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ABSTRACT

Chugh, Tinkle
Handling expensive multiobjective optimization problems with evolutionary al-
gorithms
Jyväskylä: University of Jyväskylä, 2017, 66 p. (+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 263)
ISBN 978-951-39-7089-5 (nid.)
ISBN 978-951-39-7090-1 (PDF)
Finnish summary
Diss.

Multiobjective optimization problems (MOPs) with a large number of conflicting
objectives are often encountered in industry. Moreover, these problem typically
involve expensive evaluations (e.g. time consuming simulations or costly exper-
iments), which pose an extra challenge in solving them. In this thesis, we first
present a survey of different methods proposed in the literature to handle MOPs
with expensive evaluations. We observed that most of the existing methods can-
not be easily applied to problems with more than three objectives. Therefore, we
propose a Kriging-assisted reference vector guided evolutionary algorithm (K-
RVEA) for problems with at least three expensive objectives. The algorithm dy-
namically balances between convergence and diversity by using reference vectors
and uncertainty information from the Kriging models.

We demonstrate the practicality of K-RVEA with an air intake ventilation
system in a tractor. The problem has three expensive objectives based on time
consuming computational fluid dynamics simulations. We also emphasize the
challenges of formulating a meaningful optimization problem reflecting the needs
of the decision maker (DM) and connecting different pieces of simulation tools.
Furthermore, we extend K-RVEA to handle constrained MOPs. We found out
that infeasible solutions can play a vital role in the performance of the algorithm.

In many real-world MOPs, the DM is usually interested in one or a small
set of Pareto optimal solutions based on her/his preferences. Additionally, it has
been noticed in practice that sometimes it is easier for the DM to identify non-
preferable solutions instead of preferable ones. Therefore, we finally propose an
interactive simple indicator-based evolutionary algorithm (I-SIBEA) to incorpo-
rate the DM’s preferences in the form of preferable and/or non-preferable solu-
tions. Inspired by the involvement of the DM, we briefly introduce a version of
K-RVEA to incorporate the DM’s preferences when using surrogates. By provid-
ing efficient algorithms and studies, this thesis will be helpful to practitioners in
industry and increases their ability of solving complex real-world MOPs.

Keywords: many-objective optimization, decision making, Pareto optimality, sur-
rogate, metamodelling, computational cost



Author Tinkle Chugh
Faculty of Information Technology
University of Jyväskylä
Finland

Supervisors Professor Kaisa Miettinen
Faculty of Information Technology
University of Jyväskylä
Finland

Professor Yaochu Jin
Faculty of Information Technology
University of Jyväskylä
Finland
Department of Computer Science
University of Surrey
United Kingdom

Dr. Karthik Sindhya
Faculty of Information Technology
University of Jyväskylä
Finland

Dr. Jussi Hakanen
Faculty of Information Technology
University of Jyväskylä
Finland

Reviewers Prof. Richard Everson
Department of Computer Science
University of Exeter, United Kingdom

Prof. Kyriakos C. Giannakoglou
School of Mechanical Engineering
National Technical University of Athens, Greece

Opponent Associate Prof. Michael Emmerich
Leiden Institute of Advanced Computer Science
Leiden University, The Netherlands



ACKNOWLEDGEMENTS

First, I would like to thank my supervisors Prof. Kaisa Miettinen, Prof. Yaochu
Jin, Dr. Karthik Sindhya and Dr. Jussi Hakanan for their constant guidance and
support during my Ph.D. studies. Their knowledge and expertise, especially in
multiobjective optimization helped me to gain the confidence in the field. It was
a great opportunity to work in the "Decision Support for Complex Multiobjective
Optimization Problems (DeCoMo)" project with Finland Distinguished Profes-
sor (FiDiPro) Yaochu Jin. During this project, we came across several real-world
problems and collaborated with people from industry, which provided me an
insight to solve complex multiobjective optimization problems.

In addition, I would like to thank my international colleagues, Tomas Kratky
from Center of Hydraulic Research, Czech Republic, Pekka Makkonen from Val-
tra Inc. Finland and Prof. Nirupam Chakraborti from Indian Institute of Technol-
ogy Kharagpur, India for their valuable collaboration. For reviewing my disser-
tation, I would like to thank Prof. Kyriakos C. Giannakoglou from National Tech-
nical University of Athens, Greece and Prof. Richard Everson from University of
Exeter, United Kingdom. Suggestions given by them were useful in improving
the thesis.

Furthermore, I appreciate my colleagues and friends, in particular, Vesa
Ojalehto, Yue-Zhou Kangas and Mohammad Tabatabaei at the industrial opti-
mization group for useful discussions. The discussion about surrogate-assisted
optimization in the research group at the University of Surrey was also fruitful. I
would like to thank Doctoral Program in Computing and Mathematical Sciences
(COMAS) and Tekes: Finnish Funding Agency for Innovation for supporting my
Ph.D. thesis. Last but not the least, I thank my family members, especially my
parents Mrs. Vidya Wati and Mr. Chunni Lal Chugh for their blessings and sup-
port.



LIST OF FIGURES

FIGURE 1 An illustration of using surrogates with an evolutionary algo-
rithm ................................................................................... 14

FIGURE 2 An illustrative example of reference vectors for a biobjective
and three objective optimization problem ............................... 20

FIGURE 3 An illustration of the assignment of individuals to a reference
vectors ................................................................................. 21

FIGURE 4 A general framework of a surrogate-assisted evolutionary al-
gorithm................................................................................ 25

FIGURE 5 Usage of surrogate techniques in 2008-2016 for multiobjective
optimization problems .......................................................... 26

FIGURE 6 Number of articles with respect to the type of evolutionary al-
gorithm used in using surrogates for multiobjective optimiza-
tion problems ....................................................................... 28

FIGURE 7 An illustration of the selection strategy for updating the sur-
rogates in K-RVEA ................................................................ 33

FIGURE 8 An illustration of managing the number of samples in the train-
ing archive A1 ...................................................................... 34

FIGURE 9 Solutions for the DTLZ7 problem with three objectives from
K-RVEA, RVEA, ParEGO and MOEA/D-EGO in 300 function
evaluations, where the filled circles represent the Pareto front ... 35

FIGURE 10 Solutions for the DTLZ2 problem with 10 objectives from K-
RVEA and RVEA in 300 function evaluations .......................... 36

FIGURE 11 An illustration of the problem formulation and selecting a pre-
ferred solution by the DM...................................................... 38

FIGURE 12 CFD simulation results of the initial design provided by the DM 39
FIGURE 13 Nondominated solutions in the objective space on a normal-

ized scale ............................................................................. 40
FIGURE 14 IGD values with the number of function evaluations with K-

RVEA and RVEA .................................................................. 40
FIGURE 15 A flowchart representing the steps in the constrained version

of RVEA............................................................................... 42
FIGURE 16 Solutions generated with the Latin hypercube sampling (LHS),

Pareto front and the feasible region in the biobjective C1-DTLZ1
problem ............................................................................... 43

FIGURE 17 Dominated (Do), no preference information (In) and preferred
regions (Pr) based on the DM’s preferences ............................ 46

FIGURE 18 Nondominated solutions before first and fourth iteration and
the final solution obtained on 10 objective DTLZ4 .................... 48

FIGURE 19 Solutions obtained with K-RVEA and the reference vectors
on the three objective DTLZ2 problem with preferred ranges
0.4 ≤ f1 ≤ 0.5, 0.5 ≤ f2 ≤ 0.6 and 0.4 ≤ f3 ≤ 0.5 in 300
function evaluations.............................................................. 49



FIGURE 20 Solutions obtained with K-RVEA and the reference vectors on
the 10 objective DTLZ2 problem with reference point
[0.1, 0.1, 0.1, 0.1, 0.5, 0.5, 1, 1, 1, 1] in 300 function evaluations ...... 50



CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION ............................................................................ 13

2 BACKGROUND .............................................................................. 17
2.1 Problem statement .................................................................... 17
2.2 Terminologies in using surrogates .............................................. 18
2.3 A reference vector guided evolutionary algorithm ....................... 19
2.4 Kriging as a surrogate model ..................................................... 22

3 SURROGATE-ASSISTED EVOLUTIONARY ALGORITHMS................ 25
3.1 Challenges in surrogate-assisted evolutionary algorithms ............ 26
3.2 Challenges related to the characteristics of the problem................ 28
3.3 Guidelines for selecting a surrogate-assisted evolutionary algo-

rithm ....................................................................................... 29

4 A KRIGING-ASSISTED REFERENCE VECTOR GUIDED EVOLUTION-
ARY ALGORITHM .......................................................................... 31
4.1 Balance of convergence and diversity in K-RVEA ........................ 33
4.2 Managing the size of training samples ........................................ 34
4.3 Performance of K-RVEA............................................................ 35

5 SHAPE OPTIMIZATION OF AN AIR INTAKE VENTILATION SYS-
TEM................................................................................................ 37
5.1 Problem formulation................................................................. 38
5.2 Results with K-RVEA................................................................ 39

6 CONSTRAINT HANDLING IN SURROGATE-ASSISTED EVOLUTION-
ARY ALGORITHMS ......................................................................... 41
6.1 Handling infeasible training data ............................................... 41
6.2 Management of surrogates ........................................................ 43
6.3 Discussions on the results with K-RVEA ..................................... 44

7 INCORPORATION OF DECISION MAKER’S PREFERENCES ............ 45
7.1 Interactive simple indicator-based evolutionary algorithm ........... 46
7.2 Discussion on results ................................................................ 47
7.3 Preference incorporation in K-RVEA .......................................... 48

8 AUTHOR’S CONTRIBUTION ........................................................... 51



9 CONCLUSIONS .............................................................................. 53

YHTEENVETO (FINNISH SUMMARY) ..................................................... 56

REFERENCES.......................................................................................... 57

INCLUDED ARTICLES



LIST OF INCLUDED ARTICLES

PI Tinkle Chugh, Karthik Sindhya, Jussi Hakanen and Kaisa Miettinen. A sur-
vey on handling computationally expensive multiobjective optimization
problems with evolutionary algorithms. Submitted to a journal.

PII Tinkle Chugh, Yaochu Jin, Kaisa Miettinen, Jussi Hakanen, Karthik
Sindhya. A Surrogate-assisted Reference Vector Guided Evolution-
ary Algorithm for Computationally Expensive Many-objective Op-
timization. IEEE Transactions on Evolutionary Computation, to appear,
doi:10.1109/TEVC.2016.262230.

PIII Tinkle Chugh, Karthik Sindhya, Kaisa Miettinen, Yaochu Jin, Tomas
Kratky, Pekka Makkonen. Surrogate-assisted evolutionary multiobjective
shape optimization of an air intake ventilation system. In Proceedings of
IEEE Congress on Evolutionary Computation, IEEE, to appear.

PIV Tinkle Chugh, Karthik Sindhya, Kaisa Miettinen, Jussi Hakanen, Yaochu
Jin. On Constraint Handling in Surrogate-Assisted Evolutionary Many-
Objective Optimization. In 14th International Conference on Parallel Prob-
lem Solving from Nature, 2016 Proceedings, Edited by J. Handl et al., 214-224,
Springer, 2016.

PV Tinkle Chugh, Karthik Sindhya, Jussi Hakanen, Kaisa Miettinen. An Inter-
active Simple Indicator-Based Evolutionary Algorithm (I-SIBEA) for Mul-
tiobjective Optimization Problems. Evolutionary Multi-Criterion Optimiza-
tion: 8th International Conference, Proceedings, Part II, Edited by A. Gaspar-
Cunha, C. Antunes, C. Coello, Springer, Berlin, Heidelberg, 277-291, 2015.



1 INTRODUCTION

Many industrial optimization problems have several characteristics which intro-
duce various challenges in solving them. One of the challenges is to deal with a
large number of conflicting objectives to be optimized simultaneously. Moreover,
these objectives are evaluated with costly experiments and/or time consuming
simulations. For example, in designing an aircraft [79], several objectives e.g.
minimizing the takeoff noise, weight of the aircraft, operating cost and maximiz-
ing speed and lift need to be optimized. Such problems with conflicting objec-
tives are known as multiobjective optimization problems (MOPs) and for these
problems there is no single optimal solution but typically multiple optimal solu-
tions exist. These solutions are known as Pareto optimal (PO) solutions and they
represent different trade-offs between the objectives.

Numerous methods have been proposed in the literature to solve MOPs
[23, 59]. Evolutionary multiobjective optimization (EMO) methods based on evo-
lutionary algorithms (EAs) have become popular and been widely used in past
few decades [18, 23]. They start with a population of individuals which evolve
by using genetic operators e.g reproduction, crossover and mutation. This thesis
focuses on using evolutionary algorithms because of their wide applicability and
certain advantages. For example, they do not assume any convexity or differen-
tiability of the objective functions involved and can easily deal with the problems
with locally optimal solutions.

Despite of several advantages of EAs, they have one major limitation that
they can consume many function evaluations to find an approximated set of PO
solutions [38, 39]. This issue becomes more prominent when the problem to be
solved involves expensive functions which is another challenge in solving indus-
trial optimization problems. For instance, in designing a drug [45], an engineer or
a decision maker (DM) who is an expert in the problem domain needs to do some
lab experiments to obtain a product of a desired quality and these experiments
are usually costly with respect to both time and money. Another example is de-
signing a cooling system of a tractor [PIII], where the DM wants to maximize
the cooling efficiency and at the same time minimize the cost. In this case, the
DM needs to do complex computational fluid dynamics (CFD) simulations with
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FIGURE 1 An illustration of using surrogates with an evolutionary algorithm

specific design (decision) variables. These simulations are also usually very time
consuming. In both the examples, the DM needs to perform expensive experi-
ments/simulations to obtain the solutions. In such problems, using evolutionary
algorithms may not be a viable alternative or otherwise, they need to be adapted
to make them more useful for real-world applications.

To obtain solutions for expensive problems in a limited number of expensive
function evaluations, surrogates (or metamodels or response surface approxima-
tions) have been used in the literature as an alternative to expensive evaluations
[26, 39, 46]. Several surrogate-assisted evolutionary algorithms (SAEAs) for mul-
tiobjective optimization have been proposed in the literature e.g. ParEGO [44],
SMS-EGO [71], MOEA/D-EGO [93] and K-RVEA [PII]. The basic idea of using
surrogates with an EA is shown in Figure 1. The approximations from the surro-
gates are used with EA instead of doing expensive evaluations. Although the phi-
losophy of using surrogates sounds very simplistic, it has certain challenges. The
most important challenge is to efficiently manage the surrogates. Surrogate man-
agement or evolution control [40, 38] is very important in the performance of a
SAEA which includes how to select training samples for building the surrogates,
when and how to update the surrogates. Many SAEAs exist in the literature and
most of them do not address the following three challenges:

1. how to handle a large number of objectives,
2. how to reduce the training time of surrogates, and
3. how to handle constraints ?

Most SAEAs in the literature have not been developed to handle problems with
more than three objectives [PI] which means they are not applicable to solve many
real-world problems. One of the main reasons of restraining the use of the exist-
ing SAEAs for a limited number of objectives is the strategy for surrogate man-
agement. In managing the surrogates, samples for training the surrogates should
be selected considering both convergence and diversity which is not trivial in
solving problems with a large number of objectives.
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Another concern is the training time for the surrogates which can be sub-
stantial and may even be longer than evaluating the original objective functions.
Many SAEAs in the literature usually ignore the aspect of training time of the sur-
rogates. Additionally, most SAEAs in the literature do not consider constrained
problems which also raises a question for using them in real-world cases. This
thesis focuses on dealing with three aspects in solving an expensive MOP: 1)
finding a representative set of PO solutions with a large number of conflicting
objectives, 2) selecting an appropriate set of samples for training the surrogates
to further reduce the computation time and 3) handling constraints by training
the surrogates with appropriate set of samples considering their feasibility.

The thesis is a collection of five articles (PI-PV) published in scientific jour-
nals and conference proceedings which are introduced in Chapters 3-7 in this
thesis. In [PI] introduced in Chapter 3, a survey of several articles published be-
fore the year 2016 to handle expensive MOPs is presented. In this article, we
summarize several challenges in applying SAEAs including challenges related to
the nature of the problem to be solved and give some guidelines to select an al-
gorithm to solve a given MOP. As mentioned, one of the limitations of existing
SAEAs is their applicability for more than three objectives. Therefore, in [PII]
introduced in Chapter 4, we propose a Kriging based reference vector guided
evolutionary algorithm called K-RVEA for three or more objective functions.

The algorithm K-RVEA uses elements from its underlying evolutionary al-
gorithm RVEA [16] and Kriging models [27] to approximate the objective func-
tion values. To efficiently manage the Kriging models, a set of reference vectors is
used for selecting the samples. Additionally, the convergence criterion in RVEA
called angle penalized distance and the uncertainty information from the Kriging
models are used with the reference vectors to enhance convergence and diversity.
Another feature of K-RVEA is to limit the size of samples for training the surro-
gates. These samples are also selected with the help of reference vectors. In [PII],
the potential of the algorithm is shown on several benchmark problems and a
free-radical polymerization problem [64] by comparing with the state-of-the-art
SAEAs.

In [PIII] introduced in Chapter 5, K-RVEA is applied to an air intake ven-
tilation system problem in an automobile industry which involves CFD simula-
tions. We focus on three main challenges, the formulation of the optimization
problem, connecting different simulation tools and dealing with time consuming
simulations. Most of SAEAs in the literature have been tested on benchmark or
academic MOPs, where problems actually do not involve expensive evaluations.
The formulation of the objective functions in those problems is known a priori
but in contrast in many real-world problems, the formulation of the optimization
problem is not straightforward and typically takes many iterations of discussions
with the DM and an analyst of the optimization algorithm. Additionally, it may
take a considerable amount of effort to connect different simulation tools to obtain
objective function values. We consider these issues in [PIII] before using K-RVEA
to solve the problem.

The K-RVEA algorithm in [PII] has been developed for problems with only
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box constraints. However, many real-world problems have constraints which
poses an extra challenge in using a SAEA. Therefore, in [PIV] introduced in Chap-
ter 6, we study three different ways of training the surrogates considering the
feasibility of solutions. In the first one, only feasible solutions are used for train-
ing, in the second one, some infeasible solutions are used in addition to feasible
ones and in the third one, a penalty is assigned to infeasible solutions. More-
over, three different types of penalty are used: fixed, adaptive and parameter free
penalty. We found out that infeasible solutions can play an influential role in the
performance of surrogates.

In real-world problems, the DM is usually interested in solutions based on
her/his preferences. Therefore, finding a small set of PO solutions desirable to
the DM may also reduce the number of expensive evaluations. To incorporate
the DM’s preferences in the solution process, we first propose an algorithm called
I-SIBEA in [PV] which is introduced in Chapter 7. In I-SIBEA, the DM iteratively
provides her/his preference in selecting preferred and/or non-preferred solu-
tions. The preferences from the DM are then used in calculating the weighted hy-
pervolume and solutions are selected based on their contribution to the weighted
hypervolume. In [PV], the I-SIBEA is tested on benchmark problems with 2-3
objectives with different numbers of interactions with the DM. However, the po-
tential of the algorithm is also shown on a 10 objective problem in Chapter 7.
Additionally, a preliminary discussion and results on benchmark problems with
3-10 objectives by incorporating the DM’s preferences in K-RVEA is presented in
Chapter 7.

In this thesis, by identifying advantages and limitations of existing SAEAs
in [PI], we propose the K-RVEA algorithm in [PII] to tackle the challenge of solv-
ing a MOP with three or more number of expensive objectives. The practicality of
the algorithm is shown on a real-world problem of air intake ventilation system
in [PIII]. Considering the constrained problems, we modified K-RVEA to make it
adaptable for dealing with the infeasible solutions in the presence of constraints
in [PIV]. Finally, the preferences from the DM is involved in the solution process
in [PV] to find a single or small set of PO solutions desirable to her/him.

The rest of the thesis is organized as follows. In Chapter 2, we introduce the
main concepts and terms used in this thesis. A survey of different SAEAs pro-
posed within 2008-2016 with their characteristics, advantages and limitations is
presented in Chapter 3. In Chapter 4, the K-RVEA algorithm is detailed followed
by its application to solve a real-world problem of an air intake ventilation sys-
tem in Chapter 5. In Chapter 6, a study is performed with K-RVEA to deal with
constrained problems. In Chapter 7, we describe the algorithm I-SIBEA and dis-
cuss the initial results of incorporating DM preferences in K-RVEA. The author’s
contributions are described in Chapter 8. Finally, we conclude and discuss the
future research directions in Chapter 9.



2 BACKGROUND

This chapter provides the definitions of the most commonly used terms in this
thesis. We also provide a brief description of RVEA [16] and Kriging [27] as they
are two major building blocks in the development of K-RVEA.

2.1 Problem statement

We consider multiobjective optimization problems (MOPs) of the form:

minimize { f1(x), . . . , fk(x)}
subject to x ∈ S

(1)

with k(≥ 2) objective functions fi(x) : S → �. The vector of objective function
values is denoted by f (x) = ( f1(x), . . . , fk(x))T. The (nonempty) feasible region
S is a subset of the decision variable space �n and consists of decision variable
vectors x = (x1, . . . , xn)T that satisfy all the constraints. The image of the feasible
region S in the objective space �k is called the feasible objective set denoted by
Z. The elements of Z are called feasible objective vectors denoted by f (x) or
z = (z1, . . . , zk)

T, where zi = fi(x), i = 1, . . . , k. For the simplicity of presentation,
we assume that all the objective functions are to be minimized. If some objective
function fi is to be maximized, it is equivalent to minimize − fi. In this thesis,
we consider the MOPs with at least three or more objective functions and assume
that all the objective functions are expensive to evaluate.

As mentioned in Chapter 1, there is typically no single optimal solution but
multiple optimal solutions exist for a MOP. A decision vector x∗ ∈ S is Pareto op-
timal if there does not exist another decision vector x ∈ S such that fi(x) ≤ fi(x∗)
for all i=1,. . . ,k and f j(x) < f j(x∗) for at least one index j. An objective vector is
Pareto optimal if the corresponding decision vector is Pareto optimal. A Pareto
optimal set consists of all Pareto optimal solutions in the decision space and a
Pareto front consists of all Pareto optimal solutions in the objective space.
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2.2 Terminologies in using surrogates

In using SAEAs, different terms have been used in the literature and one can
observe that different terms are used for describing the same concept e.g. meta-
models or response surface approximations are used as synonyms for surrogates.
We define here the most commonly used terms in using a SAEA for solving ex-
pensive MOPs. These terminologies will be used in the rest of the this thesis.

1. Surrogate: A surrogate or a metamodel approximates the expensive ele-
ments which are usually the objective functions in solving a MOP. Neural
networks [28], radial basis functions [12], support vector regression [13] and
Kriging [27] are some examples of commonly used surrogate techniques.

2. Ensemble of surrogates: An ensemble of surrogates refers to using more
than one surrogate. In using an ensemble of surrogates, the characteristics
of different surrogate techniques can be utilized simultaneously. There can
be different ways to build an ensemble of surrogates. For instance, in [82],
different surrogates are trained with the same samples and the one with the
highest accuracy is chosen to be used in the solution process. In contrast, in
[54], a weighted sum of approximations from different surrogates is used.

3. Surrogate management: Surrogate management or evolution control [38] is
a strategy to manage the surrogates in an EA. For instance, selecting samples
for training, that is, fitting a surrogate, when and how to update the surro-
gates are major components in the surrogate management. Selected samples
also affect the performance of the evolutionary algorithm used. Therefore,
managing the surrogate is very important in the performance of a SAEA.

4. Infill criterion: An Infill criterion or an updating criterion is the most impor-
tant part of the surrogate management. Surrogates often need to be trained
several times with expensive function evaluations and selecting samples for
training is critical for their performance. An efficient infill criterion ensures
that samples are selected in such a way that both convergence and diver-
sity are taken into account. The most widely used infill criteria are expected
improvement (EI) [41, 44], probability of improvement [20], expected hy-
pervolume improvement [26] and lower confidence bound [71].

5. Fitness inheritance: In fitness inheritance [77], the objective function values
of new samples are approximated based on their similarity to the already
evaluated ones. For instance, if the sample to be evaluated has decision vari-
able values similar to the already evaluated one, the corresponding values
of the objective functions can also be assumed to be similar to the previously
evaluated ones without doing any expensive evaluation.
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2.3 A reference vector guided evolutionary algorithm

The reference vector guided evolutionary algorithm (RVEA) [16] is used in this
thesis as an underlying algorithm for the development of the surrogate based al-
gorithm K-RVEA. RVEA is a recently proposed algorithm to handle MOPs with a
large number of objectives (or many objectives). In contrast to conventional dom-
inance based EAs e.g. NSGA-II [23] and SPEA2 [96], RVEA uses an adaptive set of
reference vectors to guide the solutions towards the Pareto front. In conventional
EAs, the selection is usually based on dominance which is not suited for deal-
ing with a large number of objectives. In RVEA, a selection criterion called angle
penalized distance (APD) is defined to maintain a balance between convergence
and diversity.

In the last few years, several evolutionary algorithms devoted for solving
problems with a large number of objectives have been proposed. These algo-
rithms can be divided into three categories based on their selection criteria. In
the first one, dominance-based selection is modified to enhance the convergence
rate. Some examples of EAs in this category are Borg-MOEA [31] and GrEA [90].
In the second category, EAs use an indicator (usually hypervolume) based selec-
tion e.g. IBEA [95] and HypE [6]. These algorithms suffer from the high com-
putational cost of calculating the hypervolume especially with a large number of
objectives. In the third category, decomposition based algorithms are used which
decompose the objective space into a number of subspaces e.g. using reference
vectors. Some of the widely used EAs in this category are MOEA/D [91] and its
variants [53, 92] and NSGA-III [22]. RVEA belongs to decomposition based EAs.
For more details about these algorithms and challenges in solving problems with
more than three objectives, see [35, 52, 88]. In [16], RVEA performed better than
other algorithms e.g. NSGA-III and MOEA/D on many benchmark problems and
therefore, we adopt some elements from RVEA in using the surrogates to develop
an algorithm applicable for expensive MOPs.

Two major differences between RVEA and other decomposition based EAs
are the selection criterion and adaptive reference vectors. The selection criterion,
APD is designed to dynamically balance convergence and diversity. Moreover,
the adaptive set of reference vectors is used to deal with problems having objec-
tives with different scales. Such an adaptation in the reference vectors ensures
a uniform distribution of solutions in the objective space. The components of
RVEA are presented in Algorithm 1.

In RVEA, first a set of uniformly distributed reference points is generated
on a unit hyperplane using the canonical simplex-lattice design method [15, 19].
The corresponding reference vectors are then obtained by projecting the reference
points from the hyperplane to a hypersphere. An illustration for a two and a
three objective optimization problem is shown in Figure 2, where open circles and
filled circles represent reference points on the hyperplane and the hypersphere,
respectively. In this way, the reference vectors partition the objective space into a
number of subspaces.
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Algorithm 1: Reference vector guided evolutionary algorithm
Input: tmax = maximum number of generations; N = number of

reference vectors; V0 = {v01, v02, . . . v0N} a set of unit reference
vectors

Output: nondominated solutions from population Ptmax

1. Create an initial population P0 of size N randomly and set generation
counter t = 0
while t < tmax do

2. Generate offspring Qt
3. Combine parent and offspring populations, Pt = Pt ∪ Qt
4. Select parents (Pt+1) for the next generation
5. Update reference vectors and t = t + 1
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FIGURE 2 An illustrative example of reference vectors for a biobjective and three objec-
tive optimization problem
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FIGURE 3 An illustration of the assignment of individuals to a reference vectors

To assign individuals to these reference vectors, first all the objective func-

tion values are translated i.e.
¯f j
i = f j

i − f ∗i , where f j
i represents the objective value

of fi for the jth individual and f ∗i the minimum objective values of fi at the cur-
rent generation. The translation is done to ensure that all values lie in the positive
orthant and the initial point of reference vectors is always the origin. Individuals
are then assigned to the reference vectors based on the acute angle measurement
between the reference vectors and vectors corresponding to the individuals. One
illustration is shown in Figure 3 with two reference vectors vi and vi+1 and three
individuals f̄ 1, f̄ 2 and f̄ 3. As the angle θ1

i between the individual f̄ 1 and the ref-
erence vector vi is less than the angle θ1

i+1 between the individual and the other
reference vector vi+1, this individual is assigned to the first reference vector vi.
Similarly, f̄ 2 and f̄ 3 are assigned to reference vector vi and vi+1, respectively. In
this way, the population is partitioned into different subpopulations.

After the assignment of individuals, one individual is selected from each
subpopulation. The selection criterion APD is then used to select individuals:

dj = (1 + P(θ j)) · || f̄ j||, (2)

where || f̄ j|| is the distance from the translated objective vector corresponding to
the jth individual to the origin, and θ j is the angle between the jth individual and
the reference vector it is assigned to. In (2), P(θ j) is the penalty function defined
as follows:

P(θ j) = k · ( t
tmax

)α · θ j

γv
, (3)

where k is the number of objectives, α is the parameter controlling the rate of
change of the penalty function, t is the generation counter and tmax is the max-
imum number of generations. The smallest angle between the reference vec-
tor vi and its closest neighboring reference vector vj is defined by γv i.e. γv =
mini∈{1,...,N},i 	=j

〈
vi, vj

〉
. The angle γv is used to normalize the angles and is im-

portant when the distribution of the reference vectors is either too dense or too
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sparse. The penalty term is defined to balance between convergence and diver-
sity. For instance, in the early generations, the criterion APD focuses on conver-
gence and later when the generation counter t approaches tmax, the diversity is
prioritized. The individual with the minimum APD is selected from each sub-
population and used in the next generation.

2.4 Kriging as a surrogate model

Kriging or Gaussian process regression has been one of the most popular choices
in surrogate techniques used mainly because of its ability to provide uncertainty
information of the approximated values [PI]. The term Kriging was proposed by
Matheron in 1963 [58] in the honor of the South African mining engineer Danie G.
Krige [50]. His research was focused on the distribution of gold samples found
in mines and correlation between these samples. He implemented a statistical
technique based on a limited amount of samples which is now known as Kriging.

The first work in using Kriging for approximation of simulation based or
computer experiments was proposed in 1989 by Sacks et al. [76]. However, the
mostly cited algorithm in using Kriging is efficient global optimization (EGO)
proposed in 1998 by Jones et al. [41] for single-objective optimization problems.
EGO uses a criterion called expected improvement (EI) to select samples for train-
ing the Kriging model. Several versions of EGO have been proposed in the litera-
ture afterwards for both single-objective [26, 42, 87] and multiobjective [44, 71, 93]
optimization problems. For more details about algorithms using Kriging, see re-
cent reviews [43, 80]. Next, we present the working methodology of Kriging.

Kriging approximates the objective function value of an individual x as

y(x) = μ(x) + ε(x), (4)

where ε(x) is a Gaussian stationary process with the zero mean, variance σ2 and
covariance Ψ i.e. ε(x) = N (0, Ψ). The mean is represented by μ and is usually
assumed to be the form μ(x) = ∑l

j=1 β jgj(x) = g(x)Tβ with l basis functions
and coefficients β. In many cases, μ(x) is just taken as a constant value to avoid
estimating the coefficients β.

For training a Kriging model, first a set of input samples is generated in the
decision space which are evaluated with the expensive objective function evalu-
ations. Let matrix X =

[
x1, . . . , xNI

]T represent the training data in the decision

space with their corresponding objective vector y =
[
y1, . . . , yNI

]T, where NI rep-
resents the sample size, that is the size of the training data set. The covariance
between two samples xi and xj is calculated as:

cov[ε(xi), ε(xj)] = σ2R(xi, xj), (5)

where R is the correlation function or kernel. The Gaussian kernel i.e. R(xi, xj) =

exp(−∑n
j=1 θj|xi

j − xj
j|2) is the most commonly used, where n is the number of
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decision variables and θ represent the hyperparameters. Such a correlation is
calculated for all input samples and a correlation matrix R is generated:

R =

⎡
⎢⎣

R(x1, x1) · · · R(x1, xNI )
... . . . ...

R(xNI , x1) · · · R(xNI , xNI )

⎤
⎥⎦ . (6)

The covariance matrix Ψ is then calculated as Ψ = σ2R.
For a new input x̂, an approximated value ŷ from (4) can be written as

ŷ(x̂) = gT(x̂)β + rT(x̂)R−1(y − Fβ), (7)

where F is the matrix representation of the vectors g(x1), . . . , g(xNI ) and r(x̂) is
the correlation vector of size NI between the new input x̂ and the training data[
x1, . . . , xNI

]
i.e.

r(x̂) =
[

R(x̂, x1), . . . , R(x̂, xNI )
]T

. (8)

To get an approximated value from formula (7), we need to estimate the hy-
perparameters β, θ and σ2. Equation (7) has the generalized least square solution:

β = (FTR−1F)−1FTR−1y (9)

and the estimated variance σ2 is given by:

σ2 =
1

NI
(y − Fβ)TR−1(y − Fβ). (10)

Values of θ can be obtained by maximizing the following likelihood func-
tion:

ψ(θ) = −NI

2
(ln σ2 + ln 2π)− 1

2
ln det(R)− 1

2σ2 (y − Fβ)TR−1(y − Fβ), (11)

where det(R) is the determinant of the correlation matrix R.
The uncertainty estimate or estimated mean is then calculated as

ŝ2(x̂) = σ2
[

1 − (
g(x̂)T, r(x̂)T) (0 FT

F R

)(
g(x̂)
r(x̂)

)]
. (12)

Although, Kriging has been a popular surrogate technique, it has one major
limitation of its computational complexity. The computational complexity of the
Kriging model is O(N3

I ) [33]. Moreover, calculating hyperparameters by maxi-
mizing the likelihood function using an optimization algorithm can further in-
crease the computation time and many algorithms in the literature using Kriging
ignore this issue. The uncertainty measure from the Kriging models is the most
important building block in a Kriging based algorithm. Sampling based on the
uncertainty information not only helps in improving the performance of the sur-
rogates but also helps in searching for unexplored regions [38]. In the literature,
Bayesian optimization is also used as the term for sequentially selecting samples
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by optimizing an acquisition function [80] involving Kriging models. As evolu-
tionary algorithms are also used with other surrogate techniques in the literature,
we use the term surrogate-assisted evolutionary algorithm when solving MOPs
with expensive evaluations. In the next chapter, we present a survey of different
SAEAs proposed in the literature to deal with expensive multiobjective optimiza-
tion problems.



3 SURROGATE-ASSISTED EVOLUTIONARY

ALGORITHMS

In the literature, several SAEAs have been proposed and selecting one of them to
solve a given expensive MOP is not trivial. One needs to know their character-
istics, advantages and limitations before they are applied to solve the problem.
Therefore, a survey of existing SAEAs is essential and in [PI], we cover 45 differ-
ent algorithms in 2008-2016 published in English in different journals and con-
ference proceedings. We first present a general framework of using surrogates in
Figure 4 and most SAEAs proposed in the literature follow this framework.

In the general framework in Figure 4, initial samples are generated e.g. with
some design of experiment (DOE) technique which are evaluated with expensive
objective functions. The evaluated samples are then used to build surrogates to
approximate the objective function values. An evolutionary algorithm is then
used with these surrogate models to find samples (in the decision space) for up-
dating the surrogates. The samples are selected based on some infill criterion
defined in the previous chapter. The selected samples are evaluated with the ex-
pensive objective functions and combined with the initial samples for updating
the surrogates. This loop continues until a termination criterion for instance, the
maximum number of expensive function evaluations is reached. Before using
the framework, one needs to address some challenges which are described in the
next section.

