescopes. This is illustrated in Figure 8. In Pierre Auger experiment, water Cherenkov detectors are used to measure CRs with energy beyond 10^{18} eV. [57] [58] Scintillators and gas filled detectors are main detectors of the EMMA experiment [1], and they will be discussed in more detail in section 3.

2.2 Direct experiments

Direct CR experiments measure primary CRs. They are usually at high altitude in the atmosphere or in space. An example of experiment the in atmosphere is BESS-polar experiment which is a balloon borne experiment for studying low-energy antiprotons and searching for antinucle in the galactic CRs at altitude of 37 km. It was launched in 2004. The detector consists of spectrometer and scintillation systems.[53]

An example of CR experiment in space is PAMELA experiment which is a satellite borne experiment designed to study CRs of galactic, solar, and trapped nature in a wide energy range (protons 80 MeV-700 GeV, electrons 50 MeV- 400 GeV). Main aim is to study antimatter component of CRs. The experiment, housed on board the Russion Resurs-DK1 satellite and it was launched in June 15th 2006 in a 350×600 km orbit wit an inclination

Figure 8: Left: a single charged particle (red line) moving downward and emitting Cherenkov light (blue lines). Right: A Cherenkov "light pool" which is observed at 1800 m above sea level. It is produced by a γ -ray shower with a primary energy of 1 TeV.[59]

of 70 degrees. The detector consist of magnetic spectrometer, scintillator system, silicon tungsten calorimeter, shower tail scintillator, neutron detector and anticoincidence system. [52] As a result of PAMELA experiment, it provided more insight to explaining trends in CR positron fractions [60].

2.3 Indirect experiments

In indirect CR experiments, CRs are studied by the air shower which they produce when entering Earth's atmosphere. Indirect CR experiments are located typically on the Earth's surface or underground, and they are used for studying high energy CRs. An example of high energy CR experiment is KASKADE-Grande (KArlsruhe Shower Core and Array DEtector-Grande) which is a cosmic ray experiment located in Forschungszentrum Karlsruhe, Germany, corresponding to an average atmospheric depth of 1022 cm/g². The experiment site consists of an area of 370 m² of plastic scintillators (Grande array), 80 m² of plastic scintillators (Piccolo array), 490 m² liquid scintillators (KASCADE array), 622 m² of shielded pl. scintillators (KASCADE array), 4 × 128 m² streamer tubes (Muon tracking detector), 2×129 m² multi wire proportional chambers at CD (central detector), 250 m² limited streamer tubes at CD, and 9 × 304 calorimeter at CD. KASKADE-Grande studies cosmic rays with an energy range of 10^{14} - 10^{18} eV. [61]

An example of ultra-high-energy CR experiment is Pierre Auger observation which is located in the Province of Mendoza, Argentina, and it is designed to study cosmic rays at highest energy (energies beyond 10^{18} eV). The construction of the experiment started in 2004, and it was fully complete in 2008. It has been collecting data since 2004. The observatory consists of two parts: a large surface detector, and fluorescence detector. The surface detector consists of 1660 water Cherenkov detectors of overall covering area of 3000 km^2 . The detectors are located in mean altitude of ~1400 km, corresponding to an atmospheric overburden of ~ 875 g cm⁻². As a result of the experiment, there was found no point sources for EeV neutrons [62] or photons [63]. [58]

3 The EMMA experiment

EMMA (Experiment with MultiMuon Array)[1] is located at the depth of 75 m, corresponding 240 m.w.e in the Pyhäsalmi mine, Finland. The purpose of the EMMA experiment is to study the composition of cosmic rays in the knee region $(10^{15} - 10^{16} \text{ eV})$. The rock overburden filters out all particles with energy less than the threshold energy, except the high-energy muons and neutrinos. The rock overburden is visible in Figure 9, where the measured muon flux at different in the different depths in the Pyhäsalmi mine is shown. As mentioned in section 1.3, high-energy muons are usually produced in the proximity of the high-energy primary at high altitudes. Therefore, they provide good information of the properties of the primary particle.

Figure 9: Measured muon flux in the Pyhäsalmi mine as a function of depth in m.w.e. [64]

The EMMA experiment consist of 84 Muon Barrel Chambers (MUBs) from LEP-DELPHI experiment at CERN [65], 72 SC16 scintillators and 60 Limited streamer tubes (LSTs) from KASCADE experiment [61]. Detectors are placed in the detector stations as in two- or three-layers. Stations in two different areas - level 85 and level 45, at different depths 75 m and 45 m from the surface. Detectors are placed inside the cottages to protect them against hazardous environment in the cavern. As the efficiency of MUBs depend on the temperature, the detector stations have insulation and heating, to guarantee their optimal performance.

There are nine detector stations in 75m-area and three in 45m-area as shown in Figure 10. The areas are connected with a drill hole which is needed for cabling. The 75m-area is also connected to the surface via a drill hole. The drill hole provides the gas, electricity

for the detectors, and optical fibre for monitoring.

Figure 10: A schematic picture of the area of the EMMA experiment in the Pyhäsalmi mine. Stations labelled from A to I are on the level 85 and squares X,Y and Z on the level 45. Red colour indicates three-layer and blue two-layer stations. In addition, drill holes between the levels are indicated

3.1 Detectors of the EMMA experiment

3.1.1 SC16 scintillators

The SC16 scintillators (SC16s) were manufactured specifically for the EMMA experiment by the Institute for Nuclear Research of the Russian Academy of sciences. Each of SC16 consists of 16 pixels called SC1 scintillator (SC1), which are arranged into 4×4 matrix. There are 72 SC16s used in the EMMA experiment covering the area of 18 m². The SC1s/SC16s technical information are following:

- The dimensions of one SC1 pixel: $122 \times 122 \times 30 \text{ mm}^3$.
- The material used in SC1: polystyrene coated with reflector.
- The weight of SC16: 20 kg.
- The dimensions of SC16: $50 \times 50 \times 25 \text{ cm}^3$

There is a light collecting (Y11 Kurayra wave length shifting) fibre embedded into a SC1 pixel. The fibre collects light produced in the SC1 pixel, and the light is guided to avalanche photo diode (APD). The detection efficiency of SC16 is $98 \pm 1\%$, and the time resolution is approximately 1.7 ns. [1] [66] [67]

The SC16s array set-up serves three purposes: muon number estimation, measurement of an initial guess of air showers arrival angle, and start time generation for drift chambers. The angular accuracy of SC16s is poor, approximately 10-15 degrees, but if the MUBs are saturated, they can be used to measure the arrival angle. The SC1 and SC16 are illustrated in Figure 11. [1] [66] [67]

Figure 11: An illustration of SC1 and SC16 scintillator. [67]

3.1.2 Limited streamer tubes

The limited streamer tubes (LSTs) were obtained from the KASCADE experiment on the spring of 2012. In total of 66, the LSTs will be placed outer stations as well as an additional detector array layers in the central stations. The dimensions of the LST unit are $100 \times 290 \text{ cm}^2$ and it consists of six LST chambers. Each chamber has dimensions of $16.7 \times 280 \times 1.34 \text{ cm}^3$ and consists of 16 tubes with dimensions of $9 \times 9 \text{ mm}^2$ and filled with CO₂ gas. The weight of one LST is $\approx 20 \text{ kg}$. An anode wire runs through the central axis of the tube, and it is connected to ground. -4.8 kV high voltage is applied to the cathode profile. Dimensions of LST are illustrated in Figure 12. [68] [69]

3.1.3 Muon barrel chambers

The main detectors used in the EMMA experiment are drift chambers (muon barrel chambers, MUB) from former LEP-DELPHI experiment at CERN [65]. A MUB is divided into seven chambers: three on top and four below. The upper one are named Y1, Y2 and Y3, where Y2 is the middle chamber. The lower ones are named similarly: X1, X2, X3 and X4. This is illustrated in Figure 13a. All the chambers have been shielded by a layer of aluminium. The dimensions of a MUB are the following:

- Gas volume per drift chamber: 365 cm (length) \times 20 cm (width) \times 1.5 cm (height) cm³.
- The thickness of aluminium shielding: 2 mm.
- Weight of a MUB: ≈ 130 kg.
- The gas mixture: 92% Ar and 8% CO₂. The gas is delivered from the ground level gas station via 100 meter long gas pipe to EMMA-level.

There is a tungsten anode wire ($\bigotimes 47 \ \mu m$) located in the middle of each chamber. The wire is supported by three plastic holders placed 1.2 metres apart to keep the wire on the chamber's center axis. The anode wire is connected to 6 kV high voltage.[1] [66] [71]

On the bottom of each chamber, a delay line is located as illustrated in Figure 13b. The delay line consists of winded copper strips which are connected to 4 kV high voltage (grading voltage). There are also 26 grading copper strips glued on the wall of a chamber. These strips are evenly distributed on the chamber walls and connected to grading voltage. Each of these strips have a specified voltage, which is decreasing almost

Figure 12: A schematic view of LST and its dimensions. [70]

to ground at the end of the chamber, producing a uniform electric field with a strength of 400 V/cm. Consequently, it provides constant drift velocity of approximately 4 cm/ μ s (= v_{drift}) towards the anode wire. The efficiency of drift chambers is typically better than 90 % and have a position resolution approximately < 1 cm². [1] [66] [71]

When a high energy particle hits the MUB, it collides with the gas molecules in the MUB and produces electrons. Thereafter, electrons drift towards the anode line, because of the electric field inside a chamber, and they will produce an anode signal.Each chamber produces three signals: one from anode the wire (A) and two from the delay line - near (N) and far (F). Near and far-signals are collected at the opposite end of the chamber, and the near signal is collected at the same end where the anode-signal is received." *The signals*

are fed into Front Electronics Boxes (FEBs), which host amplificator and discriminator cards providing an ECL-level output to CAEN V767B TDC (time-to-digital-converter) via twisted pair cable. V767B has 128 channels, a least significant bit resolution of 0.8 ns and a double hit resolution of 10 ns in single channel [71]." MUBs are used to obtain information of the shower arrival direction by reconstructing the track of the high energy particle. [1] [66]

Figure 13: An illustration of MUB's chambers' names (a) and the inside of a chamber (b).

However, some energetic UV-photons may be generated in the drift process, and they will be emitted at random directions. UV-photons may produce more electrons when they hit on a cathode surface e.g cathode delay line. Such electrons will also drift towards the anode line and trigger a "fake" anode signal. This kind of event is called an afterpulse or a false hit, and the signal produced by a high energy particle (e.g. muon) is called a real hit. Afterpulses come always after the real hit, so they can be sorted out from the data fairly easily. [72]

As mentioned in the section above, the chambers' gas mixture is Ar:CO₂ (92:8% respectively), where CO₂ serves as a quenching gas. At CERN in the operation of the drift chambers, also CH₄ (methane) was used as a quenching gas. However, CH₄ was not suitable for mine environment due to safety measures. Thus, a new ratio for Ar:CO₂ of 92:8 was looked for. CO₂ has two-rotational and four-vibrational degrees of freedom, it can absorb different photon wavelengths effectively. Therefore, CO₂ role is to absorb UV-photons to reduce afterpulses in the chamber. In addition, electronics produces afterpulses. Such afterpulses are generated near the end of the chamber. These afterpulses can be identified by their extremely short time value. As UV-photon-generated afterpulses, also electronics-generated afterpulses come always after the real signal, so filtering the data can be done easily. [72]

4 Calibration of MUBs

MUBs are used for the tracking high energy muons going through the tracking stations of the EMMA experiment. To reliable obtain information where the particle crosses the detector, the position calibration have to be conduct. The calibration of MUBs is introduced in this section. In section 4.1 the calibration set-up and calibration of the reference MUBs is described. In section 4.2 format, problems, and analysing of data files are discussed. In section 4.3 the fit in the delay direction, and in section 4.4 the construction of delay positions, and creating calibration tables are discussed. Ultimately, fit in the anode direction is discussed in section 4.5. From here on, a word "plank" is used when referring to MUB.

4.1 Calibration set-up and the calibration of reference MUBs

Four of the MUBs were position-calibrated manually by 22 Na source. These four MUBs were called reference planks. The calibration stack, in Figure 14, consisted of ten MUBs at maximum, of which four of the MUBs were reference MUBs and the rest were calibrated by using CR muons. The height of the calibration stack was (1681±1) mm. The uncertainty comes from the usage of the measurement tape. [66]

4.2 Reading of *.emma-files

Data are stored in *.emma-files in a binary format, which has byte order in little endian. There were ~ 1000 hours of recorded data for each stack. For example, stack 15 had 164 Gb of data. From now on, I will refer to raw data as binary data, which is written into *.emma-files by the electronics of the calibration stack. The format of binary files can be found in Appendix A. A program called *Binaryreader*(BR) was created to read *.emma-files and slightly sort out raw data. Basically, its main job is to sort out afterpulses, to link TDC's channels to right signals and save data into *.root-files. BR was created by using c++-programming language and data analysis framework **ROOT** [73].

4.2.1 Structure of *.emma-files

The binary structure of *.emma-files is the following: First comes Header (0x00-0x2f) and TDC-configuration (0x30-0x3f). The Header and the TDC-configure will come only once per file. Every file has its own id-number, and the number of TDC-units. These can be found in the Header. TDC's GEO address, which is unique for each TDC-unit, can be found in the TDC-configuration.

Data are distributed in events. Each event consists of a single Event header (32 bits) and data words (32 bits each). This is illustrated in Figure 15. If event is null, then there will be only an Event header. There is no limit for data words, thus there can be random amount of data words in each event. In the end of each raw data file, there is a file tailer which has the end signal in the "Start of tailer" in the position 0x00-0x03. The end signal is 0x00600000. When BR detects the end signal, it ends the data processing and proceeds to map data to right TDC channels, sorting data, and saving data into *.root-files.

Figure 14: The calibration stack in the surface laboratory "Leipomo". Photo by Tomi Räihä.

Figure 15: Structure of raw data in *emma-files. There comes always first TDC 0's data header and random amount of data words and then TDC 1's header and data words. The event ends when the file tailer with an ending signal comes. The symbol "H" means event header, "D" data word, and "F" file tailer.

4.2.2 Linking raw data signals to TDCs' channels

To be able to link raw data signal to the right MUB's chamber, a map called "plankmap" is needed. It provides information of the TDC's channel to which particular chamber's signal it is connected. A plankmap is valid only for a specific time period, and the reason why there are several plankmaps is due to for example in electronics, replacing a broken TDC's channel and so on. In the logbook (fig. 16, Appendix B), one can always see which plankmap is valid for specific *.emma-files. For example, the first plankmap is valid for

the first 241 data files. Likewise, poor chamber efficiencies or broken chamber can be read from the logbook and taken into account in data processing. The plankmaps can be found in Appendix C. Primarily, the logbook is used for checking whether there are no data in a chamber, is the reason in the code done by the author or whether that chamber is missing. The logbook for stack 15 in its entirety can be found in Appendix B.

TELINE TIS reggen (calibrated): P15, P35, P18, P17 Dlanks (to be colliprated): P8, P57, P14, P77, P30, P28 Plank order: P15-P8-P57-P39-P14-P77-P18-P30-P28-P17 map-T15-2011 Jun 17. plmh TOC #0 (:+ 29) 1 PIJ, P30, D18, PI7, P28 (parb) TOL #1 (: 1 74): P8, P57, P14, P77, P30, P28 (Y1 42) HV (ncd. planks) : HV = 3975 V HV = 5950 V HV (mon-colito planta); HVG = 3075V HV = 5950 V ~ 15:00 Started calibration . Irun-EMMADAQ 1000 500 3400 First 411e TIS-L1000, emma TOCI-43 (PIH-XIN) very wee p= 973 mba 20,6,2011 T= 2402 (atter cosiling) -79 punking (P57-X3A) P77-X2 weak P30-X4 weak TIS-L1061 p28-x3 missing -x1-x2 weak P39-41-42-43 WEAK P18-41-42-43 Weble Started again from lik L1090 after SC+ Manks tes

Figure 16: The first page of logbook of the calibration of MUBs of stack 15.

4.2.3 Event jumps and false hits in data

As mentioned above, one event consists of one event file header and arbitrary amount of datawords for each TDC. However, a problem of an unknown origin arose - an event jump. It is a mismatch of events in data from two or more TDCs. This is illustrated in Figure 17. An initial thought was to disregard the raw data-files that contained event jumps. Unfortunately it was later found out that this would mean to disregard half of the *.emma-files.

Event jumps are detected by a function called "eventchecker()". It calculates differences between subsequent events. There is no event jump if

$$\mathbf{x_i} - \mathbf{x_{i-1}} = 1,$$

and there is an event jump if

$$\mathbf{x_i} - \mathbf{x_{i-1}} \ge 2,$$

Figure 17: An illustration of an event jump happening in TDC 1 in raw data. Event number 26 has been skipped in TDC1.

where \mathbf{x}_i is the event number i, where $i \in \mathbb{N}$ and $i \in [1, \mathbf{N}]$ and \mathbf{N} is the last event of the file. All the event jumps are save into a std::vector, and every time there is an event jump in the data processing, the event in which an event jump has happened is rejected from the analysis in both TDCs.

As mentioned in section 3.1.3, there can be numerous false hits in raw data. False hits are sorted out by function called sorter(). It uses a basic algorithm to inspect that there is only one of each signal (NEAR, FAR and ANODE) from each chamber, and these signals are the first ones to arrive to the TDC. All other signals are disregarded. There are usually multiple false hits in every chamber for every signal type.

The biggest problem of the calibration process was the chambers themselves, and the way they were working. The air temperature and pressure have an effect on the rate of afterpulses and trigger rates of the chamber. The stack 15 set-up was done in summer, during June 17 - August 1. The high temperature, over 27 degrees, and high air pressure increased afterpulse rate. Temperature reached its highest value around 29,8 degrees during the calibration run. Also, many of the low triggering rates in the chambers are speculated to be due to high pressure. Afterpulses do not produce much harm for calibration, due to the sorting process done by the BR, but low trigger rate affects statistics of chamber, and hence makes the calibration results worse. More details of the temperature, air pressure, and trigger rates can be found in the logbook in Appendix B.

