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ABSTRACT

Saarela, Mirka
Automatic Knowledge Discovery from Sparse and Large-Scale Educational Data.
Case Finland.
Jyväskylä: University of Jyväskylä, 2017, 98 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 262)
ISBN 978-951-39-7083-3 (nid.)
ISBN 978-951-39-7084-0 (PDF)
Finnish summary
Diss.

The Finnish educational system has received a lot of attention during the 21st
century. Especially, the outstanding results in the first three cycles of the Pro-
gramme for International Student Assessment (PISA) have made Finland’s ed-
ucation system internationally famous, and its unique characteristics have been
under active research by various, predominantly educational, scholars since then.
However, despite the availability of real but often sparse big data sets that would
allow more evidence-based decision making, existing research to date has mostly
concentrated on using classical qualitative and (univariate) quantitative meth-
ods. This thesis discusses, in general terms, knowledge discovery from large and
sparse educational data—particularly from PISA—through the utilization and
further development of multivariate data mining techniques and, more specifi-
cally, the application of these methods in the context of the Finnish educational
system. Therefore, its goals are twofold and interrelated: to advance knowledge
discovery methods and algorithms for sparse educational data to gain more in-
terpretable models and to utilize these approaches to learn from the data and im-
prove understanding of educational phenomena. This article-style dissertation
is composed of 10 publications. The first publication provides a general knowl-
edge discovery framework for analyzing sparse educational data. The succeed-
ing seven publications discuss and advance methods for the special character-
istics and complexities of PISA data and their usage for the quantitative educa-
tional knowledge discovery process. The final two publications demonstrate how
human advising and decision making in Finnish educational institutions and re-
lated to the management of a national educational system can be automated and
improved by employing the introduced analysis framework and process. All this
provides new insights about Finnish education, advances the overall automatic
quantitative knowledge discovery process, increases institutional awareness, and
could save costs on various levels of the whole educational system.

Keywords: PISA, Knowledge Discovery, Sparse Data, Educational Data Mining,
Learning Analytics, Educational Data Science, Finland, Big Data
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1 INTRODUCTION

This thesis discusses, in general terms, knowledge discovery from large and sparse
educational data through the application and further development of data min-
ing and machine learning techniques and, more specifically, the operation and
employment of these methods in the context of the Finnish educational system,
which has received a lot of attention during the 21st century. Section 1.1 provides
the background and motives for this research, Section 1.2 gives a brief literature
review on the Finnish educational system, Section 1.3 poses the research ques-
tions, and Section 1.4 explains the structure of this thesis.

1.1 Background and research motivations

Education seems to be the key for a richer and more satisfying life. According
to statistics by the Organisation for Economic Co-operation and Development
(OECD), higher-educated adults are not only better paid and less likely to become
unemployed, they are also more likely to show greater social engagement1 and to
live a longer and happier life (OECD, 2012a). Thus, the average education level
of its citizens has a major impact on the general well-being of a country.

Because of the known impacts of education on the general well-being of a
population, the interest in international large-scale educational assessment (LSEA)
studies and the performance of national education systems are active areas of re-
search. One of the largest and most well-known international LSEAs is the Pro-
gramme for International Student Assessment (PISA). PISA assesses students’
learning outcomes in reading, mathematics, and scientific literacy triennially and
is referred to as the "world’s premier yardstick for evaluating the quality, equity
and efficiency of school systems" (OECD, 2013b).

Finland, a Nordic welfare state with a rather scarce population, has histor-
ically performed very well in the international comparison of the PISA assess-

1 Similarly, research has shown a positive relationship between general intelligence and eth-
ical thinking (e.g., Tirri and Nokelainen, 2012a,b, and references therein).
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FIGURE 1 Finland’s ranking in the different PISA cycles.

ments and received a lot of praise for its educational system. Especially, the out-
standing results in the first three assessments—PISA 2000, 2003, and 2006 (see
Figure 1)—made Finland worldwide famous for its high-quality basic education
system (Orlowski, 2017; Sahlberg, 2015; Simola, 2014). But also the secondary
and higher education have received international attention. According to Schwab
et al. (2013), Finland has the world’s best tertiary education, and in a recent BBC
press release, Coughlan (2016) argued that a high school degree in Finland is
worth more than a tertiary degree in Italy, Spain, or Greece. Especially motivated
by the very high results in the first PISA assessments, the unique characteristics of
the Finnish educational system have been under active research (see Section 1.2).
However, this research has been conducted to date mostly using classical quanti-
tative and qualitative research methods by educational scholars.

The principal aim of this dissertation is to augment the methodological
landscape of the LSEA studies, most prominently PISA, to the direction of ed-
ucational data mining and learning analytics. This is accomplished by develop-
ing and applying large scale computational methods arising from pattern recog-
nition, machine learning, data mining, and neural computation to educational
data sets with special characteristics. LSEA data are of high quality and publicly
available.2 However, as pointed out by Rutkowski and Rutkowski (2010), schol-
ars often hesitate in using these data because of the many technical complexities
within them (this will be further elaborated in Section 3.3 of this thesis). Thus,
the contributions of this thesis are twofold and interrelated: first, to advance ex-
isting educational data mining and learning analytics methods and algorithms to
make them feasible for the big and complicated LSEA data sets with their specific

2 For example, the PISA data can be downloaded from http://www.oecd.org/pisa/
pisaproducts/.
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characteristics and, second, to use these methods and algorithms to discover new
educational domain knowledge.

According to the PISA 2012 and PISA 2015 results, the performance of Finnish
students has strongly declined, most notably in mathematics (see Figure 1), and
Finland no longer seems to be the wonderland of educational results. There-
fore, the Finnish subset of PISA and the 2012 assessment—where, as illustrated
in Figure 1, Finland’s large decline in the international ranking was recorded and
where the main assessment domain was mathematics—are of main interest in
this thesis. The other main data sources utilized in this dissertation are the data
from the Finnish publication channel quality ranking system and the study record
data from the students of the Department of Mathematical Information Technol-
ogy at the University of Jyväskylä in Finland. All of these analyzed data sets are
extremely sparse.

1.2 The Finnish educational system

When the first PISA results were published, Finland’s high ranking came as a
surprise to the whole world—especially to the Finns themselves (Sahlberg, 2011).
Asian countries also performed very well in the PISA tests and have, particularly
in the latest assessments, occupied the highest positions in the country rankings.
However, while the Asian education systems are known for extremely long study
hours and systematic testing from an early age (Tan, 2017; Liu and Xie, 2014; Wal-
dow et al., 2014; Chua, 2011), the Finnish students have one of the lowest instruc-
tion times within the OECD (Reinikainen, 2012), an extremely late start of official
school training (i.e., systematic teaching of reading, writing, and mathematics;
see PII), almost no standardized testing (Simola, 2014; Sahlberg, 2011; Linnakylä
et al., 2011; OECD, 2011), and the lowest number of after-school study hours
worldwide (see Figure 2). Moreover, the monetary investment in education per
student is only average in the international comparison (OECD, 2017b), which
seems to make the Finnish system even more phenomenal. Thus, the Finnish sys-
tem has been praised as a “miracle” (Niemi et al., 2016, 2012; Sahlberg, 2015) and
aroused international interest. According to Heller Sahlgren (2015), it even served
as a “poster child for many education experts and policymakers throughout the
world.”

Generally, the Finnish education system partitions into early childhood ed-
ucation, preschool education, basic education, upper secondary education, and
higher education. The preschool (age 6), and basic education (age 7–16) are
mandatory for all children, with no division into different tracks. The first divi-
sion takes place in upper secondary education, which students can obtain either
at a general upper secondary school or at a vocational institution (MOEC, 2012).
Education at a general upper secondary school ends with a matriculation exam-
ination that enables enrollment into higher education. Higher education can be
obtained either at universities, where the emphasis is on research, or at the more
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FIGURE 2 Out-of-school study hours for all in PISA 2012 participating countries. In
comparison to all the other countries, Finnish students study the least af-
ter school. This figure was originally published by Saarela and Kärkkäinen
(2017).
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vocational oriented polytechnics (MOEC, 2012). Both institutions offer bachelor
and master’s degrees. However, licentiate or doctorate degrees can be obtained
at universities only.

According to a recent review by Schatz et al. (2016), three main reasons at-
tempting to explain Finland’s miracle education system can be found throughout
the educational research literature. The first reason is the equality and equity
in the Finnish school system. As explained above, Finnish pupils are visiting
common comprehensive schools from grade 1–9. That means that they are not
divided already at an early age into different tracks based on their performance.
This inclusion applies not only to students with different performance levels but
also to students with special needs (Kivirauma and Ruoho, 2007). Moreover,
schools in Finland are publicly funded and offer free learning material, school
meals, health care, and school transport for all students (OECD, 2011; Linnakylä
et al., 2011). The equality and equity of the comprehensive schools are also shown
throughout all PISA cycles. For example, according to the 2012 assessment, the
between-school variation in Finland was only 6% of the overall mathematics per-
formance, which is the second lowest figure in comparison with all PISA coun-
tries (OECD, 2013a, p.47).3

The second reason highlighted in the literature is the autonomy and free-
dom of educational decision makers. It has been reasoned that instead of market-
oriented schooling, standardization of schools and tests (therefore focusing on
measurable performance), and competition between students and schools, the
focus in Finnish schools is more on cooperation and collaboration (Simola, 2005;
Sahlberg, 2011). National curricula, as well as explicit learning objectives and
standards exist, but schools and teachers in Finland can decide how to imple-
ment learning strategies and pedagogical methods to reach the joint educational
goals (Linnakylä et al., 2011; OECD, 2011). Thus, the autonomy and freedom of
educational decision makers are higher in Finland than in other countries with
more market-oriented education systems.

The third reason usually given for the remarkable Finnish education system
relates to the highly qualified teachers, who are appreciated and trusted by the
community. Becoming a teacher is a career wish for many young Finns, and only
one out of ten applicants gets a place in the primary teacher training programs
(Sahlberg, 2011; Linnakylä et al., 2011; OECD, 2011). That means that only the best
and most motivated students can become teachers which is one of the reasons
Finnish teachers enjoy a very high status in the society (Morgan, 2014; Sahlberg,
2011; Linnakylä et al., 2011; OECD, 2011; Reinikainen, 2012). Traditionally, it has
also been reported that parents, and this could be a consequence of and a reason
for the highly qualified teachers, are very satisfied with their schools, teachers,
and teaching assessment methods (Räty et al., 1995; Simola, 2005).

3 However, Gaber et al. (2012) argued that precisely the fact that all 15-year-olds are still
visiting the common comprehensive school that accommodate students of all levels is the
reason for the small between-school difference in Finland, in comparison to, for example,
Slovenia, where most of the 15-year-old students were just recently divided based on their
performance levels.
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As emphasized by Välijärvi et al. (2002) and Välijärvi et al. (2007), these rea-
sons and explanations are mutually interdependent and interrelated—not only
with each other but also with the Finnish culture in general. Culture affects peo-
ples’ behaviors and attitudes (DiMaggio, 1997; Hitlin and Piliavin, 2004, see also
PIV). The Finnish culture is often described as a highly collaborative one. For
example, the Hofstede Model (Hofstede, 2011) characterizes Finland’s society as
highly “feminine," meaning that the most important driving factors in life are
more to care for others and to live a good life instead of focusing on success
and wanting to be the best. Simola (2005) traces this less market-oriented cul-
ture to some extent back to Finland’s geographical location as a borderland to
the East that was for some time even was obliged to be part of the Russian Em-
pire. According to him, “Eastern elements are evident in Finland everywhere
and in every way, from its administrative traditions to its genetic heredity." Thus,
the Finnish society seems to be coined more by appreciation of collaboration,
equality, and equity than competitiveness in general, that is, not only from the
educational perspective.

1.3 Research questions

In accordance with the goals of this thesis, that is, to advance automatic knowl-
edge discovery methods for sparse educational data and to utilize these methods
to learn from the data and to discover new educational domain knowledge, it
seeks to answer the following research questions:

RQ1: To what extent can the educational knowledge discovery process be auto-
mated?

RQ2: What are the forms and characteristics of the data mining methods and
algorithms needed for knowledge discovery from LSEAs, such as PISA?

RQ3: What novel and useful knowledge can be discovered from existing Finnish
educational data?

1.4 Structure of the thesis

Table 1 shows how each paper contributes to the research questions and what is
the generalizability/impact of the results based on the data. The remaining part
of this collection-of-publications-based thesis is organized as follows. In Chap-
ter 2, the overall knowledge discovery process and the emerging research disci-
plines concerned with knowledge discovery from educational data are described.
Chapter 3 depicts the data of the included studies with an emphasis on LSEA
data, which are the major data source of the included publications (see Table 1).
Chapter 4 provides an overview of the concepts and methods needed for under-
standing the techniques of the included studies. Then, the included publications
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and main results are summarized in Chapter 5. Finally, Chapter 6 answers and
discusses the research questions posed in Section 1.3, together with their over-
all implications and conclusions of this thesis, and presents directions for future
work. Throughout this dissertation, the included publications are cited in bold
using the letter P followed by the Roman numeral of the publication. Reprints of
all original publications are attached at the end of this thesis.

TABLE 1 Contribution of original research articles to the research questions.

Arti-

cle

Research

Question(s)

Data (Observations

and Variables)

Data Source Form/

Collection Method

Design

PI RQ 1–3 13,640 study records
with 21 attributes
from 1,040 university
students

Historical log file
data from the
university study
records

Longitu-
dinal
(8/2009-
7/2013)

PII RQ 1–3 Global 15-year-
old population of
24,720,720 students
(weighted from
485,490 student
records) with 27
attributes from 68
countries obtained
from the PISA 2012
contextual student
database

Two-stage stratified
sampling (first
stage: schools in
which 15-year-
old students are
enrolled, second
stage: students
in the sampled
schools), data
stored in big public
PISA databases

Cross-
sectional
and
observa-
tional

PIII RQ 1–3 Finnish subset (8,829
records) of PISA 2012
contextual student
database with 15
attributes

Two-stage stratified
sampling

Cross-
sectional
and
observa-
tional

PIV RQ 1,2 Population of 60,047
15-year-old Finnish
students (weighted
from 8,829 records) of
PISA 2012 contextual
student data with 15
attributes

Two-stage stratified
sampling

Cross-
sectional
and
observa-
tional

Continued on next page
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Table 1 – continued from previous page

Arti-

cle

Research

Question(s)

Data (Observations

and Variables)

Data Source Form/

Collection Method

Design

PV RQ 1,2 Same observations
with weights as in
PII with 15 attributes
from 68 countries

Two-stage stratified
sampling

Cross-
sectional
and
observa-
tional

PVI RQ 1,2 Same observations
with weights as in PII

with 38 (15 main and
23 meta) attributes
from 68 countries

Two-stage stratified
sampling

Cross-
sectional
and
observa-
tional

PVII RQ 1,2 485,490 global stu-
dent records of PISA
2012 contextual stu-
dent data with 15
attributes

Two-stage stratified
sampling

Cross-
sectional
and
observa-
tional

PVIII RQ 1,2 Same observations
as in PVII with 161
attributes (53 from the
contextual and 108
from the cognitive
PISA 2012 database)

Two-stage stratified
sampling

Cross-
sectional
and
observa-
tional

PIX RQ 1,2 15,370 study records
with 21 attributes
from 1,163 university
students

Historical log file
data from the
university study
records

Longi-
tudinal
(2012-
2015)

PX RQ 1–3 29,443 publication
channel records with
33 attributes with link
to 331,553 records of
Finnish publication
activities in these
channels

Data scraping to
extract data of the
Finnish publication
channels, Finnish
publication activ-
ity, and Thomson
Reuters’ Journal
Citation Reports
database

Longi-
tudinal
(2010-
2015)



2 TOWARD EDUCATIONAL DATA SCIENCE

The publications constituting this thesis follow the educational knowledge dis-
covery process. This chapter describes the general knowledge discovery process
(Section 2.1) and the emerging research disciplines of educational data mining
and learning analytics that employ this process for the educational domain (Sec-
tion 2.2). Following Piety et al. (2014), it is argued that these disciplines may be
summarized by the term educational data science.

2.1 The knowledge discovery process

Big data, data mining, and data science have become buzzwords in recent years.
Data are collected from all kinds of devices and applications, such as web ser-
vices, satellites, health applications, cars, social media sites, cameras, microphones,
smartphones and smartwatches, home appliances, and search engines. New de-
vices are connected to the Internet constantly (see, e.g., Byrne et al., 2017; Chin
and Callaghan, 2013; Atzori et al., 2010) and, therefore, produce data collected by
service providers and stored in huge databases. These data that originate from
such heterogeneous sources are often referred to as big data. They are very large
and complex and are difficult to analyze with traditional techniques. Data min-
ing algorithms and big data analytics have been developed to understand the
collected data, detect unsuspected behavior or events, discover new knowledge
from the application domain, and generally learn from the data. These algorithms
and analytics have been successfully utilized in various fields, such as business,
engineering, social media, and biological science (see, e.g., Chu, 2014). Thus, as
Siemens (2014) summarizes these observations, the “message is clear: we live in
a world of data and our future promises even greater emphasis on analytics to
understand data.”

While the big data analytics of the above-mentioned domains steadily grow
in importance, the domain of learning and education has historically been rather
poor in terms of analytics in comparison (Dawson et al., 2014). Nevertheless,
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FIGURE 3 Usual steps in the traditional (quantitative) research.

nowadays learning occurs increasingly online, and new virtual learning envi-
ronments with novel cognitive and collaboration tools have continually emerged
(see, e.g. van Leeuwen et al., 2015; Looi et al., 2009, and references therein). Thus,
also education has also become an important and growing deliverer of big data.
Simultaneously with the increasing masses of available educational data, the
research methods have also widened, and more analysis opportunities have e-
merged (Hershkovitz et al., 2016; Joksimović et al., 2016; Nokelainen and Silan-
der, 2014).

The traditional quantitative research process (see, e.g. Singleton et al., 1993;
Creswell, 1994) is roughly illustrated in Figure 3. The researcher usually starts
with a hypothesis as part of a research gap from the literature. Then, the re-
searcher designs and develops data collection instruments and collects data that
enable the test of the formed hypothesis. Finally, the researcher tests the collected
data against the hypothesis so that the hypothesis can be either confirmed or re-
jected. Thus, a certain set of data is usually manually collected, driven by the
existing body of knowledge and developed hypotheses to be assessed and con-
firmed in the research process. However, as pointed out by Fayyad et al. (1996a),
this kind of research process is “slow, expensive, and highly subjective” and be-
came “completely impractical” with the increasing masses of available data from
various domains.

In contrast to the traditional hypothesis-driven manual quantitative data
analysis approach stands the so-called data mining or secondary data analysis. In
these kind of analyses, the researcher will probably not have been involved in the
collection, but usually works with a (large) amount of data that has been collected
already for some (other) purpose (Hand et al., 2001; Bryman, 2004a; Breiman,
2003). Data are the center of data mining research. According to the definition by
Hand et al. (2001), one of the key features of data mining is that the interesting
and useful patterns in the data should emerge automatically without the need to
form a strong hypothesis first. This is probably the most distinguishing feature
from data mining to the traditional data analysis. Thus, this kind of research has
an exploratory nature (Tukey, 1977), but it does not rule out hypothesis testing
and confirmatory research to properly assess novel findings.

A huge bulk of information is gathered and available in data, and power-
ful algorithms exist that could provide insights into the data domain as well as
uncover its hidden patterns. However, the availability of big data and big data
analytics does not eliminate or replace the researcher. On the contrary, studying
the target domain and theories is still one of the most important and substantial
parts of research (Merceron et al., 2016). Moreover, real-world data sets seldom
come in a format that immediately allow the data mining procedure. They might
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FIGURE 4 The knowledge discovery process according to Fayyad et al. (1996a). Gener-
ally, this process involves the nine steps marked by the small gray quads.

be noisy and very sparse. Furthermore, existing algorithms may need adap-
tion to customize to the domain and the problem at hand. Another challenge
is that no definition exists that specifies what are interesting and useful patterns.
An analogy for this is like finding a needle in a haystack—without even know-
ing the appearance of the needle, or if a needle is hidden in the haystack at all.
Hence, a knowledge discovery process includes many interactions from the hu-
man side, which to a great extent involve and require a profound understanding
and knowledge of the studied domain.

The overall knowledge discovery (from databases)1 process was introduced by
Fayyad et al. (1996a,c,b) in several articles and is illustrated in Figure 4. As shown
in the figure, the actual data mining is just a part of the broader knowledge dis-
covery process (Zaki and Meira, 2014). This process is not specific to any particu-
lar application domain. It starts with a thorough study of the target domain and
its masses of available data and is intended to deliver useful knowledge to be uti-
lized in the respective target domain as the end product. The general knowledge
discovery process mainly consists of the nine steps (the gray quads in Figure 4)
that are briefly illuminated below. Moreover, as illustrated by the dashed lines in
the figure, if the results of a step are not satisfactory, it is possible to repeat single
steps or to go back to a preceding step.

1. Learning the target domain and setting a goal: As emphasized above, the first
step of the knowledge discovery process requires a profound study of the
particular application domain and its theories involved, and the available
data. Based on this target domain study, a reasonable knowledge discovery
goal is set.

2. Selection: A suitable subset of data is selected, and a target dataset is created.
This is an important step because the different ways data are collected and
the selection of reduced parts of the original data can affect the data analy-
sis results considerably. Naturally, analysis results or discovered knowledge
are not generalizable if the data are not representative of the studied phe-
nomenon (Pelánek et al., 2016).

3. Preprocessing: In the third step of the knowledge discovery process, the se-
lected data is cleaned, verified, and preprocessed. This involves operations
such as removing noise or outliers, deciding how to deal with missing data,
and removing of duplicate or unreliable data. Moreover, additional vari-

1 In the data mining literature, the terms knowledge discovery from databases (KDD) and knowl-
edge discovery (KD) are used interchangeably. In this thesis, only the latter term will be
utilized.
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ables might be defined, constructed, or derived from the existing ones. This
step is often referred to as the most laborious one that consumes most of
time and the bulk of effort invested in the data analysis (e.g., Vesanto et al.,
1999; Gaber et al., 2005; Tan et al., 2007; Witten et al., 2011). Many data
mining algorithms are readily implemented and accessible (for example, in
Phyton, Matlab, or Weka) but no implementation can perform the prepro-
cessing automatically for any possible data set. The many different ways
data can be collected and stored is only one reason for this.

4. Data transformation: The preprocessed data are transformed to make them
feasible for the data mining procedure. This step may involve conversions
of variable types (for example, categorization or binarization) but also di-
mension reduction methods, such as feature selection and extraction. Fea-
ture selection is the process of selecting those features that contain the most
important information and neglecting the remaining features, while feature
extracting methods extract the most important information of all the orig-
inal features and transform them into a more compact set of new features
(Alpaydin, 2010).

5. Data mining method selection: The data mining method that will be applied
to the transformed data is decided. Different taxonomies of data mining
methods exist in the data mining literature, but the most common divi-
sion is into predictive or supervised (for example, classification, and regres-
sion), descriptive or unsupervised (for example, clustering), and patterns
and rules discovery methods (Hand et al., 2001; Tan et al., 2007; Han et al.,
2011; Bramer, 2007; Zaki and Meira, 2014). The method of the data mining
step depends on the knowledge discovery goal and on the availability and
form of the data. For example, supervised methods can be used only if the
target output (for example, class labels in classification) is available.

6. Data mining algorithm selection: Several different algorithms exist for each
of the data mining categories listed above. In the sixth step of knowledge
discovery, the particular data mining algorithm is decided together with its
parameter settings.

7. Data mining: The selected algorithm is applied to the data. Depending on
the data mining method, the end product of this step can consist of numer-
ical results, such as clusters, association rules, or classifiers.

8. Interpretation and evaluation: The numerical results obtained from the min-
ing step are converted into a useful and understandable form. Visualization
techniques are used to illustrate the obtained structures and models. Pat-
terns and/or visual models extracted from the original data are presented
in such a way that domain experts or other involved parties can easily un-
derstand and use the discovered knowledge.

9. Utilization: The final step of the process involves usage activities of the dis-
covered knowledge from the previous step. This knowledge might, for ex-
ample, be incorporated in systems of the application domain, used for quan-
tified decision making, and/or documented and made (openly) available
for interested parties.
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2.2 Educational data mining and learning analytics

Educational data mining (EDM) and learning analytics (LA) are emerging (Gray
et al., 2014) research fields at the interface of educational data sets and computa-
tional data analysis methods. Application of these methods (or data analysis in
an educational context, generally) typically realizes an educational knowledge dis-
covery process (PII), following the common knowledge discovery process illumi-
nated in Section 2.1 for the specific domain of education. EDM emerged roughly
in 2004 and became a fast growing research line, with its first annual conference
held in 2008 and the advent of the Journal of Educational Data Mining in 2009.
LA emerged around the same time as EDM (Piety et al., 2014), but its own pub-
lishing and presenting forums were established a little bit later. The first Inter-
national Learning Analytics & Knowledge Conference was held in 2010, and the
Journal of Learning Analytics was established in 2014. The Society for Learning
Analytics Research was founded in 2011 (Ferguson et al., 2015).

EDM is concerned with the development of methods for exploring, under-
standing, and benefiting from data that come from educational settings (Romero
and Ventura, 2010). It is defined as “an emerging discipline, concerned with de-
veloping methods for exploring the unique and increasingly large-scale data that
come from educational settings, and using those methods to better understand
students, and the settings which they learn in" (International Educational Data
Mining Society, 2016). Thus, it consists of developing or utilizing data mining
methods that are especially feasible for discovering novel knowledge originating
in educational settings (Baker and Yacef, 2009) and supporting decision making
in educational institutions (Calders and Pechenizkiy, 2012). Most of EDM case
studies analyze the steadily growing amount of log data from different computer-
based learning environments, such as learning management systems (for exam-
ple, Valsamidis et al., 2012), intelligent tutoring systems (for example, Hawkins
et al., 2013; Bouchet et al., 2012; Carlson et al., 2013; Springer et al., 2013), or edu-
cational games (for example, Kerr and Chung, 2012; Harpstead et al., 2013).

In comparison, LA is defined as a discipline to “measure, collect, analyze,
and report data about learners and their contexts, for the purposes of understand-
ing and optimizing learning and the environments in which it occurs" (Siemens,
2013; Ferguson, 2012). It aims for discovery and communication of meaning-
ful and actionable patterns in educational data (Pardo and Teasley, 2014; Gray
et al., 2014; Siemens and Baker, 2012) and the whole range of factors that affect
learning, including the learners’ inner and outer actions and their learning en-
vironment (Peña-Ayala, 2017). This is often accomplished by visualizing these
factors in distinct dashboards for interested parties, such as the learner, teachers,
headmasters, lectures, leaders of educational institutions, and so on (Ferguson
and Shum, 2012; Verbert et al., 2013). Thus, LA primarily attempts to improve
learning and the educational environment by raising awareness, while EDM has
a slightly more technical focus.

Although EDM and LA may hold their own specific scopes, as discussed



26

above, they are interdisciplinary by nature and there has been some confusion
about strictly categorizing studies in these fields. The principal aim in both fields
is to discover novel or unsuspected and useful information from educational
data. To discover such information from educational data, Baker (2010) classi-
fied EDM methods into five categories:

1. prediction,
2. clustering,
3. relationship mining,
4. discovery with models, and
5. distillation of data for human judgment.

Chatti et al. (2012) stated that LA techniques for detecting interesting educational
patterns originate from

1. statistics,
2. information visualization,
3. data mining (equalizing this with the knowledge discovery process illumi-

nated in Section 2.1 and further subcategorizing this category into predic-
tion, clustering, and association rule mining), and

4. social network analysis.

These classifications indicate that the methods in LA and EDM are also very cog-
nate and interrelated. This applies in particular to the different data mining tech-
niques listed in both taxonomies, as also illustrated in Figure 5. Although these
techniques constitute only one category in Chatti et al.’s taxonomy, they are gen-
erally acknowledged as the fastest growing (e.g., Siemens, 2013) and the most
sophisticated (e.g., Rogers, 2015) LA methods. In fact, with the increasing sizes of
preexisting educational data, LA scholars tend to shift from utilizing more tradi-
tional data analysis techniques, such as statistics, to the more scalable data mining
methods (Ferguson, 2012; Hershkovitz et al., 2016; Joksimović et al., 2016, see also
the discussion in PII).

Siemens (2013) had already anticipated that the LA and EDM disciplines
would overlap soon, and only a year later, Piety et al. (2014) stated that the dis-
tinctions between EDM and LA “were blurry from the start and in recent years
have converged.” In fact, Dawson et al. (2014) found that the most influential
studies (determining those through citation analysis, see PX) in the EDM and LA
field are those that try to define these specific research areas. As these disciplines
have become increasingly mature, empirical EDM and LA studies have grown in
their importance (Dawson et al., 2014). Nevertheless, in summary, these obser-
vations underline the difficulty in defining clear boundaries between EDM and
LA.

Many scholars describe EDM and LA as “complementary” (e.g., Gray et al.,
2014; Siemens and Baker, 2012) or “sister” (e.g., Siemens, 2014; Baker and Inven-
tado, 2014) research fields. The notion that EDM and LA are related complemen-
tary disciplines is also supported by the fact that most members of the Society for
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FIGURE 5 Relation between the taxonomies of the EDM and LA methods. The em-
phasis of the methodology in this thesis lies in the intersection of these two
taxonomies. Educational data science methods cover all the categories con-
tained in the figure.

Learning Analytics Research, that is, LA scholars, belong to the EDM society too
and vice versa and that they typically visit the same conferences (Siemens and
Baker, 2012; Baker and Inventado, 2014). Therefore, instead of categorizing the
EDM and LA research fields into mutually exclusive groups, Piety et al. (2014)
proposed using the broader term educational data science. This terminology will
also be used in this thesis to generally refer to the analysis of large existing data
sets originating from educational settings through the application and advance-
ment of big educational data analytics and data mining algorithms. In fact, the
methodology underlying this thesis focuses exactly on the intersection of EDM
and LA methods, as illustrated in Figure 5, that is, prediction, clustering, and re-
lationship mining in the educational domain. Educational data science methods
are thus meant to cover all the categories contained in Figure 5, with the focal
point on this intersection.



3 ON SPARSE LARGE-SCALE EDUCATIONAL DATA

AND THEIR DOMAIN

In this thesis, data mining techniques are utilized and developed to discover
knowledge from big and sparse data originating from educational settings (see
Figure 5). This chapter defines sparsity (Section 3.1) and big data in the educa-
tional domain (Section 3.2). By following the first part of the educational knowl-
edge discovery process (as described in Section 2.1), it then describes the educa-
tional target domains and selected data that were analyzed in the included pub-
lications. The main data source is from the 2012 PISA cycle (Section 3.3). The
other data sources utilized in this dissertation are the data related to the manage-
ment of a national educational system, that is, the Finnish publication channel
quality ranking system (Section 3.4) and the study record data from the students
of the Department of Mathematical Information Technology at the University of
Jyväskylä (Section 3.5).

3.1 Sparse data and types of missing values

Assume that a set of observations {xi}N
i=1, where xi ∈ Rn, is given so that N

denotes the number of observations and n the number of variables, respectively.
If the data matrix X ∈ RN×n is defined as X =

(
xT

i
)

, i = 1, . . . , N, a matrix
P ∈ RN×n can be defined to indicate the availability of the values in X with

(pi)j =

{
1, if (xi)j exists,
0, otherwise.

(1)

Throughout this thesis, X, that is, the matrix with missing and non-missing/
observed values, will be referred to as the whole or full data. As in Allison (2002),
the process of finding values for missing data in X will also be called completing
the data. If X does not have any missing values, that is, all entries in P are one,
X will be referred to as complete data. Moreover, if there are missing data in X,
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that subset of observations that has non-missing values for all variables will be
referred to as the complete data (subset). Note that the whole/full and complete
data are the same when all observations have observed values for all variables.

Sparse data are data with many missing values. Missing values can occur
for a number of reasons. They occur especially in the face of high-dimensional
data because data points are located in a larger space when the number of di-
mensions increases (Chen et al., 2009; Verleysen and Francois, 2005; Dash and
Liu, 2000). This is also called the curse of dimensionality. The analysis of data with
missing values requires special methods. These methods typically depend on the
type of missing data. Rubin (1976) and Little and Rubin (2002) have set the guide-
line for classifying missing data in the statistical data analysis. They distinguish
three types of missing data:

1. Missing completely at random (MCAR), if the probability that the jth com-
ponent of a vector xi is missing is independent of any other known or miss-
ing values of xi, that is, the missingness occurs completely at random and is
independent both of observable variables and of unobservable parameters
of interest. In this case, any missing data treatment can be used without in-
troducing bias to the data (Batista and Monard, 2003). However, in practice,
the MCAR is seldom present. One example where MCAR might occur in a
real data set is when the data are missing by design (Allison, 2002), that is, for
example, when part of a questionnaire data is missing because part of the
questionnaire was not administered to some participants.

2. Missing at random (MAR), if the probability that the jth component of a
vector xi is missing does not depend on the values of missing components,
but may depend on the values of observed components, that is, the miss-
ingness occurs not completely at random, but can be fully accounted for by
variables where there is complete information.

3. Missing not at random (MNAR), if the probability that the jth component
of a vector xi is missing depends on its value, that is, the value of the vari-
able which is missing is related to the reason it is missing. In the statistical
analysis, this is “the least desirable situation” (von Davier, 2014, p. 178).
However, as pointed out by Pyle (1999), and as can be seen in PX, this situa-
tion can lead to important information in the knowledge discovery process.

These three notations are also used in this thesis to refer to the type of missing
data.

3.2 Big data in education and large-scale educational databases

Generally, big data is defined by four Vs, where the first three go back to Laney
(2001), and the last one has been added among others, for example, by Gupta
et al. (2014):
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– Volume refers to the size of data sets caused by the number of data points,
their dimensionality, or both;

– Velocity is linked to the speed of data accumulation;
– Variety stands for heterogeneous data formats, which are caused by dis-

tributed data sources, highly varying data gathering, and so on; and
– Veracity refers to the fact that (secondary) data quality can vary significantly,

and manual curation is typically impossible.

Baker (2015) restricts this definition somewhat for the area of education. He char-
acterizes “big data in education” as big by comparison to most classical education
research, but “not human genome project or Google big.” As pointed out in PII,
big data in education became a research focus most notably with the advent of
massive open online courses (MOOCs). MOOCs are distance learning courses
that are made available through the Internet and, often free of charge, accessible
by anyone with computer and Internet access. Because of the large and hetero-
geneous population of MOOC participants, the analysis of MOOC data provides
many opportunities (see, e.g., Wang et al., 2014; Ye and Biswas, 2014; Reich et al.,
2014) but also a lot challenges, especially because of the large amount of missing
values in them (Bergner et al., 2015b,a).

Other examples of big educational data are data from LSEAs (see, e.g., PII,
PVI and PVIII). The first LSEAs had emerged already in 1960 (Waldow et al.,
2014). They include, for example, the United States’ National Assessment of
Educational Progress (NAEP),1 the European Survey on Language Competences
(ESLC),2 the Trends in International Mathematics and Science Study (TIMSS), and
the Progress in International Reading Literacy Study (PIRLS).3 All of these LSEAs
assess educational achievements on a large scale, and except the NAEP, even be-
yond national boundaries. Although all LSEAs share a common focus on measur-
ing educational achievements, they differ in their objectives (Wagemaker, 2014),
scope, and the assessed student population. For example, while PISA assesses
educational achievements of 15-year-old students, TIMSS is conducted for fourth
and eighth graders. An overview of some international LSEAs, their scope, num-
ber of participating countries, and timing can be found in Table 3.1 of the work
by Heyneman and Lee (2013). Similarly, Appendix 1.A in the very recent book by
Lietz et al. (2017) provides a comparison of which countries have participated in
which LSEAs. This comparison shows that PISA covers the most countries of all
analyzed LSEAs.

1 nces.ed.gov/nationsreportcard/
2 www.surveylang.org/
3 See both http://timssandpirls.bc.edu/
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3.3 The Programme for International Student Assessment

Domain

As emphasized in the introduction (Section 1), Finland’s educational system be-
came famous because of the high results in the first PISA assessments. PISA is a
worldwide study by the OECD and one of the largest (see Section 3.2 above) and
most politically acknowledged LSEAs (Knodel et al., 2014). It not only assesses
the reading, mathematics, and science proficiencies of students in different coun-
tries but also provides data about “learners and their contexts” (see PII), such as
the students’ demographic data and their attitudes and behaviors toward various
aspects of education. Thus, Schleicher (2007) asserts that PISA provides “one of
the most powerful predictors for the success of an education system.”

The target population of the PISA assessments are all 15-year-old students
enrolled in a school within the participating countries. In Finland, virtually all
students of this population attend the common comprehensive school, whose
main features were highlighted and described in Section 1.2. As also pointed out
in Section 1.1, the utmost educational knowledge discovery interest here is the
success and the recent rapid decline of the Finnish 15-year-old student population
in mathematics in PISA. Hence, the focus is on the 2012 assessment, where the
rapid decline in mathematics was recorded the first time and where mathematics
was the main assessment domain.

Data

According to the OECD, PISA results have a high degree of validity and relia-
bility (see, for example, OECD, 2009, 2012b) so that they can be used to assess
and compare the educational systems of the participating countries. Therefore,
PISA data should not suffer from the selection bias described in Section 2.1, and
analysis results should be representative for the whole assessed student popula-
tion, that is, all 15-year-old students enrolled in a school within the participating
countries. Although PISA data are of high quality and publicly available, little
research has been conducted on the secondary analysis of PISA data. According
to Olsen (2005a), large amounts of money4 are spent on ensuring the quality re-
lated to the development of the PISA data collection instruments, procedures of
PISA data collection, and storage of PISA data in public databases. However, less
money is invested into the analysis of these data, and a large set of information
in the PISA data is typically not analyzed at all as part of the primary agenda of
these assessments (Olsen, 2005a). This is interesting given that almost all data are
easily accessible for researchers in public databases.

Rutkowski et al. (2010) argued that the sizes of PISA data sets as well as
the technical complexities within them—that is, the sparsity, the weights, and

4 For example, only in Germany, the costs of the PISA assessment so far aggregate to 21.5
million euro (Musik, 2016).
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the many variables derived through complex models—may be the reason only
a few researchers work with this freely available and high-quality data (see also
the discussion in PII). Commonly, those scholars interested in the PISA domain
are educational researchers who may be familiar with the traditional research ap-
proaches (see Section 2.1), but not necessarily with the intricacy of the big and
complicated PISA data sets. They may in fact be completely unable to read or
write using programming languages. Hopmann et al. (2007), for example, stated
that the PISA technical reports are incomprehensible for anyone who is not per-
sonally involved in the implementation of the PISA studies him- or herself, and
Spiegelhalter (2013) referred the PISA methods simply as “opaque.”

That the PISA data are not trivial can also be concluded from the time that
is needed for the analysis: PISA results are published usually approximately 1.5
years after the data collection (e.g., the PISA 2012 data collection took place in
spring 2012, and the results were published at the third of December 2013). More-
over, PISA data are big data in education (see Section 3.2). For example, the stu-
dent questionnaire data set for 2012 alone already consisted of 485,490 observa-
tions and 634 variables.5 A further example is the documentation of the technical
steps behind PISA: The 390-pages-long PISA 2009 Technical Report (OECD, 2012b)
was published in 2012, and the 472-pages-long technical report for the assessment
in 2012 was published in the end of 2014 (OECD, 2014b).

To enable the knowledge discovery from these sparse educational data sets,
special methods are needed. As pointed out above, PISA data have certain char-
acteristics that have to be taken into account when working with them. First, all
available PISA data sets are very sparse. Most of the missing values in PISA are
missing by design (see Section 3.1). For each student who participates in PISA,
the time is limited to two hours for the cognitive test and to half an hour for
a background questionnaire. However, the total cognitive assessment material
developed for PISA exceeds these 120 minutes of testing time by far so that each
student is administered only a fraction of the entire item battery. For example, the
2012 cognitive test consisted of an item battery that was 450 minutes long. This
arrangement of the test is called rotated design (OECD, 2014b) or multiple-matrix
sampling (Rutkowski et al., 2016; Rutkowski, 2014, 2011).

Because of this rotated design, 74% of the data are missing from the data set,
which includes the scores of the cognitive test for the single test items. Moreover,
since the 2012 assessment, this rotated design has also been applied to the back-
ground questionnaire to increase the total quantity of contextual information that
can be assessed (Adams et al., 2013). More precisely, three different background
questionnaires were included in the 2012 assessment, and only one was admin-
istered to each student. All three versions included a common part about the
student and his or her family and home, but the remaining parts were varied.6

Because of this arrangement, many variables in the contextual data set have about
30% missing data (see, e.g., PII, PIII, PIV, and PV).

5 See http://pisa2012.acer.edu.au/downloads/M_stu_codebook.pdf
6 The different questionnaires of the 2012 assessment are available at https://

www.oecd.org/pisa/pisaproducts/pisa2012database-downloadabledata.htm.
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Second, PISA—and LSEAs in general—include sampling weights (see, e.g.,
Meinck, 2015; Rutkowski et al., 2010). Only a fraction of 15-year-old students
from each country take part in the assessment. However, when multiplied with
their respective weights, they should represent the whole student population. For
example, the sample data of the 2012 PISA study consisted of 485, 490 students
that, taking the weights into account, represented more than 24 million 15-year-
old students in the 68 different countries and territories that participated in PISA
in 2012. To select a reliable sample of the 15-year-old student population, the
OECD applies a two-stage sampling design in each country: First, schools at-
tended by 15-year-old students are assigned to mutually exclusive groups based
on explicit strata, and schools from these groups are selected with probabilities
proportional to their size. Then, students within those school are selected ran-
domly with equal probability.

The real-valued weight wi assigned to each participating student i consists
of the school base weight, the within-school base weight, and five adjustment
factors, especially the one that compensates the non-participation of a sampled
student (OECD, 2014b, see also PVI). Hereby, both over- and under-sampling
has taken place in PISA for various student groups, such as the deliberate over-
sampling of immigrants as well as students from Swedish-speaking schools in
the Finnish subset of the PISA 2012 assessment. Thus, it is important to utilize
the weights at each stage of the analysis (see in particular PIV, PV and PVI) to
achieve unbiased population estimates and to report findings that are valid for
the whole population. This also means that the weighted averages of the na-
tional samples are used when the populations of the participating countries are
compared, such as in Figure 2.

Third, many variables in PISA data sets are derived variables, that is, not
the raw assessment data. Most of these variables have been constructed using the
item response theory, one of the most fundamental paradigms in psychometrics.
Therefore, to be able to work with PISA data, one should also have an under-
standing of how the many derived variables have been created and how they can
be used for further analysis. In fact, integrating methods from the psychometrics
literature with methods from the machine learning and data mining literature is a
common characteristic of many knowledge discovery studies in the educational
domain (see the discussion by Baker, 2010).

As part of the standard PISA preprocessing phase, certain scale indices are
constructed based on information gathered from the background questionnaire
for each participating student (OECD, 2013b). These indices describe, for exam-
ple, students’ engagement, drive, and self-beliefs, and are constructed using item
response theory. Furthermore, as described above, 74% of the scored cognitive
item data are missing. That means that proficiencies in PISA are not observed
directly, but must be inferred from the available sparse scored item response data
and the students’ background obtained from the contextual questionnaire. For
this, the so-called plausible value technology is utilized, which will be further
elaborated below (Section 3.3.1).

To address the above-mentioned challenges, the publications included in
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this thesis discuss and advance techniques that enable the knowledge discovery
process from these distinguished LSEA data by taking their specific characteris-
tics, that is, the sparsity, the weights, and the many derived variables, into ac-
count.

3.3.1 Plausible values and measuring performance in PISA

As described above, 74% of the PISA 2012 scored cognitive test data are miss-
ing. That means that national group and subgroup proficiencies in PISA are not
directly observed, but must be inferred from the available sparse scored item
response data and the students’ background obtained from the contextual ques-
tionnaire. For this, a posterior distribution of the range of abilities that a student
might reasonably have is estimated (OECD, 2014b), given his or her answers in
the background questionnaire and the sparse observed item responses of the cog-
nitive test. The plausible values that are reported in the PISA data (similarly as in
all LSEAs listed in Section 3.2) are simply random draws from the estimated pos-
terior distribution. This technique was originally developed by Mislevy (1991)
for the NAEP LSEA (see Section 3.2) and is based on Rubin’s (1987) work on
multiple imputations. Thus, student performances in PISA are not observed but
completely imputed (von Davier, 2014, p.184).

The posterior distribution of student abilities, which the plausible values are
drawn from, is estimated with Bayesian statistics. According to Bayes’ theorem
(see, for example, 1.44 in Bishop, 2006), the posterior distribution is proportional
to the product of the likelihood and the prior distribution. Hence, the posterior
distribution of a student’s ability can be modeled as follows:

f (β | xi, yi) ∝ P(xi | β, δ) f (β | λ, yi), (2)

where P(xi | β, δ) denotes a Rasch model (explained in PII) given the student’s
ability β and the difficulties δ of the items in the test administered to the student,
and f (β | λ, yi) denotes a population model. The prior distribution is a popula-
tion model that is estimated with a latent regression model, with λ denoting the
regression coefficients and yi denoting collateral variables in the data (for exam-
ple, variables modeling background information of the student i). This latent re-
gression model estimates the average proficiencies of examinee subgroups, given
evidence about the distribution and associations of the collateral variables (Mars-
man, 2014; von Davier and Sinharay, 2013; Wu, 2005).

In PISA 2012, the collateral variables included in the latent regression model
were “all available student-level information, other than their responses to the
items in the booklets" (OECD, 2014b, page 157). The likelihood of success in the
cognitive test is a Rasch model, where the probability of success is a kind of logis-
tic function of the latent ability (unknown, will be estimated) and some parame-
ters (e.g. difficulties) of the test items. The Rasch model assumes that a student
with high ability should give correct answers to items with higher probability
than a student with low ability, and that a student should give a correct answer
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to an easy item with higher probability than to a difficult item. The obtained
posterior distribution of a student’s ability is specific for each student, since each
student has different values of background variables and test results. In the PISA
data, five plausible values (for each domain) drawn from this posterior distribu-
tion are reported for each student.

To sum up, student proficiencies in PISA are not directly observed, and it
is important note that the plausible values are estimates for group performance
and should never be used as test scores of individual examinees (OECD, 2014b;
Von Davier et al., 2009). They are a selection of likely proficiencies that could
have been observed if the student had taken the whole test of all cognitive items
(Adams et al., 2013; Wu, 2005).

3.3.2 Related work on PISA cluster analysis

To the knowledge of the author of this thesis, clustering of PISA data has been
performed only in four other studies in addition to the studies included in this
dissertation. Both Kjærnsli and Lie (2004) and Olsen (2005b) used hierarchical
clustering to cluster the residual matrix of science items. These residual matrices
were created in the following way: For each country and each science item, the
percentage of correct items was computed, and then the average over countries
for a particular item and the average over items for a particular country was cal-
culated. The residual matrix shows how much better or worse a certain country
scores on a certain item. Kjærnsli and Lie (2004) performed the clustering using
the residual matrix from PISA 2000 data and Olsen (2005b) using the residual ma-
trix from PISA 2003 data. Clustering of contextual PISA data was performed only
in the publications included in this thesis, that is, PII, PIII, PIV, and PV, and two
recent master’s theses7 (Koskela, 2016; Wallden, 2016).

3.4 The Finnish publication channel quality ranking system

Domain

Teaching and research are the two fundamental activities in higher education in-
stitutes, such as universities. Research is generally evaluated by codifying and
disseminating newly produced knowledge in the form of publications in scien-
tific publication channels (Abramo et al., 2016). To translate these publications
into an evaluation system, one has witnessed a transition from the raw numbers
of different kinds of publications (e.g., books, articles, reports) toward their ag-
gregated quality indicators (Haustein and Larivière, 2015), which has become an
important constituent in national resource allocation models of higher education
institutes in many countries (Auranen and Nieminen, 2010; Fairclough and Thel-
wall, 2015). Various performance-based funding systems are currently in action

7 Both theses were supervised by the author of this thesis and her first supervisor.
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and under continuous evaluation and development in different countries (e.g.,
Hicks, 2012; Wilsdon et al., 2015; Kulczycki and Rozkosz, 2017).

In Finland, the publication activity of an individual university has been part
of the national funding instrument since 2007. Initially it was based on a rough
categorization of publications together with direct aggregation. However, to-
gether with the fundamental renewal of the university legislation in 2010, Finland
has renewed its university resource allocation systems to introduce a component
that aggregates the quality and quantity of publications by following the Nor-
wegian model (see PX) implemented in Norway and Denmark. This means that
since then, the quality of an individual publication has been taken into account
through quality ranks (0–3) and through the corresponding weighting factors for
the overall publication productivity.

Currently, 13% of public funding for a national university is based on the
aggregated ranks of all the publications that were produced over three years.
The main driver for creating a unified national ranking system for all relevant
publication channels were, especially, the difficulties in using the available qual-
ity measures over all the disciplines (research and publication culture, e.g., in
humanities and social sciences as compared to that of technology and natural
sciences). The purpose of the National Publication Forum, JuFo,8 is to recognize
all relevant publication sources, that is, series and publishers, in order to pin-
point to the national scientific community the characteristics of various places to
publish. The national aim, naturally, is to target research activity to prestigious
international forums and also to enable national evaluation and management of
research activities and its quality over the years. Hence, JuFo serves in Finland
as both an indicator of the quality of publication channels and as a guideline to
allocate funding to the national HEIs.

Generally, the quality of a publication channel can be evaluated based on ei-
ther (i) the judgment of an expert in the area (expert-based) or (ii) citation-based
indicators of scientific impact (Ahlgren and Waltman, 2014; Ahlgren et al., 2012).
Citation-based indicators judge the quality of a publication channel according to
measures of citations. Although highly cited publications do not always indi-
cate impactful research, this premise tends to be true on average (Waltman et al.,
2013). Thus, publication channels of articles with a high number of citations can
be considered to be of higher quality than publication channels with low citation
rates (White, 1990). When the quality of a publication channel is determined by a
group of specialists, the evaluation is called expert-based.

Currently, the classifications in JuFo, that is, the Finnish ranks, are expert-
based. Each publication channel is assigned to exactly one of altogether 24 differ-
ent expert panels. The first 23 expert panels represent different scientific areas (all
areas can be found in Table A.12 in PIX) and are composed of experienced and
respected Finnish researchers in these areas. The one remaining panel is responsi-
ble for evaluating interdisciplinary sources. Moreover, a steering group provides
the common rules for ranks and rankings, most importantly the portion of the
highest ranks at the levels 2–3.
8 JuFo is the abbreviation of ‘Julkaisusfoorumi,’ which means Publication Forum in Finnish.
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The expert panels must classify all the publication channels assigned to
them into one of the four quality categories (0-3), in such a way that level 3 should
represent the top, level 2 the leading, and level 1 the basic scientific publication
channels in the respective panel area. Level 0 is for those channels that either do
not meet the basic requirements, such as those being fully peer reviewed and hav-
ing an editorial board constituted by experts, or that have not yet been evaluated
because the channel has been admitted just recently to the JuFo list. To contribute
to a university’s funding, the channel of a publication must be on the JuFo list.
Moreover, the percentage of publication channels that a panel is allowed to clas-
sify as “leading” or “top” are restricted to 20% (and 5% respectively). Thus, only
a very small percentage of the publication channels of all disciplines can receive
the highest, and in terms of funding, the most valuable level rating.

The rank levels of all publication channels in the JuFo list are reevaluated
every fourth year. In addition, new publication channels are admitted to the list
four times a year. During these intermediate ‘complementary evaluations’ level 0
publication channels can be upgraded to level 1, and level 1 publication channels
can be downgraded to level 0. As these decisions are made by well-respected
(and therefore generally highly paid) researchers, they are expensive in terms of
labor, administration, and salary.

Data

In 2016, JuFo incorporated almost 30,000 different publication channels with 33
attributes. Besides the Finnish expert-based rank, the Norwegian and Danish
expert-based rankings are also incorporated into JuFo. Moreover, the three main
citation-based indicators from the bibliographic database Scopus are featured,
and by using the ISSN linkage to Thomson Reuters’ Journal Citation Reports,
the eight citation-based indicators stored there can be accessed for the common
publication channels. Furthermore, other variables that might affect the ranking
of publication channel (such as the age and the discipline) are provided in the
JuFo database, and through a link, one can directly access the information of all
researchers in Finland who have published in the particular channel. Since all
publication channels are missing some of the featured attributes in JuFo, and not
all publication channels are listed in all bibliometric databases, one again faces a
significant sparsity problem. All of this is explained in more detail in PX.

3.5 Student records from the Department of Mathematical Infor-
mation Technology

Domain

Besides research and teaching (see Section 3.4), the staff in Finnish universities
is also obliged to perform certain administrative tasks. Such tasks can include
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FIGURE 6 Mean credits compared to the mean grade of all studies of the DMIT students
(left) and mean credits and the mean grade of the DMIT mandatory bachelor
courses only (right). The figures show that while the general mean credits
versus the mean grade assemble the classical bell curve and are not corre-
lated (r = 0.0848), the mean credits versus the mean grade for the mandatory
courses are positively correlated (r = 0.4415) These figures were originally
published by Saarela and Kärkkäinen (2015).

curricula and personal study plan creations or recommendations, which can be
challenging and time and labor consuming, particularly when performed for all
students individually. This applies especially to the computer science field be-
cause of the universally known high dropout rates in this discipline (e.g., Kin-
nunen et al., 2013).9 Also, the Department of Mathematical Information Tech-
nology (DMIT) at the University of Jyväskylä, which is comparable to a com-
puter science program at other universities, records high dropout and low study
progression rates of its students, particularly when compared to the students of
the other department of this university (this is explained in more detail in PI).
Hence, there is an intensive need of academic advising at DMIT, and the question
is which skills a student should possess or which skills should be promoted and
supported to ensure that the students progress and succeed in their studies.

Data

A data warehouse of passed courses by all the students of the university exists
and is available to authorized parties. That means that a real study path can be
studied to enhance part of the manual administrative work. Each study record
is complete, featuring attributes of the student (such as his or her name, gender,
and birth date), the passed course (such as the title, unique identifier, and the
number of credits), and the grade the student obtained in this course. However,
when these records are transformed into a matrix where the students are the ob-
servations and the courses the variables, this matrix becomes extremely sparse,
with not a single complete observation (PI).

9 See also the ranking by The Daily Telegraph (2017) for or a more recent documentation of
this observation.
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If all courses were included in the matrix, the sparsity pattern would clearly
not be treatable anymore, as students have the opportunity to choose from a large
pool of courses and therefore accumulate study records of very different courses
(PI). When the focus is only on that set of courses that is mandatory for all DMIT
students (and thus, should be the most complete), one still faces a sparsity prob-
lem, but this one is significantly less severe. Moreover, as can be seen from the
left side of Figure 6, the general mean credits completed by DMIT students ver-
sus their mean grade assemble the classical bell curve and are not correlated at
all. That means that students who complete many courses are not necessarily also
more successful in terms of grades. However, the mean credits versus the mean
grade for the mandatory courses are positively correlated (right-side of Figure 6).
Thus, the subset of all mandatory bachelor courses provide an informative, and
in terms of sparsity, still treatable part of the data.



4 FOUNDATIONS OF CONCEPTS AND METHODS

This chapter introduces the basics concepts and methods that are needed for un-
derstanding the utilized and further developed analysis techniques in the in-
cluded publications. Since all publications deal with sparse data first, a short
overview of standard procedures to deal with missing data is provided (Sec-
tion 4.1). Then, the spatial median as a robust location estimate is discussed (Sec-
tion 4.2), since the unsupervised methods of many of the included publications
are based on or utilize this estimate to deal with the sparsity in the analyzed data.
Finally, those unsupervised (Section 4.3), supervised (Section 4.4), and frequent
pattern mining (Section 4.5) data mining algorithms that are of importance for a
comprehension of the articles are briefly addressed.

