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We analyze the statistics of charge and energy currents and spin torque in a metallic nanomagnet coupled
to a large magnetic metal via a tunnel contact. We derive a Keldysh action for the tunnel barrier, describing
the stochastic currents in the presence of a magnetization precessing with the rate Ω. In contrast to some
earlier approaches, our result is valid for an arbitrary ratio of ℏΩ=kBT. We illustrate the use of the action by
deriving spintronic fluctuation relations, the quantum limit of pumped current noise, and consider the
fluctuations in two specific cases: the situation with a stable precession of magnetization driven by spin
transfer torque, and the torque-induced switching between the minima of a magnetic anisotropy. The
quantum corrections are relevant when the precession rate exceeds the temperature T, i.e., for ℏΩ≳ kBT.
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Spin transfer torque, angular momentum contributed by
electrons entering a magnet, can be used to control mag-
netization dynamics via electrical means, as demonstrated in
many experiments [1–3].Often the effect can be described by
considering the ensemble average magnetization dynamics,
or taking only thermal noise into account [4]. The spin
transfer torque is in general also a stochastic process, but at
bias voltages large enough to drive themagnetization, it is not
necessarily Gaussian nor thermal [5], especially at cryogenic
temperatures. The statistical distribution of electron transfer
and the associated torque inmagnetic tunnel junctions can be
described by counting statistics [6], via a joint probability
distributionPt0ðδn; δE; δsÞ of charge δn, energy δE, and spin
δs transferred into themagnet during time t0. Thedistribution
is conditional on the magnetization dynamics during time t0,
which necessitates consideration of backaction effects.
Here we construct a theory describing the probability

distribution for electron transfer via a Keldysh action
[Eq. (3)] describing a metallic magnet with magnetization
M, coupled to a fermionic reservoir (another ferromagnetic
metal), illustrated inFig. 1. In the presence of a bias voltage in
the reservoir, this coupling may lead to a stochastic spin
transfer torque affecting themagnetization dynamics. Unlike
some of the earlier discussions of counting and spin torque
statistics [7–10], we follow the approach of Ref. [11] to
derive the relevant tunneling spin action [12,13], and retain
geometric phase factors in the derivation of the generating
function. The phase factors become relevant in the quantum
limit ℏΩ > kBT, where the precession rate Ω is large
compared to the temperature T. In addition, we show how
this quantum limit can be accessed via the measurement of
the current noise or the switching rate of magnetization.
In particular, we suggest two specific settings [Figs. 1(b),

1(c)], characterized by opposite regimes of the external
field Hext and anisotropy field Han. When Hext ≫ Han, a
suitably chosen voltage drives the magnet into a stationary
precession with rate Ω around the direction of Hext

[1,14–16]. This precession pumps charge [17] and heat
into the reservoir, along with the direct charge and heat
currents due to the applied voltage. The noise of these
currents depends on the intrinsic noise of the pumped
current and, at low frequencies, also on the fluctuations of
the magnetization, driven by the spin torque noise. The
opposite limit Han ≫ Hext is the one relevant for memory
applications, as the spin transfer torque can be used to
switch between the two stable magnetization directions
[18,19]. Our approach allows finding the switching rate at
any temperature and voltage, also for kBT ≪ ℏΩ.
Besides the average currents and noise, the Keldysh action

allows us to calculate the full probability distribution
Pt0ðδn; δE; δsÞ of transmitted charge δn, energy δE, or
change δMz ¼ Sγδs=V of the z component ofmagnetization

FIG. 1. (a) Tunnel junction between magnetic materials with
free (F0) and fixed (F) magnetizations, biased by voltage V. The
total spin S ¼ VM=γ in F0 precesses at angular frequency Ω
around the z axis. As described by Eq. (3), the motion pumps
charge, spin, and heat currents through the junction, and the
backaction spin transfer torque τ drives a change in the tilt angle
θ. (b)–(c) Schematic of the effective magnetic potential energy, in
the presence of an external field Hext and large spin transfer
torque, or, in the presence of a magnetic anisotropy Ωan ¼ γHan.
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in a nanomagnet with volume V and spin S ≫ 1, within a
long measurement time t0. Here, γ is the gyromagnetic ratio.
The precise distribution depends on the exact driving
conditions and the parameters of the setup. However,
symmetries constrain the probability distribution, leading
to a spintronic fluctuation relation (here and below,
kB ¼ ℏ ¼ e ¼ 1)