4.3 Fit in delay-direction

The delay-direction is longitudinal direction of the MUBs as illustrated in Figure 21a. Because there are four reference MUBs in the stack, the exact hit position is known in these MUBs. Therefore a position in the delay direction can be constructed. A program called "Sorter" is responsible of creating a delay fit (as well as creating anode fit).

4.3.1 Requirements for delay fit

Sorter demands a single muon track. This means that there is only one track per each event and the track must consist of 8 hits in each reference MUBs' chambers. Multiple tracks are disregarded. Thus the delay fit, which is a 1st order polynomial fit, can be constructed by using hit positions in reference MUBs. An event is considered to be of good quality when it fulfils the following requirements:

- There must be two hits (one hit in both the X- and Y-chamber) in each reference MUBs. Eight hits in total.
- Hits must be located in proximate chambers. For example, if there is a hit in Y2-chamber, then there must be a hit in X2- or X3-chamber. This is illustrated in Figure 18. The central chambers (Y2,X2,X3) benefit from this requirement the most and have more data than external chambers. However, this would be the case anyway because of the geometry of the stack and the requirement of 8 hits.

Figure 18: An illustration of the trinity-demand. Sorter demands that there is a hit in the Y-chamber and the proximate X-chambers. This is illustrated by blue ellipses. The red dots represent anode lines.

• The position between the hits in the Y-chamber and the X-chamber must be 60 mm or less [74]. The distance of 60 mm comes from the geometry of the stack, and the value in question is the maximum value which a high energy particle can propagate to trigger all MUBs in the stack.

4.3.2 Construction of delay hit positions

The delay hit position in the reference MUBs was constructed from NEAR-, ANODE- and FAR-signal of each chamber by using equations

$$\begin{split} & X_{NA} = X_N - X_A, \\ & X_{FA} = X_F - X_A, \\ & X_{NAFA} = \frac{X_{NA} + X_{FA}}{2}, \end{split} \tag{3}$$

where \mathbf{x}_N is a NEAR-signal in mm, \mathbf{x}_A is an ANODE-signal in mm and \mathbf{x}_F is a FAR-signal in mm. The hit position in a MUB's chamber is \mathbf{x}_{NA} and \mathbf{x}_{FA} . \mathbf{x}_{NAFA} is the average of the two hit positions in the plank's chamber and it is constructed by using three independent parameters called triplet. The signals are first in channels, but they are transformed into mm using calibration tables of the reference MUBs. Basically this is done by a function named *Calparameters::inputdata()*. It takes as input:

- N,F and F-signals in channels,
- chamber id,
- plank id, and

• a vector, which contains a calibration table for current plank.

Then it reads calibration tables and matches the correct channel to the corresponding hit position and gives as output a data structure where all hits in reference MUBs are saved in mm.

The plastic holders inside the chamber can be located in the raw data as showed in Figure 19. In those locations, there are less statistic than usually. Another location for poor statistic is in the ends of each chambers, approximately 20 cm from each chamber end. Channel-hit position can be constructed by extrapolating good data into poor data.

Figure 19: Chamber X1 of P15 NA- and FA-signal are illustrated in this histogram. Sharp decreases in counts are due to plastic holders inside the chamber.

4.3.3 Construction of delay fit

The track of a high energy particle is illustrated in Figures 21a and 21b. When an event is considered to be of a good quality, a linear fit is done to hit-positions of the reference planks. The linear fit is done by using **ROOT**'s ROOT::Fit-class and fitting a 1st order polynomial to the data points. The slope and the constant can be retrieved from the fit parameters. Now the hit track can be recreated and the hit position in the un-calibrated planks can be constructed. Here we approximate that a high energy particle goes along a straight track when propagating through the calibration stack.

The positions of reference planks have been measured and can be found in Table 5. The exact position of the anode line in X- and Y-chambers is calculated by

$$\begin{split} \mathbf{Y}_{\texttt{P15}} &= 16.5 \text{ mm and} \\ \mathbf{X}_{\texttt{P15}} &= 16.5 + 27 \text{ mm,} \end{split}$$

where 16.5 mm is the distance between the Y-chamber ceiling and the anode line, and the 27 mm is the distance between the Y-chamber anode line and the X-chamber anode line. P15 is the utmost reference plank and it is considered as origin as its Y-chamber ceiling is reference point for other planks' positions in the stack. Of course, to get the other reference planks' corresponding values, one have to add the distance from table 5. Ultimately, the position of a reference plank in the delay direction is then constructed for the Y-chamber

$$\texttt{POS}_{\texttt{Y}} = (\texttt{Y}_{\texttt{P15}}, \texttt{X}_{\texttt{NAFA}})$$

and for the X-chamber

$$POS_{X} = (X_{P15}, X_{NAFA})$$

Figure 20: Position is plotted as a function of NA- or FA-signal using Equation (3) for each chamber in plank P8 as 2D-histogram. It can be seen here that the anode line is not linear and it is slightly different in each chambers. This is due to the fact that MUBs are man-made. Also, the difference between NA- and FA-signals can be seen in the figure. NA is monotonically increasing whereas FA is monotonically decreasing as a function of hit-position. It is also noteworthy that the anode lines (NA/FA) are similar in each chamber, but they are reversed.

Table 5: Reference planks ID and their position in the calibration stack.

Reference plank ID	Distance from P15 Y-chamber's ceiling (mean value)
P15	$0\pm 1~{ m mm}$
P39	539 ± 1 mm
P18	$1082 \pm 1 \; \mathrm{mm}$
P17	1602 ± 1 mm

As shown in Figure 20, MUBs are not perfect, and the position in the delay direction cannot thought as a linear line, or the different chambers seen as alike. This had to be taken account in the measurement of the height of the calibration stack. The MUB vertical position in the stack was measured in three location: 100 mm from the end of the plank, at 1750 mm middle point and 100 mm from the other end, with errors of 1 mm. Therefore a mean of these values were calculated and used when doing the fit of the track.

4.3.4 Uncertainty of the height of the stack

The uncertainties of the height of the MUB, and the position in delay and anode direction in the reference MUBs have been approximated to be ± 1 mm, and have been taken account in the fitting process. The uncertainty for the height of the stack comes from using a measurement tape. Each plank has three measurement points, and the height fluctuates ± 1 mm. Thus, propagating of uncertainty can be calculated

$$\sigma_{\rm err} = \sqrt{\sum_{i=1}^{3} (\frac{\partial \overline{\mathbf{x}}}{\partial \mathbf{x_i}} \Delta \mathbf{x_i})^2},$$

where $\overline{\mathbf{x}}$ is the mean of the MUB's positions

$$\overline{\mathbf{x}} = \frac{1}{3} \sum_{i=1}^{3} \mathbf{x_i}, \text{ and}$$

 $\Delta \mathbf{x}_{\mathbf{i}}$ is the uncertainty of each position. Therefore, $\sigma_{\mathbf{err}}$ is

$$\sigma_{\tt err} = \sqrt{(\frac{1}{3})^2 + (\frac{1}{3})^2 + (\frac{1}{3})^2} = \frac{1}{3} \text{ mm}$$

However, the uncertainty has been overestimated to be 1 mm. This is the value used in as parameter range when using **ROOT**'s ROOT::FIT-class.

(a) An illustration of a high energy particle track, the fit process for calibrating the uncalibrated MUBs and the location of reference MUBs in the calibration stack. The yellow stars are the hits in MUBs and the line through them represents a linear fit.

(b) An example of a delay fit procedure. The horizontal axis shows the stack's height and on the vertical axis is the delay hit position in MUBs' chambers. Figure 21a rotated 90 degrees counter clockwise so the top reference MUB (P15) is the nearest of the origin. Blue dots represent the hits in the X- and the Y-chambers in the reference MUBs. The red line is the linear fit.

Figure 21: An illustration of a high energy particle's track in (a) and the delay fit process in (b).

4.4 Construction of position in delay-direction from parameters of linear fit

Due to data acquisition electronics delay hit-positions are represented in channels in all uncalibrated planks, and for every channel there is a specific location in the chamber in delay-direction. This location can be reconstructed from the fit parameters of linear fit in reference planks. Thus a histogram was done for each channel for chamber of uncalibrated planks. This histogram is illustrated in Figure 22. The histogram is done for channel 258 for plank 8's chamber Y2 from FA-signal. Ultimately, there were altogether 2400 histograms per chamber, because there were 1200 channels per chamber, and the chamber position had to be done in FA- and NA-direction.

Figure 22: Plank 8's chamber Y2 channel 258 corresponding position in mm. The position is reconstructed from the linear fit parameters of reference planks.

After the reconstruction of the position, FA/NA-signal can be plotted as a positionchannel histogram, which is illustrated in Figures 23a and 23b. It can be seen, the anode-line in chambers behaves differently, and thus each chamber has to analysed separately. Statistics of both ends of the chamber is usually poor. Therefore, small parts at the ends of chambers are disregarded. The poor statistics at the ends of chamber depends solely of chamber, and of how good statistic it has. Also, plastic holders of the anode wire can be located in the line, as there is no data in small interval in channels. For example, 1st plastic holder is located around 1000 mm in Figure 23a.

Positions are needed for channels from -100 to 1100. Therefore an extrapolation is needed. This is done by creating a linear fit for the known data points and by extrapolating the needed positions by using the fit function. The fit is done for data points and it, usually, must be done in five different locations: in the beginning, in the end and in

location of every plastic holder. The reason for that is that for every chamber the position in delay-direction behaves differently and it is not usually linear.

The filling of low statistics locations and extrapolation is done semi-manually. The code, which handles the extrapolation and filling, takes several input parameters: the amount of data points in the channels from the fit is constructed, as well as the locations of the extrapolation, and low statistics locations. The fit is done using an interval of 200-300 data points from the x-axis, nearby of the preferred fit. An example of the fits are shown in Figure 24.

After the filling of data points of low statistics and extrapolation regions, the position of each channel was saved into a *.txt-file. This was done for every seven chambers of an uncalibrated plank and for both FA- and NA-signals. After that, all the same chambers of the plank FA- and NA-signal locations are combined so that there is only one text file. This is the calibration table of the plank. Because of the myriad amount of lines in calibration tables, they were not included in this thesis. However, the fits, out of which the calibration tables were composed, are included in the appendix D. Table 6 contains the summary of the successful and unsuccessful creation of calibration tables.

The unsuccessful calibrations were due to low statistics. The list of causes of low statistic in a chamber were: a missing signal, a broken chamber, and a weak signal. These where the most typical reasons for no data from a specific chamber, and this is documented in the logbook in Appendix B. However, no reason has been found why the chambers X1 of P8 and P57 are not working. P8 and P57 have gone three calibrations before stack 15, so there might have been something wrong with these planks. For all the other chambers, the reason for low statistics have been documented in the logbook.

Table 6: Summary of chambers for which it was possible to produce calibration tables. Red color indicates failed calibration. FA or NA in the table element indicates which direction has failed. Green color indicates successful calibration.

Chamber Id							
Plank Id	X1	X2	X3	X4	Y1	Y2	Y3
P8	FA and NA						
P57	FA and NA						
P14	FA and NA				FA		
P77	FA and NA	FA and NA			FA		
P30				FA and NA	FA		
P28			FA and NA		FA		

Figure 23: Plank P8's channels are plotted as a function of position in the delay direction. Y3 chamber is plotted in upper Figure (a) and X3 chamber is plotted in lower Figure (b). The variation of anode line position is visible. In the upper figure, the anode line is almost linear but in the lower figure, it is not linear.

(b) P8, X3, FA-signal + fit

Figure 24: An example of the extrapolation in the chambers. Red and amaranth exhibit extrapolations from the beginning and ending data points, constructed from linear fit function. Usually 200-300 data points were included in the fitprocess from the end and the beginning. There are also three greyish fits in the histogram. These are the location of the plastic holders inside of the chambers. Black dots nearby amaranth extrapolation, are just a visual bug, and they take no part in the creation of calibration tables.

4.5 Fit in anode direction

Like in the delay direction, the same kind of fitting procedure is used to make sure that the anode direction is also good. Anode direction means vertical direction in the stack while the delay direction is the horizontal direction. The anode direction is illustrated in Figure 25.

Figure 25: An example of how the anode fit has been done. The black arrow indicates hit-track of a high energy particle in anode direction. Red arrows indicate the distance from the hit to the anode wire. The anode position is created using a hit in both chambers, Y and X of the plank.

4.5.1 Construction of anode fit

The reconstruction of anode hit-position was much alike as the reconstruction of position in the delay direction. However, the difference was that the hit position in MUB was built by using a signal from both chambers - Y and X. Therefore, there were only four hit positions in the anode direction. This is shown in Figure 27. The anode hit position was created by using the following formula

$$\mathbf{x_{a1a2}} = [3 + 52 \cdot (1 + \frac{\mathbf{x_{A1}} - \mathbf{x_{A2}}}{3250})] \text{ mm}, \tag{4}$$

where 3 mm is the thickness of MUB's case, 3250 is the estimated length of the chamber in lengthwise direction and A1/ A2 (Y/X) - anode chamber signals in channels as in Figure 26a. Of course, the position must be shifted depending which anodes are used for the position calculating. The origin in the anode fit has been taken in the X1 anode. To make sure that the direction is kept on the right track, the position must be calculated a bit differently depending on where the hits have occurred. For chambers Y1-X1, Y2-X2 and Y3-X3, the deduction of anode signals is X-chamber hit minus Y-chamber hit , ergo position is calculated by A1 - A2, and for chambers Y1-X2, Y2-X3 and Y2-X4 vice versa. This is illustrated in Figure 26b.

(a) Here, an anode hit direction is illustrated. 104 mm is the distance between chamber X and Y anode lines. Also, chamber dimensions are shown and the height of a MUB in anode direction.

(b) Chambers are divided into two parts in anode direction - left(L) and right(R). Calculation of the position for anode fit is done by using by L minus R. Basically this means Y-hit minus X-hit for chamber pairs Y1-X1, Y2-X2 and Y3-X3, and vice versa for chamber pairs X2-Y1, X3-Y2 and X4-Y3.

Figure 26: An illustration of the dimensions used in the anode fit (a) and the division of chambers into left and right-pairs (b).

Figure 27: A fit to anode hit positions. The height of the stack is on the horizontal axis, and the anode position in mm is on the vertical axis. The blue points are anode positions with errors and the red line is a 1st order polynomial fit.

5 Analysis of the errors in the calibration process

Experimental, or as in this case, calibration uncertainty can be divided into two categories: random and experimental uncertainty. Random uncertainty can be treated statistically based on repeated measurements, whereas systematic cannot be handled in that way. Random uncertainty can be revealed by repeating the measurements, and it is called random error. Random errors are caused by unknown or unpredictable sources in calibration, for example, noise from electronics, air temperature, and pressure effects in chambers. Systematic uncertainty can not be treated by repeated measurement and it is called systematic error. Systematic errors are usually caused by the measuring instrument or the observer. For example, they may result from the process of measuring the height of the stack, measuring the distance of anodes, and from the code done by the author. However, a value for random and systematic errors can be received from the residual histogram. The peak width tells us the random error of the calibration, and the mean tells us the systematic error of the calibration. These errors can be combined as a quadric sum of errors. Taking the square root of the sum, we get the estimation for precision for the calibration, ergo

$$\delta \sigma_{\text{precion.}} = \sqrt{(\delta \sigma_{\text{rand.}})^2 + (\delta \sigma_{\text{sys.}})^2},$$
(5)

where $\delta \sigma_{\text{rand.}}$ is the peak width in residual histogram, and $\delta \sigma_{\text{rand.}}$ is data/fit mean in residual histogram. [75]

5.1 Residual of anode and delay fit in reference MUBs

Because of the unknown nature of the calibration, the only way to estimate errors of the created calibration tables was using a residual histogram. This was done in both anode and delay direction. Basically, the residual histogram was done by subtracting reconstructed position from the actual hit position, ergo

$$\Delta_{\rm res} = x_{\rm pos} - x_{\rm fit}$$

where $\Delta_{\rm res}$ is the residual, $x_{\rm pos}$ is the actual hit location from the calibration tables, and $x_{\rm fit}$ is the position constructed from the linear fit parameters.

Residual histograms were done for reference planks and also for uncalibrated planks. The estimation of error was obtained from the reference residuals, and by comparing uncalibrated planks residuals with reference plank's residuals, errors of the calibration can be justified.

5.1.1 The fit functions in residual histograms

The fit for the delay residual histograms of uncalibrated MUBs were done by using two methods: the double Gaussian with linear background and an integral method. Double Gaussian fit with linear background did fit better than just one Gaussian, but the problem was it could not be used in the fit process for the reference planks' residual histogram. The integral method was better in the end, but the double Gaussian fit provided also more information for the error analysis. Lorentzian function was used for the fit in the anode direction for both reference and uncalibrated MUBs, and also for reference MUBs in the delay direction. This was done because Lorentzian function has a sharper peak than in Gaussian, and the peak in the anode direction was much more sharper than in the delay direction. The Lorentzian function did fit also in the reference planks residual histogram.

Gaussian distribution is defined in **ROOT** as

$$\mathbf{f}(\mathbf{x}) = [0] \exp(-\frac{1}{2} (\frac{x - [1]}{[2]})^2),$$

where [0] is normalizing constant, [1] is mean (μ) , and $[2]^2$ is variance (σ^2) of the Gaussian distribution. The double Gaussian fit with constant background takes seven parameters. Six comes from the two Gaussian functions and one from the constant function. These fits have to be done first, and then feed the parameters of these fits to the double Gaussian with background fit. Hence an estimation for mean and variance was needed.