4.1 Standard procedures to deal with missing data

As pointed out above, LSEA and real-world educational data sets are often very
sparse. This sparsity might be conditioned by design (such as in PISA, see Sec-
tion 3.3), by nature (such as in JuFo, see Section 3.4) or through preprocessing
and transformation (such as in the DMIT records, see Section 3.5). Concerning
big data (see Section 3.2), sparse data can cause the last V, that is, low verac-
ity. Little and Rubin (2002), who, as discussed in Section 3.1, set the guideline
for classifying missing data, divide the strategies to analyze such data into four,
mutually not exclusive, categories: (i) strategies that remove observations that
have missing values, (ii) weighting strategies, (iii) strategies that impute missing
values, and (iv) model-based strategies. This classification scheme is often con-
sidered the golden standard for the treatment of data with missing values in the
traditional data analysis (von Davier and Sinharay, 2013).

Strategies from the first category, which Little and Rubin (2002) call proce-
dures based on completely recorded units, delete all observations that have at least
one missing value. The advantage of this strategy is its simplicity and straight-
forwardness. It is also often the default solution in software implementations of
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data mining algorithms, such as in the Matlab’s k-means implementation. The
disadvantage of this strategy is that part of the data will be lost. This strategy is
thus especially unsuitable for data with a high percentage of missing data.

Strategies from the second category, weighting procedures (Little and Rubin,
2002), modify the sampling weights as if the missing data were part of the sample
design. This is accomplished by assigning each complete observation a weight so
that the weighted complete data sample distribution approximately fits the real
population. The advantage of weighting procedures is that they are nonparamet-
ric in the sense that they only require a model for the available data probabilities
(which have to be estimated from the data, for example, through logistic regres-
sion), but not for the data values in the population. Moreover, they are easy to
apply for univariate data with monotone missing data patterns. However, for
multivariate data with an arbitrary missing data pattern, weighting procedures
are not recommended, as a different set of weights may have to be computed for
each feature (Schafer and Graham, 2002).

Strategies from the third category, imputation-based procedures (Little and Ru-
bin, 2002), use the data values that are present in the data set to estimate the
value(s) of the missing entry/entries. Various imputation-based procedures ex-
ist. The mean-imputation substitutes all missing values with the mean value of the
not missing data. While this procedure is relatively simple, it underestimates the
variance of the data, as the mean by definition does not contribute to the variance.
The hot deck imputation compares each observation with missing data to all obser-
vations with complete data and chooses the most similar complete observation
as a “donor” for the observation with missing data. One way of doing this was
presented in PI: Cluster all data and use the centroid of the cluster to which the
observation with missing values was assigned as its donor. The cold deck impu-
tation works similar to the hot deck imputation. However, while in the hot deck
imputation the donor is taken from the same data set for which the missing value
is imputed, in the cold deck imputation, the donor is taken from another data
source (Batista and Monard, 2003). The prediction-based imputation estimates miss-
ing values by predicting them with the help of regression or classification models
based on available data of the other attributes.

Multiple imputation imputes missing values M times (usually three or five
times) using an appropriate model (Rubin, 1987; Allison, 2002). Then, the desired
analysis (e.g., linear regression) is performed on each of the M complete data
sets. Finally, the parameter estimates (for example, the coefficients and standard
errors) obtained from each analyzed data set are combined for interference.

Strategies from the last category, which Little and Rubin (2002) denominate
as model-based procedures, estimate the parameters of a model defined for the com-
plete data. One popular example for a model-based procedure is the maximum
likelihood estimation. However, such estimations are based on the assumption
that the data of interest come from a certain family of distributions.

In a more recent article, Cheema (2014) reviewed missing data treatment
methods specifically for the educational domain. He distinguished only deletion
and imputation methods. As discussed above, deletion methods are seldom rec-
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ommended as missing data treatment and are especially unsuitable for data with
many observations of missing data. For example, in the case of PISA 2012, where
because of the rotated design less than 30% of the questionnaire scale indices
data are complete,1 only a very tiny subset of the data would be kept. While
in the PISA cognitive data, where because of the design of the test none of the
observations are complete (PVIII), there would not be any data left at all.

The main disadvantage of the simpler imputation-based procedures is that
they make assumptions on data density and/or reduce variance. However, de-
spite the known problems that arise from these missing data treatments, Cheema
(2014) found that many educational researchers prefer to continue using these
simple methods to handle sparse data.

To sum up, traditional techniques for handling sparse (educational) data
seem to focus on either using only that subset of the data that is completely avail-
able, and therefore, reducing the size of the original data set or making assump-
tion about the missing data and concerning the unknown density distributions.
In comparison, the idea of robust clustering (Äyrämö, 2006), that is described
below, and the principal component analysis technique developed in PVII is to
take all available data, as defined in (1), into account without making any assump-
tions concerning the unknown density distributions of the data. This means that
nothing known is discarded and nothing unknown is included.

4.2 The spatial median as location estimate

The most established statistical family of probability distributions is the normal or
Gaussian family (Sprent and Smeeton, 2007). A normal distribution N is defined
by the mean μ and the variance σ2. If the mean and the variance of a normally
distributed data set are known, the probability of the values can be computed
easily for any new observation from this data set. This classical statistics based
on μ, σ2, and least-squares-error are also referred to as second-order statistics. Most
of the traditional data analysis methods are based on second-order statistics.

Moreover, when a statistical analysis is carried out, it is often assumed that
the data is a random sample from the normal or another parametric distribu-
tion, such as the binomial, multinomial, Poisson, or exponential distribution.
However, in many real-world applications, it is unreasonable to assume that a
data sample comes from a certain parametric distribution. In such cases, it is
preferable to use so-called nonparametric statistical methods that are not based
on such strong assumptions on the underlying distribution (Huber, 2009; Sprent
and Smeeton, 2007).

The sample mean is the most efficient estimator2 for the samples that are

1 In the Finnish subset, 2,520 of the 8,829 observation (see PIII) and 142,394 of the 485,490
observations in the whole PISA 2012 (see PV) have complete data for the 15 scale indices.

2 In statistics, the most efficient estimate of a comparison is considered the one with the
lowest variance (Everitt and Skrondal, 2002).
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FIGURE 7 Example of location estimates of a data set without outliers (first row) and
their change when one observation of this data set is transformed to an out-
lier (second row). Data observations are illustrated as green o’s and the lo-
cation estimates as red x’s. The example illustrates that the sample mean
is extremely sensitive toward the one outlier, while the median and spatial
median remain almost the same.
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drawn from the normal distribution. But since real-world data rarely satisfy this
normal assumption (Kontkanen et al., 2000) and for a nonsymmetric or skewed
distribution, estimators other than the sample mean may be preferable. In par-
ticular, the sample mean is highly sensitive to all kinds of outliers and for that
reason very non-robust (Huber, 2009). This is shown in Figure 7. As argued, for
example, in PI, PIII, and PVII, a missing value can, in principle, represent any
value from the possible range of an individual variable so that it becomes difficult
to justify assumptions on data or error normality. Since all data sets analyzed in
this thesis are very sparse, instead of focusing only on the second-order paramet-
ric and non-robust statistics, the nonparametric first-order robust statistics are also
considered. First-order robust statistics allow deviations from normality assump-
tions while still producing reliable and well-defined estimators (Rousseeuw and
Leroy, 1987; Huber, 2009, PVII).

The two simplest robust estimates of location are median and spatial me-
dian. The median, a middle value of the ordered univariate sample, is inher-
ently one-dimensional, and with missing data uses similarly to the mean, only
the available values of an individual variable from the marginal distribution. The
spatial median, however, is truly a multidimensional location estimate and uti-
lizes the available data pattern as a whole. Mathematically, the spatial median is
the point that minimizes the sum of the Euclidean distances to a group of points
{xi}M

i=1 (for example, the points assigned to the same cluster). It can be formu-
lated as

arg min
c∈Rn

J (c), for J (c) =
M

∑
i=1

‖c − xi‖2. (3)

Although the basic concept of this point is easily understood and has been ex-
tensively discussed in the literature, albeit under various names3 (Drezner and
Hamacher, 2001), its computation is known to be difficult.

In the univariate case, (3) is equivalent to the coordinatewise sample me-
dian, that is, when the values xi with i = 1 . . . M are sorted in increasing order,
the value at position M+1

2 if M is odd, and the whole interval of middle values if M
is even (see, e.g., Kärkkäinen and Heikkola, 2004). Moreover, for c �= xi, the gra-
dient is unique and straightforward to compute. However, for c = xi, the subgra-
dient has to be employed since the absolute value function is non-differentiable
at the zero point.

On one hand, the breakdown point of the sample mean is zero (Rousseeuw
and Leroy, 1987). The spatial median, on the other hand, is characterized by a
breakdown point of 0.5, meaning that it can handle up to 50% of the contam-
inated data. Moreover, as shown by Kärkkäinen and Heikkola (2004), the cost
function of the spatial median depends only on the directions and not on the
magnitudes of c − xi, which considerably decreases the sensitivity toward out-
liers, especially compared to the sample mean (see Figure 8). Thus, the spatial
median is an attractive location estimate for high-dimensional data with severe

3 The spatial median is, for example, also known as the multivariate L1-median or the
Fermat-Weber point.
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FIGURE 8 Gradient fields of ‖x2
2‖ (left) and ‖x2‖ (right), where ‖ · ‖2 denotes the l2-

norm of a vector (Kärkkäinen and Heikkola, 2004). The length of the gradi-
ent vectors increases for the sample mean that is based on ‖x2

2‖. Therefore,
the sample mean is very sensitive toward outliers and not a robust location
estimate. On the other hand, the spatial median, which is based on ‖x2‖,
depends only on the direction of the data and gives equal weights for all
observations. This shows that the spatial median is a very robust location
estimate.

degradations and outliers, possibly in the form of missing values (PI, PIII, PIV,
PV, PVI, PVII, and PIX).

4.3 Unsupervised methods

Unsupervised data mining and machine learning methods refer to techniques
that do not need labels. Clustering is discussed in Section 4.3.1 and principal
component analysis is addressed in Section 4.3.2.

4.3.1 Clustering

Clustering as an unsupervised method is the process of dividing points into
groups so that the points within one group are similar to each other and the
points in different groups are dissimilar to each other (Jain et al., 1999). These
different groups of points are called clusters. Jain (2010) defines an ideal cluster
as a group of points that is “compact and isolated.” Various clustering methods
and approaches exist, such as density-based clustering, probabilistic clustering,
grid-based clustering, and spectral clustering (Aggarwal and Reddy, 2013), but
the classical division of clustering methods is to distinguish hierarchical and parti-
tional methods (Celebi et al., 2012; Jain, 2010; Merceron and Yacef, 2005; Tan et al.,
2007; Celebi and Kingravi, 2012).

Hierarchical clustering methods enable visual summarization of the hier-
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archies and orders in a given data set through the dendrogram. They can be
divided into agglomerative and divisive techniques. Agglomerative clustering
techniques operate in a bottom-up fashion, that is, they start with each obser-
vation as a separate cluster and then repeatedly merge the most similar clusters
Cm and Cn so that they form a new bigger cluster. In the case of Single Link, the
most similar clusters are defined as those that contain the shortest distance,4 δ,
between a point in Cm and a point in Cn,

min{δ (u, v) | u ∈ Cm, v ∈ Cn}, (4)

while other methods define similarity differently (Ward’s method, for example,
uses the minimum variance). Divisive hierarchical clustering work in the oppo-
site direction of agglomerative techniques, that is, they start with all observations
in the same big cluster and then recursively split the most dissimilar clusters un-
til each observation forms its own cluster. However, because of the pairwise dis-
tance matrix requirement, hierarchical clustering is not scalable to a large number
of observations (Zaki and Meira, 2014, page 372).

Partitional (or representative-based) clustering, on the contrary, is very scal-
able and efficient even for large data sets (Celebi et al., 2012). Another advantage
of these clustering techniques is that they assign each observation to exactly one
cluster that is represented by the cluster centroid, that is, the middle point of the
cluster. As the middle point, the cluster centroid represents the most common
profile of all points within that cluster. This makes partitional clustering very
attractive from the knowledge discovery point of view (see Section 2.1), because
instead of looking into all the points in a cluster, one can interpret each cluster
based on its most representative point (see, for example, PI, PIII, PIV, PV, and
PIX).

From k-means to k-spatial-medians clustering

Generally, partitional-based clustering algorithms consist of an initialization step
in which the initial centroids of each cluster are decided and two iterative steps
in which (i) each observation is assigned to its closest centroid, and (ii) the cen-
troid of each cluster is recomputed by utilizing all observations assigned to it.
The algorithm stops when the centroids remain the same in two successive itera-
tive runs. The most popular and commonly applied partitional-based clustering
method is k-means (Jain, 2010). The objective of the k-means algorithm is to
minimize the sum of the squared error over all K clusters,

J ({ck}K
k=1) =

K

∑
k=1

Mk

∑
i=1

‖xi − ck‖2
2, (5)

4 Different distance measures might be used; the most common is the Euclidean distance

δ (u, v) =
√

∑N
i=1(ui − vi)2.
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FIGURE 9 Error distributions from 100 test runs on a simulated 2-dimensional data set
of 30 observations with 30% of missing data for the three location estimates
mean, median, and spatial median (Kärkkäinen and Äyrämö, 2004).

where Mk (Mk ≤ N with N being the total number of observations in the data, see
Section 3.1) denotes the number of observations attached to a particular cluster
k, k = 1 . . . K. The gradient of J with respect to the kth centroid is given by
∇J (ck) = ∑Mk

i=1 xi − ck. Setting this term to zero yields the coordinatewise sample
mean of the Mk points in the corresponding cluster k:

Mk

∑
i=1

xi − ck = 0 ⇔ Mkck =
Mk

∑
i=1

xi ⇔ ck =
1

Mk

Mk

∑
i=1

xi.

The k-means algorithm works very well for complete and mixed Gaussian
data since the sample mean is the most efficient estimator for samples that are
drawn from the normal distribution. However, as discussed above in Section 4.2,
the sample mean is highly sensitive to all kinds of outliers, as well as missing
values, which can be characterized as special types of outliers. In fact, Kärkkäi-
nen and Äyrämö (2004) showed that the k-means algorithm produces unreliable
results for 10% of missing data and that the quality of the clustering result de-
creases the more that missing data are introduced. Figure 9 shows that the spatial
median still produces very reliable results even when 30% of data are missing,
while the sample mean is clearly not feasible anymore for data with such sparsity
patterns.

The sensitivity to missing values is a problem and makes the k-means
unusable for data with a high sparsity pattern. Dash and Liu (2000) point out
that also most other clustering algorithms perform poorly for sparse data. The
k-spatial-medians clustering algorithm, which was introduced by Äyrämö
(2006), utilizes the same basic steps as the k-means, but the objective function
is to minimize the spatial median, that is, the sum of the Euclidean distances to
the Mk attached points to the kth cluster. Äyrämö (2006) solved the difficulty of
computing the spatial median by using the sequential overrelaxation (SOR) algo-
rithm with the overrelaxation parameter ω = 1.5 (see Äyrämö, 2006, for details).
The SOR algorithm introduced by Young (1954) is an iterative method for solving
a linear system of equations that accelerates the convergence. In addition, in the
implementation of k-spatial-medians clustering, only the available data are
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taken into account when the centroid is recomputed by using the projections as
defined in (1). Therefore, the whole objective function reads as follows (note that
the Euclidean distances are not squared):

J ({ck}K
k=1) =

K

∑
k=1

Mk

∑
i=1

‖Diag{pi}(xi − ck)‖2, (6)

where Diag transforms a vector into a diagonal matrix and the pi’s indicate the
sparsity pattern, that is, the available variables observationwise as defined in (1).

To conclude, the robustness to missing and noisy data and the fact that every
cluster is represented by a centroid make k-spatial-medians clustering very
suitable for knowledge discovery from sparse data. As illustrated in PI, PIII, PIV,
PV, and PIX, each cluster can be interpreted by describing its most representative
point, the available data spatial median. Moreover, this clustering algorithm with
its available data strategy does not make any assumptions about the underlying
distribution of the data or the type of missing data (see Section 3.1), discarding
no available information.

Determining the number of clusters

As pointed out above, the goal of clustering is to find groups of points so that
the points within one group are similar to each other and dissimilar to the points
in the other groups. This similarity between points is usually computed with a
distance measure: One wants to obtain a clustering result that has small within-
cluster distances but large between-cluster distances. The most common ap-
proach to determine the number of cluster K is to look at the clustering error
(for example, for k-means, the sum of the squared distances of all points to their
centroids as defined in (5)), and select that value for K for which the clustering
error is reasonably small compared to the number of clusters. In the literature,
the plot of the clustering error for different K values is often simply referred to as
knee point or elbow curve (e.g. Thorndike, 1953).

The problem with the elbow curve is that it only looks into the first objec-
tive of clustering (minimizing the within-cluster distances), but not into the other
objective of maximizing the separation of different clusters. Naturally, the elbow
curve decreases for each newly introduced cluster until it becomes zero when
each observation is allocated to an individual cluster (see, for example, Figure
3 in PI). Different cluster indices have been introduced that make use of both of
these cluster objectives. These cluster indices provide thus a more comprehensive
way to determine the number of clusters; examples include the Ray-Turi (Ray
and Turi, 1999) and the Davies-Bouldin (Davies and Bouldin, 1979), as well as as
the Davies-Bouldin� (Kim and Ramakrishna, 2005) indices. Cluster indices have
been utilized, compared, and advanced in several papers (see, e.g., PII, PIII, PIV,
and PV; Jauhiainen and Kärkkäinen, 2017; Arbelaitz et al., 2013; Liu et al., 2010),
generally with the conclusion that no index shows advantage over the remaining
indices in every context.
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Initialization

Partitional iterative clustering algorithms, such as those described above, are very
sensitive with regard to their initialization (see also the discussion in PI). This
means that the clustering result and quality vary depending on the initial choice
of the centroids. If the initial centroids are chosen in a less optimal way, the
algorithm will probably not converge to the global optimum. Obviously, trying
each point separately is not feasible, as this already takes a very long time for a
small set of points. In fact, the number of all possible combinations is given by
the Stirling number of the second kind,

S(N, K) =
1
K!

K

∑
i=0

(−1)K−i
(

K
i

)
iN. (7)

Random initialization is still an often chosen alternative. Celebi and Kingravi
(2012) provided an overview of different initialization techniques proposed in
the literature. According to them, k-means++ (Arthur and Vassilvitskii, 2007),
where the random initialization is based on a density function favoring distinct
centroids, is one of the best initialization methods to date. This is also evidenced
by the fact that k-means++ is currently the initialization method in Matlab’s
k-means implementation. However, when dealing with sparse data there are
additional initialization challenges, as the centroids needed for iteration and final
interpretation must be complete (PI, PIII, PIV, and PV).

Evaluation

Cluster evaluation is difficult and can be very discouraging (Jain and Dubes,
1988). One example for this is that, usually, not just one right solution exists.
There are often (many) different solutions that can be equally valid and mean-
ingful (Jain, 2010). Moreover, since establishing the labels is exactly the idea of
clustering, there is usually no ground truth or one single right solution given be-
forehand that can be compared to the clustering result. If such cluster labels were
known for all observations, supervised methods could be used.

Jain and Dubes (1988), similarly to Zaki and Meira (2014), distinguished
three cluster evaluation approaches: internal, relative, and external.

– Internal cluster evaluation refers to measures that can be derived from the
data. Examples of such measures include the cluster indices (see above) that
compute distances between clusters and distances of observations within
clusters to assess the quality of a clustering result (PIII, PIV, PV, and PIX).
Another example is the Kruskal-Wallis test statistic (Kruskal and Wallis,
1952) that can be used to compare different clusters and assesses whether
the observations originate from the same distribution (PI and PVI).

– Relative cluster evaluation refers to directly comparing separate clustering
results, often for the same algorithm (Zaki and Meira, 2014), for example,
comparing the clustering results when one parameter, for example, the num-
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ber of clusters (PI, PIII, PIV, and PV) or the initialization (PI and PIV), is
changed.

– External cluster evaluation refers to an evaluation where the ground truth is
known. This does not necessarily refer to prior given labels, but could also
refer to a domain expert who specifies meaningful structures of the data or
metadata that can explain the clusters (PII, PIII, PIV, PV, and PVI).

4.3.2 Principal Component Analysis

Principal component analysis (PCA), also known as the Karhunen-Loéve trans-
formation, is one of the most famous and widely used linear dimension reduction
methods (Jolliffe, 2002; Alpaydin, 2010). As a dimension reduction method, PCA
is mainly employed in the preprocessing and transformation steps of the knowl-
edge discovery process (Section 2.1). It generates a new set of variables, called
principal components in such a way that

– each principal component is a linear combination of the original variables,
– all the principal components are uncorrelated (i.e., orthogonal in dimen-

sional space) to each other, and
– all the principal components are ordered so that the first few retain most of

the variance present in all the original variables.

To find the optimal m-dimensional (m � n) subspace that contains most of the
variance of the original n-dimensional data, PCA uses the eigenvectors and cor-
responding eigenvalues of the covariance matrix Σ,

Σ =
N

∑
i=1

(xi − x̄) (xi − x̄)T. (8)

These eigenvectors are ordered by their eigenvalues. The eigenvector with the
largest eigenvalue is called the first principal component and indicates the direc-
tion of most of the variance in the data.

This can be seen by projecting the data onto a one-dimensional subspace
with the direction defined by a vector u1 (see, for example, Zaki and Meira, 2014;
Bishop, 2006). Since only the direction of the maximal variance, and not the mag-
nitude of u1, is of interest, a constraint can be imposed to the vector u1 so that
uT

1 u1 = 1. Each data point xi is projected onto uT
1 xi so that the variance of the

projected data is
1
N

N

∑
i=1

(uT
1 xi − uT

1 x̄)2 = uT
1 Σu1. (9)

To maximize the projected variance uT
1 Σu1 with respect to u1, a Lagrange multi-

plier λ is introduced to enforce above constraint uT
1 u1 = 1:

L(u1, λ) = uT
1 Σu1 + λ(1 − uT

1 u1). (10)
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Differentiation of (10) with respect to u1 yields

dJ
du1

= 2Σu1 − 2λu1. (11)

Setting (11) to zero yields

2Σu1 = 2λu1 ⇔ Σu1 = λu1. (12)

This implies that λ is an eigenvalue of the covariance matrix Σ, with the associ-
ated eigenvector u1.

The second principal component indicates the next largest variance and is
orthogonal to the first one. This can be repeated until m principal components are
selected that explain most of the variance in the data. These first m eigenvectors
are used to project the data points to a new coordinate system, where the axis
directions are spanned by the eigenvectors and thus contain maximal variance.
The remaining principal components can be discarded without losing a lot of
information.

This classical PCA is based on the sample covariance matrix and the sam-
ple mean (8), which as discussed in Section 4.2 are extremely sensitive toward all
kinds of degradations and outliers in the data, including missing data. Thus,
the principal components are also very sensitive with regards to sparse data
(Äyrämö, 2006). Moreover, the eigenvalues of the standard covariance matrix Σ
represent the variances along the new coordinate system (λk = σ2

k ), which overem-
phasize the major components. That means that to assess the true variability or
spread of data in one direction (which the geometric interpretation proposes, see
PVIII), the standard deviation (σk =

√
λk) should be used to determine the real

importance of a principal component uk, k = 1, . . . , n (Bishop, 2006).

4.4 Supervised methods

Supervised methods can be divided into regression methods, where objects are
assigned to continuous values, and logistic regression and classification methods,
where objects are assigned to one of several predefined categories, the so-called
(class) labels or classes. This is accomplished by building a model, that is, the re-
gressor or classifier, that learns for a set of given objects how their input variables
relate to their continuous or class label output variables. Once the model has
learned the relation, it can be used to automatically predict the output variable
from the input variables of any new object.

Because of the model-based dependance of the descriptive variables to the
performance variables, that is, the plausible values, in PISA (as described in Sec-
tion 3.3.1), the focus of the publications included in this thesis is on unsupervised
methods, especially clustering. However, in PVIII, an approach is presented to
derive labels that are based on the actual PISA cognitive test performance only,
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and these labels are then used to compare different classifiers in their prediction
accuracy. Moreover, in the publications concerned with the other two data sets,
PI and PX, supervised prediction techniques are used in the triangulated analy-
ses. Numerous categories of different prediction models exist. Thus, solely the
main ideas of the utilized supervised prediction methods are briefly illuminated
below.

Probabilistic classifiers use probability theory to find the most likely of the
possible classes. Naïve Bayes (NB) employs Bayes’ theorem to perform the classi-
fication. It estimates the joint probability density function for each class (which is
modeled as a multivariate normal distribution) and predicts the class that maxi-
mizes the posterior probability. To simplify this estimation, it is naïvely assumed
that all attributes are independent given the class. In spite of this unrealistic
assumption, NB classifiers have shown good results in practice (Domingos and
Pazzani, 1997). While NB classifiers assume a multivariate normal distribution,
nearest neighbour (NN) classifiers are non-parametric, that is, they do not make
any assumptions about the underlying joint probability density function. NN
classifiers, which were introduced by Fix and Hodges (1951), estimate the class
probabilities of a new object using the class(es) of its closest observation(s).

The idea of a linear discriminant analysis (LDA) classifier, which was orig-
inally introduced by Fisher (1936), is to map the data into a space where the
classes are separated the most. It can be compared to PCA (see Section 4.3.2) be-
cause both techniques attempt to find linear combinations of attributes that best
approximate the data. However, while PCA is an unsupervised technique that
finds the axis directions that maximize the variance of the original data, LDA is
a supervised method that tries to find that linear combination of the original at-
tributes that maximize the distinction between the class labels. With the help of
the so-called kernel trick, LDA classifiers can also be used for nonlinear classifi-
cation (Mika et al., 1999).

A support vector machine (SVM) uses a hyperplane for linear classification.
This hyperplane is fitted to the data in such a way that the margin between the
classes is maximized. Similarly to LDA classifiers, SVM classifiers can also be
used for nonlinear classification when the kernel trick is utilized.

Decision tree (DT) classifiers build a hierarchical tree-like structure where
every node represents one attribute test condition and every directed edge rep-
resents one decision (Breiman et al., 1984; Quinlan, 2014). At each node, it splits
the data so that each partition has a purer distribution of observations from (a)
certain classe(es). Thus, a DT model is easy to read and provides understandable
rules on the splitting attribute for human interpretation (see Figure 10). A random
forest first builds several different DTs. Then, it classifies new objects as the mode
of the classes of all its individual trees (Breiman, 2001).

Artificial neural networks (ANN) cover a range of different models that corre-
spond to mathematical models inspired by the biological information processing
in the brain. A multilayer perceptron (MLP) is a particular category of ANNs. Out
of all ANN categories, it has shown the best value in practice (Bishop, 2006) and
is also the most widely used ANN (Hand et al., 2001). Early ideas for ANNs can
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FIGURE 10 Example of a pruned decision tree for the research domain. The source nor-
malized impact per paper (SNIP) indicator is the variable with the highest
predictive power for the rank in the Finnish funding system. This figure
was originally published by Saarela et al. (2016).

be found as early as 1943 in a study by McCulloch and Pitts. Recently, ANNs
have become popular again through the concept of deep learning (LeCun et al.,
2015).

As the desired output is known in supervised methods, it is fairly straight-
forward to compare different classifiers in their prediction accuracy for a given
data set. To assess this accuracy, the data is usually divided into a training and
a test set. Different division strategies exist, but the most established is cross-
validation. Cross-validation divides the data into N folds and then uses each of the
N-folds once for testing and the remaining N − 1 folds for training the respective
classifier. The overall prediction accuracy of the classifier is then determined as
the mean of the N different test accuracies. When the cross-validation is stratified
(see, for example, PI), the folds are created according to some rule. For example,
the folds might be created in such a way that in each fold the distribution of ob-
servation from the different classes is the same. If there is no rule and the data is,
for example, randomly divided into N = 10 different folds, the cross-validation
is referred as unstratified. A confusion matrix shows for each class label how many
observations were predicted to be from which class label. Thus, the diagonal of
a confusion matrix matches the correct predictions, and the remaining part of the
matrix matches the false predictions.

4.5 Association rule mining

The goal of frequent pattern mining is to automatically detect interesting and
potentially useful patterns in data. In the publications included in this thesis
that used frequent pattern mining (PIII and PX), the goal was to find patterns
of strongly associated attribute values, referred as itemsets. However, frequent
pattern mining can also be used to detect more complicated patterns, such as
sequences or graphs (Zaki and Meira, 2014).

Frequent itemset patterns can be detected with association rule mining. As-
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sociation rule mining allows researchers to present the discovered patterns as
implication rules (Agrawal et al., 1993). If I is the set of all items and S1 a subset
of the set of items (S1 ⊆ I), a transaction ti ∈ T, where T denotes the set of all
transactions, is said to contain itemset S1 if S1 is a subset of ti. The support count,
σ(S1), for an itemset S1 is defined as σ(S1) = |{ti | S1 ⊆ ti, ti ∈ T}|, where | · |
stands for the cardinality, that is, the number of elements in a set.

An association rule is then an implication expression of the form S1 → S2,
where S1, S2 ⊆ I and S1 ∩ S2 = ∅. The support, s(S1 → S2) = σ(S1∪S2)

|T| , de-
termines how often a rule is applicable to a given data set. The confidence,
c(S1 → S2) = σ(S1∪S2)

σ(S1)
, determines how frequently items in S2 appear in the

transactions that contain S1.



5 OVERVIEW OF THE INCLUDED PUBLICATIONS

The goal of the thesis is twofold: to provide contributions to educational domain
knowledge discovery and methodology. This chapter provides an overview of
the 10 included publication that contain the contributions. First, it is explained
how the single publications are connected, build on each other, and belong to-
gether (Section 5.1). Second, the 10 studies are discussed separately in a more
detailed way (Section 5.2–Section 5.11). Third, the main results from both per-
spectives, that is, knowledge discovery and methodology, are tabularly summa-
rized (Section 5.12).

5.1 Coherence and cohesion of the included publications

All the papers in this thesis contribute to knowledge discovery from sparse data
from Finnish educational institutions or related to the management of a national
educational system. The first article in this thesis, PI, introduces an analysis
framework for sparse educational data. Through triangulation of supervised and
unsupervised methods and the introduction of a ranking system, it is demon-
strated that general study capabilities predict the study success of DMIT students
better than specific IT skills. From the methodological vantage point, robust clus-
tering that uses the spatial median as location estimate to assess the center of a
set of points (see Section 4.2)—in particular, the initialization when there are miss-
ing data—is further advanced. As explained in Section 4.2, the robust clustering
method employed in this article has the same algorithmic skeleton as the popular
k-means algorithm, which is known for its initialization challenges.

Publication PII introduces the PISA data and provides an overview of pub-
lications based on PISA. It identifies the research gap (because of the technical
complexities within the different representations of LSEA data and the lack of
methods that allow advanced analysis of these large data sets, there is little re-
search activity on the secondary analysis of these data), and describes the charac-
teristics of PISA and general LSEA data that have to be taken into account when
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developing methods to work with these data. Moreover, PII includes a case study
in which all the PISA 2012 countries are clustered hierarchically by taking for all
countries the mean as input for each variable. Through statistical testing on dif-
ferent levels (by employing the triangulated approach proposed in PI), Finland’s
position in the international educational perspective is emphasized. It is con-
cluded that Finland’s comprehensive school system is able to cope with the chal-
lenges of negative attitudes toward mathematics, low work ethic, and little study
time outside school by promoting student collaboration, humility, and equity (see
Section 1.2).

Publication PIII is a knowledge discovery study that focuses on the Finnish
subset of the 2012 PISA data. In comparison to PII, all students are treated as
single entities; that is, no aggregating or averaging is employed. To deal with
the size and the sparsity, the robust partitional clustering method described in PI

is utilized. As explained in Section 4.3.1, hierarchical clustering is not scalable
to a large number of observations, whereas partitional clustering algorithms are
very feasible even for big data, and the spatial median with the available data
strategy is used to handle the missing data. Moreover, the analysis framework
introduced in PI (that is, triangulation of different analysis methods) is applied
in PIII. The clustering of the Finnish sample yielded two obvious—one with
high- and one with low-performing students—and two interesting—both with
medium performing students—clusters. Association rule mining for the inter-
esting clusters revealed very gender-specific characteristics for the two medium
performing cluster: Average performing girls had very high attitudes toward
school and learning in general, but no intentions to utilize mathematics later in
life, while the average performing boys showed exactly opposite characteristics:
They had the greatest intentions to pursue a mathematics-related career, but they
did not like school in general.

Publication PIV extends PIII from a sample to a population level. To enable
working with all the specific characteristics of PISA data discussed in Section 3.3
(i.e., the sizes, sparsity, and weights), it introduces the weights to the robust clus-
tering algorithm for sparse educational data. The weighted robust clustering al-
gorithm is based on the k-spatial-medians clustering employed in PI and
PIII but can cluster a sample on a population level by initializing and updating
the clusters with regard to the weights, that is, the importance of the single ob-
servations. This weighted robust algorithm is utilized for the Finnish subset of
the PISA 2012 data in the same article and for the global PISA 2012 data in PV.
From the domain knowledge discovery point of view, the findings in PIV were al-
most the same as in PIII, that is, the gender differences in the average performing
clusters were present too.

Article PII uses only the aggregated global PISA data to emphasize Fin-
land’s position in the international educational perspective, but article PV, PVI,
and PVII utilize all single observations of the global PISA 2012 data. In PV, the
whole algorithm from PIV is applied in a hierarchical fashion for the entire PISA
2012 data. First, the PISA scale indices were used as input for the weighted
clustering algorithm from PIV, which yielded two global clusters. Then, these
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global clusters were used as input for the same algorithm and so on, so that in
the end, a cluster tree was created with three different levels of abstraction. This
tree shows the hierarchies in the global PISA data. When a clustering result, such
as the one in PV, exists, it still has to be evaluated for the quantitative educa-
tional knowledge discovery (see Section 2.1). PVI presents two novel methods
that extend the Kruskal-Wallis test statistics for real-valued weights to evaluate
such weighted clustering results—again by employing the triangulated approach
proposed in PI. They thus advance the automatic educational knowledge discov-
ery. These proposed methods are utilized to automatically evaluate the clustering
result from PV and to rank the features and meta data according to their signif-
icance for the final cluster creation. It is found that the students’ economical,
social, and cultural status is the feature that explains the clusters of the global
PISA hierarchical tree the most.

In article PVII, a PCA version is introduced that can handle sparse data.
Similarly, as in the robust clustering method of articles PI–PV, which (as ex-
plained above) is algorithmically based on the traditional k-means, the algo-
rithmic skeleton of the introduced robust PCA is based on the traditional PCA
(see Section 4.3.2). However, instead of utilizing the sample covariance matrix
that is based on the sample mean—and again similarly as in the robust clustering
method, which uses the spatial median instead of the sample mean as the loca-
tion estimate—the robust covariance matrix corresponding to the spatial median
is employed. Triangulation (see again PI) of different robust PCA versions and
comparison to the classical PCA showed that the robust approach is especially
preferable when dealing with a high percentage of contaminated data. The ro-
bust PCA is also used for the PISA data, which again emphasized the importance
of the students’ economical, social, and cultural status.

Articles PII–PVII focus on the sparsity in the contextual PISA data, while
article PVIII addresses the sparsity in the cognitive PISA data. As such, an algo-
rithm was proposed to assign each student to a proficiency bin based on his or her
raw test scores. Moreover, different classifiers were compared in their prediction
accuracy by using only the students’ raw answers (i.e., none of the already pre-
processed and transformed variables, such as the PISA scale indices utilized in
PII–PVII) to the background questionnaire as features. A sum of rankings (again
as proposed in PI) of different feature selection algorithms on the raw question-
naire data showed that the self-evaluation on getting good grades in mathematics
predicts the Finnish students’ mathematics performance the most.

Article PIX is a follow-up study on PI. The newer study records from the
same source as in PI are used. The robust clustering method with the initializa-
tion developed in PIV and PV is employed to find students with similar study
paths. Together with a proposed architecture of an academic advising system, it
is argued that these can be used for more automated and evidence-based decision
making in an educational institution.

The robust PCA method introduced in PVII and the analysis framework for
sparse data introduced in PI were used in PX. Through the triangulated analy-
sis proposed in PI, publication PX demonstrates that most of the expert-based
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rankings in the Finnish publication channel evaluation system (see Section 3.4)
can be predicted and explained using automatically constructed data mining and
machine learning reference models. Finally, it is shown that those publication
channels, for which the Finnish expert-based rank is higher than the estimated
one, are mainly characterized by higher publication activity in combination with
or solely by the recent upgrade of the rank. This leads to the assumption that a
machine based ranking may be even more accurate and objective compared to
human decisions.

5.2 Article PI: Analysing Student Performance Using Sparse Data
of Core Bachelor Courses

This article was published in 2015 in the Journal of Educational Data Mining, Vol.
7.1, pages 3–32.

Objectives

The objective of this article was to identify the characteristics and structure of ed-
ucational data mining studies and to establish a general educational data science
(see Section 2.2) framework. Moreover, this article includes a case-study of as-
sessing the study record data of bachelor students at DMIT (see Section 3.5) with
the established framework.

Types of missing data and strategy to deal with them

The missing data values in the matrix that models the DMIT students’ mandatory
bachelor courses grades are MAR. This means that the missing values are related
to particular variables (some courses that are usually taken later in the program
are completed by fewer students; see Figure 2 in PI), but not missing because of
the values (grades) that could be observed if a particular course is passed. Thus,
the grade of the missing course is related to time, that is, the number of semesters
the student has studied already. To deal with the sparsity, the correlation analysis
is based on the available data only. Clustering was performed with the robust
clustering algorithm for missing data (see Section 4.3.1). For the MLP predic-
tion, the data was hot-deck imputed using the robust clustering result for a larger
number of clusters, which was assessed to be a good number of clusters with the
elbow curve and that still had complete centroids.

Contributions and results

A representative set of existing educational data mining studies was summarized
according to a) their data and its environment, b) the goal of the study, c) the ed-
ucational data mining category and the used methods, and d) the knowledge ob-
tained. According to this summary, only methods belonging to one of the classes
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in the taxonomy by Baker (2010) (as listed in Section 2.2) are usually applied to
address a particular educational data mining problem represented through data.1

It was proposed that in comparison to the current state of the art, a particular ed-
ucational data mining problem should be addressed through various approaches
and assessed as a whole to increase both the technical soundness of the proce-
dures and the overall reliability of the concluded results. The approach based on
multiphase methodological triangulation (Denzin, 1970; Bryman, 2003) was in-
troduced: different phases of the overall educational knowledge discovery pro-
cess with both within methods and between methods were varied by their meta-
parametrization and then combined and assessed as a whole through a ranking
system. More precisely, prediction using MLP (see Section 4.4), clustering using
statistically robust procedure based on k-spatial-medians (see Section 4.3.1),
relationship mining using two variants of correlation analysis and assessment of
MLP’s analytic feature saliency, and discovery with models by triangulating and
ranking the results of individual approaches were employed. The distillation of re-
sults for human judgment was that the quality and efficiency of the bachelor studies
at DMIT are very much determined by the first introductory courses. Based on
the triangulated analysis, it was concluded that general study and learning capa-
bilities predict the students’ success better than specific IT skills learned as part of
the core studies. Methodologically, how to cope with the non-structured sparsity
pattern (i.e., the set of missing values) in data with both descriptive and predic-
tive methods was shown. Moreover, the initialization for the robust clustering
algorithm for sparse data was advanced to ensure that the resulting centroids
needed for the educational knowledge discovery are complete. In summary, the
small complete data set (students who completed all courses) was used to deter-
mine the best centroids and best number of clusters, and the resulting centroids
were iteratively used again to initialize the next larger subset (students who com-
pleted all but one course), which again were used as input for the succeeding
larger subset.

Author’s contributions

The author of this thesis is the main and corresponding author of this journal
publication. She preprocessed the data, carried out the first two parts of the trian-
gulated data analysis, and provided the through hot-deck imputation completed
data for the third part of the analysis. Moreover, the author of this thesis pro-
duced all tables and figures of this article (except those in Section 5), interpreted
the results, and wrote the majority of the paper, with the exception of Section 5.

1 Moreover, in the prediction category, different classifiers are often compared, whereas for
the other categories, just one method from existing data mining tools or libraries is usually
utilized.
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5.3 Article PII: Knowledge Discovery from the Programme for In-
ternational Student Assessment

This article was published as the eighth chapter in the 2017 Springer book Learn-
ing Analytics: Fundaments, Applications, and Trends: A View of the Current State of
the Art, pages 229–267.

Objectives

The objective of this article was to provide the general background for the em-
pirical PISA part of this thesis: first, a comprehensive overview of PISA data and
their characteristics and, second, a coverage of related work concerning scien-
tific papers about PISA, research related to the high performance of Finland in
PISA, and educational clustering studies. Moreover, the goal was to cluster all
the PISA countries to identify Finland’s position within the international context
and to identify the strengths and shortcomings of the Finnish in comparison to
the global learning environment.

Types of missing data and strategy to deal with them

Most of the missing data are MCAR by design. The data was clustered hierarchi-
cally by taking the country mean for each variable.

Contributions and results

It was found that most of the related work concerned with analyzing PISA data
are national and international reports, but only a few studies have been published
in scientific publication channels where the articles have to endure the anony-
mous peer-review process. Moreover, those scientific PISA data articles that were
identified mostly followed the traditional hypothesis testing research approach
(see Section 2.1), and many did not take the special characteristics of PISA data
(described in Section 3.3) into account; for example, they analyzed only the sam-
ple by ignoring the weights, lost a large subset of data by discarding observations
with missing data, and utilized only a small subset of the PISA data by focusing
on only a few countries. From the literature review on educational clustering
studies, it was concluded that most of these studies are based on hierarchical
or representative-based (usually, k-means or expectation-maximization) meth-
ods. From the case study, it was found that requiring only minimal effort (latest
school start from all PISA countries, almost no homework, and very manageable
amount of hours in school) from the Finnish students and the equal treatment of
every individual lead to one of the least-motivated student cohorts of all the PISA
countries. Students have no ambition to excel, a low work ethic, and only very
marginal motivation to pursue a mathematical-related career. The further drop-
ping of Finland in the international mathematics performance ranking of the suc-
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ceeding PISA assessment (that de facto occurred; see Figure 1 in the introduction
of this thesis) was predicted. However, it is known that in PISA, some attitude
variables are positively correlated with achievement within a country,2 but neg-
atively correlated at the country level (Kyllonen and Bertling, 2014). This might
explain parts of the results. As also explained in this article, Finnish citizens are
rather modest about their own achievements, and they place great emphasis on
equity and equality. The most important driving factors in the life of this highly
feminine country are to live a good life and to care for others rather than to focus
on one’s own success and desire to be the best. Therefore, they might report some
of the attitude variables less enthusiastically than students from other countries.

Author’s contributions

The author of this thesis is the main and corresponding author of this book chap-
ter publication. She conducted the literature review on research related to learn-
ing analytics and the high PISA results of Finland; preprocessed the data; de-
signed, implemented, and carried out the data analysis and statistical tests; pro-
duced all tables and figures (except Figure 18.12); interpreted the results; and
wrote the majority of the article. The literature review on educational clustering
studies (Section 8.2.2) was mainly written by the second author, but the author of
this thesis collected the described work from the main publishing forums for LA
studies. Moreover, the author of this thesis presented preliminary results of this
study at the Annual Computer Science Event 2015 in Jyväskylä, Finland.

5.4 Article PIII: Discovering Gender-Specific Knowledge from Finn-
ish Basic Education Using PISA Scale Indices

This article was published in the full paper proceedings of the 7th International
Conference on Educational Data Mining (EDM 2014), pages 60–68.

Objectives

Proficiency in mathematics strongly predicts admission to post-secondary educa-
tion and expected future earnings of adolescents (p.252 OECD, 2014a). According
to the official reports by the OECD, Finland was one of the few countries in the
2012 PISA assessment in which girls performed slightly better in mathematics
than boys, and the Global Gender Gap Report by the World Economic Forum
(2016) ranks Finland worldwide second (after Iceland) in gender equity. How-
ever, in Finland mathematics-related jobs are also dominated by men. The pur-
pose of this study was to refine the analysis of this observation by leveraging data
mining techniques for the educational domain using the PISA 2012 questionnaire

2 See, for example, PIII where it was found that for Finnish students, the self-concept in
mathematics is highly and positively correlated with the plausible values in mathematics.
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scale indices that are known to affect proficiency in mathematics.

Types of missing data and strategy to deal with them

The missing data in the utilized PISA questionnaire scale indices are MCAR by
design, as each student is, as explained in Section 3.3, administered one out of
three different background questionnaires from which these indices are created,
as part of the arrangement of the assessment. To deal with the sparsity, the robust
k-spatial-medians was employed.

Contributions and results

It was found that the Finnish students sample divides into four clusters. Two
of these clusters unambiguously could be explained by performance: One clus-
ter consisted of the very high-performing Finnish students and the other clus-
ter consisted of the low-performing students. The remaining two cluster were
composed of medium-performing students. With association rule mining, it was
revealed that the students in those two average performing cluster groups have
very gender-specific attitudes: Girls had the highest attitudes toward school and
learning in general, but no intentions to pursue a mathematics-related career.
Boys were not interested in school and learning at all, but had the highest ex-
pectations of leveraging mathematics in their future. Methodologically, the ro-
bust cluster initialization for sparse data was further advanced by (comparable
to the procedure proposed in PI) using only the complete data first to assess with
a cluster index the best number of clusters, K, through multiple repetitions and
then using the centroid from the complete data and the determined best K for the
initialization of the full data.

Author’s contributions

The author of this thesis is the main author of this publication. She preprocessed
the data, carried out the data analysis, produced all tables and figures, interpreted
the results, and wrote the majority of the paper. Moreover, the author of this the-
sis presented the paper at the 7th International Conference of Educational Data
Mining in London, UK.

5.5 Article PIV: Weighted Clustering of Sparse Educational Data

This article was published in the proceedings of the 23rd European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine Learn-
ing (ESANN 2015), pages 337–342.
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Objectives

The objective of this article was to enhance the study in PIII by clustering not
only the PISA sample but the whole Finnish population of 15-year-old students.
To establish this, the sampled students must be clustered not as single entities but
with their weights, that is, the numbers that depict for each of these particular stu-
dents how many students in the population he or she represent (as explained in
Section 3.3). Weighted clustering is not very widely addressed (Ackerman et al.,
2012) and, for example, not part of standard data mining software. Thus, the am-
bition of this article was to propose an efficient version of the robust clustering
algorithm for sparse data (i.e., the k-spatial-medians algorithm from the pre-
vious studies) that takes the weights, aligning a sample with the corresponding
population, into account.

Types of missing data and strategy to deal with them

The data used in this article were the same as in PIII, which means that the miss-
ing data are MCAR. The weighted version of the further developed robust clus-
tering k-spatial-medians algorithm was used to deal with the sparse and
weighted data.

Contributions and results

An efficient version of a robust weighted clustering algorithm was introduced.
This algorithm takes the weights into account in all steps of the algorithm where
they are needed. Similarly to the initialization approach in PIII, cluster indices
and multiple runs of the algorithm with complete data were utilized to find the
best initialization for the full data. However, in this article, more cluster indices
were used for comparison, and the cluster indices were modified to work with the
weights. After the initialization, the weights had to be taken into account only in
the second iterative step: Each observation is assigned to its closest centroid, but
the update of the centroid should be more in the direction of the more important
observations, that is, those observations with larger weight. From the domain
point of view, the results of this study where the Finnish population of 15-year-
old students was clustered were very similar to the results where the Finnish
PISA sample (PIII) was clustered.

Author’s contributions

The author of this thesis is the main author of this publication. She preprocessed
the data, carried out the data analysis, produced all tables and figures, interpreted
the results, and wrote the majority of the paper.
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5.6 Article PV: Do Country Stereotypes Exist in PISA? A Cluster-
ing Approach for Large, Sparse, and Weighted Data.

This article was published in the full paper proceedings of the 8th International
Conference on Educational Data Mining (EDM 2015), pages 156–163.

Objectives

As explained in Section 1.2, a relationship between culture and attitudes exists.
In particular, it has been argued that culture affects people’s goals and their ac-
tions to reach these goals (Hitlin and Piliavin, 2004). The research question of this
article was as follows: If all 24 million students in the PISA data were clustered
as single entities with their characteristics and attitudes, but without using the
country information in the clustering algorithm, could the resulting clusters be
explained by their country? To realize such a clustering procedure that can cope
with the PISA data characteristics (i.e., the sparsity, weights, and sizes), the ob-
jective of this article was to carry out the weighted robust partitional clustering
algorithm from PIV hierarchically for the entire PISA data.

Types of missing data and strategy to deal with them

The variables used in this article were the same as in PIII and PIV, which means
that the missing data are MCAR. However, in this study, not only the Finnish
subset was utilized but also all observations in the PISA data of all participating
economies and countries with their weights. Because of the design of the assess-
ment, the percentage of missing data for the global level, that is, the entire PISA
data, is almost the same as the percentage of missing data on the country level.
The weighted version of the robust clustering k-spatial-medians algorithm
from PIV was used to deal with the sparse data.

Contributions and results

As pointed out in Section 4.3.1, hierarchical clustering is only feasible for very
small data sets. In this article, partitional clustering (i.e., the k-spatial-me-
dians algorithm), which is very scalable and feasible for large data sets, was
applied in a hierarchical fashion so that a hierarchical tree of clusters could be
established without the demand to employ an expensive hierarchical clustering
algorithm. The initialization and determination of the number of clusters for
each subcluster of the hierarchical tree was performed as in PIV. From the do-
main level point of view, it was found that performance in the PISA tests can
explain the discovered clusters, but the actual country data contributes to the
cluster membership information only to a marginal extent.
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Author’s contributions

The author of this thesis is the main author of this publication. She preprocessed
the data, carried out the meta data analysis, produced all figures and tables, inter-
preted the results, and wrote the majority of the paper. The author of this thesis
also presented the paper at the 8th International Conference of Educational Data
Mining in Madrid, Spain.

5.7 Article PVI: Feature Ranking of Large, Robust, and Weighted
Clustering Result

This article was published in the full paper proceedings of the 21th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD 2017), Springer
International Publishing.

Objectives

To complete the (educational) knowledge discovery process, as described in Sec-
tion 2.1 of this thesis, the numerical results from the data mining step have to
be interpreted. When the data are clustered, that means that the data (origi-
nally clustered data and optionally metadata) with the found cluster labels can be
evaluated for the interpretation. To facilitate such an interpretation, the Kruskal-
Wallis test statistics can be utilized to establish a ranking of variables and, there-
fore, to discover which variable affected the cluster creation the most. However,
when clustered data represents a sample from a population with known sample-
to-population alignment weights (as in PIV and PV), both the clustering and the
evaluation techniques need to take this into account. The objective of this article
was to introduce the weights to the Kruskal-Wallis test statistic to advance the
automatic knowledge discovery from a population-level clustering result. This
is a difficult problem in statistics since the Kruskal-Wallis test depends on data
ranking.

Types of missing data and strategy to deal with them

The missing data in PISA data are MCAR by design. Only the existing values are
used to compute the weighted Kruskal-Wallis test statistics.

Contributions and results

Two different approaches were suggested that can rank the variables of a weighted
clustering result by generalizing the Kruskal-Wallis test statistic from the sample
to population level. The first approach extends the integer value weights ap-
proach suggested by Tölgyesi et al. (2014), which involves copying each obser-
vation as many times as the integer weights suggest, for real valued weights by
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using the classical bootstrapping (Efron, 1979). The second suggested approach is
based on a novel heuristic formula derived in the article. To test the approaches,
the clustering result from PV was utilized. Both the input data (data that was
clustered in PV) and the metadata, that is, all the variables from the PISA infor-
mation and communication technology (ICT) questionnaire (OECD, 2015), were
used to compare the data distributions in the existing clusters with the proposed
approaches. As hypothesized in PV, it was found that the students’ economic,
social, and cultural status (ESCS) is the most important variable determining the
different clusters. The plausible values (PVs) were found to be the most important
variables from the metadata. This result is reasonable because the input/clus-
tered variables are, as explained in Section 3.3.1 of this thesis, part of the posterior
model from which the PVs were sampled. Moreover, the approaches were com-
pared using the labeled Iris data from the UCI machine-learning repository (Merz
and Murphy, 1998), and this methodological triangulation also showed that the
results were very consistent between the different approaches. Finally, using the
analytical formula for quick evaluation was recommended. The bootstrap ap-
proach (which is better aligned to the existing literature) was recommended for
automatic clustering result rankings and for finalizing the educational knowledge
discovery process.

Author’s contributions

The author of this thesis is the first author of this article. She preprocessed the
data, described the PISA data, interpreted the results, and wrote the correspond-
ing sections of the article. Moreover, the author of this thesis presented the paper
at the 21th Pacific-Asia Conference on Knowledge Discovery and Data Mining in
Jeju (South Korea).

5.8 Article PVII: Robust Principal Component Analysis of Data
with Missing Values

This article was published in the full paper proceedings of the 11th International
Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM
2015), pages 140–154.

Objectives

Although PCA is one of the most popular methods in data mining and machine
learning, the use of PCA for sparse data with missing values seems not to be
a widely addressed topic. The objective of this article was to propose multiple
robust PCA approaches for data with missing values and to estimate the relative
importance of the principal components to explain the data variability.
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Types of missing data and strategy to deal with them

The missing data were assumed to be missing completely at random. For the
carefully designed test data sets, a MCAR sparsity pattern was introduced ar-
tificially. Missing data in PISA data are MCAR by design. The proposed PCA
approach uses the available data strategy and spatial median location estimate
to calculate a more robust covariance matrix, which is then used to compute the
principal components.

Contributions and results

A novel PCA approach was introduced, which uses the robust covariance ma-
trix ΣR that corresponds to the spatial median (the location estimate explained in
Section 4.2) instead of the sample covariance matrix that is based on the mean.
Since the robust covariance matrix ΣR is based on first-order approximation, the
eigenvalues readily correspond to the geometric variability represented by the
standard deviation. As argued in Section 4.3.2, the eigenvalues of the standard
covariance matrix Σ represent the variances along the new coordinate system,
whereas to assess the true variability of data in one direction, the standard devia-
tion should be used to determine the importance of a principal component. That
means that in the standard PCA, the square roots should be taken to assess the
relative importance of the components and to ensure that the robust and the clas-
sical PCA approaches are comparable to each other. Experiments were carried out
that focused on carefully designed simulated tests where the ground truth was
known and could be used to assess the accuracy of the results obtained with the
robust in comparison to the traditional approach. Moreover, two modifications
of the robust PCA were introduced based on the “almost complete data” concept
(comparable to the initialization idea of the robust clustering in PI, PIII, PIV, and
PV) to prevent the underestimation of the amount of variability of data and/or
the main directions of variability due to sparse data vectors. The first modifica-
tion uses the 10% and 90% percentiles of the projections along the new coordinate
system, and the second modification uses only those observations of which one
variable at most is missing to estimate the robust covariance matrix ΣR. The ro-
bust PCA approach yielded good results (especially with the first modification
that used percentiles to estimate the relative importances of the principal com-
ponents) when compared with the true variability of the data, and the estimated
directions remained stable even with a large amount of missing data, whereas
the classical PCA was more prone to nongaussian errors in the data. Moreover,
it was shown that even if there are missing values in the original data, the result-
ing new data vectors become complete when the robust PCA is employed, while
they have missing values when the traditional PCA is employed. The introduced
robust PCA approach was also applied to the same global PISA data set as in
PV, where about 30% of the data were missing, and the data was projected to the
first two principal components. This visualization showed that the students’ eco-
nomic, social, and cultural status divides the participating PISA 2012 students the



68

most, which confirms existing the information. For example, as pointed out by
the OECD “PISA 2012 data shows that the economic, social and cultural status of
students explains 24% of the mathematics performance variation among all PISA
countries and even 46% of the variation among OECD countries” (OECD, 2014a,
page 36).