Start 

Generate samples e.g. using 
some DOE technique 

Select samples Run an EA with surrogates 

Term. 
Criterion 

met ? 

Evaluate expensive 
objective functions 

Stop 

Train surrogates 

Yes 

No 

FIGURE 4 A general framework of a surrogate-assisted evolutionary algorithm
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FIGURE 5 Usage of surrogate techniques in 2008-2016 for multiobjective optimization
problems

3.1 Challenges in surrogate-assisted evolutionary algorithms

Before developing and applying a SAEA to expensive MOPs, the following ques-
tions need to be answered. Some of these questions can also be considered as
challenges as it is not straightforward to address them.

1. Which surrogate technique is to be used?
2. How to generate the initial samples for training the surrogates?
3. How many samples are to be generated?
4. Which evolutionary algorithm is to be used?
5. How to select samples for re-training the surrogates?
6. How many samples are to be selected for re-training?
7. What termination criterion is to be used?

There is no clear answer to the first question and not much guidance has been
provided in the literature for selecting a particular surrogate technique. Unfor-
tunately, many authors do not always even justify their choice of surrogate tech-
nique. Most of the times, a technique is selected either based on its popularity or
its usage in the particular application domain. For instance, in [49], radial basis
functions are used because the authors found it to be a successful technique in
the coastal aquifer management problems. In Figure 5, we present a cumulative
sum of the number of times a particular surrogate technique is used in articles
published in 2008-2016. As can be seen, Kriging and neural networks have been
the most widely used techniques compared to polynomial and support vector
regression.

For generating the initial samples for training, usually some design of exper-
iment technique e.g. Latin hypercube sampling is used. Such techniques ensure
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a uniform distribution of samples in the decision space which is vital for training
the surrogates. The initial sample size is also very important but many algorithms
use a size from existing articles without any proper justification. For instance, a
size of 11n − 1 has been used several times in the literature [PII, 41, 44, 71, 93].
The parameter value was first suggested in 1998 when introducing the efficient
global optimization by Jones et al. in [41] for expensive single-objective optimiza-
tion problems. It was clearly stated in the article that based on the past experience
of the authors, 10n samples are needed for training the surrogate initially and to
have a convenient, finite decimal value for the spacing between initial samples,
they deviated slightly from the 10n rule and made it 11n − 1. Knowles at al. [44]
in 2006 used the same value in ParEGO because of the suggestion for [41]. In
2008, it was used again for SMS-EGO in [71] because of ParEGO and in 2010 for
MOEA/D-EGO in [93]. The initial sample size should be related to the budget
e.g. the maximum number of function evaluations. For instance, if the budget
is less than 11n − 1, training of surrogates with this number of samples is not
possible.

Another challenge in using the surrogates is the training time. It may hap-
pen that the time needed for training the surrogates is longer than evaluating an
objective function and the whole aim of reducing the computation time is jeopar-
dized. The issue for training time becomes more prominent in case of problems
with a large number of decision variables. A large number of samples is needed
to train the surrogates for high dimensional problems which can substantially
increase the training time. The issue of training time is usually ignored in the lit-
erature and few algorithms [3, 4, PII] consider it by fixing the number of samples
for training the surrogates.

The next question to be answered is the choice of the evolutionary algorithm
(EA). As different EAs perform differently, they can lead to different samples for
re-training the surrogate. Therefore, the choice of an EA to be used is very im-
portant for the performance of the surrogates. We present the number of articles
using different types of EAs for years between 2009 and 2016 years in Figure 6.
As can be seen, most of the algorithms have used dominance based EAs and few
of them indicator or decomposition based EAs.

The fifth question is also very important in any surrogate based algorithm.
An infill criterion is used to select the samples for re-training. In the literature,
different types of infill criteria have been used. The usual approaches are to select
a set of uniformly distributed samples in the objective space [3, 63, 66, 78, PII], a
set of isolated samples in the decision space [1, 56, 65, 68], use expected improve-
ment [93], lower confidence bound [71] or expected hypervolume improvement
[5, 83, 70]. The selected samples are then evaluated with expensive objective func-
tions for updating the surrogates.

The fourth and fifth questions are also related to the efficiency of a SAEA for
problem with a large number of objectives. The samples using an infill criterion
should be selected by taking into account of both convergence and diversity. To
select such samples, a surrogate needs to be integrated with the evolutionary
algorithm used. As mentioned, most existing SAEAs are dominance based and
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FIGURE 6 Number of articles with respect to the type of evolutionary algorithm used
in using surrogates for multiobjective optimization problems

therefore are not well suited for handling a large number of objectives.
The next question is how many samples are to be selected for updating the

surrogates. The answer to this question is or at least should be related to the
budget available. In the literature, different algorithms use different numbers
without any proper justification. For instance, if simulations can be done in par-
allel, one can afford several evaluations simultaneously. However, this parameter
is usually prefixed before the solution process and varies in the range of 1-50 in
the literature.

The last concern is to use a justifiable termination criterion. In the literature,
most SAEAs use a prefixed number of evaluations. It may happen that after a
certain number of evaluations, there is no improvement in the quality of solu-
tions and running more expensive evaluations could be of no use. The maximum
number of function evaluations in the literature has varied from 50 to 30000.

3.2 Challenges related to the characteristics of the problem

In addition to the challenges based on the framework, some challenges related
to the nature and the characteristics of the problem need to be addressed before
applying a SAEA. They are as follows:

1. handling a large number of objectives and decision variables,
2. handling constraints,
3. handling mixed-integer variables and
4. formulating a MOP in real-world cases.

Many real-world problems involve a large number of objectives and decision
variables. Most SAEAs in the literature have been developed and tested with
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up to three objective functions. Few algorithms [69, 71, PII] have been tested on
more than four objectives. One of the main reasons restraining the use of exist-
ing SAEAs for a large number of objectives is the lack of an efficient surrogate
management strategy. For the number of decision variables, SAEAs with Kriging
have been used for problems with a small number of variables compared to other
surrogate techniques e.g. neural networks and two algorithms in [54, 67] have
been used for problems with more than 30 variables.

Additionally, the scarce consideration of problems having constraints is also
one of the important observations from the literature. Some algorithms [29, 55,
82] have been proposed with a strategy to handle constraints in using surrogates.
Another challenge is related to the types of variables. In the literature, most
SAEAs have been proposed to solve an expensive MOP with continuous vari-
ables. This is due to the fact that most of the conventional surrogate techniques
cannot be used to deal with integer and categorical variables.

The next challenge is the usage of algorithms on real-world problems with
expensive evaluations. Most SAEAs in the literature have been tested on bench-
mark problems which do not involve any expensive evaluations. On the other
hand, the algorithms which have been tested on real-world problems do not men-
tion the expensive nature of the problem e.g. the computation time of a function
evaluation. Most real-world problems solved in the literature with SAEAs are
simplified versions of industrial problems and are not of a black-box nature.

One more challenge which many algorithms do not consider is the formu-
lation of the optimization problem. In real-world problems, the formulation usu-
ally takes several iterations or discussions between the decision maker or an ex-
pert in the application domain and an analyst in the optimization algorithm and
the verification of the formulation is of high value. In academic problems, such
an effort is not needed as the formulation is known before starting the solution
process.

3.3 Guidelines for selecting a surrogate-assisted evolutionary al-
gorithm

In the literature, different SAEAs use different evolutionary algorithms, surrogate
techniques and other relevant parameters. Therefore, it is difficult to generalize
the efficiency of an algorithm or choose an algorithm. However, one can consider
the following points to select an algorithm:

1. budget e.g. maximum number of function evaluations available and
2. dimensions in both objective and decision spaces.

The first major point in selecting an algorithm should be the capability of the al-
gorithm to obtain solutions in a given limited budget. In many real-world prob-
lems, the number of function evaluations is limited e.g. because of a time limit
and it may be infeasible to do initial experimental runs to select an algorithm.
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Some algorithms in the literature use up to 50000 function evaluations to solve
benchmark problems and such a high number may not be realistic in solving real
problems.

Another point to select an algorithm is dimension of the problem to be
solved both in objective and decision spaces. As discussed, many surrogate-
assisted algorithms have not been applied to problems with a large number of
objectives and variables.

In addition to these guidelines, one can look at other elements before se-
lecting a SAEA. For instance, using fitness inheritance [85] and approximating
other elements instead of objective functions e.g. approximating rank [7, 57, 78]
and distance to the already evaluated samples [68, 69] can also be considered in
developing and applying a SAEA. In some real-world problems, it is also pos-
sible to simplify the problem e.g. replacing Navier-Stokes equations with Euler
equations in doing CFD simulations [30, 51]. Moreover, enhancing the quality
of approximations with local search [29, 54] is also possible. In the next chapter,
we introduce the K-RVEA algorithm and focus on how to select samples for up-
dating the surrogates, how to reduce the training time, and in particular how to
handle problems with a large number of objectives.



4 A KRIGING-ASSISTED REFERENCE VECTOR

GUIDED EVOLUTIONARY ALGORITHM

Problems with a large number of objectives and involving expensive functions
evaluations have not received much attention in the evolutionary community as
tackling the challenge of handling a large number of objectives in using surro-
gates is not straightforward. One of the main difficulties in addressing this chal-
lenge is the appropriate selection of samples to train and improve the accuracy
of the surrogates and also the performance of the evolutionary algorithm (EA)
used. Additionally, the incorporation of elements of the EA used in managing
the surrogates is essential for a better performance. The algorithm K-RVEA starts
the process of filling the gap between two fields focusing on the large number of
objectives and expensive function evaluations.

One of the important elements in K-RVEA proposed in [PII] is the integra-
tion of the surrogates and the EA used. In the literature, most SAEAs manage
surrogates without incorporating the elements of EA used. In such a way, the
characteristics or the benefits of the EA used cannot be utilized properly. There-
fore, in K-RVEA we have used the incorporation of reference vectors and angle
penalized distance (APD) from RVEA in managing the surrogates. Addition-
ally, one cannot ignore the training time for surrogates especially when dealing
with problems with the expensive function evaluations. Therefore, we have used
the reference vectors from RVEA to select appropriate samples for training the
surrogates. We have used Kriging models to alleviate the computational cost of
expensive objective functions because of their capability to provide uncertainty
information of the approximated values. Such uncertainty information is also
used with the reference vectors and the APD in managing the surrogates to im-
prove the performance of the algorithm.

K-RVEA uses two sets of reference vectors, adaptive and fixed for manag-
ing the surrogates. These reference vectors are used in selecting solutions either
based on APD or uncertainty information from the Kriging models. Another
feature of K-RVEA is to efficiently manage the size of samples for training. A
prefixed number of samples is selected using the reference vectors to train the
surrogates for further reducing the computation time. The algorithm consists of
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three phases as presented in Algorithm 2: 1) initialization, 2) using RVEA with
the surrogates and 3) updating the surrogates. In the algorithm, two archives A1
and A2 are used for storing the samples for training the surrogates and for stor-
ing all the evaluated samples, respectively. In what follows, the notation |A| is
used to represent the size of the set A. We also want to recall that the algorithm
K-RVEA is developed to deal with only box constrained problems.

Algorithm 2: K-RVEA
Input: FEmax, maximum number of expensive function evaluations
Output: nondominated solutions of all evaluated ones in A2
*Initialization*
1. Create an initial population P generated with some design of
experiment technique
2. Initialize the number of function evaluations FE = 0 and two empty
archives A1 = A2 = φ

3. Evaluate the population P with the original expensive functions and
add them to A1 and A2, update FE = FE + |P|
while FE ≤ FEmax do

4. Train surrogates for each objective function by using individuals
in A1
*Using RVEA with the surrogates*
5. Run RVEA with Kriging models to find the individuals to update
the surrogates
*Updating the surrogates*
6. Select individuals from the previous step using a selection strategy
and denote the set by I
7. Re-evaluate I with the original expensive functions and update FE
= FE + |I|, update A1 = A1 ∪ I and A2 = A2 ∪ I
8. Remove extra individuals from A1 using management of training
data set
9. Go to step 4

The initialization phase is similar to conventional SAEAs, where initial sam-
ples are generated e.g. using a Latin hypercube sampling. The number of samples
in this phase is kept to 11n − 1 for a fair comparison with other existing SAEAs.
However, one is allowed to change this parameter based on the maximum num-
ber of function evaluations available. These samples are then evaluated with
expensive objective functions and added to the archives A1 and A2. Samples in
A1 are then used for training the surrogates which are further used with RVEA
to approximate the objective function values. In other words, the original expen-
sive objectives have been replaced by the surrogates and the resulting problem is
solved with RVEA. The termination criterion in using RVEA with surrogates e.g.
maximum number of generations or function evaluations is also relevant. For
instance, if after a certain number of generations there is no improvement in con-
vergence or diversity in using surrogates, the second phase i.e. using RVEA with
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FIGURE 7 An illustration of the selection strategy for updating the surrogates in K-
RVEA

the surrogates should be terminated. In [PII], a sensitivity analysis is provided
by using the different number of generations as the termination criterion on the
performance of the algorithm.

After using the surrogates with RVEA, the samples for updating the sur-
rogates are selected considering both convergence and diversity. As mentioned
in [38], the selection of samples with high uncertainty can help in finding un-
explored regions and improving the performance of the surrogates. Therefore,
samples with high uncertainty are selected whenever diversity is needed. If a
satisfactory degree of diversity has already been achieved, samples are selected
with the minimum APD. Next, we present the selection strategy for updating the
surrogates in K-RVEA.

4.1 Balance of convergence and diversity in K-RVEA

The selection strategy is presented in Figure 7 and uses the reference vectors and
the uncertainty information from the Kriging models. To measure the needs of
convergence and diversity, a fixed set of reference vectors Vf is used in addition
to adaptive ones Va. First, the solutions obtained using RVEA with surrogates
are assigned to Vf and the number of reference vectors in Vf is measured. If
the change in the number of empty reference vectors compared to the previous
update is smaller than a predefined parameter δ, convergence is prioritized. Oth-
erwise, diversity is used in selecting the samples. In updating the surrogates for
the first time, we use convergence as the criterion for selecting the samples. Once
the needs of convergence and diversity are checked, the solutions from the latest
generation are assigned to the adaptive set of reference vectors Va and the non-
empty reference vectors in Va are identified. These non-empty vectors are then
clustered into a prefixed number of clusters and one sample from each cluster is
selected either based on the minimum APD value or the maximum uncertainty.
The selected samples I are then evaluated with expensive objective functions and
added to the archives A1 and A2. An advantage of such a selection strategy is that
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samples can be evaluated in parallel. In the literature, some SAEAs e.g. ParEGO
[44] and SMS-EGO [71] select only one sample each time the surrogates are up-
dated. Such an approach may reduce their applicability to problems, where the
resources are available for parallel evaluations. One example is provided in [45],
where the ParEGO algorithm could not be applied because it did not have the
option to do parallel evaluations.

4.2 Managing the size of training samples

Next in K-RVEA, the focus is on managing the size of samples for training the
surrogates. Training time of surrogates can be substantial if a large number of
samples is used. Therefore, to further reduce the computation time, the prefixed
maximum sample size NI is used for training and the other samples are discarded
from the archive A1 as also shown in Figure 8. For this, the selected samples I
are assigned to the adaptive set of reference vectors Va. The remaining solutions
in A1 i.e. A1 \ I are then assigned to the non-empty reference vectors in Va which
are then clustered into NI − |I| number of clusters. One sample from each clus-
ter is selected randomly and combined with I and these samples are then used
for training the surrogates. In this way, a prefixed number of diverse samples is
maintained in A1 to improve the performance of Kriging models. In doing ex-
periments with K-RVEA, we kept NI = 11n − 1 which is also the initial sample
size for training the surrogates. One can also use all the evaluated samples in A1
for training without discarding any sample if the training time is not significant.
The algorithm is terminated after a prefixed maximum number of function eval-
uations. Next, we discuss the performance of K-RVEA on benchmark problems
and on a free-radical polymerization problem.
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FIGURE 9 Solutions for the DTLZ7 problem with three objectives from K-RVEA, RVEA,
ParEGO and MOEA/D-EGO in 300 function evaluations, where the filled
circles represent the Pareto front

4.3 Performance of K-RVEA

The K-RVEA algorithm was tested on the DTLZ [23] and the WFG [34] bench-
mark suites with 3-10 objectives in [PII]. The potential of the algorithm was also
shown by comparing it with three representative Kriging based SAEAs, ParEGO,
SMS-EGO and MOEA/D-EGO in the same number of function evaluations us-
ing inverted generational distance (IGD) and hypervolume. To show the poten-
tial of using surrogates, the algorithm was also compared with its underlying
algorithm RVEA. K-RVEA performed clearly better than RVEA in most of the
problems. One example of results from different algorithms on a three objective
DTLZ7 problem is presented in Figure 9. The problem has a disconnected Pareto
front and as can be seen, the solutions of K-RVEA are much closer to the Pareto
front compared to the solutions from other algorithms. In case of the DTLZ2
problem with 10 objectives in Figure 10, K-RVEA was able to obtain wider ranges
of objective functions compared to RVEA. The results in [PII] on various bench-
mark problems showed the potential of K-RVEA for 3-10 objectives.

The training time of surrogates in K-RVEA was the lowest because of a pre-
fixed number of samples used for training the surrogates. In ParEGO, the num-
ber of samples was also kept fixed which was the reason that the training time
was comparable to K-RVEA. However, ParEGO randomly rejects the samples in
the training archive and K-RVEA uses reference vectors to efficiently manage the
samples for training. The number of variables was set to 10 in all the problems
because of the applicability of Kriging models for a limited number of variables.

In addition to the results, the importance of performance indicators espe-
cially for problems with a large number of objectives was emphasized in [PII].
For example, the IGD metric needs a reference set to calculate the performance
and the size of the set can be relevant in measuring the performance. In [PII], the
size was chosen according to the number of objectives, in other words, a bigger
size was used for a larger number of objectives compared to a smaller number of
objectives.

A free-radical polymerization problem [64] with three objectives and four
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FIGURE 10 Solutions for the DTLZ2 problem with 10 objectives from K-RVEA and
RVEA in 300 function evaluations

variables was also solved in [PII]. The average computation time for one function
evaluation was 45 minutes which was mainly because of the time in solving the
governed differential equations. To compare different algorithms, nondominated
solutions obtained from each algorithm were combined and used as the reference
set in calculating the IGD metric. In this problem, The K-RVEA algorithm in this
problem did perform better than the other algorithms when the same number of
function evaluations was available.

Although, K-RVEA can tackle the issue of a large number of objectives, it
still lacks means to handle a large number of variables which is one of the future
research directions. Additionally, some other relevant parameters were fixed to a
constant value and a sensitivity analysis was provided. Adapting these parame-
ters based on the performance of the algorithm does also deserve further future
work. In the next chapter, we solve a real-world problem of an air intake ventila-
tion system in an automobile industry by applying K-RVEA.



5 SHAPE OPTIMIZATION OF AN AIR INTAKE

VENTILATION SYSTEM

This chapter presents an application of K-RVEA for an air intake ventilation sys-
tem in an automobile industry considered in [PIII]. The air intake ventilation
system in a tractor is used to maintain a uniform temperature in the cabin and
deforest the windscreen. The particular component is shown in Figure 12 and
consists of four outlets. A good balance in the flow rates from all the outlets with
low pressure losses are the two objectives needed to be achieved for maintaining
a uniform temperature distribution.

The problem to be solved is expensive because of time consuming compu-
tational fluid dynamics (CFD) simulations. The average wall clock time for one
function evaluation on a computer with 32 GB RAM and Intel Xeon CPU E5-1607
processor is 3 to 5 minutes. Thanks to K-RVEA and the surrogates involved, so-
lutions can be obtained in few expensive function evaluations. In addition to the
expensive nature of the problem, two other important challenges which are also
typical in solving real-world problems need to be addressed. One is the formu-
lation of the multiobjective optimization problem and the second is combining
different simulation tools to obtain objective function values to be connected to
the optimization algorithm.

In benchmark problems, the formulation of optimization problems is given.
On the other hand, the formulation of a real-world optimization problem is not
necessarily straightforward and may need several discussions and iterations be-
tween the DM and an analyst who knows optimization algorithms. In [PIII],
it took three iterations to finalize the problem formulation. Therefore in solv-
ing real-world problems, one must make sure that an appropriate formulation is
derived which properly reflects the needs of the DM and the objective function
values are understandable.

The next challenge in solving real-word problems which does not appear in
solving academic problems is combining different simulation tools. The problem
considered in [PIII] needed two commercial software, ANSYS ICEM [2] for mesh-
ing the component according to the values of decision variables and ANSYS CFX
[86] for running CFD simulations to obtain objective function values. These two
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FIGURE 11 An illustration of the problem formulation and selecting a preferred solu-
tion by the DM

pieces of software are combined with K-RVEA to find solutions to be shown to the
DM. An illustration of the big picture of the problem formulation and selecting a
preferred solution by the DM is presented in Figure 11. In [PIII], MATLAB and
python scripts are used to combine different pieces of the simulation tools and
K-RVEA. After solving the problem, a preferable solution among 40 alternatives
was selected by the DM based on his preferences.

5.1 Problem formulation

As mentioned, the particular component of interest consists of four outlets and
the diameters of all the outlets play an important role in maintaining a uniform
flow rate. Before starting the solution process, an initial design used in the ven-
tilation system was provided by the DM. In using K-RVEA, the scaling factors of
the diameters of the initial design provided by the DM are used as the decision
variables i.e.

xi =
Di

D(initial)
i

for i = 1, . . . , 4, (13)

where Dinitial
i is the diameter of the ith outlet in the initial design. The following

lower and upper bounds are used for the decision variables during the optimiza-
tion:

xlb
i = 0.5 for i = 1, . . . , 4

xub
i = 1.5 for i = 1, . . . , 4,

(14)

where xlb
i and xub

i are the lower and upper bounds of the decision variables.
To increase the efficiency of the ventilation system, the flow rates from all

the outlets should be the same. Additionally, the average pressure drop i.e. the
difference between the pressure at the inlet and at the outlets should be as low
as possible to achieve better flow rates. Therefore, minimizing the difference be-
tween flow rates from different outlets and minimizing the pressure drop were
considered as two objectives. Moreover, the diameter of outlet four is the small-
est among all the outlets. Therefore, special attention had to be paid towards this
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FIGURE 12 CFD simulation results of the initial design provided by the DM

outlet and a third objective was formulated. A difference of average flow rates
from outlets one to three and the flow rate from outlet four was minimized to
maintain a balance in the flow rates. The objective functions finally formulated
are as follows:

f1: Minimize variance between flow rates at outlets 1 to 3
f2: Minimize pressure loss
f3: Minimize the difference between the flow rate at outlet 4 and the average of
the flow rates at outlets 1 to 3

5.2 Results with K-RVEA

In [PIII], the K-RVEA algorithm was applied to solve the given problem in 200
function evaluations in one a single run. In Figure 13, 40 nondominated solu-
tions obtained with K-RVEA are presented with the solution corresponding to
the initial design. The objective function values were normalized to maintain the
confidentiality of the data. These solutions were then shown to the DM who se-
lected the final solution based on his preferences which is also shown in Figure
13. We observed that out of 40 solutions, only one solution has the variable val-
ues as upper or lower bounds and for almost all the solutions, the box constraints
were not active.

The diameters of the outlets in the final design selected by the DM were
[1.43, 0.92, 0.73, 1.38] × Dinitial

i for i = 1, . . . , 4. Additionally, in the final design,
a significant improvement was achieved in the first and the third objective with
a similar value in the second objective compared to the initial design. In [PIII],
K-RVEA was also compared with its underlying algorithm RVEA to show the
potential of using surrogates. The IGD values with the number of function eval-
uations with K-RVEA and RVEA are shown in Figure 14 and as can be seen, K-
RVEA performed better than RVEA in the same number of function evaluations.
So far, we have applied K-RVEA for box-constrained problems. In the next chap-
ter, we show the influence of infeasible solutions in using K-RVEA on constrained
problems.
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6 CONSTRAINT HANDLING IN

SURROGATE-ASSISTED EVOLUTIONARY

ALGORITHMS

In the literature, many SAEAs have been proposed to handle only box constrained
problems. Therefore, one cannot easily apply these algorithm to real-world con-
strained problems. One of the major challenges in handling constraints is to prop-
erly deal with the infeasible solutions when training the surrogates. Therefore, in
[PIV], we studied the effect of infeasible solutions on the performance of surro-
gates and consequently on the performance of the optimization algorithm. We
used K-RVEA to train the surrogates with different approaches of handling in-
feasible solutions in the presence of constraints. In the study, we assumed that
constraint functions are computationally inexpensive and trained the surrogates
for only objective functions.

In Figure 15, we present a flowchart of the constrained version of K-RVEA
which consists of two phases. In the first phase, samples for training Kriging
models are generated based on the feasibility of solutions. In the second phase,
K-RVEA is used with modifications in managing the Kriging models for instance
change in the selection criterion in using RVEA with the Kriging models, selection
of samples for updating the Kriging models and maintaining the training archive
A1 based on the constraint violations.

6.1 Handling infeasible training data

In [PIV], three different ways of training the surrogates are tested with K-RVEA.
In the first one, only feasible solutions are used to train the surrogates. This ap-
proach is useful especially when the feasible region is very small as in C1-DTLZ1
[37]. In Figure 16, we show the solutions generated with the Latin hypercube
sampling (LHS), Pareto front and the feasible region for a biobjective C1-DTLZ1.
As can be seen, solutions generated with the LHS are very far from the Pareto
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FIGURE 15 A flowchart representing the steps in the constrained version of RVEA

front and all of them are infeasible. Therefore in such problems, it is important to
find the feasible solutions first and then use surrogates for approximations.

In the second approach, some infeasible solutions are used in addition to
feasible ones to train the surrogates. It may be possible that in the first approach,
all feasible solutions are close to each other and therefore, surrogates are not
trained with well distributed solutions. Therefore, combining feasible and infea-
sible solutions for training the surrogates may be helpful to increase their perfor-
mance. However, the number of infeasible solutions and how close they should
be from the feasible region are two relevant parameters.

The third approach is based on assigning a penalty to infeasible solutions
whenever they are encountered. However, assigning a penalty parameter is not
straightforward and in [PIV], three approaches are adopted based on an exten-
sive study in [61]. In the first approach, a constant penalty parameter is added
to penalize the infeasible solutions. In the second approach, the value of the
penalty parameter is adapted based on the number of feasible solutions after ev-
ery time the surrogates are updated. In the third approach, a parameter free
approach adopted from [21] is used. Samples generated using any of these three
approaches are evaluated with expensive objective functions and added to the
archives A1 and A2 and this completes the first phase.
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FIGURE 16 Solutions generated with the Latin hypercube sampling (LHS), Pareto front
and the feasible region in the biobjective C1-DTLZ1 problem

6.2 Management of surrogates

Samples evaluated in the first phase are used to train Kriging models which are
used with RVEA to approximate the objective function values. The selection cri-
terion in this phase is based on APD and the constraint violation. One solution
from each subpopulation is selected with a minimum APD if there is at least one
feasible solution. Otherwise, the solution with a minimum constraint violation is
selected for the next generation.

After having used RVEA for a prefixed number of generations, samples are
selected to update the surrogates using the information from reference vectors,
uncertainty information from the Kriging models and constraint violations. In
each subpopulation, the solution with the minimum APD or the maximum uncer-
tainty is selected if there is at least one feasible solution. Otherwise, the solution
with the minimum constraint violation is selected for updating the surrogates.
This selection strategy ensures that infeasible solutions are always dominated
by the feasible ones. Additionally, selection using either APD or uncertainty is
based on the needs of convergence and diversity as described in K-RVEA. Se-
lected samples are then evaluated with expensive objective functions and added
to the archives A1 and A2. To maintain a prefixed size of A1, some solutions are
discarded based on the constraint violation. For example, if all the solutions are
infeasible, the ones with the minimum constraint violations are kept from each
subpopulation. This loop continues for a prefixed maximum number of function
evaluations and nondominated feasible solutions from A2 are used as the final
solutions.
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6.3 Discussions on the results with K-RVEA

In [PIV], experiments were performed on the constrained version of the DTLZ
problems [37] with three to 10 objectives and one to 10 constraints. In the first and
the second approach in the first phase, a prefixed number of feasible and infeasi-
ble solutions were generated for training the Kriging models. For this purpose, a
genetic algorithm using niche based selection [21] was used to solve a single ob-
jective optimization problem with constraint violation as the objective function.
Additionally, a sensitivity analysis was performed on the numbers of infeasible
solutions and their closeness to the feasible region in the second approach. The
number of variables was set to 10 in all the problems and a maximum of 300
functions evaluations was used as the termination criterion.

Overall, the first approach when the surrogates were trained with only fea-
sible solutions performed the best. However in some cases e.g. C3-DTLZ4, the
approach when infeasible solutions were used for training also performed equiv-
alently to the first approach. In the C1-DTLZ1 problem, where the feasible region
is very small, none of the penalty based approaches was able to find even one
feasible solution. This is because initial solutions generated for training the sur-
rogates were very far from the feasible region and penalizing infeasible solutions
was not useful. Additionally, the adaptive penalty approach performed the best
among all penalty based approaches.

These results indicate the influence of infeasible solutions in using the sur-
rogates. A combined and adaptive approach combining different ways of train-
ing the surrogates could be beneficial and is a topic for future research. More-
over, only few constrained benchmark problems with more than three objec-
tives exist in the literature and developing constrained expensive problems to
test surrogate-assisted algorithms could also be useful.



7 INCORPORATION OF DECISION MAKER’S

PREFERENCES

In many real world problems, the DM is usually interested in finding a small
set of PO solutions or a single solution based on her/his preferences. Incorpo-
ration of preference information can also be helpful in reducing the number of
expensive function evaluations by focusing the search and finding a small set of
PO solutions desirable to the DM. In the last few years, some evolutionary algo-
rithms [32, 72, 81] have been proposed to incorporate the DM’s preferences in the
solution process. There are typically three ways to utilize preferences in solving
MOPs: a priori, a posteriori and interactive [59], where the preferences from the
DM are utilized before, after and iteratively during the solution process, respec-
tively. For more details about preference incorporation in EAs in solving MOPs,
see a recent review [72].

In interactive approaches, the DM sees some solutions and expresses pref-
erences and iteratively directs the solution process to find solutions desirable to
her/him. Interactive approaches have been found to be suitable for solving real-
world problems [60, 62] as they provide possibilities to the DM to learn relation-
ship among the objectives. Interactive approaches have a long history in the non-
evolutionary multiobjective optimization field [11, 59, 84]. However, utilizing
the DM’s preferences in the solution process is not straightforward and different
types of preferences can be utlilized [75]. Examples of them are reference points
[14], pairwise comparison [24], ranges of the objective function values [32] and
selecting a preferred solution from a small set [74].

Most EAs incorporating preference information from the DM do not deal
with the non-preferable or undesirable solutions provided by the DM. Such infor-
mation about non-preferable solutions can also be helpful for guiding the search
process in an EA to find a small set of interesting PO solutions. Furthermore, it
has been noticed in practice that sometimes it is easier for the DM to tell which so-
lutions are not interesting instead of indicating the most promising ones. There-
fore, in [PV], we have proposed an interactive simple indicator-based evolution-
ary algorithm (I-SIBEA) in which the DM can indicate not only preferable but
also non-preferable solutions.
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(Pr) based on the DM’s preferences

7.1 Interactive simple indicator-based evolutionary algorithm

The I-SIBEA algorithm is based on the the SIBEA algorithm [94], where the solu-
tions are selected based on their contribution to the hypervolume. The hypervol-
ume indicator is the only indicator known so far with the Pareto compliance [47]
property and has been frequently used in the literature [25, 48, 97] as the selection
criterion in evolutionary algorithms. Therefore, we have SIBEA as the underly-
ing algorithm to utilize the advantages of using hypervolume based selection in
guiding the solutions based on the DM’s preferences. In I-SIBEA, in addition to
the hypervolume, the weighted hypervolume is used based on the DM’s prefer-
ences. In other words, solutions are selected based on the weighted hypervolume
after every iteration with the DM. The weighted hypervolume makes sure that
the selected solutions represent the DM’s preferences.

The I-SIBEA algorithm works as follows. Before the first iteration with the
DM, the SIBEA algorithm is used for a prefixed number of generations to find
solutions to be shown to the DM. Among the solutions obtained, a prefixed num-
ber of solutions is shown to the DM. In I-SIBEA, we provide the option to the DM
to give the number of solutions to be shown to her/him. A clustering technique
e.g. K-means clustering [36] can be used if the number of solutions obtained with
SIBEA is higher than the DM expects. The DM is then asked to provide her/his
preferences by selecting preferred and/or non-preferred solutions. One illustra-
tion of an interaction with the DM is shown in Figure 17, where a set of non-
dominated solutions A = {a, b, . . . , h, i} is shown to DM. The DM then identifies
preferable solutions AA = {a, b, h, i} and non-preferable solutions RA = {c, e, f }.
Rest of the solutions are considered as solutions with no preference information
IA = {d, g}.

Based on the preferences from the DM, three regions called dominated Do,
preferred Pr and no-preference information region In are defined in the objective
space. For instance, after the first iteration, the solutions dominated by the non-
preferred solutions lie in the dominating region, the solutions dominate the pre-
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ferred solutions lie in the preferred region and the remaining solutions lie in the
non-preference information region. The following weight distribution function is
then used to calculate the weighted hypervolume for the selection of solutions in
each generation before the second iteration with the DM:

w(z) =

⎧⎪⎪⎨
⎪⎪⎩

0 for all z ∈ Do
1 for all z ∈ In

1 + μ(Do)
μ(Pr) for all z ∈ Pr

(15)

where z = (z1, . . . , zk) is the objective vector and μ(Do) and μ(Pr) are the hyper-
volumes of the dominated and preferred regions, respectively. The (weighted)
hypervolume is calculated by using Monte-Carlo approach [8]. In the second
iteration, the set of preferable, non-preferable and no-preference information so-
lutions are updated based on the DM’s preferences. The number of iterations can
also be chosen by the DM in the beginning or the solution process can be ter-
minated if the DM identifies the most preferable solution and does not want to
continue. In the final iteration, the DM is asked to provide the most preferred so-
lution which is then projected to the Pareto front by optimizing an achievement
scalarzing function (ASF) [89] to ensure that the final solution is at least locally
Pareto optimal:

minimize max
i=1,...,k

[wi( fi(x)− f ∗i )] + ρ
k

∑
i=1

wi( fi(x)− f ∗i ), (16)

where f ∗i is the final preferred solution by the DM and ρ is an augmentation
coefficient that takes a small value e.g. 10−6. The weight vector wi =

1
zmax

i −zmin
i

is

used to assign each objective.

7.2 Discussion on results

In [PV], the I-SIBEA algorithm was tested on the DTLZ1, DTLZ2 and ZDT4 bench-
mark problems with 2-3 objectives and 7-11 decision variables. To compare with
another interactive evolutionary algorithm W-Hype [10], the DM was replaced by
a weighted Chebyshev function [9] max

i=1,...,k
[wi( fi(x)− z∗i )] at each interactive solu-

tion process, where z∗ as the ideal objective vector. The weight vector (w1, . . . , wk)
T

is assigned to each objective function and used to simulate different DM’s prefer-
ences.

After every iteration, the solution that minimized the weighted Chebyshev
function was considered as the preferable solution and the rest were considered
as non-preferable solutions. In a given number of iterations with the DM, I-SIBEA
obtained an equivalent or better value of the Chebyshev function in few function
evaluations. In [PV], the algorithm was also tested on a biobjective ZDT4 problem
with a real DM. In providing the preferences, the DM was deliberately inconsis-
tent to see how the algorithm follows the preferences. The algorithm was flexible
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FIGURE 18 Nondominated solutions before first and fourth iteration and the final so-
lution obtained on 10 objective DTLZ4

to the DM’s preferences and found a satisfactory solution to him after four itera-
tions.

