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Abstract: Music is a complex multimodal medium experienced not only via sounds but also 
through body movement. Musical instruments can be seen as technological objects coupled 
with a repertoire of gestures. We present technical and conceptual issues related to the 
digital representation and mediation of body movement in musical performance. The paper 
reports on a case study of a musical performance where motion sensor technologies tracked 
the movements of the musicians while they played their instruments. Motion data were used 
to control the electronic elements of the piece in real time. It is suggested that computable 
motion descriptors and machine learning techniques are useful tools for interpreting motion 
data in a meaningful manner. However, qualitative insights regarding how human body 
movement is understood and experienced are necessary to inform further development of 
motion-capture technologies for expressive purposes. Thus, musical performances provide 
an effective test bed for new modalities of human–computer interaction. 
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INTRODUCTION AND BACKGROUND SCENARIO 
 
In the interdisciplinary field of musicological research, the idea that music is a multimodal 
phenomenon that engages body movement has given rise to a wide range of methodologies for 
studying musical gestures. Musical gestures are “human body movement that goes along with 
sounding music … the gestures of those that produce the sounds (the musicians), and the 
gestures of those that perceive the sounds (the listeners or dancers)” (Jensenius, Wanderley, 
Godøy, & Leman, 2010, p. 13). On the one hand, the advent of new technologies, such as 
infrared motion capture, has allowed researchers to observe human movement in detail, 
extracting precise three-dimensional data and kinematic features of bodily movement. This 
brought about a corpus of studies where motion analysis is based on the computation of several 
low-level descriptors—or movement features—that could be linked with musical expression 
(Godøy & Leman, 2010). For example, acceleration and velocity profiles have been shown to 
be useful in the study of musical timing (Burger, Thompson, Luck, Saarikallio, & Toiviainen, 
2014; Dahl, 2014; Glowinski et al., 2013; Goebl & Palmer, 2009; Luck & Sloboda, 2009). 
Quantity of motion (QoM) has been related to expressiveness (Thompson, 2012) and has been 
used to study the dynamic effects of the bass drum on a dancing audience (Van Dyck et al., 
2013), while contraction/expansion of the body can be used to estimate expressivity and 
emotional states (Camurri, Lagerlöf, & Volpe, 2003). More advanced statistical methods, such 
as functional principal component analysis and physical modeling, have led to midlevel 
descriptors, including topological gesture analysis (Naveda & Leman, 2010), curvature and 
shape (Desmet et al., 2012; Maes & Leman, 2013), and commonalities and individualities in 
performance (Amelynck, Maes, Martens, & Leman, 2014).  

On the other hand, gestures in musical performance can be accessed by means of high-level 
descriptors. Verbal descriptions, subjective experiences, and the musician’s intentions play an 
important role in daily interaction with music. This is the way performers and audiences naturally 
communicate about music. Leman (2008b) referred to these descriptions as first-person 
perspectives on music experience, resulting in intention-based symbolic/linguistic expressions. In 
the analysis of musical performance, this qualitative approach has been explored profoundly in 
the studies of, among others, Davidson (Davidson, 2007, 2012; Williamon & Davidson, 2002) 
and King (2006). In studies such as these, musical gestures are accessed by means of verbal 
descriptors or directly perceivable movements that appear to be expressive. In that sense, the 
concept of musical gesture can be useful to bridge the gap between mental and subjective 
experiences of the performer/listener and the directly observable physical world.  

Recent studies have made an attempt to close the gap between these two perspectives in 
musical performance research by applying a performer-informed analysis (Coorevits, Moelants, 
Östersjö, & Gorton, 2016; Desmet et al., 2012). In trying to understand the relationship between 
the physical aspects of movement in space and expressive qualities, the study of musical gestures 
has resulted in new understandings of the relationship between musician and musical instrument 
as well. Here, the instrument becomes a natural extension of the musician (Nijs, Lesaffre, & 
Leman, 2013), being part of the body and hence integrated into the mediation process of 
communicating musical meaning. In the context of musical practice, an instrumentalist’s gestures 
bear great expressive potential. Many new interfaces for musical expression (NIMEs) have been 
developed in the past years and take advantage of this (Miranda & Wanderley, 2006). The 
development of human–computer interfaces also exploits the expressive potential of musical 
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gestures to enhance the interaction between the digital and the human environments and to create 
meaningful applications for musical practice (Camurri & Volpe, 2003). Recently, artistic practice 
has been increasingly adopted as a complementary research method for the arts and humanities, 
leading to mixed, interdisciplinary methodologies (Smith & Dean, 2009). 

In this article, we aim to explore issues related to the representation and mediation of body 
movement in musical performance through digital data. We do so by adopting an 
interdisciplinary approach, which involves the theoretical analysis of implications brought 
about by (a) representing movement through data, (b) defining computable motion descriptors, 
and (c) employing a case study of a musical composition for viola, guitar, and motion sensors. 

The structure of the paper is as follows. We first review and comment on several 
technological approaches to analysis, computation, and interpretation of movement data obtained 
from different devices. We then propose some techniques useful for extracting meaningful 
information from data collected via wearable motion sensors. Successively, we describe a 
musical performance where motion sensors have been employed alongside musical instruments. 
The analysis of this case study then leads to a discussion on the interpretation of human 
expressive movement through musical experience and digitized motion data. Subsequently, we 
suggest that musical practice can aid the development of new techniques for the interpretation 
and understanding of movement data for expressive purposes. This can result in valid 
contributions to the development of motion-based technologies for human-computer interaction 
beyond music applications. 
 
 

CAPTURING, STORING, AND MEDIATED MOVEMENT 
 
Human movement can be digitally captured and stored via different means for purposes of 
analysis, description, and notation. In the context of musicological studies, movement has been 
recorded throughout the years using visual media, such as photography (Ortmann, 1929) and 
video (Davidson, 1993). More recently, motion capture has become widely adopted as the 
medium of choice for quantitative studies of human motion. Even though new technologies are 
emerging, marker-based optical motion capture is still regarded as the most reliable solution for 
precise, high-speed tracking. Data obtained from these systems is usually in the form of three-
dimensional vectors referring to a global coordinate system. Each sample in the data returns 
three-dimensional information regarding the position of a point (marker) in space in relation to 
the origin of the Cartesian axes. The origin is defined during the calibration procedure and is 
usually set in an arbitrary place on the floor within the capture area. 