Author’s contributions

The author of this thesis carried out the experiments, produced all figures and
tables, interpreted the results, and wrote the corresponding sections of the article.
Moreover, the author of this thesis presented the paper at the 11th International
Conference on Machine Learning and Data Mining in Hamburg, Germany.

5.9 Article PVIII: Predicting Math Performance from Raw Large-
Scale Educational Assessments Data: A Machine Learning Ap-
proach

This article was published at the website of the Machine Learning for Digital Ed-
ucation and Assessment Systems workshop of the 33rd International Conference
on Machine Learning (ICML 2016).

Objectives

PISA reports student proficiencies only in the form of plausible values (as ex-
plained in Section 3.3.1). Plausible values have shown to be a reliable estimate
for proficiencies of populations and are used not only in PISA but also in all ma-
jor large-scale educational assessment studies (listed in Section 3.2). However, a
more comprehensive study of PISA data sets by deploying machine learning al-
gorithms may provide a better understanding of the underlying factors affecting
student performance and thus yield to better and more interpretable predictive
models. Although the Rasch model with the plausible value approach currently
used in PISA has been criticized, for example, by Kreiner and Christensen (2014),
no real alternative to analyze the sparse cognitive performance data of these as-
sessments has been suggested (Adams, 2011). The objective of this article was to
perform a supervised approach for PISA data to predict students’ performance
in mathematics without using any of the derived variables in PISA but only the
raw really observed data. This is a challenging task because of the high sparsity
in the scored cognitive response data.

Types of missing data and strategy to deal with them

The missing data of the scored items in the PISA cognitive test data are missing
by design. This data set provides for each student the information about whether
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an item was administered to this student and, if so, how many points the stu-
dent received for this item. However, all the students that were administered the
same cognitive test have a complete matrix for that set of items included in that
specific test. To deal with the sparsity, first, a seven-dimensional matrix was con-
structed that assigned each item to a bin depending on how many students (out
of all students from the same test) were able to solve this item correctly. Then,
each student was assigned to a bin depending on whether he or she mastered the
corresponding difficulty level of a bin.

Contributions and results

A technique was presented to learn directly from LSEA data by deploying a com-
bination of both unsupervised and supervised learning feature selection algo-
rithms to predict student performance on mathematics scores. The technique
learns the difficulty level of different mathematic task items and predicts whether
a student with a particular background profile will be successful in answering
correctly. For this, all raw answers directly related to the performance in math-
ematics were utilized from the PISA 2012 students’ background questionnaire.
Moreover, since correct answers for easier questions are predictive for harder
ones, the information about whether the student mastered the previous difficulty
level(s) was iteratively added to the original feature set of raw mathematics back-
ground questionnaire answers. Preliminary results of different supervised data
mining and machine learning models were compared in their prediction accu-
racy for the created labels. The algorithm was tested first for the Finnish students
only and then for all participating students. For the Finnish students, the vari-
able assessing the students’ self-concept of getting good grades in mathematics
was the most important variable for predicting the performance in mathematics,
while the students’ subjective norm that their parents like mathematics was not
important at all.

Author’s contributions

The author of this thesis is the main author of this publication. She implemented
the data analysis, produced all figures and tables, interpreted the results, and
wrote the majority of the paper. Moreover, the author of this thesis presented the
paper at the Machine Learning for Digital Education and Assessment Systems
workshop of the 33rd International Conference on Machine Learning in New
York, USA.



70

5.10 Article PIX: Supporting Institutional Awareness and Academic
Advising Using Clustered Study Profiles

This article was published in the full paper proceedings of the 9th International
Conference on Computer Supported Education (CSEDU 2017). Moreover, an ex-
tended version of this paper has been selected to be included in the Communica-
tions in Computer and Information Science series published by Springer.

Objectives

Academic advising (i.e., the process of helping individual students with devel-
oping educational plans and guidelines that support their academic career and
personal goals) is associated with a high work load for the academic advisor and
therefore costs for higher education institutions that employ academic advisors.
The objective of this article was to propose a system that performs academic ad-
vising in a more automated matter.

Types of missing data and strategy to deal with them

The missing data of the study records that are used to demonstrate the operation
of the proposed system are MAR because the missingness is related to time (see
PI). The robust clustering method with the available data strategy and initializa-
tion for sparse data (see PIII-PV) was used to handle the sparse data.

Contributions and results

A type of automated academic advising was suggested that is based on real study
records. This system takes the sparse data matrix created from the study log of
passed courses (see Section 3.5) as input and uses robust k-spatial-medians
clustering with initialization for sparse data to identify a set of actual study path
profiles. Such profiles identify groups of students with similar progress of stud-
ies, whose analysis and interpretation can be used for better institutional aware-
ness and to support evidence-based academic advising.

Author’s contributions

The author of this thesis described the data and the method of the proposed sys-
tem. Moreover, the author of this thesis revised the paper and explained the ad-
vantages of using clustering. The data analysis with the initialization for sparse
data, which was performed by the third author, corresponds to the approach
evolved in PI, PIII, PIV, and PV.
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5.11 Article PX: Expert-Based versus Citation-Based Ranking of Schol-
arly and Scientific Publication Channels

This article was published in 2016 in the Journal of Informetrics 10(3), pages 693–
718.

Objectives

The objective of this article was to assess whether the expert-based rankings in
the Finnish publication forum (see Section 3.4) can be constructed automatically
through machine learning and data mining techniques. For this, all available
variables from three databases (the Finnish databases containing the publication
source information, the database containing the actual national publication activ-
ity information, and Thomson Reuters’ Journal Citation Reports) were used that
could affect the ranking of a publication channel (most importantly, the rank in
other major citation databases, the age, the publication language, the type, and
the rank in previous years). These variables are also the same that are provided
to the expert panels to judge and rank the publication channels.

Types of missing data and strategy to deal with them

The missing data in the analyzed data from the three databases are NMAR; that
is, the missing values depend on the value that would have been observed if the
value had not been missing. The information related to whether a publication
channel is indexed in the major citation databases was encoded and employed
with association rule mining. The obtained rules showed that this information is
actually an important predictor of the rank.

Contributions and results

It was demonstrated that most of the expert-based rankings can be predicted and
explained using the automatically constructed reference models based on associ-
ation rule mining, decision trees, and confusion matrices. Moreover, it was found
that those publication channels, for which the Finnish expert-based rank is higher
than the estimated one, are mainly characterized by higher publication activity or
a recent upgrade of the rank. It was concluded that the large correspondences of
the expert-based ranks with other information could allow researchers to par-
tially automatize the manual ranking process or, at least, provide an accurate
baseline for human decision making in the evaluation panels.

Author’s contributions

The author of this thesis is the main and corresponding author of this journal
publication. She conducted the literature review on research related to indica-
tors that measure scientific output based on publications, preprocessed the data,
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implemented and carried out the data analysis, produced all figures and tables,
interpreted the results, and wrote the majority of the article, except the literature
review on performance-based funding systems in other countries (the first part
of the introduction), which was mainly written by the second author.

5.12 Summary of contributions

This thesis is composed of the articles discussed above that contain the contri-
butions. As emphasized before, the two main contributions of the publications
are, first, adaption of computational methods to data with special characteris-
tics, especially LSEA data and, second, applications of existing and further de-
veloped methods for sparse educational data sets, especially the data from the
2012 PISA assessment. Table 2 summarizes the main contributions from these
two perspectives for each publication and acknowledges the data that were uti-
lized. As explained above, the publications comprising this thesis utilize three
different data sources, that is, the PISA data (Section 3.3), the data containing
information about the publication sources and publication activities of Finnish
researchers (Section 3.4), and the DMIT study records (Section 3.5).

TABLE 2 Results.

Arti-

cle

Data Methodological Orien-

tation

Knowledge Discovery

PI DMIT students
study record
log data

Analysis framework for
sparse educational data,
correlation analysis, ro-
bust clustering, MLP
neural network predic-
tion

General study capabil-
ities are more impor-
tant for study success at
DMIT than specific IT
skills.

PII Global PISA
contextual
student data

Combination of data
mining method (hier-
archical clustering of
weighted means of each
country) with statistical
testing of the results

In comparison with
their international peers,
Finnish students can be
characterized by their
high ESCS but very
low work ethics and
motivations to study.

Continued on next page
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Table 2 – continued from previous page

Arti-

cle

Data Methodological Orien-

tation

Knowledge Discovery

PIII Finnish subset
of PISA 2012
contextual
student data
(scale indices
associated with
mathematics
performance)

Use of the analysis
framework from PI;
sparse data analysis; tri-
angulation of different
analysis methods: cor-
relation analysis, robust
clustering, association
rule mining

Average performing
girls and boys have very
gender-specific attitudes
concerning mathematics
and their future career.

PIV Finnish subset
of PISA 2012
contextual
student data
(same as in
PIII)

Incorporating the
weights into the robust
clustering algorithm
from PI and PIII

Similar clusters as in PIII

PV Global PISA
contextual
student data
(same variables
as in PIII and
PIV)

Hierarchical operation
of the weighted robust
clustering algorithm
from PIV

Performance in the PISA
test explains global PISA
clusters more than coun-
try of the student.

PVI Global PISA
2012 contextual
student data

Introduction of weights
to the Kruskal-Wallis
test statistics to allow
variable rankings for
automatic knowledge
discovery and inter-
pretation for clustering
results on the popula-
tion level

ESCS most impor-
tant input variable for
determining cluster
membership in PIV, PVs
most important from the
meta-variables.

PVII Global PISA
2012 contextual
student data
(same variables
as in PIII-PV)

Novel robust PCA ver-
sion for data with miss-
ing values

Confirmation of existing
knowledge: ESCS is the
most separating variable
in entire PISA 2012 data.

Continued on next page
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Table 2 – continued from previous page

Arti-

cle

Data Methodological Orien-

tation

Knowledge Discovery

PVIII Global PISA
2012 cognitive
data (for es-
tablishing the
labels) and raw
contextual data
(as predictors)

Establishing perfor-
mance labels for stu-
dents based on the
sparse cognitive PISA
data, using different
classifiers and raw
questionnaire data to
predict performance

The self-concept on get-
ting good grades is the
raw mathematics vari-
able that predicts math-
ematics performance the
best.

PIX DMIT stu-
dents study
record log data
(follow-up data
from PI)

Sparse data analy-
sis; use of the robust
clustering with the
initialization developed
in PIII-PV

Similar student profiles
that can be used to auto-
mate academic advising.

PX Database con-
taining the
Finnish expert-
based rankings
of publica-
tion sources
and database
containing
the Finnish
national publi-
cation activity
information.

Sparse data analysis;
use of the analysis
framework from PI;
triangulation of differ-
ent analysis methods:
association rule mining,
decision trees, and
confusion matrices;
use of the sparse PCA
approach from PVII

Most of the expert-based
rankings can be pre-
dicted and explained
using automatically
constructed reference
models. Publication
channels, for which the
Finnish expert-based
rank is higher than
the estimated one, are
mainly characterized by
higher publication activ-
ity or recent upgrade of
the rank.



6 DISCUSSION AND CONCLUSIONS

The high results in the firsts PISA assessments have made Finland’s educational
system internationally famous, and since then, this system has been under active
study but mainly by educational scholars using traditional analysis techniques
and manually collected data. The work of this thesis complemented the existing
research by analyzing and discovering knowledge from the Finnish educational
system in the large—that is, basic education (PISA, see Section 3.3), higher edu-
cation (university, see Section 3.5), and the resource allocation for higher educa-
tion (Jufo, see Section 3.4)—and by leveraging and further evolving data mining
methods for the educational domain (as highlighted in Figure 5). These methods
incorporate more multivariate techniques than classical educational research and
are suitable for data that are large, both in terms of observations and dimensions.

To answer the research questions posed in Section 1.3, this thesis can be con-
cluded from three different point of views: the context of automation (RQ1), the
methodological development (RQ2), and the educational knowledge discovery
perspective (RQ3).

RQ1 - Automation

From the context of automation, the educational knowledge discovery process
is more mechanized than traditional educational research. Instead of manually
collecting specific data, the researcher may work directly with rich (openly) avail-
able data. Moreover, the traditional data analysis approach relies on hypothesis
development and testing, whereas in data mining, the machine learns from the
data and might be able to detect interesting patterns in them without the need of
forming strong hypotheses first. This may lead to unexpected and novel findings,
such as the one in PIII, but does not rule out hypothesis testing and confirmatory
research to properly assess these findings. In fact, data mining is just a part of the
whole educational knowledge discovery process.

As emphasized throughout the entire thesis, the educational knowledge dis-
covery process is a stepwise procedure (see Figure 4) where human judgment is
used to assess and decide (i) which particular target datasets are processed fur-
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ther, (ii) what the goal of the data mining is, (iii) what preprocessing and trans-
formation methods are needed and used, (iv) what data mining algorithm(s) are
utilized, (v) how the evaluation and interpretation is made, and (vi) what knowl-
edge is concluded. That means that humans and machines work together in the
educational knowledge discovery process, often employing the computer to dis-
cover and summarize information that assists in complex decision making (see,
e.g., PI, PII, PX) and leaving the final contextual decisions to human domain ex-
perts (Merceron et al., 2016). Thus, human judgment is heavily involved here, but
the automation is linked to what happens inside these steps.

In the publications included in this thesis, automation inside the educational
knowledge discovery process steps has been promoted. For example, the robust
clustering with the available data strategy (PI, PIII, PIV, PV, and PIX) avoids
explicitly considering how to perform imputation because it does not need im-
putation. Furthermore, internal cluster validation indices (PI, PII, PIII, PIV, PV,
and PIX) suggest how many profiles are hidden in the clustered dataset with-
out human involvement. Moreover, feature importance measures allow auto-
matic ranking and detection of the most important input features and metadata
variables to ease up the interpretation of a clustering (PVI and PI) or prediction
(PVIII and PI) result. Finally, on the organizational level, the integration of dis-
covered rules and relationships into systems/reference models supported more
automated utilization of the results (PX and PIX). In summary, the automation of
the educational knowledge discovery process has been advocated, but without
understating the crucial rule of the human domain experts.

RQ2 - Methodology

From the methodological point of view, nonstandard techniques based on the so-
called robust statistics were utilized and further developed. Since all the data sets
analyzed in this thesis had a severe sparsity pattern (PI–PX), it was argued that
the existing unsupervised data mining methods yield more accurate and reliable
results when the spatial median instead of the sample mean is used to estimate
the center of a group of points (PI, PIII, PIV, PV, PVI, PVII, PIX, and PX). The
sample mean, which is the default location estimate in some of the most applied
unsupervised data mining techniques (i.e., k-means clustering and standard prin-
cipal component analysis) is known to be extremely sensitive toward all kinds of
outliers including missing values. On the contrary, the spatial median with a
breakdown point of 0.5 still produces reliable results even when half of the data
is contaminated. Furthermore, the available data strategy utilized within the un-
supervised techniques of the publications in this thesis ensures that all of the ex-
isting observations are used, and thus, none of the possibly valuable information
gets lost. In fact, in PX, it was shown that using the missingness information of
certain variables in the constructed patterns and rules can reveal very important
information in the knowledge discovery process.

The included publications especially focused on the special characteristics
of LSEA data, and PISA data (PII–PVIII) represent the most prominent example—
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both with regard to size and political acknowledgment. Besides the high sparsity,
another distinguished feature of LSEA data sets is the real-valued weights that
align the participating student sample with the whole student population. These
weights were incorporated into the robust clustering algorithm (PIV and PV), its
initialization (PIV and PV), the cluster indices determining the number of clus-
ters (PIV and PV), and to the Kruskal-Walllis test statistics for ranking the vari-
ables used in clustering, therefore advancing the automatic educational knowl-
edge discovery process by providing a machine-aided process to determine the
variables most significant for a clustering result (PVI).

The importance of multiphase methodological triangulation, that is, to look
at the same problem through different approaches, has been emphasized through-
out this thesis and its included publications (especially in PI, PVI, and PX). As
already argued by Gifi (1991) (see also Olsen, 2005a), if several techniques lead to
the same conclusion, it is more likely that these reflect genuine and overarching
aspects of the data and that the interpretation is not just an artifact of one partic-
ular technique used to analyze or inspect the data. In several publications of this
thesis (PI, PII, PIII, PIV, PVI, PVII, PVIII, and PX), different between and/or
within methodological approaches (see, e.g., Bryman, 2004b; Denzin, 1970) were
used and compared to ensure that the concluded results were not an artifact of
a particular approach and, thus, increased the technical soundness of the proce-
dures and the overall reliability of the research outcomes. This kind of analysis
and ranking frame is also used in novel technologies and intelligent systems, such
as IBM’s Watson (see, e.g. Gondek et al., 2012), to arrive at a final decision. Hence,
to answer and conclude research question RQ2 in one brief sentence, methods for
analyzing LSEA data sets should be characterized by their ability to handle size,
sparsity, and weights in data and should have proved to be reliable and consistent
in comparison with other methods applied to the same problem.

RQ3 - Knowledge discovery

From the knowledge discovery perspective, the publications included in this the-
sis covered three different educational domains in Finland. The main domain
was the Finnish comprehensive schools and their 15-year-old student cohort rep-
resented by PISA data (publications PII–PVIII). The second domain was the
Finnish higher education exemplified through the study program at DMIT (pub-
lications PI and PIX). The third domain was the Finnish research setting and its
performance-based funding system (publication PX).

The findings from the Finnish comprehensive school seem contradictory.
The average decline of the mathematical achievement of the Finnish students in
PISA 2012 to the assessment in 2003, where mathematics was the main assess-
ment area the last time, is equivalent to the progress usually made in more than
half a school year (Välijärvi et al., 2015). However, it is amazing that Finnish
students still achieve high results in PISA,1 especially because they are, in com-

1 Although the average performance of Finnish students strongly declined, Finland is still
among the highest-ranking PISA countries in the world (Välijärvi and Sulkunen, 2016).
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parison with their international peers, characterized by an extremely low work
ethic (PII); that is, they seem to see no reason why they should strive for excel-
lence. The Finnish educational system appears to support and serve students
with learning deficiencies well. This is particularly because special needs educa-
tion is integrated in regular schools as much as possible and students of all levels
study in the same environment for the first 10 years (see Section 1.2). However, it
seems that less attention and emphasis are placed on high-achieving and gifted
students (Tirri and Kuusisto, 2013). Treating everyone equally and requiring only
the minimal effort does not produce the most ambitious and eager students (PII).
Of all the PISA countries, Finland is, for example, at the bottom of percentage of
students who have heard of or know the concept of complex numbers (p. 166,
Figure I.3.14 OECD, 2014a). Maybe schools and education must become more
challenging in Finland. More research is also required to determine the effects
of more support for skilled students in Finland. It would be interesting to assess
how much such settings would affect the overall PISA ranking results.

On one hand, more attention could be paid to talented students. On the
other hand, it seems to be exactly the collaborative, trust-based, and less com-
petition-oriented school system and Finnish culture that has contributed to the
high average PISA results. From their economical, social, and cultural status (the
single most important predictor of performance in PISA; see PVI and PVII), the
Finnish students are comparable to their Western and Nordic neighbors (PV).
However, the Nordic/Western student cohort tends to be more ambitious and
motivated, while the Finnish students are distinguished by their more collabo-
rative thinking and general humility (PII). As also pointed out in the literature
review in PII, research has shown that Finnish citizens commonly place great
emphasis on equity and equality and are very modest about their own achieve-
ments. This definitely benefits less-skilled students and, according to Välijärvi
et al. (2007), virtually does not harm higher achieving students. However, it
would be interesting to assess the effects in the Finnish learning environment
if efforts and hard work were rewarded more.

Following the data mining definition by Hand et al. (2001) (and similarly
the original knowledge discovery process definition by Fayyad et al., 1996b),
that is, analyzing the data with the goal of finding novel, interesting, and use-
ful patterns in them, research question RQ3 also asked about the usefulness of
the discovered knowledge. In the end, this usefulness might be a very subjective
measure that must be evaluated by the respective domain experts. However, for
example, the automatic construction of rules for the ranks in the Finnish pub-
lication forum could be of direct practical value. As explained in Section 3.4,
human decision making is associated with high costs for the Finnish govern-
ment. Using the automatic constructed ranks from PX would save money and
man-hours in the research organisation setting and bring more objectivity into
the rankings. Similarly, the automated academic advising system from PIX could
lead to economization of human study guide and recommendation efforts and
increased awareness of the different students and their personal study paths in
higher education. Nevertheless, the more work is allocated to a machine, the
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more important it becomes to define and implement ethical boundaries and rules
determining, for example, what kind of information can be used in such systems
while ensuring the protection of individual rights and their data (Hildebrandt,
2017).

The discovery that boys and girls who are attending Finnish basic education
classes have different goals for their future (PIII) may not be so obvious in its
value for immediate decision making. Nonetheless, it is interesting that on one
hand, Finland seems to be one of the most developed countries in terms of equal
rights for men and women. On the other hand, traditional values and views seem
to be still deeply anchored in the population. Thus, this finding should be studied
more. In particular, it would be interesting if further studies would examine at
which age this gender-specific goals and associated future career wishes appear.

Research in gender and equity has shown that girls are more likely to chose
a mathematical/programming related career if they believe they will be success-
ful in it. However, they often assume that boys are better in these areas, and thus,
they do not consider such a career in the first place (e.g., Denner, 2007). Hence,
it is important to change the girls’ own stereotypical behaviors. The finding that
general study capabilities at DMIT are more important than mathematical and
programming skills (PI) might serve as a motivator for girls to pursue and per-
sist in attaining a career in this field. In PISA 2012, the gender difference in the
mathematics performance of Finnish students was three score points in favor of
girls (PIII). In PISA 2015, this difference has widened to eight score points (OECD,
2017a). Encouraging girls to consider a career in mathematics-related fields, and
therefore to increase their interest in and excitement to exert themselves for it,
may result in even higher average girls’ performance and thus increase Finland’s
overall place in the international ranking of forthcoming LSEA studies.

Limitations and Future work

There are some limitations to the findings presented in this thesis and a number
of interesting possibilities for future work that can extend the research started in
here.

One obvious limitation of this thesis is that the discovered knowledge is
restricted to those methods that were used. The methodological landscape of
data mining and machine learning is immense, and thus, more methods could
be tested and adapted to the specific requirements of LSEA data. In particular,
future work should be undertaken to try to improve techniques concerning spar-
sity and weights. These techniques could be used to test and verify the discovered
knowledge or even lead to more novel information.

Another limitation arises from the educational knowledge discovery point
of view discussed in Chapter 2. The empirical part of this work did not include
any data collection but focused on existing data. Most of the analyzed data sets,
especially PISA, are very much processed and if one looks at the big picture, there
could be more work regarding the actual raw data. The study in PVIII already
presented an approach for utilizing the raw PISA data and this will be tested more
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in the future. Moreover, it is currently under investigation how the PISA log file
data that contain even more raw data (and that have been made available for the
electronic PISA tests, see PII) can be leveraged for the educational knowledge
discovery process.

A further natural progression of this work is to analyze data from forth-
coming PISA cycles and other LSEA studies with the proposed methods. Further
work related to Finland’s drop in the PISA mathematics ranking was proposed
along with concluding RQ3. As discussed there, it would be particularly inter-
esting to assess the effects of more gratification for efforts and hard work in the
Finnish system and the outcomes if girls’ own stereotypical behaviors could be
changed.

Concerning educational data mining and learning analytics, the work pre-
sented in this thesis concentrated on a higher level than on a school- or classroom-
level, which constitutes the majority of the existing work in these disciplines (as
discussed in PII). Further work will continue on the level of higher education
management on a national level. In particular, an elaboration of article PX is cur-
rently under construction.

Finally, one of the most important directions for future work (which is—
as discussed along with concluding RQ1—partly already in action) is related to
ethics when leveraging real educational data for automatic decision making.
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YHTEENVETO (FINNISH SUMMARY)

Automaattinen tietämyksen muodostaminen harvoista ja laajoista koulutuk-

sellisista aineistoista - tapaus Suomi

Suomalainen koulutusjärjestelmä on saanut paljon julkisuutta 2000-luvulla. Eri-
tyisesti erinomaiset tulokset PISA-tutkimuksen (Programme for International Stu-
dent Assessment - PISA) kolmella ensimmäisellä osallistumiskerralla tekivät pe-
ruskoulujärjestelmästä kansainvälisesti kuuluisan. Peruskoulutuksen kansallisia
ominaispiirteitä on sen jälkeen tutkittu paljon, pääosin kasvatustieteen piirissä.
Tutkimus on pohjautunut avoimesti saatavilla olevien aineistojen analysointiin
ja koulutusjärjestelmän arvioinnin ja kehittämisen tukemiseen käyttäen laadul-
lisia ja määrällisiä tutkimusmenetelmiä. Tässä väitöskirjassa tarkastellaan suo-
malaista koulutusjärjestelmää koskevan uuden tietämyksen muodostamista laa-
joista ja harvoista eli paljon puuttuvia arvoja sisältävistä aineistoista—erityisesti
PISA-aineistosta—koulutuksellisen tiedonlouhinnan ja oppimisanalytiikan me-
netelmiä käyttäen ja niitä edelleen kehittäen. Työllä onkin kahdentyyppisiä ta-
voitteita: edistää tietämyksen muodostamisen menetelmiä, algoritmeja ja tulos-
ten automaattista tulkittavuutta, sekä soveltaa kehitettyjä menetelmiä koulutuk-
sen ilmiöiden parempaa ymmärrystä varten. Väitöskirja perustuu kymmeneen
kansainväliseen julkaisuun, joista ensimmäisessä esitetään yleinen viitekehys kou-
lutuksellisten aineistojen monipuolisen analysoinnin tueksi. Seitsemässä seuraa-
vassa julkaisussa tarkastellaan ja kehitetään edelleen kvantitatiivisen tietämyk-
sen muodostamisen menetelmiä, joissa huomioidaan PISA-aineistojen erityispiir-
teet. Kahdessa viimeisessä julkaisussa havainnollistetaan, kuinka suomalaisen
koulutusjärjestelmän hallintaan liittyvää päätöksentekoa voidaan automatisoida
ja parantaa aikaisemmin kehitettyjä menetelmiä ja viitekehyksiä hyödyntämällä.
Kokonaisuudessaan työn tulokset tarjoavat uutta tietoa ja näkemyksiä suomalai-
sesta koulutus- ja korkeakoulujärjestelmästä.
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University of Jyväskylä
tommi.karkkainen@jyu.fi

Curricula for Computer Science (CS) degrees are characterized by the strong occupational orientation of
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analyze this situation, we apply nonstandard educational data mining techniques on a preprocessed log
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while intrinsic groups of students are created and analyzed using a robust clustering technique. Since not

all students attended all courses, there is a nonstructured sparsity pattern to cope with. Finally, multilayer

perceptron neural network with cross-validation based generalization assurance is trained and analyzed

using analytic mean sensitivity to explain the nonlinear regression model constructed. Local (within-

methods) and global (between-methods) triangulation of different analysis methods is argued to improve

the technical soundness of the presented approaches, giving more confidence to our final conclusion that

general learning capabilities predict the students’ success better than specific IT skills learned as part of

the core studies.
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1. INTRODUCTION

The development of a curriculum for Computer Science (CS) can be challenging in an academic

environment, given the discipline’s strong occupational orientation. Especially at multidisci-

plinary universities (i.e., with many subject areas), the CS curriculum differs from the curricula

of many other disciplines, as the core courses reflect to a large extent the vocational side of the

program. In the case of the Department of Mathematical Information Technology (DMIT) at

the University of Jyväskylä in Finland (reflecting both Finnish and European degree structures),

the core bachelor courses compose only about 50 out of the minimum 180 ECTS (i.e., credits

measured using the European Credit Transfer and Accumulation System) for the 3-year BSc de-

gree (see Table 2). The degree contains other major courses in addition to separate introductory

topics (e.g., general science, language and communication skills, statistics) and minor subject

studies (especially mathematics). Students should acquire knowledge of very specific technical

(e.g., programming) skills; however, computing interacts with many different domains, and in

order to prepare students as the workforce of the future, domain knowledge as well as soft skills
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and personal attributes are important (Sahami et al., 2013a). For more than 40 years, roughly

every 10 years, the Association for Computing Machinery (ACM) and the Institute of Electrical

and Electronics Engineers (IEEE) have promoted the creation of international curricular guide-

lines for bachelor programs in computing (Sahami et al., 2013b). Thus far, however, there has

been little discussion about the relation between specific CS courses and other courses, in terms

of the overall study performance.

Some researchers (see, e.g., Kinnunen et al. 2013 and references therein) indicate that pri-

marily difficulties in mastering programming lead to high dropout rates in CS, therefore, one

should pay special attention to them. Furthermore, a popular belief is that mathematical talent

is the key skill for CS students to be successful (Jerkins et al., 2013). Although these topics

are important, they do not cover the whole degree. The CS core of the DMIT curriculum for

undergraduate students at the University of Jyväskylä, one of the largest and most popular mul-

tidisciplinary universities in Finland, has been more or less the same in recent years. Since the

curriculum is typically updated every three years, the aim of this research is to focus on a set of

mandatory courses related to the data collection period August 2009 through July 2013.

In addition, DMIT undergraduate students require more time to finish their studies com-

pared to students of other disciplines at the University of Jyväskylä (Halonen, 2012). This

happens even if the student’s view on the quality of teaching and the study atmosphere at DMIT

Jyväskylä is very positive and, in fact, better than in the whole Faculty of Information Tech-

nology (of which the DMIT is a part) or in the other departments at the university (Halonen,

2012). Actually, only a very few students (on average 12.8%) of DMIT complete the national

target of at least 55 ECTS per academic year (Harden and Tervo, 2012). These study efficiency

shortcomings apply to the absolute and relative number of credits and are especially important

compared with students of other departments at the University of Jyväskylä, who amass many

more credits in an academic year (29% acquire at least 55 ECTS).

To assess the current curriculum, we apply the educational data mining (EDM) approach.

EDM consists of developing or utilizing data mining methods that are especially feasible for

discovering novel knowledge originating in educational settings (Baker and Yacef, 2009) and

supporting decision-making in educational institutions (Calders and Pechenizkiy, 2012). Most

of the current case studies in EDM (see Table 1) analyze the steadily growing amount of log data

from different computer-based learning environments, such as Learning Management Systems

(e.g., Valsamidis et al. 2012), Intelligent Tutoring Systems (e.g., Hawkins et al. 2013; Bouchet

et al. 2012; Carlson et al. 2013; Springer et al. 2013), or even Educational Games (e.g., Kerr

and Chung 2012; Harpstead et al. 2013). Mining those data supports the understanding of how

students learn and interact in such systems.

In our study, however, we are interested in understanding the effects of core CS courses

and providing novel information for refining repetitive curricula. More specifically, we want

to understand the effect of the current profile of the core courses on students’ study success.

These courses are taught in an ordinary fashion, meaning that in order to successfully complete

a course, the student has to attend lectures, complete related exercises, and pass a final exam or

assignment at the end of the course. The data analyzed in this paper are the historical log file

from the study database at DMIT about all courses students passed for the period August 20091

until the end of July 2013. Patterns in our data provide improved profiling of the core courses

and an indication of which study skills support timely and successful graduation.

1This is because since 8/2009 only ECTS-credits and separated Bachelor and Master degrees can be done.
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The remainder of this paper is structured as follows. In Section 2, the overall methodology

is explained. Section 3 is devoted to the correlation analysis, while in Section 4 we discuss our

clustering analysis with robust prototypes. In Section 5, prediction analysis is realized with the

multilayer perceptron (MLP) neural network. Conclusions from the domain as well as from the

methodological level are presented in Section 6.

2. THE OVERALL METHODOLOGY: ADVOCATING MULTIPHASE TRIANGU-

LATION

Baker et al. (2010) classify EDM methods into five categories: prediction, clustering, relation-

ship mining, discovery with models, and distillation of data for human judgment. In Table 1, we

summarize a representative set of EDM studies according to a) their data and the environment,

b) goal of the study, c) EDM category and methods, and d) the knowledge discovered. This

work was selected from forums, such as the Journal of Educational Data Mining, related annual

conferences, and Google Scholar during autumn 2013. According to the table, which is orga-

nized by the different tasks and publication dates, scholars usually apply methods belonging to

one of the classes of Baker et al.’s taxonomy to address a particular EDM problem. Moreover,

predictive studies may apply many classifiers to assess the stability and reliability of the results.

We, however, aim at multiphase triangulation: Different phases of the overall treatment within-

methods and between-methods are varied and assessed (using rankings) to increase the technical

soundness of the procedures and the overall reliability of the concluded results.

Generally, triangulation means that the same research objective is investigated by different

data, theories, analysis methods, or researchers and then combined to arrive at convergent find-

ings (Denzin, 1970). Probably the most popular way to apply triangulation is to use qualitative

and quantitative methods and merge their results (Jick, 1979). We employ between-method

triangulation (e.g., Denzin 1970; Bryman 2003), using techniques from distinct classes of the

EDM taxonomy, to study the success patterns of the students who take the core courses of the

computer science program in our department. First, we apply correlation analysis (Section 3),

a key technique in relationship mining. Second, we utilize a special clustering approach (see

Section 4) to find groups of students with similar course success. Third, we apply prediction

(see Section 5) with model sensitivity analysis. In all between-methods, we discuss different

within-methods that tighten the soundness of the respective between-method result. Moreover,

we support our decision making a) in clustering with the distillation of data for human judgement

(see our explorative and visual analysis in Section 4.2.1) and b) in prediction with discovery with

models (model sensitivity is used as a component to calculate the mean variable sensitivity of

the prediction model; see Section 5.1. To combine and interpret our results from the individual

EDM techniques, we introduce a ranking system to which all the between and within analysis

methods contribute.

In practice, the whole knowledge discovery process in our study is conducted by following

the five classical stages (select the target data from the application domain, preprocess, trans-

form, mine the transformed data, and interpret the results) introduced by Fayyad et al. (1996).

Data preprocessing and transformation were performed in Java, while the data mining / machine

learning techniques were either used as is (correlation analysis in Matlab’s Mathematics pack-

age) or completely self-implemented (clustering and prediction as a whole) on the Mathworks

Matlab R2013b platform.
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Table 1: Overview of related work.

Environment and Data Goal Category: Methods Obtained Knowledge

(San Pedro et al., 2013), United States (New York):

Interaction data of a

web-based tutoring

system for mathematics

from 3747 middle

school students in New

England plus college

enrollment information

for the students

Predict

whether a

student will

(5 years later)

attend college

Prediction: Logis-

tic Regression Clas-

sifier

Students who are successful

in middle school mathemat-

ics as measured by the tutor-

ing system are more likely to

enroll 5 years later in college,

while students who are bored,

confused, or careless in the

system have a lower probabil-

ity of enrolling.

(Vihavainen et al., 2013), Finland:

Helsinki University,

snapshot data from

Computer Science

student programming

course

Predict

whether a

student will

fail the in-

troductory

mathematics

course

Prediction: Non-

parametric Bayesian

network tool

(B-Course)

Students who cram at dead-

lines in their programming

course are at high risk of fail-

ing their introductory mathe-

matics course.

(Bayer et al., 2012), Czech Republic:

Masaryk University,

data of Applied In-

formatics bachelor

students, their studies,

and their activities

in the university’s

information system

(e.g., communication

with other students

via email/discussion

board)

Predict

whether a

bachelor stu-

dent will drop

out of the

university

Prediction: J48

decision tree learner,

IB1 lazy learner,

PART rule learner,

SMO support vector

machines, NB

Students who communicate

with students who have good

grades can successfully grad-

uate with a higher probabil-

ity than students with similar

performance but who do not

communicate with successful

students.

(Kotsiantis, 2012), Greece:

Hellenic Open Univer-

sity, data from distance

learning course on In-

formatics

Predict stu-

dents’ final

marks

Prediction M5’, BP,

LR, LWR, SMOreg,

M5rules

Two written assignments pre-

dict the students’ final grade

the best.

Continued on next page
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Table 1 – continued from previous page

Environment and Data Goal Category: Methods Obtained Knowledge

(Bhardwaj and Pal, 2011), India:

Purvanchal University,

Department of Com-

puter Applications, stu-

dent data

Predict stu-

dents’ perfor-

mance

Prediction:

Bayesian Classi-

fier

Living location has high in-

fluence on students’ final

grade.

(Mendez et al., 2008), United States (Arizona):

Arizona State Univer-

sity, Science and Engi-

neering student data

Prediction

of student’s

persistence

Prediction: Deci-

sion Tree, Regres-

sion, Random Forest

High school and freshmen

GPAs influence persistence

the most.

(Erdogan and Tymor, 2005), Turkey:

Maltepe University,

data from student

database

Find relations

between per-

formance on

the entrance

exam and later

success

Clustering:

K-means

The results of a student’s uni-

versity entrance exam deter-

mine the student’s major in

many cases.

(Campagni et al., 2012), Italy:

University of Florence,

Department of Com-

puter Science, data of

how and when exams

were taken

Determine

whether stu-

dents who take

exams in the

recommended

order are more

successful

Clustering:

K-means

Students who follow the ideal

path perform better in terms

of graduation time and final

grade.

(Chandra and Nandhini, 2010), Nigeria:

University in Nigeria,

Department of Com-

puter Science, course

result data

Identify stu-

dents’ failure

patterns

Relationship Min-

ing: Apriori Associ-

ation Rule Mining

Relationship between failed

courses which can be used in

order to restructure the cur-

riculum (e.g., 2 introductory

courses should be passed be-

fore the Mathematical Model-

ing course).

2.1. DATA AND NONSTRUCTURED SPARSITY PATTERN

The original data, the historical log files of the four years, 8/2009− 7/2013, of all courses com-

pleted by all DMIT students, are challenging: Students are in different stages of their programs,

their mandatory courses depend on their starting semester, they come with varying backgrounds,
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Figure 1: Relationship between the average credits per semester and grades.

have diverse interests, choose their optional courses accordingly, and, as a consequence, realize

very different study profiles. This is a typical situation in multidisciplinary universities where

students have the opportunity to choose from a large pool of courses. Altogether, our dataset

consists of 13640 study records with 21 attributes, related to the passed course and the student’s

affiliation, and of 1040 students who attended a total of 1271 different courses, completing a

total of 64905 credits. Only 64% of these credits the CS students obtained from courses in their

own faculty.

When measuring the performance of individual students, in addition to quality, i.e., the

grades, the quantity of studies, i.e., the number of all earned credits, is important. However,

since our dataset consists of many students at different stages of their education, we cannot com-

pare their individual sums of credits as is. Therefore, we assigned each passed course/record in

our dataset to a semester, so that the mean credits (i.e., the average number of credits per student

per semester) over the active semesters could be computed for all students. An active semester,

in turn, is computed as the sum of all semesters between the first semester and the last semester

that a student successfully completed a course. For example, a student who passed his or her

first course in April 2010 and his or her last course in June 2013 has 7 active semesters. This

may include semesters in which the student did not earn any credits. The mean grade is simply

the sum of all grades divided by the number of courses a particular student has passed.

In general, quality and quantity of the studies of DMIT students do not correlate. The cor-

relation coefficient between the average number of credits per student and the average grade is

close to zero (0.0848). The per-student plot of the relationship between the number of credits per

semester and the average grade is shown in Figure 1. Also the figure, which looks like a turned

bell curve, which means that the grading of the courses resembles the normal distribution, shows

visually that earned credits per student do not correlate with the average grade.
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Table 2: Core bachelor courses.

course name course code course type completion mode2 credits

Computer and Datanetworks as Tools PCtools introductory assignment 2-4

Datanetworks Datanet introductory exercises & final exam 3-5

Object Oriented Analysis and Design3 OOA&D professional exercises & final exam 3-6

Algorithms 1 Alg1 professional final exam 4

Introduction to Software Engineering IntroSE professional final exam 3

Operating Systems OpSys professional final exam 4

Basics of Databases and Data Management DB&DMgm professional final exam 4

Programming 1 Prog1 programming assigment & final exam 6

Programming 2 Prog2 programming assigment & final exam 8

Computer Structure and Architecture CompArc introductory exercises & final exam 3

Programming of Graphical User Interfaces GUIprog programming exercises & final exam 5

Research Methods in Computing CompRes methodological essay 2

All core courses 47-54

Our goal is to better understand the students’ success patterns, given the core courses, in re-

lation to the rest of their studies. Therefore, we want to analyze the students who have completed

a certain percentage of the courses of interest. The core courses, a specific set of 12 courses that,

for that period of time we study, have been a mandatory part of the curriculum for all DMIT

bachelor students, are listed and characterized in Table 2.

If we transform our data in such a way that the 12 core courses become the variables and

the attribute value of each observation, corresponding to one student, is the grade of the core

course or missing if the student did not attend or pass the course, the assembled matrix is very

sparse. Only for 13 students are the rows full; the students have passed all the core courses. In

Table 3, the high percentage of missing values and the sparsity of the matrix are summarized.

The table shows how many students have completed exactly, and respectively at least, q of the

12 courses. Moreover, in each case the percentage of missing values of the cumulative data

matrix is provided. The missing data values in the matrix are missing at random (Rubin, 1976;

Rubin and Little, 2002). This means that the missing values are related to particular variables

(some courses that are usually taken later in the program are completed by fewer students; see

Figure 2) but not missing because of the values (grades) that could be observed if a particular

course is passed.

To analyze such data, one cannot accept too many missing values. In this respect, the break-

down point related to statistical estimates (see, e.g., Hettmansperger and McKean 1998) on how

much contamination (errors, missing values) in data can be tolerated is informative. An upper

bound is easy to establish: If more than 50% of data is missing, then “missing” is the most

typical value (mode) of the data. Furthermore, tests conducted with synthetic data show that,

2The difference between assignment and exercises in our system is important: While assignment denotes a

mandatory work that the student has to fulfill in order to pass the course and affects the final grade the student will

receive, exercises are smaller (usually weekly) optional tasks that correspond to the current lecture material.
3In spring 2012, the Object Oriented Analysis and Design (OOA&D) course was split into two separate courses,

Object Oriented Analysis and Object Oriented Design. Therefore, in further analysis the following strategy was

applied: If a student completed the original Object Oriented Analysis and Design course, the grade from this course

was taken for the analysis. However, in case the student did not attend the original course, we used the mean grade

of the Object Oriented Analysis and the Object Oriented Design course as the grade for OOA&D if the student had

completed both newly created courses, or just the grade of the one course if the student had completed only one of

these two courses.
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Table 3: Number of students who have completed exactly q (nq) or at least q (
∑Q

q=12 nq, Q =
12, . . . , 0) of the core courses during the analyzed period.

q nq

∑
nq missing values

12 13 13 0.0%
11 16 29 4.56%
10 22 51 9.81%
9 26 77 14.93%
8 49 100 19.17%
7 28 128 24.10%
6 35 163 29.65%
5 44 207 35.75%
4 46 253 41.37%
3 40 293 45.96%
2 82 375 54.13%
1 126 501 63.57%
0 539 1040 82.45%

Figure 2: Number of students who passed coursewise.

for example, in clustering with robust methods, reliable results, i.e., almost zero error, can be

obtained even if around 30% of the data is missing (Äyrämö 2006; see in particular Figure 22

at page 131). Therefore, our data selection strategy is to use that part of the whole, sparse data

matrix, which contains the students who have completed at least half of the core courses. This

dataset has about 30% missing values (see Table 3) for the multivariate techniques. In the cor-

relation analysis (see Section 3), where the courses are analyzed individually, we similarly use

the subsets of the students who have passed the particular course and at least five other courses

additionally. In addition, different subsets of the sparse study matrix are utilized to realize some

parts of cluster analysis and predictive analysis procedures.

A further challenge, particularly for predicting the study success (see Section 5), is that, for

our primary target group, the number of credits related to the core courses is typically less than

half of the total number of the earned credits. In Table 4, the percentages of credits originating

from the core courses in relation to the total number of credits for the 163 students of interest

(see Table 3) are shown. As can be seen in the table, for more than 70% of the students, the core

courses account for fewer than half of their studies.
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Table 4: Binning of students (nr = number) according to means of the number of core courses in

relation to whole studies.

% core courses nr cumulative (%)

0-10% 16 16 (10%)

10-20% 24 40 (25%)
20-30% 24 64 (39%)
30-40% 29 93 (57%)
40-50% 25 118 (72%)
50-60% 17 135 (83%)
60-70% 15 150 (92%)
70-80% 7 157 (96%)
80-90% 4 161 (99%)

90-100% 2 163 (100%)

Summing up, for our analysis we have the entire base of completed courses (1040x21) that is

processed and transformed to further subsets and the sparse 163x12 data matrix of the students

who have completed at least half of the core courses and the grades they received in these

courses.

3. CORRELATION ANALYSIS WITH BONFERRONI CORRECTION

As our first EDM technique, we apply relationship mining using correlation analysis. In general,

we know from Figure 1 that in terms of grades well-scoring students are not necessarily more

likely to study actively. But how about the correlation for our target group, those students who

have already completed at least half of the core courses? In the correlation analysis, we do not

need special methods for the sparse data. However, the number of students who have passed

an individual course differs considerably (see Figure 2) so that the correlation coefficients are

computed for different student subsets. The mean number of credits and the mean grade are

computed in the same way as explained in Section 2.1.

In Table 5, the correlation of each core course to (i) the mean grade of a student (denoted

as corr.grades) and (ii) the mean number of credits per semester (denoted as corr.credits) is

summarized. In each case, r identifies the calculated correlation, and p corresponds to the p-

value for testing the hypothesis of no correlation, respectively. The number of stars indicates

the strength of the evidence for no correlation. As usual, � symbolizes the borderline to be

significant (p <= 0.05), �� symbolizes statistically significant (p <= 0.01), and ��� symbolizes

highly statistically significant (p <= 0.005). rank denotes the ordering of courses by means of

the computed correlations.

From Table 5, we can conclude that, except the Research Methods in Computing, all courses

have a moderate positive linear relationship to the students’ general study success. The course-

wise correlations to mean credits per semester are all positive as it should be (passing a course

increases credits). In addition, all corr.grades illustrate that students who score high in those

courses tend to score high in their other courses as well. In particular, this applies to four courses:

Algorithms 1, Computer Structure and Architecture, Datanetworks, and Programming 2. The

correlation between the grades for these four courses and the average grade of the student is in

all cases highly statistically significant as the p-values for testing the hypothesis of no correlation

are all smaller than 0.005. Similarly as with the classical p-test, we obtained with the conserva-
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Table 5: Correlation of each core course to the students’ general performance.

corr.grades corr.credits

Course Code r p Bonferroni rank r p Bonferroni rank

PCtools 0.4164 � � � � � � 11 0.1058 − − 12

Datanet 0.6244 � � � � � � 3 0.3887 � � � � � � 1

OOA&D 0.5346 � � � � � � 6 0.1327 − − 11

Alg1 0.6593 � � � � � � 1 0.3082 � � � � � � 4

IntroSE 0.4197 � � � � � � 10 0.1717 − − 9

OpSys 0.5113 � � � � � � 8 0.1905 � − 8

DB&DMgm 0.5572 � � � � � � 5 0.3312 � � � �� 5

Prog1 0.4314 � � � � � � 9 0.2438 �� − 7

Prog2 0.5731 � � � � � � 4 0.3549 � � � � � � 2

CompArc 0.6511 � � � � � � 2 0.3216 � � � � � � 3

GUIprog 0.5343 � � � � � � 7 0.3054 � − 6

CompRes 0.2543 − − 12 0.1609 − − 10

tive Bonferroni correction (Rice, 1989) that the correlation of all core courses to the student’s

overall grade (except the Research Methods in Computing) are highly statistical relevant.

Another conclusion that can be made from Table 5 is that the same four courses that have the

highest correlations to the general success of the student also have the highest correlation to the

average number of credits. This means that if a student gets a high grade in these courses he or

she will probably earn, on average, a high number of credits in the semester as well. Again, all of

these findings are, according to the classical p-test as well as the Bonferroni correction, highly

statistically significant. Although the ranking is different (e.g., while Algorithm 1 correlates

the most with the mean grade for the student, Datanetworks correlates the most with the mean

number of credits per semester), we can conclude that those four courses correlate with the

students’ general performance the best.

To sum up, it can be inferred that a student who achieves a high grade in Algorithms 1, Com-

puter Structure and Architecture, Datanetworks, or Programming 2 is likely to be successful in

the remaining part of his or her studies not only with the grade level but also in terms of speed

of completing courses. Albeit overall semesterwise credits and average grade do not correlate at

all (see Figure 1), a linear dependency between the grades a student received in the core courses

and the general performance exists.

4. CLUSTER ANALYSIS USING ROBUST PROTOTYPES

Our second EDM method is clustering. Generally, clustering can be divided into partitional and

hierarchical clustering (Jain, 2010; Steinbach et al., 2004). However, hierarchical clustering is

appropriate only in very small datasets since most of the hierarchical algorithms have quadratic

or higher computational complexity (Emre Celebi et al., 2012). Partitional clustering, however,

is very efficient and scalable. It partitions the data, such that similar observations are assigned

to the same subset of data (referred as a cluster), each observation is attributed to exactly one

subset, and each subset contains at least one observation. Since we want to obtain a directly

interpretable result, prototype-based partitional clustering is an appropriate approach here. If we

can find a partition of data, where each cluster is represented by exactly one prototype, we can

use this prototype to analyze the corresponding cluster. Prototype-based partitional clustering
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Algorithm 1: Iterative relocation clustering algorithm

Input: Dataset and the number of clusters K.

Output: K partitions of the given dataset.

Select K points as the initial prototypes;

repeat

1. Assign individual observation to the closest prototype;

2. Recompute the prototypes with the assigned observations;

until The partition does not change;

can be realized using the iterative relocation algorithm skeleton presented in Algorithm 1 with

different score functions (Han et al., 2001) according to which the two steps inside the loop of

Algorithm 1 are optimized.

However, in order to realize a prototype-based partitive clustering algorithm, two main is-

sues should be addressed. First, a well-known problem of all iterative relocation algorithms

is their initialization. They minimize the given score function locally by iteratively relocating

data points between clusters until an optimal partition is attained. Therefore, basic iterative

algorithms, such as K-means, always converge to a local, and not necessarily to the global, op-

timum. Although much work has focused this problem, no efficient and universal method for

identifying the initial partitions and the number of clusters exists. This problem is discussed

more thoroughly in Section 4.2. The second problem is the sparse student data with around 30%

missing values (see Section 2.1). In Section 4.1, a solution is presented for adjusting the score

function of the basic algorithm skeleton in order to deal with the random sparsity pattern. A

similar approach was also applied in Saarela and Kärkkäinen (2014) to other educational data.

4.1. SCORE FUNCTION FOR K-SPATIALMEDIANS

Our (available) data consist of course grades of fixed values {1, 2, 3, 4, 5}. Therefore, there is

evidently a significant quantization error from uniform distribution in the probability distribution

for a grade gi:

gi(x) =

{
1, if gi −

1
2
≤ x < gi +

1
2
,

0, elsewhere.
(1)

Thus, second-order statistics that rely on the normally distributed error are not suitable here,

and we need to use the so-called nonparametric (i.e., robust) statistical techniques (Huber, 1981;

Rousseeuw and Leroy, 1987; Hettmansperger and McKean, 1998). The simplest of robust lo-

cation estimates are the median and the spatial median. The median, i.e., the middle value of

the ordered univariate sample, is inherently one-dimensional, and thus with missing data uses

only the available values of an individual variable. The spatial median, however, is truly a mul-

tidimensional location estimate and can take advantage of the available data pattern as a whole.

This is illustrated and more thoroughly explained in Kärkkäinen and Heikkola (2004); espe-

cially, formulae (2.8) and (2.9) and Figures 1 and 2. As stated, e.g., in Croux et al. (2010),

the spatial median is not affine but only orthogonally equivariant. However, because we have

the fixed grade scale, this property of a statistical estimate is not necessary here. Moreover, for

elliptical distributions, this behavior creates more scatter than location estimation (Croux et al.,

2010). As a whole, the spatial median has many attractive statistical properties. In particular, its
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breakdown point is 0.5; it can handle up to 50% of contaminated data, which makes the spatial

median very appealing for high-dimensional data with severe degradations and outliers. A miss-

ing value can be thought of as an infinite outlier because it can have any value (from the value

range).

Äyrämö (2006) introduced a robust approach utilizing the spatial median to cluster very

sparse and apparently noisy data: The K-spatialmedians clustering algorithm is based on the

same algorithm skeleton as presented in Algorithm 1 but uses the projected spatial median as a

score function:

J =
K∑
j=1

nj∑
i=1

‖ diag {pi}(xi − cj)‖2, (2)

Here, diag transforms a vector into a diagonal matrix. The latter sum in (2) is computed over

the subset of data attached to cluster j and the projection vectors pi, i = 1, . . . , N, capture the

existing variable values:

(pi)j =

{
1, if (xi)j exists,

0, otherwise.

In Algorithm 1, the projected distance as defined in (2) is used in the first step, and recomputation

of the prototypes, as the spatial median with the available data, is realized using the sequential

overrelaxation (SOR) algorithm (Äyrämö, 2006) with the overrelaxation parameter ω = 1.5. In

what follows, we refer to Algorithm 1 with the score function (2) as K-spatialmedians clustering.

4.2. INITIALIZATION

It is a well-known problem that all iterative clustering algorithms are highly sensitive to the

initial placement of the cluster prototypes, and thus, such algorithms do not guarantee unique

clustering (Meilă and Heckerman, 1998; Emre Celebi et al., 2012; Bai et al., 2012; Jain, 2010).

One might even argue that the results are not reliable if the initial prototypes are randomly

chosen since the algorithms do not converge to a global optimum. Numerous methods have been

introduced to address this problem. Random initialization is still often chosen as the general

strategy (Xu and Wunsch, 2005). However, several researchers (e.g., Aldahdooh and Ashour

2013; Bai et al. 2011) report that having some other than random strategy for the initialization

often improves final clustering results significantly.

An important issue when clustering data and finding an appropriate initialization method is

the definition of (dis-)similarity of objects. Bai et al. (2011) and Bai et al. (2012) proposed ini-

tialization methods for categorical data. The attribute values of our dataset (grades from 1-5, or

missing) are also categorical. However, the ordering of our attribute values has meaning (ordinal

data). For example, a student who received grade 5 in all his or her courses is more dissimilar

to a student who got mostly grade 2 than to a student who received on average grade 4. There-

fore, an initialization method for data where only enough information is given to distinguish one

object from another (nominal data) might not be suitable for our case.

Chen et al. (2009) proposed a novel approach to find good initial prototypes. Chen et al.

argue that in the high-dimensional space data are inherently sparse. Therefore, the distance

between each pair of observations becomes almost the same for a wide variety of data distribu-

tions. However, this approach seems more suitable for very high-dimensional data than for our

12-dimensional case. Emre Celebi et al. (2012) compared different initialization methods. They

conclude that for small datasets (fewer than 10000 observations) Bradley and Fayyad’s method
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Algorithm 2: Constructive initialization approach for robust clustering

Input: Datasets D0 to D6.

