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We experimentally observe the decay dynamics of deterministically created isolated monopoles in spin-
1 Bose-Einstein condensates. As the condensate undergoes a change between magnetic phases, the isolated
monopole gradually evolves into a spin configuration hosting a Dirac monopole in its synthetic magnetic
field. We characterize in detail the Dirac monopole by measuring the particle densities of the spin states
projected along different quantization axes. Importantly, we observe the spontaneous emergence of nodal
lines in the condensate density that accompany the Dirac monopole. We also demonstrate that the
monopole decay accelerates in weaker magnetic field gradients.
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I. INTRODUCTION

Spinor Bose-Einstein condensates (BECs) of alkali-
atom gases [1,2] offer an exceptionally versatile platform
to study various topological defects [3]. These defects are
qualitatively nontrivial configurations in the order param-
eter fields of BECs and, by definition, they are robust
against perturbations.
In addition to displaying the scalar properties of a

superfluid, spinor BECs exhibit intriguing magnetic order
in their spin degrees of freedom.Consequently, the spectrum
of topological defects available in spinor systems is rich,
including vortices [4–9], half-quantum vortices [10], soli-
tonic vortices [11], skyrmions [12–14], monopoles [15–20],
and knots [21,22]. Although many of these topologically
stable defects remain essentially intact for the duration of the
creation process [15–23], there may be decay channels
rendering them dynamically unstable [24–26].
The natural magnetic phase of an atomic spin-1 BEC is

either ferromagnetic or polar [27], depending on the atomic
species. With higher-dimensional internal structure, even
more magnetic phases are available [28]. Interestingly, the
spin degree of freedom can give rise to synthetic electro-
magnetism, in which part of the BEC order parameter acts
as a charged quantum particle in the presence of synthetic
electromagnetic potentials arising from spatiotemporal

variations of its spinor [29]. These variations have been
introduced through interactions with external laser [30,31]
and magnetic fields [19].
We are especially interested in gauge potentials that give

rise to a monopole in a synthetic magnetic field. Creation of
such a Dirac monopole in a ferromagnetic BEC was
recently proposed [18] and implemented experimentally
[19], providing the first known realization of Dirac’s
celebrated theory of a charged quantum particle interacting
with a fixed magnetic monopole [32]. We stress that such a
Dirac monopole is not accompanied by a topological point
defect in the ferromagnetic order parameter.
Another recent experiment [20] reported the first obser-

vation of topological point defects, i.e., isolated monopoles,
in the polar phase of a spin-1 87Rb BEC. The creation
process is carried out using an external magnetic field as
illustrated in Figs. 1(a)–1(c). Although the point defect is
created in the polar phase, the magnetic phase for the
ground state of a BEC in the presence of a strong enough
external magnetic field is ferromagnetic. It is therefore
natural that the condensate eventually decays from the
polar phase into a configuration including the ferromag-
netic phase. Interestingly, recent theoretical results [33]
show that a polar BEC with an isolated monopole will
evolve into an essentially ferromagnetic spin configuration
with a Dirac monopole in its associated synthetic magnetic
field. However, experimental studies of this intriguing
phenomenon are lacking to date.
We report here the experimental observation of the decay

dynamics of an isolated monopole in a 87Rb spin-1 BEC. In
good agreement with theoretical predictions [33], the con-
densate evolves from the polar to the ferromagnetic phase,
giving rise to the decay of the isolatedmonopole defect in the
order parameter into a Dirac monopole in the accompanying
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synthetic magnetic field. We draw evidence for our con-
clusions from observations of the column particle densities
in different spin states during the decay. The Dirac monop-
oles are connected to the condensate boundary by nodal
lines of vanishing spin density. In previous experiments [19],
these nodal lines were deterministically created as doubly
quantized vortices terminating at the monopole. In contrast,
the nodal lines here appear spontaneously as a pair of
connected, singly quantized vortex lines.

We further characterize the Dirac monopole by projec-
ting the condensate spin texture along three perpendicular
quantization axes. These projections provide additional
evidence that the ground-state spin configuration contains a
Dirac monopole in its synthetic magnetic field. We com-
pare our experimental results to numerical simulations and
find them to be in good agreement. Finally, we study the
decay rate utilizing the time-dependent magnetization of
the condensate.
This paper is organized as follows: In Sec. II, we provide

the necessary theoretical background for describing the
monopole defects and their creation protocol in spin-1
BECs. In Sec. III, we present the employed experimental
and numerical methods. Section IV is devoted to the
experimental results on the decay dynamics and compari-
son with corresponding numerical simulations. We discuss
our results in Sec. V.