As Salazar Sutil pointed out, the term motion capture (sometimes shortened to MoCap) 
indicates not only a technological setup but also a “technologized language of movement, 
involving the formalized description of movement coordinates and movement data for its 
subsequent computational analysis and ... processing” (2015, p. 198). Compared to photography 
and film, MoCap is definitely a younger medium. This has obvious technological implications, 
as MoCap technologies are still being developed and only recently have become more widely 
accessible to researchers and practitioners. However, the nature of body movement itself makes 
its mediation somehow still conceptually challenging. Salazar Sutil noted that the 
conceptualization of corporeal movement often is optically biased, whereas sensations that are 
unrelated to sight are often neglected. The ubiquity of visual record is certainly a factor in this 
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process. Still, movement cannot be entirely represented and therefore fully understood 
exclusively by means of visual media. In fact, interpreting human movement objectively as a 
displacement of body parts in a three-dimensional space would result in a limited interpretation. 
Merleau-Ponty famously points this out by giving the example of typing:  

The subject knows where the letters are on the typewriter as we know where one of our 
limbs is, through a knowledge bred of familiarity which does not give us a position in 
objective space. The movement of her fingers is not presented to the typist as a path 
through space which can be described, but merely as a certain adjustment of motility, 
physiognomically distinguishable from any other. (Merleau-Ponty, 1945/2002, p. 166) 

This is possibly one of the reasons why the use of absolute position in a Cartesian coordinate 
system imposes some constraints and challenges to high-level analysis of motion data and its use 
for expressive applications. 

In previous works, we used MoCap to carry out experiments aimed at analyzing 
relationships between body movements and other musical features in instrumental musical 
performance (Visi, Coorevits, Miranda, & Leman, 2014; Visi, Coorevits, Schramm, & Miranda, 
2016). For real-time musical applications, we preferred the use of various wearable sensors 
because they are easier to transport and use in performance situations. Optical MoCap, on the 
other hand, is definitely more demanding in terms of portability and setup time. As we will show 
more in detail, the raw data returned by wearable sensors are intrinsically different from that of 
MoCap, and this presents some implications for how the data are eventually interpreted and 
applied. Understanding how to extract meaningful descriptors from such sensors is useful 
beyond the domain of musical practice because similar technologies are becoming ubiquitous, 
employed in everyday objects such as mobile devices and game controllers. 

Previous research (e.g., Freedman & Grand, 1977; McNeill, 1996) has pointed out that 
upper body movements are of particular interest when observing expressive behavior. In 
instrumental musical performance, the upper limbs have a central role; they typically are 
involved in the main sound-producing gestures. Moreover, in most cases, hands and arms are 
the primary points of contact between the body of the performer and the instrument. Therefore, 
in the studies described in this article, we placed the sensor bands on the forearms of the 
performers. However, as we will show in the following sections, processing data from the 
inertial measurement units (IMUs) using motion descriptors and machine learning models 
allowed us to obtain information related to full body movements, which can be used to extract 
expressive movement features. 

In earlier tests (Visi, Schramm, & Miranda, 2014a, 2014b), we made use of fingerless 
gloves for decreased interference during the musical instrument manipulation. We 
progressively moved away from gloves in order to obtain an even less obtrusive configuration. 
We first placed the sensor on the wrists and eventually moved further away from the hands of 
the performer, onto the upper forearm. Doing so did not reduce the amount of information 
about hand movements we were able to retrieve. On the contrary, by using multimodal sensing 
and exploiting the constraints posed by the structure of the limbs and the interdependence of its 
parts, we were able to estimate various measures describing the movement of both hands. 

Initially, we mostly employed IMUs; later we sought to include a form of muscle sensing. 
This was done in order to address and estimate body movement components beyond those 
strictly related to displacement in space, such as proprioception and effort qualities. 
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INERTIAL MEASUREMENT UNITS (IMUs) 
 
An IMU is a device that incorporates accelerometers and gyroscopes. When these devices are 
paired with magnetometers, the resulting arrays are known as magnetic, angular rate, and 
gravity (MARG) sensors as well. These sensor arrays allow for the tracking of acceleration, 
rotational velocity, and orientation of the object they are attached to relative to the earth’s 
magnetic field. They are used extensively in aviation, robotics, and human–computer 
interaction (HCI), and their increasing affordability and small size have made them a very 
common feature of mobile and wearable devices and other consumer electronics (see Figure 
1). Recently, 9 degrees of freedom (9DoF) sensors have become the most widely used type of 
IMU/MARG. Featuring three types of tri-axis sensors (hence the name), they enable 
estimating various motion features, including optimized three-dimensional (3D) orientation 
obtained by fusing together the data from the three types of sensors. 

Whereas the raw data obtained using marker-based optical motion capture consist of 
samples of position based on a 3D Cartesian coordinate system,1 the data returned by 9DoF 
sensors are usually in the form of three 3D vectors, each one expressing acceleration, 
rotational velocity, and orientation, respectively. The sensor band we used more recently2 
returns acceleration in units of g, rotational velocity in degrees per second, and orientation 
angles in radians. Orientation also is estimated using a quaternion representation, which—
unlike Euler angles—is not subject to problematic singularities such as gimbal lock (Brunner, 
Lauffenburger, Changey, & Basset, 2015). In addition, the sensor band returns 8-channel 
electromyogram (EMG) data, which we used to compute descriptors of muscular effort and to 
estimate the movements of wrists and fingers. 

Calculating absolute position from IMU data in real time is technically very difficult if not 
outright unfeasible, as the operation would require double integration of acceleration data. This 
would result in a considerable level of residual error because drift would accumulate quadratically. 
 

 
Figure 1.  Some of the wearable devices used in prior research. Clockwise from the bottom-left corner: 

Myo armbands, Sense/Stage controllers with wristbands, Axivity WAX9 with silicone wristband,  
Adafruit 9-DOF IMU Breakout, FreeIMU v0.4. 
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Moreover, it would also be relatively expensive in terms of computation. Madgwick et al. 
designed computationally efficient algorithms for compensating the residual error (Madgwick, 
Harrison, & Vaidyanathan, 2011). These can be used for estimating position from IMU data 
recorded in situations where specific constraints could be exploited, such as gait analysis and 
cyclic motion. 