Evolutionary algorithms using hypervolume based selection are suitable to
deal with a large number of objectives. Therefore in this chapter, we apply I-
SIBEA on the DTLZ4 problem with 10 objectives. We use the weighted Cheby-
shev function to replace the DM in the solution process and use four iterations.
In Figure 18, we present the nondominated solutions before the first and the
fourth iteration and the final solution obtained. The following weight vector in
the weighted Chebyshev function:
wi = [0, 0.1, 0, 0, 0, 0.1, 0, 0.3, 0.5, 0.1].

As can be seen in the figure, before the first iteration, a uniform set of so-
lutions is obtained in the objective space. After three iterations, nondominated
solutions converged to one part of the objective space based on the DM’s prefer-
ences. For instance, the values of objectives number two, six and 8-10 are zero
before the fourth iteration because of the weights assigned to these objective in
the weighted Chebyshev function. Finally, in the last iteration, the final solu-
tion is obtained by projecting the most preferable solution to the Pareto front by
solving an ASF. One of the limitations in the current approach is the computation
time in calculating the (weighted) hypervolume especially with a large number of
objectives and dealing with the high computation cost of calculating (weighted)
hypervolume will be our future work.

7.3 Preference incorporation in K-RVEA

As mentioned at the beginning of this chapter, finding a small set of PO solu-
tions based on the DM’s preferences can reduce the number of expensive function
evaluations and the number can further be substantially reduced if surrogates
are used. Therefore, the K-RVEA algorithm is used here where the DM is as-
sumed to provide her/his preferences as a priori i.e. before starting the solutions
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FIGURE 19 Solutions obtained with K-RVEA and the reference vectors on the three ob-
jective DTLZ2 problem with preferred ranges 0.4 ≤ f1 ≤ 0.5, 0.5 ≤ f2 ≤ 0.6
and 0.4 ≤ f3 ≤ 0.5 in 300 function evaluations

process. We give the possibility to the DM by specifying her/his preferences in
three ways which are adopted from [32]: 1) by specifying a reference point, 2) by
providing desirable ranges of the objective function values and 3) by providing
non-preferred solutions. We want to remind the reader that in K-RVEA a uniform
set of reference vectors is generated in the objective space which can be adjusted
accordingly based on the DM’s preferences. For instance, if the DM provides a
reference point z, the reference vectors V =

{
vi ∈ Rk|i = 1, . . . , N

}
are adjusted

as:

v̄i =
r · vi + (1 − r) · vc

‖r · vi + (1 − r) · vc‖ , (17)

where vc = z
‖z‖ is considered as the central vector and r ∈ (0, 1) is the radius

which is prefixed and determines how far the reference vectors are from the cen-
tral vector vc.

Similarly, if the DM provides a set of non-preferable solutions, the reference
vectors can be generated by considering each non-preferable solution as the ref-
erence point from (17). The part of the objective space corresponding to these
reference vectors is then identified and these vectors are eliminated. Another set
of reference vectors can be generated in other parts of the objective space which is
then used in the algorithm. If the DM provides the preferences in terms of ranges
of the objective functions

[
f l
i , f u

i
]

for i = 1, . . . , k, a k-dimensional hyperbox is
created and a set of points is generated within the hyperbox which are then pro-
jected to the unit hypersphere to be used as the reference vectors. This new set
of reference vectors is then used within K-RVEA to obtain solutions preferable to
the DM. We show an example on the DTLZ2 problem with 3 objectives in Fig-
ure 19 and 10 objectives in Figure 20, where the DM is assumed to provide the
preferences in terms of ranges of the objective function values and the reference
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FIGURE 20 Solutions obtained with K-RVEA and the reference vectors on the 10 objec-
tive DTLZ2 problem with reference point
[0.1, 0.1, 0.1, 0.1, 0.5, 0.5, 1, 1, 1, 1] in 300 function evaluations

point, respectively. In both cases, a maximum of 300 function evaluations and 10
reference vectors are used.

In the three objective DTLZ2 problem, the reference points in the three di-
mensional hyperbox are generated using the Latin hypercube sampling which
are then projected to the unit hypersphere. As can be seen in Figure 19, K-RVEA
is able to obtain solutions for the corresponding reference vectors. In the 10 objec-
tive case, (17) is used to adjust the reference vectors with the radius r = 0.15. For
the 10 objective case as well, K-RVEA is able to obtain solutions corresponding
to the DM’s preferences. Based on these results, we can say that K-RVEA has the
potential to find solutions corresponding to the DM’s preferences.

The I-SIBEA and K-RVEA algorithms deal with the DM’s preferences in dif-
ferent ways. I-SIBEA by using hypervolume as the selection criterion provides
the option to the DM for identifying preferable and/or non-preferable solutions.
On the other hand, K-RVEA includes surrogate and uses the reference vectors
to obtain solutions based on the preferences. In this chapter, we have not incor-
porated the preferences iteratively during the solution process in K-RVEA and
developing an interactive version by considering other types of preferences and
using some elements e.g. hypervolume from I-SIBEA will be our future work.



8 AUTHOR’S CONTRIBUTION

The research topic of solving expensive MOPs with evolutionary algorithms was
suggested by the author’s supervisors. In the beginning, the author performed
a literature survey of existing surrogate based evolutionary algorithms proposed
to deal with expensive MOPs and found their advantages, promising elements
and limitations. After feedback and comments from the supervisors, a survey
was written in [PI].

The first idea of developing K-RVEA in [PII] started in 2015 when Prof.
Yaochu Jin joined the Industrial Optimization Group at the University of Jy-
vaskyla as a Finland Distinguished Professor (FiDiPro) in the project called Deci-
sion Support for Complex Multiobjective Optimization Problems (DeCoMo). The
initial plan was to develop an algorithm for two to three objective optimization
problems. The author developed and proposed an efficient methodology and
tested the resulting algorithm on benchmark problems. Prof. Kaisa Miettinen
suggested to increase the efficiency of the algorithm for a large number of objec-
tives. Therefore, the author introduced some more elements after useful discus-
sions with his supervisors to make the algorithm adaptable for more than three
objectives. In addition, the author compared K-RVEA with other state-of-the-art
surrogate-based algorithms and put a substantial effort in running different algo-
rithms, which were implemented in different programming languages.

The air intake ventilation system problem in [PIII] was provided by one of
automobile industries involved in the DeCoMo project. The author combined K-
RVEA with other simulation tools and solved the problem with the help of Dr.
Karthik Sindhya and Tomas Kratky from Center of Hydraulic Research Czech
Republic. The author analyzed the results and the resulting article was submitted
and accepted for publication in the IEEE Congress on Evolutionary Computation
(IEEE CEC) 2017.

The constrained version of K-RVEA in [PIV] was also motivated by one of
the industries involved in the project. The optimization problem to be solved
had constraints and K-RVEA had not been developed to deal with infeasible so-
lutions. Therefore, a study was performed by the author on K-RVEA to see the
effect of infeasible solutions. The resulting article after some discussions and
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comments was then submitted and accepted in the conference Parallel Problem
Solving from Nature (PPSN) 2016.

An initial idea of developing an interactive evolutionary algorithm for mul-
tiobjective optimization problems using the weighted hypervolume was first dis-
cussed in the Dagstuhl seminars in 2009 and 2012. Later on, the author refined,
implemented and tested it on different MOPs which led to the algorithm I-SIBEA
in [PV]. With the feedback and comments from his supervisors, an article was
submitted and accepted in Evolutionary Multi-Criterion Optimization (EMO)
2015 conference. In [PV], the algorithm was tested on a maximum of three ob-
jective optimization problems. In this thesis, the author showed the potential of
the algorithm on a 10 objective optimization problem in Chapter 7. Additionally,
the author worked with Dr. Jussi Hakanen to develop a version of K-RVEA which
employs preference information a priori in Chapter 7.

Overall, working in the DeCoMo was a useful opportunity for the author
to apply and implement his primary ideas. Feedback and comments from the
co-authors helped him to refine the ideas for publishing the articles in different
journals and conference proceedings.



9 CONCLUSIONS

The ultimate motivation in this thesis is to solve real-world multiobjective opti-
mization problems (MOPs) and develop algorithms that can tackle various chal-
lenges involved. We have adopted evolutionary algorithms (EAs) to solve MOPs
because of their certain advantages mentioned in Chapter 1. However, one can-
not ignore the fact that EAs consume a lot of function evaluations to obtain an ap-
proximated set of Pareto optimal (PO) solutions. This issue becomes even more
severe when dealing with problems with expensive function evaluations. In this
thesis, we have recognized the importance of adapting EAs for solving such prob-
lems by using surrogates. In the first part of the thesis, we have collected sev-
eral articles proposed in the field of surrogate-assisted evolutionary algorithms
(SAEAs) in [PI]. Additionally, we have raised the key challenges in applying and
developing a SAEA for a MOP with expensive function evaluations. Some of
them are how to select samples for training the surrogates and how to deal with
the training time. Moreover, we have observed that most SAEAs cannot be sim-
ply applied for problems with a large number of objectives. Therefore, we have
developed the K-RVEA algorithm to deal with problems with three and more
number of objectives.

The K-RVEA algorithm by using the elements from its underlying evolu-
tionary algorithm RVEA efficiently manage the surrogates. Additionally, Kriging
models because of their capability to provide uncertainty information are used to
approximate the expensive objective functions. The algorithm consists of three
phases: initialization, using RVEA with the surrogates and updating the surro-
gates. All three phases play an important role in the entireness, e.g. the initial-
ization phase is important for the accuracy of the surrogates in the beginning,
using RVEA with the surrogates ensures the selection of appropriate samples for
the next phase and updating the surrogates ensures the performance of the al-
gorithm in successive iterations. We have used the reference vectors, the angle
penalized distance and the uncertainty information from the Kriging models for
selecting samples to update the surrogates considering both convergence and di-
versity. One more important issue which cannot be ignored in solving problems
with expensive function evaluations is the training time of the surrogates. In K-



54

RVEA, we have selected a predefined maximum number of samples for training
by using the reference vectors for further reducing the computation time.

In [PIII], we have solved a multiobjective shape optimization of air intake
ventilation system. The problem involves time consuming computational fluid
dynamics simulations and K-RVEA was able to obtain solutions in few function
evaluations. In other words, the practical validity of the algorithm was demon-
strated. A solution was finally selected by the DM who had the substance knowl-
edge of the application domain based on his preferences. In addition to expensive
evaluations, in [PIII], we have focused on other two important challenges, which
are usually faced by practitioners in the industry. The first one is the formulation
of the optimization problem and the second one is connecting the different pieces
of simulation tools to obtain objective function values. The formulation of the
optimization problem considering the needs of the DM is relevant and in the lit-
erature, the effort of formulation is not often visible as most algorithms have been
applied to benchmark problems, where the formulation of the problem is already
given. Also, for doing optimization, practitioners typically use different software
or simulation tools and combining these pieces of simulation tools with the op-
timization algorithm needs an effort. These two challenges reflect and provide
a message of the importance of an appropriate formulation of the optimization
problem and finally solving it by connecting different pieces of simulation tools.

The next part in the thesis was to provide an insight to the practitioners
to use an appropriate set of samples based on their feasibility for solving con-
strained problems. We have shown the influence of infeasible solutions in using
K-RVEA in [PIV] by using different approaches to deal with the constraints. We
have used only feasible solutions, a mixture of feasible and infeasible solutions
and three penalty based methods to handle constraints while training the surro-
gates. We have found out that infeasible solutions can play a vital role on the per-
formance of surrogates and consequently, on the performance of the algorithm.

Finally, in [PV], we have considered the preferences of the DM in the so-
lution process and have shown that not only preferred but also non-preferred
solutions can be used in guiding the search in an evolutionary algorithm. We
have developed an interactive simple indicator-based evolutionary algorithm (I-
SIBEA) which uses (weighted) hypervolume based selection to incorporate the
DM’s preferences. Eliminating the need of finding the whole set of PO solutions
by including the DM’s preferences can also be helpful in reducing the number of
expensive function evaluations. Moreover, we have also presented the results of
using the DM’s preferences in K-RVEA and such an approach can also substan-
tially decrease the number of expensive function evaluations to find solutions
desirable to the DM.

We have addressed several challenges for solving real-world problems in
this thesis. However, there are still other challenges, which are not covered in the
thesis and are considered as the topics for future research. One important chal-
lenge is to deal with a large number of decision variables with K-RVEA. Handling
a large number of decision variables is not straightforward as a large number of
samples is typically needed to train the surrogates which can substantially in-
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crease the training time. Using other surrogate techniques e.g. sparse Gaussian
processes [73] to select appropriate samples for training may be helpful in han-
dling problem with a large number of variables. Another challenge which cannot
be ignored is to set the parameter values in using surrogates. Developing a strat-
egy to adapt e.g. the termination criterion, especially when dealing with expen-
sive function evaluations and the size of the samples to be selected for updating
the surrogates will be our future work. Dealing with the high computation cost
of calculating hypervolume and developing an interactive version of K-RVEA are
also included in the topics of our future research.

Furthermore, data-driven optimization problems, where exact formulation
or the simulation models for the objective functions are not available and rather
some data is available obtained e.g. through some physical experiments are also
common in industry. We have also dealt with a such kind of problem in [17],
where a small size data from a blast furnace was available. We built eight Kriging
models for each objective function after pre-processing of the data and RVEA was
used to obtain the nondominated solutions. In data-driven optimization prob-
lems, the methodology of using surrogates can be applied with an adaptation
in the surrogate management. K-RVEA has potential in being adapted for data-
driven optimization problems which broadens its capability. Extending K-RVEA
by modifying the surrogate management strategy for data-driven optimization
problems will also be future work.

To be summarized, this thesis has addressed and highlighted several key
issues and challenges which practitioners usually face in solving industrial opti-
mization problems. They are the formulation of the optimization problem, con-
necting different pieces of simulation tools with the optimization algorithm, deal-
ing with a large number of objectives, getting solutions in few expensive function
evaluations, influence of infeasible solutions in constrained problems and incor-
porating the DM’s preferences in the solution process. The algorithms and other
studies from different articles in this thesis will provide an insight and guidelines
to the practitioners to tackle different challenges for solving a real world multi-
objective optimization problem.



YHTEENVETO (FINNISH SUMMARY)

Laskennallisesti vaativien monitavoiteoptimointitehtävien ratkaiseminen evo-

luutioalgoritmeilla

Teollisuudessa on usein monitavoiteoptimointitehtäviä, joissa on monia ris-
tiriitaisia tavoitteita. Niiden ratkaiseminen vaikeutuu, jos tavoitteiden arvojen
laskeminen on kallista (esim. aikaa vievien simulaatioiden tai kalliiden kokeiden
vuoksi). Tässä tutkimuksessa esitetään ensin katsaus kirjallisuudessa esitettyihin
monitavoiteoptimoinnin menetelmiin, joilla kallista funktioarvojen laskentaa si-
sältäviä tehtäviä voidaan ratkoa. Katsauksessa havaittiin että useimmat menetel-
mistä eivät sovi yli kolmen tavoitteen tehtäville. Siksi tutkimuksessa esitellään
uusi Kriging-sijaismallipohjainen evoluutiomenetelmä K-RVEA, joka käyttää re-
ferenssivektoreita ja soveltuu tehtäville joissa on vähintään kolme tavoitetta. Me-
netelmä tasapainoilee dynaamisesti konvergenssin ja diversiteetin välillä käyt-
täen referenssivektoreita ja Kriging-mallista saatavaa epävarmuustietoa.

Uuden K-RVEA-menetelmän käyttökelpoisuutta havainnollistetaan trakto-
rin ilmanvaihtokanavan suunnittelutehtävällä. Siinä on kolme tavoitetta, joiden
arvojen laskeminen edellyttää laskennallisesti kalliita virtausmekaniikan simu-
lointeja. Samalla kuvataan optimointitehtävän muotoilemisen haasteita, jotta pää-
töksentekijän tarpeet saadaan kuvattua ja erilaiset simulointityökalut kytkettyä
yhteen. Lisäksi tutkimuksessa laajennetaan K-RVEA rajoitteita sisältäville teh-
täville. Tarkastelussa korostui rajoitteita toteuttamattomien ratkaisujen merkitys
menetelmän toiminnalle.

Monissa käytännön monitavoiteoptimoinnin tehtävissä päätöksentekijä on
kiinnostunut yhdestä tai pienestä Pareto-optimaalisten ratkaisujen joukosta, jot-
ka noudattavat hänen preferenssejään. Lisäksi on havaittu, että päätöksentekijäl-
le voi olla helpompaa sulkea pois tarkastelusta huonoja kuin valita mieleisiään
ratkaisuvaihtoehtoja. Siksi tutkimuksessa esitellään vuorovaikutteinen indikaat-
toripohjainen evoluutiomenetelmä I-SIBEA, jossa päätöksentekijä ohjaa ratkaisu-
prosessia valitsemalla huonoja ratkaisuja, joita tulee välttää ja/tai hänelle mielei-
siä ratkaisuja. Päätöksentekijän roolin innoittamana lopuksi esitellään K-RVEA
-menetelmän versio, joka käyttää päätöksentekijän preferenssitietoa Kriging si-
jaismallien kanssa. Tämä väitöskirja auttaa käytännön monitavoiteoptimointion-
gelmien parissa työskenteleviä tarjoamalla heille tehokkaita menetelmiä ja paran-
taa heidän kykyään ratkaista vaativia tehtäviä.



REFERENCES

[1] T. Akhtar and C. Shoemaker. Multi objective optimization of computation-
ally expensive multi-modal functions with RBF surrogates and multi-rule
selection. Journal of Global Optimization, 64:17–32, 2015.

[2] ANSYS, Inc. ANSYS ICEM CFD Tutorial Manual, 2013.

[3] A. Arias-Montano, C. Coello, and E. Mezura-Montes. Multi-objective airfoil
shape optimization using a multiple-surrogate approach. In Proceedings of
the IEEE Congress on Evolutionary Computation, pages 1–8. IEEE, 2012.

[4] V. Asouti, S. A. Kyriacou, and K. Giannakoglou. PCA-Enhanced Metamodel-
Assisted Evolutionary Algorithms for Aerodynamic Optimization, pages 47–57.
Springer International Publishing, 2016.

[5] N. Azzouz, S. Bechikh, and L. Said. Steady state IBEA assisted by MLP
neural networks for expensive multi-objective optimization problems. In
C. Igel, editor, Proceedings of the Genetic and Evolutionary Computation Confer-
ence, pages 581–588. ACM, 2014.

[6] J. Bader and E. Zitzler. HypE: An algorithm for fast hypervolume-based
many-objective optimization. Evolutionary Computation, 19(1):45–76, 2011.

[7] S. Bandaru, A. Ng, and K. Deb. On the performance of classification algo-
rithms for learning Pareto-dominance relations. In Proceedings of the IEEE
Congress on Evolutionary Computation, pages 1139–1146. IEEE, 2014.

[8] N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiobjective se-
lection based on dominated hypervolume. European Journal of Operational
Research, 181(3):1653–1669, 2007.

[9] V. Bowman. On the relationship of the Tchebycheff norm and the efficient
frontier of multiple-criteria objectives. In H. Thiriez and S. Zionts, editors,
Multiple Criteria Decision Making, volume 130, pages 76–85. Springer-Verlag,
Berlin, Heidelberg, 1976.

[10] D. Brockhoff, J. Bader, L. Thiele, and E. Zitzler. Directed multiobjective op-
timization based on the weighted hypervolume indicator. Journal of Multi-
Criteria Decision Analysis, 20:291–317, 2013.

[11] J. Buchanan. Multiple objective mathematical programming: A review. New
Zealand Operational Research, 14:1–27, 1986.

[12] M. Buhmann. Radial basis functions: Theory and Implementations. Cambridge
University Press, 2003.

[13] C. Campbell and Y. Ying. Learning with Support Vector Machines. Morgan and
Claypool Publishers, 2011.



58

[14] S. Chaudhuri and K. Deb. An interactive evolutionary multi-objective op-
timization and decision making procedure. Applied Soft Computing, 10:496–
511, 2010.

[15] R. Cheng, Y. Jin, K. Narukawa, and B. Sendhoff. A multiobjective evolution-
ary algorithm using gaussian process-based inverse modeling. IEEE Trans-
actions on Evolutionary Computation, 19:838–856, 2015.

[16] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff. A reference vector guided
evolutionary algorithm for many objective optimization. IEEE Transactions
on Evolutionary Computation, 20:773–791, 2016.

[17] T. Chugh, N. Chakraborti, K. Sindhya, and Y. Jin. A data-driven surrogate-
assisted evolutionary algorithm applied to a many-objective blast furnace
optimization problem. Materials and Manufacturing Processes, to appear, doi:
10.1080/10426914.2016.1269923.

[18] C. Coello, G. Lamont, and D. Veldhuizen. Evolutionary Algorithms for Solving
Multi-objective Problems. Springer, New York, 2nd edition, 2007.

[19] J. Cornell. Experiments with Mixtures: Designs, Models, and the Analysis of
Mixture Data. John Wiley & Sons, 2011.

[20] I. Couckuyt, D. Deschrijver, and T. Dhaene. Fast calculation of multiobjective
probability of improvement and expected improvement criteria for Pareto
optimization. Journal of Global Optimization, 60:575–594, 2014.

[21] K. Deb. An efficient constraint handling method for genetic algorithms.
Computer Methods in Applied Mechanics and Engineeringe, 186:311–338, 2000.

[22] K. Deb and H. Jain. An evolutionary many-objective optimization algorithm
using reference-point-based nondominated sorting approach, part I: solving
problems with box constraints. IEEE Transactions on Evolutionary Computa-
tion, 18:577–601, 2014.

[23] K. Deb, A. Prarap, S. Agarwal, and T. Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6:182–197, 2002.

[24] K. Deb, A. Sinha, P. J. Korhonen, and J. Wallenius. An interactive evo-
lutionary multiobjective optimization method based on progressively ap-
proximated value functions. IEEE Transactions on Evolutionary Computation,
14:723–739, 2010.

[25] M. Emmerich, N. Beume, and B. Naujoks. An EMO algorithm using the
hypervolume measure as selection criterion. In C. Coello, A. Aguirre, and
E. Zitzler, editors, Proceedings of the Evolutionary Multi-Criterion Optimization,
pages 62–76. Springer, Berlin, Heidelberg, 2005.



59

[26] M. Emmerich, K. Giannakoglou, and B. Naujoks. Single- and multiobjective
evolutionary optimization assisted by Gaussian random field metamodels.
IEEE Transactions on Evolutionary Computation, 10:421–439, 2006.

[27] A. Forrester and A. Keane. Recent advances in surrogate-based optimiza-
tion. Progress in Aerospace Sciences, 45:50–79, 2009.

[28] A. Forrester, A. Sobester, and A. Keane. Engineering Design via Surrogate
Modelling: A practical guide. Wiley, 2008.

[29] C. A. Georgopoulou and K. Giannakoglou. A multi-objective metamodel-
assisted memetic algorithm with strength-based local refinement. Engineer-
ing Optimization, 41:909–923, 2009.

[30] K. Giannakoglou and I. Kampolis. Multilevel optimization algorithms based
on metamodel- and fitness inheritance-asisted evolutionary algorithms. In
Y. Tenne and C.-K. Goh, editors, Computational Intelligence in Expensive Opti-
mization Problems, pages 61–84. Springer, Berlin, Heidelberg, 2010.

[31] D. Hadka and P. Reed. Evolutionary computation. Borg: An auto-adaptive
many-objective evolutionary computing framework, 21:231–259, 2013.

[32] J. Hakanen, T. Chugh, K. Sindhya, Y. Jin, and K.Miettinen. Connections of
reference vectors and different types of preference information in interactive
multiobjective evolutionary algorithms. In IEEE Symposium Series on Compu-
tational Intelligence (IEEE SSCI), 2017.

[33] J. Hensman, N. Fusi, and N. Lawrence. Gaussian processes for big data. In
Conference on Uncertainty in Artificial Intelligence, 2013.

[34] S. Huband, L. Barone, L. While, and P. Hingston. A scalable multi-objective
test problem toolkit. In C. Coello, A. H. Aguirre, and E. Zitzler, editors,
Evolutionary Multi-Criterion Optimization, pages 280–295. Springer, 2005.

[35] H. Ishibuchi, N. Tsukamoto, and Y. Nojima. Evolutionary many-objective
optimization: A short review. In Proceedings of IEEE Congress on Evolutionary
Computation, pages 2419–2426. IEEE, 2008.

[36] A. Jain, M. Murty, and P. Flynn. Data clustering: A review. ACM Computing
Surveys, 31:264–323, 1999.

[37] H. Jain and K. Deb. An evolutionary many-objective optimization algorithm
using reference-point-based nondominated sorting approach, part II: Han-
dling constraints and extending to an adaptive approach. IEEE Transactions
on Evolutionary Computation, 18:602–622, 2014.

[38] Y. Jin. A comprehensive survey of fitness approximation in evolutionary
computation. Soft Computing, 9:3–12, 2005.



60

[39] Y. Jin. Surrogate-assisted evolutionary computation: Recent advances and
future challenges. Swarm and Evolutionary Computation, 1:61–70, 2011.

[40] Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evolutionary optimiza-
tion with approximate fitness functions. IEEE Transactions on Evolutionary
Computation, 6:481–494, 2002.

[41] D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expen-
sive black-box functions. Journal of Global Optimization, 13:455–492, 1998.

[42] J. Kleijnen and W. van Beers. Application-driven sequential designs for sim-
ulation experiments: Kriging metamodelling. Journal of the Operational Re-
search Society, 55:876–883, 2004.

[43] J. P. Kleijnen. Regression and kriging metamodels with their experimental
designs in simulation: A review. European Journal of Operational Research,
256(1):1–16, 2017.

[44] J. Knowles. ParEGO: A hybrid algorithm with on-line landscape approxima-
tion for expensive multiobjective optimization problems. IEEE Transactions
on Evolutionary Computation, 10:50–66, 2006.

[45] J. Knowles. Closed-loop evolutionary multiobjective optimization. IEEE
Computational Intelligence Magazine, 4:77–91, 2009.

[46] J. Knowles and H. Nakayama. Meta-modeling in multiobjective optimiza-
tion. In J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors, Multi-
objective Optimization: Interactive and Evolutionary Approaches, pages 245–284.
Springer, Berlin, Heidelberg, 2008.

[47] J. Knowles, L. Thiele, and E. Zitzler. A tutorial on the performance assess-
ment of stochastic multiobjective optimizers. Technical report, ETH Zurich,
2006.

[48] J. D. Knowles, D. W. Corne, and M. Fleischer. Bounded archiving using the
lebesgue measure. In Proceedings of IEEE Congress on Evolutionary Computa-
tion, pages 2490–2497. IEEE, 2003.

[49] G. Kourakos and A. Mantoglou. Development of a multi-objective optimiza-
tion algorithm using surrogate models for coastal aquifer management. Jour-
nal of Hydrology, 479:13–23, 2013.

[50] D. Krige. A statistical approach to some basic mine valuation problems on
the witwatersrand. Journal of the Chemical, Metallurgical and Mining Engineer-
ing Society of South Africa, 52:119–139, 1951.

[51] V. Lattarulo, P. Seshadri, and G. Parks. Optimization of a supersonic airfoil
using the multi-objective alliance algorithm. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1333–1340. ACM, 2013.



61

[52] B. Li, J. Li, K. Tang, and X. Yao. Many-objective evolutionary algorithms: A
survey. ACM Computing Surveys, 48:13–35, 2015.

[53] H. Li and Q. Zhang. Multiobjective optimization problems with complicated
Pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Com-
putation, 12:284–302, 2009.

[54] D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff. Generalizing surrogate-assisted
evolutionary computation. IEEE Transactions on Evolutionary Computation,
14:329–354, 2010.

[55] G. Liu, X. Han, and C. Jiang. A novel multi-objective optimization method
based on an approximation model management technique. Computer Meth-
ods in Applied Mechanics and Engineering, 197:2719–2731, 2008.

[56] Y. Liu and M. Collette. Improving surrogate-assisted variable fidelity multi-
objective optimization using a clustering algorithm. Applied Soft Computing,
24:482–493, 2014.

[57] I. Loshchilov, M. Schoenauer, and M. Sebag. A mono surrogate for mul-
tiobjective optimization. In G. Raidl, editor, Proceedings of the Genetic and
Evolutionary Computation Conference, pages 471–478. ACM, 2009.

[58] G. Matheron. Principles of geostatistics. Economic Geology, 58:1246–1266,
1963.

[59] K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer, Boston, 1999.

[60] K. Miettinen, J. Hakanen, and D. Podkopaev. Interactive nonlinear multi-
objective optimization methods. In S. Greco, M. Ehrgott, and J. Figueira,
editors, Multiple Criteria Decision Analysis: State of the Art Surveys, pages 927–
976. Springer New York, 2016.

[61] K. Miettinen, M. M. Makela, and J. Toivanen. Numerical comparison of some
penalty-based constraint handling techniques in genetic algorithms. Journal
of Global Optimization, 27:427–446, 2003.

[62] K. Miettinen, F. Ruiz, and A. Wierzbicki. Introduction to multiobjective op-
timization: Interactive approaches. In J. Branke, K. Deb, K. Miettinen, and
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Abstract
Evolutionary algorithms are widely used for solving multiobjective optimization problems but are often

criticized because of a large number of function evaluations needed. Approximations, especially function
approximations also refer as surrogates or metamodels are commonly used in the literature to reduce the
computation time. This paper presents a survey of 45 different recent algorithms proposed in the literature
between 2008-2016 to handle computationally expensive multiobjective optimization problems. Several
algorithms are discussed based on what kind of an approximation such as problem, function or fitness
approximation they use. Most emphasis is given to function approximation based algorithms. We also
compare these algorithms based on different criteria such as metamodelling technique and evolutionary
algorithm used, type and dimensions of the problem solved, handling constraints, training time and the type
of evolution control. Furthermore, we identify and discuss some promising elements and major issues among
algorithms in the literature related to using an approximation and numerical settings used. In addition, some
guidelines are also provided in selecting a particular algorithm based on the characteristic of the problem to
be solved, dimensions in both objective and decision spaces and the budget available.
Keywords:surrogate, metamodel, approximations, multicriteria optimization , computational cost, response
surface approximation

1 Introduction
Many engineering problems have multiple objectives to
be optimized and these objectives are typically conflict-
ing in nature, i.e. improvement in one objective is possi-
ble only by allowing deterioration of at least one of the
other objectives. These kinds of problems are known
as multiobjective optimization problems (MOPs). Be-
cause of the conflicting nature, there typically does
not exist one optimal solution, but multiple so-called
Pareto optimal solutions. The set of all Pareto opti-
mal solutions in the objective space is called a Pareto
front. In many problems, explicit formulations of ob-
jective or constraint functions are not known and such
functions are called black box functions. Usually, prob-
lems involving such functions need a long time to be
solved e.g. problems involving computational fluid dy-
namics simulations utilizing finite element algorithms
take substantial time to obtain one solution. These are
examples of problems that we refer to as computation-
ally expensive multiobjective optimization problems.

In the last few decades, EAs [21, 28] have been
widely used for solving MOPs because of their advan-
tages such as obtaining a set of nondominated solutions
in one solution process, ability to handle problems with
multiple local and nonconvex Pareto fronts, ability to
easily deal with different kinds of variables (such as
binary, real, integer or mixed) and no assumptions set

on convexity and differentiability of objectives and con-
straints involved. Despite of these advantages, EAs do
not guarantee convergence to optimal solutions. More-
over, they are often criticized as they consume many
function evaluations which increases the computation
time. This concern is particularly relevant when deal-
ing with computationally expensive problems. It is
therefore required to adapt EAs in a way that they
can be used to obtain solutions in less computation
time without too much reduction in the quality of so-
lutions. In this paper, a survey of different algorithms
proposed in the literature to handle computationally
expensive MOPs based on EAs is presented.

Several algorithms have been proposed reduce the
computational cost while solving MOPs using EAs.
Different surveys exist in the literature [58, 59, 111, 70]
on this topic. One of the popular approaches men-
tioned in these surveys is the use of approximation,
especially, function approximation to handle computa-
tionally expensive problems. In [58], different ways of
using approximation such as problem, function and fit-
ness approximation were discussed based on their use
in the literature. Additionally, various issues such as
how evolutionary algorithms can benefit from these ap-
proximations and what kind of approximation to be
selected etc. were also discussed. It is to be noted that
fitness approximation is also used as evolutionary ap-
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proximation in the literature [58]. In [111], the main
focus was to discuss various algorithms proposed in
the literature before the year 2008 based on the classi-
fication of [58]. Some real-world applications were also
mentioned where different algorithms had been applied
to reduce the computation time. In [59], the main fo-
cus was to discuss the recent developments for using
function approximation in reducing the computation
time. In that survey, different issues such as strate-
gies for managing approximation, selection of individ-
uals to be evaluated using approximation functions etc.
were discussed. In addition, the author also mentioned
the potential of using function approximation in dy-
namic, robust and constrained optimization problems.
A taxonomy of metamodel based optimization algo-
rithms was provided in [47]. In [70], several algorithms
based on the management of using function approxi-
mation (e.g. Kriging, radial basis function etc.) were
discussed. In addition, the importance of interactive al-
gorithms with EAs was detailed. Two real-world appli-
cations were also mentioned, which were solved by two
different algorithms, ParEGO [68] and the algorithm
proposed in [93]. In a recent article [5], an overview
of the state-of-the-art in surrogate-assisted multiobjec-
tive optimization algorithms was presented. However,
the article does not give an exhaustive analysis of the
existing algorithms in all types of approximations nor
provides the guidelines in selecting a particular algo-
rithm for the given problem to be solved.

In this survey, we extend these surveys and dis-
cuss 45 algorithms based on the classification of [58]
from the year 2008 to 2016 published in different jour-
nals and conference proceedings in English. We also
found that most of the algorithms use Kriging when
compared to other function approximation techniques
and therefore, classify different function approximation
based algorithms into Kriging and non-Kriging based
algorithms. This survey is also different from other
surveys in following ways. 1. Algorithms using func-
tion approximation or surrogates are emphasized as
they are more widely used. 2. Classification of function
approximation based algorithms further into Kriging
and non-Kriging based algorithms shows the wide ap-
plicability of Kriging. 3. Algorithms are described in
reference to a general function approximation frame-
work which will provide the reader an understanding
for using any function approximation in EAs. 4. The
efficiency of different algorithms in terms of reducing
computational cost or number of function evaluations
is emphasized. 5. Various shortcomings in algorithms
are observed and discussed e.g. handling constraints,
dimensions (both in decision and objective spaces) of
the problem solved, training time etc. 6. Some promis-
ing elements are also identified which can be helpful
in overcoming the limitations of several issues e.g. effi-
cient management of function approximation technique
to handle more than three objectives. 7. Some guide-
lines are also provided in selecting a particular algo-

rithm based on the characteristic of the problem to
be solved, dimensions in both objective and decision
spaces and the budget available.

In the rest of this paper, in Section 2, some relevant
concepts are described which are frequently used when
reducing the computational burden. In Section 3, dif-
ferent algorithms are discussed based on the steps of
general approximation framework. In addition, differ-
ent algorithms are compared based on the type of ap-
proximation, evolutionary algorithm, evolution control
and characteristics of the optimization problem solved.
A brief discussion on various issues and using promis-
ing elements related to the use of different algorithms is
presented in Section 4. Finally, conclusions are drawn
in Section 5 along with future research directions.