II. THEORY

A. Mean-field theory

We base our analysis on the zero-temperature mean-field
order parameter of the spin-1 BEC,

Ψðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðr; tÞ

p
eiϕðr;tÞζðr; tÞ; ð1Þ

where n is the particle density, ϕ is the scalar phase, and
ζ ¼ ð ζþ1; ζ0; ζ−1 ÞTZ is a three-component complex-
valued spinor satisfying the normalization condition
ζ†ζ ¼ 1. Here, ζ is expressed in the basis of the z-quantized
spin states fj1i; j0i; j − 1ig. In general, the spinors for the
ferromagnetic and polar phases in this basis read [27]

ζF ¼ Uðα; β; γÞ
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where U ¼ e−iFzαe−iFyβe−iFzγ is the general spin rotation
operator with Euler angles α, β, and γ, and Fy and Fz are
the standard dimensionless spin-1 matrices. The subscripts
F and P are used to refer to the ferromagnetic and polar
phases, respectively.

B. Topological defects in spin-1
Bose-Einstein condensates

The spinor in the polar phase in Eq. (3) can alternatively
be written as

FIG. 1. (a–c) Control sequence of the external quadrupole
magnetic field (blue thin arrows) during the creation process of an
isolated monopole (Dirac monopole) in the polar (ferromagnetic)
phase of the spin-1 BEC and (d) the theoretical spin configuration
generating a Dirac monopole. The zero point of the quadrupole
magnetic field, indicated by the black dot, is (a) well above,
(b) approaching, and (c) in the middle of the condensate (shaded
ellipse). The dashed arrow in (b–d) shows the path traced by the
zero point as it is adiabatically brought into the condensate. In (d),
the directions of the thick arrows indicate the direction of local
spin, aligned with the quadrupole field, at selected points in
space. (e) Mapping of a closed path on a spherical surface
enclosing a solid angle Ω from the real space to the spin space in
the Dirac monopole spin configuration (see Sec. II C). In the spin
space, we illustrate how an operation −RzðπÞ can be used to
implement the mapping.
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where d̂ ¼ ðdx; dy; dzÞT ¼ ðcos α sin β; sin α sin β; cos βÞT
is a real-valued unit vector defining the direction of nematic
order in the condensate; i.e., the polar spinor is in the
eigenstate of F · d̂ with eigenvalue mF ¼ 0. Here, F ¼
ðFx; Fy; FzÞT is a vector of dimensionless spin-1 matrices.
The polar order parameter may thus be expressed as Ψ ¼ffiffiffi
n

p
eiϕd̂ in the Cartesian basis. We use the vector field

d̂ðr; tÞ to characterize magnetic-order-related topological
defects in the polar phase.
In the pure ferromagnetic phase, the local spin magni-

tude is unity, whereas it vanishes in the pure polar phase.
Hence, in the ferromagnetic phase, the local average spin

SðrÞ ¼ ζðrÞ†FζðrÞ ð5Þ
plays an important role in the formation of possible
topological defects.
The order parameter space in the polar phase is given by

OP ≅ ½Uð1Þ × S2�=Z2 [34], allowing the existence of sin-
gular point defects due to the nontriviality of the second
homotopy group, π2ðOPÞ ≅ Z [35]. For the ferromagnetic
spinor, the order parameter space is OF ≅ SOð3Þ [29], and
hence the second homotopy group is trivial, π2ðOFÞ ≅ 0,
forbidding the existence of topologically stable point
defects [36]. As pointed out above, the Dirac monopoles
we consider here are not point defects in the ferromagnetic
order parameter but rather in the associated synthetic
magnetic field, and they may therefore exist at the
termination points of vortex lines in the scalar degree of
freedom [18]. Dirac refers to such vortex lines as nodal
lines in his original work [32] since the probability density
of the associated wave function vanishes at the vortex core.