The total sigma of the two Gaussian was calculated as

$$\sigma_{\text{total}} = \sqrt{(\sigma_1)^2 + (\sigma_2)^2},$$

and mean is calculated by

$$\mu_{\text{total}} = \mu_1 + \mu_2.$$

The lower indices indicate different Gaussian fit. Quadric sum of variance works only if the variables are independent, here they are not. However, this was done to overestimate the errors of variance and mean. The real error analysis was done with different method and the double Gaussian fit with constant background was done to provide extra insight for the error analysis.

The second method for the delay residual was to integrate the area of the peak, and from it to approximate the peak width and mean. In integral method, the area was integrated where 68.25 % (= σ) of data is located, and also for 80% of data. This was done first and foremost to get a more accurate estimation for the error, and to be able to compare more easily reference residual histogram with uncalibrated residual histograms. The problem arose as the shape of the peak of reference and uncalibrated residuals were a bit different, so it demanded the use of different fits. The integral method could be used for the reference and the uncalibrated residuals in the delay direction, thus it was more solid method. Some of the chambers seem to have good σ when the double Gaussian fit was used, but when the integral method was used, it turned out that data was not really normally distributed.

Lorentzian function was fitted for the residual histogram in the anode direction. This could be done for both reference and uncalibrated residuals. This was done also for the reference residuals in the delay direction. The Lorentzian function [76] is the singly peaked function given by

$$\mathcal{L}(x) = \frac{A}{\pi} \frac{\frac{1}{2}\Gamma}{(x - x_0)^2 + (\frac{1}{2}\Gamma)^2},$$
(6)

where x_0 is the center of the distribution, A is an offset-parameter, and Γ is a parameter specifying the width, or more likely full width at half maximum (FWHM). The build-in Lorentzian of **ROOT** needs an additional offset parameter to be applied in this case.

The general problem with residual fits was that the data do not fully obey normal distribution. That was the main reason why such the double Gaussian, integral, or

Lorentzian method was used in the fitting process. The reason why data did not obey normal distribution, was probably because of the anode wire and delay-line are not ideal. For example, the anode line is not a straight line as it is fixed in three points in the roof of the chamber.

5.2 Residuals of reference MUBs

Systematic and random error of the calibration can be approximated from the residual histogram. Systematic error can be found from the mean of data/fit, and this should be close to zero. The peak width gives random error in residual histograms.

The reference MUBs residuals give an indication of what the residual of the uncalibrated MUBs should look like. For the anode direction, as can be seen in Figure 28, the FWHM of the residual histogram is around 3.7 mm. However, one has to remember that the fit does not perfectly explain the data, so this is just a guideline. The center of the fit is at 0 as it should be. Ultimately, the anode residual distribution has a sharper peak than delay residual distribution. This is due to the fact that anode position is constructed using two chambers. Hence, it is a bit more accurate.

Two different kinds of fit methods were used for the delay direction - the Lorentzian function and the integral method. The Lorentzian function was used in Figure 29. FWHM is around 7.7 mm in the delay direction, and the center is -0.01 mm. The second method was used in Figure 30. It can be seen that σ , where at least 68.25% data are located, is around 10 mm and mean of distribution is zero. Ultimately, the integral method is better, because it was also used for residuals of uncalibrated planks.

The error for reference planks can be calculated by using Equation 5 for both the anode and the delay direction. The error in the delay direction is

$$\delta \sigma_{delay} = \sqrt{(\delta \sigma_{rand.})^2 + (\delta \sigma_{sys.})^2} = \sqrt{0^2 + 10^2} \text{ mm} = \pm 10 \text{ mm}.$$

For the anode residual, systematic error is zero, so there are only random error in reference planks. In the anode direction one gets

$$\delta\sigma_{\text{anode}} = \sqrt{(\delta\sigma_{\text{rand.}})^2 + (\delta\sigma_{\text{sys.}})^2} = \sqrt{(0)^2 + (3,66)^2} \text{ mm} = \pm 3.66 \text{ mm}.$$

Now an estimation for the precision of the calibration of uncalibrated chambers can be acquired, by the errors of the uncalibrated chamber and the errors of the calibrated ones.

5.3 Delay residuals of uncalibrated MUBs

The residuals for uncalibrated planks in the delay direction were done by two methods: Double Gaussian with background fit, and an integral method. Values from the integral method are used in error analysis to guarantee identical basis for the error analysis. These values are comparable with the reference delay residual, which is done by same method. Demonstrations of the use of both methods can be found in Figures 31a and 31b. Other chambers' figures are in Appendix E. The error value of the reference planks is calculated in section 5.2, and that is 10 mm. By comparing this value to uncalibrated chambers, one gets an estimate for precision of the calibration.

Figure 28: Anode residual for the sum of reference MUBs in total 27 chambers. The black points are data, and the red line is the Lorentzian fit in Equation (6).

Errors of the uncalibrated chambers is shown Table 7, and the difference between the reference planks and uncalibrated planks in Table 8. A couple of questionable chambers with large error differences have been found. For example, there is over 50 mm difference between P30's and P28's chamber X2. This is due to the fact that the peak of the distribution is not steep enough. However, if one compares the result of the other method, the double Gaussian with constant fit from Appendix E, one gets the peak width around 12 mm for both chambers. Hence, the difference would be around two millimetres. The probable reason is that the data are not well distributed result was in a large σ . If the residual histogram is good, both the integral method and the double Gaussian fit with linear background should give approximately the same results for mean of the peak and the peak width. Ultimately, P30's chamber X1 and P28's chamber X1 calibration did not succeeded. P77's chamber X4 shows an interesting behaviour. The histogram is not symmetric, but right-skewed. This explains why the fit mean is heavily on the right side.

Figure 29: Delay residual histogram for the sum of reference MUBs in total 27 chambers. The black points are the data, and the red line is the Lorentzian fit from Equation (6).

Figure 30: Delay residual histogram for the sum of reference MUBs as in Figure 29. The peak width is approximated by the integral method. The red area is where at least 68.25 % of data are located. The teal area is where at least 80% of the data are located. The mean of data has been taken straight from the data.

(a) Delay residual histogram for P8's chamber X2. The red line is the double Gaussian fit with constant background. The mean is calculated by summing together the two means of the Gaussian fits, and σ is calculated by sum of squared of both sigma.

(b) Delay residual histogram of P8's X2-chamber. The peak width is approximated by the integral method. The red area is where at least 68.25 % of the data are located. The teal area is where at least 80% of data are located. The mean of the data was taken straight from the data.

Chamber Id							
Plank Id	X1	X2	X3	X4	Y1	Y2	Y3
P8	No table	11	13.02	12.04	12	15	10.02
P14	No table	16.01	11	9	No table	11.01	14
P57	No table	9	13	10.14	20	14.01	8
P77	No table	No table	11	9	No table	14.01	8
P30	12	60	7.01	No table	No table	11.01	11.03
P28	8	61	No table	9.02	No table	9	9

Table 7: Summary of errors of uncalibrated chambers in the delay direction in mm. The errors are calculated by using equation 5.

Table 8: Summary of the difference in errors of uncalibrated chambers and reference chambers in mm. The error values of uncalibrated chambers are from table 7, and the error of reference residual are from section 5.2. The negative value indicates that the uncalibrated chamber has had smaller error than the reference chambers.

Chamber Id								
Plank Id	X1	X2	X3	X4	Y1	Y2	Y3	
P8	No table	1	3.02	2.04	2	5	0.02	
P14	No table	6.01	1	-1	No table	1.01	4	
P57	No table	-1	3	0.14	10	4.01	-2	
P77	No table	No table	1	-1	No table	4.01	-2	
P30	2	50	-2.99	No table	No table	1.01	1.03	
P28	-2	51	No table	-0.98	No table	-1	-1	

5.4 Anode residuals of uncalibrated MUBs

The Lorentzian fit was used to approximate the peak width and its location in the anode direction. This is demonstrated in Figure 32, where the fit has been done for P8. The precision of the anode direction is calculated by using Equation (5), where σ_{random} is FWHM and $\sigma_{\text{sys.}}$ is the mean of data from the Lorentzian fit. These values and the fit can be found in appendix F. Table 9 summarises the results. P8 seems to have better accuracy than the reference planks. P57, P77, P30 and P28 had less than 1.5 mm larger uncertainty than reference planks. The larger error of P14 is explained by the largest systematic error.

A couple of planks had questionable anode residuals. P28 and P30 both had double peaks in their residual histogram. The histograms can be found in appendix F. The peaks in P30 are quite close to zero and coalesced together, but in P28 peaks are more separated. This might originate from the structure of chambers, because the value used for the distance of two anodes is same for all chambers. Basically, there could be small offset in the distance of anodes for different planks, which might cause double peak in the anode direction. The anode direction is more accurate than the delay direction, because it has been constructed from two chambers. Therefore, even the smallest fluctuations in the value of the distance of anodes might have been affected to the result. The uncertainty in the stack height, which is one millimetre, might also be a reason. P28 and P30 are the lowest ones in the stack, so there might also be a cumulative error regarding the height of the stack. This error might be visible only in the anode direction, because the anode direction is more accurate. Ultimately, the reason might also be a bug in the code by the author.

Figure 32: Anode residual histogram of P8 with Lorentzian fit. FWHM and the center of the fit have been taken from the fit parameters.

Table 9: Summary of uncalibrated planks errors in residual fit in the anode direction. $\sigma_{\text{precision}}$ is calculated by using Equation (5), where $\sigma_{\text{rand.}}$ is used FWHM value and $\sigma_{\text{sys.}}$ is used the center value. $\Delta \sigma$ is calculated by $\Delta \sigma = \sigma_{\text{uncal.}} - \sigma_{\text{ref.}}$, where $\sigma_{\text{ref.}}$ is the error of reference planks. The negative value indicates that the uncalibrated chamber has had smaller error than the reference chambers.

Plank Id	$\sigma_{\rm precision} \ ({\rm mm})$	$\Delta \sigma \ (\mathrm{mm})$
P8	2.62	-1.05
P14	5.31	1.65
P57	4	0.29
P77	5.05	1.39
P30	5.07	1.35
P28	5	1.28

6 Conclusions

The goal of my thesis was to calibrate muon barrel chambers for the EMMA experiment. The muon barrel chambers that I was calibrating were from calibration stack 15. There were four reference MUBs (P15, P39, P18, P17), and six uncalibrated MUBs (P8, P57, P14, P77, P30, P28).

The first task was to be able to read raw data files, which were in binary format. I used C++ and **ROOT** to make a program called Binaryreader. It reads the data, excludes afterpulses from the raw data, takes into account event jumps, and finally saves sorted data into *.root-file.

As a next step I created another C++ and **ROOT**-based program called Sorter to do the actual position calibration. It reads the files produced by Binaryreader and makes anode- and delay-fit to the hit-positions in reference MUBs with a couple of restricting conditions. Then a position in uncalibrated MUBs was created by using the function of the reference fit. Sorter then creates 2D-histogram, position versus channel, for each channel for both NA- and FA-signal for every chamber of uncalibrated planks.

Finally, the third program, Extrapolation, fills the gaps caused by plastic holds in the 2D-histogram, and that calibration full length of the chamber i.e. channels range from -100 to 1100. This is to guarantee that all the hits have a hit-position. Errors of the positions are approximated by creating residual histograms, and a fit function is fitted to residual histogram to get variance or FWHM of the residual.

Calibration tables were successfully created for 31 chambers out of 42. For four of those 11 failed chambers, it was possible to do only delay position calibration (NA). Hence these chambers were only "half" calibrated. For the rest of the seven chambers, it was not possible to produce calibration tables at all. These 11 chambers had poor statistic, which were the reason why calibration was not successful. Poor statistics were due to weak or non-existing signal.

Residual histograms were done for both reference and uncalibrated planks, in both anode and delay direction. That was done in order to get information on how good the calibration has been. The following chambers had better precision in the delay direction than reference planks: P57's chambers' X2 and Y3, P77 chambers' X4 and Y3, P30's chamber X3, and P28's chambers' X1, Y2 and Y3. Over five millimetres difference was observed in P14's chamber X2, P30's chamber X2, and P28's chamber X2. In the anode direction, only P8 had better precision than the reference planks. P57, P77, P30, and P28 had less than 1.5 mm difference, and P14 had over 1.5 mm difference compared to the reference planks' precision.

References

- [1] T. Enqvist et al. A new underground cosmic-ray experiment. J.Phys.Conf.Ser.39:478, arXiv:astro-ph/0512398, dec 2006.
- [2] V. Hess. Über beobachtungen der durchdringenden strahlung bei sieben freiballonfahrten. *Physikalische Zeitschrift*, 13:1084--1091, nov 1912.
- [3] M. Bertolotti. Celestial messengers: cosmic rays : the story of a scientific adventure (1st ed.). New York, NY: Springer, page 2, 2013.
- [4] Nobel Media AB. "Victor F. Hess Facts." Nobelprize.org. http://www.nobelprize. org/nobel_prizes/physics/laureates/1936/hess-facts.html, 1936. [Online; accessed 3-July-2016].
- [5] C. Coulomb. Troisième mémoire sur l'electricité et le magnétisme. *Histoire de l'Académie Royale des Sciences*, pages 612--638, 1785.
- [6] W. Crookes. On the illumination of lines of molecular pressure, and the trajectory of molecules. *Phi. Trans. R. Soc. Lond.*, pages 135--164, jan 1879.
- [7] M. Röntgen. Über eine neue art von strahlen. Der Physikalisch-medizinishen gesellschaft zu wurzburg, 1895.
- [8] H. Becquerel. Sur les radiations émises par phosphorescence. Comptes rendus hebdomadaires des séances de l'Acadèmie des sciences, 122:420--421, 1896.
- [9] J. Thomson. Cathode rays. *Phi. Mag.*, 44:293, 1897.
- [10] J. Hörandel. Early cosmic-ray work published in german. arXiv:1212.0706v1, 2012.
- [11] A. Gockel. Über die in der atmosphäre vorhandene durchdringende strahlung. Phys. Zeit, page 845, 1909.
- [12] A. Gockel. Luftelektrische beobachtungen bei ener ballonfahrt. Phys. Zeit, page 280, 1910.
- [13] R. Millikan. High frequency rays of cosmic origin. Proceedings of the National Academy of Sciences of the United States of America, 12:48--55, 1926.
- [14] R. Bennett et al. Diurnal variation of cosmic rays. *Phys. Rev.*, 41:119.
- [15] B. Rossi. Directional measurements on the cosmic rays near the geomagnetic equator. *Phys. Rev.*, 45:212--214, feb 1934.
- [16] P. Auger et al. Extensive cosmic-ray showers. Reviews of modern physics, 11, jul-aug 1939.
- [17] E. Fermi. On the origin of the cosmic radiation. *Phys. Lett.*, 75(8), apr 1949.
- [18] G. Kulikov et al. On the size spectrum of extensive air showers. Zh. Eksp. Teor. Fiz., 35:635--640, sep 1958.
- [19] R. Enomoto et al. The acceleration of cosmic-ray protons in the supernova remnant rx j1713.7-3946. Nature, 416:823--826, apr 2002.

- [20] M. Bertolotti. Celestial messengers: cosmic rays : the story of a scientific adventure (1st ed.). New York, NY: Springer, page 33, 2013.
- [21] L. Dorman. Cosmic ray history. Hauppauge, New York : Nova Science Publishers, pages 1--2, 2014.
- [22] STUK. "Luonnon taustasäteily. (in Finnish). http://www.stuk.fi/aiheet/ sateily-ymparistossa/luonnon-taustasateily. [Online; accessed 2-August-2016].
- [23] J. Beringer et al. Cosmic rays. PR D86, 010001, http://pdg.lbl.gov/2013/ reviews/rpp2013-rev-cosmic-rays.pdf 2013.
- [24] T. Gaisser. Origin of cosmic ray radiation. AIP Conf. Proc. 558:27-42,2001, arXiv: astro-ph/0011524, nov 2000.
- [25] J. Hörandel. Cosmic-ray composition and its relation to shock acceleration by supernova remnants. Adv.SpaceRes.41:442-463,2008, arXiv:astro-ph/0702370, jun 2007.
- [26] P. Grieder. Extensive air showers, high energy phenomena and astrophysical aspects, a tutorial, reference manual and data book (2nd ed.). Springer Heidelberg Dordrecht London New York, page 480, 2010.
- [27] J. Abraham et al. Correlation of the highest-energy cosmic rays with nearby extragalactic objects. SCIENCE9, 318, nov 2007.
- [28] P. Grieder. Extensive air showers, high energy phenomena and astrophysical aspects, a tutorial, reference manual and data book (2nd ed.). Springer Heidelberg Dordrecht London New York, pages 3--27, 2010.
- [29] P. Grieder. Extensive air showers, high energy phenomena and astrophysical aspects, a tutorial, reference manual and data book (2nd ed.). Springer Heidelberg Dordrecht London New York, page 482, 2010.
- [30] A. Haungs. Cosmic rays from the knee to the ankle. Physics Procedia 61 (2015) 425, arXiv:1504.01859 ,apr 2015.
- [31] The Fly's Eye (1981-1993). http://www.cosmic-ray.org/reading/flyseye. html#SEC10, 1991. [Online; accessed 2-August-2016].
- [32] J. Matthews et al. First results from the high resolution fly's eye experiment. *Nuc. Phys. B*, 87:411--413, 2000.
- [33] J. Blümer et al. Prog. Part. Nucl. Phys. 63 (2009) 293-338. arXiv:0904.0725, 2009.
 [Online; accessed 26-February-2016].
- [34] S. Thoudam et al. Cosmic-ray energy spectrum and composition up to the ankle the case for a second galactic component. *arXiv:1605.03111*, may 2016.
- [35] W. Apel et al. Kneelike structure in the spectrum of the heavy component of cosmic rays observed with kascade-grande. *Phys. Rev. Lett.*, arXiv:1107.5885, 107, 2011.
- [36] P. Grieder. Extensive air showers, high energy phenomena and astrophysical aspects, a tutorial, reference manual and data book (2nd ed.). Springer Heidelberg Dordrecht London New York, pages 11--12, 2010.