Output: The set of prototypes for every value of K
for K = size(D0) to 2 do

KBestPrototypes = globalBestSolution(D0,K);

for p = 1 to 6 do
KBestPrototypes = K-spatialmedians(Dp,K,KBestPrototypes);

end

end

leads to best results. In Bradley and Fayyad’s method (1998), the original dataset is first split

into smaller subsets that themselves are clustered. Then the temporary prototypes obtained from

clustering the subsets are combined and clustered as many times as there are different subsets.

Thus, each time one different set of temporary prototypes is tried as initialization and the best,

i.e., that set of temporary prototypes which resulted in the smallest clustering error, is finally

used as initialization for clustering the original dataset.

To sum up, the ideal approach for computing initial prototypes depends on the data, and

is therefore context dependent. However, some general criteria apply: First, initial prototypes

should be as far from each other as possible (Khan and Ahmad, 2013; Jain, 2010). Second, out-

liers or noisy observations are not good candidates as initial prototypes. Moreover, for relatively

small datasets it seems to be a good idea to further divide the set into subsets and utilize the

best prototypes of the smaller sets for further computations. Furthermore, as pointed out by Bai

et al. (2012), it is advantageous if at least one initial prototype is close to a real solution. Bearing

these issues in mind, we developed a new deterministic and context-sensitive approach to find

good initial prototypes.

4.2.1. Initialization for sparse student data

Our intention is to interpret and characterize each cluster by its prototype. Therefore, we should

prefer full prototypes, those that have no missing values. For this approach, we first note that

the rows of Table 3 represent cascadic (see Kärkkäinen and Toivanen 2001) sets of data. Let us

denote the datasets as Dp with p = 0 . . . 12, where p = q − 12. Thus, D0 represents the very

small but full dataset with the 13 students who have completed all 12 core courses and D1 the

29 students who have completed at least 11 of them (containing D0). Therefore, in general Dp

consists of students who have passed exactly 12 − p of the core courses, and we always have

Dp−1 ⊂ Dp. This creates the basis for the proposed initialization approach, which is depicted as

a whole in Algorithm 2.

Our initial, the complete dataset D0 is so small that we can easily determine the globally best

solution by minimizing the error of the spatial median by testing all possible initializations for

the values of K4 In Algorithm 2, globalBestSolution refers a function that tests all possible K
combinations of the observations in the small complete dataset and returns the prototypes of the

combination that resulted in the smallest clustering error. In that way, we obtain for every K for

our small dataset the K global best prototypes. We then use the K best prototypes (denoted as

KBestPrototypes in the algorithm) on Dp as the initial prototypes for the next larger dataset

4Even if K is unknown, we can assume that K is at least 2 and smaller than the total number of observations.
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Table 6: Comparison of context-sensitive and random initialization for robust clustering.

context-sensitive random

K error missing values error missing values

13 373.54 15.38% 425.46 51.54%

12 374.04 8.33% 429.26 46.67%

11 372.31 0.00% 432.89 38.18%

10 376.57 0.00% 434.51 44.00%

9 391.42 0.00% 436.98 38.89%

8 396.06 0.00% 434.77 33.75%

7 409.70 0.00% 444.50 31.43%

6 425.93 0.00% 443.27 18.33%

5 437.32 0.00% 452.74 16.00%

4 454.27 0.00% 461.71 10.00%

3 471.79 0.00% 480.99 6.66%

2 506.84 0.00% 515.06 5.00%

Dp+1. Thus, throughout the constructive approach full prototypes and small clustering error are

favored. The dataset D6, the students who have completed at least half of the core courses, is

our actual target data for clustering.

In Table 6, it is shown how the score function changes and the number of missing values

with the proposed initialization strategy for different values of K for D6. For comparison, the

table also shows the average results of 10 test runs of the K-spatialmedians algorithm with

random initialization. We obtain better results with our approach for the clustering error and,

especially, with respect to the missing values. For example, already for K = 3, 6.66% of the

prototypes’ values are missing with random initialization and, thus, uninterpretable. Moreover,

we also studied the stability of the results by checking whether the students in Dp−1, p ≥
1, still belong to the same cluster when new students are added and the reclustering of Dp is

performed in Algorithm 2. Confusion matrices between the two consecutive clustering levels

were computed. It turned out that the confusion matrices are almost perfect, so that the formation

of clusters is very stable and the clusters themselves are reliably structured. We conclude that

the proposed context-sensitive initialization provides a clustering result with low error and high

interpretability.

The best value for K is next determined using visual inspection. To avoid overfitting, our

goal is to have a small number of clusters. However, the observations should not be too far away

from the prototype to which they belong. From Figure 3, the plot of the second column in Table 6

(change in the score function when D6 is clustered using the proposed strategy), we conclude

that K = 3, K = 5, and K = 8 are potential values for the number of clusters. Namely,

after precisely these points, the speed of the decrease (improvement) of the clustering error, the

discrete derivative, slows down slightly (see, e.g., Zhong et al. 2008 for a similar approach). Of

the potential values, we choose the first one that provides the smallest number of clusters for

further analysis and, in such a way, generalizes data the most. The prototypes for K = 3 are

visualized in Figure 4.
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Figure 3: Decrease in errors for target data when more clusters are introduced successively.

4.3. ANALYZING THE CLUSTERING RESULTS

In the first two columns of Table 7, the ranking of the core courses based on their prototype

separation is provided. Since the general profile of the three clusters is “medium” (cluster 1),

“high” (cluster 2), and “low” (cluster 3), we compute, for each variable, two distances: d1 =
|C2 −C1| and d2 = |C3 −C1|. The two measures are computed (i) as the mean of {(d1)i, (d2)i}
(denoted as measure 1) and (ii) the minimum of {(d1)i, (d2)i} (denoted as measure 2). As can

be seen from the table, measures 1 and 2 provide practically the same ranking. However, we

think that of these two indicators, the second measure provides clearer variable separation. For

example, with measure 1 we could have a high distance value for a course even if only one

prototype value Ci is very dissimilar from the other two. Moreover, in order to assess even

further the explanative power of variables related to the clustering result with K = 3, we also

applied the nonparametric Kruskal-Wallis test (Hollander et al., 2013) to compare the subsets of

data in the three clusters. Since the actual clusterwise datasets contain missing values, we used

one iteration of the hot deck imputation (Äyrämö, 2006; Batista and Monard, 2003) to complete

them: We imputed the missing values using the cluster prototype values of the K-spatialmedians

algorithm (see Section 4.1) with eight clusters (see Figure 3). As concluded in Section 4.2.1,

eight was another good value for the number of clusters K. Because of this imputation and

because of the form of the quantization error as explained in connection with formula (1), a

nonparametric test should be used. According to the Kruskal-Wallis test, the difference between

the different clusters is highly statistically significant for all courses. Again, the same four

courses provide the highest differentiation between the clusters (see third column of Table 7)

with only the Operating Systems very different from the distance-based separators. In the fourth

column of Table 7, the sum of ranks from the second distance measure and the Kruskal-Wallis

test are given, and the overall ranking of the courses based on the sum is provided. This rank-

of-rankings approach is an example of within-method triangulation, where the final order of

importance combines assessments of the prototypes and the clusterwise data subsets.
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Figure 4: Prototypes of the three student clusters.

Table 7: Distances between the clusters.

measure 1 measure 2 Kruskal-Wallis

course code distance rank distance rank χ2 p rank sum (rank)

PCtools 0.1472 8 0.3220 8 33.10 � � � 9 17 (9)

Datanet 0.8183 1 1.1754 1 84.69 � � � 1 2 (1)

OOA&D 0.2249 7 0.4247 7 47.97 � � � 7 14 (6)

Alg1 0.6090 3 0.7501 4 82.39 � � � 2 6 (2)

IntroSE 0.0588 10 0.0781 10 34 .94 � � � 8 18 (10)

OpSys 0.0413 11 0.0402 12 67.06 � � � 4 16 (7)

DB&DMgm 0.3666 6 0.5490 6 53.96 � � � 6 12 (5)

Prog1 0.0796 9 0.2417 9 32.21 � � � 10 19 (11)

Prog2 0.7064 2 0.9309 2 54.35 � � � 5 7 (4)

CompArc 0.5872 4 0.8439 3 78.49 � � � 3 6 (3)

GUIprog 0.4602 5 0.7118 5 31.04 � � � 11 16 (8)

CompRes 0.0021 12 0.0633 11 17.23 � � � 12 23 (12)

The first observation that can be made by comparing the overall cluster ranking with the cor-

relation analysis (see Table 5) is that the correlations are reflected in the different clusters. The

four courses with the highest correlations clearly separate the three clusters. This can be seen

as well from the visualization of the cluster prototypes (Figure 4). The students in the lowest-

performing cluster 3 also have the lowest performance in the Datanetworks and Algorithms 1

course. The prototype of the best cluster 2 is represented by a remarkable higher grade for those

courses. The same applies for the other two courses with a high correlation to the average grade

and the average number of credits of the students, Computer Structure and Architecture and

Programming 2. A second interesting observation is that one of the smallest deviations in the

grade is obtained for the Research Methods in Computing. This was also the only course that

did not show a significant correlation to the students’ overall grade (see Section 3). However,

also the content of this course differs from the other core courses by being not directly related

to IT knowledge. Moreover, in contrast to all other courses, this course is evaluated solely by an

essay that the student has to write (see Table 2). Somewhat exceptional behavior for this course
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Figure 5: Semesterwise credits versus the mean grade in core courses for the students in each

cluster.

was expected.

In terms of quality, the students in D6 are clearly separated into the three clusters. To check

whether the clusters also differentiate the students according to their quantity of studies, we

looked also (see Section 2.1 and 3) at the students’ average number of credits. In Figure 5,

the semester-wise relation of grades in the core courses and the overall credits of the individual

students in the different clusters is visualized. From this figure, we deduce that the students who

belong to cluster 2 not only are the best when it comes to the average grades in the core courses

but also are the most efficient as they earn on average the most number of credits per semester.

Likewise, the students in the gradewise low-performing cluster 3 also earn the fewest credits per

semester (on average eight credits less than the students in cluster 2). The correlation coefficient

of the mean grade in the core courses and the average number of credits semesterwise per student

is 0.4415 with a p-value that is highly statistically significant. We know that this relation does

not exist in the whole student level and when the average of all studies is used (see Figure 1).

Thus, we conclude that for the core CS courses, the students who perform well in terms of grades

also perform well in terms of the number of courses.

5. PREDICTIVE ANALYSIS USING MULTILAYER PERCEPTRON

The goal, when addressing the third EDM category in this study, is to predict the mean grades

and credits of the students given only the grades of the core courses they have passed. Similarly

as in Section 4, we are interested in interpretable results, which here correspond to detecting

the inputs (courses) that contribute to the prediction model the most. Concerning the model,

multilayer perceptron (MLP) neural networks are universal nonlinear regression approximators

(see, e.g., Pinkus 1999 and articles therein), which can be used in supervised learning. The

feedforward MLP transformation starts directly from the input variables, different from other
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popular techniques such as radial basis function networks or support vector machines, which

construct their basis in the space of observations. This is an appropriate starting point because

our purpose is to assess the importance of the model inputs, which correspond to the core courses

being analyzed. In this way, we close our between-method triangulation by contrasting the

previous results and conclusions based on unsupervised analysis with the corresponding results

from a supervised, predictive technique.

There are many inherent difficulties when a flexible model is used in prediction and trained

using a given set of input-output samples. First, because of the universality, such a model could

actually represent the discrete dataset precisely (e.g., Tamura and Tateishi 1997; Huang 2003),

which would mean that all the noise in the samples would be reproduced. Thus, one needs to

restrict the flexibility of such models. This can be done in two ways: by restricting the size of

the network’s configuration (number and size of layers; structural simplicity) or restricting the

nonlinearity of the encoded function (size of weights, see Bartlett 1998; functional simplicity).

Here we will assess the network’s simplicity along both dimensions, in order to favor and restore

the simplest model (cf. Occam’s razor). Second, we look for a prediction model that provides

the best generalization of the sample data, and, for this purpose, apply the well-known stratified

cross-validation (see Kohavi 1995) to compute an estimate of the generalization error. Stratifi-

cation means that, given a certain labeling to encode classes in a discrete dataset, the number of

samples in the created folds (subsets) coincides with the sizes of the different classes as closely

as possible. Clearly, the number of classes and number of folds do not need to be the same.

Third, as in clustering, use of a local optimizer to solve the nonlinear optimization problem to

determine the network weights provides only local search (exploitation), and for exploration,

we use multiple restarts with random initialization (see Kärkkäinen 2002). The whole training

approach as just summarized has been more thoroughly introduced and tested in Kärkkäinen

(2014) and successfully applied in time-series analysis in Kärkkäinen et al. (2014).

Next we will derive and detail the whole predictive approach. First, the MLP neural network

and its determination are formalized, and then the overall training algorithm and the input-

sensitivity analysis are developed and described.

5.1. PREDICTION WITH INPUT SENSITIVITY ANALYSIS

5.1.1. MLP training approach

The action of the multilayer perceptron in a layered, compact form can be given by (e.g., Hagan

and Menhaj 1994)

o0 = x, ol = F l(Wlõ(l−1)) for l = 1, . . . , L. (3)

Here the layer number (starting from zero for the input) has been placed as an upper index. By ˜
we indicate the addition of bias terms to the transformation, which is realized by enlarging a vec-

tor v with constant: ṽT =
[
1 vT

]
. In practice, this places the bias weights as the first columns

of the layer matrices that then have the factorization Wl =
[
Wl

0 Wl
1

]
. F l(·) denotes the ap-

plication of activation functions on the lth level. Formally, this corresponds to matrix-vector

multiplication in which the matrix components are functions, and component multiplication is

replaced with application of the corresponding component function (Kärkkäinen, 2002). The di-

mensions of the weight-matrices are given by dim(Wl) = nl × (nl−1 +1), l = 1, . . . , L, where

n0 is the length of an input-vector x, nL the length of the output-vector oL, and nl, 0 < l < L,
determine the sizes (number of neurons) of the hidden layers.
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Using the given training data {xi,yi}
N

i=1 , with xi ∈ R
n0 denoting the input-vectors and

yi ∈ R
nL the output vectors, respectively, the unknown weight matrices {Wl}Ll=1 in (3) are

determined as a solution of an optimization problem

min
{Wl}L

l=1

J ({Wl}). (4)

We restrict ourselves to MLP with one hidden layer, and the actual cost function reads as follows:

J (W1,W2) =
1

2N

N∑
i=1

∥∥N (W1,W2)(xi)− yi

∥∥2
+

β

2n1

∑
(i,j)

(
|W1

i,j|
2 + |(W2

1)i,j|
2
)

(5)

for β ≥ 0 and N (W1,W2)(xi) = W2F̃1(W1x̃i). The special form of regularization omitting

the bias column W2
0 is due to Corollary 1 by Kärkkäinen (2002): Every locally optimal solution

to (4) with the cost functional (5) provides an unbiased regression estimate having zero mean

error over the training data.

The universal approximation property guarantees the potential accuracy of an MLP network

for given data and the unbiasedness as just described provides statistical support for its use, but

as explained above, we also address the network’s simplicity and generalization. Thus, in our

actual training method we grid-search the size of the hidden layer n1 and the size of the regu-

larization coefficient β: The smaller n1, the simpler the structure of the network; and the larger

β, the smaller the weight values and the closer the MLP to a (simpler) linear, single-layered

network. Moreover, cross-validation is used as the technique to ensure that generalization abil-

ity of the network is taken as the main accuracy criterion. Finally, the usual gradient-based

optimization methods for minimizing (5) act locally, so that we repeat the optimization with

random initialization twice when we search for the values of metaparameters n1 and β. When

they have been fixed, the final network is optimized using five local restarts to further improve

the exploration of the search landscape.

The whole training approach for the MLP network is given in Algorithm 3. We use the

following set of possible regularization parameter values, which were determined according to

prior computational tests:

�β =
[
10−2 7.5 · 10−3 5 · 10−3 2.5 · 10−3 10−3 7.5 · 10−4 5 · 10−4 2.5 · 10−4 10−4

]
.

The prediction error with a training or test set is computed as the mean Euclidian error

1

N

N∑
i=1

∥∥N (W1,W2)(xi)− yi

∥∥ . (6)

We use the most common sigmoidal activation functions s(x) = 1
1+exp(−x)

for F1. All input

variables are preprocessed into the range [0, 1] of s(x) to balance their scaling with each other

and with the range of the overall MLP transformation (see Kärkkäinen 2002 for a more thorough

argument).

5.1.2. Derivation of input sensitivity of MLP

To assess the relevancy of the input (see John et al. 1994; Kohavi and John 1997) of an MLP

model, one basic technique is to estimate the sensitivity of the network’s output compared to
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Algorithm 3: Reliable determination of MLP neural network.

Input: Training data {xi,yi}
N

i=1 .
Output: MLP neural network N (W1,W2).

Define a vector �β of regularization coefficients, maximum size of the hidden layer

n1max, and nfolds, the number of folds for cross-validation, created using stratified

random sampling;

for n1 ← 1 to n1max do

for regs ← 1 to |�β| (| · | denotes the size of a vector) do

for k ← 1 to nfolds do

for i ← 1 to 2 do

Initialize (W1,W2) from the uniform distribution U([−1, 1]);

Minimize (5) with current n1 and �β(regs), and the CV Training set;

Store Network for smallest Training Set Prediction Error;

end

Compute Test Set Prediction Error for the stored Network;

end

Store n∗
1 = n1 and β∗ = β for the smallest mean Test Set Prediction Error;

end

end

for i ← 1 to 5 do

Initialize (W1,W2) from U([−1, 1]);
Minimize (5) using n∗

1, β
∗ and the whole training data;

end

its input. Seven possible definitions of sensitivity were compared in Gevrey et al. (2003) in an

ecological context and four of them, further, in relation to chemical engineering in Shojaeefard

et al. (2013). Both comparisons concluded that in order to assess the relevancy and rank the

features, the partial derivatives (PaD) method proposed by Dimopoulos et al. (1995) provides

appropriate information and computational coherency in the form of stability. Thus, we also use

the analytic partial derivative as the core of the sensitivity measure, but in a more general and

more robust fashion than Dimopoulos et al. (1995).

An analytical formula for the MLP input sensitivity can be directly calculated from the layer-

wise formula (3). The precise result is stated in the next proposition.

Proposition 1

∇xN ({Wl})(x) =
∂oL

∂x
=

1∏
l=L

diag {(F l)
′

}Wl
1. (7)

Here Wl
1 denotes, as before, the lth weight matrix without the first bias column. In particular,

for an MLP with one hidden layer and linear output (o2 = W2 F̃1(W1 x̃)), (7) states that

∂o2

∂x
= W2

1 diag {(F1)
′

}W1
1. (8)
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Algorithm 4: Input sensitivity ranking.

Input: Data (X,Y) = {xi,yi}
N

i=1 of inputs and desired outputs.

Output: Ranked list of MLP input variables.

1: Fix �β and n1max, and apply Algorithm 3 to obtain N (W1,W2);
2: Compute MAS of N (W1,W2) according to formula (9);

3: Order input variables in descending order with respect to MAS to establish ranking;

With the discrete data {xi}
N
i=1, input sensitivity must be assessed and computed over the

dataset. Thus, we apply (7) to compute the mean absolute sensitivity, MAS (see Ruck et al.

1990):

1

N

N∑
i=1

∣∣∣∣∂oL

∂xi

∣∣∣∣ (9)

of the trained network for all input variables. After this formula is applied, the approach for

input ranking is based on the following concept: The higher the MAS, the more salient the

feature is for the network. This is due to the well-known Taylor theorem in calculus related to

local approximation of smooth functions (see Apostol 1969). Namely, if a function is locally

constant, its gradient vector (i.e., the vector of partial derivatives) is zero, and such a function

could be (locally) represented and absorbed to the MLP bias. Thus, the larger the mean sum

of the absolute values of the local partial derivatives for an input variable, the more important

that input variable is for representing the variability of an unknown function approximated by

the MLP. Thus, the descending order of MAS values defines the ranking of input variables over

one run of Algorithm 3. The method described by Dimopoulos et al. (1995) starts with the

similar analytic formula (formula (3)) as in (7), but (7) is a generalization because our MLP

model contains the bias nodes in order to always guarantee unbiased regression estimate for

the training data in Algorithm 3. Moreover, as with clustering, we compute the overall input-

output sensitivity formulae using the robust mean absolute error instead of the sum-of-squares

proposed in Dimopoulos et al. (1995), which nonuniformly concentrates on large deviations

from zero (see Kärkkäinen and Heikkola 2004).

The whole algorithm for deriving the MLP input sensitivity is given in Algorithm 4. To this

end, many points in this algorithm may produce variability in the final result, the ranking. With

different runs, different foldings appear in cross-validation and different local initializations are

tested when seeking the values of the metaparameters n1 and β. Thus, it typically happens that

a different final network is encountered from repetitions of Algorithm 3 whose ranking (1–

12, where 1 represents the most significant) is then determined using Algorithm 4. To assess

the stability and soundness of this result, we repeat Algorithm 4 five times, store the rankings

obtained with different runs, and, then, compute the classical Fleiss kappa κ (Fleiss, 1971),

which precisely quantifies the reliability of agreement between a fixed number of MLP network

raters. The actual variable rating is then based on the ascending order of the sum of rankings

from these five repetitions (between 5–60, where 5 means that such a variable was declared as

the most significant for all the repetitions).
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5.2. PREDICTIVE RESULTS AND THEIR ANALYSIS

As input data for MLP, we use the same set as in the cluster analysis, i.e. the grades of the

students who have completed at least half of the core courses; see Table 3. Moreover, the miss-

ing values (29.65% altogether) are again completed by using the hot-deck imputation with 8
prototypes (see Section 4.3 for more thorough description). As output data, for each student

considered, we use (i) the mean grade and (ii) the mean number of credits per semester, individ-

ually.

Results of the predictive analysis process, as described above, are provided in Table 8. There,

for each course, the “RSum” provides the sum of rankings (1–12) of five individual runs of

Algorithm 4. Moreover, in order to assess the stability of the final ranking, we have tested 3-fold,

7-fold, and 10-fold stratified cross-validation. As labels for the 3-fold stratification, we used the

three cluster indices that were obtained in the previous section for K = 3 (the analyzed result).

For the 7-fold CV, the labels corresponded to the number of completed courses in Table 3, i.e.,

to the separate groups of students for q = 6, . . . , 12, whose sizes are given by nq. In the third

stratified cross-validation strategy with 10 folds, we used the labels that were obtained when

clustering the students into 8 clusters (same as in imputation).

Thus, the strategy to create the different number of stratified folds was completely different,

but the final rankings of the 7-fold and 10-fold CV were exactly the same, and there was only one

very small difference compared to the 3-fold CV: For the mean grade, rankings of the PCtools

and Datanet courses were swapped. We conclude that there is high reliability concerning the

final rankings, because the Fleiss κ shows moderate agreement for grades with 7 and 10 folds

and the rest of the cases witness substantial agreement between the ratings of the individual runs

of Algorithm 4. From “MeanError” (see Table 8), which represents the mean of the prediction

error (6) over the five runs, we conclude that mean grades can be predicted (in the generalization

sense as explained above) about twice as accurately as the mean number of credits semesterwise.

Again, this illustrates the higher and more random individual variability of the number of credits

obtained per semester compared to the level of grades (see also Figures 6 and 7).

Based on the results presented in Table 8, we draw the following main conclusions: Com-

pared to the correlation and clustering analysis results, also based on the predictive MLP input

sensitivity analysis, the courses Datanetworks and Computer Structure and Architecture seem

to be most influential to the overall performance in the studies. For the performance in grades,

also the course Object Oriented Analysis and Design pops up, and, for the overall credits, the

largest course Programming 2 shows (as in the previous analyses) high significance.

For some course, like Computer and Datanetworks as Tools and Programming of Graphical

User Interfaces, there is a large difference in the ranks between the mean grades and the mean

credits, which was not addressed as strongly by the other two EDM techniques. One reason for

this might be the varying number of students passing a course, which is reflected in the predictive

analysis as the higher need of imputation. As can be seen from Figure 2, many fewer students

have passed these two courses compared to the other courses5.

The predictions and the prediction errors for grades and credits, studentwise, are illustrated

in Figures 6 and 7. In the figures, the x-axis corresponds to a student index, where the students

are taken in the ascending order for missing courses; the larger the index, the more core course

grades are missing, and were imputed in the MLP training data. With this respect, the accuracy

5Actually, also fewer students passed Research Methods in Computing, but this course has already been found

to be less influential and the most different to the courses (see especially the discussion in Section 4.3).
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Table 8: Input rankings for the three foldings.

3-fold CV 7-fold CV 10-fold CV

grades credits grades credits grades credits

MeanError 6.44e-3 1.22e-2 6.37e-3 1.22e-2 6.36e-3 1.22e-2

Fleiss κ 0.76 0.72 0.49 0.62 0.52 0.78

Course RSum rank RSum rank RSum rank RSum rank RSum rank RSum rank

PCtools 19 4 49 10 16 3 47 10 15 3 50 10

Datanet 17 3 10 2 19 4 10 2 18 4 10 2

OOA&D 10 2 39 7 12 2 40 7 13 2 39 7

Alg1 30 6 20 4 31 6 20 4 31 6 20 4

IntroSE 36 7 42 9 36 7 42 9 36 7 41 9

OpSys 39 8 57 11 41 8 57 11 41 8 57 11

DB&DMgm 45 9 15 3 42 9 15 3 42 9 15 3

Prog1 60 12 30 6 59 12 32 6 59 12 30 6

Prog2 50 10 5 1 50 10 5 1 50 10 5 1

CompArc 5 1 25 5 6 1 25 5 6 1 25 5

GUIprog 24 5 58 12 22 5 58 12 23 5 58 12

CompRes 55 11 40 8 56 11 41 8 56 11 40 8

of the mean number of credits per semester shows large increase at the end. As can be seen from

Figure 6, the grades of the core courses predict, with reasonable accuracy, the overall mean

grade level of a student. This result is promising, especially when the number of credits related

to the analyzed core courses is typically less than half of the total number of credits; see Table 4.

In contrast, the generalization accuracy of the average number of credits per semester is very

bad (see Figure 7), and the last students, i.e., those with the most missing values, are the most

erroneous. Thus, we do not recommend the final network for actual prediction, but the network

is considered suitable for the sensitivity analysis. The difference between accurate prediction

and stable detection of input relevance is also clearly captured in Table 8 as explained above:

The rankings in the repeated attempts in Table 8 are very stable, as shown by the Fleiss κ’s, even

if the prediction accuracy can be very poor as shown in Figures 6 and 7.

Hornik et al. (1989) summarize the essence of MLP training: “We have thus established that

such ‘mapping’ networks are universal approximators. This implies that any lack of success in

applications must arise from inadequate learning, insufficient numbers of hidden units or the

lack of a deterministic relationship between input and target.” The proposed training approach

here tries to manage all these issues in order to end up with the most reliably generalizing MLP

network. Thus, we try to capture the deterministic behavior within the data and use this to

compute the input relevance. Stability of the results as witnessed in Table 8, with substantial

within-method triangulation, supports the conclusion that this was obtained here.

6. CONCLUSIONS

This paper presents methods for detecting the main courses that determine the general success in

CS-oriented studies. We employed techniques from the three main categories of educational data

mining, partly working in relation to the remaining two categories as assistance in individual

analyses. Moreover, we showed how to cope with the nonstructured sparsity pattern in data,
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Figure 6: Prediction of mean grades: real (green) and predicted (blue) values.

using the available data strategy and prototype-based imputation. In Table 9, all analysis results

are summarized. We can conclude the study from the educational domain level point of view

and from the methodological point of view.

From the domain level point of view and based on Table 9, we conclude that the quality of

studies is determined by the first introductory courses, Datanetworks and Computer Structure

and Architecture, offered in the first year of the program. Both courses test more the general

capability of a student to study than the actual knowledge of professional CS skills. Though

they have technical topics, they are taught on a conceptual level, and especially compared with

the third introductory course (see Table 2), they are completed by a final examination at the end

of the course. Therefore, these courses test how well the student is able to learn, understand,

and explain concepts instead of testing specific (IT) skills. When it comes to credits/timely

graduation, a student’s success is also determined by sedulousness and perseverance: The Pro-

gramming 2 which is also creditwise the largest course (see Table 2), is strongly related to the

number of credits that a student can earn in general with hard work. Thus, for the overall perfor-

mance, general study capabilities are more important than the occupational skills and students

can succeed in CS studies with diligent and goal-oriented study behavior without being the

most skilled programmers with mathematical talent. This is important knowledge that should be

communicated to the students in the beginning of their studies.

Naturally, our conclusions from the organizational level as such are not generalizable to
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Figure 7: Prediction of mean credits: real (green) and predicted (blue) values.

other institutions since educational data and the subsequent knowledge of particular courses are

different. From the methodological perspective, however, both overall approach and the individ-

ual methods with their varying but argumented details are general and can be applied to analyze

the sparse data of student performance. If a snapshot of a study registry of an arbitrary educa-

tional institution were taken, there were missing values similarly to our case for the uncompleted

courses. And, then, all methods and approaches could be applied. Furthermore, according to our

current computational experience, we can conclude that for around a dozen variables (even us-

ing Matlab): i) correlation analysis scales up to one million observations, ii) clustering analysis

scales up to hundreds of thousands of observations, and iii) predictive MLP analysis scales up

to thousands of observations. This means that our methods can also be used for larger datasets.

In general, on the methodological level, the combination of within-method and between-

method triangulation provided very solid results concerning the overall effects and impact of

the analyzed courses. To deal with our student data, it was necessary to augment the exist-

ing methods and approaches to work with the sparse data. What about the soundness of the

algorithms and the overall analysis presented here? There is lot of novelty in the procedures

applied. The prototype-based clustering approach with available data spatial median as a statis-

tical estimate is not a standard data mining technique. It was developed in the earlier work of

the research group (Äyrämö, 2006; Kärkkäinen and Äyrämö, 2005), and its application is based

on our own implementation throughout. Similarly, the way the clustering algorithm is construc-
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Table 9: Summary of the results.

grades credits

course M1 M2 M3 sum (rank) M1 M2 M3 sum (rank)

Computer and Datanetworks as Tools 11 9 3 23 (8) 12 9 10 31 (12)

Datanetworks 3 1 4 8 (2) 1 1 2 4 (1)

Object Oriented Analysis and Design 6 6 2 14 (4) 11 6 7 24 (7)

Algorithms 1 1 2 6 9 (3) 4 2 4 10 (3)

Introduction to Software Engineering 10 10 7 27 (10) 9 10 9 28 (10)

Operating Systems 8 7 8 23 (9) 8 7 11 26 (9)

Basics of Databases and Data Management 5 5 9 19 (6) 5 5 3 13 (5)

Programming 1 9 11 12 32 (11) 7 11 6 24 (6)

Programming 2 4 4 10 18 (5) 2 4 1 7 (2)

Computer Structure and Architecture 2 3 1 6 (1) 3 3 5 11 (4)

Programming of Graphical User Interfaces 7 8 5 20 (7) 6 8 12 26 (8)

Research Methods in Computing 12 12 11 35 (12) 10 12 8 30 (11)

tively initialized and how the variable ranking of prototypes is derived are not standard choices

in cluster analysis. Moreover, the whole computational process for the predictive analysis —

use of MLP with a) hot-deck imputation, b) complexity-aware training for best generalization,

c) analytic formula-based robust input sensitivity derivation, d) sensitivity ranking, e) Fleiss κ as

stability measure for rankings is completely novel. It is also based on our own implementation

throughout. Training phase b) has been recently proposed and tested in Kärkkäinen (2014) and

Kärkkäinen et al. (2014).

The underlying principle to study soundness in all the treatments here was based on local

and global triangulation: In the correlation analysis, significancy was computed with and with-

out Bonferroni correction. In cluster analysis, variable ranking was computed in two ways and

assessed using the nonparametric Kruskal-Wallis test. Similarly, in the predictive analysis three

different foldings (number of folds and how they are created) were used and Fleiss κ was then

applied to the results of five iterations of the overall algorithm to study its stability. Thus, locally

(for each method separately), we have made serious and versatile attempts to vary the meta-

parametrization of the approaches and reported all the results. Globally, on the whole analysis

level, we have again based our overall conclusions on the results and conclusions of the three

methods of different orientations in EDM. We reason that such two-level treatment, where lo-

cally and globally the same results and their interpretation are supported by different approaches,

improves the technical soundness of the study. Furthermore, the method for obtaining the final

ranking, in clustering and in the MLP analysis, is novel and establishes a practical framework

that can be used in similar applications.
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KÄRKKÄINEN, T. 2002. MLP in layer-wise form with applications in weight decay. Neural Computa-

tion 14, 1451–1480.
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Abstract.  The Programme for International Student Assessment (PISA) is a worldwide 

study that assesses the proficiencies of 15-year-old students in reading, mathematics, and 

science every three years. Despite the high quality and open availability of PISA data sets, 

which call for big data learning analytics, academic research using this rich and carefully 

collected data is surprisingly sparse. Our research acts on this deficit by discovering novel 

knowledge from PISA through the development and use of appropriate methods. Since Fin-

land has been the country of most international interest in the PISA assessment, a relevant 

review of the Finnish educational system is provided. This chapter also gives a background 

on learning analytics and presents findings from a novel case study. Similarly to the exist-

ing literature on learning analytics, the empirical part is based on a student model, but dif-

ferently from these, our model represents a profile of a national student population. We 

compare Finland to other countries by hierarchically clustering these student profiles from 

all the countries that participated in the latest assessment, validating the results through sta-

tistical testing. Finally, an evaluation and interpretation of the variables that explain the dif-

ferences between the students in Finland and those of the remaining PISA countries is pre-

sented. Based on our analysis, we conclude that, globally, learning time and good student-

teacher relations are not as important as collaborative skills and unassumingness explaining 

students’ success in the PISA test. 

Keywords: PISA, Learning Analytics, Big Data, Knowledge Discovery, Hierarchical Clus-

tering 
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10.1 Introduction 

The original purpose of Learning Analytics (LA), as stated, e.g., by Siemens 

(2013, p. 1383) and Ferguson (2012, p. 306), was to “measure, collect, analyze, 

and report data about learners and their contexts, for the purposes of understand-

ing and optimizing learning and the environments in which it occurs.” Slightly dif-

ferent variants were later given to characterize the discipline (Pardo & Teasley 

2014, Gray et al. 2014, Siemens & Baker 2012). Increased attention to Massive 

Open Online Courses (e.g., Wang et al. 2014, Ye & Biswas 2014, Reich et al. 

2014, Coffrin et al. 2014, Hickey et al. 2014, Santos et al. 2014, Vogelsang and 

Ruppertz 2015, Ferguson and Clow 2015, Hansen and Reich 2015, Wise et al. 

2016, Hecking et al. 2016) has widened the need for data based learning support in 

the direction of the so-called big data. This is evidenced by several articles (e.g., 

Picciano 2012, Chatti et al. 2012, Siemens 2012, Chatti et al. 2014, Dawson et al. 

2014, Wise & Shaffer 2015, Merceron et al. 2016) and also by the theme of the 

2015 Learning Analytics and Knowledge conference “Scaling up: Big data to Big 

Impact” (see Dawson et al. 2015).  

PISA is a worldwide triennial survey conducted by the Organisation for Eco-

nomic Cooperation and Development (OECD), resulting in publicly available ed-

ucational data on a large scale. Besides assessing the proficiency of 15-year-old 

students from different countries and economies in reading, mathematics, and sci-

ence, PISA provides “data about learners and their contexts” being one of the 

largest public databases1 of students’ demographic and contextual data, such as 

their attitudes and behaviors towards various aspects of education. More than sev-

enty countries and economies have already participated in PISA, and the assess-

ment is referred to as the “world’s premier yardstick for evaluating the quality, 

equity and efficiency of school systems” (OECD 2013a). 

In the PISA studies, data collection is of very high quality, including the devel-

opment of the data collection instruments, the procedures of data collection, and 

the storage of the data in public databases. This is evidenced by the large amount 

of money spent on ensuring quality related to these issues. However, much less 

money has been invested in the analysis of the collected data and only few PISA 

analysis studies have resulted in publications in the scientific field (Olsen 2005a). 

Rutkowski et al. (2010) argue that the sizes of PISA data sets as well as the tech-

nical complexities within them may be the reason why more researchers do not 

work with these freely available and high quality data.  

Our research is motivated by the lack of secondary analysis of PISA data, 

which calls for the development and utilization of big data LA methods for mak-

ing discoveries within the international domain of PISA. Such methods can then 

be used to summarize the PISA data sets in novel ways in order to better under-

stand students from diverse countries and the settings in which they learn (Sie-

mens & Baker 2012). Hence, in relation to big data LA, we focus on the interna-

                                                           
1PISA data can be downloaded from http://www.oecd.org/pisa/pisaproducts/. 
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tional context, trying to understand national education systems as learning envi-

ronments. Such a scope of LA was also emphasized by Long & Siemens (2011), 

who pointed out that LA should occur on the national and international levels, 

primarily targeting for national governments and education authorities. Similarly 

as a classroom is in a school is in a city is in a region is in a country is in a conti-

nent, thorough use of educational data and empirical evidence should be linked to 

principles and practices of educational systems that are known to have an effect on 

learning. This is the primary concern in PISA. 

Chatti et al. (2014) introduced a reference model for LA based on four dimen-

sions: stakeholders, objectives, data, and methods, resembling the critical LA di-

mensions suggested by Greller & Drachsler (2012). Fig. 10.1 illustrates how large-

scale educational assessments, such as PISA, can leverage big data LA according 

to these dimensions. Namely, national bodies introduce the objectives (i.e., factors 

that constitute good national education systems) for assessing the international 

student population. Then, large data representing student background and profi-

ciency are sampled and transformed into derived representations, whose character-

istics (sample to population alignment introducing weights, rotated test design in-

troducing missing values) must be handled by the applied LA methods. When 

meaningful patterns are found, they are reported back to the educational decision 

makers. 

 

 

Fig. 10.1 Conducting big data LA for large-scale educational system assessments (cf. Chatti et 

al. 2014, Greller & Drachsler 2012). 

Ferguson et al. (2014) emphasize the large-scale institutional adoption of ap-

propriate educational patterns. In the best case, the institutional meso-level ap-

proaches are aggregated from the upscale local micro-level patterns and from the 

downscale macro-level characteristics of a good educational system. Thus, mean-
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ingful patterns at the macro-level, e.g., within a large educational organization, 

originate from characteristics of a large student population in relation to the rigor-

ously measured learning outcomes. 

The structure of this paper is as follows. In Section 10.2, we provide necessary 

background on big data LA and educational knowledge discovery from PISA. In 

Section, 10.3, a relevant review on methodologically related studies is provided 

and the forms and complexities of PISA data are described. Afterwards, the over-

all analysis method is depicted in Section 10.4. In Section 10.5, the results and in-

terpretations of the hierarchical clustering of the aggregated country profiles are 

presented and statistically validated. In Section 10.6 the PISA results are visual-

ized in a dashboard. Finally, in Section 10.7, the empirical work is summarized 

and in Section 10.8, the overall conclusions are given. 

10.2 Background and Related Work 

We provide next the necessary theoretical background for the empirical part of the 

chapter. First, we explain big data LA and summarize LA methods. Then, we 

characterize a pool of methodologically related work on the use of clustering in 

educational data analysis. We observe that methodologically related studies are 

typically conducted on the micro-level of individual courses or tutoring systems.  

10.2.1 Towards Big Data LA 

As emphasized in the introduction, LA studies are increasingly leveraging big da-

ta. The term “big” in big data does not solely refer to the amount of data, but actu-

ally refers to four ‘V’s (the first three according to Laney (2001), the last one as 

described, e.g., by Gupta et al. (2014)): (i) Volume refers to the size of data sets 

caused by the number of data points, their dimensionality, or both; (ii) Velocity is 

linked to the speed of data accumulation; (iii) Variety stands for heterogeneous da-

ta formats, which are caused by distributed data sources, highly varying data gath-

ering, etc.; and (iv) Veracity refers to the fact that (secondary) data quality can 

vary significantly, and manual curation is typically impossible. 

In relation to the big data LA, PISA data are characterized by high volume and 

low veracity due to missing values, but no velocity and small, well-managed va-

riety due to the meticulous design. Moreover, unlike the existing LA studies, the 

collected student sample is aligned to the whole worldwide student population un-

der study through the use of the weights (see the last paragraphs in Section 

10.2.3). For example, the sample data of PISA 2012 consists of circa half a million 

students, representing 24 million 15-year-old students from 68 different countries 

and territories. 



5 

Chatti et al. (2012) state that different LA techniques for detecting interesting 

educational patterns originate from four analysis categories: statistics; information 

visualization; data mining (identifying this with knowledge discovery in data-

bases) in the form of classification, clustering, and association rule mining; and 

social network analysis. The other LA researchers support this notion that data 

mining and knowledge discovery techniques are one category of the broad LA 

methods. Rogers (2015), for example, lists data mining as one of the more sophis-

ticated quantitative methods in LA and Siemens (2013) states that the knowledge 

discovery from databases is an LA technique that became increasingly important. 

Generally, with the advent of big data in education, the LA methods have shift-

ed from the more traditional data analysis techniques, such as statistics, to the 

more scalable data mining methods (Hershkovitz et al, 2016; Joksimović et al, 

2016). In fact, Ferguson (2012) points out that the two main differences between 

the general educational research and the specific research field of LA according to 

the LA definition given in the beginning of this chapter is that LA “make use of 

pre-existing, machine-readable data, and that its techniques can be used to handle 

‘big data.’” 

Application of data mining and knowledge discovery methods in an educational 

context typically realizes an educational knowledge discovery process that, espe-

cially when using an open educational dataset like PISA, supports learning and 

knowledge analytics (Verbert et al 2012). Several case studies (e.g., Hu et al, 

2106; Brown et al, 2016; Grawemeyer et al, 2016; Allen et al, 2016; Chandra & 

Nandhini 2010) have proved the need and success of specific knowledge discov-

ery processes and data analysis methods within the educational domain. However, 

data from many of the existing educational case studies are specific for certain ed-

ucational environments or institutions, which complicate the comparison of the 

techniques and the provided results.  

In contrast, PISA tests are standardized, and the resulting data sets are compa-

rable between different nations and their educational arrangements. Hence, PISA 

provides an interesting and novel case for big data LA techniques (Saarela & 

Kärkkäinen 2014, Saarela & Kärkkäinen 2015a,b,c, Kärkkäinen & Saarela 2015), 

combining methodological requirements, due to the above-mentioned technical 

complexities of the data, with comparative, educational knowledge discovery. 

10.2.2 On Educational Data Analysis Using Clustering 

As pointed out above, clustering is one of the key techniques in the data mining 

category of the LA methods. Next we describe a pool of work related to clustering 

of educational data as well as the empirical work in Sections 10.4-10.5. This set of 

papers was mostly identified by scanning through the most relevant publication fo-

rums (see Saarela et al. 2016a) in the field, especially the Journal of Learning An-
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alytics2 and the Conference on Learning Analytics & Knowledge3, restricting to 

the topic of clustering with some real educational data set. The description of the 

work is organized according to the used clustering method and the size of the clus-

tered educational data set. 

Hierarchical Clustering. Logs of 454 online mathematics practice sessions by 69 

students were clustered by Desmarais & Lemieux (2013). In that study, the pre-

processing first transformed the logs into temporal sequences (time series) reflect-

ing the state of interaction between the student and the learning environment. 

These representations were then clustered using an agglomerative hierarchical 

method, and the interpretation of the result was based on visualizing the clusters as 

state sequence diagrams. Three characteristic forms of using the system were iden-

tified: (i) exploratory browsing, (ii) short practice sessions, and (iii) exercise inten-

sive sessions. 

Self-regulatory strategies of undergraduate students, especially characteristics 

of accessing online learning material, were studied by Colthorpe et al. (2015). Hi-

erarchical clustering of 97 students was able to separate high and low performing 

students, where at first sight extensive use of lecturing recordings indicated poorer 

academic performance. This could, however, be explained by the form of en-

gagement in the learning material.  

Segedy et al. (2015) provided more in-depth analysis of student’s self-regulated 

interaction with the learning material in an open-ended computer-based learning 

environment. Student assessment was based on the coherence analysis, whose de-

scriptive metrics for 99 sixth grade students were, as part of the versatile analysis 

process, separated into five clusters using complete-link hierarchical clustering. In 

addition to two very small clusters of (i) confused guessers and (ii) students disen-

gaged from the task, the main clusters characterized the self-regulated interaction 

patterns of (iii) frequent researchers and careful editors, (iv) strategic experiment-

ers, and (v) engaged and efficient students. 

Hu et al. (2016) used hierarchical clustering to analyze responses of 523 Eng-

lish and Chinese primary school students to a questionnaire about their reading 

behaviors, preferences and attitudes towards reading. Three main reading profiles 

were identified and they were fully characterized by good, moderate, and bad 

reading habits. 

Hecking et al. (2016) combined social similarity (i.e., distances in the commu-

nication graph of the students) and semantic similarity (i.e., distances between the 

content-based roles by the students) to construct a socio-semantic blockmodelling 

approach for analyzing a MOOC discussion forum. Hierarchical clustering was 

used in the actual construction of the blockmodel from the derived similarity 

measure. The analysis of the communication graph of 647 students in 502 threads 

on 27 forums verified the presence of different roles, with moderate correlation 

                                                           
2 See http://learning-analytics.info/ . 
3 See http://lakXX.solaresearch.org/, where XX stands for year in which the conference took 

place. For example, http://lak16.solaresearch.org/ contains a link to the proceedings of the 2016 

conference. 

http://learning-analytics.info/
http://lakxx.solaresearch.org/
http://lak16.solaresearch.org/
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between a social and a semantic role by a student. Discovery of the three main so-

cio-semantic roles suggested that online discussion forums need better recognition 

and adaptation to the different user roles. 

K-Means. A collaboration of 31 participants in a math discussion board, through 

the lens of activity theory, which links individual and social behavior, was ad-

dressed by Xing et al. (2014) using the prototype-based k-means clustering meth-

od. In this study, the important phases of the educational clustering process, pre-

processing and interpretation of the clustering result, were strongly present. The 

result consisted of three clusters characterizing (i) personally participative but on 

the group level less communicative learners, (ii) collaboratively participating but 

shallow learners, and (iii) less participative poor learners.  

An automated approach using the k-means clustering algorithm was described 

by Li et al. (2013), for constructing a student model from the content features of 

algebra problems. Methodologically versatile preprocessing (feature extraction, 

min-max scaling, principal component analysis) and ten-fold cross-validation 

characterized the approach. The experiment with data from 71 students concluded 

that the clustering-based model was at least as good as the prior manually con-

structed model, being able to reveal previously unidentified and valuable 

knowledge components of mathematical problem solving. An innovative assess-

ment of the physical learning environment also using the k-means clustering 

method was reported by Almeda et al. (2014). The result consisted of four differ-

ent clusters characterizing the similar content profiles of 30 classroom walls, as 

decorated by the teachers. 

Multiple clustering methods (including k-means and hierarchical clustering) at 

various stages of the data analysis were applied by Blikstein et al (2014), to reveal 

the different patterns and trends of the development of programming behavior in 

an introductory undergraduate programming course. The overall analysis of 370 

participants and 154,000 code snapshots was concluded in multiple ways. Firstly, 

for different tasks within LA one needs different kind of tools ranging from fast 

and simple wrap-ups of data into advanced machine learning methods running on 

high-performance computing platforms. Secondly, concerning the clustering 

methods, one needs either better support to interpret the result of a clustering 

method or application of more advanced methods to improve the insight and 

knowledge discovery from data. Thirdly, concerning the domain of the study, the 

changes in the code update patterns by the students were more strongly correlated 

with the course performance compared to the size of code updates. 

A subset of methods used by Blikstein et al. (2014) were also utilized by Wors-

ley & Blikstein (2014) to analyze the problem-solving patterns of 13 students for 

open-ended engineering tasks. The LA method was based on segmentation and ex-

traction of action features from the hand-coded video data. The k-means algorithm 

produced four clusters, whose interpretation could be summarized into two princi-

pal dimensions of idea quality and design process, which were both related to stu-

dents’ level of experience. 
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Expectation-Maximization. Derived variables of multiple thematic groups from 

the log data of 106 college students using an intelligent tutoring system fostering 

self-regulated learning, was clustered by Bouchet et al. (2013). They used the ex-

pectation-maximization algorithm from Weka resulting in three clusters as sug-

gested by the knee point (see Saarela & Kärkkäinen 2015a), after careful cross-

validation with multiple restarts. The three clusters were mostly characterized by 

the varying levels of performance, but also reflected (through metadata) differ-

ences in the number of self-regulated learning processes in which the students 

were engaged. Bogarin et al. (2014) also used the expectation-maximization algo-

rithm from Weka and discovered three clusters from the log data of 84 Psychology 

students learning to learn online with Moodle. Especially a cluster of the most 

passive online students was detected, of which two-thirds failed the course. 

Activity in online discussion forums, as a predictor of study success, was also 

studied by López et al. (2012). Methodologically it was shown that the prototypes 

obtained from the expectation-maximization clustering algorithm with ten-fold 

cross-validation with Weka software were able to distinguish 114 different and in-

formative cases of university student behavior. Similarly to Bogarin et al. (2014), 

it was concluded that active participation in the course forum was a good predictor 

of the final mark for the course.  

Summary. To summarize this small survey on educational clustering, hierarchical 

clustering, k-means, and expectation-maximization were the most common ap-

proaches. This was also concluded in the review by Peña-Ayala (2014). Similarly, 

student modeling, including behavior and performance models, was the dominant 

educational data analysis approach, covering all except Almeda et al. (2014) of the 

assessed research (see Table 11 in the work published by Peña-Ayala 2014). Note 

that a set of older references concerning the use of clustering in educational set-

tings, as briefly introduced by Bouchet et al. (2013) in Section 6, also emphasized 

the student model as an important part of intelligent, online tutoring systems.  

10.2.3 Learning Analytics Approaches Oriented to Analyze PISA 

Repositories 

As concluded in the previous section, clustering is one of the key techniques for 

analyzing educational data, especially in LA. However, most of the educational 

clustering studies use small data sets of tens or at most hundreds of students at the 

micro- and meso-level of educational systems. By comparison, the PISA 2012 da-

ta set is comprised of around half a million students and represent a population of 

24 million people worldwide (see the last paragraph in Section 10.3.2). 

A considerable amount of literature has been published on PISA. However, as 

observed by Olsen (2005a), these publications are mainly national or international 

reports that have not gone through the peer-review process. Furthermore, many of 

the peer-reviewed publications dealing with PISA (e.g., Deng & Gopinathan 2016, 
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Auld & Morris 2016, Rasmussen & Bayer 2014, Yates 2013, Bank 2012, Bulle 

2011, Waldow et al. 2014, Grek 2009, Simola 2005, Sahlberg 2011, Kumpulainen 

& Lankinen 2012) do not perform own empirical analysis, but only refer to the re-

ports or statistics published by the OECD. In the papers where own empirical 

models are being derived and analyzed (e.g. Skryabin et al. 2015, Kriegbaum et al. 

2015, Erdogdu & Erdogdu 2015, Tømte & Hatlevik 2011, Zhong 2011, Fonseca et 

al. 2011) the missing data is mostly completely removed and only the sample is 

analyzed by ignoring the weights and, hence, the population level. Moreover, usu-

ally students from only a few countries are being compared in the existing litera-

ture, although a very scarce pool of whole PISA sample level comparisons exists 

(e.g., Drabowicz 2014, Zhong 2011).  

We have also carefully assessed the use of clustering with PISA data sets and 

have only been able to identify our own recent publications for PISA 2012 

(Saarela & Kärkkäinen 2014, Saarela & Kärkkäinen 2015b,c) and one older publi-

cation for PISA 2003 (Olsen, 2005b). Thus, our main contributions here are that 

we augment the traditional PISA analysis by utilizing big data LA methods and by 

working with the whole data on the macro-level of the whole student population, 

confining to the recommendations given by the OECD (2014b). This population 

level scope is a novel setting in big data LA. 

10.3 PISA Profile 

In this section, we outline contextually related work of the chapter. More precise-

ly, since Finland is of main interest in our clustering application, we introduce the 

main characteristics of the Finnish educational system that has performed so well 

in the PISA assessments as well as related research. The last part of this section is 

devoted to a description of the collection and overall processing of the PISA as-

sessment, yielding to multiple forms of publicly available educational data sets on 

a macro-level. 

10.3.1 The Finnish Educational System and PISA 

In this paper, our main focus is on Finland in comparison to the other countries 

that participated in the latest PISA assessment. Traditionally, Finnish students 

have performed exceptionally well in the PISA tests. The reasons for Finland’s 

success in PISA, particularly in the 2003 and 2006 assessment cycles, have been 

analyzed in several studies and educational stakeholders from all over the world 

have visited Finland to find explanations for the high performing students.  

Consequently, education became an important asset in Finland’s image and 

identity. In fact, Finland has invested considerably in the international educational 

export sector (Schatz et al. 2016), and although Finland’s place in the international 
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ranking dropped in the latest PISA assessment, it is still placed the highest in Eu-

rope. Here, our goal is to assess the variables that most distinguish Finland from 

the other countries participating in PISA. 

Finland’s high performance in the PISA assessments has been analyzed in sev-

eral articles. Many of these articles have linked the well-performing students to 

the highly qualified teachers, who need to have a Master’s degree for a permanent 

position. In particular, it has been argued that in Finland, being a teacher is one of 

the most prestigious occupations, as evidenced by the fact that only the best and 

most motivated students are admitted to the teacher training programs, as well as 

the observation that Finnish teachers enjoy a very high status in the society (Mor-

gan 2014, Sahlberg 2011, Linnakylä et al. 2011, OECD 2011, Andere 2015).  

A second reason that has been identified to contribute to Finland’s high results 

in PISA relates to the organization of the national school system. Instead of (i) 

market-oriented schooling, (ii) standardization of schools and tests, concentrating 

on measurable performance, and (iii) competition between students and schools, 

the focus in Finland’s schools is more on cooperation, collaboration, and the belief 

that teachers will support each student’s individual learning (Simola 2005, Sahl-

berg 2011). National curricula as well as explicit learning objectives and standards 

do exist, but schools and teachers in Finland enjoy great autonomy and decision-

making authority, i.e., they can decide on learning strategies and pedagogical 

methods in order to reach the common educational goals (Kumpulainen & Lank-

inen 2012, Linnakylä et al. 2011, OECD 2011). 

The fact that schools in Finland are neither competing nor are evaluated by 

standardized tests is one of the reasons why the variance between the Finnish 

schools is so small4 (Simola 2005). Additionally, there is a no division of students 

into different school types or tracks based on their performance. Indeed, all stu-

dents in Finland attend common, untracked, comprehensive schools of equally 

good quality from grades 1–9, typically those nearest to their homes. These 

schools are publicly funded and offer free lunches, healthcare, and school 

transport for all pupils (OECD 2011, Linnakylä et al. 2011). 

These mutually interdependent and interconnected factors that are associated 

with Finland’s high achievements in PISA have also been emphasized by Välijärvi 

et al. (2007) who have concluded that Finland’s success can be explained by a 

combination of “comprehensive pedagogy, students’ own interests and leisure ac-

tivities, the structure of the education system, teacher education, school practices 

and, in the end, Finnish culture” (see Table 10.1). 

Research has shown that culture tends to affect both people’s goals and their 

actions to reach these goals (Hitlin & Piliavin 2004). As already pointed out 

above, Finnish people put great emphasis on equity and equality. Several studies 

have also highlighted the trust that seems to exist in Finnish culture in general, and 

between the educators and the community in particular (Sahlberg 2011, OECD 

2011).  