C. Berry phase and synthetic electromagnetism

The concept of Berry phase plays an important role in
spinor gases. As we show below, it shares a relation with
synthetic electromagnetism, which we formally review in
Appendix A. The Berry phase may appear in the condensate
order parameter due to adiabatic spin rotations or spatially
dependent spin configurations. As one traverses around a
closed path C in real space, the accumulated Berry phase due
to the spatial dependence of the spinor is given by [37]

ΘB ¼ i
I
C
ζðr; tÞ†∇ζðr; tÞ · dr

¼ i
Z
S
∇ × ½ζðr; tÞ†∇ζðr; tÞ� · dS

¼ q�
Z
S
∇ ×A�ðr; tÞ · dS ¼ q�

ℏ

Z
S
B�ðr; tÞ · dS; ð6Þ

where S is the area enclosed by C and the second identity
follows from Stokes’ theorem. Here, we have introduced the
synthetic charge q�, the synthetic vector potential A�, and
the synthetic magnetic fieldB�, which are discussed inmore
detail in Appendix A. With these definitions, the accumu-
lated Berry phase equals theAharonov-Bohmphasewhich a
charged scalar particle with charge q� would accumulate
when moving along C in a natural magnetic field coinciding
with B�. Thus, the scalar part of the order parameter
simulates the behavior of the charged particle.
Let us evaluate the Berry phase associated with the Dirac

monopole spin configuration. Figure 1(e) shows the map-
ping from real space to spin space in this configuration.
A closed path, enclosing a solid angle Ω on the surface of a
sphere in real space, maps to a path in spin space enclosing
an equal-magnitude solid angle Ω but traversing in
the opposite direction. In the spin-1 case in general, the
accumulated Berry phase equals the solid angle in the spin
space, when traversed in the negative direction [5,37].
Thus, we obtain ΘB ¼ Ω for a path traversed in the positive
direction in real space. On the other hand, using Eq. (6), we
can write ΘB ¼ q�

R
ΩB� · dS=ℏ ¼ q�Φ�

B=ℏ, where Φ�
B

is the synthetic magnetic flux through Ω. Hence, in the
Dirac monopole spin configuration, the Berry phase gives
rise to the synthetic magnetic flux of a monopole, i.e.,
Φ�

B ¼ ℏΘB=q� ¼ ℏΩ=q�, independent of the details of the
path other than the solid angle.

D. Monopole creation

We create isolated monopole defects in the polar BEC by
applying spin rotations to the spinor ζ using an external
quadrupole magnetic field. The magnetic field is well
approximated by

Bðr0; tÞ ¼ bqðx0x̂0 þ y0ŷ0 − z0ẑ0Þ þ BbiasðtÞ; ð7Þ

where bq is the quadrupole field strength, BbiasðtÞ ¼
(Bbias;xðtÞ; Bbias;yðtÞ; Bbias;zðtÞ)T is a uniform bias field,
and the primed Cartesian basis vectors are given by
fx̂0; ŷ0; ẑ0g ¼ fx̂; ŷ; 2ẑg. Themonopole is created by slowly
bringing the zero point of the magnetic field, r00ðtÞ ¼
( − Bbias;xðtÞ;−Bbias;yðtÞ; Bbias;zðtÞ)T=bq, into the middle
of the condensate [see Fig. 1(a)–1(c)], such that d̂ follows
the direction of the local magnetic field adiabatically.
The isolated monopole created in this way is a topo-

logical point defect defined by the nematic vector d̂m ¼
ðx0x̂0 þ y0ŷ0 − z0ẑ0Þ=r0, where r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02 þ z02

p
. It is

related to the hedgehog monopole d̂h, in which the nematic
vector field points radially outwards from the location
of the monopole, through a sign change and π rotation
about the z axis, d̂h ¼ −e−iFzπd̂m ¼ ðx0x̂0 þ y0ŷ0 þ z0ẑ0Þ=r0.
Thus, the two configurations, d̂m and d̂h, both describe a
point defect.
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The spin configuration hosting a Dirac monopole is
defined by the spin vector SD ¼ jSDjðx0x̂0 þ y0ŷ0 − z0ẑ0Þ=r0.
Since point defects are not topologically allowed in the
ferromagnetic phase of spin-1 BECs, this spin texture is
naturally accompanied by one or more nodal lines con-
necting the boundary of the condensate with the core of the
monopole. The nodal lines appear not in the condensate
spin texture but in the density. In the previously realized
Dirac monopoles [19], the nodal line is a doubly quantized
vortex connecting to the defect. This doubly quantized
vortex dynamically splits into the more energetically
favorable configuration containing two singly quantized
vortices [19,38]. Indeed, in the ground-state Dirac monop-
ole configuration [39], there are two single-quantum
vortices connecting to the monopole. Furthermore, these
nodal lines have vanishing particle density only in the pure
ferromagnetic phase. For the Dirac monopoles arising as a
result of the decay of the isolated monopole, the nodal lines
are expected to appear as two single-quantum vortices in
the partially depleted total particle density and as more
distinct depletions in the spin density [33]. This indicates
that the nodal lines are partly filled with polar-phase atoms
and may therefore be referred to as polar-core vortices [39].
Recently, it was theoretically shown that in the absence of
any external magnetic fields, the isolated monopole decays
into a nodal-line-like polar-core vortex of nonvanishing
particle density at the vortex core [40].