- [37] K. Greisen. End to the comic-ray spectrum? Phys. Rev. Lett., 16:748--750, apr 1966.
- [38] G. Zatsepin et al. Upper limit of the spectrum of cosmic rays. JETP LETT., 4:78--80, may 1966.
- [39] J. Hörandel. Models of the knee in the energy spectrum of cosmic rays. Astro. phys., 21:241--265, jan 2004.
- [40] C. Grupen. Astroparticle physics (2nd ed.). Springer Berlin Heidelberg New York, ISBN-10 3-540-25312-2:66--69, 2005.
- [41] D. Fokkeman. The hisparc experiment data accuisition and reconstruction of shower direction. National Institute for Subatomic Physics, pages 11--15, 2012.
- [42] A. Bell. The acceleration of cosmic rays in shock fronts. Mon. Not. R. astr. Soc., 182:147--156, jun 1977.
- [43] P. Grieder. Extensive air showers, high energy phenomena and astrophysical aspects, a tutorial, reference manual and data book (2nd ed.). Springer Heidelberg Dordrecht London New York, Second edition, pages 3--4, 2010.
- [44] M. Nagano et al. Energy spectrum of primary cosmic rays between $10^{14.5}$ and 10^{18} ev. *J. Phys. G10, 1295*, jan 1984.
- [45] T. Stanev. High energy cosmic rays (2nd ed.). New York, NY: Springer, page 122, 2010.
- [46] P. Grieder. Extensive air showers, high energy phenomena and astrophysical aspects, a tutorial, reference manual and data book (2nd ed.). Springer Heidelberg Dordrecht London New York, pages 77--79, 2010.
- [47] K. Olive et al. Particle data group. Chin. Phys. C, 38, 2015.
- [48] P. Grieder. Extensive air showers, high energy phenomena and astrophysical aspects, a tutorial, reference manual and data book (2nd ed.). Springer Heidelberg Dordrecht London New York, page 207, 2010.
- [49] P. Grieder. Extensive air showers, high energy phenomena and astrophysical aspects, a tutorial, reference manual and data book (2nd ed.). Springer Heidelberg Dordrecht London New York, pages 208--225, 2010.
- [50] W. Lohmann. Energy loss of muons in the energy range 1-10000 gev. Cern Yellow Reports, 1985.
- [51] P. Grieder. Extensive air showers, high energy phenomena and astrophysical aspects, a tutorial, reference manual and data book (2nd ed.). Springer Heidelberg Dordrecht London New York, page 222, 2010.
- [52] A. Morselli et al. The pamela space experiment. -, arXiv:0905.2551, may 2009.
- [53] T. Yoshida et al. Bess-polar experiment. Advances in Space Research, 33(10):1755--1762, 2004.
- [54] A. Kounine. The alpha magnetic spectrometer on the international space station. Lab. for Nuc. Scien., 21(08), 2012.
- [55] C. Fabjan et al. Calorimetry for particle physics. *Rev. Mod. Phys.*, 75(1243), 2003.

- [56] P. Cerenkov. Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. *Phys. Rev. Lett.*, 52(378), 1937.
- [57] H. Völk et al. Imaging very high energy gamma-ray telescopes. Exp Astron, 25:173--191, 2009.
- [58] The Pierre Auger Collobration. The pierre auger cosmic ray observatory. Nucl.Instr. and Meth. A, 798, arXiv:1502.01323, 2015.
- [59] T. Bernhörn et al. Simulations of imaging atmospheric cherenkov telescopes with corsika. Astropart. Phys., 30(149), 2008.
- [60] I. Cholis et al. Constraining the origin of the cosmic ray positron fraction with the boron-to-carbon ratio. *Phys. Rev. D*, 89, 2014.
- [61] W.D Apel. The kascade-grande experiment. Nucl.Instr. and Meth. A 620, pages 202--216, 2010.
- [62] A. Aab et al. A targeted search for point sources of eev neutrons. Astrophy. Journ. Lett., 789(2), 2014.
- [63] A. Aab et al. A search for point sources of eev photons. Astrophy. Journ. Lett., 789(2), 2014.
- [64] T. Enqvist et al. Measurements of muon flux in the Pyhäsalmi underground laboratory. arXiv:hep-ex/0506032, 2005. [Online; accessed 25-February-2016].
- [65] CERN. The delphi detector at cern's lep collider. http://delphiwww.cern.ch/ offline/physics/delphi-detector.html, 1991. [Online; accessed 14-June-2017].
- [66] T. Räihä. Analysis tools for the emma experiment. University of Oulu, pages 34--37, 2012.
- [67] J. Sarkamo. Design, construction and commissioning of the emma experiment. University of Oulu, pages 65--66, 2014.
- [68] J. Sarkamo. Design, construction and commissioning of the emma experiment. University of Oulu, page 72, 2014.
- [69] T. Räihä. Analysis tools for the emma experiment. University of Oulu, page 37, 2012.
- [70] T. Antoni et al. A large area limited streamer tube detector for the air shower experiment kaskade-grande. *Nucl.Instr. and Meth. A*, 533:387--403, 2004.
- [71] J. Sarkamo. Design, construction and commissioning of the emma experiment. University of Oulu, pages 59--61, 2014.
- [72] T. Räihä. Analysis tools for the emma experiment. University of Oulu, pages 66,69, 2012.
- [73] R. Brun et al. Root an object oriented data analysis framework. roceedings AIHENP'96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81-86, 1996.
- [74] J. Sorjonen. Special work: Reading binary files and tracking for the calibrations of muon barrel chambers for emma-experiment. University of Jyväskylä, 2015.

- [75] J. Taylor. An introduction to error analysis. University science books, pages 93--95, 1997.
- [76] E. Weisstein. "Lorentzian Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LorentzianFunction.html, 2005. [Online; accessed 3-June-2016].

Appendix A

Little endian binary format of *.emma-files. There is one Header and TDC-configuration bit-set per file.

Header

Position	Data
0x00-0x03	'E','M','M','A'
0x04-0x07	File id-number
0x08	Data format version number
0x09-0x0c	UNIX UTC time (seconds since 1.1.1980) of the file creation
0x0d-0x10	Microseconds after above time for the file creation
0x11-0x2e	reserved for future use
0x2f	number of TDC-units configured in this file

TDC-configuration

TDCs are configured at this point, position reflects the first TDC. Next TDC is in 16 bytes later.

Postion	Data
0x30	8-bit ID-number of the TDC(status/ID)
0x31	5-bit GEO Address of the TDC
0x32	Operation mode: $1 = \text{STOP TRIGGER MATCHING}$,
	2 = START TRIGGER MATCHING
	3 =START GATING
	4 = CONTINUOUS STORAGE
0x33	DATA READY mode of TDC
	1 = NOT EMPTY
	2 = ALMOST FULL
	3 = EVENT READY
0x34-0x35	Almost full level in ALMOST FULL mode
0x36-0x37	Trigger window width
0x38-0x39	Trigger window offset
0x3a-0x3f	Reserved for future use

Data

Event consists of single Event header word (32 bits) and data words (32 bits) for all recoded hits. Bit 22 distinguishes between header and data. Bit 21 is 0 on valid data / header.

Event header

Position	Data
31-27	GEO Address of TDC
26-23	Don't care
22	1(header)
21	0(End of block)
20-0	Event serial number(clock)

Data word

Postion	Data
31	Don't care
30-24	Channel number
23	1 = start signal, 0 = ordinary signal
22	0(header)
21	0 (End of block)
20	1 = rising edge, 0 = falling edge
19-0	Measured time $(LSB = 0.8ns)$

File Tailer

Start of tailer

Position	data
0x00-0x03	0x00600000 - End of data
0x04-0x07	Time of closure(UNIX UTC)(seconds)
0x08-0x0b	Time of closure(microsends after above)
0x0c-0x0f	Number of events in this file

TDC count rates

Position	Data
0x00	ID-number of TDC
0x01-0x04	Count of hits on channel 0
0x05-0x08	Count of hits on channel 1
0x1fd-0x200	Count of hits on channel 127

Environment

Position	Data
0x00-0x01	Temperature 1(Tunnel air)
0x02-0x03	Temperature 2 (Control room air)
0x04-0x05	Temperature $3(VME box)$
0x06-0x07	Temperature 4(Power supply)
0x08-0x09	Temperature 5
0x0a-0x0b	Temperature 6
0x0c-0x0d	Humidity 1
0x0e-0x0f	Humidity 2
0x10-0x11	Air pressure
0x12-0x13	High voltage 1
0x14-0x15	High voltage 2
0x16-0x17	Low voltage $+12V$
0x18-0x19	Low voltage $+$ 5V
0x1a-0x1b	Low voltage -5V

Appendix B

26200	TELINE TIST	(23)
Traggen		
Planks (ca) (to be	16ruped): P15, P39, P18, P17 (allbrated): P8, P57, P14, P77, P30, P28	
Plank orde	N: PIS-P8-P57-P39-PIH-P77-P18-P30-P28-P17	
17, 6, 201)	Plankmap: [map-TI5-201] Jun 17. plank]	
TDC #0	(1+29) 1 PIJ, P39, P18, PI7, P28 (parb)	
TOL HI	(:d=74): p8, p57, P14, P77, P30, P28 (Y10, Y2	-)
HV (re	4-placks): HVG=3975V HV25950V	
HNCOM	-cnlib planle); HVG=3075V HV2=5950V	
N 18:00	Started calibration ,/run-EMMADAQ 1000 500 36 First 4112 TIS-L1000, emmo	00
20,6,2011	TDC1-43 (PIH-XIN) very weak p= -79 punthun (P57-X3A) P77-X2 weak (atte	973 mbau 2402 (cosiling)
TIJ-L 1061	P30-X4 WEAR P28-X3 missing -X1-X2 weak P39-Y1-Y2-Y3 WEAR P18-41-Y2-Y3 WEAR	
	Started again from file L1090 after SC+Pla	inks ter

	Construct support			1131	(21.)
			12:00	1 /1000 - FMMADAIR 1271 500 3600	
01-12-1		(26)	, , , , , , , , , , , , , , , , , , , ,	grane criticitia i - 3 - 2	
29.06.2011	N-F of TIS-LRGY.emma			First file TIS-L1271. emm	p= 988 when
63:30		p= 336 mbar			7=24,0°C
	P8 OK			Using still map-T15-2011 Jun 28. plank	
	PSZ OK	T=26 °C		, 1	
	PH XI weak, others ok				
	P77 X2 "deay", others OK		04,07.2011		b=22,0 °€
	P30 XY "Lecoy", others OK		08:00	N-F of L1285-enna as previously.	p = 999 mbar
	P28 X3 missing, others ok				
	P15, P33, P18, P17 OK (P17-Y1 hat connected)		09:55	HV annual (PIS-PIZ) = 3950 V at the beginning	
				L T15-1 12 88 anna	
11.005	the standard and the standard and the standard	10 0= 9.94 mb			
10.15	has high the particular starter sparring, prompy ch	T = 29,8 °C			
	the moje temperative .		14.50	Stonged for tests of Marick Last the (14)	
	Stopped and I temperature is lower.		1107-	stable). tean) and).	
	- ppeo un no conference or an			T15-L1252. enna	
	lock (10 TIS-LIZG3-conna				
			17:10	Started again: First file T15-L1294, emma,	p = 995 mbar
				· .	1 = 21.8 °C
03,07,2011	HV, (P8-P28) = 3975 V, Ig = 1,073	mA	05,07,2011	New Ar-dewar	
16:30	0		09-30		
	HVa (18-P28) = 5950 V, Ia = 2 pd	7 spikuy still vereby		N-F of T15-L1303. emma	p = 996 mbir
	144 (NIC 202) 2025 3/ 5 . A/91	0		22 252 ml	1 = 0.3 C
	$HV_{g}(P15 - P(H) = 35 + 5 V, L_{g} = 0.6 J1$	w14		PO, PDF 04	
	IN LOSS DOD - FOOD V I - D	Δ		MY, PFF, TSO, PZO as Sept	
	$HV_n(PIS-PIP) = 3050 V ; F_{g} = 0 $	417		YIS, Y2S, T18, MF OK	
	D = 388 mbar		11:00	Stonged for teft of Macieke Left file TTS-LIBIO. Que	
	T = 24.3°C (geing down)		12:00	Starled at TIS-L1312 enva	
	lesting 15 min : N-F as in the top of the	e page.			
	=> start allow the				

		1(0)			
	T15			TIST	(2)
			12.07.2011		
06/07/20	11 TIS-41320,0000A	T= 23.5°C	15:00	Chipper in P57-X3-A was broken. An the made a new-	
1:20	P57-X3 a bib weak			PIY-XI-N is not compting.	
	PH-X1 poon P37-X2 very weak			Tost files TIS-LISTV. comm TIS-LI399. embr	
	P30-X4 very weak P28-X3 10155203			FIM-X1-A: chu = 63 -> chu = 108	
10:44; T15-L12	33, emma - Stop for SC-tests			Neer phytomap. map-TIS-2011Jul 13- phyt	
10:46:115-L1 12:05: -11-1 15:50: -11-1	335 -11 Stopped 338 -11 Sturted		15:30	Start ./run-EMMIRAA 1400 500 3600	
AL -7.2-8				First Lile TIS-LIYOO. emma	p=988 ner
17:00	Running in T15-L1339. enna	T = 24.0°C p = 383 mbor		4V, (P8, , P28) - 3375 V, Ic = 1072 MA	T = 20,7 °C
				$AV_A = 5350 V$, $L_A = 2/A$	
07,07,2011	EMMAN-F of TIS-L1353 Lemma	4202		11/ (DIT DOL = 3950 V 7. = AST At	
08:00		p= 988 mbr		$HV_{G}(FIS_{m},FIF) = 5350 V I_{R} = 0 \mu R$	
	PS, PS + OK	1-2-26			
	PAT X2 bit "decay"				
	Pro X4 lond "decny"		1412/11	@ 11:20, file L1418. comm	p= 993mi T-2069
	PZ8 X3 missing 715, P23, P18, P17 OK (P17-Y1 not connected)		· · · · · · · · · · · · · · · · · · ·	IA = 1 p	100000
				PB ok P57-X3 missing, P14-X1-N missing,	
11:50	T15-L1358 stopped for 50 tests. Lus	f f f $L1357$ emma $p = 387$ mban		PTT-X2 poor, PSO-X4/poor, P28-X3 mission	
17:00	110-21003 900000	T= 27.0 °C		Apart from P57-X3 there is not much we	6an
17:15	Stopped due to strange behaviour of non-addorates place. My se due to high T.	8		do. They in PST - X3-A the chapter was brained	
12 7 2011	715-L1353 dele Ed.			12×+W) in the in in the Marine of L1420. come, without stopping PAR.	
- <u>-</u>				(P57-X2 is of in L1429, comme)	