2 Basic concepts and terminol-
ogy

We consider multiobjective optimization problems of
the form [88]:

minimize {f1(x), . . . , fk(x)}
subject to x ∈ S

(1)

with k(≥ 2) objective functions fi(x) : S → �.
The vector of objective function values is denoted by
f(x) = (f1(x), . . . , fk(x))T . For the simplicity of pre-
sentation, we assume that all the objective functions
are to be minimized. If some objective function fi is to
be maximized, it is equivalent to minimize −fi. The
(nonempty) feasible region S is a subset of the deci-
sion variable space �n and consists of decision vari-
able vectors x = (x1, . . . , xn)T that satisfy all the con-
straints. The image of the feasible space S in the ob-
jective space �k is called the feasible objective set de-
noted by Z. The elements of Z are called feasible ob-
jective vectors denoted by f(x) or z = (z1, . . . , zk)T ,
where zi = fi(x), i = 1, . . . , k, are the objective func-
tion values. As discussed in the introduction, objective
functions in a MOP are typically conflicting in nature,
and, thus, there is no single well-defined optimal so-
lution but a set of so-called Pareto optimal solutions
exist. We say that a vector z1 ∈ �k is said to dominate
a vector z2 ∈ �k and denoted by z1 ≺ z2 if and only if
for all 1, . . . , k: f1

i (x) < f2
i (x).

A decision vector x∗ ∈ S is Pareto optimal if there
does not exist another decision vector x ∈ S such that
fi(x) ≤ fi(x∗) for all i=1,. . . ,k and fj(x) < fj(x∗)
for at least one index j. An objective vector is Pareto
optimal if the corresponding decision vector is Pareto
optimal. A Pareto optimal set consists of all Pareto op-
timal solutions in the decision space and a Pareto front
consists of all Pareto optimal solutions in the objective
space.

Ideal and nadir objective vectors represent bounds
for objective function values in the Pareto front. Com-
ponents of an ideal objective vector z∗ ∈ �k are deter-
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mined by minimizing each objective function individ-
ually, that is, z∗

i = minimize
x∈S

fi(x). A nadir objective
vector consists of upper bounds of objective functions
in the Pareto front. It is usually difficult to obtain
for problems with more than two objectives. Several
ways of approximating it have been proposed in the
literature (see e.g. [29, 88]). In what follows, we define
concepts relevant to the present survey.

A metamodel is an approximation of some compu-
tationally expensive element in a multiobjective op-
timization problem. A metamodel replaces the com-
putationally expensive element by an element which
consumes less computation time. There can be dif-
ferent computationally expensive elements while solv-
ing a MOP. For example, original functions or con-
straints, hypervolume etc. A surrogate is often used as
a synonym for a metamodel and the process to build
a metamodel is known as metamodelling or function
approximation. Therefore, what to approximate us-
ing a metamodel is an important concern in reducing
the computation time. Neural networks [89, 134], ra-
dial basis functions [104], support vector regression [8]
and Kriging [49] are some examples of commonly used
metamodelling techniques.

An ensemble of metamodels means using more than
one metamodel to reduce the computation time and
usually there are two ways to use an ensemble of meta-
models in the literature. In the first one, one meta-
model having the highest accuracy among different
metamodels is selected to evaluate individuals [118].
In the second one, different metamodels are used to
evaluate individuals with a different weight coefficient
(ωj) assigned to them. For instance, in [79], the pre-
dicted fitness value from an ensemble of m metamodels
was defined as:

Fens(x) =
m∑

j=1
ωjF j(x)

m∑
j=1

ωj = 1 (2)

where F j(x) is the approximated fitness value of
F =

∑k
i=1 wifi(x) using jth metamodel and wi, i =

1, . . . , k is the weight vector assigned to each objective
function. A weighted sum method was used in [79],
however, other scalarizing methods such as ε-constraint
method, achievement scalarizing function [88] can also
be used to convert a multiobjective optimization prob-
lem into a single objective optimization problem. Fit-
ness values, Fens(x) is approximated by m metamodels
and ωj is the weight assigned to the fitness value of the
jth metamodel. The fitness value of a metamodel is
assigned a larger weight if it is found to be more ac-
curate than other metamodels and the accuracy can
be obtained by statistical measurements such as root
mean square error [123] etc.

An evolution control or model management [61] is
a strategy to manage metamodels in an EA. There are
two different ways to manage metamodels, fixed and
adaptive evolution control. In a fixed evolution con-

trol, metamodels are used for a prefixed number of
generations and updated afterward with a predefined
criterion. On the other hand, in an adaptive evolu-
tion control, the frequency of using the metamodel is
adjusted according to the accuracy of the metamodel.
Therefore, the model management is also concerned
with when to update the metamodel.

In fitness inheritance [113, 138], the fitness values of
offspring are evaluated using fitness values of the par-
ents. In fitness imitation [67], individuals are grouped
into several clusters e.g. using K-means clustering [54]
in the decision space and only those individuals are
evaluated which represent the clusters (e.g. individuals
closest to the centroid of each cluster). The fitness val-
ues of other individuals are estimated using the fitness
values of the representative individuals.

Next, we discuss the general function approxima-
tion framework and describe various algorithms based
on the steps of the framework.

3 Approximation based algo-
rithms

In approximation based algorithms, the computation-
ally expensive element of the problem is replaced with
an approximation which consumes less computation
time. As classified in [58], an approximation can be
applied in three ways in multiobjective optimization
problems: problem, function and fitness approxima-
tion. In problem approximation, the original problem
is replaced with a simplified problem which is faster to
solve. In function approximation, an approximation of
a computationally expensive function is formed which
is faster to evaluate. On the other hand, in fitness ap-
proximation, the fitness value referring typically to the
function value of an individual is derived from the fit-
ness values of the existing evaluated individuals in its
vicinity. The function approximation is more widely
used than other approximations and algorithms apply-
ing it are discussed next in Section 3.1. Approaches
using problem and fitness approximation are discussed
in Section 3.2.

3.1 Function approximation
As said, function approximation is the most commonly
used approach among approximation based algorithms
and there, an explicit or an implicit approximation of a
computationally expensive, function is formed, which
is faster to evaluate. In what follows, we refer to the
functions of the original, computationally expensive
problem as original functions. In the literature, meta-
model is often used for all objective functions, therefore
all objective functions are assumed as computationally
expensive. Neural networks [72, 89, 9, 79], Kriging
[68, 56, 102, 78] and polynomial regression [49, 118]
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are examples of algorithms used for function approxi-
mation.

The general steps for using function approximation
in an EA can be divided into two stages consisting of
ten steps and most of the algorithms discussed in this
section follow these steps. In what follows, we present
a function approximation framework that captures the
core of the EA proposed in the literature utilizing func-
tion approximation. Additionally, it is assumed that
one type of metamodel is used for all objective and
constraint functions involved although it is possible to
use different metamodels for different objective func-
tions.

Stage 1

1. Initialize the population either randomly or using
a sampling method.

2. Evaluate the individuals of the population using
the original functions and add them to an archive.

3. If a prefixed number of generations is completed,
go to stage 2.

4. Use EA operators (selection, crossover and mu-
tation) to create a new population and go to step
2.

Stage 2

5. Build or update a metamodel for each computa-
tionally expensive objective and constraint func-
tion using the individuals from the archive.

6. Use EA operators (selection, crossover and mu-
tation) to create a new population.

7. For each objective and constraint function, eval-
uate the individuals of the new population ei-
ther using the metamodel or the original function
(fixed or adaptive evolution control strategy).

8. If a stopping criterion is met, select the non-
dominated individuals from step 7 as the final
population and stop. Otherwise, continue.

9. Select individuals from step 7 for re-evaluation
using the original functions if needed.

10. Add the individuals from step 9 to the archive and
go to step 5.

In stage 1, a general evolutionary algorithm works
and in stage 2, an EA with a metamodel is used. In step
1, a population is initialized either randomly or using
a sampling method such as Latin hypercube sampling
[86]. Individuals of the population are evaluated using
the original functions and the evaluated individuals are
added to an archive in step 2. If a prefixed number of
generations is completed in step 3, stage 1 is termi-
nated and the archive is carried over to stage 2. Oth-
erwise, a new population (offspring population) is gen-
erated using EA operators such as selection, crossover

and mutation in step 4. A prefixed number of gener-
ations is required to obtain an archive of a fixed size.
In most of the papers cited in this paper, there is no
explicit criterion mentioned for choosing the prefixed
number of generations. However, it is mentioned in [7]
that the prefixed number of generations depends on the
dimensions of the problem (both in objective and de-
cision spaces) and the budget of evaluations with the
original functions. For instance, in three popular al-
gorithms known as ParEGO [68], SMS-EGO [102] and
MOEA/D-EGO [136], a data set of size 11n-1 was used
for training the metamodels. We provide the size of the
data set used in different algorithms in Table 1.

After completion of stage 1, a metamodel is cre-
ated for each computationally expensive objective and
constraint function to work with the EA algorithm for
evaluating individuals in stage 2. A metamodel is cre-
ated using the individuals from the archive in step 5.
In step 6, an offspring population is generated using
EA operators. In step 7, either the metamodel or the
original functions are used to evaluate individuals i.e. a
fixed or an adaptive evolution control strategy is used
to manage the metamodel. In step 8, if a termina-
tion criterion such as maximum number of generations
or function evaluations is met, nondominated individ-
uals from the last population are selected as the final
population. Otherwise, some individuals are selected
from step 7 and re-evaluated using the original func-
tions in step 9. There are different criteria mentioned
in the literature to select individuals for re-evaluation
e.g. selection of nondominated individuals, using ex-
pected improvement [64], expected hypervolume im-
provement [102] etc. These individuals are then added
to the archive in step 10 to update or re-train the meta-
model. If the size of the archive is prefixed, some in-
dividuals (e.g. random or dominated individuals) are
eliminated from the archive using a predefined crite-
rion.

3.2 Challenges in using metamodels
Before going into the details of different algorithms, we
mention here major challenges when applying function
approximation in multiobjective optimization when
compared to single objective optimization. It is not
straightforward to use a metamodel with an EA be-
cause several challenges exist which affect the perfor-
mance of the metamodel used. These challenges are
also the main differences in several algorithms in using
function approximation.

1. Using the metamodel: In case of single objec-
tive optimization, often one metamodel is used
for the approximation of the objective and con-
straint function. Using metamodels in multiob-
jective optimization is not that trivial. For exam-
ple, one can use different metamodels for different
objective functions, one metamodel for all objec-
tive functions, different metamodels for one ob-
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jective function or a single metamodel for scalar-
ized objective functions. The same options may
arise for different constraints. In the literature,
most of the algorithms use a single metamodel
for all objective functions. In addition, there are
no guidelines for using different metamodels for
different objective functions.

2. How to update the metamodel: Updating the
metamodel is an important step both in single
objective and multiobjective optimization. In
case of single objective optimization, different
strategies have been used for updating the meta-
model e.g. lower confidence bound [32], probabil-
ity of improvement [126], expected improvement
[112, 64] etc. In case of multiobjective optimiza-
tion, two goals, convergence and diversity have to
be achieved in contrast to single objective opti-
mization. In case of multiobjective optimization,
one of the simplest ways is to select the nondom-
inated individuals for re-evaluation [60, 61] using
the original functions. Alternatively, a clustering
method such as K-means clustering [54] can be
applied to cluster the individuals in the objec-
tive space and the representative individuals are
re-evaluated using the original functions [43, 62].
The representative individuals can be the individ-
uals closest to each cluster center or the best indi-
viduals (with highest fitness values) in each clus-
ter. Individuals with low approximation accu-
racy can also be selected for re-evaluation [14, 38]
and this selection may be effective in improving
the approximation accuracy of the metamodel.
In the literature, criteria for updating the meta-
model in single objective optimization are also
modified to be used in multiobjective optimiza-
tion. For instance, expected improvement in
[68, 57, 66, 24, 130] and probability of im-
provement in [24] are used to update the meta-
model in multiobjective optimization. In addi-
tion, expected hypervolume improvement is used
in [37, 36, 115] to select the individuals for re-
evaluation so that the metamodel can be up-
dated. It is to be noted that infilling criterion
is sometimes used as a synonym for updating cri-
terion in the literature.

3. Training time for the metamodel: Training time
is also an issue in case of single objective opti-
mization but when moving to multiobjective op-
timization, training or updating time becomes
more influential. For example, different meta-
models for different objective functions may take
a different amount of training data (archive size)
which increases the training time when compared
to single objective optimization. In the litera-
ture, unfortunately, most of the algorithms do
not mention the training or updating time for the
metamodel. It may happen that training time of

the metamodels is substantial and whole aim of
reducing computation time is jeopardized.
In addition to the three challenges above, two
challenges exist which are common to both single
objective and multiobjective optimization can in-
fluence the performance of EA while using meta-
model.

1. Choice of the metamodel: In the literature, there
is very little guidance about the choice of the
metamodel for approximation of computation-
ally expensive functions. A metamodel is ei-
ther selected randomly or due to its popularity
in the area with which the problem is associ-
ated. For instance, in [72], radial basis neural
network was used as a metamodel for approxi-
mation of objective functions in coastal aquifer
management problem and it was mentioned that
neural networks were popular for groundwater
applications. Kriging was used in [56] due to
its promising nature for building accurate global
approximations.In [95], different metamodelling
techniques were used for different problems i.e.
RBF with linear kernel function for ZDT prob-
lems and Kriging for UF [137] problems. The
reason mentioned was that RBF was used due
to simplicity of the function landscape in ZDT
problems and and Kriging was used because func-
tions in UF problems are highly non-linear and
test with RBF showed a very low accuracy when
used for UF problems. However, the algorithm
was developed for black-box computationally ex-
pensive problems where function landscape of the
problems in question is not known a priori. More-
over, Kriging is most popular technique when
compared to others because of its ability to pro-
vide uncertainty for the approximated values. To
overcome the problem of choosing of a meta-
model, an ensemble of metamodels described in
Section 2 is also used in the literature [118, 79].
However, there are still some open challenges
related to the ensemble of metamodels such as
what should be the criterion for choosing differ-
ent metamodels or how different metamodels can
be used simultaneously?

2. When to update the metamodel: It is also an im-
portant issue to decide when to update the meta-
model or in other words, is there any need to up-
date the metamodel. For example, before select-
ing individuals in step 9, one can check whether
the existing metamodel is accurate enough to pre-
dict objective function values in the next gener-
ation. If so, the metamodel is not updated and
the existing metamodel is used for approxima-
tion. An offspring population has to be gener-
ated before updating the metamodel so that the
metamodel accuracy can be measured for the in-
dividuals of the offspring population. There may
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be a possibility that the metamodel is never up-
dated and the metamodel trained after stage 1 is
used in all generations. In that situation, steps 9
and 10 are eliminated from stage 2. In the liter-
ature, there is very little focus on the question of
when to update the metamodel.

3. Handling constraints: While using metamodels
in constrained problems, an appropriate set of
solutions is needed to train them. Most of the
metamodel-based algorithms in the literature are
not developed to handle constraints. In addi-
tion, few algorithms which are developed to han-
dle constraints assume that feasible solutions are
available to train metamodels for constraint func-
tion. In many problem, obtaining a feasible so-
lution is not trivial e.g. C1-DTLZ1 problem [55]
with very small feasible region. In such instances,
using metamodels for constraints can be very
challenging. We provide more details of handling
constraints while describing different algorithms.

Steps 5, 9 and 10 representing the first three main
challenges are written in italics in the function ap-
proximation framework to indicate the steps where al-
gorithms using function approximation in multiobjec-
tive optimization mainly differ from each other. Other
three challenges, selection of a metamodel, when to up-
date the metamodel and size of the data to train the
metamodel are not the major differences in the algo-
rithms.

In what follows, 30 algorithms and from the liter-
ature are discussed utilizing the three main steps (5,9
and 10) of the function approximation framework and
attention is paid to their efficiency in reducing the com-
putation time. These algorithms are classified accord-
ing to the number of metamodels they have used e.g.
single metamodel, multiple metamodels independently
or ensemble of metamodels. Among single metamodel
based algorithms, Kriging is used more often than
other metamodels. As mentioned, the main advantage
from Kriging is the uncertainty information besides the
predicted objective and/or constraint function values.
This uncertainty information can be further utilized in
the algorithm. For instance, uncertainty information is
used while updating the metamodel in [36, 19, 103, 68].

In contrast to single metamodel based algorithms,
some algorithms use metamodels independently. More-
over, some algorithms use ensemble of metamodels to
solve the problem of choosing a metamodel. In what
follows, three categories, algorithms based on single
metamodel, algorithms based on multiple metamod-
els and algorithms based on ensemble of metamodels,
are used to describe different algorithms. It was found
that the number of papers in the literature belonging
to the function approximation are largely skewed to-
wards the first category, i.e. algorithms based on a sin-
gle metamodel. Hence a sub-classification based on
the usage of metamodel within different algorithms is

devised to enhance clarity and readability. Thus we
further classify the algorithms using single metamodel
into Kriging and non-Kriging based algorithm. Due to
a limited number of articles in other categories, such a
sub-classification is not used for others. It is also worth
mentioning that most of the algorithms are based on
dominance based EAs and are generic for using any
metamodel. At the end of this section, a comparison
is presented based on which metamodel and type of
EAs are used, what is the evolution control strategy
and what are the characteristics of the optimization
problems.

Parameter values used in these algorithms in stages
1 and 2 of the function approximation framework are
presented in Table 1, where NA indicates that the pa-
rameter is not applicable to the algorithm and not
given means that this information is not given in the
reference. The table collects information of population
size in step 1, size of archive in step 2, prefixed num-
ber of generations in step 3 in stage 1 and number of
individuals for re-evaluation in step 9 in stage 2, as re-
ported in connection with example problems solved in
the papers cited.

3.3 Algorithms based on single meta-
model

In this subsection, we discuss algorithms using one
metamodel for all objective and/or constraint func-
tion. As mentioned, to make the a clear structure of
the paper and also due to wide applicability of Kriging
models, we further classify this subsection into Kriging
based algorithms and non-Kriging based algorithms.
Further these algorithms are discussed year wise, i.e.
starting from the year 2008.

3.3.1 Kriging based algorithms

In this section, we discuss algorithms using Kriging. A
DACE model [110] which is a Kriging based approx-
imation was used in [102]. This algorithm is known
as SMS-EGO which is an extension of efficient global
optimization (EGO) [64] for multiobjective optimiza-
tion problems. In step 5, the metamodel is built for
each objective function and to update it in step 9, one
individual having maximum contribution to the hyper-
volume is selected for re-evaluation using the original
functions. This individual is then added to the archive
in step 10 and the metamodel is updated in the next
generation. The size of the archive is not fixed in this
algorithm.

SMS-EGO was tested on five benchmark problems
(2-5 objectives and 3-6 decision variables) and com-
pared with ParEGO [68] and the algorithm proposed
in [57]. The unary hypervolume indicator [143], the
R2 indicator [44] and the unary epsilon indicator [144]
were used as the comparison criteria. The proposed
algorithm performed better than the other algorithms
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Table 1: Parameter values used in different algorithms: |NP |= population size in EA, |NA|= size of archive in
step 10, |NI |= size of the data set to train metamodels in step 5, |NU |= size of the data set for updating the
metamodels and maximum

reference |NP | |NA| |NI | |NU | FEmax

[3] not given not fixed not given 4 200-400
[7] 300 300 200 5 2000
[15] 5 not fixed 3-19 10 23-300
[19] 105-275 11n-1 11n-1 5 250-300
[27] 50-100 not fixed 50-100 not fixed 500-5000
[46] 1000 2000 2000 NA 2000
[49] 100 not fixed not given 5 not given
[56] 500 not fixed 12 1 66
[72] 40 not fixed 100 1 3100
[76] 20-50 not fixed 16-40 not fixed 58-497
[78] 30 not fixed 30 not fixed 148-901
[79] 100 1000-2000 1000-2000 2 8000-30000
[80] not given not fixed 6-18 10 58-242
[81] 140-200 not fixed 30 10-40 140-3600
[85] 300 not fixed 10n 10 1000-5000
[90] 100 not fixed 100 not fixed 267-8988
[89] 50 not fixed 50 50 2000
[96] 26 not fixed 150 1 1606
[95] 26-50 not fixed 150 1 NA
[98] 300 not fixed 10n 40 1000-2000
[97] 100 not fixed 10n 10 200-2000
[101] 100 800 100 1 30000
[102] not given not fixed 11n-1 1 130
[106] not given not fixed (n+1)(n+2)/2 1 200-500
[109] 25 not fixed 150 2 500
[118] not given not fixed 1000 not fixed 6000-11900
[119] NA not fixed 15-58 1 50-150
[122] 20-60 not fixed 50 1 3000
[136] 300-595 not fixed 11n-1 5 200-300
[139] 140 not fixed 6-10 6-10 190-228
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in all cases when hypervolume was used as the perfor-
mance measure. In terms of other comparison criteria,
it performed worse than the other algorithms for three
problems.

In [78], Kriging was used as a metamodel with a
modified version of NSGA-II. In this algorithm which
is known as K-MOGA, the metamodel is used for ap-
proximating each objective function in step 5. To up-
date the metamodel in step 9, domination status is
measured for each individual evaluated using the meta-
model. Individuals which change the domination sta-
tus are re-evaluated using the original functions and
added to the archive in step 10. To check the domi-
nation status, minimum of minimum distance (MMD)
is measured. To calculate MMD, individuals are par-
titioned into two sets in the decision space, nondomi-
nated (xnd) and dominated (xd). MMD is calculated
as, MMD = min

{∥∥∥f̂(xnd) − f̂(xd)
∥∥∥
}

, where f̂ is the
predicted objective vector using the metamodel. MMD
is then projected to each objective function axis to ob-
tain MMDf̂i (for i = 1,. . .,k). Thereafter, a threshold
si(x) ≤ MMDf̂i is specified by using the standard
deviation obtained (si(x)) from the Kriging model for
each objective function. The individuals which do not
satisfy this threshold are re-evaluated using the orig-
inal functions. The size of the archive is not fixed in
this algorithm.

K-MOGA was tested on five benchmark (two ob-
jectives and 3-6 decision variables) and two real-world
problems (two objectives and 2-4 decision variables)
and compared with MOGA. For comparison, nondomi-
nated individuals from both algorithms were visualized
and similar solutions were obtained in fewer function
evaluations with K-MOGA.

The same algorithm was extended to KD-MOGA
in [76] with one additional element. In KD-MOGA,
a fixed number of individuals is generated using con-
strained maximum entropy design after step 9, which
is an extension of unconstrained maximum entropy de-
sign [25]. These individuals are then added to the pop-
ulation for the next generation.

KD-MOGA was tested on the same set of prob-
lems as K-MOGA with one more real-world problem
(two objectives, four decision variables and four con-
straints). It was compared with both EAs (modified
version of NSGA-II) and K-MOGA using visualization
of the nondominated individuals. A similar perfor-
mance was obtained in fewer function evaluations with
KD-MOGA.

Kriging was used as a metamodel in [56]. This pa-
per is based on an algorithm called combined AASO-
AAMO (adaptive approximation in single objective op-
timization - adaptive approximation in multiobjective
optimization) [133] which uses a multiobjective genetic
algorithm [133] as an EA. The metamodel is built for
each objective and constraint function in step 5. To
update the metamodel in step 9, a fixed number of in-
dividuals is selected for re-evaluation using the original

functions and added to the archive in step 10. The indi-
viduals having the best value according to the maxmin
distance design criterion [63], i.e. the largest value of
minimum distance from individuals in the archive in
the decision space, are selected for re-evaluation. The
size of the archive is not fixed in this algorithm.

The proposed algorithm was tested on a fatigue de-
sign MOP with two objectives, 17 decision variables
and 11 constraints. It took 70 hours to complete 25
generations but the efficiency of the algorithm was not
compared to any EA without using the metamodel.
The authors mentioned that it was practically impos-
sible to do the optimization without using approxima-
tion.

In [136], Kriging was used as a metamodel with the
decomposition based EA MOEA/D [135]. The algo-
rithm is known as MOEA/D-EGO. In MOEA/D-EGO,
after evaluating a fixed number of individuals in steps
1-4, the metamodel is built for the scalarized objective
function. Chebyshev scalarizing function [88] is used to
convert multiobjective optimization problem into sin-
gle objective optimization problems. After using the
metamodel in step 7, the expected improvement (EI)
[64] is calculated for each subproblem. Expected im-
provement is then maximized (for each subproblem)
using MOEA/D-DE [77] for a fixed number of gen-
erations. In other words, the scalarized problem is
changed into another problem to maximize EI. To
update the metamodel in step 9, firstly, all individu-
als after the local search, which are different from the
individuals in the archive (in the decision space) are se-
lected. After this, K-means clustering is used to cluster
the weight vectors (used in MOEA/D initially) associ-
ated with the individuals selected above. From each
cluster, an individual with maximum EI is selected
and re-evaluated using the original functions. These
individuals are then added to the archive in step 10.
Moreover, to reduce the training time, a fuzzy cluster-
ing [13] is used for selecting a fixed number of individ-
uals for training or updating the metamodel.

MOEA/D-EGO was tested on 12 benchmark prob-
lems (2-3 objectives and 2-8 decision variables) and
compared with ParEGO [68] and SMS-EGO [103]. Hy-
pervolume and inverted generational distance (IGD)
were used as the comparison criteria. The proposed
algorithm outperformed on seven problems when com-
pared to ParEGO and performed similar to SMS-EGO.
It was also compared with MOEA/D on two problems
(two objectives and 2-8 decision variables) and outper-
formed with IGD as the performance criterion.

A multiobjective variable-fidelity optimization
(VFO) algorithm was proposed in [139] where Krig-
ing was used as a metamodel with NSGA-II. Initially,
a simplified or approximated problem (having low fi-
delity functions) is used to replace the original MOP
in stage 1. This simplified problem is then solved for
a prefixed number of generations using NSGA-II. A
fixed number of nondominated individuals obtained af-
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ter this step is re-evaluated using the original functions
and stored in an archive. These individuals are selected
based on a simple inter-individual distance metric in
the objective space (steps 1-4). These individuals are
then used to construct a Kriging model for each ob-
jective function in step 5 of stage 2. For the follow-
ing fixed number of generations, individuals generated
by crossover and mutation in step 6 are evaluated ei-
ther using the approximated problem functions with
Kriging model or just the approximated problem func-
tions (step 7) depending on the error [40] in the Kriging
model. Thus, an adaptive evolution control strategy is
used to manage the metamodel. In other words, if the
metamodel is not accurate for an objective function,
the original function is used to evaluate individuals.
To update the metamodel in step 9, a fixed number of
nondominated individuals evaluated using the meta-
model is selected for re-evaluation using the original
functions. The individuals are selected by computing
the error from the Kriging model and added to the
archive in step 10. The size of the archive is not fixed
in this algorithm.

The VFO algorithm was tested on the ZDT1-3
benchmark problems (with two objectives and five de-
cision variables) and a structural engineering problem
(with two objectives and six decision variables). For
the ZDT problems, the efficiency of the VFO algorithm
was not mentioned in terms of computation time or
number of function evaluations.

For the structural engineering problem, an exhaus-
tive search was carried out with different values of de-
cision variables. Around 65 million combinations of
decision variable values were evaluated using both orig-
inal and approximated problem functions. Nondomi-
nated individuals after this search were identified and
nondominated individuals obtained using original func-
tions were used to compare results of different studies
mentioned next. Fourteen studies were performed with
changes in the values of three parameters: number of
prefixed number of generations in step 3 of stage 1,
number of generations before updating the metamodel
of stage 2 and number of individuals selected for re-
evaluation in step 9 of stage 2. Two out of fourteen
studies were performed using NSGA-II without using
a metamodel with high and low fidelity functions (to
be called case 1 and case 2, respectively). Results from
these studies were then compared with the results of
exhaustive search with different criteria (inverted gen-
erational distance, error ratio, crowding distance [28]
and span [75]). Case 1 gave the best results and in
comparison with case 1, one of the studies out of thir-
teen gave similar results (a graphical comparison was
performed) in fewer function evaluations.

In [81], VFO algorithm was extended where instead
of one global metamodel, multiple local metamodels
were used. The authors mentioned that local meta-
models are used for high dimensional problems in the
objective space. K-means clustering is used in the de-

cision space to partition the data and to build multiple
local metamodels. Other details are the same as in
VFO.

This algorithm was tested on six benchmark prob-
lems (two objectives and 2-30 decision variables) and
one real-world problem (three objectives and six de-
cision variables). For benchmark problem, nondom-
inated individuals obtained from this algorithm and
with VFO and NSGA-II were visualized. The authors
mentioned that the proposed algorithm outperformed
on these problems. In case of the real-world problem,
the same performance criterion was used as in the VFO
algorithm. In this case too, the proposed algorithm
performed better than NSGA-II and VFO in the same
number of function evaluations.

In [119], Kriging was used as a metamodel. In
this algorithm, the main focus was to apply different
strategy for objective and constraint functions while
updating the metamodel. In step 5, a metamodel is
built for each objective and constraint function. To
update the metamodel in step 9, for objectives, selec-
tion is performed using hypervolume based probabil-
ity of improvement (POIhv) [24] and for constraints,
probability of feasibility (POF) [39] is used. After this,
γ = POIhv × POF is obtained and a fixed number
of individuals with highest γ values is selected for re-
evaluation in step 9. These individuals are then added
to the archive in step 10. The size of the archive is not
fixed in this algorithm.

The proposed algorithm was tested on two real-
world problems with two objectives, 2-3 decision vari-
ables and 5-7 constraints. This algorithm was imple-
mented using the SUrrogate MOdeling MATLAB Tool-
box (SUMO) [42] and was not compared with any other
algorithm.

In [90], Kriging models were used with a differen-
tial evolution based EA to approximate the objective
functions. After building the metamodels in step 5,
individuals were generated using differential evolution
operator in step 6 and metamodels were then used for
approximation in step 7. For each offspring in step
7, uncertainties of the approximated values were com-
pared to its corresponding parent. In other words, if
the uncertainty value of offspring was less than that
of parent, it would selected and kept in the popula-
tion. On the other hand, if the uncertainties of both
offspring and parent are comparable, both are kept in
the population. All the offspring thus selected were
re-evaluated with the original function to update the
metamodels in step 9 and added the training archive
in step 10.

The algorithm was tested on 12 benchmark prob-
lem out of which three had constraints. However, it
was not mentioned in the article how the constraints
were handled. All these 12 problems had two objectives
and the number of decision variables for all problems
was not mentioned. The algorithm was also tested on
a continuous steel casting and an electrocardiography
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problem with four variables and 2-3 objectives. The al-
gorithm was compared with differential based EA [108]
and an algorithm based on NSGA-II-ANN [30]. The al-
gorithm obtained better performance when measured
with hypervolume in 10000 function evaluations.

In [19], an algorithm called K-RVEA was proposed
to solve computationally expensive problems with more
than three objectives. In this algorithm, the meta-
models were updated based on the need of convergence
or diversity. Angle penalized distance [17] and uncer-
tainty information from the Kriging models with the
help of reference vectors are used to select individuals
in step 9 for updating the metamodels. In addition,
extra individuals are removed from the archive in step
10 to further reduce the computation time.

The proposed algorithm was tested on DTLZ and
WFG benchmark problems with 3-10 objectives and 10
decision variables. It was also compared with ParEGO,
MOEA/D-EGO and SMS-EGO using IGD and hyper-
volume. In addition to benchmark problems, the algo-
rithm was also tested on a free-radical polymerization
problem [91] and also compared with the state-of-the-
art algorithms. In the given number of function evalu-
ations, the proposed algorithm performed better than
other algorithms.

The same algorithm was also extended to handle
constraints in [20]. Three different approaches are used
to while training metamodels based on the feasibility
of solutions. The proposed algorithm was tested on
constrained version of DTLZ problems [55] with 3-10
objectives and 10 decision variables. The authors found
out that infeasible solutions are having a vital role on
the performance of surrogates.

In [109], a high dimensional model representation
(HDMR) [121] was used as a metamodel for each objec-
tive function. Kriging was further used within HDMR
to approximate its component functions. The algo-
rithm was proposed to handle problems with large
number of decision variables. In each HDMR model,
n component functions were approximated using Krig-
ing, therefore n × k (n and k represent the number
of decision variables and objectives respectively) Krig-
ing models were built and k HDMR models were built.
After building the metamodels in step 5, NSGA-II was
used to from steps 6-7. To update HDMR models, a
prefixed number of individuals were re-evaluated using
the original functions in step 9. These individuals were
selected by doing clustering in the decision space and
then added to the training archive in step 10. In addi-
tion, bounds of the decision variables were updated to
limit the search space after metamodels were updated.

The algorithm was tested on 17 benchmark prob-
lems from ZDT, DTLZ and CEC09 suite [137] biob-
jective problems with 15-30 decision variables. It was
compared with NSGA-II and Kriging based NSGA-II
[84] using IGD and performed better than others in 500
function evaluations.

3.3.2 Non-Kriging based algorithms

In this subsection, algorithms using metamodels other
than Kriging such as neural network, support vec-
tor regression and polynomial regression are discussed.
In [122], a multiobjective parallel surrogate-assisted
evolutionary algorithm (MOPSA-EA) was proposed,
where a feedforward neural network was used as a
metamodel with a steady state EA. The metamodel
is built for each objective function in step 5. A fixed
number of offspring individuals is generated in step 6
using crossover and mutation and evaluated using the
metamodel in step 7. The fitness values of offspring
individuals are altered as per the fitness values of par-
ents. The authors mentioned that this approach was
motivated by fitness inheritance, where the fitness val-
ues of offspring depend on the fitness values of parents.

To get the altered fitness values for offspring indi-
viduals, the parents which are used for creating the
offspring individual are evaluated with the metamodel
and the error is calculated between true fitness values
and the approximated fitness values (using the meta-
model) for parents. For example, if the errors (for a
biobjective optimization problem) between the true fit-
ness values and the approximated fitness values for two
parents are (ae, be) and (ce, de) and an offspring indi-
vidual is generated using these parents having fitness
values (e, g), then the new altered fitness values for off-
spring are (e+w1 ×ae +w2 × ce, g +w2 × be +w1 ×de).
The weight coefficients w1 and w2 are selected based on
the influence of parent individuals on an offspring in-
dividual during crossover. An individual is selected in
step 9 after getting new fitness values for offspring in-
dividuals and added to the archive in step 10 to update
the metamodel. To select this individual, a nondomi-
nated sorting for offspring individuals and individuals
in the archive is performed and nondominated individ-
uals in both sets are identified. Let OR1 and PR1 de-
note nondominated individuals in offspring and in the
archive, respectively. These individuals are combined
and individuals in OR1 dominating PR1 are identified.
Among these individuals, individual having the largest
Euclidean distance to its closest individual in PR1 is
selected and added to the archive. A nondominated
sorting is performed again for individuals of the archive
and the worst individual (having the worst fitness value
and the smallest crowding distance) is removed from
the archive. The size of the archive is fixed in this
algorithm.

The MOPSA-EA was tested on the ZDT1-4 and
ZDT6 benchmark problems (2 objectives and not ex-
plicit information of the number of decision variables)
and on a manufacturing MOP (with two objectives and
11 decision variables). The Y [31], Δ [31], Ω [122] and
S [122] metrices were used to compare the proposed al-
gorithm with SMS-EMOA [35], MAES [37] and NSGA-
II-ANN [92]. For the same number of function evalu-
ations, MOPSA-EA performed better than other algo-
rithms in Y , Ω and S metrics and in Δ, SMS-EMOA
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and MOPSA-EA performed equivalent. As the Pareto
front was not known for the manufacturing problem,
only the S metric was used as the performance cri-
terion and MOPSA-EA gave better results in S than
the other algorithms in the same number of function
evaluations.