Pt0ðδn; δE; δsÞ
¼ eVδn=TFeδEðT

−1
F −T−1

F0 Þe−Ωδs=TFP0
t0ð−δn;−δE; δsÞ; ð1Þ

where P0
t0 corresponds to the case with reversed magnetiza-

tions. Here, V is the voltage across the junction, and TF and
TF0 the electronic temperatures on the two sides. As in
fluctuation relations presented earlier [7,20–27], this allows
for a direct derivation of Onsager symmetries, thermody-
namical constraints, and fluctuation-dissipation relations,
valid for the coupled charge-spin-energy dynamics [28].
Generating function.—Consider a magnetic tunnel junc-

tion depicted in Fig. 1. The spin transfer torque due to
tunnelling, and the corresponding counting statistics can be
described by a Keldysh action obtained by integrating
out conduction electrons in F and F0 [9,11]. We apply
the approach of Ref. [11] to the characteristic funct-
ion Zðχ; ξÞ ¼ heifNFðt0Þχþ½HFðt0Þ−μ�ξge−ifNFð0Þχþ½HFð0Þ−μ�ξgi
describing the change in particle number NF and internal
energy HF relative to chemical potential μ in the ferro-
magnetic lead F [23,33]. In the long-time limit,
t0 ≫ 1=T; 1=V, this results to the action S ¼ S0 þ ST ,
where S0¼S

R∞
−∞dt½−2 _ψq−

P
�ð� _ϕclþ _ϕqÞcosðθcl�θqÞ�

is the Berry phase for total spin S ¼ VjMj=γ. Moreover, the
tunneling action is

ST ¼ ijWj2
Z

∞

−∞
dtdt0

dϵ
2π

TrP̌ðtÞǦF0 ðt − t0ÞP̌ðt0Þ†ǦFðϵÞ;

ð2Þ
where P̌ðtÞ ¼ eiðϵ−VÞtei½χðtÞþðϵ−μÞξðtÞ�γ̌x=2ŘðtÞ contains the
bias voltage V, and the charge and energy counting
fields χðtÞ and ξðtÞ. The rotation matrix ŘðtÞ ¼
e−iϕ̌ðtÞσz=2e−iθ̌ðtÞσy=2e−iψ̌ðtÞσz=2 describes the direction of
the magnetization S ¼ ðcosϕ sin θ; sinϕ sin θ; cos θÞS in
terms of Euler angles θ and ϕ. Keldysh fields are in the
basis [34] ϕ̌ ¼ ϕcl þ ϕqγ̌x, where γ̌x is a Pauli matrix.
The above result assumes the gauge is fixed [11] as
ψq ¼ −ϕq cos θcl, _ψcl ¼ − _ϕcl cos θcl. We assume a spin
and momentum independent tunneling matrix element W.
The conduction electrons are described by Keldysh Green
functions Ǧ, with the exchange field of F0 always parallel
to ẑ in the rotating frame; in momentum representation
the retarded component reads ǦR

F0 ðϵ; kÞ ¼ ½ϵþ i0þ−
ξk þ hF0σz�−1, where ξk is the energy dispersion and hF0

an internal exchange field (see Ref. [28] for details).
Consider now the situation depicted in Fig. 1(a), where S

precesses around ẑ due to an external magnetic field and/or

magnetic anisotropy contributing potential energy EM.
The corresponding action is Sext ¼

R
dt
P

� � EM½S�� ¼
2
R
dtSq · ẑΩ, with Ω ¼ Ωext þΩan½cos θ�cl. Separating out

the fast motion ϕclðtÞ ¼ Ωtþ ~ϕclðtÞ, the dynamics of θ, ~ϕ
are driven only by the spin transfer torque. We assume this
dynamics is slow, and evaluate Eq. (2) under a time scale
separation ∼t−10 ; jWj2=S ≪ T;Ω:

ST ≃ −i
Z

∞

−∞
dtdϵ

X
σσ0α¼�

Γσσ0αðϵÞðeiαησσ0 ðϵÞ − 1Þ: ð3Þ

Here, ησσ0 ðϵÞ¼χðtÞþðϵ−μþVþΩσσ0 ÞξðtÞ−2ðΩσσ0=ΩÞϕqðtÞ
and Ωσσ0 ¼ ½σΩ − σ0Ω cos θclðtÞ�=2. The transition rates
per energy are

Γσσ0αðϵÞ ¼ Ḡσσ0
1þ σσ0 cos θclðtÞ

2
Λαðϵ; V þ Ωσσ0 Þ; ð4Þ

Λαðϵ; VÞ ¼
�
fF0 ðϵÞ½1 − fFðϵþ VÞ�; α ¼ þ;

fFðϵþ VÞ½1 − fF0 ðϵÞ�; α ¼ −:
ð5Þ

Here, fF=F0 ðϵÞ ¼ 1=½eðϵ−μÞ=TF=F0 þ 1� are Fermi distribution
functions, and the time-averaged conductance is
Ḡσσ0 ¼ G0f½ð1þ σPFzÞ=2�½ð1þ σ0PF0 Þ=2�g, where G0 ¼
2πjWj2ðνF↑ þ νF↓ÞðνF0↑ þ νF0↓Þ, the polarizations are
defined as P¼ðν↑−ν↓Þ=ðν↑þν↓Þ, and PFz ¼ PF cos θF
is the polarization of the fixed magnet projected onto the
precession axis. The densities of states ν↑=↓ of majority or
minority spins are given at the Fermi level. The resulting ST
is independent of ~ϕcl; i.e., its dynamics decouples, which
constrains θq ¼ 0 [28].
The result describes Poissonian transport events, each

associated with a backaction on θ due to the spin transfer
torque, as described by the dependence on ϕq. The rates are
proportional to the averaged densities of states and squared
spin overlaps jhσjσ0ij2 ¼ ½1þ σσ0 cos θ�=2 in the frame
rotating with the magnetic precession. The transferred
energy V þΩσσ0 consists of the voltage bias and the
difference �Ω=2 − ð�Ω cos θÞ=2 of energy shifts on the
right and left sides of the junction in the rotating frame
[2,35]. The relation of this additional dependence on θ to
geometric phases is discussed in Ref. [11]. It also separates
Eq. (3) from the result of Ref. [7] for tunneling through a
ferromagnetic insulator barrier, where such angular
dependencies are not included. In particular, the above
results imply assumptions on relaxation time scales: con-
duction electrons are assumed to follow adiabatically the
slowly varying internal exchange field hF0∥S, and relaxa-
tion is assumed to be fast compared to, e.g., the injection
rates ∝ jWj2V in order to maintain the equilibrium form of
the electron distribution.
Equation (3) is amain result of thiswork, as the knowledge

of ST allows access to the statistics of charge, energy, and
spin transfer in the generic case depicted in Fig. 1(a). Below,
we describe some applications. First, we can identify the
following spintronic fluctuation relation [28]
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STðχ; ξ;ϕqÞ ¼ S0T

�
−χ þ iV

TF
;−ξþ i

TF
−

i
TF0

;ϕq þ iΩ
2TF

�
;

ð6Þ
where the prime denotes inverting the magnetizations and
the sign of the precession. Identifying the conjugate fields
of χ, ξ, andϕq to the number of charges δn, change of energy
δE and transfer of spin angular momentum δs, this relation
is equivalent with Eq. (1). This relation also implies the
Onsager relation dI=dΩ ¼ ðsin2θÞdτ=dV relating the
pumped current to the torque τsin2θ≡ dST=dð2ϕqÞ acting
on the angle θ [36]. This and further details of the fluctuation
relation are discussed in Ref. [28].
The average dynamics follows the θ component of the

Landau-Lifshitz-Slonczewski equation, [1] here obtained
from stationarity of S vs ϕq,