	and a second sec			and the first the first in
CITI I CITI	(30)	211+191	to ch # 127 (in TDC # 0)	pour creme (SI)
to de star and the second		*	New map-file map-T15-	2011 Jul 21. plank
15/4/2011 T15-LIUHO.emma	T2 22,1°C		VIII (T15-11520 cm	
~ 8:00 P14-X weak	<i>y</i> . <i>y y z</i>		Variat Jon 113-213 04.	
PIT-X2 Neak		29/2/14	@~ 19:00 HV shat down	in calibrated
P30-24 WEAL P28-23 m15390A		211 4111	planks, Lost Full file	the second se
P17-Y1 modsmag			T15-L1594. cmma	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	apre 1 -			- 11- 0=983-h
18,7.11 @ 3:10, 715-21572.cmm	p = 387 mbar T = 26.0 °C	22/7/11	The forecast predicts not weekend. => we carry on	the calibration T=27.8 "c
PB & P57 06, P14-X1-N, P77-X2,			on Monday!	
PIG-PT of Capart from PTZ-MI).				and it will p= 998 where
		25/7/11	@ 9:15 According to the pore be but over the week too. I	Thes the T=27.7%
10/7-111 @ 8:50, 715-27536	p = 9.82mba		As dener was not order	ed and we
19.2 19	1.24,6 2		a weef (unhi next Tuesda	n week after
~~ 10. f. // .	e- 286 h.		this one).	
20/2/2011 @ 1530 715- 27566	T=26.6 C	20/7/11	@ 18:10 In dewar shill	500me T=28.40
P14 ×1			liquid, plenar = 13 bar.	
PT-X2 Werk		31/7/11	@ 18:30 There's shill some	liquid 7=28.0%
Pro x16 X3 miline			in the dewar, Plan = 12.	5 bar.
PIZ VI missing		1/8/11	@ 9:25 Still some liquid	7 = ZST8 =
	P = 285-		Polemer = 72 ber.	
21 Him @ 0900 115-L1584	T=27.32	2/3/11	@ 9:25, @ 12:45 Shill some	lignid, T=22,7°C
P22 X1 X3 missing		34	Piever = 10 ber.	(3bur)
P12 Y3 musing		3/8/11	@ 9:20 Dewar is emply	using the I=23.5 x
in P2B-X1 A broken			Ar-bottle (cmphat-17:00)	STOP CUBLO ISAN
		1. 1. 20		
	1:25,2°C	13/2/2011		22.2 .2
T 6/1 @ 9:30	TAUFY			23,3 %
@15.30 Ti 19.5°C	1, 27, 5 C	14/8/201 (≥ (),∞	
0/0/2010 0 9.00	F - 7 (F)	e	20:00	26.02
C) C/ 2011 (C) U C C	p = 967 mbar	15/8/11 00	20 ACL HILL R Still	
2/8/2011 @ 020 T=		HUM	at ripiter the week end shill	23.9°C
	T=24x 7	4	and = 7k and I = 7 pA = 3	23.9°C P= 338mlm
	T= 240 2 P= 942 War	nee htv	d to find the chamber can Tedina P8. PS7 & P14 => car	23.9°C 12 shall 14 shall
10/8/11 @ 1:30	7=248 Z P=912 hbr T=23 6 9	nee UV for	and a 4 k and I = 7 pA => of to find the chamber can , Testing P8, PS7 K P14 =1 cars A and A respectively. The po	23.9°C P= 338mhm ents 531 and 215 blem hered out
10/8/11 @ 3:30	7=246 2 P=222 hbn I=23.6 x p=974m6-r	nee blv for h	A and I = 4 k and I = 7 ph => d to find the chamber can , Testing P8, PS7 k P14 => carr to and A, respectively. The pro- be a 4V-box. and PIT-X'	23.9°C P= 338 when 14 shand conts 531 and 217 blem there out Y.
10/8/11 @ 3:30	T= 21.6 2 P= 212 Lbn T= 21.6 2 P= 374006-7 T: 22.1°C	be by for b Curr	and a 4k and I = 7 pA => d to find the chamber can , Tashing P8, P57 k P14 => car A and A respectively. The po be a 4V-box, and PIT-X" ants of (Theored your) after	23.9°C P= 338mhan 14 shall ents 531 and 217 blem turned out Y. disconneching
10/8/11 @ 3:30	$T = 24.6 \times 2$ P = 112 Mba $\overline{I} = 23.6 \times 2$ P = 0744 mba = - $\overline{T}; 22.1°C$ P = 972	0 6 17:15 17:15 17:15	and = 4 k and I = 7 ph => d to find the chamber can , Teoling P8, PS7 k P14 =1 car to and A, respectively. The pro- to a 44 box. and P77-X ^o ents of (In ² ~ 4ph) after X4. Toying to run calib	23.9°C P= 338mbm it shall ents i31 and ZM blem hered ant Y. disconneching rabin over right
10/8/11 @ 9:30 11/05/11 10:45 HU Parel 12 ~ 4 KV	T = 27.6 % P = 912 Mon $\overline{1} = 23.6 \%$ P = 974 mon $\overline{1}; 22.1° \text{ C}$ P = 972	0	and = 4 k and I = 7 pp = > d to find the chamber can . Testing P8, PS7 k P14 = 1 end to and A respectively. The pro- tic a 44 - box. and P77 - X' entr of (In and Y y and) after - X't. Typing to run calib - map-file, HV concal = 3975	23.9°C 14 shall ents 531 and 217 blem hrad ant 4. disconneching rabin over right V, In 4 jet P = 337 adm
10/8/11 @ 9:30 11/05/11 10:45 HV prinel to ~ 4 KV 14:45 HV prinel to ~ 4 KV	$T = 24.6 \times 2$ P = 112 Mbn $\bar{l} = 23.6 \times 2$ P = 0744 mbn $\bar{T}; 22.1° \text{ C}$ P = 972	D and A and	and a 4 k and I = 7 ph = 3 of to find the chamber can , Teolog P8, P57 k P14 = 1 end the and A, respectively. The pro- tic a 440-box. and P77-X' ents of (IA - 4 ph) of kr - X'T. Toging to run calib a map-file, HV cond = 3975 last file was T75-L153.	23.9°C P= 338mbm it shall ents i31 and ZM blem hered ant Y. disconneching rabin over right V. Torit ped P = 937mbm T = 226 ec 7. cmm.
10/8/10 @ 9:30 11/05/11 10:45 HV Friel 13 ~ 4 KV 14:45 HV for reference all collection 1002 1/43 = 50 pt	T = 21.6 % P = 912 Hbn $\overline{1} = 21.6 \%$ P = 974 m m m m m m m m m m m m m m m m m m m	Den hee HU for h 17:15 P27 Sun The Con	and a 4 k and I = 7 ph => al to find the chamber can , Teshing P8, PS7 k P14 = 1 end to and A, respectively. The pro- tic a 440-box. and P77-X ⁴ entra of (Ta ^{mon-1} ~ 4ph) after X4. Toging to run calib -e map-file, HV ^{40-cal} = 3975 last file was T75-L153. himming to (P77-X4 disco	23.9°C P= 338mbm it shall ents i31 and 21 blean hornel ant Y. disconneching Tabàn over right V, Inity pha P = 337mbm T = 226 ec Y. cnorn. mached for new).
10/8/11 10/8/11 10/8/11 10:45 HV ravel to ~ 4 KV 14:45 HV for reference SK celieration NOX 160 = 50 pt 1800 HV for Reference operatural voltages	T = 27.6 % P = 912 Mbz $\overline{1} = 27.6 \%$ P = 0740.6 % $\overline{1} = 27.1° \%$ P = 977	0 15/81	and = 4 k and I = 7 ph => d to find the chamber can , Teoling PS, PS7 k P14 => end to and A, respectively. The pro- be a HV-box, and P77-X' ents ok (In ~ 4ph) after X4. Toying to run calib re map-file, HV concel = 3375 hinning to (P77-X47 disco T15-21600.cmma	23.9°C P = 338mlm P = 338mlm r + s + 31 and 2/7 blem hered out Y . d sconnechin, r + hin over right $V, I \sim H prd P = 337mlm T = 226 ecT, cnon .necched for new).(500 files, 1h ench).$
10/8/11 @ 9:30 11/05/11 10:45 HV pirel to a 4 KV 14:45 HV for reference SK collection NOX 14A) = 50 pt 1800 HV for Reference operational voltiges HV for collibution 2 kV	T=23.6 2 P=22 bba i=23.6 α P=274m6-7 T:22.1°C P=972	17:15 17:15 17:15 17:15 17:15 17:15 17:15 17:15 17:15 17:15 17:15 17:15 15/8/ 17:15	and a 4 k and I = 7 ph = 3 of to find the chamber can , Teoling P8, P57 k P14 = 1 end the all A, respectively. The pro- tic a 440-box. and P77-X' ents of (IA - 4ph) of the -X'. Toging to run calib - Map-File, HV - 3975 Last file was T75-L153. himming to (P77-X40 disco T15-L1600.cama	23.9°C P= 338mbm it shall ents 531 and ZM blem horned ant Y. disconneching rabin over right V, In U get P = 337mbm T = 226 ec 7. cman. mached for new). (SOO files, Th each).
10/8/11 @ 9:30 11/05/11 10:45 HV pur reperence at colorge 14:45 HV pur reperence at colorge 13:00 HV for Reperence porstruct volorge HV for calibration 2 LV 12/8/14 HV for calibration area porming and of	$T = 24.2 \circ c$ $P = 21.6 \circ c$ P = 37400 - c $T = 21.6 \circ c$ P = 37400 - c P = 974	De Hu For h Curr 17:15 Pr The Curr The Con D 15/B/ 17:15 D 15/B/ 17:15	and = 4 k and I = 7 pph => al to find the chamber can , Testing PS, PS7 k PtH =1 end to all A respectively. The pro- tic a HV-box. and PIT-X' enta of (IA " 4ph) after -X'T. Trying to run calib a map-file, HV " and = 3875 last file was ITS-L153. himming to (P77-X'T drice T15-L7600.coma	23.9°C P= 338mhm it shall ents i31 and 21 blean hornel ant Y. disconneching Tabàn over hight V, Inith prod P = 337mhm T = 226 ec 7. cnorn. Inceded for new). (500 friks, Th each).
10/8/11 @ 3:20 11/05/11 10:45 HV pur reference of collection VVX 140 = 50 pt 1800 HV for reference operature voltiges HV for collibritum 26V 12/64/11 HV for collibritum 26V 12/64/11 HV for collibritum 26V	$T = 24.2 \circ c$ $p = 327.4 \circ c$ $p = 27.6 \circ c$ $p = 27.6 \circ c$ $p = 27.4 \circ c$ $p = 28.2 \circ c$ p = 382 - 100 c	17:15 P27 17:15 P27 Curr 17:15 P27 Curr The Con © 15/8/ 17:15 14/8/241 Olive	and = 4 k and I = 7 ph => d to find the chamber can , Teoling P8, P57 k P14 =1 end the and A, respectively. The pro- the a HV-box, and P77-X' entro ok (In the second P77-X' entro ok (In the second P77-X' entro ok (In the second P77-X' to map - file, HV concel = 3375 . Last file was ITS-L153. hinning to (P77-X' disco T15-L7600.coma	23.9°C P = 338 m/m P = 236 m/m P = 226 m/m P = 226 m/m P = 226 m/m P = 236 m/m P = 236 m/m P = 236 m/m P = 235 m/m
10/8/11 10/8/11 10/8/11 10:45 HV resel to ~ 4 KV 14:45 HV for reference all colocation NOV 14A) = 50 pt 1800 HV for Reference appratumed voltages HV for collibration 26V 12/8/11 HV for collibration 26V 12/8/11 HV for collibration 26V 12/8/11 HV for collibration comminul and of & you collibration 26V 12/8/11 HV for collibration comminul and of & you collibration coll even 4/6 scens & yes 1/1 in problems:	$T = 24.2 \ %$ $P = 112 \ Wba \overline{1} = 23.6 \ \inftyp = 074m \ 6 - r\overline{T}; 22.1°Cp = 972T = 29.2 \ \inftyT = 29.2 \ \infty$	род нее ИV For 17:15 Р27 Сим 17:15 Р27 Сим ТА Сом Ф. 15/8/ 17:15 15/8/ 17:15 16/8/ 17:15 15/8/ 17:15	and a 4 k and I = 7 pp = > d to find the chamber can , Testing P8, PS7 k P14 = 1 end the and A respectively. The pro- tic a 440-box. and P77-X' ents of (IA - 4ph) after -X'. Trying to run calib - M'. Trying to run calib in an p-file, HV concal = 3975 . Tast file was F15-2153 himming to (P77-X' disco T15-27600.coma	$23.9^{\circ}C$ $P = 338 \text{ where } P = 238 \text{ where } P = 218 \text{ where }$
10/8/11 @ 9:30 11/05/11 10:45 HV pur reperence of collection NOC 140 = 50 pt 13:00 HV for Reperence operational volonger HV for calibration 2 kV 12/8/11 HV for entitlation 2 kV 12/8/11 HV for entitlation 2 kV 12/8/11 HV for entitlation ones normal and ok. @ 9:30 but for non-cal even 4/6 seems to versalt in problems: HV for entitle problems:	$T = 29.2 \text{ fb}_{2}$ $P = 112 \text{ fb}_{2}$ $\overline{1} = 21.6 \text{ c}_{2}$ $p = 3740 \text{ fb}_{2}$ $\overline{1} = 21.6 \text{ c}_{2}$ $p = 214 \text{ fb}_{2}$ $T = 29.2 \text{ c}_{2}$ $p = 383 \text{ fb}_{2}$	ри пес не не не не не не не не не не	and = 4 k and I = 7 pph => al to find the chamber can , Teshing PS, PS7 k PtH =1 end to and A respectively. The pro- tic a HV-box. and PT7-X ⁴ and of (TA ^{non-1} ~ 4ph) offer -X4. Trying to run calib -e map-file, HV ^{100-cal} = 3875 - last file was TT5-L153 himming to (P77-X4 drisco T15-L7600.comma - 1615.comma	23.9°C P = 338 m/m P = 238 m/m P =
10/8/11 @ 3:20 11/08/11 10:45 HV perfect to a 4 kV 14:45 HV perfect to a 4 kV 14:45 HV perfect of and all and a second and a second and a second a secon	$T = 24.2 \circ c$ $P = 327.4 \circ c$ $P = 327.4 \circ c$ $P = 327.2 \circ c$ $P = 327.4 \circ c$ $P = 327.4 \circ c$	De hee hee hee hee hee hee hee hee hee h	- IGIS and - 1615. and - 1615	23.9°C P= 338mhm 2 shall ents 531 and 215 blem herned out 7. disconnechin, rabin over right V, I and year P = 337mhm T = 226 ec 7. cmm. meched for new). (SOO friks, Th each). T = 23.6 2 P = 215 mber Sne OR cable ust connected
10/8/11 @ 3:30 11/05/11 10:45 HV Parel to ~ 4 KV 14:45 HV for reference all colocation NOV 140 = 50 pt 1800 HV for external NOV 140 = 50 pt 1800 HV for external NOV 140 = 50 pt 1800 HV for colorated ones nominal and of HV for colorated ones nominal and of 21/07/14 HV for entitle and even 46 seem to result in problems: HV market = 3358 V, I = 5060 pt HV market = 3975 V, I = 1075 pt	$T = 24.6 \ %$ $P = 112 \ Wb_{m}$ $\bar{1} = 23.6 \ %$ $p = 074m \ 6-r$ $\bar{T} = 23.2 \ %$ p = 977 $T = 29.2 \ %$ $p = 387 \ Mb_{m}$	род пес не не не не не не не не не не	mercial = 4 k and I = 7 pph => al to find the chamber can , Teshing P8, PS7 k P14 =1 end the and A respectively. The pro- tic a 440-box. and P77-X ⁴ ents of (IA - 4ph) ofter X4. Trying to run calib - May file was F15-L153 himming to (P77-X4 disco T15-L9600.com - 1615.emm	23.9°C P= 338mbm 14 shall cats 331 and 213 blem horned ant Y. disconneching rabin over night V. Tor 4 John P = 937mbm T = 226 ec 7. cman. 10000 files, Th each). (SOC files, Th each). T = 23.6°C P = 915 mbm Dre OR cable ust connected
10/8/11 @ 3:30 $11/08/11 @ 3:30$ $11/08/11$ $10:45 HV perfect 12 ~ 4 kV$ $14:45 HV perfect 2 K endleration NOL (MA) = 50 pt$ $1300 HV for Reference 2 V endleration NOL (MA) = 50 pt$ $1300 HV for Reference peratural voltages HV for calibration 2 kV 12/8/14 HV for calibration 2 kV$	$T = 24.6 \ %$ $F = 21.6 \ %$ $P = 0740 \ mbox{m}$ $T = 21.6 \ %$ $P = 0740 \ mbox{m}$ $T = 21.2 \ %$ $P = 972$	ре нее НУ Гег Г Г Г Г Г Г Г Г Г Г Г Г Г	- 1615. eman -	23.9°C P= 338mbm 14 shall ents 31 and 21 blem hornel ant Y. disconneching Tabin over right V. In Hyrd P = 337mbm T = 226 ec Y. cnorn. (Soo friks, Th each). (Soo friks, Th each). T. 23.6°C P = 913 mbm One OR cuble yet connected
10/8/11 $@ 3:30$ 11/08/11 10:45 HV price to a 4 kV 14:45 HV pri reference of collectation NOL 1(A) = 50 pt 1800 HV for reference operatural voltiges HV for calibration 2 kV 12/8/14 HV for ca	$T = 24.2 \text{ vc}$ $P = 112 \text{ Wba}$ $\overline{1} = 23.6 \text{ c}$ $P = 074 \text{ m. 6-r}$ $\overline{1}; 22.1°C$ $P = 977$ $T = 24.2 \text{ c}$ $P = 387 \text{ mbar}$ $T = 28.2 \text{ mbar}$	род пес не не не не не не не не не не	- 1615. email - 1615	23.9°C P= 338mbm 2 Shall 2

THE REAL RANGE	17/8/ : P77-X7 missing. STOP 0 9:37, last,	full ant
	to be a disconnected HV cable.	
16/8/201 New Start TIS-1620, emma	New shart @ 10:30 to	
	795- 29645, eum	
@ 1360 T15-1622. Olume p= 933 mbn.		
$P_{i2} = A_{i1} = A_{i2} = A_{i1} = A_{i2} = A$	Now all plants are of in N-2 (apart fro	
PST CK $P22 $ $y1 / IL II$	199-X9, P+7-X2, 130-X4, 120-X3 and 19+-11).	
P30 X4 PCOT P28 X3 missing		
PIS OK PS9 OK	19.08.2011 N-F of T15-L1691. comma	T= 23, 4 °C
PIZ OK PIZ Y7 Missing	10:15	p = 586 mbr
	Similar situation as before.	
HV G from 3975V -> 3950V in the middle of		T=255 %
T15-L1623.comm,	12:08:2011 N-t of 115-Litel.enner	p=992 mm
5-6	Similar situation or before.	'
Converse trisch from 2 pt to \$ pt.		
@ 18:35 STOP, last full file 795-17623.comme.	23,08,2011 N-F of TIS-LIF87, umma	T= 25.2°C
P77 - X4 Fixed (new AkG ables), New HV	10:30 Similar sibration as before.	P + U J S mbro
schings 3975V for non-col grading (decreasing		(
if to 3980V decreased the effectioney of screval		(coles ho)
on to	24.88,2011 N-F 64 T15-L1810, CmmA	8= 357mba
Tec 1925	Similar situation as before.	
175 - L1625, compa	2508 2011 N-F of TIS-LIB33, EMMA	T= 23,8°C
START @ 14:05		p = 237 mbar
17/8/11 @ L1643 P=930.mbn	others as before	
26.08,2011 N-F 0 > T15-L1857, emma T=26.6 % P-557. emma	T15	e
P8 and P57 oK	30/8/11 @ 1953 comme has many problems!	P= 978mh
977 X2	J 40	T = 20.3 oc
1730 XH	(n 1/25), enna	
728 X3	PB OK	
P15, P39 and P18 OK	PS7 Y2 missing, all pour except for Y1	
p17 FI	P14 all X not, Y of	
	P77 all at Cexcept for X2, as an old problem)
2.9.08.2011 D-F & TIS-L1916 comm T=2642	P28 low refers	
P= 982 May		
P8, PS7 or or	P15 of, P39 X of, Y low reles, P18 Xol, Y	poor
022 V2	and P17 of.	
$P_{10} \times U$	and the second second second second	
P28 X3	non-col). First full bile: 27552 cmm	ovin
P15, p18 0K		
P39 Yit low	P52- 42A not counting, card proton (signe	1
	there). Due to a led of time and proper a	crole
	the problem is NOT fixed (less than one	week
23, 8,204 Last full ple L1911. enoug	you and its are counting a lot).	
e 1430	31,08.2011	
Stupping mensurement for some tests.	08:30 N-F of T15-L1976 omma	p = 980 when
	P8 p57 UK	T=21,6 °C
12,8,204	PIY XI NOK 7 came as in	
@ 1435 New solet pirst ple L1912. emms	P77 X2 NOK 4 the branking	
	P30 X4 Noic J	
29.05 2011 NOF at TIS-1192 8 punch	P28 Y1 47 MK	
8:00 P282 several weat, chambers P2 329121	X) X2 ALX X4 DODL	
P17, P39)	X3 not can by	
phase semiler as he had	PI5 OK	
and a summer as actoria		
	P18 + P39 X9 OK, 49 poor	

9/9/11 (00 L2007 p= 983mba 1= 20,8 % 9:00 PB of PS7 of (42 still having a card problem) P14 ole (XIN missing shill), P77 ole (X2 still poor) P30 oblixer shill poor) but P28 has unlight problems (only 41 K 42 are of). P15 x P17 are at but P39x P18 Ys have problems (low rates, my be due to pressure). Pusing L2002 HVG lowered to 3950 V. T15-L2004, emma Last file STOP 12:00 The END of T95.