A quadratic polynomial approximation was used as
a metamodel with the EA μ-MOGA [22] in [80]. In this
algorithm, the bounds of decision variables are updated
after every generation using a trust region algorithm.
In step 5, the metamodel is built for each objective and
constraint function. To update the metamodel in step
9, a fixed number of uniformly distributed individuals
(Pa) from nondominated individuals is re-evaluated us-
ing the original functions. The nondominated individ-
uals in the decision space after re-evaluation are stored
in a set Pe. The set Po = Pa∩Pe is determined which is
then used to calculate a reliability index N(Po)/N(Pa),
where N(Po) and N(Pa) are the numbers of individu-
als in Po and the number of nondominated uniformly
distributed individuals evaluated using the metamodel,
respectively. This reliability index is used to update
the bounds of the decision variables in the next gener-
ation with a trust region algorithm. The trust region
radius is updated according to [4] and the algorithm
terminates if the trust region radius is smaller than a
predefined limit or after a fixed number of generations
(step 8). A Latin hypercube design is used for sampling
the decision variables with updated bounds. These in-
dividuals with the updated bounds are evaluated with
the original functions which are used to update the
metamodel. Step 10 is not applicable in this algorithm
as individuals after step 9 are not added to the archive.

The proposed algorithm was compared with μ-
MOGA using two benchmark problems (two objectives
and 2-3 decision variables) and one structural engineer-
ing problem (two objectives, three decision variables
and one constraint). Using generational distance as a
performance metric for the benchmark problems and
visual comparison for the structural engineering prob-
lem the quality of the obtained set of nondominated
solutions within a fixed budget of function evaluations
using μ-MOGA with metamodel was better.

A feedforward neural network was used as a meta-
model with NSGA-II in [89]. The metamodel is built
for each objective function in step 5 if a threshold based
on a predicted tolerance is satisfied. This predicted
tolerance, which is an indication of the accuracy of the
metamodel, is calculated (however, calculation of the
predicted tolerance is not detailed in the paper) af-
ter every generation. If this predicted tolerance is less
than a user-specified tolerance, then the metamodel is
used in the next generation. Otherwise, the original
functions are used to evaluate individuals. The pre-
dicted tolerance is updated after every generation and
again a decision is to be made either to use the original
functions or the metamodel and thus, an adaptive evo-
lution control strategy is used. Individuals obtained

after every generation are added to the archive (steps
9 and 10) and as a result, the size of the archive grows
with generations. In this algorithm, the metamodel is
not updated after every generation but after every gen-
eration, it is checked whether the existing metamodel
is sufficient enough to predict function values to the
extent of accuracy required.

This algorithm was tested on an iron induration
MOP with two objectives, 22 decision variables and
three constraints. To check the efficiency of the pro-
posed algorithm, a graphical comparison was presented
to the solutions from the algorithm and NSGA-II with-
out using any metamodel. Similar nondominated indi-
viduals were obtained in 50% fewer function evalua-
tions and for the same number of function evaluations,
better nondominated individuals were obtained.

In [15], an extension of algorithm proposed in [80]
was proposed. The main differences include the type
of metamodel, stopping criterion in step 8 and selec-
tion of individuals for re-evaluation for updating the
metamodel in step 9. The algorithm proposed utilizes
a radial basis function as a metamodel. In addition to
the stopping criteria posed in [80] mentioned earlier,
the algorithm also terminates if the bounds of the de-
cision variables are equal to predefined limit and the
reliability index is equal to one. In step 9, the individ-
uals are selected using an inherited Latin hypercube
design (ILHD) [131] and a local-densifying strategy (to
reduce the possibility of an ill-conditioned RBF ma-
trix) for re-evaluation and subsequently updating the
RBF.

The proposed algorithm was tested on eight differ-
ent benchmark problems (two objectives and 1-5 de-
cision variables) and a structural engineering problem
(two objectives and five decision variables). The results
were compared with μ-MOGA without any metamodel
and the algorithm proposed in [80]. In case of bench-
mark problems, the proposed algorithm obtained bet-
ter values for spread and convergence metrices [31] in
fewer function evaluations. For the structural engineer-
ing problem, the proposed algorithm was not tested
using μ-MOGA without any metamodel.

In [72], a multiobjective surrogate assisted (MOSA)
algorithm was proposed, where a modular neural net-
work (MNN) [71] was used as a metamodel with
NSGA-II. A metamodel is built for each objective func-
tion in step 5. A fixed number (equal to the population
size of NSGA-II) of better performing individuals (the
authors did not mention any criterion for defining bet-
ter performing individuals) is used as the population of
NSGA-II and the nondominated individuals (A) after
this step are determined. The nondominated individu-
als after evaluating the offspring individuals (generated
in step 6) are compared with A to select one individual
for re-evaluation (step 9). To do this, the individuals
evaluated using the metamodel are clustered into two
sets A1 and A2 as shown in Figure 1.
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Figure 1: Selection of individual evaluated using the
metamodels

The first set (A1) consists of the individuals which
dominate at least one individual of A while the second
set (A2) consists of the individuals that do not domi-
nate nor are dominated. For each offspring in A1, the
Euclidean distances between the offspring and the in-
dividuals in A are calculated. As shown in left part of
Figure 1, individual (o1) with the largest distance is se-
lected for re-evaluation using the original functions. In
case A1 is empty, an individual is selected from the set
A2 for re-evaluation. To select the individual, for each
offspring individual in A2, the normalized perimeter
for rectangles created between consecutive individuals
in A (as shown in the right part of Figure 1) is cal-
culated. An individual located in the rectangle with
the largest perimeter (o2) is selected for re-evaluation
using the original functions. In case both A1 and A2

are empty, offspring are generated again. However, the
authors did not mention about how this algorithm can
be used for more than two objectives. The selected
individual is added to the archive to update the meta-
model in step 10. The size of the archive is not fixed
in this algorithm.

The algorithm was used to solve a coastal aquifer
management optimization problem with two objectives
and eight decision variables. The time required to eval-
uate the original functions was 26 hours while the time
to train the metamodels was 63 minutes. A graphical
comparison was presented between MOSA and NSGA-
II and the proposed algorithm gave similar results in
fewer function evaluations.

In [46], support vector regression was used as a
metamodel for approximation of each objective func-
tion with NSGA-II. The main focus in this algorithm
is to use different basis functions for different kinds of
variables such as discrete, continuous and categorical
variables. It is to be noted that this algorithm does
not use an ensemble of metamodels as only one pre-
diction is obtained for each objective function by using
different basis functions for the different kinds of vari-
ables. To convert categorical values into real number,
dummy coding is used. In step 5, the metamodel is
built for each objective function. Steps 9 and 10 are
not applicable to this algorithm as the metamodel and
the archive are not updated.

The proposed algorithm was tested on one real-
world problem (two objectives and 10 decision vari-

ables) and compared with NSGA-II. Out of 10 vari-
ables, 5 were continuous and 5 were categorical vari-
ables. A visualization of nondominated individuals in
the objective space was performed to compare the two
algorithms. The authors mentioned that the proposed
algorithm performed similar to NSGA-II in fewer func-
tion evaluations.

In [101], support vector regression was used as a
metamodel. This algorithm is known as HO-MOMA
where, a metamodel is built for each objective func-
tion in step 5. After evaluating new individuals in step
7, a local search is used to optimize the fitness func-
tion obtained from the metamodel evaluations. This is
done as follows. Firstly, several nondominated fronts
are obtained with nondominated sorting. Then, in each
front, sorting is performed according to the first objec-
tive function values in the ascending order. A reference
point is then calculated for each individual in each front
using these sorted values. After calculating the refer-
ence point, a fitness value for each individual is cal-
culated. Let f̂ =

{
f̂1, f̂2

}
be the predicted objective

vector for one individual and r = {r1, r2} the reference
point for that individual. Fitness is then calculated as

fitness =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(r1 − f̂1)(r2 − f̂2) f̂1 < r1andf̂2 < r2 = 0
(r1 − f̂1) f̂1 > r1andf̂2 < r2 = 0
(r2 − f̂2) f̂1 < r1andf̂2 > r2 = 0
−d(r, f̂) otherwise,

(3)
where d(r, f̂) is the Euclidean distance between r

and f̂ . This fitness is then optimized using CMA-ES
[45] as the local search algorithm. To update the meta-
model in step 9, nondominated individuals obtained af-
ter the local search are added to the archive in step 10.
The size of the archive is fixed in this algorithm and
extra individuals are removed from it randomly. The
authors mention the study for more than two objectives
is a future research.

HO-MOMA was tested on 14 benchmark prob-
lems with two objectives and 10-30 decision variables.
The algorithm was compared with NSGA-II and ASM-
MOMA [99] with hypervolume as the performance cri-
terion. The proposed algorithm performed better than
the others in nine out of 12 problems.

In [98, 97], an extreme learning based MOEA/D-
DE [77] was used. This algorithm is known as
ELMOEA/D-DE and inspired by MOEA/D-RBF. The
main focus in this algorithm is to use the metamodel for
higher dimensional problems in the decision space. Ex-
treme learning is a single-layer feedforward neural net-
work proposed in [48]. In step 5, the metamodel is built
for each objective function. To update the metamodel
in step 9, the same procedure is used as in MOEA/D-
RBF. In addition, a minimum distance (in the decision
space) is maintained between the individuals to be se-
lected for re-evaluation. After adding these individuals
in the archive, inferior solutions (in terms of scalarized
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single objective problem) are removed. Otherwise, the
closest individual in the objective space is replaced by
the individual obtained in step 9. This is done to en-
sure that every new solution is added to the archive for
updating the metamodel.

ELMOEA/D-DE in [98] was tested on ZDT prob-
lems with 10-60 decision variables and compared with
MOEA/D-DE and MOEA/D-RBF.Later in [97], the
algorithm was tested on ZDT, DTLZ and WFG prob-
lems with 2-5 objectives and 5-60 decision variables and
on an airfoil shape optimization problem with two ob-
jectives and 12 decision variables. The algorithm was
also compared using addictive-Epsilon and R2 [143] as
the performance indicators. For the given number of
function evaluations, the proposed algorithm obtained
better performance.

In [3], an algorithm called gap optimized multi-
objective optimization using response surfaces (GO-
MORS) was proposed where radial basis functions were
used to approximate the objective functions. After
building the metamodels in step 5 for each objective
function, an EA proposed in [129] was used for opti-
mization from step 6-7. After step 7, an another op-
timization problem was solved using the same EA by
reducing the bounds of the decision variables. This
problem was referred as gap optimization problem in
the article. In step 9 for updating the metamodels, four
criterion were used and one individual corresponding to
these criterion was selected and added to the training
archive in step 10. Four criterion were based on hy-
pervolume, distance to the individuals in the decision
space, distance to the individuals in the objective space
and hypervolume in the gap optimization problem. A
maximum number of function evaluations was used as
the termination criterion.

The algorithm was tested on 11 benchmark prob-
lems with 8-24 decision variables and two objectives. In
addition, a groundwater remediation problem with 6-
24 variables and two objectives was also solved. The al-
gorithm was compared with NSGA-II and ParEGO us-
ing hypervolume in 200-400 function evaluations. The
proposed algorithms obtained better performance than
others in the given number of function evaluations.

In [96], an algorithm called surrogate assisted lo-
cal search memetic algorithm (SS-MOMA) was pro-
posed where RBF as a metamodel was build on the
single objective problem after converting multiobjec-
tive optimization problem using a scalarization func-
tion. Two common ways of scalarization i.e. Tcheby-
cheff and weighted sum were tested where weights were
generated randomly and the reference point in Tcheby-
cheff scalarization was the current individual objective
function values. After generating the offspring pop-
ulation in step 6, metamodels were built locally for
each individual. For instance, if the offspring popula-
tion of size 100 was generated, one metamodel for each
individual (i.e. 100 in total) was built. As multiob-
jective optimization problem was converted into single

objective using the scalarzing function, SQP algorithm
was used to obtain the solutions. All solutions thus
obtained were re-evaluated with the original functions
and added to the training archive. Afterward, these
solutions were combined with the parent individuals
and non-dominated sorting [31] was performed to ob-
tain the population for the next generation. In this
way, after every generation metamodels were updated
with a number equal to the population size used.

The algorithm was tested on three benchmark prob-
lems with 15 variables and two objectives. The al-
gorithm was not compared with any other algorithm.
However, in 1606 function evaluations, Tchebycheff
scalarization performed better than weighted sum in
terms of generational distance [28] and one diversity
metric used.

In [27], RBF as metamodels were built for every
objective and constraint function in step 5. A (μ + λ)
evolution strategy mutation operator was used to gen-
erate new individuals in step 6 which were then evalu-
ated using the metamodels in step 7. After using meta-
models for each objective and constraint functions, fea-
sible solutions were found and a nondominated sorting
was performed on these feasible solutions. The best
individuals i.e. individuals in the first front were re-
evaluated with the original functions to update the
metamodels in step 9 and added to the training archive
in step 10. Therefore, the maximum number of individ-
uals to be updated was λ. In addition, initial training
of metamodels in step 5was performed without consid-
ering any feasibility or infeasibility of solutions. How-
ever, the authors clearly mentioned that the algorithm
is not expected to work well on problems when the
feasible region is empty.

The algorithm was tested on 15 benchmark prob-
lems with 2-15 decision variables, 2-5 objective func-
tions and 2-13 constraint functions. In addition it was
also tested on a manufacturing and robotics problem
with 3-7 decision variables, 2-5 objectives and 2-8 con-
straints. Hypervolume was used to compare the per-
formance of the algorithm against constrained version
of (μ + λ) evolution strategy [10] and NSGA-II. The
algorithm performed better in 500-5000 function eval-
uations.

In [106], RBF was used as a metamodel for each
objective and constraint function. It was assumed that
at least one feasible solution is available to train the
metamodels in step 5. To create new individuals in
step 6, two different approaches were tested. In the
first one, uniform random individuals were generated
over the search space and in the second one, individ-
uals were generated by adding Gaussian perturbation
centered at the nondominated individual that has the
most isolated objective function values. The most iso-
lated individuals is identified by measuring the distance
among nondominated individuals. Metamodels were
then used to approximate the objective and constraint
function values in step 7. Afterward, nondominated so-
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lutions with minimum constraint violations were found.
Among these individuals, one individual was selected
for re-evaluations in step 9 to update the metamod-
els. One individual was selected by the weighted sum
(with equal wights) of two criterion. One criterion was
the distance of solutions (in the decision space) ob-
tained in step 7 from the individuals in the training
archive and the second criterion was the distance from
the nondominated individuals from the last generation
in the objective space. Selected individual was then
re-evaluated and added to the archive in step 10.

The algorithm was tested on 28 benchmark prob-
lems with 2-5 objectives, 2-15 decision variables and 1-
11 constraint functions. the algorithm was compared
with its two different versions (based on the genera-
tion of individuals in step 7), NSGA-II and DirectMul-
tiSearch(DMS) [26] using hypervolume as the perfor-
mance indicator. Overall, the version where individ-
uals were generated using Gaussian distribution per-
formed better in the given number of function evalua-
tions.

3.4 Algorithms based on multiple
metamodels

In this subsection, algorithms using multiple metamod-
els are discussed. These metamodels are used indepen-
dently to predict objective and/or constraint functions.
In [49], three independent case studies were performed,
where three different metamodels (polynomial approx-
imation, Kriging and radial basis function) were used
with NSGA-II. The metamodel is built for each objec-
tive function in step 5. The nondominated individu-
als obtained after this step are improved using a local
search algorithm with sequential quadratic program-
ming. To perform local search, a variant of ε-constraint
algorithm [88] is used i.e. one of the objectives is op-
timized and other objectives are converted to equality
constraints. The improved individuals are combined
with individuals from step 7 and dominated and dupli-
cated individuals are eliminated. To update the meta-
model in step 9, a fixed number of individuals is se-
lected from the remaining individuals using K-means
clustering in the objective space for re-evaluation us-
ing the original functions. These individuals are then
added to the archive in step 10. The size of the archive
is not fixed in this algorithm.

This algorithm was used to solve a heat sink MOP
with two objectives and three decision variables. Three
different studies were performed to compare the re-
sults while using different metamodels. In the first
one, nondominated individuals were identified while
using each metamodel involving steps 1-8 (i.e. without
updating the metamodel) of the function approxima-
tion framework. Five representative individuals among
nondominated individuals were selected using K-means
clustering and re-evaluated with the original functions.
The proposed algorithm with Kriging gave the least er-

ror in objective function values for these five individ-
uals. In the second study, five representative individ-
uals obtained using each metamodel were re-evaluated
with other metamodels. For example, individuals ob-
tained while using polynomial approximation were re-
evaluated with Kriging and radial basis function. Indi-
viduals obtained while using Kriging when re-evaluated
with other metamodels gave the least error in objec-
tive function values. In the third one, nondominated
individuals were obtained utilizing steps 1-10 (i.e. by
updating the metamodel in steps 9 and 10) and re-
sults were compared graphically in the objective space
with the first study. While using Kriging and radial
basis function, better results were obtained when com-
pared to results of the first study and while using poly-
nomial approximation, similar results were obtained.
However, the proposed algorithm was not tested using
NSGA-II without any metamodel and the efficiency of
the algorithm was not mentioned in terms of compu-
tation time or the number of function evaluations.

In [7], five different radial basis functions (RBFs)
with different basis functions were used as metamodels
along with the EA MODE-LD+SS [6]. However, these
metamodels were used independently for each objective
function but individuals from each metamodel evalua-
tion were used to update all metamodels as discussed
next. A metamodel is built for each objective function
in step 5. In step 9, to select the individuals for up-
dating the metamodel, one individual from each meta-
model evaluation is selected for re-evaluation using the
original functions and added to the archive in step 10.
To select one individual, a set of uniformly distributed
weight vectors (λ1, λ2, . . . , λN ) (where, N is the pop-
ulation size of EA) is defined. Next, from each meta-
model evaluation, the individual is selected that mini-
mizes the Chebyshev scalarizing function [88] given by
max

i=1,...,k
(λi

j |f̂i(xj) − f∗
i |). The values of objective func-

tions obtained after step 7 and the minimum value of
the objective function in the population of EA at the
current generation are represented by f̂ and f∗, re-
spectively. The authors mentioned that this updating
criterion can balance the accuracy of the metamodel
and the diversity among individuals. The size of the
archive is fixed in this algorithm and extra individuals
are removed from it based on their rank.

This algorithm was tested on five different aero-
dynamic shape optimization problems with 2-3 objec-
tives and 12 decision variables. Hypervolume was used
as the comparison criterion for the results of MODE-
LD+SS with and without metamodels. The proposed
algorithm gave a better hypervolume in fewer function
evaluations for all five optimization problems.

In [95], SS-MOMA described in Section 3.3.2 was
tested with different metamodels for different problems
i.e. RBF with linear kernel function for ZDT prob-
lems and Kriging for UF problems because of different
function landscape of the problems. Using a particu-
lar technique for a problem with an assumption that
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function landscape is known a priori raises the question
of applicability of the algorithm to black-box problems.
In addition, one modification of achievement scalarzing
function used where reference point was replaced by the
upper bounds of the objective function values at the
current generation was also tested. An another locals
search algorithm called random mutation hill climber
[1] was also tested after building the metamodels for
each objective function. To handle constraints, meta-
models were first built for each objective function and
after scalarization, a constrained SQP algorithm was
used to solve the single objective optimization prob-
lem.

The algorithm was tested on seven biobjective
benchmark problems with 8-15 decision variables and
a biobjective airfoil optimization problem with 16 vari-
ables and one constraint. Different versions of the algo-
rithm with different scalrzing functions were compared
with each other also with NSGA-II using IGD. Over-
all a low number of function evaluations were used to
obtain a given IGD value when Tchebycheff function
with reference point as the individual objective func-
tion values was used.

3.5 Algorithms based on ensemble of
metamodels

In this subsection, we discuss algorithms using ensem-
ble of metamodels. As defined in Section 2, either
the weights are given to predicted output of the meta-
model or a metamodel is selected based on its accu-
racy. In [79], an ensemble of metamodels (Kriging,
polynomial regression and radial basis function) was
used with the proposed generalized surrogate multiob-
jective memetic algorithm (GS-MOMA). In this algo-
rithm, the offspring population is generated in step 6
before building the metamodel. A fixed number of in-
dividuals, equal to n + (n + 1)(n + 2)/2, (where n is
the number of decision variables) is selected from the
archive to build an ensemble of metamodels and a sep-
arate polynomial regression metamodel in step 5. The
individuals are selected in the decision space using the
Euclidean distance between the individuals in the off-
spring population and the individuals in the archive.
The individuals which are closer to offspring individu-
als are used to build the metamodels.

The ensemble fitness values of offspring individuals
are calculated as Fens(x) =

∑m
j=1 ωjF j(x) where ωj

is the weight coefficient for fitness values F j(x) of the
jth metamodel (step 7). The weight coefficient is as-
signed based on the accuracy of the metamodels which
is calculated using root mean square error. A local
search algorithm (sequential quadratic programming)
is also used for single objective optimization of F j(x)
to improve the individuals evaluated with the meta-
model. The best found individuals after this step and
the local search algorithm are combined with the par-
ent population and a selection mechanism is used to se-

lect individuals for the next generation. To update the
metamodels, an offspring population is generated and
individuals are selected from the initial archive based
on the mechanism used to build the metamodel. Steps
9 and 10 are not applicable in this algorithm and the
size of the archive is fixed.

This algorithm was tested on six benchmark prob-
lems (labeled as MF problems in the paper) with 2-
3 objectives and with 10-50 decision variables. Three
performance criteria namely generalized distance [128],
maximum spread [140] and hypervolume ratio [127]
were used for comparison between GS-MOMA and
NSGA-II without a metamodel. GS-MOMA performed
better in all performance criteria for all problems in the
same number of function evaluations.

In [118], a surrogate assisted simulated annealing
(SASA) algorithm was proposed, where an ensemble
of metamodels (quadratic polynomial and radial basis
function) was used with constrained Pareto simulated
annealing (C-PSA) as an EA. In this algorithm, one
of two different metamodels is selected to evaluate in-
dividuals based on their accuracy which is calculated
using the root mean square error. A fixed number of
recently evaluated individuals in stage 1 is used to cre-
ate the metamodels in step 5. In what follows, for
each objective function, either one of the metamod-
els or the original functions are used to evaluate the
offspring individuals in step 7 and thus, an adaptive
evolution control strategy is used. In other words, if
none of the metamodels is accurate enough (accuracy
is compared with a predefined parameter), the origi-
nal functions are used. To select the individuals for
updating the metamodel in step 9, nondominated in-
dividuals after step 7 (in case a metamodel is used)
are re-evaluated with the original functions and added
to the archive in step 10. Dominated individuals are
removed from the archive and the remaining individ-
uals are used to update the metamodels. The size of
the archive is fixed here and clustering is used via a
linkage algorithm [53] to remove extra individuals.

The SASA algorithm was tested on eight bench-
mark problems [28] with two objectives, 10 decision
variables and 1-2 constraints. The hypervolume and
displacement metric [12] were used to compare SASA
with NSGA-II and the infeasibility driven evolution-
ary algorithm (IDEA) [105]. For the same number of
function evaluations, SASA performed better than the
other algorithms for seven problems and for one prob-
lem, IDEA performed the best in both performance
criteria.

In [85], a similar algorithm to MOEA/D-EGO was
proposed, where radial basis function was used as the
metamodel. This algorithm is known as MOEA/D-
RBF, where the metamodel is built for each objective
function instead of scalarized objective function. An
ensemble of metamodels (RBF with three different ba-
sis functions) is used for each objective function in step
5. A weighted sum of predictions from each metamodel
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is used in the ensemble of metamodels and the weights
are decided based on the prediction error of the meta-
model. To update the metamodel in step 9, the follow-
ing procedure is adopted.

In MOEA/D let, W =
{

w1, . . . , wN
}

are a uni-
formly distributed set of weight vectors and R is the
number of points to be re-evaluated in step 9. An
another set of uniformly distributed weight vectors
W R =

{
w1R, . . . , wNR

}
is defined such that size of W R

¡ size of W as shown in Figure 2. For each wiR ∈ W R,
a neighborhood is defined BR(wiR) =

{
w1, . . . , wNa

}
,

such that w1, . . . , wNa ∈ W are the Na closest weight
vectors from W to wiR. After this, from each neighbor-
hood, an individual which minimize the single objec-
tive optimization problem used in MOEA/D is selected
for re-evaluation and added to the archive in step 10.
In this algorithm, a penalty boundary intersection ap-
proach [135] is used for decomposition of the MOP into
single objective optimization problems. The size of the
archive is fixed in this algorithm and the same pro-
cedure mentioned above is applied to eliminate extra
individuals from the archive.

w1R 
w2R 

w3R 

w4R 

w5R 

BRw1R 

BRw5R 

Figure 2: Association of weight vectors from W to WR

MOEA/D-RBF was tested on five benchmark (two
objectives and 8-30 decision variables) and one real-
world problem (two objectives and 11 decision vari-
ables). It was compared with MOEA/D (for both
benchmark and real-world problems) and MOEA/D-
EGO (only for benchmark problems) with hypervol-
ume as the comparison criterion. The proposed al-
gorithm obtained better performance in 5 out of six
problems in the same number of function evaluations.

3.6 Comparison of function approxima-
tion based algorithms

In what follows, a comparison of function approxima-
tion based algorithms discussed so far is presented in
Figure 3. This figure represents the number of papers
with respect to the metamodel (upper part of the fig-
ure), EA (lower part of the figure) and evolution con-
trol strategy used. The references for these three cri-
teria are mentioned inside the bars of the figure. One
should note that some algorithms mentioned in this
section were not tested on computationally expensive

MOPs. These algorithms are still cited here as they
have been proposed for considering the computational
burden in any MOP.

The number of papers which used benchmark and
real-world problems is also mentioned in Figure 3.
Seven algorithms [79, 98, 101, 103, 118, 122, 136]
were tested on benchmark problems, seven algorithms
[7, 46, 49, 56, 71, 89, 119] on real-world problems and
seven algorithms [15, 76, 78, 80, 81, 85, 139, 19] on
both. The efficiency of the different algorithms in terms
of computation time or number of function evaluations
reduced is very important, especially in the case of real-
world problems. In some cases, the authors mentioned
that it was practically difficult to do optimization with-
out approximations due to high computation time and
the algorithm was not compared with an EA without
any metamodel.

As far as selection of a metamodel is concerned,
as mentioned in Section 3.1, there is no general rule
or correlation between a metamodel for approxima-
tion and a particular problem to be solved. As
shown in Figure 3, single metamodel is used more
than multiple metamodels and ensemble of metamod-
els. In algorithms using single metamodel, Kriging
[56, 78, 76, 81, 103, 119, 136, 139] has been used
more than other metamodels such as neural networks
[15, 72, 89, 98, 122], support vector regression [46, 101]
and polynomial regression [80].

In [139], Kriging was used as a metamodel and the
authors mentioned that within different metamodels
studies to date, perhaps the most common type of
metamodel used is the Kriging model. In [15], radial
basis functions (RBFs) were used and the authors men-
tioned that RBF was a kind of approximation having a
very good approximation accuracy. In [7], the authors
mentioned that RBFs were very powerful functions to
represent complex fitness landscapes. In addition, the
authors mentioned that Kriging had a strong mathe-
matical basis, and is probably one of the most powerful
interpolation algorithms currently available.

Managing the metamodels or evolution control is
also very important as it affects the performance of the
metamodel used. As shown in Figure 3, the fixed evolu-
tion control strategy was used more than the adaptive
evolution control strategy. As mentioned in Section 2,
using an adaptive evolution control strategy depends
on the accuracy of the metamodel used and using a
fixed evolution control strategy implies that either the
metamodel is accurate enough for approximation or the
metamodel accuracy is not important or not checked.
There are only five algorithms [81, 89, 90, 118, 139]
where adaptive evolution control was used. For in-
stance in [81], after using Kriging models, uncertainty
of the approximated values was compared with a pre-
defined value and if that uncertainty was acceptable,
then only Kriging models were further used otherwise
original function were used. A similar strategy was fol-
lowed in [89], where accuracy of neural networks was
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Figure 3: Comparison of different algorithms considering metamodel (upper chart), EA (lower chart) and evo-
lution control strategy used and characteristics of optimization problem considered, [A,B,C] = [single, multiple,
ensemble] of metamodels based algorithms; [W,X,Y,Z] = [Dominance, Decomposition, DE, SA] based algorithms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A

B

C

Number of papers

Fixed evolution control
Adaptive evolution control

[3, 15, 27, 46, 56, 72, 76, 78, 80, 96, 98, 97, 101, 102, 119, 106, 109, 122, 136, 19] [81, 89, 90, 139] 19B , 16R

[7, 49, 95] 1B , 3R

[79, 85] [118] 3B , 1R

iB Benchmark problems

jR Real-world problems

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

W

X

Y

Z

Number of papers

[3, 15, 27, 46, 49, 56, 72, 76, 78, 79, 80, 101, 102, 119, 106, 109, 122] [81, 89, 139] 14B , 15R

[85, 96, 95, 98, 97, 136, 19] 7B , 3R

[7] [90] 1B , 2R

[118] 1B , 0R
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measured after every generation and compared with
a predefined value. In [90], uncertainties of offspring
was compared with the uncertainties of parents and
based on the comparison, the decision was made to use
Kriging models or original functions. In [118, 139], af-
ter training the metamodels, metamodels and original
functions were used and an error in approximation was
measured and if the error was acceptable, only then
metamodels were used further for approximation.

Moreover, the training time for different metamod-
els was not considered in many papers though training
time can be substantially high in some cases, particu-
larly, when the metamodel approximation accuracy is
important. Among EAs, dominance based algorithms
are more widely used than other algorithms e.g. de-
composition based or indicator based. Moreover, in
dominance based EAs, NSGA-II was used more often
than other EAs.

3.7 Problem and fitness approximation
In addition to function approximation, problem and
fitness approximations are also used in the literature
to reduce the computation time in multiobjective op-
timization problems. In problem approximation, the
original problem is replaced by a simpler problem
which is faster to solve. The main goal in problem ap-
proximation is to reduce the computational complex-
ity of the problem. In case of computational fluid dy-
namics or structural analysis, the governing equations
can be modified to reduce the computation time. For
example, replacing 3-dimensional Navier-Stokes equa-
tions by 2-dimensional Euler equations [73] reduces
the computational complexity of the problem. In [73]
and [74], Euler equations were used instead of Navier-
Stokes equations to solve aerodynamic shape optimiza-
tion problems. A similar approach was followed in
[87, 94], where 2-dimensional Navier-Stokes equations
were used for solving aerodynamic shape optimization
problems.

Recently, data-driven optimization algorithms [132,
19] are also proposed to solve problems where an an-
alytical forms or simulations models for the objective
functions are not available and some data is available
obtained through some physical experiments. There-
fore, to obtain Pareto optimal solutions, one has to rely
upon the data available. In [132], a MOP was formu-
lated using the data available from a trauma system.
In addition, the authors found out that accuracy and
size of the data used in optimization are conflicting.
In contrast, in [18] the data of a small size was used
and applied to a blast-furnace problem with eight ob-
jectives. In general, algorithms in problem approxi-
mation are application-dependent to be tailored to the
characteristics of the problem in question.

Two types of fitness approximation were mentioned
in the literature [58], fitness inheritance and fitness
imitation which are defined in Section 2. In addi-

tion to these two types, metamodels are used in the
literature in other elements instead of approximating
the objective function values e.g. approximation of the
rank, classification of individuals into nondominated
and dominated set, distance of the nondominated in-
dividuals etc. Therefore, we summarize all algorithms
using such kinds of approximations under fitness ap-
proximation.

Fitness inheritance was originally proposed in [120]
to improve the performance of genetic algorithms. Two
types of fitness inheritance were proposed in that pa-
per. In the first one, known as averaged inheritance,
the fitness values of the offspring were calculated by
taking the average of the fitness values of the parents.
In the second one, known as proportional inheritance,
weighted average of the fitness values of the parents
were assigned to offspring and weights were assigned
according to common elements between offspring and
parents. This algorithm was tested on OneMax prob-
lem [2] and the algorithm with fitness inheritance gave
better performance (a graphical comparison was per-
formed) than without inheritance in fewer function
evaluations.

In what follows, some papers are cited here which
use the concept of fitness inheritance. One should note
that all these algorithms were not tested on compu-
tationally expensive MOPs. In [16], analytical algo-
rithms for computing convergence time and population
size were proposed for using the fitness inheritance in
MOPs. In [33], the fitness inheritance was used with a
binary genetic algorithm (GA) for the ZDT benchmark
problems. The authors found a similar performance of
the binary GA with and without using the fitness in-
heritance for problems having convex and continuous
Pareto fronts. In case of nonconvex and discontinu-
ous Pareto fronts, the binary GA without inheritance
performed better and the authors mentioned that fit-
ness inheritance can only be applied to problems hav-
ing convex and continuous Pareto fronts. In contrast,
in [107], the authors found out that the fitness inheri-
tance can also be applied to problems having noncon-
vex and discontinuous Pareto fronts.

In [82], a metamodel was used to predict the class
for the individuals. This class was the indication that
individuals were either nondominated or dominated.
This algorithm is known as Pareto-SVM where one
class SVM is used for the classification of individuals in
the decision space into nondominated and dominated.
In addition, support vector regression is used to pre-
dict those individuals (after classification in the deci-
sion space) to a target value in the objective space. Ag-
gregate surrogate metamodel terminology is used in the
paper as two metamodels are used, one in the decision
space and another in the objective space. Instead of
binary classification in the decision space, all nondom-
inated individuals mapped to the single value ρ with
tolerance ε and all dominated individuals are mapped
to ] − ∞, ρ − ε[. In this way, the individuals belonging
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to [ρ + ε, +∞[ are in the unexplored region. In step
9, an updating criterion for the metamodel is inspired
from EA PESA-II [23]. Firstly, individuals obtained
after step 7 are added to the archive and duplicate in-
dividuals are removed. Then, the objective space is
partitioned into a fixed number of equal sized hyper-
boxes and one individual or nondominated individual
(if the box contains nondominated) is selected from
each box randomly. These individuals are re-evaluated
using the original functions. The size of the archive is
fixed in this algorithm. In addition, to generate off-
spring in step 6, firstly, a fixed number of individuals
(more than the population size) is generated using the
variation operators. Then a fixed number of individ-
uals is selected based on their distance to the current
nondominated individuals in the decision space.

The proposed algorithm was tested on eight bench-
mark problems with two objectives and 10-30 deci-
sion variables. Hypervolume was used as the perfor-
mance criterion for comparison of Pareto-SVM with
(μ + λ) − S−NSGA-II [35] and μ × (1 + λ)−MO-CMA-
ES [50]. Pareto-SVM obtained similar performance in
fewer function evaluations.

In [83], Pareto-SVM was extended to a rank based
aggregate surrogate model. In this algorithm, instead
of two classes, various classes were obtained in the deci-
sion space based on the rank of individuals. In this way,
nondominated individuals at the current generation are
not constrained to the bounds. A pairwise dominance
relation was used to classify individuals. For example,
two possibilities exist, if an individual dominates an-
other individual or is dominated by it. The case for
nondominated individuals is mentioned as the future
work. Other details are the same as in Pareto-SVM.

The proposed algorithm was tested on the same
benchmark problems. It was compared with (μ + λ) −
S−NSGA-II, μ × (1 + λ)−MO-CMA-ES and Pareto-
SVM with hypervolume as the performance criterion.
In comparison to Pareto-SVM, it performed similar
and in comparison to other two algorithms, it per-
formed better in fewer function evaluations.