The data obtained from IMUs are therefore morphologically very different from positional 
data returned by optical MoCap. The differences in the way movement is tracked and 
represented by the two technologies has implications on how movement data are eventually 
interpreted and used, particularly in the context of expressive movement tracking. High-level 
movement descriptors often are used to extract features from the raw motion data that can help 
describing the meaning that the movements of the subject convey. This is no trivial task, and 
various interdisciplinary approaches have been adopted over the past 2 decades. In the 
following section we look at several motion descriptors most widely used with positional data 
and discuss how they can be adapted for use with IMU data.  
 
 

MOVEMENT DESCRIPTORS AND WEARABLE SENSORS: 
UNDERSTANDING DIGITIZED MOVEMENT QUALITIES 

 
Computable descriptors of human motion are used across several disciplinary fields for various 
applications, ranging from kinesiology and gait analysis to HCI and gaming. Even though 
human motion data analysis has become an increasingly active field, there is still little 
consensus regarding which descriptors and methodologies yield meaningful representations of 
human body motion. 

The MoCap Toolbox (Burger & Toiviainen, 2013) provides a wide range of MATLAB 
scripts for offline kinematic analysis and visualization. Alternatively, expressive feature 
extraction and real-time interaction are prominent features of the Eyesweb platform (Camurri et 
al., 2007). 

Going beyond traditional low-level kinematic features has proven challenging, especially 
when dealing with expressiveness, emotions, affective states, and meaning. Larboulette and 
Gibet (2015) recently attempted a thorough review of computable descriptors of human motion. 
This was indeed a useful endeavor; however it showed continued segmentation and that many 
procedures are either ill-defined or redundant (i.e., similar concepts appear in other research 
literature under different names). 

Most of the descriptors we mention below were conceived using positional data. However, 
the principles behind their design are nonetheless useful for describing certain movement 
qualities; therefore, we attempted to adapt them to the data obtained from the IMU/MARG 
sensors. A series of objects were implemented using Max,3 which was chosen over other 
programming environments because it allowed for rapid prototyping and testing of algorithms 
for real-time interaction and for easily integrating them with other music applications. 
 
Fluidity and Jerkiness 
 
In kinematic analysis, “jerk” is the name given to the third-order derivative of movement 
position, namely the variation of acceleration over time. The definition of “jerk index” as the 
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magnitude of the jerk averaged over the entire movement (Flash & Hogan, 1985) was used by 
Pollick, Paterson, Bruderlin, and Sanford (2001) alongside other descriptors to correlate arm 
movement to basic affective states. This relates to the fluidity or smoothness of a movement—
as fluid movement tends to have an even level of velocity and, therefore, low values of higher-
order derivatives—that can be used to detect emotionally relevant information in movement 
data (Glowinski et al., 2011). In fact, roughly speaking, jerkiness could be seen as the inverse 
of fluidity. Piana, Staglianò, Odone, and Camurri (2016) defined the fluidity index as a local 

kinematic feature equal to 
ଵ

ሺ௝೔ାଵሻௗ௧׬
	, where ji is the jerk of the joint

4 i. This means that higher 

values of jerk correspond to lower fluidity. 
To estimate jerkiness using 9DoF sensor data instead of positional data, we averaged the 

derivatives of longitudinal acceleration returned by the accelerometer (ܽݔሶ , ሶݕܽ , ሶݖܽ ) into a single 
jerk index. The resulting value was then combined with the averaged second-order derivatives 
of the angular velocity returned by the gyroscope (݃ݔሷ , ሷݕ݃ , ሷݖ݃ ) and then summed over a time 
window of length ܰ samples: 
 

ሻݐሺݏݏ݁݊݅݇ݎ݁ܬܷܯܫ ൌ 	෍ ଵߙ
௧ି௞ሶݔܽ| | ൅ ௧ି௞ሶݕܽ| | ൅ ௧ି௞ሶݖܽ| |	

3
൅ ଶߙ

௧ି௞ሷݔ݃| | ൅ ௧ି௞ሷݕ݃| | ൅ ௧ି௞ሷݖ݃| |	
3

ேିଵ

௞ୀ଴

	. 

 
Coefficients ߙଵand ߙଶ are weights that balance the data magnitudes obtained from the 
accelerometer and gyroscope sensors. It is worth mentioning that, in real-world 
implementations, derivatives are very sensitive to signal noise. Therefore, sensor data may 
require low-pass filtering before jerkiness can be computed.  

From the conceptual framework of Laban effort elements/qualities (Laban & Lawrence, 
1947), jerkiness (and its counterpart fluidity) is a useful descriptor that can aid the 
computational analysis of expressive movements. Laban (as cited in Hackney, 2002) defined 
four basic effort factors (flow, weight, time, and space); each factor is a continuum between 
polarities described by effort element/qualities. In particular, flow is related to the continuity 
and control of the movement. Its polar qualities (free flow and bound flow) have been 
previously associated with aspects of fluidity in movement. A movement reflecting the free 
flow effort quality is characterized as fluid, liquid, and outpouring. On the other hand, the 
bound flow quality indicates containment, restraint, and control. In addition to flow, jerkiness 
can be related also to the time effort elements. A movement characterized by the sustained 
effort qualities is expected to have a low level of jerkiness. On the other hand, a movement with 
the sudden effort qualities (i.e., urgent, quick, staccato) will have most likely a higher rate of 
change in acceleration and therefore higher levels of jerkiness. 

Jerkiness and fluidity, then, can contribute to the analysis and recognition of expressive 
movement qualities, particularly in multimodal frameworks that involve multiple descriptors 
and sensing modalities (Camurri & Volpe, 2011; Caramiaux, Donnarumma, & Tanaka, 
2015). However, it is important to emphasize that Laban effort elements are qualitative “inner 
attitudes” of a person moving towards the effort factor. Using computable descriptors should 
not be seen as an attempt to quantitatively measure the effort qualities but rather as a means to 
aid in the design of computational models capable of discerning and recognizing different 
expressive movement behaviors. 
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Quantity of Motion and Overall Motion Energy 
 

Fenza et al. defined QoM as the sum of the Euclidean distances between successive points in a 
time window (Fenza, Mion, Canazza, & Rodà, 2005) and Glowinski et al. (2011) included a 
similar measure in their expressive feature set, denoted as overall motion energy. To compute an 
analogous feature using 9DoF sensor data, we aggregated the magnitude of the variations of the 
norm of the orientation quaternion (∥ ݍ ∥) and of the average acceleration over the three axes (ܽ). 
The values for each frame were once again summed over a time window of length N samples:  
 

ሻݐሺܯ݋ܷܳܯܫ ൌ ෍ߚଵ

ேିଵ

௞ୀ଴

| ∥ ௧ି௞ݍ ∥ െ∥ ௧ି௞ିଵݍ ∥ | ൅ ଶ|ܽ௧ି௞ߚ െ ܽ௧ି௞ିଵ|. 