S _θ ¼ − sinðθÞτðθÞ; τðθÞ ¼ ΩαðθÞ þ Isz; ð7Þ
where the spin current Isz ¼ 1

4
G0PFzV and damping

αðθÞ ¼ 1
8
G0½1 − PFzPF0 cos θ� [37] have been discussed

in Ref. [9]. The equation describes motion of cos θ in an
effective potential −

R
cos θ dðcos θ0Þτðθ0Þ defined by ΩðθÞ

and the spin torque, illustrated in Fig. 1(b). In certain
parameter ranges, a fixed point τðθ�Þ ¼ 0 appears—it can
be either attractive or repulsive. This can correspond to a
stable but fluctuating precession around the angle θ�
[Fig. 1(b)], induced by spin torque, or spin torque-induced
switching between two energy minima [Fig. 1(c)].
Average current and noise.—For fast measurements,

t0 ≪ 1=_θ, we can assume θ remains fixed, and find the

average charge Ī and heat _QF currents entering F during
time t0,

Ī ¼ 1

2
G0½1þ PF0PFz cos θ�V þ 1

4
G0PFzΩsin2θ; ð8Þ

_QF ¼ 1

2
ĪV þ 1

2
τðθÞΩsin2θ; ð9Þ

where the pumped charge current [second term in Eq. (8)]
is that found in Ref. [35]. The heat current is a sum of the
Joule heat and the magnetic energy lost due to the spin
torque, _EM ¼ −∂t½ΩextSz þ 1

2
ΩanS2z �, dissipated equally in

F and F0. In contrast to the average values, the energy shifts
Ωσσ0 remain in the zero-frequency noise SI, S _QF

of the
charge and heat current,

SI ¼
X
σσ0

Ḡσσ0
1þ σσ0 cos θ

2
Vσσ0 coth

Vσσ0

2T
; ð10Þ

S _QF
¼

X
σσ0

Ḡσσ0
1þ σσ0 cos θ

6
ðπ2T2 þ V2

σσ0 ÞVσσ0 coth
Vσσ0

2T
;

ð11Þ

where Vσσ0 ¼ V þ Ωσσ0 and TF ¼ TF0 ¼ T. In the classical
linear regime V;Ω < T the results reduce to a form dictated
by the fluctuation-dissipation theorem and Wiedemann-
Franz law, SI ¼ 2ḠT, S _QF

¼ 2ḠL0T3, where Ḡ ¼
ðdĪ=dVÞ is the electrical dc conductance of the magnetic
tunnel junction [38], and L0 ¼ ðπ2=3Þðk2B=e2Þ the Lorenz
number. The presence of the angle-dependent frequencies
is revealed in the quantum noise regime Ω > T. The noise
in the pumped current for V ¼ 0 is plotted in Fig. 2(a). The
location of the quantum-classical crossover, typically at
Ω ≈ T, is pushed up to higher precession frequencies as the
tilt angle approaches θ ¼ 0.
Spin torque induced fluctuating precession.—The above

results are conditional on a specific value of θ. For the full
probability distribution, the distribution PðθÞwould need to
be known.
To find PðθÞ ¼ R

D½θcl;ϕq�eiSjχ¼ξ¼0δ½θclð0Þ − θ�, we
assume S ≫ 1 and take a semiclassical approximation.
Defining sz ¼ cos θ and p ¼ 2iSϕq, the action reads
iSjχ¼ξ¼0 ¼

R
dt½p_sz −Hðp; szÞ�, where H ¼ −iST is real

for real sz, p. The problem can then be analyzed as in
Hamiltonian mechanics, _sz ¼ ∂pH, _p ¼ −∂szH [34]. In a
time-sliced discretization of the path integral, the δ restric-
tion specifying the exact measured value adds a boundary
condition szð0Þ ¼ sz0 that removes one of the integration
variables and saddle point equations. This allows for a
discontinuity of p at t ¼ 0; cf. Refs. [39,40]. The other
boundary conditions are pðt → �∞Þ ¼ 0, so that relevant
paths have integration constant H ¼ 0.
Consider now fluctuations close to an attractive

fixed point τðθ�Þ ¼ 0 [cf. Fig. 1(b)]. For dynamics driven
by an external field, it is located at sz ¼ s� ¼
ð1=PF0PFzÞ þ ð2V=PF0ΩextÞ, and it is attractive if τ0ðs�Þ ¼
−ΩPFzPF0 < 0. The phase space picture is shown in