In [99], instead of predicting objective functions, a
metamodel was used to predict the distance to the cur-
rent nondominated individuals in the decision space.
Three metamodels, linear regression, support vector
regression and multilayer perceptron were used inde-
pendently. This algorithm is known as ASM-MOMA,
where the metamodel is built for the distance to the
nondominated individuals in step 5. In addition, a lo-
cal search algorithm is used to improve the individuals
obtained after step 7. To update the metamodel in step
9, nondominated individuals at the current generation
are added to the archive in step 10. The size of the
archive is fixed in this algorithm and extra individuals
are removed from it randomly.

ASM-MOMA was tested on four benchmark prob-
lems (two objectives and 15 decision variables) and
compared with NSGA-II and IBEA [141] with hyper-

volume as the performance criterion. The proposed
algorithm obtained similar performance in fewer func-
tion evaluations than other algorithms while using lin-
ear regression as the metamodel.

In [100], ASM-MOMA was extended to higher-
dimensional problems (in the objective space) with
two different additional elements. Instead of using
one global metamodel, multiple local metamodels were
used. This algorithm is known as LAMM-MMA where
the training data in the decision space is partitioned
into different sets based on the distance of individu-
als to the current nondominated individuals. Multi-
ple local metamodels are then built using this data in
step 5. Other details are the same as in ASM-MOMA.
This algorithm was tested on four benchmark prob-
lems with 5-15 objectives and 20 variables and com-
pared with IBEA and ASM-MOMA with hypervolume
as the performace criterion. LAMM-MMA performed
better than IBEA and similar to ASM-MOMA in the
same number of function evaluations.

In [9], a metamodel was used to predict the con-
tribution to the hypervolume instead of the objective
functions. This algorithm is known as NN-SS-IBEA
where a metamodel (neural network) is built for the
contribution to the hypervolume of individuals in step
5. After evaluating the new individuals in step 7, one
individual having the maximum contribution to the hy-
pervolume is re-evaluated in step 9 and added to the
archive in step 10. The size of the archive is fixed
in this algorithm and extra individuals are eliminated
from the archive based on their hypervolume contribu-
tion.

The proposed algorithm was tested on 12 bench-
mark (2-3 objectives and 8-30 decision variables) and
one real-world problem (two objectives and 11 deci-
sion variables). The algorithm was compared with
MOEA/D-RBF [85] and IBEA [141]. The hypervol-
ume was used as the comparison criterion. In case of
benchmark problems, NN-SS-IBEA performed better
in eight out of 12 problems with the same number of
function evaluations. In case of the real-world problem,
the proposed algorithm performed better than others
for a given number of function evaluations.

A similar algorithm to [83] was proposed in [11],
where nondominated individuals were also used during
classification. In this algorithm, a metamodel is built
for three classes while doing pairwise dominance com-
parison. Here, three possibilities exist, one solution
dominates another, one solution is dominated by an-
other or both solutions are nondominated. Ten differ-
ent classification algorithms were used independently.
The metamodel is updated in step 9 after a fixed num-
ber of generations with the previously evaluated indi-
viduals in step 7. The information on the size of the
archive is not mentioned.

The proposed algorithm was tested on three bench-
mark problems (two objectives and 5-20 decision vari-
ables). However, this algorithm was not compared
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with any other algorithm, but the results of ten clas-
sification algorithms were compared using the train-
ing time and the accuracy as the comparison criteria.
The authors mentioned that SVM, classification trees,
k-neural network and quadratic discriminant analysis
were the most preferred among other metamodels as
these metamodels found the knee region in the objec-
tive space.

In [114], a metamodel was used to predict the rank
of individuals in the objective space. In this algorithm,
the metamodel is used to create boundaries between
fronts in the objective space. As shown in Figure 4, θ1
and θ2 represent the two boundaries created using indi-
viduals of three different fronts. The ranks of offspring
individuals are then predicted with an indicator func-
tion mentioned in the paper with boundaries created
(steps 5-7). For example, individuals that lie below θ1
are of rank 1, individuals between θ1 and θ2 are of rank
2 and individuals above θ2 are of rank 3. The first rank
individuals are re-evaluated using the original functions
in step 9 and added to the archive in step 10. The size
of the archive is not fixed in this algorithm.

This algorithm was tested on 19 benchmark prob-
lems (the authors did not mention explicitly the num-
ber of objectives and decision variables) and com-
pared with NSGA-II, SPEA2 [142] and MOEA/D
[135]. Three performance criteria (generational dis-
tance, inverted generational distance and hypervolume
[34]) were used to compare the proposed algorithm and
EAs for the same number of function evaluations. Out
of 19 problems, the proposed algorithm performed bet-
ter than the other algorithms in 16, 14 and 12 problems
in generational distance, inverted generational distance
and hypervolume, respectively. In the rest of the prob-
lems, MOEA/D and NSGA-II performed better than
the proposed algorithm.

f1(x) 

f 2(
x)

 

θ1 
θ2 
rank 1 individuals 
rank 2 individuals 
rank 3 individuals 

Figure 4: Assignment of ranks to individuals
In [124], a study was performed to compare four

metamodelling techniques and three different scalariz-
ing functions using two different approaches of approx-
imation. Therefore, for each approximation, 12 dif-
ferent experiments were performed on different prob-
lems. A data set of prefixed size was used for train-
ing and validation. The error after the validation was
used to compare different studies. As no algorithm

was proposed in the current study, other steps of the
function approximation were not applied. Four meta-
models were based on Kernel ridge regression (KRR),
Kriging, Generalized linear models and Tree-based re-
gression. Three different scalarizing functions tested
were based on Tchebychef (TCH), Boundary intersec-
tion (PBI) and weighted sum (WS). As mentioned, two
different approaches of approximation were used, in the
first one, the metamodel was used for the scalarizing
funcion and in the second one, the metamodel was used
to approximate the rank of individuals.

In the study, experiments were conducted on DTLZ
suite with 4-10 objectives and 8-19 decision variables.
In both types of approximation used, Kriging per-
formed the best. In comparing different scalarizing
functions, TCH performed the best in the first type
of approximation and WS in the second type of ap-
proximation. Developing a algorithm was considered
as a future work.

4 Discussion
In this section, we first summarize promising elements
that we found in the algorithms proposed in the lit-
erature. Furthermore, we also discuss ways which can
be used to design enhanced EAs to handle computa-
tionally expensive MOPs. Finally, we discuss the main
issues we have observed in the algorithms in the litera-
ture with respect to using an approximation in an EA
and the numerical settings used to test their efficacy.

4.1 Promising elements in the litera-
ture

We discuss here promising elements with respect to the
choice of the metamodel to be used, building/updating
the metamodels and using different types of approxi-
mations together to reduce the computation time. Fur-
thermore, we discuss the potential of using hybrid algo-
rithms with function approximation based algorithms
to enhance the rate of convergence of EAs near Pareto
optimal solutions. Also, one can use these elements
while designing an algorithm for using an approxima-
tion with EA to reduce the computation time.

Often when metamodels are used, the type of meta-
model to be used is a random choice. It is often difficult
to know a priori the best metamodel to be used in the
solution process. An ensemble of metamodels (see e.g.
[79] and [118]) could be an easy fix, where the algo-
rithm is not limited to one single metamodel. In [79],
weights are assigned to the fitness values predicted by
each metamodel and the weighted sum is then used to
get the final fitness value. In [118], one metamodel hav-
ing the highest accuracy is used for evaluating individu-
als of the EA population. Moreover, in [7], the authors
present an improved way of using multiple metamod-
els that focus on different parts of the Pareto front.
These metamodels are updated using some solutions
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Table 2: algorithm reference, problems used, dimensions of the problems and metamodel used in different al-
gorithms ref : reference, problem : multiobjective problem(s), var/obj/cons : number of decision variables,
objectives and constraints, metamodel : metamodel used

ref problem var/obj/cons metamodel
[7] Aerodynamic shape optimiza-

tion
12/2-3/0 NN

[9] Benchmark 8-30/2-3/0 NN
Aerodynamic shape optimiza-
tion

11/2/0 NN

[11] Banchmark 5-20/2/0 several classification algorithms
[15] Benchmark 1-5/2/2 NN

Design of vehicle door 5/2/2 NN
[19] Benchmark 10/3-10/0 Kriging

Free-radical polymerization 4/3/0 Kriging
[46] Rigid frame design 10/2/0 SVR
[49] Microchannel heat sink 3/2/0 PR, Kriging, NN
[56] Fatigue strength assessment

for ship
17/2/11 Kriging

[72] Coastal aquifer management 8/2/0 NN
[76] Benchmark 3-6/2/0 Kriging

Cabinet problem 2/2/0 Kriging
Gear train problem 4/2/0 Kriging
Distillation column 4/2/4 Kriging

[78] Benchmark 3-6/2/0 Kriging
Cabinet problem 2/2/0 Kriging
Gear train problem 4/2/0 Kriging

[79] Benchmark 10-50/2 PR, Kriging,
NN (ensemble)

[80] Benchmark 2-3/2/2 PR
Car front floor forming 3/2/1 PR
Car sheet metal forming 3/2/0 PR

[81] Benchmark 2-30/2/0 Kriging
Stiffed panel problem 6/3/0 Kriging

[82] Benchmark 10-30/2/0 SVR,SVM
[83] Benchmark 10-30/2/0 SVR,SVM
[85] Benchmark 8-30/2/0 NN (ensemble)

Aerodynamic shape optimiza-
tion

11/2/0 NN (ensemble)

[89] Iron induration process 22/2/3 NN
[98] Benchmark 10-60/2/0 NN
[99] Benchmark 15/2/0 LR,SVR,NN
[100] Benchmark 20/5-15/0 LR,SVR,NN
[101] Benchmark 10-30/2/0 SVR
[102] Benchmark 3-6/2-5/0 Kriging
[114] Benchmark - SVM
[118] Benchmark 10/2/2 PR,NN (ensemble)
[119] Nowacki bean problem 2/2/5 Kriging

Double folded stub microwave
filter

3/2/7 Kriging

[122] Benchmark -/2/0 NN
Automobile production plan-
ning

11/2/0 NN

[132] Trauma system -/2/2 PR
[136] Benchmark 2-8/2-3/0 Kriging
[139] Benchmark 5/2/0 Kriging

Stiffed panel problem 6/2/0 Kriging
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that were more and less accurate. Selection of these
solutions enables the algorithm proposed in [7] to con-
verge faster and explore the search space for promising
candidate Pareto optimal solutions.

One more promising element observed in some of
the algorithms in the literature is to use a combi-
nation of different approximations. In [122], fitness
inheritance (a type of fitness approximation) is used
with function approximation to reduce the computa-
tion time. Problem approximation is used with func-
tion approximation in [139] to decrease the computa-
tional complexity of the problem in question and the
numbers of function evaluations. Moreover, the use
of multilevel approaches [41, 65] which depend on the
problem to be solved needs more attention from both
researchers and practitioners. In these approaches, ei-
ther different solvers were used to solve governing equa-
tions (e.g. Navier-Stokes equations) or different prob-
lems were solved at different levels. For more details
about multilevel approaches, see [41].

In addition, metamodels have been used in the lit-
erature to predict the quality of solutions instead of
the objective functions. For instance, in [9], the meta-
model was used to predict the hypervolume contribu-
tion of the individuals. In [99, 100], the metamodel
was used to predict the distance from the current non-
dominated individuals. Moreover, in [11, 82, 83], the
metamodel was used to classify the individuals into dif-
ferent classes based on their dominance relations. In
[114], the metamodel was used to predict rank of in-
dividuals by creating boundaries between individuals
in the objective space. This way of using a metamodel
other than function approximation could be affective as
instead of actual objective functions, quality of individ-
uals (e.g. using hypervolume or rank) is predicted.

Hybrid EAs with a combination of global and local
searches are used to enhance the rate of convergence
towards the Pareto front [51, 52, 116, 117]. However,
such algorithms are not commonly used together with
function approximation to handle computationally ex-
pensive MOPs. In the literature e.g. in [49, 79, 125],
a local search is used with function approximation.
This way of using local search algorithm with function
approximation can inherit advantages of both hybrid
algorithms and function approximation based algo-
rithms, i.e. fast convergence and reducing the numbers
of computationally expensive function evaluations.

4.2 Issues with the present algorithms
Let us discuss next the main issues we have observed in
the algorithms in the literature related to using an ap-
proximation in an EA and the numerical settings used
to test their efficacy. These main issues include: 1. type
of test problems used (benchmark or real-world), 2. di-
mensions of the test problems both in objective and
decision spaces considered, 3. scarce use of constrained
problems for numerical testing, 4. neglecting the train-

ing time for fitting the metamodel used when reporting
results, 5. less focus on the accuracy of the metamodel,
6. not well explored updating criterion of the meta-
model, 7. not well structured ensemble of metamodels,
and 8. less emphasis to algorithms that consider prob-
lem information when available. To augment the dis-
cussion on the issues enumerated above, we present in
Table 2 an overview of the test problems considered in
the literature with their dimensions both in objective
and decision spaces and the type of metamodel used.
Issues 1-3 and 4-8 address the shortcomings in numer-
ical testing and solution algorithms used, respectively.

In Table 2, it can be clearly seen that both bench-
mark and real-world problems have been widely used
by researchers to test their proposed EAs. Benchmark
problems available in the literature are designed to
be simple to implement, fast to evaluate, have known
global optimal solutions, pose varied challenges to EAs
such as several locally optimal solutions etc. Bench-
mark problems solved are not computationally expen-
sive and used just to test the efficiency of a particular
algorithm. For more details about the characteristics of
benchmark problems, see [28, 21]. On the other hand,
real-world problems either are actual problems consid-
ered in the industry or an emulation of them. Often,
real-world problems are computationally expensive to
evaluate, have uncertainties in their input and output
variables, which in turn does not allow a thorough test-
ing of an EA in practice using several real-world prob-
lems. Thus, it could be a good practice, if a numerical
test setting involving several benchmark and a few real-
world problems could be used to thoroughly test EAs.
However, in the literature very few researchers have
adopted this practice. One reason for this could be at-
tributed to the lack of open availability of real-world
problems to all researchers.

Real-world problems in industries often involve a
large number of objectives, a large decision space and
a large number of constraints. It can be seen in Table
2 that most of the problems considered in the litera-
ture are usually low dimensional both in decision and
objective spaces. Additionally, only six algorithms re-
ferred in Table 2 consider constraints in the problems
for testing in addition to bounds for the decision vari-
ables. Thus, significant attention is needed towards
issues 2 and 3 and more constrained benchmark and
real-world problems need to be included in the numer-
ical test settings. The number of objectives considered
does not usually exceed three and the maximum num-
ber of decision variables considered is under 60. In fact,
only three algorithms were used on more than three ob-
jective functions, four algorithms were used for three
objective functions and the rest of the algorithms were
used for solving biobjective optimization problems.

Furthermore, it is worth noting the connection be-
tween the type of metamodels used and the number of
decision variables associated with the problem. In one
instance, neural network was used when the number of
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decision variables was high (60). Next, in the decreas-
ing order of popularity are algorithms using ensemble
of metamodels, Kriging, support vector regression and
polynomial approximation (including linear regression)
for handling high dimensional (decision space) prob-
lems. What is missing in the literature is a study with
each of the algorithms about the efficacy of using dif-
ferent metamodels when the dimensions of the decision
space increases, especially in algorithms where the type
of the metamodel to be used within the algorithm is not
binding. Hence, further research towards dimensions
and types of metamodels is needed.

The issues 4-7 concern the use of metamodels. The
major concern in the literature is how to alleviate the
computational cost of the MOP. However, the train-
ing time needed to build/update a metamodel is com-
pletely neglected when reporting the results. This is
mainly based on the assumption by the researchers that
the computation time needed to compute objective
and constraint function values is significantly higher as
compared to the building/updating time of the meta-
model used. This assumption may not hold in all cases
and, specifically, when a large amount of data is used
to build/update the metamodel.

Most of the algorithms discussed in this survey used
a fixed evolution control strategy, i.e. the accuracy of
the metamodel is not considered as an important is-
sue. In this survey, we defined the adaptive evolution
control, where if the metamodel is not accurate, the
original functions are used for evaluating individuals.
A desired accuracy for a metamodel can be predefined
(e.g. in terms of a parameter) or changed by the user
during the solution process. The accuracy can be cal-
culated by different statistical measurements such as
root mean square error, coefficient of determination,
analysis of variance (ANOVA) etc. [123]. As the ac-
curacy of the metamodel is not considered in many
algorithms in the literature and this is a valid future
research direction.

The updating criterion of the metamodel can in-
fluence the quality of nondominated solutions. Con-
sidering the function approximation framework men-
tioned in Section 3, selected individuals from step 7 are
re-evaluated with the original functions. The number
and selection criterion of individuals to be used for re-
evaluation from step 7 is not well explored in the liter-
ature, however, few algorithms considered both explo-
ration and exploitation while updating the metamodel.
We consider this as an important issue as selection of
these individuals affects the updating time and accu-
racy of the metamodel, which may finally affect the
quality of the set of nondominated solutions generated
by the algorithm.

Although we consider an ensemble of metamodels
to be a very promising element in the literature, yet,
we consider it as an issue as well. In most of the al-
gorithms proposed in the literature, only the accuracy
of the metamodel is used as the criterion to select a

particular metamodel. However, there can be other
criteria that can be considered in addition to the accu-
racy of the metamodel, e.g. diversity among individu-
als, training time of the metamodel etc. Considering
these criteria for structuring an ensemble of metamodel
is a future research direction.

Finally, the information about the MOP such as a
different computation time required for evaluating dif-
ferent objective and/or constraint functions must be
considered by the EA. Here we suggest two types of
problem information that can be considered: firstly,
if any objective function is not computationally ex-
pensive, a metamodel need not be created for that
function. However, many real-world problems involve
black box functions and therefore, an explicit informa-
tion about them can be difficult to obtain. Secondly,
sometimes performing an experiment to calculate the
value of an objective function may take less time or
may give better results when compared to using a nu-
merical model to evaluate the same. For example in
[69], a closed-loop optimization was performed, where
values of objective functions are obtained by perform-
ing real experiments and selection while crossover and
mutation operations are performed by using an EA.
For more details about closed-loop evolutionary mul-
tiobjective optimization, see [69]. Thus, both types of
problem information can lead to significant savings in
computation time.

5 Conclusions
In this paper, we have presented a survey of differ-
ent algorithms to reduce the computation time while
solving computationally expensive multiobjective op-
timization problems. Altogether, 45 algorithms were
found in the literature published in years 2008-2016,
which were classified based on the type of approxima-
tion used, i.e. problem, function or fitness. We found
that function approximation or using surrogates is the
most common approach for reducing the computation
time. Different algorithms were summarized based on
the steps of a unified function approximation frame-
work involving an evolutionary algorithm. Addition-
ally, six important challenges were identified, involving
using the metamodel, updating the metamodel, train-
ing time, type of the metamodel to be used, when
to update the metamodel and constraint handling for
implementing the proposed approximation framework.
Subsequently, the first three important challenges were
used in the survey to highlight the differences among
different algorithms.

A proper management of the metamodel makes an
algorithm efficient to solve a computationally expensive
problem. As different algorithms used different strate-
gies to manage the metamodels and solved problems
with different characteristics, it is difficult to general-
ize the efficiency of a method. However, the efficiency
of an algorithm can be attributed by 1. number of func-
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tion evaluations used 2. dimensions (both in objective
and decision spaces) of problems solved 3. characteris-
tics of the problems solved e.g. non-linearity in the de-
cision space, multimodality, disconnected Pareto front.
As metamodel based algorithms are generally devel-
oped for black-box problems where characteristics of
the problems to be solved is not known a priori, there-
fore, one can measure the efficiency of an algorithm by
its ability to provide meaningful solutions in least num-
ber of function evaluations. We also provided the di-
mensions and the number of function evaluations used
to solve a particular problem.

In this survey, we summarized several algorithms
based on the steps of a unified function approxima-
tion framework. We also compared these algorithms
with respect to different criteria such as type of meta-
model and evolutionary algorithm used, type of prob-
lem (benchmark or real-world) solved and evolution
control. Some of the major findings were: 1. Krig-
ing and neural networks were the most commonly used
metamodels, 2. most of the algorithms were based on
dominance based evolutionary algorithms, 3. most of
the algorithms solved the problems with maximum
three objectives, 4. most of the algorithms were not
developed to handle constraints, 5. number of decision
variables was also limited especially when using Krig-
ing, 6. only few algorithms used ensemble of metamod-
els, 7. many algorithms were tested only on benchmark
problems which were not at all computationally expen-
sive

We discussed problem and fitness approximation
based algorithms with respect to their potential to-
wards reducing the computational complexity and the
number of function evaluations. We also identified
some promising elements and issues among algorithms
in the literature. Promising elements involve using
an ensemble of metamodels, hybrid algorithms with
function approximation based algorithms and different
types of approximations together. We plan to address
several issues observed related to shortcomings in nu-
merical testings and algorithms in our future research.
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FiDiPro Project DeCoMo (funded by TEKES, The
Finnish Funding Agency for Innovation) and the re-
search of Dr. Karthik Sindhya was funded by by
SIMPRO project funded by Tekes: Finnish Funding
Agency for Innovation

References
[1] E. Aarts and J. Lenstra, editors. Local Search in

Combinatorial Optimization. Princeton Univer-
sity Press, 2003.

[2] D. Ackley. A Connectionist Machine for Ge-
netic Hillclimbing. Kluwer Academic Publishers,
Boston, 1987.

[3] T. Akhtar and C. Shoemaker. Multi objective
optimization of computationally expensive multi-
modal functions with RBF surrogates and multi-
rule selection. Journal of Global Optimization,
64:17–32, 2015.

[4] N. Alexandrov, J. Jr., R. Lewis, and V. Torczon.
A trust-region framework for managing the use
of approximation models in optimization. Struc-
tural Optimization, 15:16–23, 1998.

[5] R. Allmendinger, M. Emmerich, J. Hakanen,
Y. Jin, and E. Rigoni. Surrogate-assisted mul-
ticriteria optimization: Business case, complexi-
ties and prospective solutions. Multi-Criteria De-
cision Analysis, to appear, 2016.

[6] A. Arias-Montano, C. Coello, and E. Mezura-
Montes. MODE-LD+SS: A novel differential
evolution algorithm incorporating local domi-
nance and scalar selection mechanisms for multi-
objective optimization. In Proceedings of the
IEEE Congress on Evolutionary Computation,
pages 1–8. IEEE, 2010.

[7] A. Arias-Montano, C. Coello, and E. Mezura-
Montes. Multi-objective airfoil shape optimiza-
tion using a multiple-surrogate approach. In Pro-
ceedings of the IEEE Congress on Evolutonary
Computation, pages 1–8. IEEE, 2012.

[8] H. Aytug and S. Sayin. Using support vector
machines to learn the efficient set in multiple ob-
jective discrete optimization. European Journal
of Operational Research, 193:510–519, 2009.

[9] N. Azzouz, S. Bechikh, and L. Said. Steady state
IBEA assisted by MLP neural networks for ex-
pensive multi-objective optimization problems.
In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 581–588. ACM,
2014.
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A Surrogate-assisted Reference Vector Guided Evolutionary
Algorithm for Computationally Expensive Many-objective

Optimization
Tinkle Chugh, Yaochu Jin, Fellow, IEEE, Kaisa Miettinen, Jussi Hakanen, Karthik Sindhya

Abstract—We propose a surrogate-assisted reference vector
guided evolutionary algorithm for computationally expensive
optimization problems with more than three objectives. The
proposed algorithm is based on a recently developed evolutionary
algorithm for many-objective optimization that relies on a set of
adaptive reference vectors for selection. The proposed surrogate-
assisted evolutionary algorithm uses Kriging to approximate each
objective function to reduce the computational cost. In managing
the Kriging models, the algorithm focuses on the balance of
diversity and convergence by making use of the uncertainty
information in the approximated objective values given by the
Kriging models, the distribution of the reference vectors as well as
the location of the individuals. In addition, we design a strategy
for choosing data for training the Kriging model to limit the
computation time without impairing the approximation accuracy.
Empirical results on comparing the new algorithm with the
state-of-the-art surrogate-assisted evolutionary algorithms on a
number of benchmark problems demonstrate the competitiveness
of the proposed algorithm.

Index Terms—multiobjective optimization, reference vectors,
surrogate-assisted evolutionary algorithms, model management,
Kriging, computational cost

I. INTRODUCTION

Many industrial optimization problems have multiple objec-

tives to be optimized and these objectives are typically con-

flicting in nature, i.e. improvement in one objective will lead

to deterioration of at least one of the other objectives. Such

problems are known as multiobjective optimization problems

(MOPs). In this paper, we consider MOPs in the following

form :
minimize {f1(x), . . . , fk(x)}

subject to x ∈ S
(1)

with k(≥ 2) objective functions fi(x): S→ �. The vec-

tor of objective function values is denoted by f(x) =
(f1(x), . . . , fk(x))

T . The (nonempty) feasible space S is a

subset of the decision space �n and consists of decision

vectors x = (x1, . . . , xn)
T that satisfy all the constraints. The

image of the feasible region S in the objective space �k is

called the feasible objective set denoted by Z. The elements

of Z are called feasible objective vectors denoted by f(x) or
z = (z1, . . . , zk)

T , where zi = fi(x), i = 1, . . . , k, are the

objective function values. As the objectives are conflicting,

This work was supported by the FiDiPro project DeCoMo funded by the
Finnish Funding Agency for Innovation (TEKES). (Corresponding author:
Yaochu Jin)

1Tinkle Chugh, Yaochu Jin, Kaisa Miettinen, Jussi Hakanen and Karthik
Sindhya are with the Faculty of Information Technology, University of
Jyvaskyla, Finland. Yaochu Jin is also with the Department of Com-
puter Science, University of Surrey, Guildford, United Kingdom. Email:
[first-name.last-name]@jyu.fi, yaochu.jin@surrey.ac.uk.

there typically does not exist a single optimal solution, but

multiple so-called Pareto optimal solutions. The set of all

optimal solutions in the objective space is called the Pareto

front and in the decision space the Pareto set.

A large number of optimization methods have been reported

in the literature. These methods can be classified into two

main different fields, namely, multiple criteria decision making

(MCDM) [33] and evolutionary multiobjective optimization

(EMO) [10], [13]. Methods either find a representative set of

Pareto optimal solutions or the most preferred solution for a

decision maker and they differ in the way the solutions are

obtained. For instance, in the MCDM community, an MOP is

often scalarized into a single objective optimization problem.

Moreover, a decision maker is usually involved in the solution

process to identify preferred solutions. On the other hand,

EMO algorithms work with a population of candidate solutions

and often aim to find a set of solutions representing the whole

Pareto front. The decision maker is involved usually after a

set of Pareto optimal solution is found [42].

Evolutionary algorithms (EAs) have become popular in past

decades due to several advantages. For example, they have

the ability to handle different kinds of decision variables e.g.

binary, integer, real or mixed and they do not assume any

convexity or differentiability of objective functions and/or con-

straints involved. Despite of these advantages, EAs are often

criticized because of slow convergence and a large number

of function evaluations needed before an acceptable solution

can be found. For instance, in aerodynamic optimization, one

function evaluation involving computational fluid dynamics

simulations may take substantial amount of time and it will

become computationally prohibitive to use an EA to solve

aerodynamic optimization problems.

One of the popular approaches to reduce computation time

in evolutionary optimization is to introduce approximations,

especially function approximation. Computational models for

functional approximation are often known as surrogates and

EAs using objective values estimated by surrogates are of-

ten referred to as surrogate-assisted evolutionary algorithm

(SAEAs). A surrogate is also known as a metamodel in

the literature, which can in part replace the computationally

expensive objective functions. For more details about SAEAs,

see [9], [24], [43].

Although numerous algorithms have been proposed in us-

ing surrogates in an EA, many challenges remain. One is

the choice of the surrogate, as different types of surrogate

techniques exist in the literature, e.g. Kriging, neural networks,

support vector regression and polynomial approximation. Nev-

ertheless, there is no simple rule for choosing the right type

1
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of surrogates for approximating the given computationally ex-

pensive objective or constraint functions. A second challenge

is how to use a surrogate, i.e. what to approximate using the

surrogate. The most conventional way is to approximate the

objective or constraint functions. In addition, a surrogate can

be used to estimate the rank of individuals [31], or some other

quality measure, e.g. distance to the nondominated solutions

[38], [39], [40], or hypervolume [2]. The third challenge is

the computational cost for constructing the surrogate, which

is often neglected in SAEAs. In practical, training a surrogate

may take a substantial amount of time, and the main aim of

reducing computation time will be jeopardized. The fourth

challenge is how to update the surrogate i.e. how to choose

individuals in the current population to be re-evaluated using

the original functions. Different ways exist in the literature for

selecting the individuals, e.g. selecting a set of best solutions

[25] or nondominated solutions [17] according to the surrogate

and selecting a set of representative solutions [27]. If the

Kriging model is used, one can select solutions that maximize

the expected improvement [47], the probability of improve-

ment [12] and hypervolume improvement [18]. Selection of

individuals to be re-evaluated is also called updating criterion

or infilling criterion. The fifth challenge is to determine when

the surrogate needs to be updated. For instance, it may be

possible that a surrogate is accurate enough and does not need

to be updated even if new training samples are available.

In SAEAs, which individuals are to be re-evaluated using

the original objective functions, how to update the surrogate

and when to update the surrogate are referred to as model

management, which is also known as evolution control [26]. In

[26], two methods were mentioned for managing the surrogate,

i.e., fixed evolution control and adaptive evolution control.

In fixed evolution control, updating the surrogate is based

on a prefixed criterion, while in adaptive evolution control,

a surrogate is updated based on its performance.

As pointed out in [9], little work has been reported on

using SAEAs for solving computationally expensive problems

having more than three objectives. During the years 2008-

2015, only three algorithms [6], [38], [41] have been tested

on multi-objective benchmark problems with more than three

objectives. While many industrial problems, e.g., optimization

of the controller of a hybrid car [36], involve more than

three computationally expensive objectives, surrogate-assisted

evolutionary optimization of many-objective problems has

not attracted much attention in the evolutionary computation

community and SAEAs developed so far cannot be directly

extended to many-objective optimization. Therefore, our work

is an effort to fill this gap.

Apart from the challenges resulting from the large num-

ber of objectives, it is notoriously difficult to achieve high-

quality surrogates for large scale optimization problems due

to the curse of dimensionality. For this reason, the number

of decision variables SAEAs have handled is by far up to 50.

According to a recent survey [9], only seven SAEAs have been

tested on optimization problems with more than 20 decision

variables and six of them were benchmarks. Note that SAEAs

using neural networks as the surrogate were tested on more

than 20 variables, while SAEAs using Kriging models as the

surrogate have been used to solve problems with up to eight

decision variables. This can be attributed to the fact that the

computational time for training the Kriging model will become

too long when the number of training samples increases [35].

This paper focuses on developing an efficient SAEA for

solving computationally expensive many-objective optimiza-

tion problems. One of the major reasons limiting the applica-

bility of existing algorithms to many-objective optimization is

the lack of an efficient surrogate management method suited

for the evolutionary algorithm used. In SAEAs when managing

the surrogates, individuals should be selected by taking into

account of both convergence and diversity. To select such

individuals, surrogates need to be seamlessly embedded into

the evolutionary algorithm. Most existing SAEAs are domi-

nance based and thus are not well suited for handling many

objectives. Therefore, the major contribution of the paper is

to propose an efficient algorithm to manage the surrogates for

handling a large number of objectives. To this end, we adopt

the reference vector guided evolutionary algorithm (RVEA) [8]

for many-objective optimization to be used as an evolutionary

algorithm. Two sets of reference vectors adaptive and fixed,

together with uncertainty information from the Kriging models

as well as the location of the individuals are exploited for

surrogate management. To limit the computation time for

training the Kriging models, a strategy for choosing training

samples is proposed so that the maximum number of training

data is fixed.

The rest of the paper is organized as follows. In Section

II, we provide a relatively detailed description of RVEA as

well as Kriging models so that the paper is self-contained.

The Kriging assisted RVEA, called K-RVEA is introduced

in Section III. Section IV presents the numerical results of

K-RVEA on benchmark problems and compared them with

a few state-of-the-art SAEAs. Finally, conclusions are drawn

and future work briefly discussed in Section V.

II. BACKGROUND

In this section, we first summarize main components of

RVEA, which we use as the underlying evolutionary al-

gorithm. Next, we present a brief description of Kriging,

including a discussion about its advantages and disadvantages

over other surrogate models.

A. Reference vector guided evolutionary algorithm

Two major difficulties in solving problems with high num-

ber of objectives are convergence to the Pareto front and main-

taining a good diversity between solutions. Several evolution-

ary algorithms have been proposed for solving many-objective

optimization problems, by, for instance, using a revised domi-

nance relationship, decomposing the multi-objective optimiza-

tion into several single objective optimization problems, an

indicator-based objective function, or using reference points.

For more details about these algorithms and challenges in

solving problems with more than three objectives, see [23],

[29], [45].

RVEA is an EMO algorithm most recently developed for

many-objective optimization [8]. While MOEA/D [50] and

2
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NSGA-III [14] use a set of weights and reference points,

respectively, RVEA adopts a set of reference vectors. The main

difference between RVEA and the MOEA/D and NSGA-III

lies in its selection strategy. In RVEA, selection is based on

a criterion known as angle penalized distance (APD), which

is used to manage both convergence and diversity. It has

been shown [8] that APD is better scalable to the increase

in the number of objectives in maintaining a balance between

convergence and diversity. APD relies on a set of reference

vectors, which partitions the objective space into a number

of subspaces, where selection of individuals is performed

independently. The main components of RVEA are presented

in Algorithm 1.

Algorithm 1 RVEA

Input: tmax = maximum number of generations; N =
number of reference vectors; V0 = {v01, v02, . . . v0N} a set

of unit reference vectors;

Output: nondominated solutions from population Ptmax

1: Create an initial population P0 of size N randomly and set

generation counter t = 0

2: while t < tmax do
3: Generate offspring Qt

4: Combine parent and offspring populations, Lt = Pt∪Qt

5: Select parents (Pt+1) for the next generation

6: Update reference vectors (Vt+1)

7: end while

RVEA uses elitism and offspring generation strategies sim-

ilar to other state-of-the-art EMO algorithms such as NSGA-

II [15] and NSGA-III [14]. RVEA distinguishes itself with

NSGA-III in its selection strategy and the adaptation of

reference vectors, which are Steps 5 and 6 in Algorithm 1.

In the following, we present the four main components of

RVEA, i.e., generation of reference vectors, assignment of

individuals to reference vectors, selection and adaptation of

reference vectors.

1) Generation of reference vectors: RVEA uses a set of

reference vectors in the objective space to guide the search

process. To generate a uniformly distributed set of reference

vectors, first a set of uniformly distributed reference points (p)
is generated on a unit hyperplane using the canonical simplex-

lattice design method [11], [7].{
pi = (p1i , p

2
i , . . . , p

k
i ),

pji =
{

0
H , 1

H , . . . H
H

}
,
∑k

j=1 p
j
i = 1

(2)

where i = 1, 2, . . . , N with N being the number of uniformly

distributed points, k is the number of objectives and H is a

positive integer used in simplex-lattice design. An example

is shown in Figure 1 for a biobjective optimization problem,

where the dots represent the reference points generated on

a unit hyperplane. The corresponding reference vector is

then obtained by projecting the reference points from the

hyperplane to a hypersphere

vi =
pi

||pi|| . (3)

where ||pi|| represents the L2-norm of pi. As a result, these

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 1. An illustrative example of reference vectors for a biobjective
optimization problem.

reference vectors partition the objective space into a number

of subspaces. In the next subsection, we describe how the

individuals in a population are assigned to these reference

vectors and how the population is partitioned into different

subpopulations.