 
Similarly to the previous equation, ߚଵ and ߚଶ were weights to balance individual contributions 
from distinct sensors. 

 
Contraction/Expansion and Symmetry 
 
Contraction and expansion of the body can be computed in different ways. They can be 
achieved, for example, by calculating the area of bounding shapes (Glowinski et al., 2011), 
using the contraction index (Fenza et al., 2005) or measuring the volume of a convex hull that 
encloses the body (Hachimura, Takashina, & Yoshimura, 2005). 

When wearing two 9DoF sensors on the forearm, it is possible to project the orientation 
values over a hypothetical 2D plane in front of the subject and thus obtain approximate 
coordinates of the points in the plane the arms are pointing to. First, the yaw values for both 
arms have to be centered while the subject is pointing both arms forward. Then, given θyaw 
and θpitch as the yaw and pitch angles, respectively (expressed in radians), the coordinates 
for each point in the plane can be calculated as follows: 
 

ሺݔ, ሻݕ ൌ ൬
௠௔௫ݔ

2
൅
௬௔௪ߠ ௠௔௫ݔ

ߨ2
 , 
௠௔௫ݕ

2
൅
௣௜௧௖௛ߠ௠௔௫ 2ݕ

ߨ2
൰. 

 
By calculating the Euclidean distance between the two points, it is possible to estimate 

whether the arms are pointing in opposite directions. When arms are spread wide, the distance 
between the two points will be at its maximum. In this way, it is possible to have a value that 
depends on whether arms are wide open or are resting close to the body. This is can be used as 
an expressive feature, even though it is not as precise as the contraction indexes obtained using 
an optical motion capture because the values are based on the orientation of the arms and not on 
their actual position. By comparing the coordinates, we also can see if there is horizontal or 
vertical symmetry between the arms, which is another useful postural feature that has been 
previously used for the analysis of expressive movements (Camurri & Volpe, 2011). 
 
Periodicity and Rhythmic Qualities: Periodic Quantity of Motion 
 
Previous techniques that focused on expressive motion analysis have intensively used the 
QoM estimation, especially to segment gestures by detecting the resulting motion bell curves 
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generated by a subsequent low-pass filtering process (Fenza et al., 2005). QoM is also useful 
for detecting the presence of body movements and other related activities during a live 
performance. It is easy and quick to implement, and it is frequently used as an input for more 
complex algorithms, such as gesture classifiers based on machine learning. 

While the techniques mentioned above could be described as spatial features of the 
movement, or spatiotemporal in the case of QoM, periodicity is a purely temporal quality. 
Despite the good estimation of body movement given by QoM, it is not suitable for 
describing multiple periodic gestures, which are usually associated with the musical rhythmic 
content. In fact, there is often sensorimotor synchronization between the rhythmic structure of 
the piece and the periodic motion of the body (Repp & Su, 2013). Periodic quantity of motion 
(PQoM; Visi, Schramm, & Miranda, 2014a) was proposed as a complementary way to 
measure periodicity in the movement in relation to the musical rhythm.  

The first PQoM implementation was designed to extract periodic motion from the data 
tracked by optical motion capture systems. The PQoM estimates are obtained from the 
decomposition of the signal from the motion capture tracker into frequency components by 
using filter banks (Müller, 2007). The PQoM function uses three main parameters as input: 
window size, beats per minute (bpm), and the center frequency of each band-pass filter. These 
parameters are intrinsically associated with the musical content. The window size parameter is 
used to define the amount of time that should be integrated to compute the final QoM. Once the 
music tempo is defined in bpm, each center frequency can be expressed by note values (i.e., 
half note, quarter note, eighth note, etc.) reflecting the rhythmic structure of the music. The 
PQoM function converts these note values into the center frequencies of each band-pass filter. 
Each center frequency fc is used to compute the transfer function coeffcients of a respective 
4th-order band-pass digital Butterworth filter. Then, the input signal is filtered by a zero-phase 
forward and backward digital IIR filtering algorithm (non-real-time implementation). Finally, 
similar to QoM, the filtered values for each sampled frame are summed over a time window of 
length N (window size) samples. For optical motion capture data, each tracked point is 
normalized using the origin [0, 0, 0] of the coordinate system as reference,5 and a weight vector 
 combines distinct points from the body skeleton. It is worth noting that it is possible to ignore ݓ
specific markers by setting the related coefficient in ݓ to zero. Thus, the discrete PQoM can be 
expressed by 
 

,ݐሾܯ݋ܳܲ ௖݂ೖሿ ൌ ෍ ௙೎ೖܪ

௧

௡ୀ௧ିே

ሼሺݓሺ|ݔሾ݊ሿ െ ሾ݊ݔ െ 1ሿ|ሻሻሽ, 

 
where the ݔ vector is the Euclidean norm from the skeleton markers positions, and ܪ௙೎ೖ  is the 

݇th band-pass filter operator. The first software implementation of the PQoM was made in 
MATLAB and can be downloaded as an extension for the MoCap Toolbox6 (Burger & 
Toiviainen, 2013). The same approach was adopted to estimate the PQoM from data from other 
sensors. However, a specific ݓ vector of coeffcients must be defined regarding each sensor type, 
and an appropriate norm for the ݔ vector must be chosen. For instance, we used a similar approach 
as in Equation 2, in which our PQoM implementation replaced ݔ with the weighted sum of the 
norm of the orientation quaternion (∥ ݍ ∥) with the average acceleration over the three axes. 
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Also, for the use in real-time applications, the PQoM can be implemented using a causal filter 
(instead of zero-phase forward and backward digital IIR filter). Figure 2 presents the results of the 
PQoM measure applied to a recorded movement using a motion capture system and an armband 
device with a built-in IMU/MARG sensor. Figure 2a shows the locations of these sensors (passive 
markers and armband device). In this example, the musician performed a periodic movement with 
his arm, syncing it with the half note duration (from 1 to 3 s) and with the quarter note duration 
(from 5 to 7.5 s). Figure 2b illustrates the respective tracked ݔ vectors: motion capture marker 
(green line, top), acceleration (blue line, center) and orientation (red line, bottom). 