                                                           
4 According to the 2012 assessment, the between school variation in Finland is only 6% of the 

overall math performance which is the second lowest figure in comparison with all PISA coun-

tries. 
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Table 10.1 Interaction between culture and education in Finland. 

Culture Education 

strong mutual trust parents and government trust teachers (indicated 

by strong autonomy and authority of the teach-

ers) 

equity & equality (care for others instead of 

wanting to be the best) 

common untracked comprehensive school sys-

tems, free lunch, health care and school 

transport, children with special needs study in 

the same classroom 

indulgent country minimal time allocated to studying, broad rich 

curriculum 

 

The Hofstede Model (Hofstede 2011) acknowledges the idea of Finland being 

more a collaborative than a competitive country. According to the model, Fin-

land’s society can be characterized as being highly “feminine,” meaning that the 

most important driving factors in life are to live a good life and to care for others 

instead of focusing on one’s own success and wanting to be the best. This is inter-

esting when linked to the recent study by French et al. (2015), who found a nega-

tive causal relationship between education expenditure and power distance and 

masculinity. According to this study, the less masculine a country is the more it 

invests in education. 

10.3.2 Characteristics and Forms of the PISA Data 

According to the OECD, PISA results have a high degree of validity and reliabil-

ity (for example, OECD 2014b, 2012), so they can be used to assess and compare 

the educational systems of the participating countries. To ensure the validity and 

reliability of PISA data large amounts of money are spent. For example, in Ger-

many alone, the aggregate costs of PISA assessment have reached 21.5 million eu-

ros (Musik 2016). However, as already pointed out in the introduction of this 

chapter, the PISA assessments as well as the resulting PISA data are methodologi-

cally very complex.  

As highlighted by the OECD (2012), “the successful implementation of PISA 

depends on the use, and sometimes further development, of state-of-the-art meth-

odologies and technologies”. Since a mixture of different methods is used in this 

large study and many variables are derived, it is not obvious how certain values in 

the publicly available database5 (see Fig. 10.2) were collected, obtained, and re-

ported. The fact that PISA data are not trivial can also be concluded based on the 

time that is needed to publish the PISA data and results: Usually around 1.5 years 

                                                           
5 Can be downloaded from http://pisa2012.acer.edu.au/downloads.php 
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passes after data collection before the first PISA results and data are published. 

For example, the 2012 PISA data collection took place in spring 2012, and its re-

sults were published in December 2013. 

 

 

Fig. 10.2 Overview of the 2012 data sets available from OECD. 

An overview of the 2012 PISA data is provided in Fig. 10.2. In all three data 

sets with pink backgrounds in Fig. 10.2, the assessed students are the observations. 

The basic information about the student (student’s ID, country, test language, and 

school ID), and which test he or she was administered (booklet ID) is provided in 

all three of these student data sets. The student cognitive items and scored cogni-

tive item response data sets document the students’ responses to the cognitive 

items and how these were scored. Altogether there were 206 different cognitive 

items in the PISA 2012 data. An example of a cognitive item variable label is 

“SCIE—P2006 Wild Oat Grass Q4.” As can be seen, it includes the domain (in 

this case, science), the PISA cycle in which the question was used first (in this 

case, PISA 2006), the name for the particular task unit6 (in this case, Wild Oat 

Grass), and the question number (in this case, 4). 

The most informative and meaningful part of PISA data is the student ques-

tionnaire data set (see Fig. 10.2). However, as pointed out before, one of the big-

gest challenges when working with PISA data is that many variables in this data 

set are not direct measurements but rather already transformed and preprocessed 

variables. For example, the students’ abilities/performances in the cognitive tests 

are summarized in the form of so-called plausible values. Plausible values are, as 

Wu (2005) puts it, “multiple imputations of the unobservable latent achievement 

for each student.” This is explained more thoroughly at the end of this section.  

                                                           
6 PISA items are organized into units. Each unit consists of a stimulus (consisting of a piece of 

text or related texts, pictures, or graphs) followed by one or more questions. 
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Certain scale indices in the data—indicating, for example, student’s attitudes 

towards school and learning—are also derived variables. This means that in order 

to be able to work with PISA data, one need to understand how the many derived 

variables have been created and how they can be used for further analysis. In 

PISA, the Rasch model, which is a special case of item response theory, is used for 

this purpose.  

Gray et al. (2014) emphasize the importance of integrating item response theo-

ry factors and methods, such as the Rasch model, to the existing LA models. Item 

response theory models can improve existing models because they can model la-

tent (i.e., not directly measurable) traits, such as intelligence, ability or motivation. 

Moreover, they can be applied even with a large number of missing values. The 

potential of using item response theory in LA has been shown, for example, by 

Bergner et al. (2015) who estimated student abilities based on homework scores 

from a massive open online course of which a large number of scores were miss-

ing.  

The second challenge when working with PISA data is the high sparsity. Since 

the assessment material developed for PISA exceeds the time that is allocated for 

the test, each student is administered only a fraction of the whole cognitive testing 

material and only one of the three different background questionnaires. Because of 

this rotated design, very few variables in PISA data sets have values for all obser-

vations. For example, in PISA 2012, each student was assigned a test booklet of 

cognitive items that should be solvable in two hours. However, the whole PISA 

2012 cognitive item battery consisted of test items to be solved in six hours.  

The scored item set (see Fig. 10.2) incorporates 206 scored items for 485,490 

students. Nevertheless, because of the different booklets, which always contain 

only a fraction of the total items, 74% (that is, 738,604,20) of the different item 

variables have missing values. Similarly, because of the three different back-

ground questionnaires administered, the majority of the variables in the student 

questionnaire data set are missing approximately one-third of their values. We 

have discussed sparsity in educational data, particularly in PISA data, and algo-

rithms to cope with this issue in many of our recent studies (Saarela & Kärkkäinen 

2014, Saarela & Kärkkäinen 2015a,b,c, Kärkkäinen & Saarela 2015, Saarela et al. 

2016b). 

Finally, PISA data are an important example of large data sets that include 

weights. Only a fraction of 15-year-old students from each country take part in the 

assessment, but multiplied with their respective weights, which simply measure 

how many similar students one student in the sample represents, the gathered 

sample depicts the whole student population. For example, the sample data of the 

latest assessment consist of 485,490 students, which taking the weights into ac-

count, are representative of more than 24 million 15-year-old students in the 68 

different countries and territories that participated in PISA 2012.  

Both over- and under-sampling has taken place in PISA for different student 

groups. As a consequence, in order to state findings that are valid for the whole 

population, it is important to utilize the weights at each stage of the analysis. The 

way in which we incorporated the weights into a robust clustering algorithm for 

sparse data is illustrated and applied in our prior works (respectively, Saarela & 

Kärkkäinen 2015c,b). 
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10.3.3 Rasch Model  

As described above, because of the different PISA test booklets administered, the 

actual scored student test data is extremely sparse with a great deal of missing 

values (74%). The easiest approach for measuring each student’s ability would be 

to average the percentage of the correct answers over the three domains. However, 

since not all students obtained the same test items and as the test items varied in 

their difficulty, this approach is considered unreliable. With the Rasch model, 

however, the probability of a success on an item can be modeled as a logistic 

function of the difference between the student and item parameters (Rasch 1960). 

Hence, the Rasch model enables a comparison of student abilities/test 

results/characteristics, even if not all students were tested on the same test items.  

In PISA, the Rasch model is employed both to estimate student abilities—

depending on their item responses and the item difficulties in the cognitive test—

and to estimate general student characteristics—depending on their responses on 

the background questionnaire. Mathematically, in the simplest case of the Rasch 

model when the test item is dichotomous, the probability that a student  with abil-

ity denoted by  provides a correct answer to an item  of difficulty  can be 

stated as follows (10.1): 

  (10.1) 

When the Rasch model is employed, it iteratively creates a continuum/scale on 

which both a student’s ability and item difficulty are located, and where a proba-

bilistic function links these two components. Usually, the item difficulties are es-

timated first, and this is referred to as the item calibration. The overall objective is 

to obtain data that will fit the model.  

A student should give a correct answer to an easy item with higher probability 

than to a difficult item. Similarly, a student with high ability should give correct 

answers to items with higher probability than a student with low ability. This is 

shown in Fig. 10.3, where the probability that a correct answer is given to an item 

with difficulty δ = 0.6 is plotted for different student abilities. Moreover, as also 

illustrated in Fig. 10.3, when a student’s ability is equal to the difficulty of the 

item, there is by definition a 50% chance of a correct response in the Rasch model. 
To estimate the item difficulty, only the probability of being correct on that 

item and the ability of the students who completed the item must be known. Like-

wise, to estimate the student’s ability, only the probability of being correct on a set 

of items and the difficulty of those items must be known (Embretson & Reise 

2013). Every item and every student will be located in the created scale with the 

Rasch model. Therefore, comparable student ability estimates can be obtained, 

even if the students were assessed with a different subset of items (OECD 2014b). 

The only requirement is that some link items exist (i.e., some items in the different 

test booklets must be the same). 
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Fig. 10.3. Rasch model example. Probabilities that a correct answer is given to an item with 

difficulty δ = 0.6 for different student abilities. The probability that a student with ability β = 0.6 

will provide a correct answer to this item is 0.5. 

In PISA, a generalization of the original Rasch model is employed that can 

score not only dichotomous but also polytomous items (e.g. cognitive items can be 

scaled as incorrect, partially correct, and correct or questionnaire Likert-scale da-

ta can be scaled as completely agree, agree, neutral, disagree, and completely dis-

agree). This model is called the one-parameter logistic model for polytomous 

items. 

10.3.4 Plausible Values 

There exist many other international, large-scale educational assessment studies 

such as PISA, including the National Assessment of Educational Progress7, the 

European Survey on Language Competences8, the Trends in International 

Mathematics and Science Study, and the Progress in International Reading 

Literacy Study9. The idea in PISA and in these other assessments is not to measure 

and report proficiencies of individual students. Instead, the primary goal is to 

provide a reliable overview of the proficiencies and national characteristics of the 

whole population (OECD 2014b, Marsman 2014). This is the main difference 

between typical micro- or meso-level LA and the big data LA for PISA.  

                                                           
7 nces.ed.gov/nationsreportcard/ 
8 www.surveylang.org/ 
9 See both http://timssandpirls.bc.edu/ 
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Plausible values are used to estimate the proficiencies of the population, which 

in PISA are all 15-year-old pupils within the participating countries. Some studies 

(Monseur & Adams 2008, Wu & Adams 2002, OECD 2014b) have shown that 

plausible values—in comparison to Weighted Likelihood Estimates, which over-

estimate, and Expected A Posteriori estimators, which underestimate population 

variances—produce unbiased estimates for population statistics. 

In short, plausible values are random draws from the posterior distribution of a 

student’s ability. These posterior distributions are estimated with a Bayesian ap-

proach in combination with the Rasch model. Hereby, the posterior distribution of 

a student’s ability , given his or her vector of item responses and certain addi-

tional variables about the student from the background questionnaire (e.g. gender 

and many others) that are encoded in a vector , is defined as (10.2): 

 , (10.2) 

where  denotes a Rasch model given the student’s ability  and the dif-

ficulties of the items  in the test, and  denotes a population model. This 

population model for a student  is usually estimated with the latent (called latent 

because the predictor is unobserved) regression model , where 

 (Marsman 2014, OECD 2014b). 

In other words, in each country, the student abilities are assumed to follow a 

conditional Gaussian distribution, given , i.e., the variables from the background 

questionnaire. This is the prior distribution. Then, the student takes the PISA test. 

The statistical model (“likelihood”) of the success in the test is a Rasch model, 

where the probability of success is a logistic function of the unknown but estimat-

ed latent ability and the difficulties of the test items (see Equation 10.1 and 10.2). 

The estimated posterior distribution of the ability of the student is specific for 

each student, as each student has different values of background variables and test 

results. This means that success in the PISA test “corrects” our prior beliefs re-

garding the student’s ability. If a student successfully solves a difficult item, this 

indicates higher ability than success on an easy item. However, the student’s exact 

ability is not known, and is represented on the population level with five plausible 

values that are a random realization based on his or her posterior distribution. For 

this reason, when analyzing student performance, the official PISA protocol 

(OECD 2012) requires that the same analysis be repeated five times, separately for 

each plausible value. 

10.4 Comparison of Students in PISA 2012 Countries Using 

Aggregated, Hierarchical Clustering 

The empirical part of this work is focused on comparing Finland (through the stu-

dent characteristics) to the other countries that participated in the PISA assessment 

2012. This comparison is conducted by utilizing three of the four LA techniques 
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described by Chatti (2012) (see Section 10.2.1): clustering as one of the core data 

mining techniques, visualization of the clustering result to illustrate Finland’s po-

sition in comparison to the other countries, and, finally, statistical testing to verify 

the findings.  

10.4.1 Variables for the Clustering 

Our overall analysis method here is to apply hierarchical clustering on all PISA 

2012 countries/economies, to visualize the similarities between the participating 

countries through a dendrogram, and to conduct different statistical tests on two 

different levels. For this, we first aggregated the entire half a million student sam-

ple of PISA 2012 into the population level of each country by computing the 

weighted means of the available data in a country-wise manner. We used all ob-

servations in the PISA 2012 data set. All variables in the PISA student data set 

(and their possible values) can be found in the codebook10. In Saarela & Kärk-

käinen (2014), Saarela & Kärkkäinen (2015c,b) and Kärkkäinen & Saarela (2015), 

we have utilized the individual variables on a student level that are known to ex-

plain performance in mathematics. Here, we used an extended set of variables, in-

cluding also those that are more on a classroom- (e.g. teacher behavior) or coun-

try- (e.g., time of formal instruction in a certain school subjects) than on an 

individual student level. 

In Table 10.2, all variables used in this study are listed. All these variables are 

derived variables, constructed with the Rasch model using students’ answers of 

the background questionnaire or other already derived variables. For example, the 

first variable, the index of economic, social and cultural status, is constructed us-

ing the highest parental occupation, the student’s home possessions, and the high-

est parental education, which themselves are derived variables constructed with 

the Rasch model (OECD 2014b).  

The following five variables, i.e., those with the IDs 2-6 in Table 10.2, are gen-

erally associated with performance on a student level, while the next ten variables 

(IDs 7-16) are all related to attitudes towards mathematics. Since mathematics was 

the major domain in 2012, attitudes towards this subject received considerable at-

tention in the background questionnaire. Here, we use all ten mathematics indices 

that together summarize 67 items in the student background questionnaire.  

The next five variables in the table (IDs 17-21) are related to how much time 

students spend studying. Both, formal learning time in different subject areas as 

well as out-of-school study hours are detailed. The last variable, Age at ISCED 1 

reports the beginning of the systematic apprenticeship of reading, writing, and 

mathematics. The last six variables (IDs 22-27) are all on a teacher or teaching 

level. 

                                                           
10 Available at http://pisa2012.acer.edu.au/downloads/M_stu_codebook.pdf. 



18  

Table 10.2 Overview and identification of the derived PISA variables utilized in this study. 

PISA variable ID PISA variable ID 

Economic, social and cultural status 1   

Sense of belonging 

Attitude towards school: learning activi-

ties 

Openness to problem solving 

2 

4 

 

6 

Attitude towards school: learning outcome 

Perseverance 

3 

5 

Self-responsibility for failing in math 

Instrumental motivation to learn math 

Anxiety towards mathematics 

Behaviour in mathematics 

Subjective norms in mathematics 

7 

9 

11 

13 

15 

Interest in mathematics 

Self-efficacy in mathematics 

Self-concept in mathematics 

Intentions to use mathematics 

Mathematics Work Ethic 

8 

10 

12 

14 

16 

Out-of-School Study Time 

Learning time (min. per week) – Mathe-

matics 

Age at <ISCED 1> 

17 

19 

 

21 

Learning time (min. per week) - Test Language 

Learning time (min. per week) – Science 

18 

20 

Teacher Student Relations 

Teacher Behaviour: Formative Assess-

ment 

Teacher Behaviour: Teacher-directed In-

struction 

22 

24 

 

26 

Mathematics Teacher’s Support 

Teacher Behaviour: Student Orientation 

Experience with Applied Math Tasks at School 

23 

25 

27 

10.4.2 Hierarchical Clustering 

As pointed out above, a high number of values are missing in the PISA data. 

Moreover, each student in the PISA data sets has a weight expressing how repre-

sentative he or she is for the population of all 15-year-old students within his or 

her country. Therefore, we computed for each country/economy the weighted 

means of the available data for each variable as inputs for the clustering algorithm. 

We then normalized our data set using z-scoring and applied hierarchical cluster-

ing with Matlab’s default settings, i.e., agglomerative single-linkage clustering 

with the Euclidean distance. 

Agglomerative clustering techniques operate in a bottom-up fashion (Zaki & 

Meira Jr 2014). Hence, we started with each PISA country as a separate cluster. 

Then, the most similar country clusters  and  were repeatedly merged so that 

they formed a new bigger cluster. The most similar clusters were defined as the 

ones with the smallest Euclidean distance between a point in  and a point in  

(10.3): 

 , (10.3)  
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where  (see Zaki and Meira Jr 2014). 

 

 

Fig. 10.4 The Davies-Bouldin index suggest that there are ten clusters in the data. 

To decide the number of clusters in PISA 2012, the Davies–Bouldin cluster in-

dex (Davies & Bouldin 1979) was applied on the z-scored data. As can be seen 

from Fig. 10.4, the Davies-Bouldin index suggested that there are ten clusters in 

the data. Therefore, the merging of closest clusters was terminated after ten clus-

ters were formed. 

10.5 Results 

In this section, we first present the clustering result and profile that. Then, the 

clustering results are analyzed more deeply using statistical tests on two different 

levels. 

10.5.1 Visualization and Profiling of the Clusters 

Fig. 10.5 shows the hierarchical clustering result. Based on the similarities of 

countries in particular groups, we suggest the following labels for the ten clusters 

as documented in Table 10.3. 
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Table 10.3 Clustering results. 

ID label countries 

C1 ‘Nordic/ English-speaking’ Australia, Canada, United-Kingdom, New-Zealand, Florida 

(USA), Connecticut (USA), Massachusetts (USA), USA, 

Denmark, Iceland, Norway, Sweden 

C2 - Costa-Rica, Israel, Uruguay 

C3 ‘Eastern countries’ Bulgaria, Lithuania, Montenegro, Perm-Russia, Romania, 

Russia, Serbia 

C4 ‘South America/ Africa’ Argentina, Chile, Tunisia 

C5 ‘developing countries’ Brazil, Colombia, Indonesia, Mexico, Malaysia, Peru, Thai-

land, Turkey, Vietnam 

C6 ‘high performing Asian’ Shanghai-China, Singapore 

C7 ‘Kazakhstan’ Kazakhstan 

C8 ‘Arabic’ UAE, Jordan, Qatar 

C9 ‘Asian’ Hong-Kong-China, Japan, Korea, Macao-China, Taiwan 

C10 ‘Europe’ Austria, Belgium, Switzerland, Czech-Republic, Germany, 

Spain, Estonia, Finland, France, Greece, Croatia, Hungary, 

Ireland, Italy, Liechtenstein, Luxembourg, Latvia, Nether-

lands, Poland, Slovak-Republic, Slovenia 

 

 

It is a surprise that Finland is not part of the Nordic/English-speaking cluster, to 

which all other Nordic countries belong. This finding is interesting compared to 

the classification of Bulle (2011), who introduces “the Northern model: Denmark, 

Finland, Iceland, Norway, Sweden” as one of the five main OECD educational 

systems. Hence, if the educational systems are similar, this does not mean that the 

student characteristics are also similar.  

The dendrogram implies that Finland belongs to the Europe cluster and is actu-

ally closest to the Netherlands. In the PISA 2012 results summary (OECD 2014a, 

page 7), the performances of these two countries in mathematics, among many 

other pairs of countries, were found to not be statistically significantly different. In 

addition, both the Netherlands and Finland are, according to the Hofstede Model 

(Hofstede 2011), highly feminine cultures.  

As explained above, it was unexpected that Finland belonged to the Europe 

cluster and not to the Nordic/English-speaking cluster. To assess the significance 

of the single variables and to explain why a particular country was allocated to a 

certain cluster, we utilized statistical tests. Since not all of our variables were 

normally distributed, we had to use non-parametric tests. 

To specifically address the finding of Finland’s position, we will first report the 

differences between all the clusters. Second, we will summarize the differences 

between Finland and its own Europe cluster, and third, we will describe the varia-

bles that separate the Europe cluster from the Nordic/English-speaking cluster. 
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Fig. 10.5 Dendrogram of all countries when their weighted mean is clustered. 
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10.5.2 Differences between All the Global Clusters 

A Kruskal-Wallis H test (Kruskal & Wallis 1952) showed that there was a highly 

statistically significant difference in 20 of the 27 variables between the different 

clusters. The test statistics of all highly statistically significant variables are 

provided in Table 10.4. With reference to Table 10.4, the variable 25 teacher 

behaviour: student orientation, i.e., how much attention teachers pay to individual 

students, was the most important in terms of accounting for variance in the cluster 

membership ( (9) = 51,227, p < 0.001). 

Table 10.4 Kruskal-Wallis H test statistics (all clusters) with a post hoc test. 

variable (9) p Post hoc test variable  (9) p Post hoc test 

1 

5 

8 

10 

12 

14 

16 

19 

23 

25 

48,676 

33,306 

48,701 

30,765 

35,298 

34,029 

39,863 

36,542 

46,378 

51,227 

 

 

 

 

 

 

 

 

 

 

C10-C5, C1-C5 

- 

C10-C5 

- 

- 

- 

- 

- 

C10-C5 

C10-C5 

4 

7 

9 

11 

13 

15 

18 

22 

24 

26 

 38,499 

37,399 

49,857 

42,170 

49,549 

49,082 

40,457 

42,940 

45,203 

42,610 

 

 

 

 

 

 

 

 

 

 

C9-C1 

- 

C9-C5, C10-C5 

C1-C5 

C1-C5 

C10-C5 

- 

C10-C5 

- 

- 

 

Subsequently, pairwise comparisons were performed using Dunn’s (1964) pro-

cedure with a Bonferroni correction for multiple comparisons. This post hoc anal-

ysis revealed highly statistically significant differences in the ESCS between the 

developing (mean rank = 5.67) and the Nordic/English-speaking cluster (mean 

rank = 57.25) as well as between the developing and the Europe (mean rank = 

40.47) cluster, but not between any other group combination for this variable. This 

is also illustrated in Fig. 10.6, in which all pairwise comparisons of the different 

clusters for their ESCS are shown. In the figure, black lines reflect a pairwise 

comparison that is not statistically significant, while orange lines reflect a statisti-

cally significant pairwise comparison. 

The last column in Table 10.4 summarizes the post hoc analysis for all the vari-

ables. As can be seen from the table, highly statistically significant differences 

were found in the attitude towards school: learning activities, i.e., the degree to 

which a student sees hard work in school pay off later, between the Asian (mean 

rank = 5.00) and the Nordic/English-speaking cluster (mean rank = 51.08), in the 

interest in and enjoyment of mathematics between the developing countries (mean 

rank = 56.89) and Europe (mean rank = 14.90) cluster, in the instrumental motiva-

tion to learn mathematics, i.e., the degree to which a student’s hard work in math-

ematics pays off later, between the developing (mean rank = 57.89) and the Asian 
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(mean rank = 7.80) countries, and between the developing countries and the Eu-

rope (mean rank = 19.10) cluster.  

 

 

Fig. 10.6 Pairwise comparisons of clusters for ESCS. Statistical significant differences (develop-

ing countries-Nordic/English-speaking and developing countries-Europe) are marked yellow. 

The developing countries cluster was revealed to be highly statistically 

significant different from the Nordic/English-speaking cluster with regard to the 

anxiety towards mathematics (mean rank C5 = 55.00 vs. C1 = 14.92) and the be-

haviour in mathematics, i.e., the role of mathematics inside and outside school, 

(mean rank C5 = 54.11 vs. C1 = 12.17). In addition, the developing countries clus-

ter was found to be highly statistically significant different from the European 

cluster with regard to the subjective norms in mathematics (mean rank C5 = 51.11 

vs. C10 =15.81), i.e. how much attention to mathematics is given by friends and 

family, the teacher student relations (mean rank C5 = 51.44 vs. C10 = 14.90), the 

mathematics teacher’s support (mean rank C5 = 52.22 vs. C10 = 14.43), and the 

teacher behavior: student orientation (mean rank C5 = 54.33 vs. C10 = 15.14), re-

spectively. No highly statistical differences were found for any other group com-

bination.  

Hence, the statistical test on a global level suggests that overall; the Europe 

cluster and the developing countries cluster are the most dissimilar to each other. 

Students in the Europe cluster have a higher economic, social and cultural status—

but the students in the developing countries cluster have higher interests, more 

motivation to learn, and higher subjective norms from their friends and family in 

mathematics. Furthermore, students in the developing countries tend to report bet-

ter relations with their teachers. 
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When comparing Finland to other countries, the rather negative attitudes to-

wards mathematics were already observed in the 2003 assessment cycle. In both 

the interest in and the enjoyment of mathematics, Finland was ranked 37th out of 

the 40 participating countries (Linnakylä et al. 2011).  

Moreover, in a longitudinal study of Finnish grade 1 to grade 12 students by 

Metsämuuronen et al. (2012), it was concluded that student contentment in regard 

to school in Finland decreases significantly from the second to the eighth grade, 

while it then very slightly increases again starting from the ninth grade. The ma-

jority (82%11) of the Finnish students participating in PISA are in the ninth grade, 

and almost all of the rest are in the eighth grade (16%). Hence, Finnish students 

are at the stage in their basic education where their self-reported attitudes towards 

school are very poor. 

Metsämuuronen et al. (2012) suggest that these generally negative attitudes of 

the Finnish students towards education are due to their modesty and honesty: “Part 

of the explanation in Finland [...] can be the appreciation of honesty and speaking 

frankly [...] pupils in Finland [...] are relatively humble when they describe their 

knowledge. This ‘humbleness’ may also be reflected in attitude measurements.” 

10.5.3 Differences between Finland and the Other Countries within 

the Europe Cluster  

According to the clustering result, Finland is most similar to the countries in the 

Europe cluster. But what are the variables that separate Finland from the countries 

within its own cluster? Table 10.5 summarizes the highly statistically significant 

variables according to which Finland is different from the remaining countries, as 

determined by the Wilcoxon signed-rank tests. 

Table 10.5 Wilcoxon signed-rank statistics (Europe - Finland clusters). 

variable 1 7 10 11 16 17 18 24 

Z 

P 

-3.920 

 

3.920 

 

3.920 

 

3.771 

 

3.808 

 

3.920 

 

3.845 

 

3.920 

 

 

As can be seen from Table 10.5, the majority of the Europe cluster has a 

significantly lower ESCS than Finland (z = −3.92, p < 0.001). Nevertheless, the 

Europe cluster majority has a significantly higher self-responsibility for failing in 

mathematics (z = 3.92, p < 0.001), anxiety towards mathematics (z = 3.771, p < 

0.001), and self-efficacy in mathematics (z = 3.92, p < 0.001) than Finland. Fur-

thermore, the Europe cluster in general shows higher scores in many variables that 

measure emphasis of formal assessment and how much time students spend with 

studying.  

 

                                                           
11 Own calculation on PISA 2012 data. 
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Fig. 10.7 Weighted average of out-of-school study hours for all in PISA participating countries. 

In comparison to all the other countries, Finnish students study the least after school. 
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In particular, there is a significantly higher work ethic in mathematics (z = 

3.808, p < 0.001) and more out-of-school study hours in the Europe cluster than in 

Finland (z = 3.920, p < 0.001). The latter is illustrated in Fig. 10.7, where the 

weighted average out-of-school study hours for students in all participating PISA 

countries are plotted. As can be seen from the figure, Finnish students not only 

study the least outside of school within their own Europe cluster but also com-

pared to all other countries participating in PISA.  

In addition, the learning time (min. per week) - test language in Europe is 

significantly greater than in Finland (z = 3.845, p < 0.001, see Table 10.5), and Eu-

rope has a significantly higher score in teacher behaviour: formative assessment 

than Finland (z = 3.920, p < 0.001). In summary, these results support observa-

tions by Sahlberg (2011) who writes that educational decision makers in Finland 

“do not seem to believe that doing more of the same in education would necessari-

ly make any significant difference for improvement.” 

 

 

Fig. 10.8 One-Sample Wilcoxon Rank Test for work ethic: The work ethic of students in Finland 

is significantly lower than the work ethic of students in the European cluster. 

As can be seen from the Wilcoxon signed-rank test result and Fig 10.8, 15-

year-old students in Finland seem to already have a rather relaxed attitude towards 

formal assessment and investing time in studies. This is particularly evident in the 

highly statistically significantly lower work ethic12 of Finnish students.  

One should also keep in mind that the systematic apprenticeship of reading, 

writing, and mathematics begins later in Finland than in Europe (z = −3.435, p < 

0.001). This is illustrated in Fig. 10.9. In Finland, children are seven years old 

when they start school. Combined with the finding that the hours of formal in-

struction of certain subjects are, as described in the above paragraph, significantly 

                                                           
12 The work ethics scale index is computed with the Rasch model and by using the extent to 

which students agree or disagree with the following statements: I finish my homework in time for 

mathematics class; I work hard on my mathematics homework; I am prepared for my mathemat-

ics exams; I study hard for mathematics quizzes; I keep studying until I understand mathematics 

material; I pay attention in mathematics class; I listen in mathematics class; I avoid distractions 

when I am studying mathematics, I keep my mathematics work well organised. 
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lower in Finland, this means that Finnish students spend less time at school than 

students in other countries. This finding has also been emphasized by Kum-

pulainen & Lankinen (2012). 

 

 

Fig. 10.9 One-Sample Wilcoxon Rank Test for age at <ISCED 1>: Systematic apprenticeship of 

reading, writing and mathematics begins significantly later in Finland than in Europe. 

10.5.4 Europe Cluster in Comparison to the Nordic/English-

Speaking Cluster  

A Mann-Whitney U test was run to determine if there were differences in the 27 

variables between the Europe and the Nordic/English-speaking clusters. 

Distributions of the 27 variables for the two groups were not similar, as assessed 

by visual inspection. The test statistics can be found in Table 10.6. 

Table 10.6 Mann-Whitney U test results comparing the Europe cluster to the Nordic/English 

speaking cluster. 

PISA 

variable 

ID 

 

4 

 

8 

 

9 

 

12 

 

15 

 

16 

 

18 

 

22 

 

23 

 

25 

U 

Z 

p 

19 

-4.004 

 

27 

-3.705 

 

5 

-4.528 

 

30 

-3.593 

 

1 

-4.678 

 

38 

-3.293 

 

22 

-3.892 

 

20 

-3.967 

 

28 

-3.668 

 

20 

-3.967 

 

 

When we combine the test results of the Mann-Whitney U test of the Nor-

dic/English-speaking versus Europe and the Wilcoxon signed-rank test of Europe 

versus land, we find that two variables (16 and 18) augment Finland’s special 

characteristics: work ethic and study time (test language) are statistically 

significantly lower in Europe and even lower in Finland. As described above, 
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these variables measure how much time students spend studying and how much 

they strive for high grades in mathematics. 

According to the Mann-Whitney U test, there was a significant (p < 0.001) dif-

ference in the attitude towards school: learning activities, the interest in and en-

joyment of mathematics, the instrumental motivation to learn mathematics, the 

self-concept in mathematics, the subjective norms in mathematics, the mathemat-

ics work ethic, the test language learning time, the teacher student relations, the 

mathematics teacher’s support, and the teacher behaviour: student orientation be-

tween the two clusters. In all of these variables, the Nordic/English-speaking clus-

ter showed higher values than the Europe cluster. With reference to Table 10.6, 

the subjective norms in mathematics seems to be the most important variable that 

separates the Nordic/English-speaking from the Europe cluster. 

The comparisons of the Nordic/English cluster to the European cluster mostly 

revealed variables that estimate the students’ own perception of their merits and 

importance. It is especially interesting that the self-reported self-concept is 

significantly lower in Finland because this PISA 2012 variable actually explains 

the performance of Finnish students in the PISA mathematics test fairly well, and 

it is the mathematics scale index that correlates the most with their plausible val-

ues in mathematics (Saarela & Kärkkäinen 2014). However, it seems that even if 

the Finnish students evaluate their own skills realistically, they are more modest 

about them. Generally, students in the Nordic/English cluster tend to have higher 

opinions about themselves, are more motivated, and report better relations to their 

teachers. 

The average mathematics performance based on the plausible values of the 

countries in the Nordic/English-speaking cluster is 495.3, while the mean mathe-

matics performance of the countries in the European cluster is higher (500.5). We 

conclude that learning time and positive student-teacher relations seem to be less 

important features than collaborative skills or being free from ostentation for ex-

plaining students’ success in the PISA test. 

10.6 Visual LA of the PISA Results  

The macro-level LA of Finnish basic educational system, through the lens of 

background, PISA and our empirical analysis, is visualized in the dashboard of 

Fig. 10.10. This dashboard consists of four panels and its composition was in-

spired by Ferguson & Shum (2012). 

Finland has been a top performing PISA country in the last five assessment cy-

cles (top-left panel), although the ranking especially in mathematics clearly de-

creased in 2012. Interesting success factors of the educational system are the cul-

tural deviations from world’s midlevel as feminine culture and with a low power 

distance, according to the Hofstede model (top-right panel). The system is based 

on the strong autonomy and authority of the highly educated teachers, with small 

amount of formal assessment and, especially, complete lack of national compara-

tive assessments of the learning results (bottom-left panel). Also rich common cur-
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riculum for untracked groups of students, who start late their systematic appren-

ticeship in reading, mathematics, and science, is present. As a whole, equity and 

equality characterize the system, which provides strong student support, e.g., in 

the form of free lunches, health care, school transportation (bottom-left). 

 

 

Fig. 10.10. PISA dashboard for Finland (inspired by Ferguson & Shum 2012)  

However, many contradicting factors about the Finnish students in relation to 

their high PISA results emerged in the empirical LA analysis (bottom-right panel): 

they have low motivation to learn and excel in school, low interest in school top-

ics, low work ethics, and exceptionally small number of extra-school study hours. 

Importance of studies and, especially, mathematics are considered low for the fu-

ture career. The overall evaluation of the different facets of the dashboard indi-

cates that the lowering trend of PISA and especially mathematics performance of 

the Finnish students may continue. To improve the system, perhaps again as num-

ber one ranked in PISA, students need to be more motivated and oriented towards 

schoolwork, extra-school study hours, and mathematics with future career orienta-

tion clearly in mind. We also hypothesize that the complete common, joint, and 

untracked subject orientations demotivate the most talented students by requiring 

minimal efforts from them. All this, then, provides further challenges to the upper 

secondary and higher education afterwards. 
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10.7 Discussion 

Let us next briefly summarize the empirical findings from the previous sections. 

These were obtained by utilizing one of the illuminated educational clustering 

techniques, hierarchical clustering, and by taking into account all the specific de-

mands of PISA data discussed above. As suggested by the Davies-Bouldin cluster 

validation index, we first divided the students of all the PISA-participating coun-

tries into ten separate groups. These found clusters could be explained by the cul-

ture and geographical location of the countries in them. Nevertheless, Finland sur-

prisingly belonged to the Europe cluster (see Fig. 10.10), while all the other 

Scandinavian countries belonged to the cluster of Nordic/English-speaking coun-

tries. Hence, this illustrates how similar educational systems (see Bulle 2011) can 

be reflected by different student characterizations. 

Statistical significance tests of the clustering result revealed why particular 

countries were allocated to a certain cluster. At first, it seemed that the results of 

the statistical test were somehow contradictory as better performing countries had 

worse student teacher relations—and generally showed less confidence in their 

own achievements and skills. Moreover, the work ethic of the students in the bet-

ter performing Europe cluster was significantly lower than that of the students in 

the Nordic/English-speaking countries cluster—and the better performing Finnish 

students showed an even significantly worse work ethic than the remaining stu-

dents in the Europe cluster. However, these findings seem to be connected and ex-

plicable by the existing research related to the Finnish culture in general. 

As was explained in the literature review about the Finnish educational system 

and culture, Finnish citizens are modest about their own achievements, and they 

place great emphasis on equity and equality. The most important driving factors in 

the life of this, according to Hofstede’s (2011) model, highly feminine country are 

to live a good life and to care for others rather than focusing on one’s own success 

and desire to be the best. This is interesting because, as emphasized in our litera-

ture review, French et al. (2015) found a negative causal relationship between ed-

ucation expenditures and power distance and masculinity: The less masculine the 

country, the higher was the education expenditure. Furthermore, Finnish students 

seem to have an extremely relaxed attitude towards formal assessment and invest-

ing time in studies, as can be expected in a feminine country. 

Finally, the main success of Finnish students in PISA seems to a great extent to 

be related to the— in comparison with other countries—relatively better scores of 

the lowest scoring Finnish students (Andersen 2010), which in turn is supported 

again by the collaborative and ostentation-free thinking in the country. However, 

as illustrated in the top-left panel of Fig. 10.10, Finland’s ranking significantly 

dropped in the latest PISA 2012 assessment (OECD 2013b), and according to the 

overall characterization of the Finnish students as just given and visualized in the 

bottom-right panel of Fig. 10.10, the negative trend in performance might have 

continued in PISA 201513.  

                                                           
13 Data from the PISA 2015 will be published by the OECD in December 2016 (National Center 

for Education Statistics 2016). 
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10.8 Conclusions 

LA is a growing and expanding research field. Traditionally, many studies have 

concentrated on analyzing educational data originating from a macro- or at the 

most, meso-level. The publicly available and high quality PISA data sets, on the 

other hand, provide the opportunity to conduct big data LA research on the macro-

level, because they consist of data of a whole population of international students. 

In this chapter, we have introduced the background for conducting large-scale 

LA research on PISA. We have described the main data sets—as well as the com-

plexities within them—and have discussed how to work with these data. Moreo-

ver, we have provided a review of relevant clustering studies within the educa-

tional domain. Our empirical work, as discussed in the previous section, provided 

novel findings and strengthened earlier knowledge on the particularities of the 

Finnish educational system that has obtained much attention during the 21
st
 centu-

ry due to the exceptionally good performance of the Finnish students in the PISA 

tests. 

We used quantitative LA methods to identify the main attributes of individual 

learners affecting their learning experience in the environment where the learning 

occurs (Fournier et al. 2011). Similarly to the reviewed educational clustering 

studies in Section 10.2.2, we were analyzing the student model, but differently 

from these, our model represented a prototype of a national student population ob-

tained by weighted aggregation. Concerning Finland, the high-achieving country 

inside PISA assessments, it was concluded that an educational system promoting 

student collaboration, unassumingness, and equity can successfully cope with the 

challenges of negative attitudes towards mathematics, low work ethic, and little 

study time outside school. This summarizes the evidence-based knowledge dis-

covered about the long-term impact of educational policies and practices on the 

achievement targets (Piety et al. 2014). Such a conclusion provides also an exam-

ple of national education system assessment using big data LA as illustrated in 

Fig. 10.1: The international objectives driven data collection and transformation 

improves understanding of educational arrangements via proper analysis methods 

that are able to cope with the specialties of the sampled large-scale data. 

The big data LA as described in Section 10.1 and depicted in Fig. 10.1, linking 

together the four dimensions of LA proposed by Chatti et al. (2014) (see also 

Greller & Drachsler 2012), encapsulated and supported the overall management of 

the large-scale educational system assessment based on the PISA data. Our empir-

ical work exemplifies the multiple facets of LA: hierarchical clustering as a data 

mining technique, visualization of the dendrogram to illustrate the clustering re-

sult, and statistical testing to verify the findings. Thus, our work increased the 

awareness on the macro-level of educational systems. We promoted reflection of 

the main characteristics that differentiate the students in various educational envi-

ronments, according to the objectives of LA by Chatti et al. (2014) (see Section 

3.3). Our reflections of the PISA results were emphasized in the dashboard Fig. 

10.10 using different LA visualization tools. This dashboard facilitates awareness 

and monitoring of critical educational aspects for the Finnish 15-year-old student 

population (Beheshitha et al. 2016). 
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As a whole, PISA—as well as the other large-scale-assessments, such as those 

mentioned in Section 10.3.4—provide a very rich and interesting source for mac-

ro-level LA studies. We think that the methods and the framework developed for 

the publicly available large-scale assessment data sets can and will advance the 

open architecture of educational applications, which Peña-Ayala (2014) has iden-

tified as one of the shortcomings of the current educational data analysis research 

area. 

As part of the future research, we intend to repeat our study using the individual 

students instead of the country-level aggregation as data for clustering. Further-

more, one of the recent trends in LA focuses on educational process mining 

(Sedrakyan et al. 2016, Mukala et al. 2015, Trčka et al. 2010). For the traditional 

pen-and-paper PISA tests, this is not an option. However, for the future PISA cy-

cles, where the tests will be increasingly conducted electronically, and where log 

event data will therefore be available (compare the PISA 2012 problem-solving 

test, which was conducted electronically, and where log files can be downloaded 

from the above-cited OECD webpage), this would provide an interesting and 

promising direction for future research. 
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ABSTRACT
The Programme for International Student Assessment, PISA,
is a worldwide study to assess knowledge and skills of 15-
year-old students. Results of the latest PISA survey con-
ducted in 2012 were published in December 2013. Accord-
ing to the results, Finland is one of the few countries where
girls performed better in mathematics than boys. The pur-
pose of this work is to refine the analysis of this observation
by using education data mining techniques. More precisely,
as part of standard PISA preprocessing phase certain scale
indices are constructed based on information gathered from
the background questionnaire of each participating student.
The indices describe, e.g., students’ engagement, drive and
self-beliefs, especially related to mathematics, the main as-
sessment area in PISA 2012. However, around 30% of the
scale indices are missing so that a nonstructured sparsity
pattern must be dealt with. We handle this using a special,
robust clustering technique, which is then applied to Finnish
subset of PISA data. Already direct interpretation of the
created clusters reveals interesting patterns. Clusterwise
analysis through relationship mining refines the confidence
on our final conclusion that attitudes towards mathemat-
ics which are often gender-specific are the most important
factors to explain the performance in mathematics.

Keywords
PISA, robust clustering, frequent itemset, association rule

1. INTRODUCTION
PISA (Programme for International Student Assessment) is
an international assessment programme by the Organisation
for Economic Co-operation and Development (OECD) that
studies students’ learning outcomes in reading, mathemat-
ics, and scientific literacy triennially. It is referred as the
”world’s premier yardstick for evaluating the quality, equity
and efficiency of school systems” [21]. More than seventy
countries and economies have already participated in PISA.

Finland has consistently been one of the top-performing
countries in the assessment [11]. Each time the study is
repeated the main learning outcome focus area changes. In
the latest assessment (PISA 2012) it was mathematics. A
database of the results is publicly available1.

One general key finding from PISA 2012 was the gender dif-
ference in mathematics performance: On average, boys out-
perform girls in mathematics. Finland, however, is, accord-
ing to the assessment, one of the eight countries where girls
perform better than boys in mathematics: The mean score
of girls in mathematics was 520 while boys had the mean
score of 517 [23]. Despite the slightly better performance in
mathematics women are, also in Finland, underrepresented
in mathematics related jobs [28].

The purpose of this work is to apply educational data mining
approch and corresponding techniques to study the perfor-
mance of Finnish student population in mathematics, focus-
ing especially on gender-related findings. As part of stan-
dard PISA preprocessing phase, certain scale indices are con-
structed based on information gathered from the background
questionnaire for each participating student [21]. These in-
dices describe, e.g., students’ engagement, drive and self-
beliefs, especially related to mathematics. However, around
30% of the scale indices are missing due to lack of reliable
student responses for the background questions. This means
that the knowledge discovery process is realized with data
having a nonstructured sparsity pattern. We handle this
using a special, robust clustering technique as proposed in
[4]. Furthermore, the clustering result obtained is further
analyzed using itemset mining [1] to foster the generation of
novel information and new knowledge.

The contents of the paper is as follows: First, we provide
a short summary on PISA data and how students’ capabili-
ties and attributes are presented. We then describe a certain
set of scale index variables that are associated with the per-
formance in mathematics. Subsequently, we apply methods
from two (see [7] for a complete categorization) of the main
branches in educational data mining. In Section 3, we utilize
a special clustering approach to find groups of students with
similar characteristics with respect to scale indices. In or-
der to further refine the characterization of student groups,
we then apply frequent itemset mining and association rule
learning to selected clusters in Section 4. Finally, we sum-

1See http://www.oecd.org/pisa/pisaproducts/.
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marize and conclude our study in Section 5.

2. ON PISA DATA
We apply educational data mining for the PISA 2012 data
subset of Finland. In each country participating PISA, the
schools and students selected for the survey reflect the whole
population and characteristics of the educational context. In
Finland, 311 schools and 10157 students from these schools
were sampled for the assessment in 2012. Out of the sampled
students 8829 participated in the actual PISA test. Hereby,
each student that takes part has to (i) solve a set of cognitive
items/tasks and (ii) fill out one background questionnaire2

with demographic questions.

Finnish PISA data is stored in two different data sets: One
data set includes all the students that participated in the
test, and the second one includes all sampled schools. The
student data set has more than 600 variables. A set of those
variables directly encode the students answers given in the
background questionnaire. Moreover, since the participating
students should reflect all 15-year-old students in Finland,
certain weights are assigned to each student to align the sam-
ple with the true population. In PISA reports and learning
analysis, student abilities are not given as direct responses
to task questions but in the form of the so-called Plausible
Values (PVs).

Since a very broad domain of knowledge and skills should be
tested but the testing time for each student is limited, only
certain subsample of students respond to each item/task.
In order to reliably compare results of different students,
even if they have not answered exactly to the same set of
items, PISA uses a generalized form of the Rasch Model
[19]. Depending on how many students have solved a task
correctly, a certain ”difficulty value” is assigned to each tasks
and depending on how many tasks a student solved, a certain
”competence value” is assigned to each student. PVs are es-
timated based on difficulty and competence scores and then
scaled so that the OECD average in each domain (mathe-
matics, reading and science) is 500 and the standard devia-
tion is 100.

Usually, five PVs are drawn from each student’s compe-
tence distribution for each main assessment area to describe
the performance. For instance, in the Finnish data set for
2012 we have have five PVs for each student in reading, sci-
ence, and mathematics. Moreover, since mathematics was
the main assessment area, five PVs for each of the 7 sub-
scales, i.e. subtopics in mathematics (change and relation-
ship, quantity, space and shape, uncertainty and data, for-
mulate, employ, interpret) are enclosed.

2.1 PISA Scale Indices
PISA scale indices (see Table 1) are derived variables based
on information gathered from the background questionnaires.
The scale indices are constructed in order to better char-
acterise students dispositions, behaviours, and self-beliefs.
Indeed, many of the self-reported indicators of engagement
in school are strongly associated with the performance in

2An example of such background questionnaire can be
found from http://nces.ed.gov/surveys/pisa/pdf/MS12_
StQ_FormA_ENG_USA_final.pdf.

mathematics. Especially, the index of economic, social and
cultural status (ESCS) explains 46% of the performance vari-
ation among OECD countries so that a socio-economically
more advantaged student scores 39 points higher in mathe-
matics3 than a less advantaged student [20]. Furthermore,
according to [19], the ESCS is the ”strongest single factor
associated with performance in PISA”.

Table 1 provides an overview of the PISA scale indices used
in this study. In the first two columns, we provide the name
of the index and it’s abbreviation used in the data set. It
should be noted that some indices emphasize negative orien-
tation with respect to mathematics. For example, it usually
is not beneficial to the performance in mathematics if a stu-
dent has a high value in the index which measures the anx-
iety towards mathematics (ANXMAT). Each index in the
PISA data is standardized to have mean zero and scaled to
have standard deviation one across OECD countries. Hence,
a positive score index does not necessarily mean that a stu-
dent has replied positively to the corresponding questions
but that the answers are above the OECD average.

Correlations between the scale indices and the overall per-
formance in mathematics are provided in the third column
in Table 1. In the fourth column, ranking of the correla-
tions based on their absolute values is given. We notice that
the three indices having highest linear relationship with per-
formance in mathematics are mathematics specific whereas
the fourth index in ranking describes readiness for problem
solving, and only the fifth one is the already mentioned sta-
tus indicator ESCS. The correlations are computed using
the subset of Finnish students for which a particular index
is available. In order to obtain reliable estimates we have,
as recommended in [19], analyzed each PV separately. This
means that we have first computed five correlation coeffi-
cients and then used their mean as the actual result.

As already observed, not every student in the data set has
a value for each of the indices. In fact, 33.24% of the index
values are missing/invalid. There are different reasons why
a specific scale index for a particular student is unusable.
First of all, not all background questions were administered
to all students. Students, that were not administered the
questions included in the index had missing value by design.
Second of all, it might be that the student got the questions
but did not answer them. Finally, a reason for a missing
index value can be that questions were answered but answers
were found to be unreliable or invalid in manual scanning.

3. CLUSTER ANALYSIS USING ROBUST
PROTOTYPES

Clustering is an unsupervised data analysis technique, where
a given set of objects is divided into subsets (clusters) such
that objects in the same cluster are similar to each other and
dissimilar to objects in other clusters. Even if this appears
as a simple rule, there are many approaches for clustering
[10]. The classical division of algorithms is the separation
into partitional and hierarchical clustering methods [16, 29].
Hierarchical clustering is usually applied for small data sets
since most of the algorithms have quadratic or higher com-
putational complexity [9]. However, the main difference be-

339 score points equal nearly one year of schooling.
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Table 1: PISA scale indices and correlation to mathematics performance
PISA scale index abbreviation corr rank
economic, social and cultural status ESCS 0.36 5
sense of belonging BELONG 0.01 15
attitude towards school: learning outcome ATSCHL 0.15 11
attitude towards school: learning activities ATTLNACT 0.08 12
perseverance PERSEV 0.31 6
openness to problem solving OPENPS 0.42 4
self-responsibility for failing in mathematics FAILMAT -0.20 10
interest in mathematics INTMAT 0.25 7
instrumental motivation to learn mathematics INSTMOT 0.23 9
self-efficacy in mathematics MATHEFF 0.51 2
anxiety towards mathematics ANXMAT -0.44 3
self-concept in mathematics SCMAT 0.52 1
behaviour in mathematics MATBEH 0.04 13
intentions to use mathematics MATINTFC 0.23 8
subjective norms in mathematics SUBNORM -0.02 14

tween these methods is related to the shape of clusters which
is readily amplified in the interpretation of the clustering re-
sult. Hierarchical clustering is based on connecting locally
similar objects so that the global shape of a cluster can be al-
most arbitrary. Partitional methods, which rely on creating
subsets with respect to global similarities, are quaranteed
to produce geometrically closed subsets. Moreover, the spe-
cial prototype characterizing the properties of all the cluster
members provides a well-defined pattern for the interpreta-
tion of the clustering result.

Prototype-based partitional clustering methods, such as k-
means, a popular algorithm utilized also in many EDM stud-
ies [30], can be described using an iterative relocation algo-
rithmic skeleton with an explicitly defined score function [12]
(see Algorithm 1). Partitional clustering creates a k−partion
C = {C1, ..., Ck} (k ≤ n) of data X, such that

1) Ci �= ∅ with i = 1, ..., k;

2)
⋃k

i=1
Ci = X; and

3) Ci

⋂
Cj = ∅ with i, j = 1, ..., k and i �= j.

In order to realize a prototype-based partitative clustering
algorithm some further issues need to be addressed. First
of all, all iterative relocation algorithms search better parti-
tions locally so that the final result depends on the initial-
ization. Although a lot of work has been attributed to this
problem, still no universal method for identifying the initial
partition exists (actually such an approach would provide
an approximate solution to the clustering problem itself).
Another main issue is to define the similarity measure that
reflects the closedness in the data space. To this end, the
amount of clusters must be determined in order to end up
with one, final clustering result for the interpretation.

Our data to be clustered is problematic, because there is
an arbitrary pattern of missing scale indices to deal with.
Such missing values could be considered as extreme out-
liers because they can have any value from each variable’s
value range. Hence, second order statistics and least-mean-
squares estimates that are sensitive to nonnormal degre-
dations are not suitable, and we use instead the so-called
nonparametric, robust statistical techniques and distance

measures [15, 27, 14]. Out of the simplest robust location
estimates, median and spatial median, we use spatial me-
dian due to it’s multidimensional nature which allows bet-
ter utilization of the local/clusterwise available data pattern
[17]. Spatial median has many attractive statistical proper-
ties and, especially, it’s breakdown point is 0.5, i.e. it can
handle up to 50% of contaminated data.

In [4], a robust approach utilizing the spatial median to clus-
ter sparse and noisy data was introduced. The k-spatial-
medians clustering algorithm is based on the algorithmic
skeleton as presented in Algorithm 1. As the score function
one utilizes

J =

k∑
j=1

nj∑
i=1

‖P i(xi − cj)‖2, (1)

where the last sum is computed over the subset of data at-
tached to cluster j. Here the projections P i, i = 1, . . . , N,
capture the existing variable values of the ith observation,
i.e.

(P i)j =

{
1, if (xi)j exists,

0, otherwise.

In Algorithm 1, the projected distance as defined in (1) is
used in the first step, and recomputation of the prototypes,
as spatial median with the available data, is realized using
the SOR (Sequential Overrelaxation) algorithm [4] with the
overrelaxation parameter ω = 1.5.

3.1 Initialization and Number of Clusters
It is a well-known problem that all iterative clustering al-
gorithms are highly sensitive to the initial placement of the
cluster prototypes and, thus, such algorithms do not guar-
antee unique clustering [18, 9, 6, 16]. Numerous methods
have been introduced to address this problem. Random ini-
tialization is still often chosen as the general strategy [31].
However, several researchers (e.g., [3, 5]) report that having
some other than random strategy for the initialization often
improves final clustering results significantly. Having these
issues in mind, we developed the following deterministic and
context-sensitive approach to find good initial prototypes.

For a subset of 2520 students in the Finnish data, there are
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Algorithm 1: Iterative relocation clustering algorithm

Input: Dataset X with n observations and a given number
of clusters k.

Output: A set of k clusters, which minimizes the score
function.

Select k points as the initial prototypes;
repeat

1. Assign individual observation to the closest
prototype;
2. Recompute the prototypes with the assigned
observations;

until The partition does not change;

Figure 1: Ray-Turi index for k = 2, . . . , 11

no missing scale index values. For this subset we want to find
(i) the most suitable amount of clusters k and (ii) the initial
prototypes for the clustering algorithm with the whole data.
For this purpose, we utilize a simple search strategy with
two nested loops. The first loop iterates through different
values of k and the second loop repeats the k-spatialmedians
algorithm with random initialization ten times. For each
clustering result, we then compute the so-called Ray-Turi
index, see [25]. This index captures the principal purpose
of clustering prototypes, i.e. accurate presentation of sepa-
rate subset of data, and it is computed by simply dividing
the score function (1) with the distance of the two closest
prototypes. Figure 1 visualizes the plot of the Ray-Turi in-
dex for a set of values for the number of clusters. From
the visualization we observe that the clustering result (Ray-
Turi index) is decreasing when more clusters are introduced.
However, after four clusters the speed of improvement is de-
creased. Moreover, for four clusters the result is very stable
because all the ten random repetitions provide exactly the
same clusters and prototypes. To this end, based on these
observations, k = 4 is used as the number of clusters and the
unique result for the full data as initialization for the whole,
sparse data set clustering with Algorithm 1. The obtained
result, characterized by four prototypes with available value
for all scale indices, is to be interpreted next.

3.2 Interpretation of Clustering Result
The four cluster prototypes are depicted in Figure 2. Ta-
ble 2 provides information about the students in the dif-

ferent clusters. Hereby, valid indices shows the percentage
of existing index values in each cluster. As can be seen, the
available data is quite evenly distributed among the clusters.
While sample size denotes the actual number of students in
the data, population size of target group is the same but
each student is weighted so that they represent the whole
Finnish population of 15-year-old students. WA math score
is the weighted average of the mathematics scores from the
students in the respective cluster.