2) Assignment of individuals to reference vectors: After the

generation of the reference vectors, individuals are assigned

to them as follows. First, objective values of all individuals

at the current generation are are translated, i.e.
¯
f j
i = f j

i −
f∗
i , where f j

i represents the objective value of fi for the jth

individual and f∗
i the minimum objective values of fi at the

current generation. We denote the translated objective vector

by f̄ = (f̄1, f̄2, . . . , f̄k). Translation of objective functions

ensures that the initial point of reference vectors is always

the origin and all the translated objective values are inside

the positive orthant. After the translation, the acute angle is

measured between an individual and all the reference vectors.

For instance, let us consider the situation shown in Figure 2,

with two reference vectors vi and vi+1, and three individual

f̄1, f̄2 and f̄3. As the angle θ1i between the individual f̄1 and

the reference vector vi is less than the angle θ1i+1 between the

individual and the other reference vector vi+1, this individual

is assigned to the first reference vector vi. Similarly, f̄2 and f̄3

will be assigned to reference vector vi and vi+1, respectively.

Therefore, an individual is assigned to a reference vectors if

and only if the angle between it and the reference vector is

minimum among all reference vectors. In this way, assignment

of individuals to the reference vectors partitions the population

into subpopulations. Other notations in Figure 2 are used in

the next subsection.

3) Selection mechanism in each subpopulation: After the

generation of reference vectors and the assignment of individ-

uals them, one individual is selected from each subpopulation

(Step 5 in Algorithm 1). The selection criterion consists of

two subcriteria that are meant for managing convergence and

diversity, respectively. Convergence is taken care by the dis-

tance between the translated objective vector and the origin. As

selection is performed in each subpopulation independently, let

us take the subpopulation corresponding to reference vector vi.
In the illustrative example shown in Figure 2, two individuals

f̄1 and f̄2 are assigned to the reference vector vi and the

distance between them and the origin is denoted by ||f̄1|| and
||f̄2||, respectively. As the aim is to find solutions closer to

the origin, individual f̄1 is preferred over individual f̄2 and

3
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Figure 2. An illustration for assignment of individuals to a reference vector
assignment and calculation of the selection criteria.

will therefore be selected for this subpopulation.

In RVEA, diversity is accounted by the angle between

the translated objective vector and the reference vector the

individual is assigned to. The individual with the smallest

angle is preferred over other individuals. For instance, for

reference vector vi in Figure 2, individual f̄1 with the angle

θ1i is preferred over individual f̄2 as θ1i < θ2i .
To combine the two subcriteria for convergence and diver-

sity, the following angle penalized distance (APD) is defined:

dj = (1 + P (θj)) · ||f̄ j ||, (4)

where ||f̄ j || is the distance from the translated objective vector

corresponding to the jth individual to the origin, and θj is the

angle between the jth individual and the reference vector it is

assigned to. In APD, P (θj) is the penalty function defined as

follows:

P (θi) = k · ( t

tmax
)α · θ

j

γv
, (5)

where γv is defined as the smallest angle between the reference

vectors vi and its closest neighboring reference vector vj
i.e. γv = mini∈{1,...,N},i �=j 〈vi, vj〉. The angle γv is used to

normalize the angles and is important when the distribution

of the reference vectors is either too dense or too sparse. As

highly dense or sparse reference vectors may generate a very

small or a very large angle between the individual and the

reference vector, normalization of the angle can be helpful

to alleviate this problem. Parameter α is used to change the

rate of the penalty function P (θ). The rate of the penalty

function is used to emphasize convergence at the early stage

and diversity at the later stage of the evolutionary search

process. For instance, at the early stage of solution process,

convergence is preferred to push the individuals closer to the

Pareto front. Once individuals have converged to the Pareto

front, diversity is then preferred by distributing individuals

along the Pareto front. Therefore, the rate of the penalty

function depends on the current generation number t, the

maximum number of generations tmax and parameter α used

in (5). As careful empirical studies for setting the parameter α
have been performed in [8], we use the same parameter setting

in this work. After calculating APD for all individuals in each

subpopulation, one individual with the minimum APD value

is selected from each subpopulation for the next generation.

4) Adaptation of reference vectors: In order to find a set of

uniformly distributed nondominated individuals as close to the

Pareto front as possible. For some optimization problems, e.g.

those in the WFG test suite [22] where objective functions

are scaled to different ranges, a uniformly distributed set

of reference vectors is not best suited for getting uniformly

distributed individuals. To tackle this issue, one possible

solution is to adapt the reference vectors. In RVEA, reference

vectors are adaptive. In other words, they change their position

according to the location of individuals in the objective space.

The adaptation of reference vectors for the next generation

(vt+1) is applied in the following way:

vt+1,i =
v0,i ◦ (zmax

t − zmin
t )

||v0,i ◦ (zmax
t − zmin

t )|| , (6)

where ◦ represents the Hadamard product [1] that multiplies

two matrices of the same size element-wise, v0,i is the

uniformly generated reference vector in the initialization phase

in RVEA and zmax
t and zmin

t are the maximum and mini-

mum values of each objective function in the tth generation,

respectively. The adaptation of reference vectors ensures that

a set of uniformly distributed nondominated individuals will

be obtained even for optimization problems whose objective

functions have different ranges.

B. Kriging

We use Kriging, also known as Gaussian process to approx-

imate each objective function. As per the survey on computa-

tionally expensive multiobjective optimization problems [9],

Kriging has been frequently used for surrogate techniques,

mainly because it is able to deliver uncertainty information

of the approximated values, which is very useful in managing

surrogates [24]. In this work, we use uncertainty information

from Kriging models to update the surrogates, which will be

further discussed in the next section.

Kriging approximates the objective function value of an

individual x as

y(x) = μ(x) + ε(x), (7)

where μ is the prediction of a regression model F (β, x) i.e.

μ = Fβ and ε(x) is a Gaussian distribution of zero mean and

the standard deviation σ

ε(x) = N(0, σ2). (8)

The regression model F (β, x) = β1g1(x) + . . .+ βlgl(x) is a
linear combination of l chosen functions with coefficients β.

To get an approximated value from (7) for any new input,

Kriging model needs to be trained using training samples,

which are the pre-evaluated individuals in SAEAs. Let ma-

trix X =
[
x1, . . . , xNI

]T
represent the training data in

the decision space with their corresponding objective vector

y =
[
y1, . . . , yNI

]T
, where i = 1, 2, . . . , NI represents the

number of samples or the size of the training data. One should

note that the size of X is NI × n, where n is the number of

decision variables, i.e., xi = [x1, . . . , xn] for i = 1, . . . , NI .

4
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For any two arbitrary inputs xi and xj , the covariance

between two random processes ε(xi) and ε(xj) is defined by

cov[ε(xi), ε(xj)] = σ2R([R(xi, xj)]), (9)

where R is the correlation matrix of size NI ×NI

R =

⎡
⎢⎣
R(x1, x2) · · · R(x1, xNI )

...
. . .

...

R(xNI , x1) · · · R(xNI , xNI )

⎤
⎥⎦ (10)

and R(xi, xj) is the correlation function between ε(xi) and

ε(xj). The commonly used correlation function is

R(xi, xj) = exp(−
n∑

k=1

θk|xi
k − xj

k|2), (11)

where θi, i = 1, . . . , NI denote the hyperparameters.

For a new input x̄, an approximated value from (7) can be

written as

ȳ = β + rT (x̄)R−1(y − Fβ), (12)

where y contains the values of given NI individuals, r(x̄) is

the correlation vector of size NI between the new input x̄ and

the training data
[
x1, . . . , xNI

]
i.e.

rT (x̄) =
[
R(x̄, x1), . . . , R(x̄, xNI )T

]
. (13)

To obtain a new approximated value ȳ, we need to specify

coefficients β and hyperparameters θ. Equation (12) has the

generalized least square solution,

β = (FTR−1F )−1FTR−1y (14)

and the estimated variance σ2 is given by

σ2 =
1

NI
(y − Fβ)TR−1(y − Fβ). (15)

Values of θ are obtained by maximizing the likelihood function

ψ(θ) = −1

2
(NI lnσ

2 + ln det(R)) (16)

where det(R) is the determinant of the correlation matrix

R. After getting hyperparameters θ, coefficients β and the

variance σ2 are calculated from (14) and (15), respectively,

which are further used to approximate the objective function

value from (12).

While Kriging is a very attractive surrogate model due to

its ability to deliver uncertainty information, it also suffers

from potentially serious weaknesses resulting from the com-

putational complexity for training surrogates. As indicated

in [20], the computational complexity of training Kriging is

O(n3), where n is the number of training samples. The issue

of high computational complexity will become worse if the

hyperparameters θ are determined by maximize the likelihood

function using an optimization algorithm, which has often

been done in Kriging assisted SAEAs. For instance, MOEA/D-

EGO uses differential evolution [44] and SMS-EGO employs

covariance matrix adaptation (CMA-ES) [19] to optimize the

hyperparameters, while in ParEGO, the Nelder and Mead

algorithm [37] is used.

In this work, we use a modification of Hookes and Jeeves

algorithm [21], which is implemented in DACE toolbox [30].

The main reason is that it is not practical to use population

based techniques to optimize the hyperparameters due to the

prohibitively high computation time thus incurred, since in

SAEAs, Kriging models need to be frequently re-trained. We

will provide a brief empirical comparison in Section IV.

III. SURROGATE-ASSISTED REFERENCE VECTOR GUIDED

EVOLUTIONARY ALGORITHM

Model management is crucial to the success of surrogate-

assisted evolutionary algorithms [24]. It is mainly concerned

with how to use and update surrogates, including choosing

individuals to be re-evaluated using the original objective

functions. These re-evaluated individuals can then be used

as training data for updating (retraining) the surrogate. Both

convergence and diversity have to be taken into account in

selecting individuals to be re-evaluated, which becomes more

difficult for problems with a large number of objectives. In

this paper, we focus on selection of training data in such a

way that both convergence and diversity are managed given a

large number of objectives, which is one major contribution

of this paper.

The computation time for training the surrogate depends on

the size of the training data set and the type of the surrogate

used. The Kriging model is widely used due to its unique

property of being able to predict with an error bound. Un-

fortunately, the computation time for training Kriging models

will become prohibitive when the number of training data is

large. Therefore, the second contribution of this paper is the

proposal of a strategy to choose training samples so that the

size of the training data can be kept sufficiently small. To this

end, we use an archive to store the training data for updating

the Kriging model.

The proposed Kriging-assisted reference vector guided evo-

lutionary algorithm, called K-RVEA, is presented in Algorithm

2. This algorithm consists of three main phases, the initializa-

tion phase followed by the phase where a surrogate is used and

finally updated in the last phase. Algorithm 2 is composed of

two other algorithms, Algorithm 3 and Algorithm 4. Algorithm

3 selects the individuals for re-evaluation, and therefore also

for updating the surrogate, while Algorithm 4 manages the

training data in archive A1. In addition to the training archive

A1, a second archive A2 is used to store non-nondominated

solutions as the final solution set.

A. Initialization

In the initialization phase, an initial population is generated

e.g. using the Latin hypercube sampling [32]. These individ-

uals are evaluated with the original expensive functions and

added to two archives A1 and A2. Individuals stored in A1

are used to build a Kriging model for each objective function.

B. Using the surrogate

In the phase of using the surrogate, we use Kriging models

instead of the original functions to calculate objective function

values. Kriging models are used for fitness evaluations for

a prefixed number of generations without updating them.

5
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Algorithm 2 K-RVEA

Input: FEmax, maximum number of expensive function

evaluations; u = number of individuals to be re-evaluated

and to be used for updating Kriging models; wmax =

prefixed number of generations before updating Kriging

models;

Output: nondominated solutions of all evaluated ones from

A2

/*Initialization*/

1: Create an initial population of size NI using e.g. the

Latin hypercube sampling, initialize the number of function

evaluations- FE = 0, the generation counter for using

Kriging models w = 1 and a counter for the number of

updates, tu = 0. Initialize two empty archives A1 and A2,

i.e. |A1| = |A2| = φ
2: Evaluate the initial population with the original functions

and add them to A1 and A2, update FE = FE+NI , update

|A1| = |A1|+NI and |A2| = |A2|+NI

3: Train a Kriging model for each objective function by using

individuals in A1

4: while FE ≤ FEmax

/*Using the surrogate*/

5: while w ≤ wmax

6: Run Steps 3-6 of Algorithm 1 with Kriging models

instead of the original functions and update w=w+1
7: end while

/*Updating the surrogate*/

8: Select u individuals using Algorithm 3 and re-evaluate

them with the original functions and update FE = FE + u
9: Add individuals from step 8 to A1 and A2 and update

|A1| = |A1|+ u and |A2| = |A2|+ u
10: Remove |A1|−NI individuals from A1 using Algorithm

4, update w = 1 and tu = tu + 1 and go to step 3

end while

Empirically, the prefixed number of generations should be

set in such a way that it allows the evolutionary algorithm

to perform adequate search on the fitness landscape defined

by the surrogate, while the search should be terminated if no

further improvement in either convergence or diversity can be

made. Ideally, the frequency of updating the surrogates can

be made adaptive based on their performance, e.g., as done in

[26]. However, a rigorous guideline for adapting the frequency

still lacks. For simplicity, in this work we adopt a prefixed

frequency based on a sensitivity analysis of the performance

on the prefixed number of generations.

Once the function evaluations are done, simulated binary

crossover and polynomial mutations are applied to generate

offspring, similar to [15]. The parent and offspring populations

are combined and then the selection criteria in RVEA detailed

in Section II are used to select parents for the next generation.

C. Updating the surrogate

After an evolutionary search using the Kriging models for

a fixed number of generations, the Kriging models will be

updated. As previously mentioned, selection of individuals

to be re-evaluated using the original functions, which will

also be used for updating the surrogates, is essential for the

performance of SAEAs. In this paper, we use information from

the underlying evolutionary algorithm, RVEA, and uncertainty

information from the Kriging models for selecting individuals

to be re-evaluated and then for re-training the surrogate. As

mentioned in Section I, selection of uncertain individuals

not only helps in finding the unexplored regions but can

also improve the quality of the surrogate. Therefore, we

select individuals with the maximum uncertainty whenever

diversity is needed. If a satisfactory degree of diversity is

already achieved, we select individuals with the minimum

angle penalized distance, which is one of the selection criteria

in RVEA that contributes to convergence. Full details of the

strategy for selecting individuals for re-evaluation is given in

the next subsection, also summarized in Algorithm 3. The

selected individuals are then re-evaluated with the original

functions and these data samples are added to both archives A1

and A2. To keep a fixed number of individuals in the archive

A1, we will eliminate extra individuals from from A1 using a

strategy to be introduced in the following.

A maximum number of function evaluations is used as the

termination criterion of the evolutionary optimization process.

After the evolutionary search is complete, nondominated indi-

viduals in A2 are taken as the final solutions.

1) Strategy for selecting individuals for re-evaluation: In

RVEA, the reference vectors are adaptive. In this work, we

introduce an additional set of fixed reference vectors that

are evenly distributed in the objective space. The number of

fixed reference vectors is the same as the number of adaptive

vectors. For convenience, we denote the fixed reference vectors

by Vf and the adaptive ones by Va.

The fixed reference set is mainly for determining whether

diversity or convergence should be prioritized in selecting

individuals for re-evaluation. This is done by comparing the

number of empty vectors in the fixed reference set during the

previous surrogate update, denoted by |V ia
f |tu−1 and that in

the current update denoted by |V ia
f |tu . A vector is called empty

or non-active if no individual is assigned to this vector. In case

|V ia
f |tu - |V ia

f |tu−1 > δ, where δ > 0 is a small integer, which

means the increase in the number of empty fixed reference

vectors has exceeded a given threshold, diversity should be

prioritized. In this case, individuals for re-evaluation should be

selected based on the uncertainty information offered by the

Kriging models. By contrast, if |V ia
f |tu - |V ia

f |tu−1 < δ, which
means that the diversity of the population is not the major

concern, priority will be given to the convergence criterion.

In other words, individuals should be selected using the APD

according to the adaptive reference vectors.

The next step is to determine which individuals should be

selected according to either the amount of uncertainty or the

value of APD. To this end, we divide the active adaptive

reference vectors into a given number of clusters (Step 1 in

Algorithm 3), from each of which one individual that has

either the maximum amount of uncertainty (in case diversity is

prioritized) or the minimum APD (in case convergence is to be

taken care of) in the corresponding cluster. Thus, the number

of clusters is always equal to the number of individuals,

6
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Figure 3. Clustering of active adaptive reference vectors Va into a predefined
number of clusters u.

denoted by u, to be selected for re-evaluation and for updating

the surrogate. The process for selecting solutions to be re-

evaluation described above is summarized in Algorithm 3.

Algorithm 3 Selection of individuals for updating the surro-

gate

Input: Sets of adaptive Va and fixed Vf reference vec-

tors, I = individuals obtained from the latest generation,

|V ia
f |tu−1 = number of inactive fixed reference vectors from

the previous update, δ = parameter to decide whether to

use APD or uncertainty from Kriging models for updating

Kriging models, u = number of individuals to update

Kriging models

Output: u = Individuals for updating Kriging models

1: Cluster active adaptive reference vectors into

min {u, |V a
a |} clusters

2: Identify individuals closest to active adaptive reference

vectors within each cluster

3: Assign I to fixed reference vectors and identify the number

of inactive fixed reference vectors, i.e. |V ia
f |

4: Calculate the change in the number of inactive fixed

reference vectors from the previous update i.e. ΔVf =
|V ia

f |tu − |V ia
f |tu−1

5: If ΔVf ≤ δ
6: Select one individual from each cluster with minimum

APD

7: else
8: Select one individual from each cluster with maximum

uncertainty

9: end if

To elaborate the above selection process, let us consider a

few different situations shown in Figure 4 for a biobjective

optimization problem, where the fixed reference vectors as

well as the individuals (denoted by dots) associated to each

vector are shown in updating Kriging models. Figure 4(a)

illustrate the fixed reference vectors and the individuals as-

signed to them during the previous update, i.e., at the counter

for updating the surrogate tu − 1. Two different cases at the

current update, i.e., at tu, are shown in Figure 4(b) and Figure

4(c), respectively. In the situation shown in 4(b), the number

of inactive fixed reference vectors, denoted by |V ia
f |tu , has

decreased, which indicates that diversity is not a concern

and convergence should be emphasized. By contrast, Figure

4(c) shows a situation in which the number of inactive fixed

reference vectors has increased, which indicates that diversity

needs to be prioritized in updating the Kriging models. In the

former case shown in Figure 4(b), individuals for re-evaluation

are selected based on APD calculated using the reference

vector set, while in the latter case, the amount o uncertainty,

where uncertainty is calculated using the average of the

standard deviations obtained from Kriging models. Selected

individuals are re-evaluated with the original functions and

the obtained data added to both archives A1 and A2. Note that

if the number of active adaptive reference vectors is smaller

than u, i.e., |V a
a | < u, we group them into |V a

a | clusters. In
the first update of the Kriging models, APD is always used

for selecting individuals for re-evaluation.

In the following, we describe the strategy for managing the

training data in A1, when the number of available training data

is large than the predefined maximum number defined by the

size of A1.
2) Managing the training data: In order to limit the com-

putation time for re-training the Kriging models, the number

of training data in archive A1 is fixed. To this end, some data

need to be discarded if the number of available training data

is larger than the archive size. Which data samples should

be kept in A1 becomes critical for the quality of the Kriging

model and thus the overall performance of K-RVEA. In this

work, the maximum size of the training data, i.e., the size of

archive A1, is set to NI . The main steps for managing training

data archive A1 are presented in Algorithm 4.

Algorithm 4 Managing individuals in the archive

Input: Archive A1, adaptive reference vectors Va, u= indi-

viduals selected to update Kriging models, NI=maximum

number of individuals in the archive A1

Output: Updated individuals in A1

1: Remove duplicate individuals from the training archive A1

and update |A1|
2: If |A1| > NI

3: Assign u individuals to Va and identify inactive adaptive

reference vectors, denote these reference vectors by V ia
a

4: Assign A1 \ u individuals i.e. individuals other than

recently evaluated ones in the archive to V ia
a

5: Identify active reference vectors from inactive adaptive

reference vectors V ia
a

6: Cluster active set of inactive adaptive reference vectors

V ia
a into NI − u clusters

7: Select one individual from each cluster randomly and

remove other individuals

11: end if

We first add recently evaluated individuals (u) obtained

with Algorithm 3 to archive A1 and remove duplicate data

points from it (step 1 in Algorithm 4). If the number of

training data is still larger than the archive size, we eliminate

some training samples other than the recently evaluated one

7
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Figure 4. Different cases for fixed reference vectors while updating Kriging models. (a): An example of the fixed reference vectors, (b): An example showing
the fixed reference vectors at the current update, where the number of inactive reference vectors has decreased compared to the previous update in (a), (c):
An example showing the fixed reference vectors at the current update, where the number of inactive reference vectors has increased compared to the previous
update in (a).

(step 2 in Algorithm 4). For this purpose, data points other

than the recently evaluated individuals are assigned to the

adaptive reference vectors. For instance, consider the situation

in Figure 5 for a biobjective optimization problem. In Figure

5(a), individuals (training data) obtained with Algorithm 3 are

assigned to the adaptive reference vectors Va and inactive

reference vectors are identified, denoted by V ia
a . Then, we

assign A1 \ u data points to these vectors V ia
a and identify

active reference vectors from them, as shown in Figure 5(b)

(steps 4 and 5 in Algorithms 4). The active adaptive reference

vectors are then grouped into NI − u clusters and data

points assigned to these reference vectors in each cluster are

identified (step 6 Algorithm 4). We randomly select one data

point from each cluster and eliminate the rest of the data. In

this way, a fixed number of diverse set of training data is

maintained in A1, thereby to improve the quality of Kriging

as much as possible while keeping computation time limited.

IV. NUMERICAL EXPERIMENTS

In this section, numerical experiments are conducted to ex-

amine the performance of K-RVEA on the DTLZ benchmark

problems [16] for 3, 4, 6, 8 and 10 objectives are presented.

The number of decision variables was set to 10. We also

compared K-RVEA with representative Kriging based SAEAs,

e.g. MOEA/D-EGO [51], SMS-EGO [41], [46], ParEGO [28],

and with the original RVEA without using the surrogates. We

also included RVEA for comparison to give the reader a sense

of how differently an algorithm with and without surrogates

performs on computationally expensive problems.

A. Parameter settings

1) Number of individuals to be evaluated using the original

objective functions in the initialization phase (from the

literature [28], [51]) = maximum number of individuals

in the training archive, NI = 11n− 1
2) Number of independent runs = 10

3) Maximum number of function evaluations, FEmax = 300

4) Number of individuals to update Kriging models, |u| = 5

5) Number of reference vectors (N ): number of reference

vectors is determined by the design factors for simplex-

lattice design [11] and the number of objectives and listed

in the supplementary material

6) Parameter while updating the Kriging models δ = 0.05N
7) Number of generations before updating the Kriging mod-

els wmax = 20.

For RVEA, a population size of 50 was used and for other

algorithms, the same parameters were used as recommended

by the authors in the respective articles. Inverted generational

distance (IGD) [3] used as the performance measure to com-

pare different algorithms. A Wilcoxon rank sum test was used

to compare the results obtained by K-RVEA and the other four

algorithms at a significance level of 0.05. Results are collected

in Tables I, II and III, where symbol ↑ indicates that K-RVEA

performed statistically better than a compared algorithm, and

↓ means that other algorithms performed better than K-RVEA,

while ≈ means that there is no significant difference between

the results obtained by K-RVEA and the other algorithm. One

should note that for a given number of decision variables, the

landscape of the problems is getting easier as the number of

objectives increases. This is due to the fact that the number of

decision variables for driving convergence decreases with the

increase in the number of objectives [22]. Therefore, we have

added the WFG suite [22] in our experiments and present the

results in the supplementary material.

B. Performance on DTLZ problems

The results obtained with the four compared algorithms over

25 independent runs are collected in Table I. No results are

given for ParEGO for more than four objectives as the current

implementation given by the authors of ParEGO was limited

to four objectives, which is denoted by ’NA’ in the tables. The

presented results include the minimum, mean and maximum

values of IGD. The best values are highlighted.

Before we discuss the results, we want to mention an im-

portant issue in measuring the performance of many-objective

evolutionary algorithms. IGD and hypervolume are two widely

used performance indicators. However, the evaluation result

may heavily depends on their parameters, particularly when

the number of objectives is large. For instance, the IGD value

is very sensitive to the size of the reference set, which has

not been explicitly discussed. In [4], [48], 100000 reference

points were used irrespective of the number of objectives,

while in [52], only 500 reference points were used. In [5],

8
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Figure 5. Managing training data in the archive A1, (a):Assignment of the recently evaluated individuals u to the active adaptive reference vectors Va,
(b):Assignment of A1 \ u individuals to inactive adaptive reference vectors V ia

a .

Table I. Statistical results for IGD values obtained by K-RVEA, RVEA and ParEGO. The best results are highlighted

Problem k K-RVEA RVEA ParEGO

min mean max min mean max min mean max
3 82.03 106.9 125.2 ≈ 42.65 82.87 115.1 ↓ 13.42 52.47 112.7
4 48.23 73.21 101.4 ≈ 39.65 59.18 97.71 ↓ 18.63 45.45 87.76

DTLZ1 6 8.031 28.83 35.22 ≈ 12.24 22.94 36.85 NA NA NA
8 0.699 6.991 13.29 ≈ 1.250 7.406 15.66 NA NA NA
10 0.198 0.347 0.655 ≈ 0.193 0.339 1.105 NA NA NA

3 0.092 0.155 0.262 ↑ 0.227 0.288 0.335 ↑ 0.151 0.191 0.243
4 0.191 0.276 0.376 ↑ 0.280 0.332 0.383 ↑ 0.289 0.337 0.408

DTLZ2 6 0.316 0.342 0.362 ↑ 0.375 0.404 0.440 NA NA NA
8 0.360 0.395 0.522 ↑ 0.466 0.541 0.704 NA NA NA
10 0.419 0.446 0.470 ↑ 0.539 0.608 0.733 NA NA NA

3 181.5 280.1 353.1 ≈ 133.7 256.1 347.9 ↓ 81.15 145.5 261.6
4 85.56 210.9 314.5 ≈ 89.95 198.6 306.3 ↓ 66.93 138.1 209.4

DTLZ3 6 61.61 105.0 156.4 ≈ 43.54 95.97 157.7 NA NA NA
8 12.36 26.49 43.51 ≈ 8.569 25.27 42.17 NA NA NA
10 0.781 1.299 2.303 ≈ 0.761 1.228 1.836 NA NA NA

3 0.190 0.448 0.737 ≈ 0.205 0.399 0.959 ↑ 0.387 0.646 0.947
4 0.268 0.458 0.648 ≈ 0.320 0.514 0.737 ↑ 0.505 0.725 0.960

DTLZ4 6 0.422 0.585 0.754 ≈ 0.503 0.615 0.800 NA NA NA
8 0.547 0.635 0.728 ≈ 0.554 0.628 0.731 NA NA NA
10 0.553 0.608 0.672 ↑ 0.599 0.667 0.761 NA NA NA

3 0.050 0.112 0.211 ↑ 0.201 0.247 0.316 ↓ 0.039 0.055 0.072
4 0.046 0.123 0.242 ↑ 0.149 0.294 0.393 ↑ 0.090 0.288 0.428

DTLZ5 6 0.032 0.102 0.153 ↑ 0.159 0.280 0.431 NA NA NA
8 0.023 0.048 0.107 ↑ 0.104 0.260 0.748 NA NA NA
10 0.009 0.017 0.022 ↑ 0.224 0.488 0.746 NA NA NA

3 2.121 2.727 3.343 ↑ 3.651 4.960 5.613 ↑ 5.030 6.378 6.867
4 1.306 2.446 3.060 ↑ 3.027 4.044 5.208 ↑ 5.652 5.916 6.034

DTLZ6 6 1.133 1.597 2.174 ↑ 1.025 2.524 3.600 NA NA NA
8 0.377 0.660 1.049 ↑ 0.247 1.004 1.870 NA NA NA
10 0.054 0.153 0.373 ↑ 0.140 0.297 0.751 NA NA NA

3 0.088 0.111 0.150 ↑ 0.400 0.515 0.637 ↑ 0.621 0.829 1.201
4 0.188 0.243 0.298 ↑ 0.532 0.691 0.926 ↑ 0.719 0.892 1.149

DTLZ7 6 0.391 0.500 0.627 ↑ 0.889 1.088 1.808 NA NA NA
8 0.745 0.886 1.030 ↑ 1.162 1.359 1.634 NA NA NA
10 0.917 1.030 1.134 ↑ 1.343 1.900 3.327 NA NA NA

different sizes for the reference set were used for different

numbers of objectives. Here, we also use different sizes of

the reference set for different numbers of objectives, as we

believe more reference points are needed as the number of

objectives increases, referring to the Supplementary material

for details. Similarly, different criteria for setting the reference

point in calculating the hypervolume have been adopted in

different papers. It has been found in [49] that choosing a

reference point slightly better than the nadir point is able

to strike a balance between convergence and diversity of the

solution set. Therefore, in this work, we use the worst objective

function values of the non-dominated solutions found by all

compared algorithms plus a small threshold. The detailed

comparative results in terms of hypervolume are provided in

the Supplementary material due to the page limit. We must

emphasize that how to fairly compare the performance of EAs

for many-objective optimization has received little attention in

the literature and deserves more research.

As can be seen in Table I, overall, K-RVEA performed the

best among all algorithms compared in this study, except on

DTLZ1 and DTLZ3. We surmise that DTLZ1 and DTLZ3

have many local Pareto optimal solutions. Both RVEA and K-

RVEA try to keep a well-distributed set of solutions because

of the distribution in the reference vectors and, therefore,

the convergence rate is relatively slow on these problems.

Nondominated solutions of the run producing the best IGD

values for K-RVEA, RVEA and ParEGO for DTLZ1 are shown

in Figure 6. As can be seen, solutions of K-RVEA and RVEA

are better distributed than those of ParEGO. However, the IGD

values of all three algorithms are high, in other words, the

9
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solutions obtained by these algorithms are all far from the true

Pareto front. These results indicate that solving such problems

requires more function evaluations to reach the Pareto front.

To compare the results with SMS-EGO, we selected a

different stopping criterion. As SMS-EGO tries to maximize

the expected hypervolume improvement and was implemented

in MATLAB, it took about seven hours to complete one run

on a computer with the i5 processor and 4GB RAM. The

needed large amount of computation time of SMS-EGO was

also mentioned in [51], for which reason the authors compared

their algorithm with SMS-EGO only on two test problems. In

this paper, we allowed SMS-EGO to run for 24 hours with

10 parallel runs and stored all the solutions. The number of

function evaluations reached during this time was used as the

stopping criterion for comparison with the other algorithms.

The results for three and four objectives are obtained with 120

and 115 function evaluations, respectively, which are presented

in Table II. These results obtained with a small number of

function evaluations show that K-RVEA performed better than

the compared algorithms. We did not compare K-RVEA with

SMS-EGO for problems within more than four objectives, as

SMS-EGO requires even more time for such problems.

The comparison of K-RVEA and MOEA/D-EGO for three

objective functions after 300 original function evaluations is

shown in Table III. An implementation of MOEA/D-EGO

from the authors was available for only two and three ob-

jectives. As can be seen in Table III, K-RVEA performed

either better or comparably to MOEA/D-EGO for all problems

except on DTLZ5. As the Pareto front of DTLZ5 is a curve

that covers a small subspace in the objective space, most of

the reference vectors in K-RVEA and RVEA are empty, i.e.,

no solutions are assigned to them. We observed that for both

K-RVEA and RVEA, almost 70% of the reference vectors are

empty, which makes the solution process to converge slowly

to the Pareto front. For such problems, a large number of

reference vectors could be helpful while using K-RVEA.

Nondominated solutions from the run with the best IGD

values obtained by the compared algorithms on the three-

objective DTLZ7 are shown in Figure 7. As can be seen

from the figure, nondominated solutions obtained of K-RVEA

and RVEA are much closer to the Pareto front than those

of ParEGO and MOEA/D-EGO. For DTLZ7 which has a

disconnected Pareto front, RVEA and K-RVEA have a good

potential to get solutions close to the Pareto front because

of the adaptation in the reference vectors. Remind that we

did not run SMS-EGO for optimization problems with more

than four objectives as the runtime is prohibitive. In addition,

a parallel coordinates plot for DTLZ2 with 10 objectives is

presented in Figure 8, which we can see that the ranges of

solutions obtained by K-RVEA are bigger than those obtained

by RVEA. In other words, the solutions obtained by K-RVEA

have a better distribution. The reason for a lower density of

the solutions obtained by RVEA is due to the small population

size. As the maximum number of function evaluations for

termination is quite low and the performance of RVEA de-

pends on the maximum number of generations, we reduced the

population of RVEA to 50. To more convincingly demonstrate

the performance of K-RVEA, we tested and compared the

algorithm on the WFG problems [22]. Results in terms of

both IGD and hypervolume are provided in the Supplementary

material, which show that K-RVEA was able to perform better

than the compared algorithms.

As mentioned in Section II.B, the computation time for

training Kriging models varies a lot depending on the spe-

cific implementation and the number of training, which may

become prohibitive large. One contribution of K-RVEA is the

development of a strategy to select training samples reference

vectors, the number of samples for training Kriging models is

kept constant, the computation time for training K-RVEA is

remains constant as the number of expensive fitness evalua-

tions increases. To empirically verify this, the run time of the

different implementations in the compared SAEAs for training

the Kriging model has been investigated. The results over

the number of training samples obtained on the 3-objective

DTLZ2 are shown in Figure 9. We can observe that the training

time of K-RVEA remains constant, as the maximum number of

training samples is kept constant, the training time for ParEGO

increases slightly. In contrast, the training time of MOEA/D-

EGO increases quickly over the number of training samples

as a piecewise continues function. As already mentioned, the

computation time of SMS-EGO increases dramatically over

the number of training samples. Note however that SMS-

EGO and K-RVEA are implemented in MATLAB, ParEGO

is implemented in C and MOEA/D in Java. Therefore, the

absolute times used by the different algorithms may not be

directly comparable, although the different behaviours of the

change in training time over the number allowed true function

evaluations are of more interest.

In what follows, we consider the effect of different param-

eters in K-RVEA. The parameter δ in Algorithm 2 is used to

select individuals for updating surrogates to balance between

convergence and diversity. We did a sensitivity analysis to see

the effect of δ on the diversity and the performance of the

algorithm. As diversity in both RVEA and K-RVEA can easily

be measured using reference vectors, we studied the effect of

δ by measuring the change in the number of empty reference

vectors. We also measured the hypervolume to see the effect

on the performance of the algorithm and provide the results in

the supplementary material. As expected, increase in the value

of δ deteriorates the diversity and thus the hypervolume. This

is due to fact that frequency of using uncertainty information

from Kriging models decreases with the increase in value

of δ. In other words, if the change in the number of the

empty reference vectors is smaller than δ, individuals are

selected based on convergence, otherwise based on uncertainty

of Kriging models. Increase in the value of δ will force the

algorithm to select the individuals based on convergence and

thus deteriorates the diversity. In this article we fixed the value

of δ to be 0.05 × N, where N is the number of reference

vectors used and adaptation of δ will be our future work.