Appendix C

The order of the pictures is the following: first X-chambers (FA and NA), and then Y-chambers. X1-pictures are excluded from P8, P57, P14 and P77, because of no proper data. Also, X2-chambers' picture from P77 is excluded for the same reason. The reason remaining same. Some of the bad chambers are included as an example.

1st plankmapfile

1	Place-	-Plank-	-Signal-	- TDC # - -]	FLAT-CABLE	- - TDC - CHN
3	Т15	P8	X 1 A	1	Δ1	0
0	T15	P8	X 1 N	1	Δ 1	1
5	T15	P8	X1F	- 1	A 1	2
Ŭ	T15	P8	Y1A	- 1	A2	16
7	T15	P8	Y1N	- 1	A2	17
1	T15	P8	Y1F	- 1	A2	18
9	T15	- 0 P8	X2A	- 1	A 1	3
	T15	P8	X2N	1	A1	4
11	T15	P8	X2F	1	A 1	5
	T15	P8	Y2A	1	A2	19
13	T15	P8	Y2N	1	A2	20
	T15	P8	Y2F	1	A2	21
15	T15	P8	X3A	1	A 1	6
	T15	P8	X3N	1	A 1	7
17	T15	P8	X3F	1	A 1	8
	T15	P8	Y3A	1	A2	22
19	T15	P8	Y3N	1	A2	23
	T15	P8	Y3F	1	A2	24
21	T15	P8	X4A	1	A 1	9
	T15	P8	X4N	1	A 1	10
23	T15	P8	X4F	1	A 1	11
25	T15	P57	X1A	1	B1	32
	T15	P57	X1N	1	B1	33
27	T15	P57	X1F	1	B1	34
	T15	P57	Y1A	1	A2	25
29	T15	P57	Y1N	1	A2	26
	T15	P57	Y1F	1	A2	27
31	T15	P57	X2A	1	B1	35
	T15	P57	X2N	1	B1	36
33	T15	P57	X2F	1	B1	37
	T15	P57	Y2A	1	A2	28
35	T15	P57	Y2N	1	A2	29
	T15	P57	Y2F	1	A2	30
37	T15	P57	X3A	1	B1	79
	T15	P57	X3N	1	B1	13
39	T15	P57	X3F	1	B1	14
	T15	P57	Y3A	1	A2	44
41	T15	P57	Y3N	1	B1	45
	T15	P57	Y3F	1	B1	46
43	T15	P57	X4A	1	B1	41
	T15	P57	X4N	1	B1	42

	T15	D1/	V 1 A	1	рŋ	62
47	115	F 1 4	A I H	1	DZ	03
	T15	P14	XIN	1	B2	49
49	T15	P14	X1F	1	B2	50
İ	T15	P14	Y1A	1	C1	64
51	T15	P14	Y 1 N	1	C1	65
01	T15	D1/	V1E	1	C1	66
	115	F 1 4	I I I	1		00 E 1
53	115	P14	XZA	1	BZ	51
	T15	P14	X2N	1	B2	52
55	T15	P14	X2F	1	B2	53
	T15	P14	Y2A	1	C1	67
57	T15	P14	Y2N	1	C1	68
İ	T15	P14	Y2F	1	C1	69
59	T15	P14	ХЗА	1	B2	54
	T15	P14	X3N	- 1	R2	55
61	T15		YSE	1	80	56
01	T10 T10		XO1	1	01	70
	115	P14	IJA	1		70
63	T15	P14	Y3N	1	C1	/1
	T15	P14	Y3F	1	C1	72
65	T15	P14	X4A	1	B2	60
	T15	P14	X4N	1	B2	58
67	T15	P14	X4F	1	B2	59
69	T15	P77	X 1 A	1	C2	80
	T15	P77	X 1 N	- 1	C2	81
71	T15	P77	Y1F	- 1	C2	82
11	T10 T10	1 7 7 D 7 7	X 1 A	1	02	72
	115	P77	IIA	1		73
73	115	P77	YIN	1	C1	74
	T15	P77	Y1F	1	C1	75
75	T15	P77	X2A	1	C2	83
	T15	P77	X2N	1	C2	84
77	T15	P77	X2F	1	C2	85
	T15	P77	Y2A	1	C1	76
79	T15	P77	Y2N	1	C1	77
	T15	P77	Y2F	1	C1	78
81	T15	P77	X3A	- 1	C2	86
01	T15	P77	XSN	1	C2	87
	T10 T15	D77	X OF	1	02	01
83	115	P77	XSP	1	02	88
	115	P77	Y 3 A	1	C1	92
85	T15	P77	YЗN	1	C2	93
	T15	P77	Y3F	1	C2	94
87	T15	P77	X4A	1	C2	89
	T15	P77	X4N	1	C2	90
89	T15	P77	X4F	1	C2	91
91	T15	P30	X 1 A	1	D1	96
Ì	T15	P30	X1N	1	D1	97
03	T15	P30	X1F	- 1	D1	98
33	T15	P30	V1A	1	D2	110
	T15 T15	F 30	I I A V 1 N	1	D2	112
95	115	P30	YIN	1	DZ DO	113
	T15	P30	YIF	1	D2	114
97	T15	P30	X2A	1	D1	99
	T15	P30	X2N	1	D1	100
99	T15	P30	X2F	1	D1	101
	T15	P30	Y2A	1	D2	115
101	T15	P30	Y2N	1	D2	116
	T15	P30	Y2F	1	D2	117
103	T15	P30	X3A	- 1	D1	102
100	T15	P20	X 3 M	- 1	D1	102
	110	r 30	NON	T	υт	102

105	T15	P30	X3F	1	D1	104
	T15	P30	Y3A	1	D2	118
107	T15	P30	Y3N	1	D2	119
	T15	P30	Y3F	1	D2	120
109	T15	P30	X4A	1	D1	105
	T15	P30	X4N	1	D1	106
111	T15	P30	X4F	1	D1	107
113	T15	P28	X 1 A	0	D2	112
110	T15	P28	X 1 N	0	D2	113
115	T15	P28	X1F	0	D2	114
	T15	P28	Y1A	1	D2	121
117	T15	P28	Y1N	1	D2	122
	T15	P28	Y1F	1	D2	123
119	T15	P28	X2A	0	D2	115
	T15	P28	X2N	0	D2	116
121	T15	P28	X2F	0	D2	117
	T15	P28	Y2A	1	D2	124
123	T15	P28	Y2N	1	D2	125
	T15	P28	Y2F	1	D2	126
125	T15	P28	X3A	0	D2	118
	T15	P28	X3N	0	D2	119
127	T15	P28	X3F	0	D2	120
	T15	P28	Y3A	0	D2	124
129	T15	P28	Y3N	0	D2	125
	115	P28	Y 3F	0	D2	126
131	115	P28	X4A X4N	0		121
100	115 T15	P 20	X4N X4E	0		122
133	115	F 20	V.H.L.	0	DZ	125
135	 T15	P15	X1A	0	A1	0
135	T15 T15	P15 P15	X1A X1N	0 0	A1 A1	0 1
135 137	T15 T15 T15 T15	P15 P15 P15 P15	X1A X1N X1F	0 0 0	A1 A1 A1 A1	0 1 2
135 137	T15 T15 T15 T15 T15	P15 P15 P15 P15 P15	X1A X1N X1F Y1A	0 0 0 0	A1 A1 A1 B1	0 1 2 32
135 137 139	T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N	0 0 0 0 0	A1 A1 A1 B1 B1	0 1 2 32 33
135 137 139	T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F	0 0 0 0 0 0	A1 A1 A1 B1 B1 B1	0 1 2 32 33 33 34
135 137 139 141	T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F X2A	0 0 0 0 0 0 0 0	A1 A1 A1 B1 B1 B1 A1	0 1 2 32 33 34 34 3
135 137 139 141	T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F X2A X2N	0 0 0 0 0 0 0 0 0	A1 A1 B1 B1 B1 A1 A1	0 1 2 32 33 34 3 4
135 137 139 141 143	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F X2A X2N X2F	0 0 0 0 0 0 0 0 0 0	A1 A1 B1 B1 B1 A1 A1 A1 A1	0 1 2 32 33 34 3 4 5
 135 137 139 141 143 	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F X2A X2N X2F Y2A Y2N		A1 A1 B1 B1 B1 A1 A1 A1 B1 B1	0 1 2 32 33 34 3 4 5 35 26
 135 137 139 141 143 145 	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F X2A X2N X2F Y2A Y2N X2E	0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1 A1 B1 B1 B1 A1 A1 A1 B1 B1 B1	0 1 2 32 33 34 3 4 5 35 36 27
135 137 139 141 143 145	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F X2A X2N X2F Y2A Y2N Y2F X3A		A1 A1 A1 B1 B1 B1 A1 A1 A1 B1 B1 B1 A1	0 1 2 32 33 34 3 4 5 35 35 36 37 6
135 137 139 141 143 145 147	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1F Y1A Y1N Y1F X2A X2F Y2A Y2N Y2F X3A X3N		A1 A1 B1 B1 B1 A1 A1 A1 B1 B1 B1 B1 A1 A1	0 1 2 32 33 34 3 4 5 35 36 37 6 7
135 137 139 141 143 145 147	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F X2A X2N X2F Y2A Y2N Y2F X3A X3N X3F		A1 A1 B1 B1 B1 A1 A1 A1 B1 B1 B1 A1 A1 A1	0 1 2 32 33 34 3 4 5 35 36 37 6 7 8
135 137 139 141 143 145 147 149	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F X2A X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A		A1 A1 B1 B1 B1 A1 A1 A1 B1 B1 B1 A1 A1 A1 A1 A1 B1 B1	0 1 2 32 33 34 3 4 5 35 36 37 6 7 8 38
135 137 139 141 143 145 147 149	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F X2A X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N		A1 A1 A1 B1 B1 B1 A1 A1 A1 B1 B1 A1 A1 A1 A1 B1 B1 B1 B1 B1	0 1 2 32 33 34 3 4 5 35 35 36 37 6 7 8 38 38 39
135 137 139 141 143 145 147 149 151	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F X2A X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F		A1 A1 A1 B1 B1 B1 A1 A1 A1 B1 B1 B1 A1 A1 A1 B1 B1 B1 B1 B1 B1 B1	0 1 2 32 33 34 3 4 5 35 36 37 6 7 8 38 39 40
135 137 139 141 143 145 145 147 149 151	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1F Y1A Y1N Y1F X2A X2F Y2A Y2N Y2F X3A X3F Y3A Y3N Y3F X4A		A1 A1 A1 B1 B1 B1 A1 A1 A1 B1 B1 B1 B1 B1 B1 B1 B1 A1	0 1 2 32 33 34 3 4 5 35 36 37 6 7 8 38 39 40 9
 135 137 139 141 143 145 147 149 151 153 	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F X2A X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N		A1 A1 A1 B1 B1 A1 A1 A1 B1 B1 B1 A1 A1 B1 B1 B1 A1 A1 A1 A1	$\begin{array}{c} 0\\ 1\\ 2\\ 32\\ 33\\ 34\\ 3\\ 4\\ 5\\ 35\\ 36\\ 37\\ 6\\ 7\\ 8\\ 38\\ 39\\ 40\\ 9\\ 10\\ \end{array}$
135 137 139 141 143 145 145 147 149 151 153	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F X2A X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N X4F	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1 A1 A1 B1 B1 B1 A1 A1 A1 B1 B1 B1 B1 B1 B1 B1 B1 B1 A1 A1 A1 A1 A1 A1	$\begin{array}{c} 0\\ 1\\ 2\\ 32\\ 33\\ 34\\ 3\\ 4\\ 5\\ 35\\ 36\\ 37\\ 6\\ 7\\ 8\\ 38\\ 39\\ 40\\ 9\\ 10\\ 11\end{array}$
 135 137 139 141 143 145 147 149 151 153 155 	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F X2A X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N X4F		A1 A1 A1 B1 B1 B1 A1 A1 A1 B1 B1 B1 B1 B1 B1 B1 B1 A1 A1 A1 A1 A1	0 1 2 32 33 34 3 4 5 35 36 37 6 7 8 38 39 40 9 10 11
 135 137 139 141 143 145 147 149 151 153 155 157 	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F X2A X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N X4F X1A		A1 A1 A1 B1 B1 B1 A1 A1 A1 A1 B1 B1 B1 B1 B1 B1 A1 A1 A1 A1 A1 A1 C1	0 1 2 32 33 34 3 4 5 35 36 37 6 7 8 38 39 40 9 10 11 11
 135 137 139 141 143 145 147 149 151 153 155 157 	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F X2A X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N X4F X1A X1N		A1 A1 A1 B1 B1 B1 A1 A1 A1 A1 B1 B1 B1 B1 B1 B1 B1 A1 A1 A1 A1 C1 C1	0 1 2 32 33 34 3 4 5 35 36 37 6 7 8 38 39 40 9 10 11
 135 137 139 141 143 145 147 149 151 153 155 157 159 	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F X2A X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N X4F X1A X1N X1F Y1A		A1 A1 A1 B1 B1 B1 A1 A1 A1 A1 B1 B1 B1 B1 B1 B1 B1 B1 B1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1	$\begin{array}{c} 0\\ 1\\ 2\\ 32\\ 33\\ 34\\ 3\\ 4\\ 5\\ 35\\ 36\\ 37\\ 6\\ 7\\ 8\\ 38\\ 39\\ 40\\ 9\\ 10\\ 11\\ 64\\ 65\\ 66\\ 96\\ \end{array}$
 135 137 139 141 143 145 147 149 151 153 155 157 159 161 	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X1A X1N X1F Y1A Y1N Y1F X2A X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N X4F X1A X1N X1F Y1A Y1N		A1 A1 A1 B1 B1 B1 A1 A1 A1 B1 B1 B1 B1 B1 B1 B1 B1 A1 A1 A1 C1 C1 C1 C1 D1 D1	$\begin{array}{c} 0\\ 1\\ 2\\ 32\\ 33\\ 34\\ 3\\ 4\\ 5\\ 35\\ 36\\ 37\\ 6\\ 7\\ 8\\ 38\\ 39\\ 40\\ 9\\ 10\\ 11\\ 11\\ 64\\ 65\\ 66\\ 96\\ 96\\ 97\\ \end{array}$

 163 165 167 169 171 173 175 177 	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P39 P39 P39 P39 P39 P39 P39 P39 P39 P39	X2A X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N X4F	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C1 C1 D1 D1 C1 C1 C1 D1 D1 D1 C1 C1 C1 C1	$\begin{array}{c} 67\\ 68\\ 69\\ 99\\ 100\\ 101\\ 70\\ 71\\ 72\\ 102\\ 103\\ 104\\ 73\\ 74\\ 75\end{array}$
179	T15 T15 T15 T15	P18 P18 P18 P18	X1A X1N X1F	0 0 0	C2 C2 C2 C2	 83 84 85
183	T15 T15 T15	P18 P18 P18	Y 1 A Y 1 N Y 1 F	0 0	D1 D1 D1	105 106 107
185	T15 T15 T15	P18 P18	X2A X2N	0	C2 C2	80 81
187	T15 T15 T15	P18 P18	Y2A Y2N	0	D1 D1	108 109
191	T15 T15 T15	P18 P18 P18	Y2F X3A X3N	0 0 0	D1 C2 C2	110 86 87
193 195	T15 T15 T15	P18 P18 P18	X3F Y3A Y3N	0 0 0	C2 D1 C2	88 111 93
197	T15 T15 T15	P18 P18 P18	Y3F X4A X4N	0 0 0	C2 C2 C2	94 89 90
199	T15	P18	X4F	0	C2	91
201	T15 T15	P17 P17	X 1 A X 1 N X 1 F	0 0	A1 A1	16 17
203	T15 T15 T15	P17 P17	Y1A Y1N	0	B2 B2	-1 -1
207	T15 T15 T15	P17 P17 P17	Y1F X2A X2N	0 0	B2 A1	-1 19 20
209	T15 T15	P17 P17	X2F Y2A	0	A1 B2	20 21 31
211	T15 T15 T15	P17 P17 P17	Y2N Y2F X3A	0 0 0	B2 B2 A1	52 53 28
215	T15 T15	P17 P17	X3N X3F	0	A1 A1	29 30
217	T15 T15 T15	P17 P17 P17	Y3A Y3N Y3F	0 0 0	В2 В2 В2	54 55 56
219	T15 T15	P17 P17	X4A X4N	0 0	A 1 A 1	25 26