III. METHODS

A. Experimental methods

The experimental protocol employed in the creation of
isolated monopoles is essentially identical to that in
Ref. [20]. Our experiments begin with optically trapped
87Rb atoms prepared in the polar internal state ẑ ¼
ð0; 1; 0ÞTZ. A typical atom number is N ¼ 2.1 × 105, and
the thermal cloud is observed to be negligibly small. The
optical trapping frequencies are ωr ≈ 2π × 130 Hz and
ωz ≈ 2π × 170 Hz. The strength of the gradient field is
bq ¼ 4.3 G=cm, and the field zero is moved into the
condensate by linearly ramping a bias field, aligned with
ẑ, from 10 mG to zero in 40 ms. The vector field d̂
adiabatically follows the external magnetic field during
the slow ramp, resulting in the isolated monopole configu-
ration d̂m.
Once the isolated monopole is created, we hold the zero

point of the quadrupole field in the middle of the con-
densate for thold. We vary thold for different experimental
runs, which provides us with information on the condensate
dynamics at different stages of the decay. As the polar
phase decays into the ferromagnetic phase, the magnetic
order becomes defined by the local spin S rather than d̂.
After holding the monopole in the presence of the

quadrupole field for thold, we apply a projection ramp
along a chosen quantization axis. This is implemented by

increasing the bias field to a large value along the
quantization axis such that jBbiasj ≫ bqR, where R is the
effective extent of the condensate. The duration of
the projection ramp is approximately 50 μs, and the order
parameter is expected to remain essentially unchanged,
allowing us to project the condensate state to the eigenstates
of the Zeeman Hamiltonian along the chosen quantization
axis. The quadrupole contribution to the field is then turned
off in a few microseconds, and the condensate is released
from the optical trap. During the subsequent 23.1-ms free
expansion of the cloud, the bias field is adiabatically rotated
into the x direction. A 3.5-ms pulse of current applied to the
quadrupole field coils produces a magnetic gradient that
separates the spin states horizontally. Finally, the bias field
is adiabatically rotated to point along the y axis, and the
condensate cloud with spatially separated spin states is
simultaneously imaged along y and z. A detailed descrip-
tion of the projection ramp and the associated imaging
methods are presented in Ref. [19].

B. Numerical methods

We numerically simulate our experiments by solving the
dynamics of the mean-field order parameter Ψ according to
the Gross-Pitaevskii (GP) equation and by employing the
literature values for the constants. The GP equation reads

iℏ
∂
∂tΨðr; tÞ ¼ fhðr; tÞ þ nðr; tÞ½c0 þ c2Sðr; tÞ · F�

−iΓn2ðr; tÞgΨðr; tÞ; ð8Þ

where ℏ is the reduced Planck constant, c0 ¼ 4πℏ2ða0 þ
2a2Þ=ð3mÞ and c2 ¼ 4πℏ2ða2 − a0Þ=ð3mÞ are the con-
stants related to density-density and spin-spin interactions
[27,41], respectively, with the s-wave scattering lengths
being a0 ¼ 5.387 nm and a2 ¼ 5.313 nm [42], and m ¼
1.443 × 10−25 kg is the mass of a 87Rb atom. The three-
body recombination rate is Γ ¼ ℏ × 2.9 × 10−30 cm6=s
[43]. The single-particle Hamiltonian h is given by

hðr; tÞ ¼ −
ℏ2

2m
∇2 þ VoptðrÞ þ gFμBBðr; tÞ · F; ð9Þ

where Vopt is the optical trapping potential, gF ¼ −1=2
is the Landé g factor, and μB is the Bohr magneton.
The quadratic Zeeman shift is not included since it
does not have a significant effect on the dynamics con-
sidered here [33]. The optical trap in the vicinity of the
condensate is approximated by a harmonic potential Vopt ¼
m½ω2

rðx2 þ y2Þ þ ω2
zz2�=2. The external magnetic field B

assumes the quadrupole configuration given by Eq. (7).
The ground state of the system is found by a relaxation

method [44]with the bias fields set along positive z such that
jBbiasj ≫ bqZ, where Z is the effective axial extent of the
condensate along z. With the experimental parameters, the
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relaxation leads to an essentially spin-polarized ferromag-
netic phase, ζ ≈ ð 1; 0; 0 ÞTZ. Subsequently, the spinor
components are swapped, resulting in ζ ≈ ð 0; 1; 0 ÞTZ.
The experimental protocol is then simulated by solving the
corresponding temporal evolution from Eq. (8). Here, we
employ the split operator method together with fast Fourier
transforms [44]. The computations are carried out on a
discretized three-dimensional grid of size 200 × 200 × 200
using graphics processing units.