Apart from δ, two other parameters can also influence the

performance of K-RVEA, which are the number of individuals

to be selected to update the surrogates and the number of gen-

erations (wmax) used before updating the surrogates. The first

parameter depends on the characteristics of the problem, e.g.,

multi-modality, and the evolutionary algorithm used. We study
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Figure 6. Nondominated solutions obtained with K-RVEA, RVEA and ParEGO of the run with the best IGD value for three-objective DTLZ1, which are
all very far away from the true Pareto front.

Table II. Statistical results for IGD values obtained by K-RVEA, RVEA, ParEGO, SMS-EGO and MOEA/D-EGO for three and four objectives with 120
and 115 function evaluations, respectively. The best results are highlighted

Problemk K-RVEA RVEA ParEGO SMS-EGO MOEA/D-EGO

min mean max min mean max min mean max min mean max min mean max
DTLZ1 3 82.03 130.2 170.8 ≈ 66.19 129.6 171.4 ≈ 100.7 124.2 148.8 ↑ 85.47 114.2 148.8 ↑ 173.1 267.5 388.2

4 61.92 90.29 115.7 ≈ 81.52 102.2 133.3 ≈ 75.23 99.81 128.5 ↑ 93.33 130.2 173.7 NA NA NA

DTLZ2 3 0.305 0.360 0.408 ↑ 0.401 0.436 0.494 ≈ 0.271 0.356 0.396 ↑ 0.365 0.444 0.522 ↑ 0.325 0.384 0.456
4 0.376 0.427 0.464 ↑ 0.421 0.463 0.499 ≈ 0.384 0.422 0.474 ↑ 0.447 0.487 0.532 NA NA NA

DTLZ3 3 217.3 324.3 383.7 ≈ 236.3 366.6 495.6 ≈ 232.4 368.3 460.7 ≈ 220.8 325.3 459.2 ≈ 189.7 339.9 523.41
4 173.8 302.1 370.5 ≈ 177.6 283.1 359.1 ≈ 172.5 291.9 357.2 ≈ 209.1 314.1 403.8 NA NA NA

DTLZ4 3 0.452 0.711 0.979 ≈ 0.537 0.678 0.967 ≈ 0.586 0.769 0.911 ≈ 0.649 0.690 0.722 ↓ 0.393 0.434 0.479
4 0.587 0.750 0.914 ≈ 0.669 0.803 0.928 ≈ 0.716 0.819 0.993 ≈ 0.680 0.746 0.815 NA NA NA

DTLZ5 3 0.173 0.282 0.360 ≈ 0.272 0.326 0.397 ↑ 0.597 0.615 0.638 ↑ 0.447 0.498 0.546 ↓ 0.170 0.215 0.308
4 0.226 0.254 0.301 ↑ 0.248 0.283 0.316 ↑ 0.432 0.454 0.484 ↑ 0.360 0.413 0.465 NA NA NA

DTLZ6 3 3.104 3.974 4.629 ↑ 5.737 6.110 6.462 ↑ 6.504 6.707 6.825 ↓ 1.603 1.756 2.007 ↑ 4.072 5.078 6.624
4 2.962 3.910 4.585 ↑ 4.406 5.036 5.629 ↑ 5.720 5.868 6.024 ↑ 5.842 5.883 6.010 NA NA NA

DTLZ7 3 0.119 0.167 0.216 ↑ 0.632 0.760 1.264 ↑ 3.138 5.573 7.417 ↓ 0.241 0.260 0.277 ↑ 0.618 1.743 3.830
4 0.297 0.401 0.647 ↑ 0.778 1.018 1.219 ↑ 5.304 7.376 8.921 ↓ 0.578 0.644 0.706 ↑ NA NA NA
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Figure 7. Nondominated solutions obtained by K-RVEA, RVEA, ParEGO and MOEA/D-EGO, denoted by circles, in the run with the best IGD value for
three-objective DTLZ7, where the dots represent the Pareto front.
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Table III. Statistical results for IGD values obtained by K-RVEA and
MOEA/D-EGO for three objectives after 300 function evaluations. The best
results are highlighted

Problem K-RVEA MOEA/D-EGO

min mean max min mean max
DTLZ1 82.03 106.9 125.2 ↑ 145.9 177.9 224.5

DTLZ2 0.092 0.155 0.262 ≈ 0.081 0.103 0.212
DTLZ3 181.5 280.1 353.1 ≈ 161.5 205.9 281.8
DTLZ4 0.190 0.448 0.737 ≈ 0.357 0.436 0.574

DTLZ5 0.050 0.112 0.211 ↓ 0.035 0.046 0.071
DTLZ6 2.121 2.727 3.343 ≈ 0.491 2.551 4.126

DTLZ7 0.088 0.111 0.150 ↑ 0.154 0.646 1.254

Figure 9. Training time over the number of function evaluations in K-RVEA,
ParEGO, SMS-EGO and MOEA/D-EGO on the 3-objective DTLZ2.

the effect of the parameter in the Supplementary material. Our

results show that the value of the parameter is problem-specific

and an adaptive way of using the parameter is needed. For the

second parameter i.e. the frequency of updating the surrogates

or when to update the surrogate is very important in surrogate

management, although, unfortunately, there is no solid theory

for guiding when to update the surrogates. We have performed

a sensitivity analysis on the performance of K-RVEA given

different prefixed numbers of generations before the Kriging

models are re-trained. The results are also included in the

Supplementary material.

We also tested K-RVEA, RVEA, ParEGO and MOEA/D-

EGO on a three objective real-world polymerization problem

[34]. Even though K-RVEA and RVEA have been proposed

for more than three objectives, they still performed better

in solution quality and computation time than the compared

algorithms. Details and results for this problem are given in

the supplementary material.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, a Kriging-assisted reference vector guided

evolutionary algorithm, called K-RVEA, has been proposed

for solving computationally expensive optimization problems

with more than three objectives, where a Kriging model is

used to approximate each objective function. We take care

of both convergence and diversity in choosing individuals for

re-evaluation with the original expensive objective functions.

For this purpose, we introduced a set of fixed, uniformly

distributed reference vectors in addition to the adaptive ref-

erence vectors in RVEA. In updating the Kriging models,

attention is paid to limiting the computation time for training

the surrogate by means of selecting training samples according

to their relationships to the reference vectors, thereby limiting

the number of training data.

We have examined the performance of K-RVEA on bench-

mark problems with 3, 4, 6, 8 and 10 objectives. We also com-

pared K-RVEA with three state-of-the art SAEAs. Empirical

results show that overall the K-RVEA obtained much better

performance than the compared algorithms given the same

number of function evaluations using the original expensive

objective function.

In this paper, the number of decision variables was set to

10, as done in other papers in the literature that use Kriging

as the surrogate model. This can be attributed to the factor

that for solving optimization problems with a higher number

of decision variables, much more training data will be needed,

which will not only require more computational resource but

also poses more serious challenges to Kriging based surrogate

techniques. Nevertheless, it is highly desired that SAEAs

can be applicable to optimization problems having a larger

number of decision variables, which will be our future work.

Another topic for future study is to investigate the performance

of the proposed K-RVEA for constrained computationally

expensive optimization problems. Finally, in the present work,

we fixed the number of generations for updating the surrogates.

Although our empirical results indicate that the performance of

K-RVEA is relatively insensitive to the frequency of updating

the surrogates for the benchmark problems studied in this

work, our previous work [26] indicated that it is likely to adapt

the frequency of updating the surrogates to further enhance the

performance of SAEAs. Consequently, developing an adaptive

method for updating the surrogates will also be our future

research work.
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In the supplementary material, we provide the parame-

ter values for the number of reference vectors, size of the

reference set to calculate IGD, results on DTLZ problems

using hypervolume and on WFG problems with both IGD

and hypervolume as quality metrics. In addition, results of

K-RVEA, RVEA, ParEGO and MOEA/D-EGO on a free

radical polymerization system are also presented. Moreover,

a sensitivity analysis of three important parameters used in

K-RVEA is also provided.

I. NUMBER OF REFERENCE VECTORS

The number of reference vectors (N) in K-RVEA is de-

termined by the design factors (H1, H2) for a simplex-lattice

design [2] and the number of objectives (k). The parameter

values used (from [1]) are listed in Table I for the different

numbers of objectives.

Table I: Numbers (N ) of reference vectors

k (H1, H2) N
3 (13,0) 105
4 (7,0) 120
6 (4,1) 132
8 (3,2) 156
10 (3,2) 275

II. SIZE OF REFERENCE SET TO CALCULATE IGD

In this paper, we use a different size of a reference set

for different numbers of objectives to calculate IGD values

and the sizes are presented in Table II. Test problems DTLZ7

and WFG2 have disconnected Pareto fronts and, therefore the

size of the reference set is different from the other problems.

In addition, specific number like 10000 for four objectives

cannot be generated with the method used [4] for reference

set generation and for this reason the number closest to 5000,

10000, 30000, 50000 and 90000 is used for different numbers

of objectives.

Table II: Size of reference set to calculate IGD

k number of reference points
DTLZ7 WFG2 Other problems

3 6084 4101 5050
4 10648 10708 10660
6 59049 32191 33649
8 78125 66342 50388
10 262144 115610 92378

III. PERFORMANCE ON THE DTLZ SUITE

Here, we summarize the performances of the different

algorithms compared with hypervolume as a performance

metric. We used the worst objective function values from non-

dominated solutions of all algorithms plus a small threshold

as a reference point (f∗
i ). For less than eight objectives, a

recently proposed method from [7] was used to calculate the

hypervolume. For eight and 10 objectives, the Monte Carlo

method with 1000000 sample points was used to approximate

the hypervolume. The hypervolume values obtained were

normalized by dividing with
∏k

i=1 f
∗
i and are shown in Table

III.

As can be seen, the performances of different algorithms

when measured with the hypervolume are very similar to

those with IGD values and overall, K-RVEA performed better

than the other algorithms. Note that due to the degenerated

Pareto front of DTLZ5, most of the reference vectors in both

RVEA and K-RVEA are empty and, therefore, the performance

of K-RVEA is worse than that of ParEGO. Results with K-

RVEA and MOEA/D-EGO for problems with three objectives

are given in Table IV. As can be seen, K-RVEA performed

either better or equivalently to MOEA/D-EGO except on

DTLZ5. Note that we did not test SMS-EGO here due to its

computational overhead, which is also mentioned in the main

paper.

Table IV: Statistical results for hypervolume on the DTLZ

suite obtained by K-RVEA and MOEA/D-EGO for three

objectives. The best results are highlighted

Problem K-RVEA MOEA/D-EGO

min mean max min mean max
DTLZ1 0.319 0.539 0.719 ↑ 0.034 0.151 0.330
DTLZ2 0.881 0.905 0.918 ≈ 0.887 0.905 0.916
DTLZ3 0.200 0.443 0.695 ↑ 0.056 0.117 0.234
DTLZ4 0.811 0.887 0.947 ≈ 0.807 0.872 0.905
DTLZ5 0.728 0.752 0.769 ↓ 0.752 0.766 0.774
DTLZ6 0.814 0.850 0.874 ≈ 0.579 0.737 0.932
DTLZ7 0.455 0.467 0.476 ↑ 0.152 0.280 0.473

IV. PERFORMANCE ON THE WFG SUITE

To be able to show the potential of K-RVEA with different

problems, we extended the test set up by also considering the

WFG test suite [3]. Besides as in, some of the DTLZ problems

the number of decision variables for driving the convergence

decreases with the increase in the number of objectives, it

is important to test with other types of problems as well.

Values of two different types of parameters i.e. position (d)
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Table III: Statistical results for hypervolume on the DTLZ suite obtained by K-RVEA, RVEA and ParEGO. The best results

are highlighted

Problem k K-RVEA RVEA ParEGO

min mean max min mean max min mean max
3 0.319 0.539 0.719 ≈ 0.416 0.595 0.749 ↓ 0.490 0.805 0.941
4 0.588 0.795 0.911 ↑ 0.641 0.738 0.891 ≈ 0.595 0.797 0.934

DTLZ1 6 0.828 0.927 0.973 ≈ 0.845 0.930 0.964 NA NA NA
8 0.781 0.879 0.929 ≈ 0.642 0.870 0.929 NA NA NA
10 0.374 0.389 0.393 ≈ 0.366 0.389 0.393 NA NA NA

3 0.881 0.905 0.918 ↑ 0.782 0.824 0.858 ↑ 0.870 0.889 0.902
4 0.924 0.958 0.970 ↑ 0.894 0.920 0.939 ↑ 0.890 0.907 0.926

DTLZ2 6 0.327 0.328 0.328 ↑ 0.306 0.318 0.325 NA NA NA
8 0.225 0.225 0.226 ↑ 0.208 0.219 0.223 NA NA NA
10 0.134 0.134 0.134 ↑ 0.127 0.130 0.132 NA NA NA

3 0.200 0.443 0.695 ≈ 0.279 0.479 0.651 ↓ 0.561 0.804 0.935
4 0.810 0.883 0.964 ≈ 0.731 0.851 0.932 ↓ 0.883 0.947 0.981

DTLZ3 6 0.970 0.992 0.996 ↑ 0.958 0.983 0.991 NA NA NA
8 0.975 0.989 0.992 ≈ 0.972 0.988 0.992 NA NA NA
10 0.959 0.961 0.961 ≈ 0.959 0.960 0.961 NA NA NA

3 0.811 0.887 0.947 ≈ 0.620 0.889 0.938 ↑ 0.630 0.830 0.929
4 0.905 0.972 0.990 ↓ 0.948 0.982 0.990 ↑ 0.824 0.931 0.979

DTLZ4 6 0.356 0.361 0.364 ≈ 0.356 0.363 0.364 NA NA NA
8 0.245 0.245 0.246 ≈ 0.245 0.246 0.246 NA NA NA
10 0.134 0.134 0.134 ≈ 0.134 0.134 0.134 NA NA NA

3 0.728 0.752 0.769 ↑ 0.629 0.678 0.717 ↓ 0.749 0.801 0.829
4 0.795 0.819 0.829 ↑ 0.748 0.772 0.805 ↓ 0.807 0.924 0.974

DTLZ5 6 0.191 0.195 0.197 ↑ 0.172 0.185 0.193 NA NA NA
8 0.087 0.088 0.090 ↑ 0.072 0.084 0.087 NA NA NA
10 0.031 0.031 0.031 ↑ 0.025 0.027 0.030 NA NA NA

3 0.814 0.850 0.874 ↑ 0.477 0.549 0.660 ↑ 0.399 0.423 0.500
4 0.891 0.907 0.932 ↑ 0.668 0.733 0.779 ≈ 0.572 0.978 0.991

DTLZ6 6 0.534 0.550 0.564 ↑ 0.414 0.441 0.478 NA NA NA
8 0.252 0.272 0.288 ↑ 0.202 0.230 0.259 NA NA NA
10 0.069 0.077 0.079 ↑ 0.045 0.066 0.076 NA NA NA

3 0.455 0.467 0.476 ↑ 0.260 0.316 0.347 ↑ 0.186 0.218 0.244
4 0.455 0.483 0.508 ↑ 0.250 0.318 0.377 ↑ 0.109 0.162 0.228

DTLZ7 6 0.465 0.543 0.572 ↑ 0.148 0.294 0.410 NA NA NA
8 0.343 0.416 0.480 ↑ 0.085 0.198 0.344 NA NA NA
10 0.317 0.370 0.440 ↑ 0.036 0.085 0.151 NA NA NA

and distance (l) used in WFG problems with the number of

objectives are shown in Table V.

Table V: Numbers of parameters in WFG problems

k d l
3 8 2
4 4 6
6 4 5
8 2 7
10 2 9

Results with K-RVEA, RVEA and ParEGO using IGD and

hypervolume are provided in Tables VI and VII, respectively.

We used the same settings for the size of the reference set to

calculate IGD and for the reference point to calculate hyper-

volume as mentioned in the previous sections. The problem

WFG2 has a disconnected Pareto front and it is interesting to

note that K-RVEA handled problems with disconnected Pareto

front well and outperformed others with both hypervolume and

IGD performance metrics. However in WFG3, the degenerated

Pareto front caused the most of the reference vectors to

be empty, thereby leading to a bad performance. Problems

WFG4-WFG9 possess several challenges to the optimization

algorithm in the decision space such as multimodality for

WFG4, landscape deception for WFG5 and non-separability

for WFG6, WFG8 and WFG9 and as can be seen from the

results, K-RVEA performed better than the other algorithms.

Results with K-RVEA and MOEA/D-EGO for three objectives

are provided in Tables VIII and IX, respectively. For these

problems as well, K-RVEA performed similarly or better than

MOEA/D-EGO.

Table VIII: Statistical results for IGD values on the WFG suite

obtained by K-RVEA and MOEA/D-EGO for three objectives.

The best results are highlighted

Problem K-RVEA MOEA/D-EGO

min mean max min mean max
WFG1 1.543 1.842 2.012 ≈ 1.572 1.975 2.237
WFG2 0.473 0.634 0.808 ≈ 0.504 0.705 0.837
WFG3 0.442 0.497 0.560 ↑ 0.518 0.589 0.659
WFG4 0.363 0.566 0.687 ↑ 0.512 0.555 0.643
WFG5 0.349 0.514 0.630 ↑ 0.607 0.646 0.686
WFG6 0.688 0.809 0.891 ↑ 0.794 0.832 0.872
WFG7 0.624 0.669 0.740 ≈ 0.617 0.653 0.715
WFG8 0.647 0.822 0.934 ≈ 0.787 0.844 0.868
WFG9 0.453 0.651 0.885 ↑ 0.698 0.796 0.851

V. PERFORMANCE ON FREE-RADICAL POLYMERIZATION

OF VINYL ACETATE

In the free radical polymerization of Vinyl acetate, the main

aim is to find the optimal process conditions to obtain a

polymer with specific properties. A high molecular weight

is usually linked with a high melt strength and a low melt

flow index [6]. In addition, a homogeneous distribution of

molecular mass polymer is required in short processing time.

Polyvinyl acetate has a high molecular weight and often known

as wood glue and processed in a batch reactor. This problem
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Table VI: Statistical results for IGD values on the WFG suite obtained by K-RVEA, RVEA and ParEGO. The best results are

highlighted

Problem k K-RVEA RVEA ParEGO

min mean max min mean max min mean max
3 1.543 1.842 2.012 ↑ 1.775 2.108 2.394 ≈ 1.697 1.798 2.318
4 0.940 2.113 2.504 ≈ 1.934 2.018 2.225 ≈ 1.982 2.137 2.517

WFG1 6 2.394 2.645 2.958 ↑ 2.683 2.822 3.298 NA NA NA
8 2.699 2.941 3.403 ↑ 2.896 3.074 3.755 NA NA NA
10 2.990 3.255 3.781 ↑ 3.275 3.529 4.162 NA NA NA

3 0.473 0.634 0.808 ↑ 0.595 0.771 0.903 ↑ 0.652 0.777 0.872
4 0.483 0.651 0.903 ↑ 0.601 0.831 1.031 ↑ 0.914 1.098 1.407

WFG2 6 0.497 0.667 1.501 ↑ 0.919 1.191 1.897 NA NA NA
8 0.658 0.947 1.798 ↑ 1.040 1.727 2.940 NA NA NA
10 1.178 1.616 2.133 ↑ 1.595 2.393 3.892 NA NA NA

3 0.442 0.497 0.560 ↑ 0.557 0.681 1.065 ≈ 0.426 0.477 0.568
4 0.226 0.509 0.757 ↑ 0.440 0.621 0.828 ↓ 0.368 0.447 0.512

WFG3 6 0.350 0.668 0.881 ↑ 1.094 1.486 2.572 NA NA NA
8 0.454 0.641 0.836 ↑ 1.218 1.793 2.793 NA NA NA
10 0.581 0.883 1.108 ↑ 1.665 3.465 6.425 NA NA NA

3 0.363 0.566 0.687 ≈ 0.533 0.582 0.657 ≈ 0.509 0.569 0.658
4 0.622 1.064 1.812 ↑ 1.066 1.243 1.527 ↑ 1.175 1.494 2.039

WFG4 6 1.527 1.632 1.852 ↑ 2.289 2.632 3.302 NA NA NA
8 2.749 3.080 3.861 ↑ 4.348 5.275 8.286 NA NA NA
10 4.257 6.790 9.212 ↑ 6.487 7.741 9.607 NA NA NA

3 0.349 0.514 0.630 ↑ 0.589 0.699 0.794 ↑ 0.586 0.684 0.729
4 0.729 0.973 1.180 ↑ 1.016 1.171 1.351 ↑ 1.120 1.301 1.493

WFG5 6 1.630 1.763 1.901 ↑ 2.211 2.357 2.655 NA NA NA
8 2.695 2.955 3.374 ↑ 4.145 4.496 5.106 NA NA NA
10 4.363 5.606 6.743 ↑ 5.895 6.459 7.401 NA NA NA

3 0.688 0.809 0.891 ≈ 0.758 0.841 0.892 ≈ 0.631 0.790 0.942
4 0.814 1.101 1.393 ↑ 1.110 1.253 1.410 ↑ 1.236 1.330 1.418

WFG6 6 1.740 1.921 2.141 ↑ 2.318 2.460 2.802 NA NA NA
8 3.005 3.327 3.693 ↑ 4.107 4.576 5.488 NA NA NA
10 4.953 5.535 6.381 ↑ 5.920 6.414 7.163 NA NA NA

3 0.624 0.669 0.740 ≈ 0.598 0.667 0.729 ≈ 0.563 0.645 0.716
4 0.846 1.291 1.814 ↑ 1.222 1.429 1.910 ↑ 1.377 1.558 1.792

WFG7 6 1.644 1.790 1.958 ↑ 2.381 2.644 3.432 NA NA NA
8 3.071 3.352 3.989 ↑ 4.519 5.045 5.916 NA NA NA
10 5.709 7.240 9.140 ≈ 6.649 7.433 9.046 NA NA NA

3 0.647 0.822 0.934 ↑ 0.802 0.893 0.991 ≈ 0.745 0.843 0.899
4 1.211 1.437 1.614 ↑ 1.561 1.684 1.876 ↑ 1.619 1.786 1.954

WFG8 6 2.073 2.156 2.274 ↑ 2.584 2.818 3.167 NA NA NA
8 3.275 3.491 3.672 ↑ 4.708 5.149 6.108 NA NA NA
10 5.315 5.912 6.525 ↑ 6.269 7.056 7.998 NA NA NA

3 0.453 0.651 0.885 ↑ 0.701 0.822 0.953 ≈ 0.490 0.640 0.869
4 0.693 1.086 1.434 ↑ 1.210 1.349 1.506 ↑ 0.985 1.232 1.448

WFG9 6 1.686 1.949 2.849 ↑ 2.321 2.568 3.352 NA NA NA
8 2.918 3.532 4.353 ↑ 4.259 4.853 5.672 NA NA NA
10 4.469 5.893 7.690 ↑ 6.164 7.209 9.154 NA NA NA

Table IX: Statistical results for hypervolume on the WFG suite

obtained by K-RVEA and MOEA/D-EGO for three objectives.

The best results are highlighted

Problem K-RVEA MOEA/D-EGO

min mean max min mean max
WFG1 0.366 0.429 0.478 ≈ 0.373 0.421 0.498
WFG2 0.732 0.782 0.852 ↑ 0.718 0.751 0.795
WFG3 0.524 0.564 0.608 ≈ 0.517 0.550 0.571
WFG4 0.561 0.603 0.662 ↑ 0.517 0.559 0.591
WFG5 0.530 0.604 0.656 ↑ 0.478 0.525 0.572
WFG6 0.451 0.490 0.555 ≈ 0.455 0.463 0.467
WFG7 0.500 0.535 0.582 ≈ 0.522 0.536 0.558
WFG8 0.491 0.525 0.558 ↑ 0.443 0.451 0.459
WFG9 0.423 0.523 0.634 ↑ 0.428 0.456 0.496

is computationally expensive and an average computation time

for one function evaluation is around 45 minutes. The reason

for the high computation time is the slow reaction rate after

a certain point of time which is termed as gelation. For

more details about kinetics and a study of multiobjective

optimization for this polymerization, see [5]. In this study,

we optimize:

1) maximize average molecular weight Mw,

2) minimize polydispersity index PDI and
3) minimize polymerization time tpoly .

Decision variables or the process conditions are monomer

concentration, initiator concentration, polymerization time and

temperature. Bounds for these decision variables are given in

Table X. We ran this process for 250 function evaluations with

K-RVEA, RVEA, ParEGO and MOEA/D-EGO.

Table X: Bounds for decision variables

Lower bound Upper bound

Monomer concentration (mole/lt) 10 14
Initiator concentration (mole/lt) 3.00e-05 1.50e-04
Polymerization time (sec) 10 10000
Temperature (C) 60 80

Nondominated solutions from all four algorithms are shown

in Figure 1. As can be seen, solutions from K-RVEA are better

distributed than those of RVEA and ParEGO. Solutions from

MOEA/D-EGO are also well distributed but some of them are
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Table VII: Statistical results for hypervolume on the WFG suite obtained by K-RVEA, RVEA and ParEGO. The best results

are highlighted

Problem k K-RVEA RVEA ParEGO

min mean max min mean max min mean max
3 0.366 0.429 0.478 ↑ 0.352 0.411 0.468 ↑ 0.346 0.393 0.415
4 0.390 0.437 0.469 ≈ 0.437 0.452 0.466 ↑ 0.260 0.321 0.377

WFG1 6 0.337 0.378 0.404 ↑ 0.293 0.345 0.375 NA NA NA
8 0.292 0.327 0.352 ≈ 0.257 0.307 0.438 NA NA NA
10 0.276 0.302 0.334 ↑ 0.219 0.261 0.293 NA NA NA
3 0.732 0.782 0.852 ↑ 0.648 0.694 0.762 ↑ 0.712 0.761 0.806
4 0.650 0.738 0.896 ↑ 0.553 0.673 0.806 ↑ 0.565 0.637 0.695

WFG2 6 0.683 0.845 0.913 ↑ 0.568 0.707 0.817 NA NA NA
8 0.765 0.900 0.941 ↑ 0.383 0.697 0.897 NA NA NA
10 0.661 0.835 0.920 ↑ 0.334 0.666 0.927 NA NA NA
3 0.524 0.564 0.608 ↑ 0.452 0.500 0.541 ≈ 0.568 0.577 0.587
4 0.527 0.569 0.635 ↑ 0.457 0.506 0.543 ≈ 0.539 0.561 0.573

WFG3 6 0.565 0.598 0.667 ↑ 0.448 0.495 0.565 NA NA NA
8 0.632 0.671 0.697 ↑ 0.449 0.528 0.586 NA NA NA
10 0.578 0.612 0.650 ↑ 0.259 0.406 0.481 NA NA NA
3 0.561 0.603 0.662 ↑ 0.527 0.558 0.607 ↑ 0.533 0.577 0.620
4 0.621 0.689 0.725 ↑ 0.432 0.500 0.564 ↑ 0.382 0.468 0.545

WFG4 6 0.660 0.757 0.832 ↑ 0.434 0.555 0.659 NA NA NA
8 0.657 0.767 0.857 ↑ 0.265 0.465 0.586 NA NA NA
10 0.546 0.699 0.815 ↑ 0.362 0.436 0.533 NA NA NA
3 0.530 0.604 0.656 ↑ 0.438 0.479 0.521 ↑ 0.465 0.488 0.538
4 0.560 0.621 0.685 ↑ 0.413 0.459 0.511 ↑ 0.407 0.448 0.522

WFG5 6 0.573 0.675 0.746 ↑ 0.413 0.485 0.552 NA NA NA
8 0.548 0.721 0.782 ↑ 0.317 0.431 0.520 NA NA NA
10 0.542 0.671 0.777 ↑ 0.281 0.402 0.498 NA NA NA
3 0.451 0.490 0.555 ↑ 0.403 0.436 0.478 ↓ 0.520 0.560 0.608
4 0.536 0.665 0.710 ↑ 0.390 0.440 0.509 ↑ 0.428 0.461 0.514

WFG6 6 0.543 0.676 0.774 ↑ 0.400 0.471 0.545 NA NA NA
8 0.647 0.793 0.837 ↑ 0.334 0.442 0.564 NA NA NA
10 0.667 0.749 0.836 ↑ 0.288 0.411 0.542 NA NA NA
3 0.500 0.535 0.582 ↑ 0.487 0.519 0.562 ↓ 0.540 0.578 0.646
4 0.436 0.559 0.661 ↑ 0.379 0.446 0.527 ↑ 0.400 0.434 0.480

WFG7 6 0.603 0.726 0.792 ↑ 0.392 0.484 0.573 NA NA NA
8 0.573 0.703 0.810 ↑ 0.378 0.455 0.564 NA NA NA
10 0.473 0.614 0.704 ↑ 0.318 0.430 0.511 NA NA NA
3 0.491 0.525 0.558 ↑ 0.379 0.426 0.471 ↑ 0.429 0.469 0.531
4 0.456 0.490 0.554 ↑ 0.332 0.371 0.404 ↑ 0.345 0.388 0.438

WFG8 6 0.501 0.540 0.606 ↑ 0.314 0.398 0.478 NA NA NA
8 0.488 0.591 0.684 ↑ 0.271 0.329 0.444 NA NA NA
10 0.444 0.561 0.665 ↑ 0.262 0.326 0.403 NA NA NA
3 0.423 0.523 0.634 ↑ 0.386 0.436 0.507 ↓ 0.463 0.553 0.617
4 0.437 0.512 0.664 ↑ 0.400 0.451 0.507 ≈ 0.420 0.486 0.569

WFG9 6 0.418 0.650 0.751 ↑ 0.394 0.501 0.638 NA NA NA
8 0.544 0.692 0.792 ↑ 0.299 0.456 0.531 NA NA NA
10 0.462 0.633 0.745 ↑ 0.336 0.416 0.534 NA NA NA
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Figure 1: Nondominated solutions from K-RVEA, RVEA,

ParEGO and MOEA/D-EGO

Table XI: IGD values obtained with K-RVEA, RVEA and

ParEGO

K-RVEA RVEA ParEGO MOEA/D-EGO
IGD 2.338e+04 3.395e+05 7.4873e+05 4.0836e+04

dominated by those from K-RVEA. To compare the results

statistically, we combined nondominated solutions from all

four algorithms and clustered them into a prefixed number.

One individual from each cluster closest to the centroid was

selected and all selected individuals were used as the reference

set to calculate IGD values. The IGD values thus obtained are

given in Table XI. As can be seen, K-RVEA was able to obtain

of a better quality solutions than the other algorithms in the

given number of function evaluations.
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VI. SENSITIVITY ANALYSIS OF PARAMETERS IN K-RVEA

We provide sensitivity analysis of three important param-

eters used in K-RVEA. The first analysis is for parameter δ
used to select individuals based on the needs of convergence

and diversity. The second is for the number of individuals

(Nu) to be selected for updating the surrogates. The third is

for the number of generations (wmax) used before updating

the surrogates.

A. Effect of parameter δ

The parameter δ is effective whenever surrogates are up-

dated. The main motivation for using δ is to reduce the num-

ber of empty reference vectors by exploiting the uncertainty

information from Kriging models. In K-RVEA, when updating

surrogates, the change in the number of empty reference

vectors is measured from the previous update and if this

change is more than δ, uncertainty is used. In other words,

whenever surrogates are updated based on the uncertainty, the

number of empty reference vectors is reduced. An increase in

the value of δ will decrease the frequency of using uncertainty

or decreasing the use of uncertainty from Kriging models will

increase the number of empty reference vectors. To elaborate,

we used different values of δ i.e. (0.05, 0.3, 0.5, 0.7, 1) × N,
where N is the number of reference vectors used and measured

the number of times uncertainty from Kriging models was

used. Results on WFG1 with different numbers of objectives

are provided in the first row of Figure 2, where NK denotes the

frequency of using uncertainty. As can be seen, the increase

in the value of δ decreases the frequency of using uncertainty

from the Kriging models.

To see the effect on the reference vectors, we measured the

change in the number of empty reference vectors (denoted by

NR) whenever uncertainty was used. The Results are given in

the second row of Figure 2 which shows the average change

in the number of empty reference vectors (denoted by NR
in the figure). For instance, if surrogates were updated with

uncertainty five times in the solution process and the change

in the number of empty reference vectors was (5, 10, 3, 1,

1), the average i.e. four is shown. Moreover, no change was

observed at δ = 1 because surrogates were never updated using
uncertainty information. In addition, the change was always a

positive integer whenever uncertainty information was used,

which indicates that the number of empty reference vectors

decreased.

To see the effect of δ on the performance of the algorithm,

we also measured the hypervolume for different numbers of

objectives and present the results in Figure 3. As can be seen,

hypervolume decreases with the increase in the value of δ.
This is due to the fact that the frequency of using uncertainty

information from Kriging models decreases with the increase

in the value of δ. We also observed the similar behavior for

other problems. In addition, the effect of the parameter δ
depends on the number of reference vectors and the problem

solved. Using δ in an adaptive way is a future research topic,

however, in the current study, we kept it fixed as 0.05 ×N .

B. Effect of the number of individuals to be selected to update
surrogates

In K-RVEA, surrogates need to be updated by selecting

some individuals for re-evaluation using the original functions.

These individuals should be selected in such a way that both

convergence and diversity are taken into account. The number

of individuals to be selected can be important and mainly

depends on the problem solved. We performed a sensitivity

analysis with numbers 2, 5, 10, 20 and 30 on the problem

WFG9 for different numbers of objectives and the results are

given in Figure 4. As can be seen, for up to eight objectives,

an increase in the number of individuals (denoted by Nu)
decreased the performance of the algorithm. In contrast, with

10 objectives, the performance was improved with an increase

in the number.

As the total number of function evaluations is set as a

constant, increasing the number of individuals for updating

the surrogate will decrease the frequency of updating the

surrogates. For instance, if the total number of function

evaluations is 300 and the numbers of individuals for updating

the surrogates are 2 and 10, then surrogates are updated 150

and 30 times, respectively. In other words, the number of

times surrogates are used with an evolutionary algorithm is

bigger in case of a low number of individuals. Using a low

number of individuals thus may be helpful to achieve a good

approximation of the Pareto front. On the other hand, a low

number may not be enough and individuals selected do not

necessarily contribute to the performance of the surrogates.

In contrast, using a high number will reduce the frequency

of using surrogates with an evolutionary algorithm and may

be helpful to improve the performance of the surrogates.

Therefore, this parameter depends on the type of problem

solved and should be adaptive. However, in this paper we kept

it fixed as five.

C. Effect of the number of generations before updating the
surrogate

The frequency of updating the surrogate or when to update

the surrogate is very important in surrogate management,

although, unfortunately, there is no solid theory for when

to update the surrogates. We, therefore, present here empir-

ical studies on the performance of K-RVEA given different

prefixed numbers of generations (wmax) before the Kriging

models are re-trained. We set wmax = {10, 20, . . . , 100}. The
IGD values of the solution sets obtained by K-RVEA with

these different settings for solving DTLZ4 for 3, 4, 6, 8 and

10 objectives are shown in Figure 5. Note that the maximum

number of function evaluations is set to 300. However, we

examine the performance of K-RVEA for various numbers

of function evaluations, which are chosen to be 150, 200,

250, and 300. As can be seen, the performance changes

more dramatically with three or four objectives. Nevertheless,

there is no clear trend in the change of performance with

the change of the number of generations before updating

the surrogate. However, consistently good performance is

observed for different numners of objectives when this number

is set to 20. Although a better performance might be obtained
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Figure 2: Effect of parameter δ used in K-RVEA on the frequency of using uncertainty information and changes in the number
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when the number of generations before updating the surrogate

is adapted, we set it to 20 in this work.
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