As can be inferred from Figure 2 in combination with Ta-
ble 2, we have one clear ”high performance” and one clear
”low performance” national cluster: The students in Cluster
1 have mean performance in mathematics of 571.53 and they
are on average the most advantaged students with highest
beliefs in themselves. In all indices that are associated with
highperformance in mathematics, the prototype that repre-
sents this cluster has the highest value. Solely in the ”inten-
tions” to use mathematics later in their life, the students in
Cluster 1 lack behind the students in Cluster 3. Cluster 4,
on the other hand, represents the most disadvantaged stu-
dents in Finland, with lowest mean score in mathematics,
and also lowest beliefs in themselves.

Cluster 2 and Cluster 3 are, at the same time, similar and
very different. According to the average performance of the
students in those two clusters, both belong to PISA score
Level 3 (see Table 4). As specified in the proficiency level
descriptions in [22] this means that students in both of these
clusters are able to, for example, solve tasks with clearly
described procedures, but are unlikely to be able to (this
proficiency is attributed to students from higher levels) also
solve tasks that involve constraints or call for making as-
sumptions. However, the prototypes (see Figure 2) show
that students from these clusters can be opposite to each
other by means of many scale indices.

While the students in Cluster 2 generally are slightly more
socially and economically advantaged, feel that they belong
to school, and commonly have very positive attitude towards
school, they definitely have below OECD average intentions
to use mathematics, so that they also score worse in mathe-
matics. Cluster 2 is predominantly populated by girls. Clus-
ter 3, on the other hand, has the lowest percentage of girls
in it. This cluster consists of mostly boys who do not have
the best attitude towards school. They also do not feel like
they belong to school and generally are socially and econom-
ically less advantaged than the students in Clusters 1 and 2.
However, they have the highest intentions to use mathemat-
ics later in their life, and pursue mathematics-related studies
or careers in the future. They also tend to attribute failure
in mathematics more to external factors than to themselves,
have less anxiety towards mathematics than the OECD av-
erage, and are (although they do not seem to be interested
in school in general) more interested in mathematics than
the OECD average. It seems that they have already decided
to have a career in a mathematics related profession, on the
contrary to the (mostly female) students in Cluster 2.

As for the correlations before, we also created a ranking
of indices to clarify the interpretation of the clustering re-
sult. The distance that defines the ranking to distinguish
Clusters 2 and 3 is just the absolute difference between the
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Figure 2: Clustering results

Table 2: Facts of clusters
valid sample population size of target group WA math score

cluster indices size all ♀ (in %) ♂ ∅ ♀ ♂
C1 64% 1967 12884 5302 (41%) 7582 571.53 578.66 566.55
C2 69% 2192 14038 8598 (61%) 5440 509.82 516.76 498.85
C3 67% 2450 16751 6434 (38%) 10317 536.02 541.74 532.45
C4 66% 2220 16374 8876 (54%) 7498 467.21 472.96 460.40
C1-C4 67% 8829 60047 29210 (49%) 30837 518.75 520.19 517.39

Table 3: Separation of clusters
all clusters Cluster 2 -3

index distance rank distance rank
ESCS 0.62 15 0.15 10
BELONG 0.98 13 0.53 6
ATSCHL 1.38 9 0.78 4
ATTLNACT 1.54 7 1.40 2
PERSEV 1.35 10 0.07 13
OPENPS 1.66 6 0.08 12
FAILMAT 0.83 14 0.17 8
INTMAT 1.86 3 0.44 7
INSTMOT 1.71 4 0.11 11
MATHEFF 1.68 5 0.16 9
ANXMAT 1.46 8 0.65 5
SCMAT 2.00 1 0.81 3
MATBEH 1.14 12 0.04 15
MATINTFC 1.91 2 1.63 1
SUBNORM 1.30 11 0.06 14

index values of the two prototypes. This is generalized as
the distance between all clusters by simply summing the
three absolute differences between individually ordered pro-
totype indices. These two distances and the implied rank-
ings are provided in Table 3. As can be seen from Table 3,
the students’ self-concept in mathematics, the index which
also correlates the most with the performance in mathemat-
ics (see Table 1), discriminates all the clusters the most. It
seems that students’ beliefs in their own mathematics abili-
ties capture their true knowledge and skills fairly well. Addi-
tionally, the intentions to use mathematics and the interest
in this subject provide a good separation of the four clusters.
Those two indices describe the students’ drive and interest
to learn mathematics because they perceive this subject as

profitable and appealing to their future. The two interesting
clusters, Cluster 2 and Cluster 3, are separated the most by
the intentions to pursue a career in mathematics and by the
attitudes towards school concerning learning activities.

4. ASSOCIATION RULE DISCOVERY
The goal of association rule mining, one of the most utilized
methods in EDM according to [8, 26], is to automatically
find patterns that describe strongly associated attributes in
data. The discovered patterns are usually represented in
the form of implication rules or attribute subsets [1, 32].
We have two explicit clusters - Cluster 1 which consists of
the highest performing students and Cluster 4 which con-
sists of the lowest performing students - but for the two re-
maining clusters with mixed profile, Cluster 2 and Cluster
3, we want to find patterns/rules that further characterize
these students. Hence, we form for each student that be-
longs to one of these two clusters an itemset which contains
the gender of the student (first subset in Table 4), all the
scale indices (central subset in Table 4), and the categorized
proficiency level in mathematics (last subset in this table).

PISA score levels define the performance level of the stu-
dents. For example, for PISA 2012 the range of difficulty of
tasks generates six levels of mathematics proficiency. Stu-
dents with a performance score within the range of Level 1
are likely to be able to successfully complete Level 1 tasks,
but are unlikely to be able to complete tasks at higher levels.
Level 6 reflects tasks that are the most difficult in terms of
mathematical skills and knowledge [22]. On average, both
student clusters of interest belong to performance Level 3
(see Table 2). Therefore, in the corresponding item, we only
distinguish three categories: below, within, or above Level
3 (see the last subset in Table 4).
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Table 4: Items for Association Rules
id item
1 girl
2 boy
3 & 4 (+,−) ESCS
5 & 6 (+,−) BELONG
7 & 8 (+,−) ATSCHL
9 & 10 (+,−) ATTLNACT
11 & 12 (+,−) PERSEV
13 & 14 (+,−) OPENPS
15 & 16 (+,−) FAILMAT
17 & 18 (+,−) INTMAT
19 & 20 (+,−) INSTMOT
21 & 22 (+,−) MATHEFF
23 & 24 (+,−) ANXMAT
25 & 26 (+,−) SCMAT
27 & 28 (+,−) MATBEH
29 & 30 (+,−) MATINTFC
31 & 32 (+,−) SUBNORM
33 Level 2 or below: ≤ 482.38
34 Level 3: 482.38− 544.68
35 Level 4 or above: ≥ 544.68

In order to separate an individual student from main bulk
of students, we fix a threshold value of 0.2 to define whether
an item is part of the itemset for that particular student.
The threshold 0.2 is chosen because it provides the median
(rounded to one decimal place) of the absolute values of
scale indices of all cluster prototypes. If a positive index
value for a certain student is above the threshold, then the
first id in the matrix (see Table 4) will be part of the item-
set. Similarly, if a negative index value is below the nega-
tive threshold, then the second id (see Table 4) will belong
to the itemset. Again, we utilize only the available indices.
This means that in case the student’s index value is inside
[−0.2, 0.2] or missing/invalid, it is not included in the item-
set. For finding frequent itemsets based on the encoding, we
used the implementation described in [13], and for generat-
ing association rules from the obtained frequent itemsets we
utilized the implementation explained in [2].

4.1 Basic Concepts of Frequent Itemsets
Let I be the set of all items. An important property of an
itemset is its support count, which refers to the number of
transactions that contain a particular itemset. Let S1 be a
subset of the set of items (S1 ⊆ I). Logically, a transaction
ti ∈ T , where T denotes the set of all transactions, is said
to contain itemset S1 if S1 is a subset of ti. Mathematically,
the support count, σ(S1), for an itemset S1 can be stated as
follows:

σ(S1) = |{ti | S1 ⊆ ti, ti ∈ T}|,

where | · | stands for the number of elements in a set. An
Association Rule is then an implication expression of the
form S1 → S2, where S1, S2 ⊆ I and S1 ∩ S2 = ∅.

The support, s(S1 → S2), determines how often a rule is
applicable to a given data set. Furthermore, the confidence,
c(S1 → S2), determines how frequently items in S2 appear
in the transactions that contain S1. Mathematically this can

be expressed as follows:

s(S1 → S2) =
σ(S1∪S2)

|T | and c(S1 → S2) =
σ(S1∪S2)

σ(S1)
,

Support measures how well a rule is covered by the data.
Therefore, if a rule has a too low support, it could be that
it occurred solely by chance. Confidence is an important
measures as it provides the the reliability and accuracy of a
rule.

4.2 Obtained Rules and Interpretation
When we use the applied implementation of the famous
Apriori Algorithm, we obtain many trivial rules. For ex-
ample, it is already obvious from the clustering prototypes
that those students who have highly positive attitude to-
wards learning activities have also highly positive attitude
towards learning outcomes. However, as already discussed,
our itemsets can be divided into three subsets: the set that
contains the gender, the set which contains the performance
in mathematics, and the set which contains the different
scale indices. We are interested in the gender differences
and the performance in mathematics. Therefore, we search
inside the algorithm’s output for rules that have items of
the gender and/orperformance interval subsets at the right
hand side of the rule.

We start with high values for support and confidence and
lower then the confidence threshold. Since we are especially
interested in rules that contain the gender, the support has
to have a relatively small value, so we choose the minimum
value 0.1 while trying to keep the confidence value as high
as possible. Starting with confidence of 1 and lowering it
successively, we obtain the first rule that has gender on the
right side with confidence 0.71:

{-ATTLNACT, +SCMAT, +MATINTFC} ⇒ {boy} (2)

In words (2) means that those students who have negative
attitudes towards school but a high self-concept and high
intentions in mathematics are boys.

The first rule that we obtain for girls with confidence 0.69
is of the form:

{ -MATHEFF, - MATINTFC} ⇒ {girl} (3)

Rule (3) says that those students who have negative self-
efficacy and no intention to use mathematics are girls.

If we lower the minimal acceptable support into 0.095, we
obtain the following interesting rule (4): Those students who
have positive attitudes towards school but no intention to
use mathematics later in life are girls.

{+ATTLNACT, -MATINTFC} ⇒ {girl} (4)

Next, with the same minimal support we are searching ex-
plicitly for rules that have performance value below or above
Level 3 at the left-hand side of the rule and gender at the
right-hand side. Here, we first obtain the following rule with
a confidence value of 0.6:

{+ATTLNACT, above Level 3 performance} ⇒ {girl} (5)

According to (5), those students with a proficiency level
above 3 and a clearly above average positive attitude to-
wards learning activities in school are girls.
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With confidence 0.52 we obtain the first rule for boys:

{+SCMAT, above Level 3 performance} ⇒ {boy} (6)

Rule (6) means that those students with a proficiency level
above 3 and a clear above average self-concept in mathemat-
ics are boys.

Subsequently, we are searching for rules wich have both gen-
der and below or above Level 3 performance at the left-hand
side of the rule. Such rule with the highest confidence (0.65)
reads as:

{-ATSCHL -ATTLNACT +OPENPS -FAILMAT
+SCMAT} ⇒ {boy, above Level 3 performance} (7)

According to (7), those students with negative attitudes to-
wards school (both, learning outcome as well as learning
activities) but with clearly above average openness to prob-
lem solving, a high self-concept in mathematics and strictly
below average self-responsibility for failing in mathematics,
are boys that perform above Level 3.

For girls the rule with the highest confidence (0.63) is given
by (8):

{-ESCS +ATTLNACT +ANXMAT -SCMAT}
⇒ {girl, below Level 3 performance} (8)

This means that those students who are socially and eco-
nomically less advantaged, have high anxiety towards math-
ematics and a low self-concept in mathematics, but still
clearly above average attitude towards school, are girls who
perform below Level 3.

If we unite the rules given in (2)-(8), we see that in all the
rules that contain boys the item which represents the high
self-concept in mathematics is present. In general, high-
performing boys are also convinced that they can succeed
(see 6). Moreover, even when they fail in mathematics, they
are more likely to see other individuals or factors responsible
on this than themselves (see 7). In addition, they have the
highest intentions to use mathematics later in their life (see
2). However, according to the rules, male students can have
negative attitude towards school (see 2 and 8), whereas the
most positive attitudes appear only in the rules that include
girls. Even the below average performing and socially and
economically more disadvantaged girls with low self-concept
and high anxiety towards mathematics, perceive the learn-
ing activities in their schools as very important (see 8). The
same positive attitude towards school is also associated with
the highest performing girls (see 5). Moreover, female stu-
dents are much less confident about their mathematic skills
(see 3) and have least intentions to pursue a mathematics
related career (see 3 and 4).

To sum up, we conclude that specific characteristics and at-
titudes in the two middle performing clusters are, indeed,
often gender-specific. Since we explicitly searched for rules
that have certain items in them, we can not express pre-
cisely how typical these situations are. Nevertheless, when
we combine all obtained rules with the clustering result two
main characterizations appear: On the one hand, we have a
specific subgroup of mainly girls who we nominated ”to-be-
nurses”: they seem to be capable of performing well if they

want to, having strongly positive attitude towards school.
However, these students have low beliefs in themselves to
be able to succeed in mathematics, and even a somewhat
fear towards mathematics. On the other hand, we have a
subgroup of mainly boys which we refer as ”to-be-engineers”.
These students do not seem very interested in school in gen-
eral. Yet, they trust in their capabilities and are extremely
confident about their skills to perform well in mathematics.
Even if they fail, they attribute this failure rather to other
external factors than to themselves.

5. SUMMARY AND CONCLUSIONS
Although Finland is one of the few countries in which, on
average, girls perform slightly better than boys in mathe-
matics, professional careers related to this subject are also
in here still dominated by men. We have applied methods
from two of the main educational data mining branches on
PISA data to obtain more gender-specific knowledge which
might explain this observation.

First of all, we utilized a special robust clustering approach
to group the students according to those PISA scale indices
that are associated with performance in mathematics. The
index that represents the students’ self-concept in mathe-
matics (SCMAT), and which also was the variable that cor-
relates the most with the students’ performance in mathe-
matics (see Table 1), is the most important discriminator for
the four clusters that we obtained (see Table 3). Combined
with the other attributes we conclude that those students
who have a higher self-concept, and tend to be socially and
economically more advantaged, perform better than their
less advantaged peers. They also have better attitudes to
school, trust more in their own capabilities, and have greater
expectation for their future careers (see Figure 2).

Two of the clusters we obtained, Cluster 1 representing
the ”high performing” and Cluster 4 representing the ”low
performing” students, can to a large extend be explained
by these differences. However, the two ”medium” clusters
show the opposite behaviour: Socially and economical more
advantaged students with very positive attitudes towards
school and learning from Cluster 2 perform worse in math-
ematics than the somewhat more disadvantaged students in
Cluster 3. We found that these clusters are separated the
most by the index that measures the student’s intentions to
pursue a mathematics related career. Since Cluster 2 is with
61% dominated by girls, while Cluster 3 consists of a larger
percentage (62%) of boys we assumed that this difference
could be explained by the gender of the student.

Association rule mining in the data subset of these two re-
maining medium clusters revised the gender-specific atti-
tudes even more, and confirmed our assumption. Those 15-
year-old students from this subset who already seem to have
decided to pursue a mathematics related career are mostly
boys. On the other hand, the attribute that is the most
ascribable to girls is the positive attitude towards school.
Altogether, the results of our study suggest that there are
distinct groups of high and low performing students. How-
ever, the bulk of the girls with average performance seem to
have no intentions to pursue a mathematics related profes-
sion. This is neither connected to their social status nor to
their attitudes towards school. In fact, they often show a
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better feeling of belonging to school and have very positive
attitudes towards school and learning. While boys often con-
sider mathematics as a great part of their future even when
they do not show obvious skills, girls tend to be discour-
aged much faster and to easier favour other subjects. We
feel that this is an important finding that should be studied
further, especially concerning when such a gender-specific
orientation starts to emerge.
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[1] R. Agrawal, T. Imieliński, and A. Swami. Mining

association rules between sets of items in large
databases. In ACM SIGMOD Record, volume 22,
pages 207–216. ACM, 1993.

[2] R. Agrawal, R. Srikant, et al. Fast algorithms for
mining association rules. In Proc. 20th int. conf. very
large data bases, VLDB, volume 1215, pages 487–499,
1994.

[3] R. T. Aldahdooh and W. Ashour. DIMK-means
”Distance-based initialization method for K-means
clustering algorithm”. International Journal of
Intelligent Systems and Applications (IJISA), 5(2):41,
2013.

[4] S. Äyrämö. Knowledge Mining Using Robust
Clustering, volume 63 of Jyväskylä Studies in
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Abstract. Clustering as an unsupervised technique is predominantly
used in unweighted settings. In this paper, we present an efficient version
of a robust clustering algorithm for sparse educational data that takes
the weights, aligning a sample with the corresponding population, into
account. The algorithm is utilized to divide the Finnish student popula-
tion of PISA 2012 (the latest data from the Programme for International
Student Assessment) into groups, according to their attitudes and per-
ceptions towards mathematics, for which one third of the data is missing.
Furthermore, necessary modifications of three cluster indices to reveal an
appropriate number of groups are proposed and demonstrated.

1 Introduction

The application of clustering in a weighted context is a relatively unresearched
topic [1]. PISA (Programme for International Student Assessment) is a world-
wide study that triannually assesses proficiency of 15-year-old students from
different countries and economies in the three domains, reading, mathematics,
and science. Besides the reporting of student performances, PISA is also one
of the largest public databases1 in which students’ demographic and contextual
data, such as their attitudes and behaviors towards education related topics, is
collected and stored.

PISA data are an important example of a large data set that includes weights.
In general, weighting is a technique in survey research to align the sample to
more accurately represent the true population. Namely, only a fraction of stu-
dents from each country take part in the PISA assessment but, when taking the
weights into account, they should be representative for the whole population.
For example, the Finnish sample data of the latest PISA assessment consists
of 8829 students whose analysis results, when multiplied with the respective
weights, represent the whole 60047 15-year-old student population of the coun-
try. As can be seen from Fig. 1, in which the studentwise weights are depicted,
the minimal weight in the Finnish national subset of PISA is 1, i.e. each students
represents at least him/herself, while the maximal weight is more than 54.

A further important characteristic of PISA data is the large number of miss-
ing values. Because PISA uses a rotated design [2] and some students are not
administered certain questions, the majority of the missing data in PISA is
missing by design, which can be seen as a special case of missing completely
at random [3, 4]. Altogether, there are 634 raw variables in the PISA student
questionnaire data set of the latest assessment. However, a subset of 15 derived

1PISA data can be downloaded from http://www.oecd.org/pisa/pisaproducts/.
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Fig. 1: Individual weights (left) and their discrete distribution (right) in Finnish
2012 PISA data.

variables, the so-called PISA scale indices2, readily describe students’ attitudes
and perceptions, e.g., explaining the performance in mathematics [2, 5]. Each
scale index is a compound variable and constructed using the students’ answers
to certain background questions. Nevertheless, mainly because of the rotated
design, 33.24% of these scale indices are not available.

In [5] we utilized a robust clustering algorithm to the Finnish sample of PISA
2012 scale indices, which revealed very gender-specific contrasts in the different
clusters. For the interpretation of the clustering result, we employed the weights
to summarize the cluster prototypes on the population level. However, according
to the PISA data analysis manual [6], one should always, particularly when over-
or under-sampling has taken place, include weights at each stage of the analysis.

Therefore, the research questions of this paper are as follows: (i) how to effi-
ciently cluster sparse student data on the population level, i.e., how the weights
in the sample should be incorporated in the robust clustering algorithm and (ii)
how much the two clustering results with and without weights (sample division
vs. population division) differ from each other? Both questions are relevant for
the Finnish subset of PISA data because immigrants as well as students from
Swedish-speaking schools were deliberately over-sampled in the latest assess-
ment.

2 Weighted robust clustering of sparse data

In general, partitioning-based clustering algorithms are composed of an initial-
ization followed by the iterations of the two basic steps, where each observation
is first assigned to its closest prototype and, then, each prototype is updated
based on the assigned subset of data. As pointed out in [5], sparse data sets can
be reliably clustered by utilizing the so-called k-spatialmedians [7] algorithm.
Compared to k-means, the k-spatialmedians uses the spatial median to estimate
the prototypes, which is statistically robust and can handle large amount of
contamination (noise and missing values) in data.

However, because of the local search character of the partitioning-based clus-
tering algorithms, their result depends on the initialization. For a sparse data set

2These scale indices are explicitly listed in [5].
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with missing values, a proper initialization should posses, at least, two desired
properties: it should reflect the subset of data with full observations, because
inevitably missing values decrease reliability of the cluster allocations. Further-
more, the initial prototypes should be full, i.e., without missing values, because
the cluster assignment and recomputation, e.g., as in [5], assumes this through-
out the whole iterative procedure. Lately the k-means++ algorithm [8], where
the random initialization is based on using a density function favoring distinct
prototypes, has become popular.

Therefore, our general procedure to cluster the sparse data on the population-
level is as follows. First of all, the subset of data that has no missing values is
clustered using k-means++. Then, the robust clustering algorithm is applied
for the whole sparse data by utilizing the obtained prototypes as initialization.
Altogether, the final clustering result is statistically robust with respect to degra-
dations in data, probably with full prototypes (especially when a small number
of clusters is created from a large data set), and reflecting the spherical and
possibly already separated shape of the full data subset.

The precise form of the general clustering criterion to be minimized (locally)
by the iterative reallocation algorithm, with weights and missing values, reads
as follows:

J ({ck}Kk=1
) =

K∑
k=1

∑
i∈Ik

wi‖Pi(ck − xi)‖p2, (1)

where Ik denotes the indices of data assigned to the kth cluster and Pi’s define
the sparsity pattern (i.e., indicate available variables) observationwise:

(Pi)j =

{
1, if (xi)j exists,

0, otherwise.

In the k-spatialmedians algorithm for p = 1, the cluster prototypes are computed
using a modifed SOR (Sequential Overrelaxation) algorithm [7], where weights
are taken into account in the updates. Furthermore, in order the align the k-
means-type initialization with p = 2 in (1) to the actual case p = 1, we propose
to use {√wi}’s as weights in k-means++ because, simply, α ‖Pi(ck − xi)‖p2 =
( p
√
α ‖Pi(ck − xi)‖2)p , for α > 0.
To this end, to determine a single result of the partitioning-based weighted

clustering procedure, one also needs to estimate the number of clusters K. For
this purpose, we used three modified internal cluster validation indices, namely
the Ray-Turi [9], the Davies-Bouldin [10], and the Davies-Bouldin� [10]. Essen-
tially, we included the weights in the computations of the clusterwise scatter
matrices, used the final value of (1) as the clustering error, and computed dis-
tances between the prototypes by using the Euclidean norm.

3 Experimental results

The tests concentrate on analyzing the use of weights in the initial partition
utilizing k-means++, followed by the actual weighted k-spatialmedians. Namely,
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Fig. 2: Cluster indices for sparse data scaled into range [0, 1].

one can use/omit the weights in i) the initialization of k-means++ and ii) the
iterative reallocations of k-means++, which creates three possible algorithmic
scenarios. First of all, all of these possibilities were applied to assess the number
of clusters using the modified cluster indices. The result is given in Fig. 2
where the averages of 30 runs (ten for each variant for each k) is depicted.
One concludes that all three cluster indices suggest that, for the Finnish 2012
population data, four clusters is an appropriate choice3. This is the same number
that was obtained for the Finnish sample data without weighting (see [5]).

Next we fix k = 4, i.e., test the speed (number of iterations) and quality
of the three algorithmic combinations for four clusters. The results with 10
repeated test runs are given in Table 1, together with the average of the ten
repetitions in the last row. We report the number of iterations needed in the
initialization (i.e. within k-means++), the number of iterations needed in the
actual k-spatialmedians clustering with the whole sparse data, and also the final
quality of the clustering result (i.e., the clustering error).

All three main columns of Table 1 show that including the weights in k-
means++ for complete data before k-spatialmedians improves the performance
of the latter as less iterations are needed. Similarly, to include square-rooted
weights4 in the initialization of k-means++ improves the performance of the
whole initial procedure (see the last two main columns). Concerning the clus-
tering error, we obtained similar error levels with all the approaches (see the
last row of Table 1) but less variability when using the weights. Therefore, we
conclude that appropriately scaled weights should be present in both places in
the initialization in order to achieve an efficient and robust weighted clustering
algorithm.

Using the fully weighted algorithm with the average of 10 runs, we obtain in
practice the same four clusters as in the unweighted case (see [5] in which the
clusters and their implications are discussed) with very similar characteristics

3Actually, all three indices have the best value at two but having only two clusters divides
our data simply in high- and low-performing students which does not provide any interesting
patterns additionally.

4Incorporating the weights into k-means++ simply as w instead of
√
w was also tested.

But since
√
w gave, as we proposed in Sec. 2, better results, only these are reported here.
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(see Table 2). The prototypes that describe the four clusters are almost identical.
In particular, also with weights the cluster C2 of mostly girls, with very positive
attitudes towards school and learning but no intentions to use mathematics later
in life, appear. Also an opposite cluster C3 with the majority of boys, that have
the highest intentions to pursue a mathematics related career but otherwise very
negative attitudes towards education, is present, together with the groups of
advantaged high-performing students (C1 ) and their more disadvantaged lower
performing peers (C4 ).

4 Conclusions

In this paper, we modified the k-spatialmedians algorithm [7], an algorithm that
can handle large amounts of missing data, in such a way that it can be used also
for weighted clustering. In order to have an as fast and deterministic approach
as possible, we also introduced weights to the seeding as well as the actual main
body of the k-means++ algorithm which we use in the initialization. Experi-
ments showed that, indeed, the best, i.e. the fastest as well as most accurate,
population-based clustering solution is obtained when weights are incorporated
in all phases of the algorithm.

As pointed out in the introduction, though weighted clustering has been
investigated in theory, it has not been examined much in an applied context.
PISA data sets are prime examples of large data sets with many missing values as
well as weights. We applied weighted clustering to the Finnish subset of the latest
PISA data. Although over-sampling took place for some groups of the student
population, no significant differences in the final results existed, i.e. the general

Without weights in p
√
wi weights in ite- p

√
wi weights in

k-means++ rative reallocation entire algorithm
iter. iter. cluster iter. iter. cluster iter. iter. cluster
in in error in in error in in error
ini. alg. (quality) ini. alg. (quality) ini. alg. (quality)
23 34 5.9464 34 30 0.6458 21 28 0.6035
23 38 0.5176 34 30 0.6458 14 30 0.5424
19 33 0.5161 41 33 0.5176 23 30 0.5424
27 38 0.5176 42 30 0.5176 29 30 0.5424
23 34 0.4983 34 33 0.6458 18 29 0.5424
23 38 0.5176 34 30 0.6458 20 30 0.5424
21 44 6.0403 43 30 0.6458 22 30 0.5424
18 38 0.5176 39 33 0.5176 24 30 0.5424
25 38 0.5176 41 33 0.6458 26 28 0.6035
20 37 0.5176 34 30 0.6458 22 28 0.6035
20 38 1.6108 41 31 0.6073 22 29 0.5607

Table 1: Efficacy and quality of clustering result with and without weights in
initialization. The base level 127450 has been subtracted from all cluster errors.
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valid sample population size math score
cluster indices size all ♀ (in %) ♂ ∅ ♀ ♂
C1 65% 2009 13203 5311 (40%) 7893 574 581 569
C2 68% 2242 14418 8955 (62%) 5463 510 516 499
C3 67% 2450 16723 6495 (39%) 10229 532 539 528
C4 66% 2128 15703 8450 (54%) 7253 466 472 460

C1-C4 67% 8829 60047 29210 (49%) 30837 519 520 517

Table 2: Facts of population clusters

profiles of the clusters without weights (sample) and with weights (population)
were almost identical. However, even though the algorithm is deterministic after
the initialization, and the accuracy of clustering is improved when initialized with
k-means++, still some randomness in the final clustering result remains due to
the randomness in seeding. Hence, a complete comparison between clustering
results persists challenging, not only for population- vs. sample-based clustering
but also for clustering in general.
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ies in Computing. University of Jyväskylä, 2006.
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ABSTRACT
Certain stereotypes can be associated with people from dif-
ferent countries. For example, the Italians are expected
to be emotional, the Germans functional, and the Chinese
hard-working. In this study, we cluster all 15-year-old stu-
dents representing the 68 different nations and territories
that participated in the latest Programme for International
Student Assessment (PISA 2012). The hypothesis is that
the students will start to form their own country groups
when clustered according to the scale indices that summa-
rize many of the students’ characteristics. In order to meet
PISA data analysis requirements, we use a novel combina-
tion of our previously published algorithmic components to
realize a weighted sparse data clustering approach. This
enables us to work with around half a million observations
with large number of missing values, which represent the
population of more than 24 million students globally. Three
internal cluster indices suitable for sparse data are used to
determine the number of clusters and the whole procedure
is repeated recursively to end up with a set of clusters on
three different refinement levels. The results show that our
final clusters can indeed be explained by the actual student
performance but only to a marginal degree by the country.

Keywords
Weighted Clustering, PISA, Sparse Cluster Indices, Country
Stereotype

1. INTRODUCTION
Certain stereotypes seem to be associated with people from
different countries. The French and Italians, for example,
are expected to be emotional, while Germany has mainly a
functional country stereotype [4], and the Chinese are com-
monly perceived as hard-working [3]. According to the Hof-
stede Model [6], national cultures can be characterized along
six dimensions: power distance, individualism, masculinity,
uncertainty avoidance, pragmatism, and indulgence. The

hypothesis in this study is that also the population of 15-
year-old students worldwide will start to form their own na-
tional groups, i.e., show similar characteristics to their coun-
try peers, when clustered according to their attributes and
attitudes towards education.

PISA (Programme for International Student Assessment) is
a worldwide triannual survey conducted by the Organisa-
tion for Economic Co-operation and Development (OECD),
assessing the proficiency of 15-year-old students from dif-
ferent countries and economies in three domains: reading,
mathematics, and science. Besides evaluating student per-
formances, PISA is also one of the largest public databases1

of students’ demographic and contextual data, such as their
attitudes and behaviours towards various aspects of educa-
tion.

In order to test our hypothesis, we utilize the 15 PISA scale
indices (explicitly detailed in [14]), a set of derived variables
that readily summarize the background of the students in-
cluding their characteristics and attitudes. In particular,
the escs index measures the students’ economic, social and
cultural status and is known to account for most variance in
performance [9]. Additionally, 5 scale indices (belong, atschl,
attlnact, persev, openps) are generally associated with per-
formance on a student-level, while 9 further ones (failmat,
intmat, instmot, matheff, anxmat, scmat, mathbeh, matintfc,
subnorm) are directly related to attitudes towards mathe-
matics, the main assessment area in the most recent survey
(PISA 2012). However, since the assessment material ex-
ceeds the time that is allocated for the test, each student is
administered solely a fraction of the whole set of cognitive
items and only one of the three background questionnaires.
Because of this rotated design, 33.24% of the PISA scale
indices values are missing.

Moreover, PISA data are an important example of large data
sets that include weights. Only some students from each
country are sampled for the study, but multiplied with their
respective weights they should represent the whole 15-year-
old student population. The sample data of the latest PISA
assessment, i.e., the data we are working with, consists of
485490 students which, taking the weights into account, rep-
resent more than 24 million 15-year-old students in the 68
different territories that participated in PISA 2012.

1See http://www.oecd.org/pisa/pisaproducts/.



The content of this paper is as follows. First, we describe the
clustering algorithm that allows us to work with the large,
sparse and weighted data (Sec. 2). Second, we present the
clustering results (Sec. 3) and their relevance to our hypoth-
esis, i.e., how the clusters on the different levels can be char-
acterized and to what extent they form their own country
groups. Finally, in Sec. 4, we conclude our study and discuss
directions for further research.

2. THE CLUSTERING APPROACH
Sparsity of PISA data must be taken into account when
selecting or developing a data mining technique. With miss-
ing values one faces difficulties in justifying assumptions on
data or error normality [14, 15], which underlie the classical
second-order statistics. Hence, the data mining techniques
here are based on the so-called nonparametric, robust statis-
tics [5]. A robust, weighted clustering approach suitable for
data sets with a large portion of missing values, non-normal
error distribution, and given alignment between a sample
and the population through weights, was introduced and
tested in [16]. Here, we apply a similar method with slight
modifications, along the lines of [7] for sampled initialization
and [17] for hierarchical application. All computations were
implemented and realized in Matlab R2014a.

2.1 Basic method
Denote by N the number of observations and by n the
dimension of an observation of the data matrix X; and
let {wi}, i = 1, . . . , N be the positive sample-population-
alignment weights. Further, let {pi}, i = 1, . . . , N , be the
projection vectors that define the pattern of the available
values [10, 1, 14, 15]. The weighted spatial median s with
the so-called available data strategy can be obtained as the
solution of the projected Weber problem

min
v∈Rn

J (v), J (v) =
N∑
i=1

wi‖Diag{pi}(xi − v)‖, (1)

where Diag{pi} denotes the diagonal matrix corresponding
to the given vector pi. As described in [8], this optimiza-
tion problem is nonsmooth, i.e., it is not classically differen-
tiable. However, an accurate approximation for the solution
of the nonsmooth problem can be obtained by solving the

regularized equation (see [1])
∑N

i=1

wiDiag{pi}(s−xi)

max{‖Diag{pi}(s−xi)‖,δ} =
0 for δ > 0. This is solved using the SOR (Sequential
Overrelaxation) algorithm [1] with the overrelaxation pa-
rameter ω = 1.5. We choose δ =

√
ε for ε representing the

machine precision.

In case of clustering with K prototypes, i.e., the centroids
that represent the K clusters, one determines these by solv-
ing the nonsmooth problem min{ck}Kk=1

J ({ck}), where all
ck ∈ Rn and

J ({ck}) =
K∑

k=1

∑
i∈Ik

wi‖Diag{pi}(xi − ck)‖. (2)

Hereby, Ik determines the subset of data being closest to the
kth prototype ck. The main body of the so-called iterative
relocation algorithm for minimizing (2), which is referred as
weighted k-spatialmedians, consists of successive application
of the two main steps: i) find the closest prototype for each
observation, and ii) recompute all prototypes ck using the

attached subset of data. For the latter part, we compute the
weighted spatial median as described above. Note that the
first step of finding the closest prototype of the ith observa-
tion, mink ‖Diag{pi}(xi − ck)‖, does not need to take the
positive weight wi in (2) into account.

The next issues for the proposed method are the determina-
tion of the number of clusters K and the initialization of the
clustering algorithm for a given k. Basically, the quality of
a cluster can be defined by minimal within-cluster distances
and maximal between-cluster distances. Therefore, for the
first purpose, we use the approach suggested in [16] and
apply three internal cluster indices, namely Ray-Turi (RT)
[13], Davies-Bouldin (DB) [2], and Davies-Bouldin∗ (DB∗)
[11]. All these indices take both aspects of clustering qual-
ity into account: In essence, the clustering error (2), i.e., the
sum of the within-cluster distances, to be as small as pos-
sible, is divided with the distance between the prototypes
(minimum distance for RT and different variants of average
distance for DB and DB∗), to be as large as possible. When
testing a number of possible numbers of prototypes from
k = 2 into Kmax, we stop this enlargement when all three
cluster indices start to increase.

Concerning the initialization, again partly similarly as in
[16], we use a weighted k-means++ algorithm in the ini-
tialization of the spatial median based clustering with the
weights

√
wi. A rigorous argument for such an alignment

was given in [9] where the relation between variance (weigh-
ted k-means) and standard deviation (weighted k-spatialme-
dians) was established. Because of local character, the ini-
tialization and the search are repeated Ns = 10 times and
the solution corresponding to the smallest clustering error
in (2) is selected. Furthermore, the weighted k-means++ is
applied in the ten initializations with ten different, disjoint
data samples (10% of the whole data) that were created us-
ing the so-called Distribution Optimally Balanced, Stratified
Folding as proposed in [12], with the modified implementa-
tion given in [7]. Such sampling, by placing a random ob-
servation from class j and its Ns − 1 nearest class neighbors
into different folds, is able to approximate both classwise
densities and class frequencies in all the created data sam-
ples. Here, we use the 68 country labels as class indicators
in stratification.

2.2 Hierarchical application
Because a prototype-based clustering algorithm always works
with distances for the whole data, the detection of clusters
of different size, especially hierarchically on different scales
or levels of abstraction, can be challenging. This is illus-
trated with the whole PISA data set in Fig. 1, which shows
the values of the three cluster indices for k = 1, . . . , 68. For
illustration purposes, also the clustering error as defined in
(2), denoted as ‘Elbow’, is provided. All indices have their
minimum at k = 2 which suggest the division of the PISA
data to only two clusters. Note that the geometrical den-
sity and low separability of the PISA scale indices might be
related to their standardization to have zero mean and unit
variance over the OECD countries.

Hierarchical application of the k-spatialmedians algorithm
was suggested in [17]. The idea is simple: Similarly to the
divisive clustering methods, apply the algorithm recursively



Figure 1: Cluster indices and error slope for the whole sparse PISA data scaled into range [0, 1].

to the cluster data sets that have been determined using
the basic approach. For the PISA data here, we realized a
recursive search of the weighted k-spatialmedians with the
depth of three levels, ending up altogether with 2 (level 1),
4 + 4 (level 2), and 6 + 12 + 10 + 6 & 2 + 8 + 3 + 6 clusters
(level 3). The wall-clock time for each individual clustering
problem was several hours.

3. RESULTS
As discussed in Sec. 1, we use the 15 PISA scale indices
that readily summarize most of the students’ background as
data input for our clustering algorithm. By following the
mixture of the partitional/hierarchical clustering approach
as described above, we first of all, provide the results of the
weighted sparse data clustering algorithm when applied to
the whole PISA data (first level). Then, recursively, the
results of the algorithm for the newly obtained clusters at
the second and third level of refinement are given. For all
the clusters at each level, we compute the relative share of
students from each country, i.e., the weighted number of
students in the cluster in relation to the whole number of
15-year-old students in the country. Moreover, in order to
reveal the deviating characteristics of the appearing clusters,
we visualize and interpret (i.e., characterize) the cluster pro-
totypes in comparison to the overall behavior of the entire
15-year-old student population in the 68 countries by always
subtracting the weighted spatial median of the whole data
from the obtained prototypes.

3.1 First Level
Since, as pointed out in Sec. 2.2, all the sparse cluster in-
dices suggest two, we first run our weighted sparse clustering
algorithm for K = 2. The clustering result on the first level
is shown in Fig. 2. The division of these clusters is unam-
biguous: All scale indices that are associated with high per-
formance in mathematics have a positive value for Cluster 2
and a negative value for Cluster 1. Likewise, those two scale
indices that are associated with low performance in mathe-
matics, i.e., the self-responsibility for failing in mathematics
(failmat) and the anxiety towards mathematics (anxmat),
show a positive value for Cluster 1 and a negative value for
Cluster 2. As can be expected by these profiles, the mean
mathematics performance of Cluster 1 is much lower than
the mean math performance of Cluster 2 (see Table 1).

When we consider the relative number of students from dif-

Table 1: Characteristics of global/first level clusters
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂
1 13399687 (52%) 445 442 449
2 11321033 (48%) 468 461 475
all 24720720 (50%) 456 451 461

ferent countries, we see that every country has students in
both clusters. In fact, the distribution of the 15-year-old
student population between the two clusters is quite equal
in each country. For Cluster 1, the mean percentage of stu-
dents from a country is 55% while for Cluster 2, the mean
is 45%, and both have the standard deviation of 10. In all
of the in PISA participating countries and territories, there
are higher and lower performing students and it seems that
they share the same characteristics. Additionally, the dis-
tribution between girls and boys is quite equal, although
somewhat in favor of boys: Only 48% of the students in the
cluster with the scale indices that are associated with high
performance in mathematics are girls. Moreover, the aver-
age math score of the boys is in both clusters higher than
the average math score of the girls (see Table 1).

3.2 Second Level
Following the approach as described above, we run the clus-
tering algorithm again, but this time for each of the two
global clusters obtained in the first level separately. Accord-
ing to the same rule given in Sec. 2.1, i.e., stop enlarging k
during the search when all the cluster indices are increasing,
we get for both of the global clusters K = 4 as a number for
their subclusters.

3.2.1 Subclusters of Cluster 1

Table 2: Characteristics of subclusters of Cluster 1
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂
1-1 2792046 (56%) 439 438 440
1-2 3873035 (52%) 391 388 394
1-3 3072064 (58%) 466 464 468
1-4 3662542 (45%) 491 489 492

The subclusters of the global Cluster 1 are visualized in
Fig. 3 and characterized in Table 2. If we set the threshold



Figure 2: Characterization of the two global clusters.

Figure 3: Characterization of the four subclusters of Cluster 1.

of how many students should at least be from one country to
21%, we obtain the following countries for the subclusters:
Cluster 1-1 (i.e., subcluster 1 of Cluster 1) contains at most
students from East Asia with the exception of China: More
than 30% of Japan’s 15-year-old student population belongs
to this cluster, 26% of Korea’s and and 25% of Taiwan’s.
The remaining students represent a mixture from many dif-
ferent countries which, however, are only represented by less
21% of their 15-year-old student population.

Cluster 1-2 contains almost entirely students from develop-
ing countries. Hereby, students from Vietnam form with
49% the majority. Moreover, Indonesia, Thailand (both
> 30%) and Brazil, Colombia, Peru, Tunisia, and Turkey
(all > 25%) are represented by this cluster. The cluster is,
as can be seen from Fig. 3, most notably characterized by a
very low economic, social and cultural status (escs). That
means that the students in this cluster - as a subset of the
global Cluster 1 which already represented the more disad-
vantaged students (see Fig. 2) - are the most disadvantaged.

Cluster 1-3 consists in the majority of students from Eastern
Europe: Serbia, Montenegro, Hungary, Slovak Republic (all
> 23%) and Romania (almost 22%) constitute the majority.
As we can see from Fig. 3, this cluster is the only one in the
group of subclusters of the global Cluster 1, that generally
was characterized by negative attitudes and perceptions (see
Fig. 2), which actually can be distinguished by positive at-
titudes towards school (attlnact). Moreover, it is the cluster
with mainly girls in it.

Cluster 1-4 accommodates mainly students from Western

and Central Europe. Most of the 15-year-old student pop-
ulation from the Netherlands (39%) are in this cluster, fol-
lowed by Belgium with 29%, and the Czech Republic with
27%. This cluster is characterized by the highest escs among
the students of the global Cluster 1. Furthermore, although
they have negative values in most of the scale indices, they
have a higher self-concept in math, and also much higher in-
tentions to use mathematics later in life in comparison with
their peers.

3.2.2 Subclusters of global Cluster 2

Table 3: Characteristics of subclusters of Cluster 2
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂
2-1 3127958 (43%) 526 523 528
2-2 2739481 (54%) 457 457 458
2-3 3521092 (50%) 400 397 403
2-4 1932502 (44%) 515 506 523

The subclusters of the global Cluster 2 are characterized in
Fig. 4 and summarized in Table 3. Again, we search for
clusters that mostly deviate from the others. Cluster 2-1 is
such a cluster: The students in this cluster have the highest
average math score (see Table 3), the highest intentions to
pursue a mathematics related career but a sense of belong-
ing to school (belong) and subjective norms in mathematics
(subnorm) that are only about the same as the average of
the whole 15-year-old student population (see Fig. 4). The
subjective norms in mathematics measure how people im-
portant to the students, such as their friends and parents,
view mathematics. In the global Cluster 2, those students



Figure 4: Characterization of subclusters of Cluster 2.

who had high positive values in the other scale indices asso-
ciated with high performance in mathematics, also thought
that their friends and family view mathematics as impor-
tant (their subnorm value is very high, see Fig. 2). Students
in this cluster, however, seem not to be influenced or af-
fected by what people close to them think. It appears to be
a rather strong cluster that also has the highest percentage
of boys in it. For this cluster, we again compute the rel-
ative number of students from each country. And indeed,
it shows a very clear country-profile. The highest percent-
age of students come from the English-speaking and Nordic
countries: Denmark (more than 30%), Iceland and Sweden
(both > 26%) have the highest percentages of their 15-year-
old student population in this cluster. Followed by the two
highest performing districts in the USA, namely Connecti-
cut and Massachusetts, with both more than 25%. Besides
these countries and territories, the cluster has also a high
share of students from Norway, Finland, Great Britain, Aus-
tralia, and Canada (almost 22% or more). Additionally, the
USA has with more than 21% still a relatively high share of
students in this cluster. According to the Hofstede Model
(see Sec. 1), all of these countries are characterized by high
individualism.

Also Cluster 2-3 shows an explicit country profile: 36% of the
15-year-old student population from India are in this clus-
ter. Moreover, the cluster consists of students from Peru and
Thailand (both 30%), Turkey (27%) and Vietnam (26%).
Altogether, we find here the most disadvantaged students
(indicated by the very negative escs) among the subgroups
of the global Cluster 2 and the largest share of students
come from the developing countries. However, these stu-
dents have very positive attitudes towards education and
show relatively high values in all scale indices that are asso-
ciated with high performance in mathematics.

To this end, Cluster 2-2 and Cluster 2-4 have less obvious
country affiliations. Cluster 2-2 can at best be described as
containing mostly countries with Islamic culture. Most of
the students are from the United Arab Emirates and Albania
(both 21%), Kazakhstan and Jordan (both 19%). According
to the Hofstede Model, these countries are similar in that
way that they all show very high power distance. Cluster
2-4 has with 25% the highest share of students also from
Kazakhstan, but the remaining countries in this cluster (all
have less than 17% of their 15-year-old students population
in it) are widely mixed.

Altogether, among the clusters at the second level, Cluster
2-1 appears to be the most interesting one, i.e., the most
distinct group with the clearest country profiles.

3.3 Third Level
Recursively, we repeat the same approach on the next level,
i.e., for the subclusters of the eight clusters identified in
Sec. 3.2. For all the new subclusters, the best number of clus-
ters as determined by the cluster indices are as follows: 6,
12, 10, and 6 for the four subclusters of the first global clus-
ter, and 2, 8, 3, and 6 for the four subclusters of the second
global cluster. This means that we have 53 different clusters
on this level - almost as many as different countries/territo-
ries in the whole PISA 2012 data. If our hypothesis is true,
we should be able to find clusters that clearly contain more
students from certain countries. Exactly as in Sec. 3.2, we
first of all compute the basic facts of each cluster. Note,
however, that the deeper we go in the hierarchy the more
clusters we encounter and the more difficult it becomes to
define clear rules and thresholds to distinguish significant
characterizations of clusters.

3.3.1 Subclusters of Cluster 1-3

Table 4: Characteristics of subclusters of Cluster 1-3
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂
1-3-1 335240 (61%) 493 492 495
1-3-2 262779 (48%) 539 540 538
1-3-3 368591 (51%) 461 460 462
1-3-4 273629 (66%) 492 491 492
1-3-5 359721(56%) 427 428 426
1-3-6 275513 (63%) 437 436 438
1-3-7 264017 (63%) 443 441 447
1-3-8 318607 (63%) 460 457 464
1-3-9 216704 (60%) 421 418 424
1-3-10 397263 (56%) 481 482 480

The first interesting cluster appears in the 1-3 group. Clus-
ter 1-3-8 accommodates mainly students from South West
Europe: Austria, Liechtenstein, Spain, France, and Italy.
According to the Hofstede Model, all of these countries are
depicted by high avoidance of uncertainty.

3.3.2 Subclusters of Cluster 1-4
The characterization of the subclusters in the 1-4 group are
provided in Fig. 6, and summarized in Table 5. Also here,



Figure 5: Characterization of subclusters of Cluster 1-3.

Figure 6: Characterization of the subclusters of Cluster 1-4.

Table 5: Characteristics of subclusters of Cluster 1-4
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂
1-4-1 485599 (48%) 481 480 482
1-4-2 520763 (38%) 556 558 555
1-4-3 771799 (53%) 494 494 495
1-4-4 489528 (43%) 497 491 501
1-4-5 754515 (48%) 470 467 473
1-4-6 640338 (38%) 461 465 458’

we are searching for explicit country clusters. This search is
realized by looking at the histograms and identifying those
clusters that for some countries have a considerably higher
share of their 15-year-old student population in it than for
the remaining countries. The histogram in Fig. 7 shows one
example of this for Cluster 1-4-2: In this cluster, the por-
tion of students in it deviates significantly from the others
for exactly one country with 10% of its 15-year-old student
population. This country is the Netherlands. For all other
countries, the share of their 15-year-old student population
in this cluster is less than 6% (see Fig. 7). As can be seen
from Fig. 6, this ‘Netherlands Cluster’ is characterized by
having the highest math self-efficacy amongst its group.

Cluster 1-4-1 is again a mixture of Nordic and English-
speaking countries. The highest share of students in this
cluster come from the United Kingdom, Ireland, Norway,
New Zealand, and Sweden. As these two country profiles
were already detected to be in the same cluster on the higher
cluster level (see Sec. 3.2.1), it really seems that students
from these countries share many similar characteristics.

Figure 7: Histogram of the distribution of countries
from the students in Cluster 1-4-2.

Cluster 1-4-4 has the highest share of East Asian countries
including two of the three districts of China that partici-
pated in PISA 2012. Most of the students in this cluster
come from Japan, followed by Taiwan, Macao-China and
Hong Kong-China. One of the most distinct feature of this
cluster is, as can be seen from Fig. 6, the high self-concept
in mathematics (scmat). According to the Hofstede Model
(see Sec. 1), all of these countries show high pragmatism.

3.3.3 Subclusters of Cluster 2-1

Table 6: Characteristics of subclusters of Cluster 2-1
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂
2-1-1 1346930 (40%) 562 557 566
2-1-2 1781028 (45%) 498 500 497

From Sec. 3.2, we concluded that Cluster 2-1 was the most
interesting one. Moreover, Cluster 2-1 was the cluster that
had the highest share of two country profiles in it: On the
one hand, the English-speaking countries, and, on the other



Figure 8: Characterization of subclusters of Cluster 2-1.

hand, the Nordic countries. Interestingly, the cluster indices
also suggest to divide this cluster into two further countries.
However, when we look again at those countries that have
the highest percentages of their 15-year-old students, the
two clusters still contain mostly students from both country
profiles. For example, 15% of the Danish 15-year-old stu-
dent population are in Cluster 2-1-1, and 14% are in Cluster
2-1-2. Similarly, 14% of the 15-year-old student population
from Connecticut are in Cluster 2-1-1, and 11% in Cluster 2-
1-2. Apparently, this cluster does not divide any further be-
tween Nordic and English-speaking countries. It only divides
the high-performing students from these countries into two
types: On the one hand, the type that has a very high self-
efficacy (matheff ) as well as self-concept (scmat) in math,
i.e., the students that have a very high belief in their own
ability, and, on the other hand, the type that has very high
intentions to pursue a math related career (matintfc).

However, also a new clear group of countries appears. Clus-
ter 2-1-1 has a very high share of German-speaking countries
in it: More than 12% of Germany’s and Switzerland’s 15-
year-old student population, and 10% of Austria’s can be
found in this cluster. None of these countries appear in the
sibling Cluster 2-1-2 when the threshold is set to 9%. It
seems that high-performing German-speaking students feel
very confident in solving mathematical tasks but only show
a moderate positive value in the intentions to use mathe-
matics later in life, a characteristic that one would associate
the most with the traditional functional German stereotype
(see Sec. 1) that is expected to attach great importance to
utilitarianism [4]. According to the Hofstede Model, all of
these three German-speaking countries are considered to be
highly masculine.

3.3.4 Subclusters of Cluster 2-4

Table 7: Characteristics of subclusters of Cluster 2-4
Clus- population math score
ter size (♀ in %) ∅ ♀ ♂
2-4-1 186107 (37%) 533 528 536
2-4-2 430729 (40%) 582 575 588
2-4-3 261838 (45%) 440 436 443
2-4-4 378120 (50%) 477 468 486
2-4-5 430105 (47%) 520 519 521
2-4-6 245603 (40%) 516 500 526

The subclusters of Cluster 2-4 are summarized in Table 7
and characterized in Fig. 9. The clearest country profile
among this group is 2-4-6: It consists to the highest share of
students from high-performing Asian countries: Shanghai-
China and Singapore. As we can see from Fig. 9, similarly to
Cluster 1-4-4 (see Sec. 3.3.2) that also contained a high share
of East Asian students, this cluster is characterized as well
by a high self-concept in mathematics (scmat). The students
in this cluster believe that mathematics is one of their best
subjects, and that they understand even the most difficult
work. Furthermore, as already found for Cluster 1-4-4, also
for this cluster the main countries show high pragmatism
according to the Hofstede Model.

4. CONCLUSIONS
In this article, we have introduced a clustering approach
that has both partitional and hierarchical components in it.
Moreover, the algorithm takes weights, aligning a sample
with its population into account and is suitable for large
data sets in which many missing values are present.

The hypothesis in our study was that the different clus-
ters determined by the algorithm, when all students with
their attitudes and behaviors towards education are given
as input, could be explained by the country of the students
in particular clusters. Our overall results on the first level
showed that in each cluster students from all countries exist
and that the actual test performance (as well as a simple
division in positive and negative attitudes towards educa-
tion) explain the clusters much better than the country from
which the students in the particular cluster come from.

However, on the next two levels many clusters were de-
tected that obviously had a much higher share of students
from certain countries. For example, an Eastern Europe,
a German-speaking, an East Asia, and a developing coun-
tries cluster were identified. On the second level, also a very
clear cluster that consisted to a high portion of Nordic and
English-speaking countries appeared. This cluster did not
split further on the next level to fully separate these two
distinct country profiles. Instead, the cluster was divided
into two student types, of which both the Nordic as well as
the English-speaking countries seem to have an almost equal
share of their students from.

Summing up, we conclude that groups of similar countries,



Figure 9: Characterization of subclusters of Cluster 2-4.

e.g., by means of geographical location, culture, stage of de-
velopment, and dimensions according to the Hofstede Model,
can be found by clustering PISA scale indices but the actual
country stereotypes exist only to a very marginal extent.
However, in a further work the rules how to find relevant
clusters could be improved and more variables than the 15
scale indices utilized here could be included to the algorithm.
The PISA scale indices are linked to math performance and
in every country there are higher and lower performing stu-
dents who share similar overall characteristics. Neverthe-
less, we think that the overall results presented here show
a very promising behavior already, and we expect that the
resulting clusters of our algorithm could be explained even
clearer by the country of the students if additional informa-
tion such as the students’ temperament would be available
for the clustering algorithm.
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Specific Knowledge from Finnish Basic Education using
PISA Scale Indices. In Proceedings of the 7th Interna-
tional Conference on Educational Data Mining, pages
60–68, 2014.

[15] M. Saarela and T. Kärkkäinen. Analysing Student Per-
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Abstract. A clustering result needs to be interpreted and evaluated for knowl-

edge discovery. When clustered data represents a sample from a population with

known sample-to-population alignment weights, both the clustering and the eval-

uation techniques need to take this into account. The purpose of this article is

to advance the automatic knowledge discovery from a robust clustering result

on the population level. For this purpose, we derive a novel ranking method by

generalizing the computation of the Kruskal-Wallis H test statistic from sample

to population level with two different approaches. Application of these enlarge-

ments to both the input variables used in clustering and to metadata provides

automatic determination of variable ranking that can be used to explain and dis-

tinguish the groups of population. The ranking method is illustrated with an open

data and then, applied to advance the educational knowledge discovery from large

scale international student assessment data, whose robust clustering into disjoint

groups on three different levels of abstraction was performed in [19].