The bottom part of this figure shows the PQoM measures extracted from the tracked data. The 
amount of gesture periodicity over time is indicated by the yellow and light blue regions (higher 
values) on each matrix. The PQoM estimates from the motion capture marker (Figure 2c) are 
comparable with the respective PQoM measures extracted from the acceleration (Figure 2d) and 
orientation (Figure 2e) data. This means that PQoM is robust enough to be measured with different 
sensors and data types. This flexibility allows for the substitution of very precise and expensive 
motion capture systems with less accurate—but more affordable—devices, such as IMUs. 

 

 
Figure 2.  Periodic Quantity of Motion (PQoM) computed from motion capture and inertial measurement 

unit data.  (a) locations of passive markers and armband device. (b) tracking data from sensors (rescaled for 
better visualization). (c) PQoM from motion capture marker. (d) PQoM from acceleration. 

 (e) PQoM from orientation. 
 
 
MACHINE LEARNING: MAPPING POSTURAL AND SONIC TOPOLOGIES 

 
Motion descriptors are useful for extracting meaningful features from the raw data, as well as 
allow for aggregating information relative to all the axes. This helps to move away from a low-
level movement representation constrained by the Cartesian coordinate system and to obtain 
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motion data that are less dependent on it. A system based on orthogonal axes is indeed a 
convenient way to digitize movement. However, a meaningful conceptualization that helps in 
interpreting the expressivity that body movement conveys may be hindered if subordinated to a 
highly disciplined method of quantitative representation. In his article about topology and data, 
Carlsson argued that “coordinates ... are not natural in any sense,... [and] therefore we should 
not restrict ourselves to studying properties of the data which depend on any particular choice 
of coordinates” (Carlsson, 2009, p. 256). Moreover, in describing the characteristics of 
topological methods, he stated that, to obtain knowledge about the data, qualitative information 
is needed, and this must be established before proceeding with quantitative analysis. 
Researchers use topology to study intrinsic geometric properties of objects that do not depend 
on a chosen set of coordinates and this process also has been employed in the analysis of dance 
patterns (Naveda & Leman, 2010). This approach provides very useful notions for interpreting 
movement data generated by musical performance gestures. In fact, such body movements are 
bound to multimodal expressive features, which are inherently qualitative.  

To put these concepts into practice, we used machine learning algorithms to define 
interaction models based on the various postures a musician may adopt during a performance. 
This was done by asking performers to play freely while wearing two sensor armbands. A small 
number of postures (4–5) were then defined. This was done by observing recurrent 
idiosyncrasies and peculiarities of the performance and discussing the qualities of the 
movements with the musicians themselves to better understand how certain movements relate 
to each respective instrumental techniques and with the musical features of the pieces 
performed.7 Sensor data were then sampled repeatedly during each pose in order to train a 
support vector machine (SVM) classifier. This was implemented using the ml.lib library 
(Bullock & Momeni, 2015) for Max, which is itself based on the Gesture Recognition Toolkit 
by Gillian & Paradiso (2014). Every posture was then associated with a set of parameters of a 
digital sound processing engine. During the performance, the machine learning classifier 
compared the incoming sensor data stream with the recorded examples, returning the values for 
the probability (or likelihood) that the current posture of the musician matched one of the 
defined classes. The values of the probabilities then were used to interpolate between the 
parameter sets of the sound engine that was used to process the sound of the instrument in real 
time or to synthesize electronic sounds. 

This practical approach resonated with the aforementioned notions of topology because the 
incoming data were not analyzed quantitatively but rather evaluated in terms of 
proximity/distance from the predefined postures.8 From this perspective, the sampled postures 
themselves were topologies determined in relation to qualitative aspects of the movement of 
that particular performer, thus avoiding dependency from an abstract, artificial coordinate 
system. The system was instead defined by the idiosyncrasies of the performer. 

This approach offers some practical advantages compared to more traditional sensor-to-
sound parameter mapping approaches. First, incoming sensor data do not need to be rescaled 
to the range of the sound parameters they are mapped to. Moreover, the quantitative values of 
the sensor data can be ignored because the classifier probabilities are used to interpolate multiple 
sound parameters. This is another advantage because complex mappings can be defined easily 
and parameter modulation is independent of any coordinate system. Instead, the system quickly 
adapts to different users, and this is desirable considering the substantially different movements 
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required for playing different instruments and the significant degree of idiosyncrasy that 
characterizes musical performance.  

In the past few years, machine learning techniques increasingly have been employed for 
interactive computer musical performance. Notable approaches include Wekinator (Fiebrink, 
Trueman, & Cook, 2009), Gesture Variation Follower (Caramiaux, Bevilacqua, & Tanaka, 
2013) and mapping by demonstration (Françoise, Schnell, Borghesi, & Bevilacqua, 2014). 

In our early tests, orientation data and an aggregate EMG descriptor for both arms were 
used as inputs to train the machine learning models. Orientation was chosen because it is not an 
inertial measurement; therefore, it can be used to describe postures. In addition, EMG data 
allowed us to consider other characteristics of movement. As pointed out by Salazar Sutil 
(2015), the perception of body movement involves sensations that go beyond displacement in 
space, such as interoception and proprioception. Moreover, in their extensive work on the 
analysis of expressive movement, Camurri and Volpe (2011) defined gesture as a multimodal 
entity, citing Laban’s theory of effort (Laban & Lawrence, 1947) as a central source of concepts 
for understanding expressive movement. 
 
 

CASE STUDY: KINESLIMINA 
 
Kineslimina is a musical composition for viola, electric guitar, motions sensors, and live 
electronics that explores the use of the musicians’ instrumental movements as an expressive 
medium. Such gestures merge with the other musical features and become an integral part of the 
score. While playing their instruments, the musicians wear an armband fitted with IMUs, which 
tracks their movements and sends the motion data to a computer. The computer then processes 
the movement data and sound, responding with a wide range of dynamics: from subtle timbral 
alterations that follow the movements of the bow during string changes to deeper resonances 
when more overt gestures are performed by the musicians. The title is a portmanteau word 
composed of kinespheres and limina. The concept of kinesphere was defined by Laban (1966, p. 
10) as “the sphere around the body whose periphery can be reached by easily extended limbs.” 
Thus, the kinesphere is a personal space, and how an individual relates and pays attention to it 
contributes to its delineation. Limina is the plural form of limen, which is a threshold or margin. 
The piece aims at pushing the boundaries of the personal spaces that surround the musicians 
during the performance. Throughout the performance, the sound of the instruments is altered, and 
synthesized sounds are engaged by exceeding the usual extent of instrumental movements. The 
score of the piece can be considered a script through which a multimodal choreography emerges 
as the product of learned body schema, altered by the influence of and the reactions to an 
interactive system. In the ritualized context of musical performance, a nonconventional 
technology (the sensors) interferes with conventional ones (the instruments), reconfiguring the 
relationships between the score, the performers, and their tools. 