FIG. 2. (a) Noise in pumped charge current, for different tilt
angles θ and precession speedsΩ, for PF0 ¼ PFz ¼ 0.9. (b) Semi-
classical trajectories for V ¼ −Ωext, PF0 ¼ 1, PFz ¼ 1=2,
χ ¼ ξ ¼ 0, T ¼ 0. Shown are the H ¼ 0 lines AB and the fixed
point s� ¼ 1

PFzPF0
þ 2V

PF0Ω
(black). Measurement trajectories C~χ for

~χ ¼ 1 (red) and ~χ ¼ −1 (blue) are also shown. (c) Trajectories
with anharmonicity, Ω ¼ Ωansz, V ¼ 1.5Ωan, PFz ¼ 0.1,
PF0 ¼ 1, T ¼ 0.
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Fig. 2(b). Expanding around p ¼ 0 in terms of the torque τ
and torque noise correlator D,

H ≃ ½1 − s2z �½S−1τðszÞp − S−2DðszÞp2�; ð12Þ

DðszÞ ¼
1

8

X
σσ0α¼�

ð1 − σσ0szÞ2
1 − s2z

Γσσ0α; ð13Þ

where Γσσ0α ¼
R
∞
−∞ dϵΓσσ0αðϵÞ ¼ Ḡσσ0

1þσσ0sz
2

αðV þ Ωσσ0 Þ=
½1 − e−αðVþΩσσ0 Þ=T � for TF ¼ TF0 ¼ T. The fluctuation con-
tribution comes from following path A from ðs�; 0Þ to
½sz0;Sτðsz0Þ=Dðsz0Þ�:

Pðcos θÞ≃ Ne
S
R

cos θ

s�
dsz

τðszÞ
DðszÞ ≃ NeS

τ0ðs�Þ
Dðs�Þðcos θ−s�Þ2 ; ð14Þ

where N is a normalization constant. This agrees with
Ref. [9] in the semiclassical limit S ≫ 1, except for the
presence of the energy shifts ∝ Ωσσ0 [11] in the spin torque
noise correlator D, which are relevant in the quantum limit
Ω ∼ V ≫ T. The variance is plotted in Fig. 3(a).
Long measurement times.—For t0 ≳ 1=_θ, the slow fluc-

tuation of the magnetization contributes low-frequency
noise to observables. This contribution is not small in
1=S: the typical excursion from the average position is
small, δsz ∝ S−1=2, but it lasts for a long time τm ∝ S,
generating low-frequency noise SI ∼ ð dIdsz δszÞ2τm. The sit-

uation is similar to noise induced in tunneling currents by
temperature fluctuations on small islands [41].
We now find the result within the semiclassical approxi-

mation. The counting fields are switched on in the interval
0 < t < t0, e.g., χðtÞ ¼ θðtÞθðt0 − tÞi~χ. They make the
semiclassical path to transition from branch A to B in
the time interval 0 < t < t0 following a trajectory C~χ;~ξ of
constantHj~χ;~ξ. Two such trajectories are shown in Fig. 2(a).

For simplicity, we consider the limit T ≪ jΩj; jVj with full
polarization of the free magnet PF0 ¼ 1. Then, close to s�,

H ≃ eα~χ ½1 − s2��
�
τðszÞ
S

p −
Dðs�Þ
S2

p2

�
− ΓðszÞðeα~χ − 1Þ;

ð15Þ
where α ¼ sgnV and ΓðszÞ ¼ Γþþα þ Γ−þα. For quadratic
H, the Hamiltonian equations can be solved exactly (see
Supplemental Material [28]). From this approach, we find
the current noise,