221	T15	P17	X4F	0	A 1	27	
223	SIUP						
225	Before	T15:					
	T15	P17	Y2A	0	B2	60	

2nd plankmapfile

Place	- -Plank-	-Signal-	- TDC # - -	FLAT-CABLE	- - TDC - CHN
T15	P8	X1A	1	A1	0
T15	P8	X1N	1	A 1	1
T15	P8	X1F	1	A 1	2
T15	P8	Y1A	1	A2	16
T15	P8	Y1N	1	A2	17
T15	P8	Y1F	1	A2	18
T15	P8	X2A	1	A 1	3
T15	P8	X2N	1	A 1	4
T15	P8	X2F	1	A 1	5
T15	P8	Y2A	1	A2	19
T15	P8	Y2N	1	A2	20
T15	P8	Y2F	1	A2	21
T15	P8	X3A	1	A 1	6
T15	P8	X3N	1	A 1	7
T15	P8	X3F	1	A 1	8
T15	P8	Y3A	1	A2	22
T15	P8	Y3N	1	A2	23
T15	P8	Y3F	1	A2	24
T15	P8	X4A	1	A 1	9
T15	P8	X4N	1	A 1	10
T15	P8	X4F	1	A 1	11
T15	P57	X1A	1	B1	32
T15	P57	X 1 N	1	B1	33
T15	P57	X1F	1	B1	34
T15	P57	Y1A	1	A2	25
T15	P57	Y1N	1	A2	26
T15	P57	Y1F	1	A2	27
T15	P57	X2A	1	B1	35
T15	P57	X2N	1	B1	36
T15	P57	X2F	1	B1	37
T15	P57	Y2A	1	A2	28
T15	P57	Y2N	1	A2	29
T15	P57	Y2F	1	A2	30
T15	P57	X3A	1	B1	111
T15	P57	X3N	1	B1	13
T15	P57	X3F	1	B1	14
T15	P57	YBA	1	A2	44
T15	P57	YBN	1	B1	45
T15	P57	Y3F	1	B1	46
T15	P57	X4A	1	B1	41
T15	P57	X4N	1	B1	42
T15	P57	X4F	1	В1	43
 T15	P14	X1A	 1	B2	63

48	T15	P14	X1N	1	B2	49
	T15	P14	X1F	1	B2	50
50	T15	P14	Y1A	1	C1	64
00	T15	P14	Y1N	- 1	C1	65
50	T15	D1/	V1F	- 1	C1	66
52	T15		X 2 V	1	BO	51
	T15		X O N	1	D2 D2	50
54	T15 T15		X OF	1	DZ DO	52
	115	P14	X2F XQA	1	DZ Q1	55
56	115	P14	Y Z A	1		67
	115	P14	Y2N	1	C1	68
58	T15	P14	Y2F	1	C1	69
	T15	P14	X3A	1	B2	54
60	T15	P14	X3N	1	B2	55
	T15	P14	X3F	1	B2	56
62	T15	P14	YSA	1	C1	70
	T15	P14	Y3N	1	C1	71
64	T15	P14	Y3F	1	C1	72
	T15	P14	X4A	1	B2	60
66	T15	P14	X4N	1	B2	58
	T15	P14	X4F	1	B2	59
68						
	T15	P77	X1A	1	C2	80
70	T15	P77	X 1 N	1	C2	81
	T15	P77	X1F	1	C2	82
72	T15	P77	Y1A	1	C1	73
	T15	P77	Y1N	1	C1	74
74	T15	P77	Y1F	1	C1	75
	T15	P77	X2A	1	C2	83
76	T15	P77	X2N	1	C2	84
	T15	P77	X2F	1	C2	85
78	T15	P77	Y2A	1	C1	76
	T15	P77	Y2N	1	C1	77
80	T15	P77	Y2F	1	C1	78
	T15	P77	ХЗА	1	C2	86
82	T15	P77	X3N	1	C2	87
	T15	P77	X3F	- 1	C2	88
84	T15	P77	Y3A	- 1	C1	92
04	T15	P77	Y3N	- 1	C2	93
86	T15	P77	YSF	- 1	C2	94
80	T15	P77	¥4.A	1	C2	80
0.0	T15	D77	X 4 N	1	C2	90
88	T15	D77	X4N X/F	1	C2	90
90						
00	T15	P30	X1A	1	D1	96
92	T15	P30	X1N	1	D1	97
	T15	P30	X1F	1	D1	98
94	T15	P30	Y1A	1	D2	112
	T15	P30	Y 1 N	1	D2	113
96	T15	P30	Y1F	1	D2	114
	T15	P30	X2A	- 1	D1	99
98	T15	P30	X2N	- 1	D1	100
50	T15	P30	XOF	1	Б1	101
100	T15	P30	VOA	± 1	D.0 D.1	115
100	T15	P30	VON	± 1	D2	116
100	110 T1F	1 3 V	VOE	⊥ 1	בע רח	117
102		F 30		1	ע∠ 1	100
10.		F 30	ACA	1		102
104	115	P30	A S N	1		103
	115	P30	X3F	1	D1	104

106	T15	P30	YЗA	1	D2	118
	T15	P30	YЗN	1	D2	119
108	T15	P30	Y3F	1	D2	120
	T15	P30	X4A	1	D1	105
110	T15	P30	X4N	1	D1	106
	T15	P30	X4F	1	D1	107
112						
	T15	P28	X1A	0	D2	112
114	T15	P28	X 1 N	0	D2	113
	T15	P28	X1F	0	D2	114
116	T15	P28	Y1A	1	D2	121
	T15	P28	Y1N	1	D2	122
118	T15	P28	Y1F	1	D2	123
	T15	P28	X2A	0	D2	115
120	T15	P28	X2N	0	D2	116
	115	P28	X2F	0	D2	117
122	115	P28	Y Z A	1	D2	124
		P 2 0	I Z N	1		125
124		P 20	IZF V2A	1		120
100	115 T15	F 20	X 2 M	0		110
126	T15 T15	F 20	XSE	0	ע בע	120
100	T15 T15	P20	V3V	0	ע 20	120
120	T15	P28	Y3N	0	D2	125
130	T15	P28	Y3F	0	D2	126
100	T15	P28	X4A	0	D2	121
132	T15	P28	X 4 N	0	D2	122
	T15	P28	X4F	0	D2	123
134						
	T15	P15	X 1 A	0	A 1	0
136	T15	P15	X 1 N	0	A 1	1
	T15	P15	X1F	0	A 1	2
138	T15	P15	Y1A	0	B1	32
	T15	P15	Y1N	0	B1	33
140	T15	P15	Y1F	0	B1	34
	T15	P15	X2A	0	A1	3
142	T15	P15	X2N	0	A1	4
	T15	P15	X2F	0	A1	5
144	115	P15	Y2A VON	0	B1 D1	35
		P15	I Z N	0	BI D1	30
146	115 T15	P15	IZF V2A	0		51
140	T15 T15	P15	XSN	0	Λ 1	7
140	T15	P15	X3F	0	Δ1	8
150	T15	P15	Y3A	0	B1	38
100	T15	P15	Y3N	0	B1	39
152	T15	P15	Y3F	0	B1	40
	T15	P15	X4A	0	A 1	9
154	T15	P15	X4N	0	A 1	10
	T15	P15	X4F	0	A 1	11
156						
	T15	P39	X1A	0	C1	64
158	T15	P39	X 1 N	0	C1	65
	T15	P39	X1F	0	C1	66
160	T15	P39	Y1A	0	D1	96
	T15	P39	Y1N	0	D1	97
162	T15	P39	Y1F	0	D1	98
	T15	P39	X2A	0	C1	67
164	T15	P39	X2N	0	C1	68
-----	------------	------------	------------	---	-----------	-----
	T15	P39	X2F	0	C1	69
166	T15	P39	V2A	0	D1	99
100	T15	D20	VON	0		100
	T15 T15	F 3 9	I Z N	0		100
168	115	P39	I Z F	0	DI	101
	115	P39	XJA	0	C1	70
170	T15	P39	X3N	0	C1	71
	T15	P39	X3F	0	C1	72
172	T15	P39	Y3A	0	D1	102
	T15	P39	Y3N	0	D1	103
174	T15	P39	Y3F	0	D1	104
	T15	P39	X4A	0	C1	73
176	T15	P39	X4N	0	C1	74
	T15	P39	X4F	0	C1	75
178						
110	T15	P18	X 1 A	0	C2	83
190	T15	P18	X 1 N	0	C2	84
180	T15 T15	F 10	X 1 E	0	02	04
	115	P10	X1F X1A	0	02	00
182	115	P18	YIA	0	D1	105
	T15	P18	YIN	0	D1	106
184	T15	P18	Y1F	0	D1	107
	T15	P18	X2A	0	C2	80
186	T15	P18	X2N	0	C2	81
	T15	P18	X2F	0	C2	82
188	T15	P18	Y2A	0	D1	108
	T15	P18	Y2N	0	D1	109
190	T15	P18	Y2F	0	D1	110
	T15	P18	X3A	0	C2	86
192	T15	P18	X3N	0	C2	87
102	T15	P18	X3F	0	C2	88
104	T15	D18	V3V	0	02 D1	111
194	T10 T10	D 1 0	VON	0	CD	111
	115	F10	ISN	0	02	93
196	115	P18	ISP	0	02	94
	115	P18	X4A	0	02	89
198	115	P18	X4N	0	02	90
	T15	P18	X4F	0	C2	91
200						
	T15	P17	X 1 A	0	A 1	16
202	T15	P17	X 1 N	0	A 1	17
	T15	P17	X1F	0	A 1	18
204	T15	P17	Y1A	0	B2	-1
	T15	P17	Y1N	0	B2	-1
206	T15	P17	Y1F	0	B2	-1
	T15	P17	X2A	0	A 1	19
208	T15	P17	X2N	0	A 1	20
	T15	P17	X2F	0	A 1	21
210	T15	P17	Y2A	0	B2	31
210	T15	P17	Y2N	0	B2	52
919	T15	D17	VOF	0	B2	53
212	T15		V 2 A	0	ΔZ A 1	20
	110	Г1/ D17	ACA	0	A L	20
214	115	P1/	X 3 N	0	AL	29
	T15	P1/	X3F	U	A1 DC	30
216	T15	P17	YЗА	0	B2	54
	T15	P17	Y3N	0	B2	55
218	T15	P17	Y3F	0	B2	56
	T15	P17	X4A	0	A 1	25
220	T15	P17	X4N	0	A 1	26
	T15	P17	X4F	0	A 1	27

222	STOP						
224	Before	T15:					
226	T15	P17	Y2A	0	B2	60	

3rd plankmapfile

	Place-	-Plank-	-Signal-	-TDC#- -	FLAT - CABLE	- -TDC-CHN
2	T15	P8	X1A	1	A1	0
4	T15	P8	X 1 N	1	A 1	1
	T15	P8	X1F	1	A 1	2
6	T15	P8	Y1A	- 1	A2	16
Ŭ	T15	P8	Y1N	- 1	A2	17
8	T15	P8	Y1F	- 1	A2	18
Ŭ	T15	P8	X2A	1	A 1	
10	T15	P8	X2N	- 1	A 1	4
10	T15	P8	X2F	1	A 1	5
12	T15	P8	Y2A	1	A2	19
12	T15	P8	Y2N	1	Δ2	20
14	T15	P8	Y2F	1	A2	21
11	T15	P8	X3A	1	Δ 1	6
16	T15	P8	X3N	1	Δ 1	7
10	T15	P8	X3F	1	Δ1	2
10	T15	PR	V34	1 1	A 2	22
10	T15	PR	VSN	1	A2	22
20	T15	PS	VSF	1	A2	20
20	T15	PS	X 4 A	1	Δ 1	9
22	T15	PS	X4N X4N	1	Δ1	10
22	T15	PS	X4R X4F	1	Δ1	11
24						
24	T15	P57	X 1 A	1	B1	32
26	T15	P57	X 1 N	- 1	B1	33
	T15	P57	X1F	- 1	B1	34
28	T15	P57	Y1A	- 1	A2	25
	T15	P57	Y1N	- 1	A2	26
30	T15	P57	Y1F	- 1	A2	27
00	T15	P57	X2A	1	B1	35
32	T15	P57	X2N	1	B1	36
54	T15	P57	X2F	1	B1	37
24	T15	P57	V2A	± 1	Δ <u>2</u>	22
54	T15	P57	V2N	± 1	A2	20
36	T15	P57	V2F	± 1	A2	20
30	T15	D57	XJV	1 1	R1	111
20	T15	P57	X3N	1 1	R1	12
50	T15	P57	X3F	± 1	R1	14
40	T15	P57	Y34	1	A2	44
40	T15	P57	YAN	± 1	R1	45
43	T15	P57	VSE	1 1	B1	46
42	тто Т15	D57	X Z A	± 1	B1	+0 // 1
4.4	тто Т15	P57	X ⊥ N	1	B1	41
44	тто Т15	P57	XAF	1	B1	42
16						+5
40	T15	P14	X 1 A	1	B2	108
48	T15	P14	X 1 N	1	B2	49
40	110		11 I II	T	52	70

1	T15	P14	X1F	1	B2	50
50	T15	P14	Y1A	1	C1	64
	T15	P14	Y1N	1	C1	65
52	T15	P14	Y 1 F	1	C1	66
	T15	P14	X2A	1	B2	51
54	T15	P14	X2N	1	B2	52
	T15	P14	X2F	1	B2	53
56	T15	P14	Y2A	1	C1	67
	T15	P14	Y2N	1	C1	68
58	T15	P14	Y2F	1	C1	69
	T15	P14	X3A	1	B2	54
60	T15	P14	X3N	1	B2	55
	T15	P14	X3F	1	B2	56
62	T15	P14	Y3A	1	C1	70
	T15	P14	YЗN	1	C1	71
64	T15	P14	Y3F	1	C1	72
	T15	P14	X4A	1	B2	60
66	T15	P14	X4N	1	B2	58
	T15	P14	X4F	1	B2	59
68						
	T15	P77	X1A	1	C2	80
70	T15	P77	X1N	1	C2	81
	T15	P77	X1F	1	C2	82
72	T15	P77	Y 1 A	1	C1	73
	115	P77	YIN	1		74
74	115	P77	YIF	1		75
-	115 T15		X 2 N	1	C2	03
10	T15	Г / / D77	XOF	1	C2	85
79	T15	P77	V2A	1	C1	76
10	T15	P77	V2N	1	C1	70
80	T15	P77	Y2F	1	C1	78
00	T15	P77	X3A	- 1	C2	86
82	T15	P77	X3N	1	C2	87
	T15	P77	X3F	1	C2	88
84	T15	P77	Y3A	1	C1	92
	T15	P77	Y3N	1	C2	93
86	T15	P77	Y3F	1	C2	94
	T15	P77	X4A	1	C2	89
88	T15	P77	X4N	1	C2	90
	T15	P77	X4F	1	C2	91
90						
	T15	P30	X1A	1	D1	96
92	T15	P30	X 1 N	1	D1	97
	T15	P30	X1F	1	D1	98
94	T15	P30	Y1A	1	D2	112
	T15	P30	YIN	1	D2	113
96	115	P30	YIF	1	D2	114
		P30	X 2 A	1		99
98	110 T15	P30	X J F	⊥ 1		101
100		P30	V2N	⊥ 1	D.5 T. T.	115
100	T15	P30	Y2N	⊥ 1	בע רמ	116
102	T15	P30	YOF	⊥ 1	D2 D2	117
104	T15	P30	X3A	1	D1	102
104	T15	P30	X3N	- 1	D1	103
-01	T15	P30	X3F	- 1	D1	104
106	T15	P30	Y3A	- 1	D2	118
- 1						-