Parviainen, Tuuri, Pirhonen, Turunen, & Keskinen (2013) proposed an approach to 
interaction design that considers choreography as the holistic, experiential continuum of human 
movement resulting from the interaction with artifacts. From this perspective, musical 
instruments, sensors, and movement/sound mappings can be seen as carriers of a set of 
prechoreographies. The design of these objects (whether material or not, as in the case of 
software) and the environment where the interaction takes place prechoreographs the 
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performance of the piece. In other words, all the movement opportunities that these objects 
afford form the basis for the actual choreography that emerges as the score is enacted. Thus, a 
pre-existent, overarching design influences the movements within the kinesphere. Eventually, 
the movements that shape the performance exceed what the individual kinespheres can capture. 
The relations between the two musicians and between the musicians and the audience and the 
dynamics that arise from these connections are what Parviainen, Tuuri, Pirhonen, Turunen et al. 
(2013, p. 2) called “local-level movements.”  

As noted by Wilson, a traditional musical instrument is not merely a piece of technology: 
experiential relationships to it are shaped by “the way it is ‘meant’ to be played, the canonic 
tradition that stands behind it as repertoire, and the normative expressive gestures that are 
‘input’ by the player and ‘output’ sonically by the instrument” (Wilson, 2013, p. 426). Bodily 
relationships with these cultural artifacts are mediated historically and become part of a shared 
knowledge. Introducing motion sensor technology into this picture adds another layer of 
complexity, tightly woven to the already established gesture–sound relationships. Figure 3 
shows an example of how these different aspects of the piece are interrelated. Towards the end 
of the piece, the score requires the viola player to repeat an arpeggiated pattern with increasing 
dynamics, until a chord played by a synthesizer is heard. The part entails repeated bow strokes, 
and the movement pattern is captured by the sensors placed on the right wrist (Figure 3b). The 
peaks in the acceleration data control a granular synthesis engine that samples and alters the 
timbre of the instrument at each peak. At the same time, QoM is computed (red line, Figure 3c) 

 
Figure 3.  Excerpt of the viola part of Kineslimina and corresponding kinematic features of the right 

hand of the viola player: (a) scored pattern, (b) right hand acceleration of the viola player, and (c) the 
Quantity of Motion. The green cross indicates when the QoM threshold is crossed and the synthesized 

part that closes the composition is played back. 
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and the increase of motion activity introduces other electronic parts, until the QoM data reach a 
predefined threshold (green cross, Figure 3c) at which point the closing synthesizer chord is 
triggered and the musicians can move onto the closing notes of the piece. The number of 
repetitions required to reach this point depends on the movements of the performer, which may 
vary according to how different musicians interpret the score. The score engenders the 
instrumental movements required to perform the piece; the movement data alter the sound of 
the instrument and also impact the structure of the score itself (i.e., the number of repetitions 
required). This closes a feedback loop in which every part mutually influences the other. The 
body of the performer is the medium, the locus, where this dynamic entanglement takes place. 

This interdependency also affects how motion data are mapped to sound parameters. 
Mapping sensor parameters to sounds has long been debated in the HCI and NIME research 
communities (Hunt, Wanderley, & Paradis, 2003). Leman noted that freedom of mapping that 
characterizes digital musical interfaces “may disturb the sense of contact and of non-mediation” 
(Leman, 2008a, p. 164). Drawing from an established vocabulary of gesture of a traditional 
musical instrument and exploiting the constraints that instrumental techniques pose on the body 
can result in an advantage for obtaining meaningful interactions for expressive musical 
performance. This approach takes advantage of the ecology of musical instruments (Clarke, 
2005) in order to obtain expressive transparency in gesture-sound mapping.  

Kineslimina premiered at the Gala Concert of CMMR 2015 (the 11th International 
Symposium on Computer Music Multidisciplinary Research;9 see Figure 4) and was performed 
later that same year at MuSA 2015 (the Sixth International Symposium on Music/Sonic Art,10) 
held at the Institut für Musikwissenschaft und Musikinformatik in Karlsruhe, Germany. From the 
perspective of the performers,11 the piece reconfigured the relationship between the musicians and 
their instruments, extending expressive possibilities through their instrumental movements 
tracked by the sensors. However, this also required the performers to learn new skills and embed 
them within their existing instrumental techniques. This process became evident during the 
rehearsals. The performers experienced an increased awareness of the fundamental body schema 
of their instrument playing, as subtle movements created new sonic results via the motion sensors. 
This made them pay renewed attention to movements they learned in the early days of their 
formation as musicians, essential parts of the vocabulary of gestures of their respective 
instruments. While the musicians learned and became more familiar with the sensors, the system 
itself continually adapted and adjusted to accommodate the needs of the performers and to better 
follow their performance styles. As the rehearsals continued, relationships between body 
movements, instrumental gestures, and sensor data became renegotiated. This did not involve 
mere parameter adjustments and technical improvements to the sensor system: The process 
elicited and entailed a careful analysis of the relationship between movements, sound, and score 
from the privileged perspective of the performers themselves, thus resulting in a useful 
contribution to research from a practice-led perspective (Sullivan, 2009). 

The performers then progressively got to know how the mappings of movement features to 
sound worked, and how they could explore this unconventional technology in a meaningful 
way. More than just “sonifying” the movements made by the performers, the sensor system 
induced the musicians to reconsider their relationships to the performance space. Such space—
where the relationships among the players, instruments and audience are located—encompasses 
a set of conventions and cultural practices that are established and embodied in the performer. 
This can be compared to what Ervin Goffman (1974) referred to as “the frame,” which is the  
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Figure 4.  Kineslimina performance during the Gala Concert of the 11th International Symposium  

on Computer Music Multidisciplinary Research (CMMR), 16 June, 2015, Plymouth, UK. 
 
perceptual mechanism that indicates the nature and purpose of a behavior and how it is to be 
interpreted. It is a tool for understanding the implicit agreement between performer and 
audience on the symbolic status of the performance. From the perspective of a musician, this 
frame consists of the historically established relationships that transpire between players and 
instruments. Performance techniques and experience with instruments and instrumental music 
are habitualized through historical practice, conventions, and education. These relationships are 
thus part of the embodied knowledge of the performer. In Kineslimina, performing with 
reconfigured instrument/body/space relationships has made the musicians more aware of other 
qualities of their movements and their kinespheres. 