SI ¼ Γðs�Þ þ 4Γ0ðs�Þ2σ2sτm
�
1 −

1 − e−t0=τm

t0=τm

�
; ð16Þ

where τm ¼ −S=½ð1 − s2�Þτ0ðs�Þ� is the slow time scale
associated with the spin transfer torque and σ2s ¼
−Dðs�Þ=½2Sτ0ðs�Þ� the variance of the magnetization z
component in Eq. (14). The first term Γðs�Þ in Eq. (16) is
the Poissonian shot noise (10), and the second termoriginates
from magnetization fluctuations. The dependence on the
measurement time is shown in Fig. 4. The current noise at
frequenciesω ∼ τ−1m ≪ Ω can be used to probe the dynamics
and distribution of the magnetization.
Spin torque induced stochastic switching.—Magnetic

anisotropy field Han results in an effective magnetic
potential with two minima [see Fig. 1(c)], and the spin
torque can induce switching between the two. Here, we
take Hext ¼ 0, and Ω ¼ γHansz ≡Ωansz. The correspond-
ing semiclassical Hamiltonian picture is shown in
Fig. 2(c). An unstable fixed point s� ¼ ð1=2PF0PFzÞ
½1 − ð1þ 8PF0P2

FzVΩ−1
an Þ1=2� separates the two stable fixed

points sz ¼ �1. The leading exponent of the rate of
switching from sz ¼ −1 to sz ¼ 1 is [7],

Γsw ∝ e−Δsw ¼ e
R

s�
−1

dszpswðszÞ; H(sz; pswðszÞ) ¼ 0;

ð17Þ
where pswðszÞ is shown in Fig. 2(c). The switching occurs
deterministically (Δsw → 0) if PFzV > 1þPF0PFz

2
Ωan as

sz ¼ −1 becomes unstable. At lower voltages, the switch-
ing is stochastic. Numerically computed results are shown
in Fig. 3(b). At zero temperature, the switching is blocked
[7] at −ðΩan=8Þ < V < Ωan for PF0 > PFz and −Ωan <
V < ðΩan=8Þ otherwise. This occurs because the transition

FIG. 3. (a) Normalized variance of the magnetization z com-
ponent in the steady state around the fixed point s�, as a function
of bias voltage and temperature for PF0 ¼ 1=2, PFz ¼ 1=2.
Dotted lines indicate results where the energy shifts in the spin
torque noise are neglected. (b) Switching exponent Δsw,
for PF0 ¼ 1, PFz ¼ 1=4, and different temperatures and voltages.
Dotted lines indicate the range −Ωan=8 < V < Ωan where
Δsw ¼ ∞ at T ¼ 0.

FIG. 4. Current noise SI as a function of the measurement
bandwidth 1=t0, for PF0 ¼ 1, PFz ¼ 1=2, T ¼ 0.
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rates Γσσ0α vanish for αðV þ Ωσσ0 Þ ≤ 0, and because the
backaction ∝ Ωσσ0 vanishes for σ ¼ −σ0, sz → −1 [42]. The
latter constraint is due to the additional angle dependence in
the spin torque, which traces back to the geometric phases
[11] in the spin dynamics.
Discussion.—In conclusion, we have derived a Keldysh

action (3), describing the stochastic charge and energy
currents affected by a precessing magnetization. We obtain
a fluctuation relation for the transferred charge, energy, and
magnetization. The noise in the current at low temperatures
displays features related to geometric phases, and its low
frequency component reflects themagnetization fluctuations.
Information about the spin torque noise is also contained in
the switching probability of anisotropic magnets.
Our predictions are readily accessible in experiments

probing spin pumping at low temperatures T < ℏΩ=kB.
Precession frequencies in the 10 GHz range have been
achieved [15,16], which translates to T ≲ 1 K. The
approach can be extended in a circuit theory fashion
[38] to more complex microstructures than a single
F=F0 junction. Moreover, it allows for studying over-
heating effects, which are often relevant in spintronic
devices. The temperature of the electrons in the nano-
magnet can be considered to be set by a heat balance
equation, and its stochastic variations [40,41] result in
additional contributions to current noise, similar to those
from the fluctuations of the magnetization.

We thank B. Nikolic and S. van Dijken for discussions.
This work was supported by the MIUR-FIRB2013—
Project Coca (Grant No. RBFR1379UX), the Academy
of Finland Centre of Excellence program (Project
No. 284594) and the European Research Council (Grant
No. 240362-Heattronics).

Note added.—Recently, a work [43] appeared considering a
similar approach as here under different assumptions of the
hierarchy of relaxation time scales.
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