IV. RESULTS

In Sec. IVA, we show the particle density distributions
of the condensate spin states for the isolated monopole in
the beginning and during the decay process, as well as for
the resultant Dirac monopole. The nodal lines attributed to
the Dirac monopole are shown and analyzed in Sec. IV B.
Section IV C is devoted to the characterization of the Dirac
monopole using different projection axes. In Sec. IV D, we
present our observations of the rate of the monopole decay
process.

A. Decay of an isolated monopole

Figure 2 shows the column particle densities in the
different spin states of the experimentally and numerically
created isolated monopoles and those of the Dirac monop-
oles after the decay process. Figure 3 shows the particle
densities during the decay. Although the agreement between

the experiments and the simulations is good in general, the
constant loss of atoms from the trap and the anharmonicity of
the optical potential is not included in the simulations,
resulting in a slight disagreement in the contrast of the
images. Hereafter, the images taken along y and z will be
referred to as side and top images, respectively.
At thold ¼ 0 ms [see Figs. 2(a), 2(b), 2(e), and 2(f)], the

−z-quantized spinor component ζ0 occupies the top and the
bottom parts of the condensate cloud, while the spinor
components ζ�1 occupy the middle region with partial
overlap, as observed in the side images. The structure is
consistent with the analytical column particle densities
corresponding to the polar spinor, with the vector field d̂
oriented along the local quadrupole magnetic field [see
Eq. (3)]. In the experiments and simulations, the ζ�1

components do not fully overlap due to the fact that the
projection ramp is applied before the quadrupole field is
completely switched off. In the top images, the blue region
corresponds to density depletions in the ζ�1 components
which form a ring around the ζ0 component. These are the
characteristic indications that an isolated monopole has
been created in the condensate cloud [20].
At the early stages of the decay process, at thold ¼ 25 ms

[see Figs. 3(a) and 3(e)], the monopole structure is still
visible, with the ζþ1 and ζ−1 spinor components being
displaced very slightly to the top and bottom parts of the

FIG. 2. Column particle densities in the three −z-quantized
spin states for (a,b,e,f) the isolated monopole and (c,d,g,h) the
dynamically formed Dirac monopole. The experimental
data and the corresponding simulation results are shown in
panels (a,c,e,g) and (b,d,f,h), respectively. The hold times are
indicated in the bottom-right corner of each panel. The quadru-
pole field gradient is bq ¼ 4.3 G=cm. The peak particle density is
~np ¼ 8.5 × 108 cm−2 for the images along y in (a–d) and ~np ¼
1.0 × 109 cm−2 for the images along z in (e–h). The field of view
in each panel is 228 × 228 μm2.

FIG. 3. Column particle densities imaged along y in the
three −z-quantized spin states during the decay of an isolated
monopole for (a–d,i–k) experiments and (e–h,l–n) simulations.
The hold times are indicated in the bottom-right corner of each
panel. The quadrupole field gradient is bq ¼ 4.3 G=cm. The peak
particle density is ~np ¼ 8.5 × 108 cm−2, and the field of view in
each panel is 228 × 228 μm2.
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condensate, respectively. At thold ¼ 50 ms [see Figs. 3(b)
and 3(f)], the ζ�1 components continue to be displaced, and
in addition, the ζ0 component moves towards the center
region. Here, the condensate is far from the pure polar
phase, and consequently, the isolated monopole structure is
not well defined.
For 125 ms ≤ thold ≤ 150 ms [see Figs. 3(i), 3(j), 3(l),

and 3(m)], the condensate is almost in the pure ferromag-
netic phase, as indicated by the well-separated spin states.
Finally, at thold ¼ 200 ms [see Figs. 2(c), 2(d), 2(g), and
2(h)], the density profile of the spin states accurately
corresponds to a Dirac monopole [19]. For this hold time,
the −z-quantized spinor components ζþ1 (spin down), ζ0
(spin horizontal), and ζ−1 (spin up) occupy the top, middle,
and bottom parts of the condensate, respectively. This is
consistent with the spin aligned along the quadrupole
magnetic field as illustrated in Fig. 1(d). Thus, in both
the simulations and the experiments, the condensate has
continuously decayed from the isolated monopole to the
spin configuration expected for a Dirac monopole.