Laban identified space, weight, time and flow as motion factors toward which performers 
of movement can have different attitudes depending on temperament, situation, 
environment and many other variables. The attitudes toward the motion factors he 
called... Effort. ... Choices are continuously made by all people in motion, consciously or 
unconsciously, to determine what combinations of these Effort elements will best serve 
the purposes of their intentness or modify their behavior.... Whatever the action in which 
the effort combinations appear, the whole biological/psychological system is involved. 
(Bartenieff & Lewis, 1980, p. 51) 

Intentionality is a key aspect in the study of musical gestures; the fact that they are goal-
directed actions is an essential quality for the understanding of their expressive qualities (Godøy 
& Leman, 2010). The effort qualities of a movement are very much the result of this 
intentionality and they play an important role in the perception and understanding of body 
movement. During the Kineslimina performances, effort qualities and intentionality appeared 
amplified by the presence of the motion sensors and their effect on the conventional performance 
gestures. Moreover, as some audience members commented after the performance, this interplay 
between the performers and their role in the intersubjective space was transparent through the 
augmentation of the performers’ musical intentionality. 
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DISCUSSION AND FUTURE WORK 
 
We presented techniques for interpreting motion data and discussed the implications that arise 
when employing motion sensors in conjunction with traditional instruments in musical 
practice. Within this context, it is clear that body movements go well beyond simply being 
activators of technological objects, whether these objects are motion sensors or musical 
instruments. Bodily movement is considered a key element in forming embodied musical 
meaning (Leman, 2010). However, its role as an important cog of the engine that engenders 
signification and cognition is obviously not limited to the musical context. 

Technological objects have the capacity to entail gestures and store their potential meaning. 
As we have observed in our research, a musical instrument can be seen as a receptacle of 
gestures, of kinemes that—through a performance—give rise to a multimodal choreography. 
From a wider perspective, we could say that objects extend human cognition: they are 
cosubstantial, continuous, and coextensive elements of minds in action (Malafouris, 2013). 
Moreover, Wilson stressed the importance of the relationship between instrument technology 
and the instrumentalist’s pedagogy: “Technology—what the instrument is—is inherently 
entangled with pedagogy, the historically established relationships found between instrument 
and instrumentalist” (Wilson, 2013, p. 430; italics in original). In the case study we presented, 
this “inherent entanglement” encompasses also the score of the piece, which elicited the 
instrumental movements necessary to execute its parts while, at the same time, being affected 
by them through the use of motion descriptors. Within this layered process of signification—
situated in a cultural ecology and shaped by shared knowledge—the body is the medium where 
everything takes place. This perspective is akin to Merleau-Ponty’s (1945/2002) 
phenomenological approach. 

Once recognizing the centrality of the body and its movements in the ways humans 
make sense of the world, it is clear that—in an increasingly pervasive digital 
“semiosphere”—being able to digitize movement and interpret motion data become of 
primary interest. However, movement seems to have properties that exceed the system used 
to represent it. We have discussed the limitations emerging from representing movements 
exclusively through visual media, and the ubiquity of visual record is certainly a factor in 
this process. However, solving this bias is one of the challenges that contemporary 
researchers and practitioners must address in making progress in the discourse on human 
movement. The development of different computational techniques to describe the qualities 
of body motion is a necessary step towards more meaningful interpretations of data 
generated by human movement. However, it is also vital to consider the constraints posed 
by rigid methods of representation and move towards approaches that allow for addressing 
the complex, nonlinear phenomena that characterize expressivity. 

Using inexpensive and unobtrusive devices, such as 9DoF IMU/MARG sensors, also may 
help to move the research beyond laboratories. As researchers, we have seen how ecology plays 
an important role in the way people make sense of music (Clarke, 2005). Similarly, being able 
to study movement “in the wild” may have considerable implications, as shown in previous 
studies (e.g., Woolford, 2014). 

IMU/MARG sensors provide data that are morphologically distinct from those obtained 
through optical motion capture. However, it is possible to obtain analogously meaningful 
information if the data are correctly interpreted. In this context, using machine learning 
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techniques is not only a quicker method toward obtaining complex interaction models that 
adapt to different individuals, it also provides a way to study and reflect upon the topological 
qualities of human movement through applied research and practice. More sophisticated 
algorithms to interpret motion data can help address its complexity, reclaiming the centrality of 
the body over a rigid representation of data structures. 

Extracting expressive movement features from 9DoF data can lead to many other 
applications, well beyond the field of musical interaction. The ubiquity of 9DoF sensors—which 
is a very common feature of recent communication and entertainment devices—brings about a 
vast number of potential scenarios where the techniques we describe can be implemented. Using 
higher level descriptors to estimate expressive qualities of body movements is a way towards 
implementing dynamic HCI designs that handle gestures not only as isolated objects of 
application but as part of longer experiential chains, with multiple layers of significance. This 
goes beyond the traditional use-oriented approach and is akin to the use of choreographies for 
interaction design proposed by Parviainen, Tuuri, Pirhonen, Turunen, et al. (2013) and Pirhonen, 
Parviainen, and Tuuri (2013). It also parallels the work on affective computing carried out by the 
researchers at InfoMus/Casa Paganini (Glowinski et al., 2011; Piana, Staglianò, Camurri, & 
Odone, 2013). Both approaches avoid limiting HCI design to goal-directed actions and adopt a 
more holistic approach that takes into consideration a wider ecology of human movement. 
Moreover, 9DoF sensors coupled with sound synthesis techniques have already found 
applications in the field of rehabilitation of stroke patients (e.g., Bevilacqua et al., 2013). 