Keywords: Population analysis; Kruskal-Wallis test; Robust Clustering; Educational

Knowledge Discovery

1 Introduction

Various large-scale educational assessments, like the Programme for International Stu-

dent Assessment (PISA), regularly collect large amount of data characterizing world-

wide student populations to assess and compare arrangements and policies between

different educational systems [16]. Although data originating from these assessments

are of high quality and publicly available, there is surprisingly little research activity

on the secondary analysis. This is due to the technical complexities within the dif-

ferent representations and transformations of data and the lack of methods that allow

advanced analysis of these large datasets [18]. One example of the complication of an-

alyzing PISA datasets are the weights. Through complex sampling designs only certain

students of the studied population are selected for the assessment and weights are used

to indicate the number of students in the population that a sampled student represents.

This means that these weights must be taken into account in all steps of the knowledge

discovery to analyze the population instead of the collected sample (e.g., [20, 14]).



The purpose of this paper is to advance the educational knowledge discovery from

a robust, weighted clustering result. There exists various clustering methods and ap-

proaches, like e.g. density-based, probabilistic, grid-based, and spectral clustering [2],

together with their comparisons and evaluations (e.g., [6]). Although hierarchical meth-

ods allow summarization and exploration of a given dataset through the visual dendro-

gram, the basic form of the technique is not scalable to large number of observations

because of the pairwise distance matrix requirement [25]. Moreover, it is not clear how

to take into account the weights in hierarchical clustering as presented, e.g., in PISA

datasets. On the other hand, in [3] a robust (cf. [24]) prototype-based clustering algo-

rithm was developed that can handle large datasets with high and unknown sparsity

patterns (i.e., tens of percents of missing values). This paper continues the efforts of

[19], where the weighted enlargement of the above-mentioned algorithm was applied

to create prototypes for the PISA 2012 dataset on three different levels of abstraction,

with different numbers of clusters of the student population. The dynamic numbers of

clusters were based on the use of multiple cluster indices (e.g., [13]) suggesting the

number of clusters, again taking into account the weights (see [19] for details).

One main advantage of crisp, prototype-based clustering result is the guarantee of

globally separable subsets of data. The data division is completely determined by the

disjoint labels, typically integers from 1 to K for K clusters, encoding the clustering

result. This means that, in order to make an interpretation of the result, one can con-

sider and compare data distributions of both the actual variables used in clustering as

well as relevant metadata. Note that the use of a hierarchical clustering method with

locally greedy aggregation could produce clusters of arbitrary shape in the data space,

which could then be difficult or even impossible to interpret because of the overlapping

variable distributions.

The results in [19] were obtained with a robust clustering method with (available

data) spatial median as the cluster prototype, which is characterized by the Laplace

density distribution. A feature selection approach for the robust EM-algorithm with

Laplace mixture models was suggested in [5]. There the feature selection, similarly

to the construction of classifiers [11], referred to ranking the given input features to

select the most important ones for the clustering result. Here, our purpose is, similarly

to the techniques proposed in [23, 4], to assess the importance of variables with a given

labeling. For this purpose, we apply the same method as in [5] where it was suggested

that the feature ranking can be realized by Kruskal-Wallis (KW) statistical test. More

precisely, the estimate of importance of a random variable with clustering provided

labeling is supplied by the H statistics of the KW test [15], without need to compute

the p-values and perform the actual statistical testing. To omit the hypothesis testing

relaxes both the requirements of the KW test concerning the equal variances [15] and

selection of appropriate distribution for the test statistics [21]. Moreover, because KW

is a univariate method, it is easy to restrict the computation of the test statistic to the

available values of a variable. This means utilizability with an arbitrary sparsity pattern.

Hence, one needs to generalize the KW H into the population level by using the

weights. This is a difficult problem in statistics because of the reliance of KW on data

ranking. After an extensive search for relevant literature and knowledge we were able

to identify one related work generalizing KW [1], but not solving the problem at hand.



The only article that was identified as fully relevant was [22], which suggested a very

natural generalization of KW for integer weights: create univariate data to compute the

KW test statistic, where each observation is copied as many times as the integer weight

suggests. Clearly, we then precisely test the target population and not the sample. The

purpose of this paper is to propose an approximate extension of this approach to real-

valued weights, by utilizing the classical bootstrapping [8], and to compare this to an

analytically derived novel heuristic formula. Both of these approaches are tested and

evaluated with two different existing clustering results from [19], when ranking both

actual input variables and selected set of metadata variables.

2 On PISA data

The collected data of each PISA assessment, which since 2000 is conducted every three

years, can be downloaded from the website1 of the Organisation of Economical and

Cultural Development (OECD). To select a reliable sample of the population, which in

PISA are all 15-year-old students within the participating countries, the OECD applies a

two-stage sampling design: First, schools attended by 15-year-old students are assigned

to mutually exclusive groups based on explicit strata and schools from these groups

are selected with probabilities proportional to their size. Then, students within those

school are selected randomly with equal probability. The weight wi assigned to each

participating student i consists of the school base weight, the within-school base weight,

and five adjustment factors, especially the one which compensates the non-participation

of a sampled student [17]. Students that are sampled for the PISA test are asked to show

their proficiencies in a cognitive test and answer a background questionnaire, which

gathers information about demographics, activities, and attitudes of the students.

Table 1 details all PISA 2012 variables used in this study. The left-hand side of the

table shows all the variables that in [19] were clustered on a population-level. The ESCS
combines all information of the PISA background questionnaire that relate to the stu-

dents’ economic, social and cultural situation. The next five variables on the left-hand

side of Table 1 are generally associated with the students’ success in the PISA cognitive

test, and the remaining nine variables relate directly to the students’ mathematics per-

formance, which was the main assessment area in PISA 2012. All of these 15 variables

are so-called PISA scale indices that summarize many of the original questions in the

students’ background questionnaires by employing the Rasch model [17]. Since only a

subset of all test item are allocated to each student (this is called rotated design), around

one third of the values for these 15 variables are missing.

On the right-hand side of Table 1, the meta-variables to be used in this study are

listed. The first eight variables of general interest are all PISA scale indices that were

computed to summarize the information obtained from the ICT questionnaire, which

assessed the students’ computing availability and familiarity as well as their attitudes

towards computers. The next and last set of variables in Table 1 are the plausible values

(PVs) for each assessment domain (mathematics, reading, and science). PISA does not

provide individual test performance scores. Instead, to reliably assess the proficiencies

1 https://www.oecd.org/pisa/pisaproducts/



of populations, five PVs for each assessment domain are estimated with Bayesian statis-

tics and reported for each student. Note that we have allocated only one line in the table

per assessment domain for the three sets of PVs but there are five single PVs vectors

per assessment domain, i.e., 15 PVs altogether, that are used in the analysis.

Table 1. PISA variables used in this study with the original variables (i.e., the data that was used

for clustering) on the left-hand side and metadata (i.e., additional PISA variables used to explain

the clustering result) on the right-hand side.

PISA data used for clustering PISA metadata
variable ID variable ID
economic, social and cultural status ESCS ICT availability at home ICTHOME
sense of belonging BELONG ICT availability at school ICTSCH
attitude towards school: learning outcome ATSCHL ICT entertainment use ENTUSE
attitude towards school: learning activities ATTLNACT ICT use at home for school-related tasks HOMSCH
perseverance PERSEV use of ICT at school USESCH
openness to problem solving OPENPS use of ICT in math lessons USEMATH
self-responsibility for failing in math FAILMAT positive attitudes towards computers ICTATTPOS
interest in mathematics INTMAT positive attitudes towards computers ICTATTPOS
instrumental motivation to learn math INSTMOT plausible values 1-5 in mathematics PVMATH
self-efficacy in mathematics MATHEFF plausible values 1-5 in reading PVREADING
anxiety towards mathematics ANXMAT plausible values 1-5 in science PVSCIENCE
self-concept in math SCMAT
behaviour in math MATBEH
intentions to use math MATINTFC
subjective norms in math SUBNORM

The PVs are random draws from the Bayesian posterior distribution of a student’s

ability. In PISA, the prior distribution is a population model that is estimated with a

latent regression model. This latent regression computes the average proficiencies of

examinee subgroups given evidence about the distribution and associations of collateral

variables in the data. In PISA 2012, these collateral variables included to the latent

regression model were all available student-level information besides their performance

in the cognitive test [17, page 157]. That means, in particular, that also all variables

listed in Table 1 except the 15 PVs themselves have been used to estimate the PVs, and

therefore, the PVs cannot be seen totally independent of them. The likelihood of the

success in test is a Rasch model, where the probability of success is a logistic function

of the latent ability and some parameters (e.g. difficulties) of the test items. The obtained

posterior distribution of a student’s ability is specific for each student, since each student

has different values of background variables and test results.

To sum up, student proficiencies in PISA are not directly observed. The PVs are

estimates for group performance and only a selection of likely proficiencies for students

that attained each score. Moreover, for the study at hand, it is important to note that all

background information (i.e., all data that were clustered and all metadata except the

PVs themselves) have been used in the latent regression model which contributes to the

posterior distribution from which the PVs are drawn from.



3 Methods and formulations

Let {xi}N
i=1 be a given, multidimensional dataset, where N observations xi ∈ R

n are

given. Assume further that a given set of positive, real-valued weights {wi}N
i=1 is also

given. Moreover, assume that there is a set of missing values in {xi} with unknown

sparsity pattern. To identify this pattern, define the projection vectors pi, i = 1, . . . ,N,
that capture the existing variable values:

(pi) j =

{
1, if (xi) j exists,

0,otherwise.
(1)

3.1 Robust, prototype-based clustering method for weighted sparse data

Let us briefly recapitulate the clustering method and the overall approach that was used

hierarchically in [19], to produce three levels of disjoint clusters of PISA 2012 popula-

tion with 2, 8, and 53 clusters, respectively.

The spatial median clustering algorithm, k-SpatMeds, proceeds similarly to any

prototype-based method: first, an initial set of complete (i.e., no missing values) pro-

totypes is created and second, these are refined by iteratively linking observations to

the closest prototype whose value is then recomputed. The algorithm stops when there

are no more changes in the linking. Mathematically, the score function that is locally

minimized via the search procedure reads as follows:

Jw =
K

∑
j=1

n j

∑
i=1

wi‖Diag{pi}(xi − c j)‖2. (2)

Here, Diag transforms a vector into a diagonal matrix. The latter sum is computed over

the subset of data attached to the jth cluster. One observes from (2) that to take into

account the first-order alignment of the sample data with the corresponding population

is straightforward. Moreover, projection of the Euclidean distance between the observa-

tion and the prototype to available values creates an implicit (secondary) weighting that

favors more complete observations over the sparser ones in cluster creation. Algorith-

mically, one still needs to check that the iterative refinement of the prototypes does not

introduce missing values to them, because the resulting set of cluster prototypes {ci}K
i=1

should be complete to allow proper interpretation. The robustness of this algorithm as

thoroughly described and tested in [3], refers to the tolerance of both missing values

and noisy data. To this end, one can apply the k-SpatMeds algorithm hierarchically to

refine a set of disjoint clusters further.

3.2 Construction of test statistic for Kruskal-Wallis with weights

Next we describe two different approaches to estimate the test statistic H of the KW

rank-test with real-valued weights. Because the KW test is univariate, we can restrict

ourselves to univariate random variable.



Integer approximation with bootstrapping Let {xi, li}N
i=1 be the pairs of a univariate

observation xi ∈R and its cluster-indicating label li ∈N, where 1 ≤ li ≤ K for K denot-

ing the number of clusters/groups. Let nk = |Ck|= {i ∈N | li = k} determine the size of

cluster Ck. The original formula for the KW H is given by [15]

H =
12

N(N +1)

K

∑
k=1

s2
k

nk
−3(N +1), (3)

where ri denotes the rank of observation xi in global sorting and sk = ∑i∈Ck
ri the sum

of ranks in cluster Ck. When there are equal values (ties) in data, one can compute the

mean rank of equal observations and share this value among the ties.

As described, wi ∈ R measures the amount of population that the ith observation

represents. If all wi’s are integers, then in [22] it was proposed how to modify the basic

KW test: rank a derived dataset representing the whole population, where each (avail-

able) observation is copied as many times as the weight suggests. This approach is re-

ferred from now on as Integerweighted-KW, IW-KW. Note that when such an enlarged

data are ranked we end up with multiple ties whose mean ranks are then shared. In the

following, we describe a novel approach how to approximate this integer-weighted KW

using a bootstrapping technique.

Let w denote an arbitrary, real-valued weight. The proposed technique is, firstly,

based on approximating w up to an accuracy of the first decimal place. This can be

simply done as follows: determine the two integers wl = �w� and wh = �w� that provide

lower and upper bound of w as integers. Let then d = [10 ∗ (w−wl)] be the rounded

integer that encapsulates the decimal place 1 of w. Vector v of ten integers, which is

created by repeating wl 10−d times and wh d times, provides an integer-approximating

set of real-valued w in such a way that the mean of v is exactly the same as w up to

the first decimal. For instance, for w = 8.647, wl = 8,wh = 9, and d = 6. And, for v =[
8 8 8 8 9 9 9 9 9 9

]
, we have mean{v} = 8.6. Similarly, in order to create an integer-

approximation of w being accurate to the second decimal place, it is enough to just

redefine d = [100∗(w−wl)]. Proceeding with the example just given, the integer vector

of size 100 with 65 nines and 35 eights would yield to mean{v}= 8.65. For the general

procedure, the result of the just proposed integer approximation of all weights is stored

in the matrix W ∈N
N×D, where D is 10 when approximating the first decimal place and

100 for the second decimal place, correspondingly.

Next we suggest to use the classical bootstrapping [8] to create a set of KW test

statistics based on the IW-KW and W . Hence, we create a random sample of indices

{1, . . . ,N} with replacement, and for the resulting unique set of indices Ĩ, for the avail-

able values of {xi}i∈Ĩ , we apply IW-KW. When this is repeated D times for all the

integer columns of W , we obtain D different samples of the bootstrap estimate of the

KW H. To this end, similarly as with the derivation of W , we then simply take the mean

of the D-vector to produce the final approximation of H for the real-valued weights.

Analytic formula Let r̄ denote the global mean rank (equal to 1+N
2 ) and r̄k the mean

rank of the observations in cluster Ck. An equivalent form of the original formula (3)



for the KW test statistic H, as given in [9], reads as

H = (N −1)
∑K

k=1 nk(r̄k − r̄)2

∑N
i=1(ri − r̄)2

. (4)

From this form, it is easy to derive an interpretation of the KW test statistic. With clus-

terwise r̄k and global r̄ mean ranks, the dividend presents sum of clusterwise variances

multiplied by the size of the cluster whereas the divisor computes the global variance of

ranks. Hence, when the weights represent the number of samples in the population, it

is straightforward to derive an analogous formula to (4) in the population level. Hence,

let r̄w =
∑N

i=1 wiri

∑N
i=1 wi

be the weighted average rank and (r̄w)k the weighted average rank of

cluster Ck. Then, we define

Hw =
∑K

k=1(∑i∈Ck
wi)((r̄w)k − r̄w)

2

∑N
i=1 wi(ri − r̄w)2

. (5)

Note that we have omitted the multiplier (N −1) from (4), which would be generalized

into (∑i wi−1) to represent the whole population. With PISA 2012 weights, which align

the half a million students sample to the 24 million population, this means we do not

include multiplication of Hw by over 24 million. Because the final ranking of variables,

as suggested in [5], is based on sorting the H values of the variables in descending order,

this omission does not change the result.

4 Evaluation

Implementation We computed the KW rank-test H test statistics for real-value weighted

data with two approaches, as described in Section 3. The bootstrapping with the IW-KW

was tested with two different W s. We will refer to the bootstrapping based method as

Bootstrap KW. Further, Bootstrap KW with D = 10 refers to the one decimal place ap-

proximation of real-valued weights. Similarly, the two decimal place approximation is

referred as Bootstrap KW with D = 100. In addition, the KW test statistics were com-

puted directly from formula (5). In the following, this is shortly referred as Analytic

KW. The two clustering results that are used in the experiments corresponded to 8 (La-
bels 1) and 53 (Labels 2) clusters from [19] in the second and third levels of refinement,

respectively. The first result in [19] with the two clusters is excluded here, since the KW

rank-test exactly generalizes the MannWhitney U-test for the two groups.

To speed up the computations, we implemented a parallel version of Bootstrap KW

with Matlab PCT, SPMD blocks and message passing functions. The tests were run in

Matlab 8.5.0 environment by using a cluster of 8 nodes. Each node consists of Intel

Xeon CPU E7-8837 with 8 cores and 128 GB RAM. Each worker in the distributed

computations corresponds to one of the 64 cores. Since Bootstrap KW computes the

KW H values independently for each variable in a loop, those loop iterations can be

easily parallelized with SPMD blocks. First, each worker reads one column of variable

values from the data matrix and the corresponding sparsity indicator (1). Next, each



worker computes the KW H values by utilizing its local data. Finally, results are aggre-

gated and rankings for the variables based on the H values are formed. The number of

workers is equal to the number of variables in all parallel runs.

The five individual PVs for mathematics, reading, and science, as given in Table 1,

were first treated as independent variables, such that five H values were computed for

them. The final value of the test statistic was then taken as the mean of these according

to the recommended way of analysis in [17].

Results To generally test the proposed approaches, we first used the Iris data from UCI

machine-learning repository. For this, we created random integer weights in the range

5–25 and newly generated the data for each run. The KW H values for Analytic KW and

Bootstrap KW D = 100 approaches gave the same variable ranking results in eight out

of ten runs. After adding 5% zero-mean uniformly distributed noise to make weights

real-values, we obtained the same ranking order for the different approaches in nine out

of ten runs. Moreover, similarly as in [7], features 4 and 3 were always selected as the

important ones while features 1 and 2 were always last in the list. When we used the

same data for each run the ranking order was always the same.

Table 2 summarizes all ranking for the combined (originally clustered and meta)

PISA data. In the table, the last column rank of rankings indicates for each variable the

total rank, i.e. the rank of the sum of rankings of all methods on both labeling levels.

Table 2. Rankings for full (original and metadata) variables for the different analysis approaches

for both PISA clustering results.

Labels 1 Labels 2
Bootstrap KW Bootstrap KW rank of

Variable Analytic KW D = 10 D = 100 Analytic KW D = 10 D = 100 rankings

ESCS 3 1 1 1 1 1 1

BELONG 11 13 13 9 13 13 12

ATSCHL 7 6 6 7 7 7 6

ATTLNACT 4 3 3 4 2 2 3

PERSEV 15 15 15 15 16 16 15

OPENPS 12 11 11 11 11 11 11

FAILMAT 20 18 18 17 18 18 19

INTMAT 1 2 2 3 3 3 2

INSTMOT 5 5 5 5 6 6 5

MATHEFF 9 9 9 10 12 12 9

ANXMAT 6 7 7 6 8 8 7

SCMAT 2 4 4 2 4 4 4

MATHBEH 14 14 14 12 9 9 13

MATINTFC 8 8 8 8 5 5 8

SUBNORM 13 10 10 13 10 10 10

ICTHOME 10 19 19 14 19 19 17

ICTSCH 25 24 24 25 25 25 25

ENTUSE 24 22 22 24 22 22 22

HOMSCH 22 21 21 23 21 21 21

USESCH 16 26 26 18 26 26 23

USEMATH 26 23 23 26 23 23 24

ICTATTPOS 21 20 20 21 20 20 20

ICTATTNEG 23 25 25 22 24 24 26

PVMATH 17 12 12 16 14 14 14

PVREADING 19 17 17 20 17 17 18

PVSCIENCE 18 16 16 19 15 15 16



(a) Analytic KS for Labels 1 (b) Analytic KS for Labels 2

(c) Bootstrap KS for Labels 1 (d) Bootstrap KS for Labels 2

Fig. 1. KW H values for two clustering results for the combined (originally clustered and meta)

PISA data determined with the analytic and the two bootstrap KW approaches.

KW H values for both clustering results are shown in Figure 1. As can be seen from

Table 2, variable rankings between the analytic and the bootstrapped results are highly

similar with the exception that variable USESCH had a ranking difference 10 for Labels

1 and ranking difference 8 for Labels 2. In addition, variable ICTHOME had ranking

difference 9 for Labels 1 and ranking difference 5 for Labels 2.

The Kendall’s tau distance (see [10]) provides a way to compute distance between

two ranking lists with an equal set of variables. The Kendall’s tau distance is equal to

the bubble sort algorithm steps to convert one list to the same order as the other one.

If m is the number of elements in the list, then the maximum value for the Kendall’s

tau distance is m(m− 1)/2 which is typically used to normalize this distance metric.

Thus, the Kendall’s tau distance is limited to an interval [0,1], where value 0 refers to

the identical lists and value 1 to the case where one list is the reverse of the other list.

The Kendall’s tau distances between the Analytic KW and Bootstrap KW with D =

100 were 0.1015 for Labels 1 and 0.1138 for Labels 2. This concludes that, overall, the

rankings are highly similar as measured by the Kendall’s tau distance.

Bootstrap KW with D = 10 and Bootstrap KW with D = 100 gave identical rank-

ings for the variables. Experimentally, it seems that approximation of the real-valued

weights using just the first decimal place (D = 10) is accurate enough. However, for

a few variables slight differences can be noticed from the Figures 1c and 1d. We also

computed speedups for the distributed Bootstrap KW. We measured running time for



the first variable computations by using a serial implementation of the Bootstrap KW,

and multiplied this with the total number of variables to get an estimate for the serial

implementation running time. Further, we measured running time for the corresponding

parallel implementation. Thus, parallel Bootstrap KW with D = 100 gives 34 × speedup

compared to sequential code for Labels 1 and 35 × speedup for Labels 2. Correspond-

ingly, parallel Bootstrap KW with D = 10 gives 28 × speedup for Labels 1 and 33 ×
speedup for Labels 2. In practice, this means that using the distributed version enables

one to carry out the whole cluster analysis chain in realtime.

As expected, we see from Table 2 and Figure 1 that the actually clustered variables

generally contribute more to the clustering result than the metadata variables. However,

this first observation does not hold for all variables: The metadata PVs in mathematics

were more important than the level of self-responsibility for failing in mathematics

(see row FAILMAT in Table 2), which was clustered. Generally, the PVs are the most

important variables from the metavariables. This ranking result makes sense because the

clustered variables are, as explained in Section 2, part of the posterior model from which

the PVs were sampled. Moreover, most of the clustered variables are directly associated

with the students’ mathematics proficiencies. Hence, the PVs in mathematics should be

important variables when explaining the clustering result and, thus, these observations

support the validity of our results.

As can be seen in Table 2, the students’ ESCS is the most important variable de-

termining the different clusters. This was already assumed in [19] where the most dis-

tinguishing country clusters were those that showed different stages of development.

Moreover, the students’ ESCS is the single variable in the whole PISA data, which

accounts for most of the variance in performance [16]. Therefore, it is reasonable to

assume that the variable that explains the mathematics proficiency the most, is also the

most important when variables associated with the mathematics performance, are clus-

tered. The students’ ESCS takes not only the highest parental education and occupation

into account but also the students’ home possessions. Therefore, the ICTHOME, which

summarizes the home possessions in the ICT area, is partly associated with the stu-

dents’ ESCS [17, page 132]. Hence, it seems reasonable that ICTHOME is next to the

PVs one of the most important variables from the metadata (see Table 2).

To sum up, weighted enlargements with all approaches proposed in Section 3 suc-

cessfully enabled ranking of input and metadata. Triangulation for both actual input

and metadata by using two clustering results of a PISA dataset and two different algo-

rithms/formulae showed very similar results for all methodological approaches and also

for the two clustering results that were analyzed. Hence, it seems that the interpretation

is not an artifact of the method used to analyze the data or only a result of the particular

sample, but reflects genuine and overarching aspects of the data [12].

5 Discussion and conclusions

Large scale educational assessment data provide interesting and high quality resources

for educational knowledge discovery. Although the data from these assessments are

made available to the public a scarce pool of research outcomes exist that make use of

those rich datasets because of the technical difficulties in them. Only one study [19] was



identified, in which the whole PISA 2012 contextual data were clustered by taking the

complexities of these data (especially the sparsity and the weights) into account. How-

ever, the work in [19] lacked a clear frame how to assess the importance of individual

variables to interpret the clustering results.

In this study, we proposed weighted enlargements of the KW H test with different

approaches, which as an independent statistical problem is not trivial. All approaches

successfully enabled ranking of input and metadata. In particular, when applied to the

two clustering results in [19], all approaches supported the finding that the students’

ESCS is the most important variable determining the clusters—a fact that was also hy-

pothesized in [19] but could not be statistically shown in there. Moreover, also the

ranking of the other variables seem to support the interpretations made in [19].

The y-scales of Figures 1c and 1d illustrate the very large size of the KW test statis-

tic(s) H for a large population, which in our case is characterized by over 24 million

students worldwide. Hence, even if the nonparametric KW test can be used for testing

large samples [9], the actual hypothesis testing seems practically useless. We tested the

computation of the p-values for the original sample, for both clustering results and for

all data and metadata variables, and found in each case that the p-value was equal to

zero up to six decimal places. Hence, the hypothesis test itself does not provide any

useful information for educational knowledge discovery.

Based on the high similarity of the results of the different ranking approaches, we

suggest the direct KW formula with weights to be used for quick evaluation of signifi-

cance of a variable on the population level. If the weighted estimates are used to derive,

e.g., confidence intervals for the test statistics and the resulting rankings, the bootstrap-

based approach should be used. This approach is also better aligned to the existing

literature [8, 5, 22]. To this end, we conclude that the proposed approach supports quan-

tified educational knowledge discovery from PISA and similar large-scale educational

datasets.
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4. Ceccarelli, M., Maratea, A.: Assessing Clustering Reliability and Features Informativeness

by Random Permutations. In: Knowledge-Based Intelligent Information and Engineering

Systems: 11th International Conference, XVII Italian Workshop on Neural Networks, Pro-

ceedings. pp. 878–885. Springer (2007)



5. Cord, A., Ambroise, C., Cocquerez, J.P.: Feature selection in robust clustering based on

Laplace mixture. Pattern Recognition Letters 27(6), 627–635 (2006)

6. Crabtree, D., Andreae, P., Gao, X.: QC4 - A Clustering Evaluation Method. In: Advances

in Knowledge Discovery and Data Mining: 11th Pacific-Asia Conference, Proceedings. pp.

59–70. Springer (2007)

7. Dash, M., Liu, H.: Feature selection for clustering. In: Advances in Knowledge Discovery

and Data Mining: 4th Pacific-Asia Conference, Proceedings. pp. 110–121. Springer (2000)

8. Efron, B.: Bootstrap Methods: Another Look at the Jackknife. Annals of Statistics 7, 1–26

(1979)

9. Elamir, E.A.: Kruskal-Wallis Test: A Graphical Way. International Journal of Statistics and

Applications 5(3), 113–119 (2015)

10. Fagin, R., Kumar, R., Sivakumar, D.: Comparing Top K Lists. In: Proceedings of the Four-

teenth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 28–36. Society for In-

dustrial and Applied Mathematics (2003)

11. Fung, P.C.G., Morstatter, F., Liu, H.: Feature Selection Strategy in Text Classification. In:

Advances in Knowledge Discovery and Data Mining: 15th Pacific-Asia Conference, Pro-

ceedings. pp. 26–37. Springer (2011)

12. Gifi, A.: Nonlinear multivariate analysis. Wiley (1991)

13. Kim, Y., Lee, S.: A Clustering Validity Assessment Index. In: Pacific-Asia Conference on

Knowledge Discovery and Data Mining. pp. 602–608. Springer (2003)

14. Koskela, A.: Exploring the differences of Finnish students in PISA 2003 and 2012 using
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Abstract. Principal component analysis is one of the most popular ma-
chine learning and data mining techniques. Having its origins in statistics,
principal component analysis is used in numerous applications. However,
there seems to be not much systematic testing and assessment of prin-
cipal component analysis for cases with erroneous and incomplete data.
The purpose of this article is to propose multiple robust approaches for
carrying out principal component analysis and, especially, to estimate
the relative importances of the principal components to explain the data
variability. Computational experiments are first focused on carefully de-
signed simulated tests where the ground truth is known and can be used
to assess the accuracy of the results of the different methods. In addition,
a practical application and evaluation of the methods for an educational
data set is given.

Keywords: PCA, Missing Data, Robust Statistics

1 Introduction

Principal component analysis (PCA) is one of the most popular methods in
machine learning (ML) and data mining (DM) of statistical origin [12]. It is
typically introduced in all textbooks of ML and DM areas (e.g., [1, 10]) and is
used in numerous applications [15]. It seems that the versatile line of utilization
has also partly redefined the original terminology from statistics: in ML&DM,
the computation of principal components and their explained variability of data,
many times together with dimension reduction, is referred to as PCA, even if the
term analysis, especially historically, refers to statistical hypothesis testing [12].
However, nowadays the use of the term PCA points to the actual computational
procedure. Certainly one of the appealing facets of PCA is its algorithmic sim-
plicity with a supporting linear algebra library: a) create covariance matrix, b)
compute eigenvalues and eigenvectors, c) compute data variability using eigen-
values, and, if needed, transform data to the new coordinate system determined
by the eigenvectors. This is also the algorithmic skeleton underlying this work.

Even if much researched, the use of PCA for sparse data with missing values
(not to be mixed with sparse PCA referring to the sparsity of the linear model [6])
seems not to be a widely addressed topic, although [27] provides a comparison
of a set of second-order (classical) methods. We assume here that there is no



further information on the sparsity pattern so that the non-existing subset of
data is missing completely at random (MCAR) [18]. As argued in [24, 25], a
missing value can, in principle, represent any value from the possible range of an
individual variable so that it becomes difficult to justify assumptions on data or
error normality, which underlie the classical PCA that is based on second-order
statistics. Hence, we also consider the so-called nonparametric, robust statistical
techniques [13, 11], which allow deviations from normality assumptions while
still producing reliable and well-defined estimators.

The two simplest robust estimates of location are median and spatial median.
The median, a middle value of the ordered univariate sample (unique only for
odd number of points, see [16]), is inherently one-dimensional, and with missing
data uses only the available values of an individual variable from the marginal
distribution (similarly to the mean). The spatial median, on the other hand,
is truly a multidimensional location estimate and utilizes the available data
pattern as a whole. These estimates and their intrinsic properties are illustrated
and more thoroughly discussed in [16]. The spatial median has many attractive
statistical properties; particularly that its breakdown point is 0.5, that is, it
can handle up to 50% of the contaminated data, which makes it very appealing
for high-dimensional data with severe degradations and outliers, possibly in the
form of missing values. In statistics, robust estimation of data scattering (i.e.,
covariability) has been advanced in many papers [19, 28, 7], but, as far as we
know, sparse data have not been treated in them.

The content of this work is as follows: First, we briefly derive and define
basic and robust PCA and unify their use to coincide with the geometrical
interpretation. Then, we propose two modifications of the basic robust PCA
for sparse data. All the proposed methods are then compared using a sequence
of carefully designed test data sets. Finally, we provide one application of the
most potential procedures, i.e., dimension reduction and identifying the main
variables, for an educational data set, whose national subset was analyzed in
[24].

2 Methods

Assume that a set of observations {xi}Ni=1
, where xi ∈ Rn, is given, so that N

denotes the number of observations and n the number of variables, respectively.
To avoid the low-rank matrices by the form of the data, we assume that n < N .
In the usual way, define the data matrix X ∈ RN×n as X =

(
xT
i

)
, i = 1, . . . , N .

2.1 Derivation and interpretation of the classical PCA

We first provide a compact derivation underlying classical principal component
analysis along the lines of [4]. For the linear algebra, see, for example, [8]. In
general, the purpose of PCA is to derive a linear transformation to reduce the
dimension of a given set of vectors while still retaining their information content
(in practice, their variability). Hence, the original set of vectors {xi} is to be



transferred to a set of new vectors {yi} with yi ∈ Rm, such that m < n but also
xi ∼ yi in a suitable sense. Note that every vector x ∈ Rn can be represented
using a set of orthonormal basis vectors

[
u1 . . . un

]
as x =

∑n
k=1

zkuk, where
zk = uT

k x. Geometrically, this rotates the original coordinate system.
Let us consider a new vector x̃ =

∑m
k=1

zkuk+
∑n

k=m+1
bkuk, where the last

term represents the residual error x − x̃ =
∑n

k=m+1
(zk − bk)uk. In case of the

classical PCA, consider the minimization of the least-squares-error:

J =
1

2

N∑
i=1

‖xi− x̃i‖2 =
1

2

N∑
i=1

(xi− x̃i)
T (xi− x̃i) =

1

2

N∑
i=1

n∑
k=m+1

(zi,k−bk)
2. (1)

By direct calculation, one obtains bk = uT
k x̄, where x̄ = 1

N

∑N
i=1

xi is the sample
mean. Then (1) can be rewritten as ((uT v)2 = uT (v vT )u for vectors u,v) so
that

J =
1

2

n∑
k=m+1

N∑
i=1

(
uT
k (xi − x̄)

)2
=

1

2

n∑
k=m+1

uT
kΣ uk, (2)

where Σ is the sample covariance matrix

Σ =

N∑
i=1

(xi − x̄) (xi − x̄)T . (3)

Note that the standard technique (e.g., in Matlab) for sparse data is to compute
(3) only for those data pairs where both values (xi)j and (xi)k exist. By setting
vi = xi − x̄, we have for the quadratic form, with an arbitrary vector x �= 0:

xTΣx = xT
[
v1 v

T
1
+ . . .+ vN vT

N

]
x = (xTv1)

2 + . . .+ (xTvN )2 ≥ 0. (4)

This shows that any matrix of the form of (3) is always at least positive semidef-
inite, with positive eigenvalues if vi’s span Rn, that is, if rank[v1 . . .vN ] ≥ n.
The existence of missing values clearly increases the possibility of semidefinite-
ness.

Now, let {λk,uk} be the kth eigenvalue and eigenvector of Σ satisfying

Σuk = λkuk, k = 1, . . . , n. (5)

This identity can be written in the matrix form as ΣU = UD, where D =
Diag{λ1, . . . , λn} (vector λ as the diagonal matrix) and U =

[
u1 u2 . . . un

]
.

Using (5) shows that (2) reduces to J = 1

2

∑n
k=m+1

λk. This means that the
reduced representation consists of those m eigenvectors that correspond to the
m largest eigenvalues of matrix Σ. For the unbiased estimate of the sample
covariance matrix Σ � 1

N−1
Σ, one can use scaling such as in (3) because it does

not affect eigenvectors or the relative sizes of the eigenvalues. Finally, for any
x ∈ Rn and y = UTx, we have

xTΣx = yTDy =

n∑
k=1

λky
2

k =

n∑
k=1

y2

k(
λ
− 1

2

k

)2
. (6)



Geometrically, this means that in the transformed coordinate system UT ek
(eks are the base vectors for the original coordinates), the data define an n-
dimensional hyperellipsoid for which the lengths of the principal semi-axis are
proportional to

√
λk.

To this end, we redefine the well-known principle (see, e.g., [15]) for choos-
ing a certain number of principal components in dimension reduction. Namely,
the derivations above show that eigenvalues of the sample covariance matrix Σ
represent the variance along the new coordinate system, λk = σ2

k, whereas the
geometric interpretation related to (6) proposes to use the standard deviation
σk =

√
λk to assess the variability of data.

Proposition 1. The relative importance RIk (in percentages) of a new variable
yk for the principal component transformation based on the sample covariance

matrix is defined as RIk = 100
√
λk∑n

i=1

√
λi
, where λk satisfy (5). We refer to

√
λi

as the estimated variability of the ith (new) variable.

2.2 Derivation of robust PCA for sparse data

Formally, a straightforward derivation of the classical PCA as given above is ob-
tained from the optimality condition for the least-squares problem (1). Namely,
assume that instead of the reduced representation, the problem minx J (x) as
in (1) is used to estimate the location of the given data {xi}. In second-order

statistics, this provides the sample mean x̄ = 1

N

∑N
i=1

xi, whose explicit formula
can be obtained from the optimality condition (see [16]):

dJ (x̄)

dx
=

d

dx

1

2

N∑
i=1

‖xi − x‖2 =

N∑
i=1

(xi − x̄) = 0. (7)

The covariate form of this optimality condition
∑N

i=1
(xi − x̄)(xi − x̄)T readily

provides us the sample covariance matrix up to the constant 1

N−1
.

Next we assume that there are missing values in the given data. To define
their pattern, let us introduce the projection vectors pi, with i = 1 . . . , N (see
[17, 2, 24, 25]), which capture the availability of the components:

(pi)j =

{
1, if (xi)j exists,

0, otherwise.
(8)

We also define the corresponding matrix P ∈ RN×n that contains these projec-
tions in the rows, being of compatible size with the data matrix X.

The spatial median s with the so-called available data strategy can be ob-
tained as the solution of the projected Weber problem

min
v∈Rn

J (v), where J (v) =

nj∑
i=1

‖Diag{pi}(xi − v)‖. (9)



As described in [16], this optimization problem is nonsmooth, that is, it is not
classically differentiable at zero. Instead, the so-called subgradient of J (v) al-
ways exists and is characterized by the condition

∂J (v) =

N∑
i=1

ξi for

⎧⎨
⎩(ξi)j =

Diag{pi}(v − xi)j
‖Diag{pi}(v − xi)‖ , if ‖Diag{pi}(u− xi)‖ �= 0,

‖ξi‖ ≤ 1, when ‖Diag{pi}(u− xi)‖ = 0.

(10)
Then, the minimizer s of (9) satisfies 0 ∈ ∂J (s). In [20] it is shown, for the
complete data case, that if the sample {xi} belongs to a Euclidean space and is
not concentrated on a line, the spatial median s is unique. In practice (see [2]),
one can obtain an accurate approximation for the solution of the nonsmooth
problem by solving the following equation corresponding to the regularized form

N∑
i=1

Diag{pi}(s− xi)

max{‖Diag{pi}(s− xi)‖, ε} = 0 for ε > 0. (11)

This can be solved using the SOR (Sequential Overrelaxation) algorithm [2] with
the overrelaxation parameter ω = 1.5. For simplicity, define ‖v‖ε = max{‖v‖, ε}.

To this end, the comparison of (7) and (11) allows us to define the robust
covariance matrix corresponding to the spatial median s:

ΣR =
1

N − 1

N∑
i=1

(
Diag{pi}(s− xi)

‖Diag{pi}(s− xi)‖ε

)(
Diag{pi}(s− xi)

‖Diag{pi}(s− xi)‖ε

)T

. (12)

This form can be referred to as the multivariate sign covariance matrix [5, 28, 7].
By construction, the nonzero covariate vectors have a unit length, so that they
only accumulate the deviations of angles and not the sizes of the available vari-
ables. Such an observation is related to one perspective on statistical robustness
that can be formalized using the so-called influence function [9]. Using ΣR as the
sample covariance matrix, one can, by again solving the corresponding eigenvalue
problem (5), recover a new basis {uk} for which the corresponding eigenvalues
{λk}, again, explain the amount of variability along the new coordinates. Be-
cause ΣR is based on the first-order approximation, the nonnegative eigenvalues
readily correspond to the geometric variability represented by the standard de-
viation in the second-order statistics, and, then, we do not need to take any
square roots when computing the relative importances of the robust procedure
as in Proposition 1. Hence, the two PCA approaches are comparable to each
other.

2.3 Projection using PCA-based transformation

In the matrix form, the existence of a new basis in the columns of the given
unitary matrix U, and given a complete location estimate for the sparse data
s ∈ Rn (i.e., the spatial median), for which we define the corresponding matrix
S ∈ RN×n by replication of sT in N rows, yields the transformed data matrix

Y = (P ◦ (X− S))U, (13)



where ◦ denotes the Hadamard product. When U is ordered based on RIk’s,
the dimension reduction is obtained by selecting only m of the n coordinates
(columns) inY. Hence, we see that even if there are missing values in the original
data, the resulting new data vectors become complete. We also know from the
basic linear algebra that, for complete data, both the length of the original
vectors and the angle between any two vectors are preserved in (13) because U is
unitary. However, in the case of missing data, some of the coordinate values of the
original vectors are not present, and then, presumably, the transformed vectors
in Y are of smaller length, i.e., closer to the origin in the transformed space.
Moreover, the angles might also become degraded. These simple observations
readily raise some doubts concerning the available data strategy in the form of
incomplete data vectors as proposed in (12).

2.4 Two modifications of the robust PCA procedure

Let us define two modifications of the robust PCA procedure that are based on
the similar form of the covariance matrix as defined in (12). As discussed above,
both the amount of variability of data and/or the main directions of variability
might be underestimated due to sparse data vectors, that is, missing coordinate
values. Our suggested modifications are both based on a simple idea: use only the
“almost complete” data in estimation (cf. the cascadic initializations of robust
clustering in [24, 25]). Note that this is one step further than the typical way of
using only the complete pairs or complete observations in the computation of a
covariance matrix.

The first suggested modification, for the computation of the relative impor-
tances of the principal components, is related to using the actual projections
along the new coordinate axis for this purpose. Similar to the alpha-trimmed
mean [3], which presumably neglects outlying observations, we use (see the tests
in [26]) the 10% and 90% percentiles, denoted as prc

10
(·) and prc

90
(·), related to

the transformed data matrix Y in (13). Namely, for the each new variable {yk},
its estimated variability is computed as

RIk = 100(prc
90
({yk})− prc

10
({yk})). (14)

Moreover, because it is precisely the sparsity that diminishes the lengths and
angles of the transformed data vectors, we restrict the computation of (14) to
that subset of the original data, where at most one variable is missing from an
observation xi. This subset satisfies

∑n
j=1

(pi)j ≥ n− 1.

Our second suggested modification uses a similar approach, but already di-
rectly for the robust covariance matrix (12), by taking into account only those
observations of which at most one variable is missing. Hence, we define the fol-
lowing subsets of the original set of indices N = {1, 2, . . . , N}:

Ic = {i ∈ N | xi is complete},
Ij = {i ∈ N | variable j is missing from xi}.



We propose computing a reduced, robust covariance matrix Σ̃R as

Σ̃R =
1

Ñ − 1

⎛
⎝∑

i∈Ic

viv
T
i +

n∑
j=1

∑
i∈Ij

viv
T
i

⎞
⎠ , vi =

Diag{pi}(s− xi)

‖Diag{pi}(s− xi)‖ε ,

with Ñ = |Ic | +∑
j |Ij |. Hence, only that part of the first-order covariability

that corresponds to the almost complete observations is used.

3 Computational results

Computational experiments in the form of simulated test cases, when knowing
the target result, are given first. The parametrized test is introduced in Sec-
tion 3.1, and the computational results for the different procedures are provided
in Section 3.2. Finally, we apply the best methods to analyze the educational
data of PISA in Section 3.3. As a reference method related to the classical,
second-order statistics as derived in Section 2.1, with sparse data, we use the
Matlab’s PCA routine with the ‘pairwise’ option.

3.1 The simulated test cases

For simplicity, we fix the number of observations as N = 1000. For the fixed size
of an observation n, let us define a vector of predetermined standard deviations as
σ =

[
σ1 σ2 . . . σn

]
. Moreover, letRa,b(θ) ∈ Rn×n be an orthonormal (clockwise)

rotation matrix of the form

Rab(θ) = {M = In ∧Maa = Mbb = cos(θ), Mab = −Mba = − sin(θ)} ,
where In denotes the n × n identity matrix. Then, the simulated data {di}Ni=1

is generated as

dT
i ∼σ

2
+
[N (0, σ1) N (0, σ2) . . . N (0, σn)

]
+ ηi

[
Rn

[U([−σ1, σ1]) U([−σ2, σ2]) . . . U([−σn, σn])
]T ]T ,

(15)

where N (0, σ) denotes the zero-mean normal distribution with standard devia-
tion σ and U([−c, c]) the uniform distribution on the interval [−c, c], respectively.
Rn defines the n-dimensional rotation that we use to orientate the latter noise
term in (15) along the diagonal of the hypercube, that is, we always choose θ = π

4

and take, for the actual tests in 2D, 3D, 4D, and 6D,

R2 = R12(θ), R3 = R23(θ)R12(θ), R4 = R14(θ)R23(θ)R34(θ)R12(θ),

R6 = R36(θ)R45(θ)R56(θ)R14(θ)R23(θ)R34(θ)R12(θ).

Finally, a random sparsity pattern of a given percentage of missing values rep-
resented by the matrix P as defined in (8) is attached to data.



To conclude, the simulated data are parametrized by the vector σ, which
defines the true data variability. Moreover, the target directions of the principal
components are just the original unit vectors ek, k = 1, . . . , n. Their estimation
is disturbed by the noise, which comes from the uniform distribution whose
width coordinatewise coincides with the clean data. Because the noise is rotated
towards the diagonal of the hypercube, its maximal effect is characterized by
maxk σk

mink σk
. By choosing σk’s as the powers of two and three for n = 2, 3, 4, 6, we

are then gradually increasing the effect of the error when the dimension of the
data is increasing. Finally, we fix the amount of noise to 10% so that ηi = 1
with a probability of 0.1 in (15). In this way, testing up to 40% of missing values
randomly attached to {di} will always contain less than 50% of the degradations
(missing values and/or noise) as a whole.

3.2 Results for the simulated tests

The test data generation was repeated 10 times, and the means and standard
deviations (in parentheses) over these are reported. As the error measure for
the directions of {uk}, we use their deviation from being parallel to the target
unit vectors. Hence, we take DirE = maxk{1− |uT

k ek|}, k = 1, . . . , n, such that
DirE ∈ [0, 1]. In the result tables below, we report the relative importances of
RIk in the order of their importance. ‘Clas’ refers to the classical PCA, ‘Rob’ to
the original robust formulation, ‘RobP’ to the modification using percentiles for
the importances, and ‘RobR’ to the use of the reduced covariance matrix Σ̃R.
The real relative importances (‘True’) by generation are provided in the third
column.

From all simulated tests (Tables 1-4), we see that the the classical method
and ‘RobP’ show the closest relative importances of the principal components to
the true geometric variability in the data. Moreover, both of these approaches
show a very stable behavior, and the results for the relative importances do not
change that much, even when a high number of missing data is present. The
results for the other two approaches, the basic robust and ‘RobR’, on the other
hand, are much less stable, and particularly the basic robust procedure starts
to underestimate the relative importances of the major components when the
amount of missing data increases.

The directions remain stable for all the simulated test cases, even when a
large amount of missing data is present. Over all the simulated tests, the ‘RobP’
with the original robust covariance bears the closest resemblance to the true
directions. It can tolerate more noise compared to ‘Clas’, as shown in Table 3.
We also conclude that the missing data do not affect the results of the PCA
procedures as much as the noise. Tables 3 and 4 show that, for a large noise, the
increase in sparsity can actually improve the performance of the robust method
because it decreases the absolute number of noisy observations. Interestingly, as
can be seen from Table 4, the geometric variability was estimated accurately,
even if the directions were wrong.



Table 1. Results for σ = [3 1]

Missing PC True(Std) Clas(Std) Rob(Std) RobP(Std) RobR(Std)

0%
1 75.0(0.00) 73.7(0.8) 73.0(1.1) 73.0(1.3) 73.0(1.1)
2 25.0(0.00) 26.3(0.8) 27.0(1.1) 27.0(1.3) 27.0(1.1)

DirE - 0.001 0.004 0.004

10%
1 75.0(0.00) 73.9(0.9) 68.9(1.2) 73.2(1.3) 68.9(1.2)
2 25.0(0.00) 26.1(0.9) 31.1(1.2) 26.8(1.3) 31.1(1.2)

DirE - 0.001 0.005 0.005

20%
1 75.0(0.00) 73.5(1.2) 65.1(1.0) 72.5(1.7) 65.1(1.0)
2 25.0(0.00) 26.5(1.2) 34.9(1.0) 27.5(1.7) 34.9(1.0)

DirE - 0.001 0.009 0.009

30%
1 75.0(0.00) 73.8(1.0) 62.4(0.9) 73.0(1.4) 62.4(0.9)
2 25.0(0.00) 26.2(1.0) 37.6(0.9) 27.0(1.4) 37.6(0.9)

DirE - 0.001 0.003 0.003

40%
1 75.0(0.00) 74.0(0.8) 60.3(1.6) 73.1(1.4) 60.3(1.6)
2 25.0(0.00) 26.0(0.8) 39.7(1.6) 26.9(1.4) 39.7(1.6)

DirE - 0.002 0.008 0.008

3.3 Results for PISA data set

Next, we apply the different PCA methods tested in the previous section to
a large educational data set, namely the latest data from the Programme for
International Student Assessment1 (PISA 2012). The data contain 485490 ob-
servations, and as variables we use the 15 scale indices [24] that are known to
explain the student performance in mathematics, the main assessment area in
PISA 2012. The scale indices are derived variables that summarize information
from student background questionnaires [22], and are scaled so that their mean
is zero with a standard deviation of one. Due to the rotated design of PISA (each
student answers only one of the three different background questionnaires), this
data set has 33.24% of missing data by design, a special case of MCAR.

In Table 5, the relative importances {RIk} are depicted. The table also shows
the variance-based view for the classical method, denoted as ‘ClsVar’. As can be
seen from the table, the first principal component is much higher for ‘ClsVar’
than for the other approaches. In consequence, fewer principal components would
be selected with ‘ClsVar’ when a certain threshold of how much the principal
components should account for is given. As illustrated in Fig. 1, if the threshold
is set to 90%, we would select 11 components with ‘ClsVar’ but 13 for both the
classical PCA and for the ‘RobP’.

In Fig. 2, the loadings of the first two principal components are visualized
for the classical and for the robust version. We see that for both versions, the
three scale indices ANXMAT, FAILMAT, and ESCS are the most distinct from
the others. However, the robust version is able to distinguish this finding more
clearly. That index of economic, social and cultural status (ESCS) accounts for

1 Available at http://www.oecd.org/pisa/pisaproducts/.



Table 2. Results for σ = [4 2 1]

Missing PC True(Std) Clas(Std) Rob(Std) RobP(Std) RobR(Std)

0%

1 57.1(0.00) 56.3(0.7) 58.6(1.3) 55.8(1.0) 58.6(1.3)
2 28.6(0.00) 28.6(0.8) 28.9(1.2) 28.7(1.0) 28.9(1.2)
3 14.3(0.00) 15.2(0.3) 12.6(0.4) 15.5(0.4) 12.6(0.4)

DirE - 0.005 0.017 0.017

10%

1 57.1(0.00) 56.3(0.8) 55.7(1.3) 55.8(1.0) 54.5(1.6)
2 28.6(0.00) 28.6(0.9) 30.0(1.2) 28.6(0.9) 30.7(1.2)
3 14.3(0.00) 15.1(0.4) 14.3(0.6) 15.5(0.5) 14.8(0.8)

DirE - 0.008 0.015 0.015

20%

1 57.1(0.00) 56.2(0.8) 51.7(1.4) 55.6(1.1) 51.7(1.4)
2 28.6(0.00) 28.6(0.9) 30.7(1.2) 28.8(1.3) 31.5(1.5)
3 14.3(0.00) 15.2(0.3) 17.6(0.8) 15.6(0.5) 16.7(0.7)

DirE - 0.005 0.020 0.014

30%

1 57.1(0.00) 56.0(0.7) 49.2(0.7) 55.3(0.9) 50.9(0.7)
2 28.6(0.00) 28.8(0.8) 31.6(0.8) 29.0(0.9) 32.1(1.3)
3 14.3(0.00) 15.2(0.4) 19.2(1.0) 15.7(0.5) 17.1(1.3)

DirE - 0.006 0.013 0.012

40%

1 57.1(0.00) 56.2(0.9) 46.2(1.4) 55.8(1.2) 49.9(1.6)
2 28.6(0.00) 28.7(1.2) 32.0(1.7) 28.5(1.3) 32.5(1.7)
3 14.3(0.00) 15.1(0.4) 21.8(1.1) 15.6(0.7) 17.6(1.0)

DirE - 0.010 0.014 0.013

Fig. 1. Cumulative sum of the relative importances for the classical PCA using vari-
ance, the classical PCA, and the robust PCA using percentiles (from left to right).

much of the variability in the data, being the “strongest single factor associated
with performance in PISA” [21], is always highlighted in PISA documentations
and can be clearly seen in Fig. 2, especially from the robust PC 1.



Table 3. Results for σ = [27 9 3 1]

Missing PC True(Std) Clas(Std) Rob(Std) RobP(Std) RobR(Std)

0%

1 67.5(0.00) 62.5(0.8) 66.9(0.9) 63.6(1.1) 66.9(0.9)
2 22.5(0.00) 22.1(0.6) 23.6(0.8) 22.9(0.8) 23.6(0.8)
3 7.5(0.00) 10.1(0.2) 6.9(0.4) 9.1(0.4) 6.9(0.4)
4 2.5(0.00) 5.3(0.2) 2.6(0.2) 4.5(0.2) 2.6(0.2)

DirE - 0.168 0.080 0.080

10%

1 67.5(0.00) 62.5(0.8) 62.3(1.3) 64.0(1.2) 60.3(2.3)
2 22.5(0.00) 22.1(0.6) 25.7(0.9) 23.0(0.9) 26.9(1.7)
3 7.5(0.00) 10.0(0.2) 8.6(0.5) 9.0(0.4) 9.2(0.6)
4 2.5(0.00) 5.3(0.2) 3.5(0.3) 4.0(0.2) 3.6(0.4)

DirE - 0.157 0.045 0.046

20%

1 67.5(0.00) 62.5(1.0) 56.9(1.2) 64.2(1.2) 58.3(1.7)
2 22.5(0.00) 22.1(0.7) 27.4(1.0) 22.9(0.9) 28.1(1.1)
3 7.5(0.00) 10.1(0.3) 11.0(0.6) 8.9(0.5) 9.8(1.0)
4 2.5(0.00) 5.4(0.3) 4.7(0.4) 3.9(0.2) 3.7(0.4)

DirE - 0.164 0.032 0.031

30%

1 67.5(0.00) 62.7(0.8) 52.1(1.6) 64.4(0.9) 57.7(1.3)
2 22.5(0.00) 22.0(0.6) 28.2(1.4) 23.2(0.6) 28.2(1.5)
3 7.5(0.00) 10.0(0.4) 13.2(1.0) 8.6(0.4) 10.2(0.5)
4 2.5(0.00) 5.3(0.3) 6.5(0.5) 3.8(0.2) 3.9(0.4)

DirE - 0.177 0.023 0.038

40%

1 67.5(0.00) 62.7(0.8) 46.9(0.8) 64.2(1.4) 55.9(1.2)
2 22.5(0.00) 22.2(0.6) 28.7(1.0) 23.5(1.3) 29.8(1.5)
3 7.5(0.00) 9.9(0.3) 15.7(0.5) 8.8(0.3) 10.8(1.1)
4 2.5(0.00) 5.2(0.3) 8.6(0.8) 3.6(0.4) 3.5(0.5)

DirE - 0.189 0.016 0.040

4 Conclusions

Although PCA is one of the most widely used ML and DM techniques, systematic
testing and assessment of PCA in the presence of missing data seem to still be
an important topic to study. In this article, we have proposed a robust PCA
method and two modifications (one using percentiles for the importance and
one with a reduced covariance matrix) of this method. The testing of these three
approaches was done in comparison with the classical, reference PCA for sparse
data. First, we illustrated the results for carefully designed simulated data and
then for a large, real educational data set.