B. Observation of nodal lines

The column particle densities of the condensates show-
ing the nodal lines associated with the Dirac monopole are
presented in Fig. 4. As noted above, Dirac’s theory requires
the existence of nodal lines for a quadrupolar spin texture,
as does the topological constraint forbidding the existence
of a point defect in the ferromagnetic phase. In agreement,
we observe a pair of singly quantized vortex lines to
spontaneously appear during the decay, connecting the core
of the monopole to the condensate boundary. The sponta-
neous emergence of the nodal lines highlights their topo-
logical origin. In the experiments detailed in Ref. [19],
the nodal lines were deterministically created as doubly
quantized vortices terminating at the monopole. Here, in
contrast, the nodal lines do not emerge as doubly quantized
vortices because the configuration with two singly quan-
tized vortices is energetically more favorable [39].
As confirmed by our simulations, the singly quantized
vortices have opposite circulations and hence can be
considered as a single vortex line reversing its winding
number at the monopole. Furthermore, it is energetically
favorable for the nodal lines to minimize their length [39]
such that they tend to terminate at the condensate boundary
that is closest to the monopole.
The nodal lines are observed in roughly 90% of the 100

different experiments conducted for thold ≥ 150 ms. We
attribute the missed nodal line observations in some
experimental realizations to occasional magnetic field
excursions that displace the monopole to positions very
close to the radial edge, where the spin configuration is
appropriate to the monopole but the nodal lines are too
short to resolve.
As shown in Figs. 4(a)–4(e), if the monopole is located

in the upper half of the condensate, the nodal line is

typically observed in the top image as two density-depleted
holes in the −z-quantized ζþ1 spinor component together
with a depleted region in the ζ0 component. These density
depletions correspond, in fact, to a nodal line extending
through the two spatially separated spin states, as is evident
from the corresponding numerically obtained spin density
in Fig. 4(e). The monopole is always located in the ζ0
component, and hence, this component must have a
density-depleted region. Importantly, if the monopole is
located in the lower half of the condensate, as shown in

FIG. 4. Experimental column particle densities of −z-quantized
spin states showing nodal lines associated with the Dirac
monopole. In (a–o), the first, second, and third columns corre-
spond to the top images of ζ−1, ζ0, and ζþ1 spinor components,
respectively; the fourth column shows the related composite side
images; and the fifth column shows the corresponding numeri-
cally obtained spin densities ~s ¼ jΨ†FΨj before the projection
ramp. In (a–e), the monopole is located in the upper half of the
condensate, in (f–j) in the middle, and in (k–o) in the lower half.
The solid red arrows in (c,g,k) indicate the locations of the nodal
lines, and the dashed red arrows in (e,j,o) indicate the direction of
the vorticity of the nodal line. In (p–w), each set of two adjacent
images is extracted from an individual experiment in which the
monopole is located in the middle of the condensate, such that
(p,r,t,v) show the column particle density of the ζ0 spinor
component and (q,s,u,w) show the corresponding composite
top image, respectively. The data for (p,q) are the same as in
Fig. 2(g). The hold times are indicated in the bottom-right corner
of each panel. The fields of view are as in Fig. 2, and the peak
particle densities are (a–c,f–h,k–m,p,r,t,v) ~np ¼ 5.0 × 108 cm−2,
(d,i,n) ~np ¼ 8.5 × 108 cm−2, and (q,s,u,w) ~np ¼ 1.0 × 109 cm−2.
The simulation data in (e,j,o) is shown for a region of 15×15μm2

with a thickness of 5.8 μm along y. The shown minimum
and maximum spin densities are ~smin ¼ 2.1 × 108 cm−3 and
~smax ¼ 10.1 × 108 cm−3.
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Figs. 4(k)–4(o), the nodal line extends to the bottom of
the condensate and is observed as density depletions in
the ζ−1 and ζ0 components. If the monopole is created
in the middle of the condensate, the nodal lines are typically
oriented in the xy plane, and they are observed as density-
depleted lines in the ζ0 component, as shown in Figs. 4(f)–
4(j) and 4(p)–4(w). In many experimental realizations, the
horizontal nodal lines partially extend into the ζþ1 or ζ−1
components. For this reason, the typical observation of the
horizontal nodal line is not as distinct as in Fig. 4(g). These
observations are in agreement with theoretical expectations
[33,39] for nodal lines associated with the Dirac monopole.
Additional vortices can sometimes appear in the con-

densate during the BEC creation process or because of the
presence of oscillating magnetic fields during the decay
(see Appendix B). These accidental vortices appear in all
three spinor components and align themselves with the z
axis to minimize their length. In contrast, the nodal lines we
observe extend from the monopole core to the nearest
boundary. Our ability to deterministically control the
location of the nodal lines by positioning the magnetic
field zero is a strong indication that the nodal lines are not
accidental vortices.