As suggested by a topological approach (Carlsson, 2009), gaining new higher level 
knowledge from motion data also requires qualitative insights. To access more complex, 
structural, and subjective qualities that are considerably difficult to model quantitatively, data 
need to be interpreted through qualitative methods. Intuitions arising from qualitative approaches 
can contribute to the understanding of how body schema and kinemes work in generating 
embodied meaning. This can successively inform more advanced computational models able to 
identify complex and meaningful qualities of human movement. Practice as research can address 
the need of qualitative insights in the interpretation of motion data. Particularly, music can be an 
effective test bed, given its multilayered complexities and rich cultural, multimodal qualities. As 
other projects have previously shown, music and the performing arts can be effective test beds for 
new modalities of expressive HCI (Camurri, Mazzarino, Ricchetti, Timmers, & Volpe, 2004), 
and practice-led approaches have yielded technical and conceptual material useful for the 
development of motion capture technologies (Norman & Blackwell, 2010). Moreover, musicians 
often are early adopters of new paradigms of interaction that eventually become mainstream 
(Kirn, 2013). Notable examples are gestural controllers and multitouch technologies, which were 
adopted by musicians long before they become widespread.  

Practice-led approaches are helpful also for carrying out the conceptual work required to 
make sense of motion data and understand the meanings it can potentially convey. Through 
their work, some artists seek to affirm the irreducibility of the corporeal presence while 
simultaneously sublimating it through digital processing (Norman, 2015). This resonates with 
the rationale behind Kineslimina, and this creative tension can lead to new insights into how 
movement can carry meaning across physical and digital environments. In Kineslimina, 
relating motion data to a musical score has shown how multimodal qualities of music are 
entangled, mutually affecting each other. 
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We expect that future work will adopt this mixed methodology in order to address technical 
and conceptual aspects related to body movement, motion data, and meaning formation. Other 
machine learning algorithms will be tested in order to map instrumental gestures to sounds 
synthesized by means of physical modeling. Sound synthesis techniques based on physical 
modeling allow artists to generate sounds that resemble those of certain musical instrument 
families. Working with synthesis parameters facilitates the ability to go beyond the timbral ranges 
and sonic capabilities of the physical instruments while preserving timbral resemblances to the 
instrument family. This poses interesting conceptual challenges, as the recognition of timbral 
qualities of musical instruments relies on a shared knowledge. As we discussed above, the 
relationships between instruments and instrumental movements is also something encoded in a 
shared gestural vocabulary. The ecology around musical instruments, their timbres, and their 
instrumental gestures offers a rich conceptual framework for developing meaningful cross-modal 
mappings between motion data and synthesis parameters. Cross-modal relations between 
performance movements and the sonic outcomes will also be inspired by the concept of Uncanny 
Valley, which was previously adopted in a composition that involved tension and relaxation 
structures in timbrally varied musical phrases generated by physical models (Bessell, 2011). 

From the perspective discussed so far, instrumental music is constituted by abstract 
structures and performance movements in continual interaction, entangled with technological 
and cultural knowledge. The concept of choreography appropriately describes the process of 
multimodal signification that emerges from the performance of a musical score. Body schema 
and kineme are useful conceptual tools to gain a better understanding of how the body is the 
central medium in human communication. Movement is a modality of knowledge; therefore, 
being able to interpret it and represent it through technology offers potential in avenues not 
yet imagined that should certainly be further explored. 

In summary, the article has addressed the challenge of extracting meaningful expressive 
features from motion data in the context of musical performance. The scope of this work is 
limited to the context of music and to the case study described. However, the interdisciplinary 
approach we adopted has led to the design of effective solutions that were implemented in the 
case study and in other works (Visi, 2017). This has highlighted that qualitative insights into 
how human body movement is understood and experienced are essential for informing the 
development of motion capture technologies for expressive purposes, as well as to broaden 
the discourse on music-related body motion. 

 
 

IMPLICATIONS FOR EMBODIED HCI 
 
In scenarios where computing is becoming ubiquitous, embodied, and considered a 
fundamental factor for designing interactions with technology (Parviainen, Tuuri, & Pirhonen, 
2013), the implications of being able to extract meaningful information from motion data are 
manifold. Moreover, the study of music-related motion and the analysis of motion descriptors 
certainly has applications beyond music making. As an example, Bennett, Hinder, and Cater 
(2016) recently measured periodicity in data obtained from motion sensors applied to rocking 
chairs in care homes. This was done to help improve the quality of life of residents in dementia 
care by creating subtle, engaging interactions that support and stimulate memory through music 
and movement (Bennett et al., 2016). This is but one example of current applications of motion 
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data analysis in conjunction with music. As computing becomes increasingly embedded in the 
environments people live in, interpreting the data produced by human activity in a meaningful 
way remains a key issue. This is central for recent trends in computer science, such as affective 
computing, calm technology, and human-centered machine learning. 
 
 

ENDNOTES 
 

1. Most marker-based systems also allow capture of 6DoF data (six degrees of freedom, consisting of 
three-dimensional position and Euler angles) by defining rigid bodies. However, these data are 
achieved by processing positional data of the single markers grouped into a rigid body. 

2. These data were collected with the Myo Gesture Control Armband, produced by Thalmic Labs 
(https://www.myo.com). 

3. Web page of the Max programming environment: https://cycling74.com/products/max/ 

4. In motion capture terminology, a joint is a point belonging to a three-dimensional representation of a 
body. Joints are usually defined by positional coordinates. 

5. In fact, it is possible to define any arbitrary origin for the coordinate system. [0,0,0] is the default option. 

6. The MoCap Toolbox and the PQoM extension can be downloaded from https://www.jyu.fi/ 
hum/laitokset/musiikki/en/research/coe/materials/mocaptoolbox 

7. To view some early tests with different musicians, please go to https://youtu.be/stWI43-EZGA 

8. This idea is reinforced by how support vector machines work: “An SVM model is a representation of 
the examples as points in space, mapped so that the examples of the separate categories are divided by 
a clear gap that is as wide as possible. New examples are then mapped into that same space and 
predicted to belong to a category based on which side of the gap they fall on” (Bullock & Momeni, 
2015, p. 4). 

9. The Web page of the 11th International Symposium on Computer Music Multidisciplinary Research 
(CMMR) is available at http://cmr.soc.plymouth.ac.uk/cmmr2015/index.html  

10. The Web page of the Sixth International Symposium on  Music/Sonic Art is available at 
http://zilmusic.com/musa2015/ 

11. Esther Coorevits: viola, motion sensors, live electronics; Federico Visi: electric guitar, motions 
sensors, live electronics. 
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