	T15	P30	YЗN	1	D2	119
108	T15	P30	Y3F	1	D2	120
	T15	P30	X4A	1	D1	105
110	T15	P30	X4N	1	D1	106
	T15	P30	X4F	1	D1	107
112						
	T15	P28	X 1 A	0	D2	112
114	T15	P28	X1N	0	D2	113
	T15	P28	X 1 F	0	D2	114
116	T15	P28	Υ1Δ	1	D2	121
110	T15	P28	Y 1 N	- 1	D2	122
110	T15	P28	V1F	1	D2	122
110	T15	P28	¥2A	0	D2 D2	115
100	T15	120	X 2 N	0	20	116
120	T15	F 20	X 2 E	0	D2 D2	117
100	T15	F 20	X2N	1	D2 D2	104
122	115 T15	F 20	I Z A	1		124
		P 20	I Z N	1	D2	125
124		P 28	IZF NOA	1	D2	120
	115	P28	XJA	0	D2	118
126	115	P28	X3N	0	D2	119
	T15	P28	X3F	0	D2	120
128	T15	P28	Y3A	0	D2	124
	T15	P28	Y3N	0	D2	125
130	T15	P28	Y3F	0	D2	126
	T15	P28	X4A	0	D2	121
132	T15	P28	X4N	0	D2	122
	T15	P28	X4F	0	D2	123
134	 T15	D15	v 1 A		۸ 1	
100	T15 T15	P 15		0	A 1	1
136	115 T15			0	A 1	1
				0	AI D1	2
138			I I A V 1 N	0		32
		P15	Y L IN	0	BI D1	33
140		P15	I I F	0		34
	115			0	AI	.3
142	THA C	P15	XON	0		4
	T15	P15 P15	X2N X2N	0	A 1	4 5
	T15 T15	P15 P15 P15 P15	X2N X2F	0	A1 A1 D1	4 5 25
144	T15 T15 T15 T15	P15 P15 P15 P15 P15	X2A X2N X2F Y2A	0 0 0 0	A1 A1 B1	4 5 35
144	T15 T15 T15 T15 T15	P15 P15 P15 P15 P15	X2N X2F Y2A Y2N	0 0 0 0 0	A1 A1 B1 B1	4 5 35 36
144 146	T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15	X2N X2F Y2A Y2N Y2F	0 0 0 0	A1 A1 B1 B1 B1	4 5 35 36 37
144 146	T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15	X2N X2F Y2A Y2N Y2F X3A		A1 A1 B1 B1 A1	4 5 35 36 37 6
144 146 148	T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15	X2N X2F Y2A Y2N Y2F X3A X3N		A1 A1 B1 B1 B1 A1 A1	4 5 35 36 37 6 7
144 146 148	T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15	X2N X2F Y2A Y2N Y2F X3A X3N X3F		A1 A1 B1 B1 A1 A1 A1 A1	4 5 35 36 37 6 7 8
144 146 148 150	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X2X X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A		A1 A1 B1 B1 A1 A1 A1 B1	4 5 35 36 37 6 7 8 38
144 146 148 150	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X2X X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N		A1 A1 B1 B1 A1 A1 A1 B1 B1 B1	4 5 35 36 37 6 7 8 38 39
 144 146 148 150 152 	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X2X X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F		A1 A1 B1 B1 A1 A1 A1 B1 B1 B1	4 5 35 36 37 6 7 8 38 39 40
 144 146 148 150 152 	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A		A1 A1 B1 B1 A1 A1 A1 B1 B1 B1 A1	4 5 35 36 37 6 7 8 38 39 40 9
 144 146 148 150 152 154 	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N		A1 A1 B1 B1 A1 A1 A1 B1 B1 B1 A1 A1	4 5 35 36 37 6 7 8 38 39 40 9 10
144 146 148 150 152 154	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N X4F		A1 A1 B1 B1 A1 A1 A1 B1 B1 B1 A1 A1 A1	4 5 35 36 37 6 7 8 38 39 40 9 10 11
144 146 148 150 152 152 154	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N X4F		A1 A1 B1 B1 A1 A1 A1 B1 B1 B1 A1 A1 A1 A1	4 5 35 36 37 6 7 8 38 39 40 9 10 11
144 146 148 150 152 154 156	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N X4F X1A X1N		A1 A1 B1 B1 A1 A1 A1 B1 B1 B1 A1 A1 A1 A1 C1	4 5 35 36 37 6 7 8 38 39 40 9 10 11
144 146 148 150 152 154 156 158	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N X4F 		A1 A1 B1 B1 A1 A1 A1 B1 B1 B1 B1 A1 A1 A1 C1 C1 C1	4 5 35 36 37 6 7 8 38 39 40 9 10 11 64 65 66
144 146 148 150 152 154 156 158	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X2A X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N X4F X1A X1N X1F Y1A		A1 A1 B1 B1 A1 A1 A1 B1 B1 B1 A1 A1 A1 C1 C1 C1 C1 D1	4 5 35 36 37 6 7 8 38 39 40 9 10 11 11
 144 146 148 150 152 154 156 158 160 	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X2A X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N X4F X1A X1N X1F Y1A Y1N		A1 A1 B1 B1 A1 A1 A1 B1 B1 B1 A1 A1 A1 C1 C1 C1 C1 D1 D1	4 5 35 36 37 6 7 8 38 39 40 9 10 11 11 64 65 66 96 97
144 146 148 150 152 154 156 158 160	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X2A X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N X4F X1A X1N X1F Y1A Y1N Y1F		A1 A1 B1 B1 A1 A1 A1 B1 B1 B1 A1 A1 A1 A1 C1 C1 C1 C1 D1 D1 D1 D1	4 5 35 36 37 6 7 8 38 39 40 9 10 11 11
 144 146 148 150 152 154 156 158 160 162 	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X2A X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N X4F X1A X1N X1F Y1A Y1N Y1F X2A		A1 A1 B1 B1 A1 A1 A1 A1 B1 B1 B1 A1 A1 A1 A1 C1 C1 C1 D1 D1 D1 C1	4 5 35 36 37 6 7 8 38 39 40 9 10 11 9 10 11
 144 146 148 150 152 154 156 158 160 162 164 	T15 T15 T15 T15 T15 T15 T15 T15 T15 T15	P15 P15 P15 P15 P15 P15 P15 P15 P15 P15	X2A X2N X2F Y2A Y2N Y2F X3A X3N X3F Y3A Y3N Y3F X4A X4N X4F X1A X1N X1F Y1A Y1N Y1F X2A X2N		A1 A1 B1 B1 A1 A1 A1 B1 B1 B1 B1 A1 A1 A1 C1 C1 C1 D1 D1 D1 C1 C1 C1	4 5 35 36 37 6 7 8 38 39 40 9 10 11 10 11

	T15	P39	X2F	0	C1	69
166	T15	P39	Y2A	0	D1	99
	T15	P39	Y2N	0	D1	100
168	T15	P39	Y2F	0	D1	101
	T15	P39	X3A	0	C1	70
170	T15	P39	X3N	0	C1	71
	T15	P39	X3F	0	C1	72
172	T15	P39	Y3A	0	D1	102
ĺ	T15	P39	YЗN	0	D1	103
174	T15	P39	Y3F	0	D1	104
	T15	P39	X4A	0	C1	73
176	T15	P39	X4N	0	C1	74
	T15	P39	X4F	0	C1	75
178						
	T15	P18	X1A	0	C2	83
180	T15	P18	X 1 N	0	C2	84
	T15	P18	X1F	0	C2	85
182	T15	P18	Y1A	0	D1	105
	T15	P18	Y1N	0	D1	106
184	T15	P18	Y 1 F	0	D1	107
	T15	P18	X2A	0	C2	80
186	T15	P18	X2N	0	C2	81
	T15	P18	X2F	0	C2	82
188	T15	P18	Y2A	0	D1	108
	T15	P18	Y2N	0	D1	109
190	T15	P18	Y2F	0	D1	110
	T15	P18	X3A	0	C2	86
192	T15	P18	X3N	0	C2	87
	T15	P18	X3F	0	C2	88
194	T15	P18	YSA	0	D1	111
	T15	P18	YЗN	0	C2	93
196	T15	P18	Y3F	0	C2	94
	T15	P18	X4A	0	C2	89
198	T15	P18	X4N X4N	0	02	90
	115	P18	X4F	0	62	91
200	т1Б	D17	¥1Λ	0	Λ1	16
202	T15	P17	X 1 N	0	Δ 1	17
202	T15	P17	X1F	0	Δ 1	18
204	T15	P17	V1 A	0	R2	-1
204	T15	P17	Y1N	0	B2	-1
206	T15	P17	Y1F	0	B2	-1
200	T15	P17	X2A	0	A 1	19
208	T15	P17	X2N	0	A 1	20
	T15	P17	X2F	0	A 1	21
210	T15	P17	Y2A	0	B2	31
	T15	P17	Y2N	0	B2	52
212	T15	P17	Y2F	0	B2	53
	T15	P17	ХЗА	0	A 1	28
214	T15	P17	X3N	0	A 1	29
	T15	P17	X3F	0	A 1	30
216	T15	P17	Y3A	0	B2	54
	T15	P17	Y3N	0	B2	55
218	T15	P17	Y3F	0	B2	56
-	T15	P17	X4A	0	A 1	25
220	T15	P17	X4N	0	A 1	26
-	T15	P17	X4F	0	A 1	27
222	STOP					-

224	Before	T15:					
226	T15	P17	Y2A	0	B2	60	

4th plankmapfile

Γ			I - Cimpol -			
	Place-		-Signal-	-IDC#- -	FLAI - CADLE	
2			v 1 A		ـــــــــــــــــــــــــــــــــــــ	
	110	PO	A I A V 1 N	1	A 1	1
4	110	PO		1	A I	1
	115	Po	A L F	1	AI	2
6	115	P8	YIA	1	AZ	16
	115	P8	YIN	1	A2	17
8	T15	P8	YIF	1	A2	18
	T15	P8	X2A	1	A1	3
10	T15	P8	X2N	1	A 1	4
	T15	P8	X2F	1	A1	5
12	T15	P8	Y2A	1	A2	19
	T15	P8	Y2N	1	A2	20
14	T15	P8	Y2F	1	A2	21
	T15	P8	ХЗА	1	A 1	6
16	T15	P8	X3N	1	A 1	7
	T15	P8	X3F	1	A 1	8
18	T15	P8	YЗA	1	A2	22
	T15	P8	YЗN	1	A2	23
20	T15	P8	Y3F	1	A2	24
	T15	P8	X4A	1	A 1	9
22	T15	P8	X4N	1	A 1	10
	T15	P8	X4F	1	A 1	11
24						
	T15	P57	X 1 A	1	B1	32
26	T15	P57	X 1 N	- 1	B1	33
20	T15	P57	X1F	1	B1	34
20	T15	P57	V1A	1	12	25
20	T15	P57	V 1 N	1	A2	20
20	T15	P57		1	A 2	20
30	T15		X 2 A	1		27
	110 T15	F01 DE7	AZA VOM	1		30
32	110	r 3 /		1		30
	115	r5/	X2F	1	DI AQ	31
34	115	P5/	I ZA	1	AZ	28
	115	P57	Y2N	1	A2	29
36	T15	P57	Y2F	1	A2	30
	T15	P57	XBA	1	B1	111
38	T15	P57	X3N	1	B1	13
	T15	P57	X3F	1	B1	14
40	T15	P57	YSA	1	A2	44
	T15	P57	YЗN	1	B1	45
42	T15	P57	Y3F	1	B1	46
	T15	P57	X4A	1	B1	41
44	T15	P57	X4N	1	B1	42
	T15	P57	X4F	1	B1	43
46						
	T15	P14	X 1 A	1	B2	108
48	T15	P14	X1N	1	B2	49
	T15	P14	X1F	1	B2	50

50	T15	P14	Y 1 A	1	C1	64
	T15	P14	Y1N	1	C1	65
52	T15	P14	Y1F	1	C1	66
	T15	P14	X2A	- 1	B2	51
5.4	T15	P14	XON	- 1	B2	52
94	T15		X 2 F	1	B2 B2	53
	T15		X21	1	C1	67
50	T15 T15	F 1 4	I Z A V O N	1	C1	69
	T15 T15	F14	I Z N	1		60
58	115	P14	I Z F	1		69
	115	P14	XJA	1	B2	54
60	T15	P14	X3N	1	B2	55
	T15	P14	X3F	1	B2	56
62	T15	P14	YBA	1	C1	70
	T15	P14	YЗN	1	C1	71
64	T15	P14	Y3F	1	C1	72
	T15	P14	X4A	1	B2	60
<mark>6</mark> 6	T15	P14	X4N	1	B2	58
	T15	P14	X4F	1	B2	59
68						
	T15	P77	X 1 A	1	C2	80
70	T15	P77	X 1 N	1	C2	81
	T15	P77	X1F	1	C2	82
72	T15	P77	Y1A	1	C1	73
	T15	P77	Y1N	1	C1	74
74	T15	P77	Y 1 F	1	C1	75
	T15	P77	X2A	1	C2	83
76	T15	P77	X2N	1	C2	84
	T15	P77	X2F	1	C2	85
78	T15	P77	Y2A	1	C1	76
	T15	P77	Y2N	1	C1	77
80	T15	P77	Y2F	1	C1	78
	T15	P77	ХЗА	1	C2	86
82	T15	P77	X3N	1	C2	87
	T15	P77	X3F	1	C2	88
84	T15	P77	Y3A	- 1	C1	92
04	T15	P77	Y3N	- 1	C2	93
86	T15	P77	Y3F	- 1	C2	94
00	T15	P77	X44	- 1	C2	89
00	T15	P77	X 4 N	1	C2	90
00	T15	P77	X 4 F	1	C2	91
00						
90	T15	P30	X 1 Δ	1	ח1	96
92	T15	P30	X 1 N	- 1	D1	97
	T15	P30	X1F	- 1	D1	98
04	T15	P30	V1 A	1	D2	112
34	T15	P30	Y 1 N	1	D2	113
06	T15	P30	V1F	1	D2	114
90	T15	P30	¥2A	1	D2 D1	00
	T15 T15	P30	X 2 N	1	D1	100
98	T15 T15	P30	X 2 N	1		100
	115	P30	X2F	1		101
100	115	P30	I Z A	1	D2	115
	115	P30	I Z IN	1		110
102	115	P30	Y2F	1	D2	11/
	T15	P30	XJA	1	D1	102
104	T15	P30	X3N	1	D1	103
	T15	P30	X3F	1	D1	104
106	T15	P30	YJA	1	D2	118
	T15	P30	Y3N	1	D2	119

108	T15	P30	Y3F	1	D2	120
	T15	P30	X4A	1	D1	105
110	T15	P30	X4N	1	D1	106
	T15	P30	X4F	1	D1	107
112						
	T15	P28	X1A	0	D2	127
114	T15	P28	X1N	0	D2	113
	T15	P28	X1F	0	D2	114
116	T15	P28	Y1A	1	D2	121
	T15	P28	Y1N	1	D2	122
118	T15	P28	Y1F	1	D2	123
	T15	P28	X2A	0	D2	115
120	T15	P28	X2N	0	D2	116
	T15	P28	X2F	0	D2	117
122	T15	P28	Y2A	1	D2	124
	T15	P28	Y2N	1	D2	125
124	T15	P28	Y2F	1	D2	126
	T15	P28	X3A	0	D2	118
126	T15	P28	X3N	0	D2	119
	T15	P28	X3F	0	D2	120
128	T15	P28	Y3A	0	D2	124
	T15	P28	Y3N	0	D2	125
130	T15	P28	Y3F	0	D2	126
	T15	P28	X4A	0	D2	121
132	T15	P28	X4N	0	D2	122
	T15	P28	X4F	0	D2	123
134						
	T15	P15	XIA	0	A 1	0
136	115	P15	X I N	0	A L	1
	115	P15	X1F X1A	0	A L	2
138		P15	Y I A	0	BI D1	32
1.40	115 T15	P10 D15		0		33
140	115 T15	P10 D15	I I F	0		34
1.40	T15	P15	X 2 N	0	A 1	J
142	T15	P15	XOF	0	Λ1	т 5
144	T15	P15	V2A	0	R1	35
144	T15	P15	Y2N	0	B1	36
146	T15	P15	Y2F	0	B1	37
140	T15	P15	X3A	0	A 1	6
148	T15	P15	X3N	0	A 1	7
	T15	P15	X3F	0	A 1	8
150	T15	P15	Y3A	0	B1	38
	T15	P15	Y3N	0	B1	39
152	T15	P15	Y3F	0	B1	40
	T15	P15	X4A	0	A 1	9
154	T15	P15	X4N	0	A 1	10
	T15	P15	X4F	0	A 1	11
156						
	T15	P39	X1A	0	C1	64
158	T15	P39	X1N	0	C1	65
	T15	P39	X1F	0	C1	66
160	T15	P39	Y1A	0	D1	96
	T15	P39	Y1N	0	D1	97
162	T15	P39	Y1F	0	D1	98
	T15	P39	X2A	0	C1	67
164	T15	P39	X2N	0	C1	68
	T15	P39	X2F	0	C1	69

166	T15	P39	Y2A	0	D1	99
	T15	P39	Y2N	0	D1	100
168	T15	P39	Y2F	0	D1	101
	T15	P39	X3A	0	C1	70
170	T15	P39	X3N	0	C1	71
	T15	P39	X3F	0	C1	72
172	T15	P39	Y3A	0	D1	102
	T15	P39	Y3N	0	D1	103
174	T15	P39	Y3F	0	D1	104
	T15	P39	X4A	0	C1	73
176	T15	P39	X 4 N	0	C1	74
	T15	P39	X4F	0	C1	75
178						
	T15	P18	X1A	0	C2	83
180	T15	P18	X 1 N	0	C2	84
	T15	P18	X1F	0	C2	85
182	T15	P18	Y 1 A	0	D1	105
	T15	P18	Y1N	0	D1	106
184	T15	P18	Y 1 F	0	D1	107
	T15	P18	X2A	0	C2	80
186	T15	P18	X2N	0	C2	81
	T15	P18	X2F	0	C2	82
188	T15	P18	Y2A	0	D1	108
	T15	P18	Y2N	0	D1	109
190	T15	P18	Y2F	0	D1	110
	T15	P18	X3A	0	C2	86
192	T15	P18	X3N	0	C2	87
	T15	P18	X3F	0	C2	88
194	T15	P18	Y3A	0	D1	111
	T15	P18	Y3N	0	C2	93
196	T15	P18	Y3F	0	C2	94
	T15	P18	X4A	0	C2	89
198	T15	P18	X4N	0	C2	90
	T15	P18	X4F	0	C2	91
200						
	T15	P17	X 1 A	0	A 1	16
202	T15	P17	X 1 N	0	A 1	17
	T15	P17	X1F	0	A1	18
204	T15	P17	Y1A	0	B2	-1
	T15	P17	Y1N	0	B2	-1
206	T15	P17	Y1F	0	B2	-1
	T15	P17	X2A XON	0	A1	19
208	115	P17	X2N	0	Al	20
	115	P17	X2F	0	Al	21
210	115	P17	Y Z A	0	B2	31
	115	P17	YZN	0	B2	52
212	115	P17	IZF V2A	0	B∠ ∧1	53
	115	P17	ASA	0	A I	20
214	115	P17	XON	0	AI	29
	115	F1/ D17	ASF V24	0	A I	30
216	115	P17	IJA	0	D∠ DO	54
	115	P17	ION	0	<u>م</u>	55
218	110 T1F	Г1/ D17	I O F V A V	0		00 05
000	110 T1F	Г1/ D17	A 4 A V A M	0	A 1	20
220	110 T15	Г 1 / D 1 7	X 4 N X A E	0	Α1 Λ1	∠0 07
000	STUD STUD	F 1 /	ΛΨΓ	0	A I	21
444	N 1 U 1					

224	Before	T15:					
226	T15	P17	Y2A	0	B2	60	

Appendix D

$\mathbf{P8}$

X2: NA and FA

X3: NA and FA

X4: NA and FA

Y3: NA and FA

X2: NA and FA

X3: NA and FA

X4: NA and FA

Y3: NA and FA

X2: NA and FA

X3: NA and FA

X4: NA and FA

Y3: NA and FA

X3: NA and FA

X4: NA and FA

Y1: NA and FA

X4: NA and FA

Y3: NA and FA

X1: NA and FA

X2: NA and FA

X3: NA and FA

Y2: NA and FA

Appendix E

Residuals of uncalibrated planks with double Gaussian fit, and integral method.

$\mathbf{P8}$

 $\mathbf{Y1}$

$\mathbf{P77}$

 $\mathbf{X3}$

P28

 $\mathbf{X1}$

Appendix F

Anode residuals for uncalibrated planks with Lorentzian fit.

P8 and P57

P14 and P77