C. Characterization of the spin configuration
of a Dirac monopole

The particle densities of the x- and −y-quantized spin
states for thold ¼ 200 ms are shown in Fig. 5. We observe
that the spin configuration corresponds to that of the Dirac
monopole independent of the chosen quantization axis.
These observations extend those of Ref. [19], in which the
spin configuration associated with the Dirac monopole was
only characterized with the quantization axis parallel to z.
Furthermore, for the specific −y projection shown in
Figs. 5(i)–5(p), the nodal line extends from the origin
toward the −y axis and manifests itself as a density
depletion in the ζ0 and ζþ1 spinor components.

D. Rate of the monopole decay

We investigate the time scales related to the decay
process by calculating a magnetization parameter along
z, Mz, for different hold times thold. We define the
magnetization parameter as

Mz ¼
1

N

Z
dz

Z
dxjnyþ1ðx; zÞ − ny−1ðx; zÞj; ð10Þ

where nymz ¼
R
dynjζmz

j2 is the y-integrated particle density
in the spin state corresponding to the magnetic quantum
number mz. The −z-quantized ζ�1 spinor components
move in opposite vertical directions because of the nonzero
gradient present during the projection ramp. Thus, we
apply a compensating shift in the vertical direction such
that for thold ¼ 0 ms the ζ�1 components overlap, yielding
a minimum value forMz. An identical correction is applied

to all the data. As the condensate decays into the ferro-
magnetic phase, the magnetization parameter increases.
Figure 6 shows the magnetization parameter of the BEC

as a function of the hold time in the presence of two
different gradient field strengths, 2.2 G=cm and 4.3 G=cm.
In both cases, the isolated monopole is created with
bq ¼ 4.3G=cm, after which bq is linearly ramped to its
chosen value during the first 10 ms of the evolution. During
the ramping of bq, we adjust the bias fields accordingly to
keep the field zero approximately centered in the middle of
the condensate. With the weaker gradient, Mz reaches its
asymptotic value of approximately 0.35 at thold ≈ 80 ms
with an approximate rate 2.4 1=s. For thold ≥ 100 ms, we
can identify the Dirac monopole spin configuration and the
nodal lines from the experimental particle densities (data
not shown). With the stronger gradient, the asymptotic
value of approximately 0.41 is reached at thold ≈ 170 ms,
with an approximate rate 1.5 1=s. Assuming an ideal
quadrupole spin configuration, as well as a Thomas-
Fermi distribution with the ratio of the radii being
Z=R ≈ 1.2, we obtain an estimate for the theoretical

FIG. 5. Experimental column particle densities of (a–h) x- and
(i–p) −y-quantized spin states. The first, second, and third
columns correspond to spinor components ζ−1, ζ0, and ζþ1,
respectively, and the fourth column shows the corresponding
composite image. Here, the hold time is thold ¼ 200 ms. The red
arrows indicate the locations of the nodal lines. The fields of view
are as in Fig. 2, and the peak particle densities are (a–c,e–g,i–k,
m–o) ~np ¼ 5.0 × 108 cm−2, (d,l) ~np ¼ 8.5 × 108 cm−2, and (h,p)
~np ¼ 1.0 × 109 cm−2.
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maximum value Mz ≈ 0.55. The saturation values of Mz
should be compared to this maximum value.
Our observations indicate that the decay process is

slower in the presence of a stronger field gradient. This
is attributed to the decreased spatial overlap between the
emerging spin domains with stronger gradients [33].
Differences in the degree of spatial overlap of the spin
domains is also the reason for differences in the asymptotic
values of the magnetization parameter for different mag-
netic field gradients.

V. CONCLUSION

We have experimentally studied the decay dynamics of
isolated monopoles in spin-1 BECs of 87Rb atoms. While
the condensate evolves from the polar to the ferromagnetic
phase, the isolated monopole decays into a spin configu-
ration with a Dirac monopole in its synthetic magnetic
field. These results are obtained by analyzing the exper-
imental column particle densities of all spin states projected
along different axes. We have also identified spontaneously
appearing nodal lines associated with the emergent Dirac
monopole. Numerical simulations are in agreement with
these experimental results with no free parameters. The
decay of the monopole is observed to be faster in weaker
magnetic fields.
To date, the experimental studies of spatially localized

monopoles in the context of spinor BECs have been limited
to two publications [19,20] (see also Ref. [45]). Our
work further verifies the existence of both isolated and
Dirac monopoles through reproduction and in-depth

characterization. For future experiments, even more precise
control of the experimental parameters is desirable in order
to probe the delicate structure of other types of topological
defects appearing in spinor BECs. Future studies on the
stability and the dynamics of, e.g., knot solitons [22] could
be first steps in this direction. Furthermore, the exper-
imental realization of the vortex pump in spinor BECs
remains a future challenge requiring precise control of the
experimental parameters that determine the dynamics of the
atomic cloud [46,47].
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APPENDIX A: SYNTHETIC
ELECTROMAGNETISM

In our system of charge-neutral alkali atoms, spatiotem-
poral variations in the spinor give rise to synthetic electro-
magnetism. This is revealed by writing the Gross-Pitaevskii
equation, which describes the dynamics of the mean-field
order parameter Ψ ¼ ψζ, in a form analogous to the
Schrödinger equation for a scalar charged particle. In this
representation, the scalar part of the order parameter ψ
plays the role of the wave function of the charged particle.
The synthetic vector and scalar potentials acting on the

scalar part of the wave function assume the forms [29]

A�ðr; tÞ ¼ iζðr; tÞ†∇ζðr; tÞ=q� ðA1Þ

and

Φ�ðr; tÞ ¼ −iζðr; tÞ†∂tζðr; tÞ=q�; ðA2Þ

respectively. As described in Sec. II C, the synthetic vector
potential can be identified with the local Berry connection,
which is not a physically observable quantity. Indeed, the
potentials are gauge dependent: We may choose ~ψ ¼ ψe−iη

and ~ζ ¼ eiηζ for a scalar function η. The mean-field order
parameter, and hence all physical observables, remains
unchanged under this transformation. However, in this
gauge, the synthetic electromagnetic potentials are written
as ~A� ¼ A� −∇η=q� and ~Φ ¼ Φþ ∂tη=q�.

FIG. 6. Magnetization parameter Mz as a function of hold
time thold. Blue crosses and red circles represent the mean value
of ten individual experiments with magnetic field gradients
bq ¼ 4.3 G=cm and bq ¼ 2.2 G=cm, respectively. The error bars
indicate the uncertainty of 2 standard deviations of the means.
The solid and dashed lines are piecewise linear fitting functions
with constant ends.
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The synthetic potentials in turn give rise to synthetic
electric and magnetic fields,

E�ðr; tÞ ¼ −ℏ½∇Φ�ðr; tÞ þ ∂tA�ðr; tÞ� ðA3Þ
and

B�ðr; tÞ ¼ ℏ½∇ ×A�ðr; tÞ�; ðA4Þ
respectively. The related physically observable quantities
are the superfluid velocity and the superfluid vorticity,
which are expressed as

vsðr; tÞ ¼
ℏ
m
½∇ϕðr; tÞ − q�A�ðr; tÞ� ðA5Þ

and

Ωsðr; tÞ ¼ ∇ × vsðr; tÞ; ðA6Þ
respectively. The superfluid vorticity Ωs is in fact identical
to B� almost everywhere. The possible singularities in ϕ
or A� are carried over to Ωs, whereas B� can be made
singularity-free with suitable gauge choices in η (see
Supplementary Information of Ref. [19]).

APPENDIX B: EMERGENCE OF VORTICES DUE
TO MOVING MAGNETIC FIELD ZERO POINT

The addition of an oscillating magnetic field at the 60-Hz
power-line frequency causes the location of the zero point
of the magnetic field to oscillate about its central position.

It introduces many additional singly quantized vortices in
the condensate during the decay of the isolated monopole,
as shown in Fig. 7. Qualitatively similar results with
approximately 15 vortices are obtained in the simulations
under conditions in which the magnetic field zero rotates
about the center of the condensate in the xy plane. Note that
the comparison between theory and experiment in Fig. 7 is
qualitative because the experimental trajectory of the field
zero was not characterized in detail. In contrast to the nodal
line studied in Fig. 4, which is typically bent and not
aligned with the z axis, the additional vortices observed
here are consistently aligned with the z axis for a well-
centered Dirac monopole and tend to appear in all three
spinor components. Similar emergence of vortices has
previously been observed by driving the zero point of
the external magnetic field outside the condensate, giving
rise to an effective Lorentz force [48].
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