From the simulated tests, we concluded that the percentiles-based robust
method and the classical PCA showed the best results, especially when the
relative importance of the principal components were compared with the true
variability of the data. The basic robust approach started to underestimate the
relative importance of the major components when the amount of missing data
increased. The results of the simulated tests were stable, and the variance be-



Fig. 2. Principal component loadings for PISA data for the classical (left) and robust
(right) approaches.

tween repeated test runs was very small. Likewise, the estimated directions re-
mained also stable even with a large amount of missing data. Tests with PISA
data showed that the proposed robust methods are applicable for large, real data
sets with one-third of the values missing, where the interpretation of the robust
result yielded clearer known discrimination of the original variables compared to
the classical PCA.

The classical PCA uses variance to estimate the importance of the princi-
pal components, which highlights (as demonstrated in Table 5 and Figure 1)
the major components. As shown by the simulated results, it is more prone to
nongaussian errors in the data. These points might explain some of the difficul-
ties the classical method faced in applications [23]. In [14], seven distinctions of
the PCA problem in the presence of missing values were listed: 1) no analytical
solution since even the estimation of the data covariance matrix is nontrivial,
2) the optimized cost function typically has multiple local minima, 3) no ana-
lytical solution even for the location estimate, 4) standard approaches can lead
to overfitting, 5) algorithms may require heavy computations, 6) the concept of
the PCA basis in the principal subspace is not easily generalized, and 7) the
choice of the dimensionality of the principal subspace is more difficult than in
classical PCA. We conclude that the proposed robust methods successfully ad-
dressed all these distinctions: 1) well-defined covariance matrix, 2) being positive
semidefinite, 3) a unique location estimate in the form of the spatial median, 4)
resistance to noise due to robustness, 5) the same linear algebra as in the clas-
sical approach, and 6)–7) a geometrically consistent definition of the principal
subspace and its dimension related to the data variability.

Acknowledgments. The authors would like to thank Professor Tuomo Rossi
for many helpful discussions on the contents of the paper.



Table 4. Results for σ = [32 16 8 4 2 1]

Missing PC True(Std) Clas(Std) Rob(Std) RobP(Std) RobR(Std)

0%

1 50.8(0.00) 48.1(0.5) 55.3(1.0) 48.6(0.8) 55.3(1.0)
2 25.4(0.00) 24.3(0.4) 26.7(0.6) 24.4(0.4) 26.7(0.6)
3 12.7(0.00) 12.6(0.2) 10.6(0.4) 12.7(0.3) 10.6(0.4)
4 6.3(0.00) 7.5(0.2) 4.7(0.3) 7.1(0.2) 4.7(0.3)
5 3.2(0.00) 4.4(0.1) 1.6(0.1) 4.3(0.1) 1.6(0.1)
6 1.6(0.00) 3.2(0.1) 1.0(0.1) 2.8(0.2) 1.0(0.1)

DirE - 0.298 0.374 0.374

10%

1 50.8(0.00) 48.0(0.6) 51.6(1.1) 48.5(1.1) 51.0(1.9)
2 25.4(0.00) 24.3(0.5) 27.5(0.8) 24.8(0.6) 28.1(1.1)
3 12.7(0.00) 12.6(0.2) 12.0(0.5) 12.8(0.4) 12.0(0.9)
4 6.3(0.00) 7.5(0.2) 5.5(0.2) 7.0(0.2) 5.5(0.4)
5 3.2(0.00) 4.4(0.1) 2.2(0.2) 4.2(0.1) 2.2(0.2)
6 1.6(0.00) 3.2(0.2) 1.3(0.1) 2.7(0.2) 1.3(0.2)

DirE - 0.318 0.277 0.358

20%

1 50.8(0.00) 48.2(0.5) 48.6(1.0) 48.9(1.6) 51.3(1.4)
2 25.4(0.00) 24.2(0.5) 27.3(0.8) 24.6(0.6) 27.3(0.7)
3 12.7(0.00) 12.7(0.3) 13.2(0.8) 13.0(0.6) 12.3(1.2)
4 6.3(0.00) 7.4(0.2) 6.4(0.3) 7.0(0.3) 5.5(0.6)
5 3.2(0.00) 4.4(0.2) 2.7(0.3) 4.0(0.2) 2.2(0.2)
6 1.6(0.00) 3.2(0.2) 1.7(0.2) 2.4(0.2) 1.3(0.3)

DirE - 0.372 0.090 0.137

30%

1 50.8(0.00) 48.1(0.6) 43.8(1.2) 48.6(1.4) 49.4(2.4)
2 25.4(0.00) 24.3(0.5) 27.5(0.8) 25.0(0.8) 28.5(1.7)
3 12.7(0.00) 12.6(0.1) 15.0(0.6) 12.9(0.5) 12.5(0.8)
4 6.3(0.00) 7.5(0.2) 7.6(0.5) 7.1(0.4) 5.8(0.8)
5 3.2(0.00) 4.3(0.1) 3.8(0.5) 4.0(0.2) 2.2(0.2)
6 1.6(0.00) 3.2(0.2) 2.3(0.3) 2.4(0.2) 1.5(0.4)

DirE - 0.335 0.092 0.468

40%

1 50.8(0.00) 48.0(0.6) 39.7(1.5) 48.3(1.7) 50.2(2.9)
2 25.4(0.00) 24.3(0.4) 26.6(1.0) 25.1(1.1) 28.3(2.4)
3 12.7(0.00) 12.6(0.3) 15.8(1.0) 13.0(0.7) 11.9(1.3)
4 6.3(0.00) 7.5(0.2) 9.5(0.8) 7.3(0.3) 6.0(0.8)
5 3.2(0.00) 4.4(0.3) 5.1(0.5) 3.9(0.3) 2.2(0.3)
6 1.6(0.00) 3.1(0.2) 3.3(0.4) 2.3(0.2) 1.3(0.2)

DirE - 0.516 0.078 0.518

Table 5. Results for PISA data

RI1 RI2 RI3 RI4 RI5 RI6 RI7 RI8 RI9 RI10 RI11 RI12 RI13 RI14 RI15
ClsVar 29.5 11.4 10.4 8.6 6.8 5.0 4.4 4.1 3.8 3.7 3.2 3.0 2.8 2.0 1.3
Cls 15.3 9.5 9.1 8.3 7.3 6.3 5.9 5.7 5.5 5.4 5.0 4.8 4.7 4.0 3.3

RobP 13.1 11.9 8.6 7.5 7.2 6.5 6.5 5.9 5.9 5.2 4.8 4.8 4.5 3.9 3.7
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Abstract
Large-scale educational assessment studies

(LSAs) regularly collect massive amounts of

very rich cognitive and contextual data of whole

student populations. Currently, LSAs are limited

to reporting student proficiencies in the form of

plausible values (PVs). PVs are random draws

from the posterior distribution of a student’s

ability, which is based on the Bayesian approach

with the prior distribution modeling the student

background within the population and the

likelihood test item response using the Rasch

model. While PVs have shown to be a reliable

estimate for proficiencies of populations, a more

comprehensive study of these rich data sets by

deploying machine learning algorithms may

provide a better understanding of the underlying

factors affecting student performance and thus

yield to better and more interpretable predictive

models. This paper presents such a novel

approach to learn directly from LSA data by

deploying a combination of both unsupervised

and supervised learning feature selection algo-

rithms to predict student performance on math

scores. Our technique learns the difficulty level

of different math questions and predicts weather

or not a student with a particular background

profile will be successful in answering correctly.

1. Introduction
Since 2000 triennially, the Organisation for Economic Co-

operation and Development (OECD) collects a massive

MLDEAS workshop papers of the 33 rd International Conference
on Machine Learning, New York, NY, USA, 2016. JMLR: W&CP
volume 48. Copyright 2016 by the author(s).

amount of data of stratified samples of 15-year-old students

from all over the world for the Programme for International

Student Assessment (PISA). The sampled students not only

take a cognitive test—in which they have to demonstrate

their math, reading and science skills—but also reply to

a questionnaire, in which they provide information about

their social and economical background, as well as their

motivations, behaviors, and attitudes towards various as-

pects of education. All collected data is publicly available1

and according to the OECD, of very high quality in terms

of degree of validity and reliability (OECD, 2009; 2012).

Moreover, these data are comparable throughout different

countries so that they provide a very rich database for ed-

ucational machine learning (ML) and data mining (DM)

applications.

The participating countries pay large sums of money

(Musik, 2016) primarily with the goal to utilize PISA data

and analysis results for research. However, as concluded by

Rutkowski et al. (2010), not many researchers work with

these freely available and high quality datasets because of

the many technical complexities within them. The major

difficulty of conducting secondary analysis with PISA data

is that many desired properties that describe the students

are not originally observed features, but are already pre-

processed and made available as derived variables through

a combination of different state-of-the-art methodologies.

One example is that there are no single performance scores

for the cognitive test in PISA datasets. Instead, for each

student and each assessment domain—reading, math, and

science—five plausible values (PVs) are reported.

The PVs are random draws from the posterior distribution

of a student’s ability, which is defined as

f(β | xi, yi) ∝ P (xi | β, δ)f(β | λ, yi), (1)

1PISA data can be downloaded from http:
//www.oecd.org/pisa/pisaproducts/.
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where P (xi | β, δ) denotes a Rasch Model (Rasch, 1960)

given the student’s ability β and the test items’ difficul-

ties δ, and f(β | λ, yi) denotes a population model with the

background information of the student encoded in yi
2. This

population model for a student i is estimated with the latent

regression model (Tarpey & Petkova, 2010) βi = yTi λ+εi,
where εi = N (0, σ2) (Marsman, 2014; OECD, 2014), and

with λ denoting the regression coefficients.

PVs have shown to be a reliable estimate for proficiencies

of populations (Monseur & Adams, 2008; Wu & Adams,

2002; OECD, 2009) and are used not only in PISA, but

also in other LSA studies, such as the National Assessment

of Educational Progress3, the European Survey on Lan-

guage Competences4, the Trends in International Mathe-

matics and Science Study, and the Progress in International

Reading Literacy Study5. However, these estimations are

done on normalized data and are based on linear regression

(i.e., the λ parameter in f above). Thus, it is worth in-

vestigating how deploying a general framework of ML can

complement the current state of art by using the raw data

which is publicly available.

In this paper, we describe a ML approach that combines un-

supervised learning with several supervised learning algo-

rithms and deploys various feature selection algorithms by

working directly with raw data. One particular challenge is

the sparsity of raw cognitive data due to the design of tests,

and missing values in the questionnaire data (Saarela &

Kärkkäinen, 2014; 2015a;b; Kärkkäinen & Saarela, 2015;

Rutkowski et al., 2010). This work addresses the high spar-

sity of the cognitive data by clustering the scored cogni-

tive item response data into several difficulty bins and us-

ing each bin as a label as we explain later in Section 3.1.

Since there were enough data points without missing con-

textual data from the PISA background questionnaire, we

defer to imputation for the future work and focused on

complete data. We examined the interaction between dif-

ferent classifier-feature selection algorithms and show that

ML is a promising and complementary approach to under-

stand and predict student performance.

The structure of this paper is as follows. In Section 2, we

describe the PISA data. After that, our overall method is

explained in Section 3, and the experimental results are pre-

sented in Section 4. Finally, in Section 5, overall results are

summarized and directions for further work are discussed.

2In the official PISA literature, it is not explicitly reported
which features of the student’s background are actually taken into
account (OECD, 2014). However, Monseur and Adams (2008)
argue that all information from the background questionnaire is
utilized.

3nces.ed.gov/nationsreportcard/
4www.surveylang.org/
5See both http://timssandpirls.bc.edu/

Table 1. Item cluster allocation to booklets in PISA 2012. PM

denotes cluster of math, PR cluster of reading, and PS cluster of

science items.

BOOKLET ID ITEM CLUSTER
B1 PM5 PS3 PM6A PS2
B2 PS3 PR3 PM7A PR2
B3 PR3 PM6A PS1 PM3
B4 PM6A PM7A PR1 PM4
B5 PM7A PS1 PM1 PM5
B6 PM1 PM2 PR2 PM6A
B7 PM2 PS2 PM3 PM7A
B8 PS2 PR2 PM4 PS1
B9 PR2 PM3 PM5 PR1

B10 PM3 PM4 PS3 PM1
B11 PM4 PM5 PR3 PM2
B12 PS1 PR1 PM2 PS3
B13 PR1 PM1 PS2 PR3

2. Data
We use the two main student datasets from the latest PISA

assessment, which was conducted in 2012 (the 2015 data is

not yet public): the scored cognitive item response and the

student questionnaire data file. Both datasets have 485,490

observations (the students who attended the 2012 PISA as-

sessment) and a couple of hundreds of variables.

As explained above, every student that attends the PISA

test is assigned only a small fraction of the whole item bat-

tery. In PISA 2012, there were 13 main different tests—

called booklets—and 210 different cognitive test items.

Since mathematics was the main assessment domain in

PISA 2012, the majority of the items, i.e. 108 of them, are

items that test the math proficiency of the students. These

cognitive test items were organized into groups—in PISA

denoted as item clusters—so that each booklet contained

four item clusters (this is illustrated in Table 1) and was

estimated to be completable in two hours. As can be seen

from Table 1, each booklet contained at least one cluster

with math items. Our goal in this study is to predict the

math performance of the students, which is why we use

the sparse 108 × 485, 490 matrix of the scored math items

for building the labels of our classifiers (this will be further

explained in Section 3.1).

For the classification features, we are interested in all at-

tributes that are directly concerned with the students’ at-

titudes towards mathematics and that might explain their

math performance. In the PISA background questionnaire,

there are 53 different math attitudinal statement questions6,

in each of which the student is asked to tick one box of a

Likert-scale depending on the degree to which he or she

agrees (totally disagree, disagree, agree, or totally agree)

6Variables ST29Q01–ST46Q09 (position 67–119) in PISA
questionnaire data set, see https://www.oecd.org/pisa/
pisaproducts/PISA12 stu codebook.pdf



Machine Learning from Large-Scale Educational Assessments Data

with the given statement. Examples of such statements in-

clude I will learn many things in mathematics that will help
me get a job and my parents believe studying mathematics
is important. All 53 questions/statements can be found in

Figure 1. We select all students that have non-missing val-

ues for all of these questions. Because of the rotated design

in PISA, these are a bit less than one third of the students

from each country. For example, in the Finnish subset,

there are 2,491 (out of 8,829) students, which have non-

missing values for all these 53 features, and in the whole

PISA data, there are 136,344 (out of 485,490) students with

complete values for this feature set.

3. Methodology
3.1. Unsupervised learning from cognitive data for
label creation

We define identifying the students that are likely to suc-

ceed or fail math items of certain difficulty as a prediction

problem. Our goal is to train a supervised learning algo-

rithm that predicts success or failure from the data. How-

ever there are several problems with identifying the labels

necessary for this approach. First, the plausible values can-

not be used, since that would be akin to engineering an al-

ready known formula (see Section 1). Second, as discussed

in Section 2, the students were administered different cog-

nitive tests and the single items in the tests vary in their dif-

ficulty (OECD, 2014), which is why we cannot simply use

the total sum of correct items for each student as their la-

bel. The raw scored cognitive data has a high percentage of

missing data and no aggregated test scores and no item dif-

ficulties are available. Besides the PVs, the only available

information about the actual performance of each student in

the cognitive test is the fact whether he or she was adminis-

tered an item and—in case the item was administered—the

score the student obtained for it. The score values can be

either 0 (fail), 1 or 2 (partially or fully correct).

To be able to work with the available data, we designed

an algorithm to extract labels from raw data and use these

labels to train a predictive model. For every different

test/booklet, we summed up the total scores of the included

math items. Then, we assigned each math item that was

included in the test—a summary of the cluster of differ-

ent items of the main tests was provided in Table 1—to a

bin which we denote as difficulty level in such a way that

each difficulty level is of same size (i.e., includes the same

number of items). We chose the number of difficulty levels

for our label matrix Λ to be seven, because the OECD de-

fined seven math proficiency levels (see Figure 15.4 in the

PISA 2012 technical report by the OECD (2014)). Hereby,

it is assumed that all of the different booklets are consistent

with regard to their average difficulty, which is supported

by the fact that each test should be fair and solvable within

two hours.

We created a binary label for each student and each of the

seven difficulty levels, which takes value 1 if the student

answered more than half of the questions in that category

correctly and 0 otherwise. The labels were stored in the

seven-dimensional label matrix Λ. Basically, we consider

the student to be able to solve items of a certain difficulty

if he or she answered the majority of the items of this dif-

ficulty bin in his/her particular test correctly. This matrix

is complete, i.e. with no missing values, since each book-

let contains items from each category. Depending on the

target group we are interested in, we either create our label

matrix Λ only for one country (for instance, for Finland the

8, 829 × 7 matrix) or for a bigger group (for example, for

all PISA countries the 485, 490× 7 matrix).

3.2. Supervised learning for multi-label prediction

Having the label matrix Λ fixed, we have to decide which

kind of classifier should be trained for our data. Many dif-

ferent supervised learning algorithm have been introduced

in the ML literature (Kotsiantis et al., 2007). However,

the performances of different prediction models can vary

depending on the data and their preprocessing. A model

that performs perfectly on one dataset might perform very

poorly on another dataset. Since we could not know what

the best model and preprocessing for our data were, we

first compared different approaches for the Finnish subset

of PISA (see Section 4) before we selected the best ap-

proach to produce the final results.

In Zaki and Meira (2014), classification techniques have

been categorized into probabilistic classification, decision

tree classifier, linear discriminant analysis (LDA), and sup-

port vector machines (SVM). We chose at least one from

each of these categories of classifiers with different objec-

tives and compared their performances in terms of their

prediction accuracy. Altogether, we compared two prob-

abilistic classifiers (nearest neighbour and naı̈ve bayes),

one LDA, one SVM, and one decision tree based classi-

fier (random forest). For each of the different classifiers,

the Finnish subset of PISA was randomly divided, so that

two thirds of the data was used for training the classifier,

and one third was used for testing it.

The most important step for learning from the data is the

dimension reduction in the feature space. We were looking

for the minimal set of features to represent our data, since

redundant or even noisy features lower the accuracy of pre-

diction models, make them less comprehensible, and in-

crease the computational complexity. Generally, dimension

reduction methods can be divided into those techniques that

extract features and those that select features (Tang et al.,

2014). To get the best results, we tested with each clas-

sification algorithm two feature extraction—i.e., Principal
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Component Analysis (PCA) and Isomap—and four feature
selection methods—i.e., Fisher (Duda et al., 2000), Anova

(Elssied et al., 2014), Gini (Hall, 1999), and MRMR (Peng

et al., 2005).

3.3. Difficulty levels are predictive

Correct answers for easier questions are predictive for

harder ones. With the intention to predict the performance

of the students in each difficulty level as accurately as

possible, we implemented an additional set of classifiers,

which were the same as described above but with the dif-

ference that for each classifier, the information if the stu-

dent mastered the previous difficulty level(s) was iteratively

added to the original set of 53 features. That means that

for predicting difficulty level λ6 we had 54 features, for

predicting λ5, we had 55 features, and for predicting λ1,

we had 58 features. The order of the difficulty levels is

λ1 < λ2 . . . < λ7, with λ1 being the easiest and λ7 being

the most difficult one.

4. Results
We tested our algorithmic approaches by using the Finnish

subset in PISA only, and then we applied the best approach

first, to the Finnish (Section 4.3) and second, to the whole

PISA data (Section 4.4). In Table 2, the results of the ex-

periments with the different classifiers and dimension re-

duction methods are reported. As can be seen from the

table, with respect to the classifier, SVM performed overall

the best.

Moreover, we made the observation that the prediction ac-

curacy was for all models the best for the highest difficulty

level λ7 and the worst for the second easiest one λ2. The

prediction accuracy for λ1 went up again, probably because

the classifiers had learned that most of the students succeed

in the math items of the easiest category.

4.1. Iterative approach

To test our hypothesis that the information whether or not

the student had mastered the previous difficulty level can

enhance the accuracy of our classifier for the next diffi-

culty level (see Section 3.3), we iteratively added–before

predicting the next item difficulty—the previous item diffi-

culty vector(s) as a further feature(s) to the classifiers. Nat-

urally, testing and training data were divided according to

the same indices as our original feature and label matrix.

With this adjustment, the prediction accuracy improved no-

ticeably (on average 2− 5%) for difficulty level six to two

for all classifiers. For difficulty level seven, the features

remained the same and the accuracy of the classifier could

not improve. For difficulty level one, the accuracy of the

classifier actually dropped slightly. A possible explanation

for that fact is, as discussed in Section 4, the general diffi-

culty to predict the performance on the second easiest math

difficulty level λ2 correctly, as well as the observation that

the prediction accuracy of the easiest difficulty level λ1 was

very high in the non-iterative approach.

4.2. Feature selection

As pointed out in Section 3.2, to avoid overfitting, we are

interested in a prediction model that uses the most impor-

tant features only. Therefore, we saved from all of our clas-

sifiers all features that were selected by the four feature se-

lection algorithms in each iterative step. Then, when build-

ing the final prediction model we used for each iterative

step only those features that were chosen by the different

feature selection algorithms (see Section 4.3). Moreover,

for training the prediction model two thirds of the data were

used, and for testing it the remaining third of the data was

used.

In Figure 1, the histogram of all the selected features for

all iterative steps and all 53 initial features is shown. As

can be seen from the histogram, the variable Maths Self-
Concept - Get Good Grades is the most chosen feature by

the feature selection algorithms, and therefore the most im-

portant variable in our math performance prediction model.

Furthermore, it can be seen that, for instance, the feature

Subjective Norms - Parents Like Mathematics is never cho-

sen by any of the feature selection algorithms and that this

feature therefore, seems to be negligible/insignificant when

predicting the math performance of Finnish students.

Figure 2 also illustrates the sum of chosen features by the

different feature selection algorithms. However, in this fig-

ure also the additional features λ7-λ2 are included. As can

be seen, the information whether a student was able to mas-

ter the preceding difficulty levels, are important features for

the math performance prediction of the next difficulty level.

It should be noted that the sums of the lasts six features

cannot be fully compared, because λ7 had the chance to be

selected in all of the six last prediction models, while λ2

could be selected only in the very last prediction models.

4.3. Results for Finland

In Table 3, the final results of the best approach for the

Finnish data, i.e. the iterative SVM classifier with only the

features that had been chosen at least five times (original

features) or at least three times (additional λ features) by

the feature selection algorithms, are reported. In each iter-

ative step, only the features that were selected for this step

were included. The table shows the accuracy, precision, re-

call, and f-score, which were computed on the confusion

matrix of the test data.

As expected, the accuracy results are better for the higher
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Table 2. Comparison of prediction accuracy (Finnish students performance in math items of different difficulty defined in label matrix

Λ) with different classifiers and feature selection algorithms. The best accuracies for each level are underlined.

Predicting success in math items of difficulty level 7
Full PCA Isomap ANOVA Fisher MRMR Gini

Nearest Neighbors 0.936816525 0.935601458 0.935601458 0.930741191 0.933171324 0.940461725 0.934386391
Naı̈ve Bayes 0.749696233 0.933171324 0.917375456 0.764277035 0.776427704 0.940461725 0.767922236
LDA 0.919805589 0.917375456 0.899149453 0.883353584 0.878493317 0.940461725 0.876063183
SVM 0.940461725 0.939246659 0.940461725 0.940461725 0.940461725 0.940461725 0.940461725
Random Forests 0.938031592 0.940461725 0.939246659 0.933171324 0.929526124 0.940461725 0.931956258

Predicting success in math items of difficulty level 6
Full PCA Isomap ANOVA Fisher MRMR Gini

Nearest Neighbors 0.834750911 0.825030377 0.835965978 0.82746051 0.817739976 0.838396112 0.817739976
Naı̈ve Bayes 0.720534629 0.843256379 0.831105711 0.731470231 0.742405832 0.838396112 0.742405832
LDA 0.808019441 0.809234508 0.833535844 0.784933171 0.795868773 0.838396112 0.795868773
SVM 0.838396112 0.837181045 0.838396112 0.838396112 0.838396112 0.838396112 0.838396112
Random Forests 0.834750911 0.832041312 0.832320778 0.812879708 0.834750911 0.838396112 0.815309842

Predicting success in math items of difficulty level 5
Full PCA Isomap ANOVA Fisher MRMR Gini

Nearest Neighbors 0.696233293 0.690157959 0.716889429 0.693803159 0.708383961 0.64763062 0.696233293
Naı̈ve Bayes 0.662211422 0.722964763 0.705953827 0.673147023 0.670716889 0.708383961 0.67436209
LDA 0.699878493 0.688942892 0.705953827 0.690157959 0.693803159 0.708383961 0.685297691
SVM 0.722964763 0.716889429 0.710814095 0.721749696 0.722964763 0.713244228 0.719319563
Random Forests 0.722964763 0.701470231 0.714459295 0.720534629 0.704738761 0.713244228 0.722964763

Predicting success in math items of difficulty level 4
Full PCA Isomap ANOVA Fisher MRMR Gini

Nearest Neighbors 0.614823815 0.611178615 0.575941677 0.592952612 0.599027947 0.585662211 0.605103281
Naı̈ve Bayes 0.648845687 0.626974484 0.640340219 0.668286756 0.660996355 0.619684083 0.659781288
LDA 0.640340219 0.650060753 0.634264885 0.620899149 0.636695018 0.619684083 0.645200486
SVM 0.67800729 0.679222357 0.643985419 0.653705954 0.65127582 0.623329283 0.653705954
Random Forests 0.650060753 0.646415553 0.611178615 0.64763062 0.625759417 0.623329283 0.622114216

Predicting success in math items of difficulty level 3
Full PCA Isomap ANOVA Fisher MRMR Gini

Nearest Neighbors 0.648845687 0.656136087 0.602673147 0.635479951 0.657351154 0.652490887 0.669501823
Naı̈ve Bayes 0.64763062 0.652490887 0.671931956 0.64763062 0.645200486 0.652490887 0.650060753
LDA 0.637910085 0.631834751 0.662211422 0.637910085 0.643985419 0.659781288 0.65127582
SVM 0.675577157 0.668286756 0.662211422 0.665856622 0.65127582 0.64763062 0.667071689
Random Forests 0.667071689 0.648845687 0.611178615 0.67436209 0.62818955 0.641555286 0.643985419

Predicting success in math items of difficulty level 2
Full PCA Isomap ANOVA Fisher MRMR Gini

Nearest Neighbors 0.573511543 0.583232078 0.539489672 0.543134872 0.539489672 0.546780073 0.546780073
Naı̈ve Bayes 0.571081409 0.582017011 0.622114216 0.569866343 0.579586877 0.602673147 0.583232078
LDA 0.577156744 0.580801944 0.602673147 0.59781288 0.589307412 0.607533414 0.57472661
SVM 0.59781288 0.59781288 0.605103281 0.596597813 0.599027947 0.605103281 0.599027947
Random Forests 0.572296476 0.599027947 0.545565006 0.591737546 0.571081409 0.603888214 0.567436209

Predicting success in math items of difficulty level 1
Full PCA Isomap ANOVA Fisher MRMR Gini

Nearest Neighbors 0.733900365 0.738760632 0.720534629 0.732685298 0.713244228 0.769137303 0.733900365
Naı̈ve Bayes 0.606318348 0.753341434 0.769137303 0.617253949 0.616038882 0.769137303 0.618469016
LDA 0.714459295 0.708383961 0.741567436 0.716889429 0.733900365 0.769137303 0.730255164
SVM 0.769137303 0.769137303 0.769137303 0.769137303 0.769137303 0.769137303 0.769137303
Random Forests 0.769137303 0.763061968 0.737545565 0.760631835 0.732685298 0.759416768 0.739975699

difficulty levels (because most students will fail this level)

and the lower difficulty levels (because most students will

master this level) than for the middle difficulty levels. On

the other hand, the precision increased monotonically from

the most difficult to the easiest question difficulty level.

This was most probably the case, because the classifier had

learned that most students fail items of the highest diffi-

culty and hence, simply returned 0 for the majority of the

test instances. Since accuracy is not the best measure of

performance we focus on the precision for the rest of the

discussion.
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Figure 1. Frequency of selected features of the 53 initial features by the four feature selection algorithms for the Finnish student data.

The higher the bar of a feature, the more often this feature was selected, and the more important this feature is for the prediction model.

Table 3. Results of iteratively predicting success in math items

of the different difficulty levels for Finnish students with SVM

and—for each difficulty level—only the most selected features by

the four feature selection algorithms.

Difficulty Accuracy Precision Recall F-score
Level 7 0.9579 0.0312 1.0000 0.0606
Level 6 0.8555 0.1385 0.5294 0.2195
Level 5 0.7427 0.3309 0.6866 0.4466
Level 4 0.7843 0.4029 0.6975 0.5108
Level 3 0.7096 0.5496 0.7791 0.6445
Level 2 0.6757 0.6530 0.7095 0.6801
Level 1 0.7630 0.9493 0.7833 0.8583

4.4. Results for all countries participating in PISA

Table 4 shows the prediction results for all PISA countries

(i.e. the 136344× 53 feature matrix of all students that had

complete values for all 53 features from the background

questionnaire and the corresponding 136344× 7 label ma-

trix for the same students). However, it should be noticed

that the same settings as for Finland were used, that is the

classification algorithm and the selected features that were

optimized for the Finnish data. For difficulty levels λ6 and

λ5 the prediction accuracies are actually higher than for

the Finnish data. However, this is most likely the case be-

cause most of the world’s students are not able to solve

items of this difficulty level. This assumption is supported

by the very low precision values. Moreover, we see again

the worst result for predicting λ2, where the prediction ac-

curacy is only slightly better than guessing.

Table 4. Results of iteratively predicting success in math items of

the different difficulty levels for students from all in PISA partic-

ipating countries with SVM and—for each difficulty level—only

the most selected features by the four feature selection algorithms.

Difficulty Accuracy Precision Recall F-score
Level 7 0.9524 0.0003 0.0714 0.0006
Level 6 0.8872 0.0027 0.2414 0.0054
Level 5 0.7723 0.0133 0.3118 0.0255
Level 4 0.6156 0.1627 0.5016 0.2457
Level 3 0.5817 0.7934 0.5918 0.6779
Level 2 0.5350 0.5629 0.5404 0.5514
Level 1 0.6539 0.9591 0.6656 0.7859

5. Discussion and future work
PISA data—as well as LSA data generally—provide an in-

teresting source for educational ML and DM applications,

because they are of high quality, internationally compara-

ble, and publicly available. However, the challenges of

working with these data are the high sparsity of the raw

data and the lack of any readily available and comparable

cognitive test results of the students.
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Figure 2. Histogram of selected features of the 53 initial features

plus the 6 additional ones for the iterative steps by the four feature

selection algorithms for the Finnish student data.

In this paper, we have presented an approach to prepare

LSA data for supervised ML approaches. In addition, ini-

tial results of using our approach for predicting success

in math items of various difficulty, have been presented.

Hereby, we have tested different classification and dimen-

sion reduction algorithm for the Finnish data, and then ap-

plied the best classifier with only the selected features of

different feature selection algorithm for the Finnish and for

the whole PISA data. The prediction accuracy was further

improved by adding for each succeeding difficulty level

the information whether the student mastered the preced-

ing difficulty level(s). An analysis of the chosen features by

the feature selection algorithm enabled a predictive power

ranking of the questions asked in the background ques-

tionnaire that actually explained the students’ math perfor-

mance.

The results presented in this paper are only preliminary and

we intend to extend and improve our experiments and study

in various directions. First of all, the results that were pre-

sented here are based on the fully available raw data only.

We intend to perform similar experiments for the whole

contextual data by first imputing the missing values.

We also intend to compare our approach to the Rasch model

and plausible value approach currently used in most LSAs,

which has evolved from the psychometric literature. It has

been argued that one of the weaknesses of the Rasch model

is the fact that all students with the same raw score (i.e.,

number of correctly solved tasks) obtain the same ability

estimate (Embretson & Reise, 2013). It would be interest-

ing to compare this to our approach, where the difficulty

level of the solved items is taken into account. As dis-

cussed by Baker and Yacef (2010), comparing and inte-

grating machine learning techniques to the ones from the

psychometrics literature, is one of the most distinguishing

features that separates the educational ML/DM discipline

from the traditional ML/DM research area.
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Abstract: The purpose of academic advising is to help students with developing educational plans that support their

academic career and personal goals, and to provide information and guidance on studies. Planning and man-

agement of the students’ study path is the main joint activity in advising. Based on a study log of passed

courses, we propose to use robust, prototype-based clustering to identify a set of actual study path profiles.

Such profiles identify groups of students with similar progress of studies, whose analysis and interpretation

can be used for better institutional awareness and to support evidence-based academic advising. A model of

automated academic advising system utilizing the possibility to determine the study profiles is proposed.

1 INTRODUCTION

The credit-based system is used to characterize the
requirements and progress of a student in many learn-
ing environments. Availability of personalized sup-
port is very important constituent of a learner’s suc-
cess (Nguyen et al., 2008). Academic advising (AA)
is an iterative collaboration process between student,
academic adviser, and academic institution, to tackle
the student retention. Advisers provide versatile as-
sistance to the students during their studies, making
the educational experience relevant and supported.

AA activity has a long history dating back to
1870s (Tuttle, 2000). Advising starts, when a student
becomes enrolled in higher education, and finishes
when the degree has been completed. The purpose of
academic advising is to ensure that the students carry
out the required studies to graduate. The central activ-
ity for this purpose is to support study planning, espe-
cially at the beginning of the academic life. Depend-
ing on the organizational culture, especially the stabil-
ity or dynamicity of the course schedule, an academic
adviser either needs to ensure that predefined study
plan is being followed or that a student knows all the
relevant study possibilities. Email, social media, web
and wikipages etc. provide means to share the nec-
essary information with the students. However, typ-
ically face-to-face discussions take place either regu-
larly (e.g., at the beginning of a semester or academic
year) or by students’ or advisers’ request. For more
personalized support, an adviser should know when

a student is in need of a study advice discussion and
what is the precise status of the studies.

Preliminary recommendations to do certain, espe-
cially compulsory, courses to proceed normally with
the major subject studies are provided by departments
and advisers. More precisely, for example at the Uni-
versity of Jyväskylä (JYU), all students are required
to prepare an electronic personal study plan with the
academic adviser from the home department. Advis-
ing is organized according to the satellite model re-
ferring to the distributed responsibility of academic
units (Tuttle, 2000). The engagement model between
advisee and adviser characterize the principal spirit of
counselling (Feghali et al., 2011).

In JYU, the study plan and the completed studies
create the starting point for a study plan assessment
discussion. However, especially in computer science,
the actual number of studies that have been made dur-
ing an academic year are typically less than recom-
mended (Saarela and Kärkkäinen, 2015a). Hence, it is
very common that the actual study path deviates from
the recommendations and plans, and in such a case an
advising intervention is needed. But how does an in-
dividual student and especially an individual study ad-
viser know, what is the relation between students’ re-
alized study path and that of the peer students? Thus,
could we, instead of comparing against the predefined
plans, advise students based on evidence from the ac-
tual study paths of other similar students?

Therefore, the purpose of this article is to pro-
pose using a learning analytics method (Chatti et al.,



2012), more precisely robust clustering (Äyrämö,
2006; Saarela and Kärkkäinen, 2015a), to create
groups of actual profiles of students concerning their
studies. Such profiles summarize the different typ-
ical accumulations of completed studies, increasing
the general awareness of the common study flows.
One can explicitly link an individual student to stu-
dent peers with similar study path profile in the same
institutional environment. This allows an adviser to
plan a possible intervention adaptively for a larger
pool of students instead of following each one indi-
vidually.

Creating general study profiles of students can
help departments in their assessment and planning
of when (and how) they provide the courses, espe-
cially the compulsory ones (Saarela and Kärkkäinen,
2015a). By automating general student profiling it
is possible to provide essential support for adaptive
on-line advising along the lines suggested, e.g., in
(Nguyen et al., 2008; Henderson and Goodridge,
2015). Individual student’s perspective, from self-
regulated learning and study planning point of view
without academic advising interface, was thoroughly
addressed in (Auvinen, 2015) (see also (Auvinen
et al., 2014)).

The contents of this article is as follows: after the
introduction, we provide background on academic ad-
vising and personalized student support in Section 2.
Then, in Section 3, we describe the data and the ro-
bust clustering method, and introduce three cases to
construct student profiles to support academic advis-
ing. In Section 4 features and a model of an Academic
Adviser system with automated mechanisms in it are
proposed. The work is concluded in Section 5.

2 BACKGROUND

Academic advising is a collaborative process in which
adviser and advisee enter a dynamic relationship
where adviser helps advisee to enhance the learn-
ing experience by helping in making academic deci-
sions (Henderson and Goodridge, 2015). The deci-
sion support could be made by analysis of student’s
records, as well as some external factors like interests,
goals, academic capabilities, schedules etc. (Noa-
man and Ahmed, 2015). Developmental Advising
means helping students to define and explore aca-
demic and career goals and pathways, as well as to
develop problem-solving and decision-making skills;
Prescriptive Advising, which is the more traditional
advising model, is mainly concentrated on providing
the information to the students according to their aca-
demic program, progress, academic policies, course

selection, etc.; Intrusive Advising refers to contact-
ing with student in critical periods like first year of
study before the declaring major, graduation period,
or when students are at-risk or they are high-achieving
students (Noaman and Ahmed, 2015).

Next we briefly summarize a pool of directly
AA related work that was identified through a non-
systematic search. Our main concern here is to illus-
trate the strong link between the needs and practices
of AA and the general utility of student profiling.

2.1 On Academic Advising

Student voices on AA were raised in only some ar-
ticles. El-Ansiri et al. (Al-Ansari et al., 2015)
used questionnaire to study student satisfaction and
support-seeking patterns among dental students in
Saudi-Arabia. Very low (only 7.6%) primary util-
ity help rate of advisers in the academic matters was
encountered. Even if the advisers were available
when needed, they were not able to provide the most
relevant information, e.g., on important dates and
courses. Hence, up-to-date course and timetable in-
formation seems to be a prerequisite for AA, which is
handled by the in-house developed, integrated study
information system Korppi1.

The pedagogical side of AA was also focused
rarely. In the work (Drozd, 2010) author studied aca-
demic advisers through the lens of transformational
leadership, i.e. how advisers can create a connec-
tion to students that positively influence their study
paths (by increasing and inspiring study motivation
and engagement/commitment in studies through in-
dividual and intellectual consideration). A question-
naire for undergraduate students strengthened the im-
portance of transformational leadership activities in
adviser-student communication and collaboration, in-
dependently from the student’s characteristics. The
lack of time for individual counselling efforts that was
visible in most of the reviewed articles here was not
emphasized in (Drozd, 2010). Dougherty (Dougherty,
2007) studied academic advisers from those students’
perspective who are doing very well in their stud-
ies. These students are called high-achieving stu-
dents. Authors address the need for the investigation
of unique characteristics of these students.

Technical support for AA has been considered in
many articles. The availability of extensive infor-
mation on courses to support automatization of AA
was emphasized in (Biletskiy et al., 2009). The au-
thors proposed course outline data extractor applica-
tion, which helps in recognizing similar or compara-
ble courses between different institutions, also help-

1https://www.jyu.fi/itp/en/korppi-guide



ing both students and academic advisers to keep track
of the variety of topics that i) have been covered in the
completed studies, ii) should be covered to complete
minor or major subject modules or the actual degree.
The authors in (Nguyen et al., 2008) proposed an
integrated knowledge-based framework based on se-
mantic technology that supports computer-based (au-
tomatic) e-Advising on the suitable courses for the
students. Naturally individual learning history data
provide the starting point for the system and, for this
purpose, the authors implemented and tested a data
integration tool.

The high workload of academic advisers, espe-
cially due to individual but many times recurrent han-
dling of basic issues with multiple students in a hurry,
was addressed in (Henderson and Goodridge, 2015),
with the proposition of an intelligent, semantic, web-
based application to assist decision making and au-
tomatization of repetitive counselling tasks. Core of
the system consisted of rule-based inference engine,
which mapped student profile with the study pro-
gram profile and organizational rules, to provide au-
tomatic suggestions on the courses to be enrolled in
the upcoming semester. In the preliminary evaluation,
a positive feedback of the system was obtained, al-
though the main limitation of suitability to only study
programs which follow a clear, predefined study path
of courses, was recognized. With very similar aims
and functionality, another web-based on-line adviser
was described in (Feghali et al., 2011). This system
was also evaluated positively when compared to the
current advising system. The authors emphasized that
such a tool only supports and does not replace a hu-
man academic adviser.

Conversational, fully autonomous agent support-
ing AA dialogs using natural language processing
(NLP) were suggested in (Latorre-Navarro and Har-
ris, 2015). The proposed system contained an exten-
sible knowledge base of information and rules on aca-
demic programs and policies, course schedules, and
a general FAQ. NLP performance of the proposed
system was evaluated positively. Also, the similar
multi-agent approach was suggested in (Wen and Mc-
Greal, 2015) for AA. This approach helps tackling a
dynamic and complex individualized study planning
and scheduling problem. As well as in (Al-Sarem,
2015) was proposed a decision tree model for AA
affairs based on the algorithm C4.5. The output is
evaluated based on Kappa measure and ROC area.
The main conclusion was made that the difference be-
tween the registered and gained credit hours by a stu-
dent was the main attribute that academic advisers can
rely on (Al-Ansari et al., 2015).

As can be concluded, earlier studies have mostly

concentrated on research prototypes which focus only
on few main components or tool support for existing
learning management systems. Taking into account
that user modeling is one of the key factors for includ-
ing personalization into the learning system, many re-
searchers used ontologies for learners’ models, be-
cause ontologies have many advantages for creation
of user models (Idris et al., 2009; Chen, 2009a; Le-
ung et al., 2010; Nguyen et al., 2008; Biletskiy et al.,
2009; Henderson and Goodridge, 2015).

Data-mining techniques have also been applied to
the learning environments in order to track users’ ac-
tivities, extract their behavior profiles and patterns,
and analyze the data for future improvement of the
learning results, as well as for identifying types of
learners (Minaei-Bidgoli, 2004). Mostly, for develop-
ing personalized learning plan, researchers used deci-
sion tree search, heuristic algorithms, genetic algo-
rithms, item response theory and association rules.
Also, many studies used semantic web technologies,
neural networks and multi-agent approach. Most of
the previous studies on personalized learning path
generation schemes have mainly focused on guiding
the students to learn in the digital world; i.e. each
learning path represents a set of digitalized learn-
ing objects that are linked together based on some
rules or constraints (Liu et al., 2008). While deter-
mining such digitalized learning paths, the learning
achievements, on-line behaviors or personalized fea-
tures (such as learning style) of individual students
are usually taken into consideration (Schiaffino et al.,
2008; Chen, 2008; Chen et al., 2008; Chen, 2009b;
Chen et al., 2005).

2.2 On Personalization of Student
Support

In general, many researchers have paid attention to
developing e-learning systems with personalization,
and the most common aspect in these system is the
creation of the personalized learning path for each
individual student or group of students. Most of per-
sonalized systems consider learner preferences, in-
terests and browsing behaviors, because it will help
to provide personalized curriculum sequencing ser-
vice (Huang et al., 2007). In the study (Chen et al.,
2005) authors proposed a personalized e-learning sys-
tem which is based on Item Response Theory (PEL-
IRT). This system is considering course material dif-
ficulty and learner ability, to provide individual learn-
ing path for learners. Learner’s ability estimation was
based on an explicit learner’s feedback (the answers
of learners to the assigned questionnaires). The sys-
tem appeared mostly like a recommendation system



of the courses for the learners. Authors in (Huang
et al., 2007) proposed a genetic-based curriculum se-
quencing approach and used case-based reasoning to
develop a summative assessment. The empirical part
indicated that the proposed approach can generate ap-
propriate course materials for learners taking into ac-
count their individual requirements. Later, in (Chen,
2009a), the authors developed a personalized web-
based learning system grounded on curriculum se-
quencing based on a generated ontology-based con-
cept map, which was constructed by the pre-test result
of the learners. Optimization problem for modeling
criteria and objectives for automatic determination of
personalized context-aware ubiquitous learning path
was suggested in (Hwang et al., 2010). This learn-
ing model not only supports learners with alternative
ways to solve problems in real-world situations, but
also proposes more active interaction with the learn-
ers. Authors in (Werghi and Kamoun, 2009) proposed
Decision Support System for student advising based
on decision tree for an automated program planning
and scheduling. The proposed approach takes into
account prerequisite rules, the minimum time (mini-
mum number of terms), and the academic recommen-
dations. The adaptive course sequencing for personal-
ization of learning objectives was suggested in (Idris
et al., 2009) using neural networks, self organizing
maps and the back-propagation algorithm.

A very closely related work to ours was reported
in (Sandvig and Burke, 2005). Authors proposed
a case-based reasoning paradigm which is based on
the assumption that similar students will have simi-
lar course histories. The system used the experience
and history of graduated students in order to propose
potential courses for the students. Unfortunately, this
approach required matching between students’ histo-
ries. Also, similar case-based reasoning was used by
(Mostafa et al., 2014) for developing a recommen-
dation system for a suitable major to students based
on comparison of the student information and similar
historical cases.

As reviewed, many suggestions for intelligent
software and information system support of AA have
been given. Many studies describe the creation of
intelligent learning systems that can make a curricu-
lum sequencing more flexible for providing students
with personalized and adaptive study support services
(Fung and Yeung, 2000; Lee, 2001; Brusilovsky,
1998; Lee, 2001; Papanikolaou et al., 2002; Tang
and McCalla, 2005). Universities are more and more
looking into developing self-service systems with in-
telligent agents as an addition or replacement for the
labor-intensive services like academic advising. For
example, The Open University of Hong Kong has de-

veloped an intelligent on-line system that instantly re-
sponds to enquiries about career development, learn-
ing modes, program/course choices, study plans, and
graduation checks (Leung et al., 2010).

However, the institutional starting point concern-
ing available digital information, especially for the
web-based systems that have been proposed, seems
to vary a lot. Some systems start and focus on pro-
viding easy access to course and degree requirements
information whose availability is to be assured first.
On the other hand, we might start from the situa-
tion where we can readily access most of the rele-
vant data: i) course information with basic contents,
learning goals, assessment methods, acceptance crite-
ria, schedule and location, teachers and lecturers etc.;
ii) individual, anonymous study records on passed
courses and completed studies. (Note that reliable in-
formation on student admission is currently not di-
rectly available in the organization under considera-
tion).

3 CREATION OF STUDY PATH
PROFILES USING ROBUST
CLUSTERING

3.1 Data

To illustrate the proposed approach, we utilized real
study records of the Bachelor (BSc) and Master
(MSc) students majoring in Mathematical Informa-
tion Technology (which is comparable to a major in
Computer Science at other universities) at the Uni-
versity of Jyväskylä (JYU/MIT). IT administration at
the University has recently created a data warehouse
of passed courses by all the students, which can be
utilized by the departments. On the other hand, the
electronic study plan system does not provide direct
interface for larger student groups, so both from ac-
cessibility and evidence-basedness points of view, we
focus on analyzing the real study log of the passed
courses. The log was anonymized, keeping student
IDs as keys, covering the four calendar years 2012–
2015. Note that students can start their studies in
the beginning of September (autumn term) or January
(spring term). Hence, the original study registry log
included a heterogeneous set of BSc and MSc stu-
dents who had started their studies either before 2012
or in the beginning of spring or autumn terms during
2012 – 2015.

The whole study log contained 15370 passed
courses by 1163 different students on 1176 different
course IDs. There were 942 male students (81%),



Figure 1: Probability of size of a course.

with mean amount of studies made 59.9 ECTS. Only
221 female students (19%) were identified, with mean
amount of studies made 57.0 ECTS. Hence, most of
the students in the log were either in the beginning of
their studies or progressing very passively and slowly.

Figure 1 shows the discrete density distribution
of the size of the passed courses. According to the
figure, 5 ECTS and 3 ECTS are the two most com-
mon sizes of the courses, the former covering around
30% of the studies. Moreover, there are a lot of small
courses (1 – 6 ECTS) with the exception of the MSc
thesis, 30 ECTS. Teaching in JYU is organized for
four periods during one academic year (plus the sum-
mer semester) in such a way that a course of ca. 5
ECTS can fit to one period. We conclude that because
the passed courses represent both major and minor
subject studies, division of the overall learning ob-
jects as courses is not optimal. This observation is
the first example on how summarization of study log
data provides visibility and feedback to the organi-
zation. During the course of writing this article, we
also found out that the instructions of JYU for prepar-
ing the next curriculum for 2017–2019 include strong
recommendation to decrease the number of courses
with only a few credits.

Next we aggregated how many credits per
semester each student had made. Similarly to (Saarela
and Kärkkäinen, 2015a), each calendar year was di-
vided into two semesters: the spring term (from Jan-
uary to June) and the autumn term (from July to De-
cember). However, since usually only a few courses
are completed during the summer (this is illustrated
in (Saarela and Kärkkäinen, 2015a)), it was reason-
able to divide the calendar year into only two parts
for further analysis.

In what follows, we profile, analyse and compare
two students cohorts: those who started their studies
in the beginning of the autumn term 2012 (A2012) or

2013 (A2013). Hence, for A2012 we end up with 8
and for A2013 with 6 integer variables representing
the aggregated amount of credits on half-a-year scale.
Since the students have progressed in their studies
very differently and many of them have not been ac-
tive during all the semesters of interest, both of the
data sets are very sparse containing a lot of missing
values (Saarela and Kärkkäinen, 2015a). This is the
key property that is taken into account in the profiling
approach that is described next.

3.2 Robust Clustering Method

As already explained, our goal is to assist the aca-
demic advisers by recommending suitable courses for
students based on passed courses of (possibly more
advanced) students with similar study path. For this,
we need to identify general profiles of similar students
and this is, precisely, the purpose of clustering. Par-
titional (or representative-based (Zaki and Meira Jr,
2014)) clustering seems to be the right family of clus-
tering methods to choose from because it assigns each
observation to exactly one cluster, which is repre-
sented by its most characteristic point, the cluster cen-
troid, which represents the common profile. Within a
cluster, distances of observations to the prototype de-
termine the most typical or representative members of
a cluster. Thus, instead of following many different
student profiles, the academic adviser can just follow
the most common profiles to get an overview of the
whole cohort.

Generally, partitional based clustering algorithms
consist of an initialization step, in which the initial
centroids of each cluster are generated, and iterations
of two steps where (i) each observation is assigned
to its closest centroid, and (ii) the centroid of each
cluster is recomputed by utilizing all observations as-
signed to it. The algorithm stops when the centroids
remain the same over two iterations. The most pop-
ular and most applied partitional clustering algorithm
is the k-means (Jain, 2010), also in learning analytics
studies (Saarela and Kärkkäinen, 2017). This algo-
rithm works very well for full and approximately nor-
mally distributed data since the sample mean is the
most efficient estimator for samples that are drawn
from the normal distribution. However, the sample
mean is highly sensible to all kinds of outliers (Huber,
2011) as well as missing values, which can be char-
acterized as special types of outliers. Also for a non-
symmetric (skewed) distribution, the sample mean is
not necessarily the most efficient estimator and other
location estimates might be preferable (Sprent and
Smeeton, 2016). Moreover, as explained in (Saarela
and Kärkkäinen, 2015a), the quantization error for the



integer-type variables like here has uniform not gaus-
sian distribution.

The spatial/geometric median is a robust nonpara-
metric location estimate, which remains reliable even
if half of the data is contaminated (Sprent and Smee-
ton, 2016). Mathematically, the spatial median is the
Weber point that minimizes the (nonsquared) sum of
the Euclidean distances to a group of given points
{xi} , i = 1,2, . . .n:

argmin
c

n

∑
i=1

‖xi − c‖.

Although the basic concept is easily understood and
has been extensively discussed in the literature (albeit
under various names, see (Drezner and Hamacher,
2001)), its computation is known to be difficult.

In (Äyrämö, 2006), the difficulty of computing
the spatial median during partitional clustering was
solved with the SOR (Sequential Overrelaxation) al-
gorithm (see (Äyrämö, 2006) for details). More-
over, in the implementation of the resulting k-spatial-
medians clustering algorithm, only the available (i.e.
not-missing) data is taken into account when the cen-
troid is recomputed.

To sum up, all of these above discussed prop-
erties – most importantly, the robustness to missing
data and the fact that every cluster is represented by a
centroid – make the k-spatial-medians clustering very
suitable for creating student’s general study profiles.
The fact that such a clustering approach works very
well for sparse educational data has been previously
shown in (Saarela and Kärkkäinen, 2014; Saarela and
Kärkkäinen, 2015b; Saarela and Kärkkäinen, 2015).
The initialization of the robust clustering method
was realized similarly as in (Saarela and Kärkkäinen,
2015): We started with multiple repetitions of k-
means for the complete data – without missing val-
ues – and then, applied k-spatial-medians to the best
of those results.

3.3 Clustered Student Profiles

Similarly to the earlier work in (Saarela and
Kärkkäinen, 2014; Saarela and Kärkkäinen, 2015b;
Saarela and Kärkkäinen, 2015a; Wallden, 2016), we
apply four different internal cluster validation indices
to determine the number of clusters: Knee Point
(KP) of the clustering error, Ray-Turi (RT), Davies-
Bouldin (DB), and Davies-Bouldin∗ (DB∗). All the
computations here were carried out in the Matlab-
environment, using own implementations of all the
algorithms.

From the two student groups A2012 and A2013,
we include in clustering only still active students, i.e.

those who have made credits during the autumn term
2015 (the last one analyzed). Furthermore, we restrict
ourselves to those students for whom over half of the
variables are available (Sprent and Smeeton, 2016).
This means that the 47 analyzed students in A2012
have made studies during at least four out of the seven
possible semesters (including the last one) and the
76 students in A2013 at least in three out of the five
semesters. Because of the anonymity, we obtained
further assistance in relation to the metadata and inter-
pretation of the clusters from the Study Amanuensis
of the Department (Study Amanuensis, 2016).

Figure 2: Boxplot for A2012.

Figure 3: Credit accumulation prototypes for A2012.

A2012

The boxplot in Figure 2 shows the large variability
in the study accumulations both within semesters and
between semesters. We see the larger accumulations
in the spring terms during the first two years, and
a slightly decreasing overall trend after that. There



are always exceptional students who have made much
more studies than their peers.

KP, DP, and DP∗ indicated four clusters and RT
had also local minimum there, so we choose to an-
alyze four different general study progress profiles.
The profiles for A2012 are depicted in Figure 3,
where the size of the cluster is given in the top-right
corner. The profiles are sorted in the ascending order
with respect to the total number of credits.

The main group of 21 students in the first clus-
ter illustrate a potential start of the studies in the first
year, with strong passivation after that. They have ob-
tained prototypically 65 ECTS until the end of 2015.
Based on (Study Amanuensis, 2016), by a closer look
on the 8 students from the cluster closest to the cen-
troid, these are all older BSc and MSc male students
(born before 1990). They are either distant students
studing while working or have completely chosen to
change their orientation from an earlier occupation
and already finished degree. The difficulties in studies
and reasons of such a behavior, for a similar adult stu-
dent profile, were thoroughly discussed in the earlier
work (Kaihlavirta et al., 2015) from the same context
(department) than here.

The second group of only 7 students, who gen-
erally obtained 103 ECTS, shows opposite behavior:
very slow start in the first year, activating to an appro-
priate level then. Three most characteristic students
here were young males, who were involved in the mil-
itary service during the first study year. This complete
explains the observed behavior.

The third group of 10 students, who generally ob-
tained 147 ECTS, did their studies very actively for
the first 4–5 semesters. Analysis of the three most
characteristics students revealed two young and one
older male students who either took job or became
active in student organizations during the third year
of the studies.

The fourth profile with 9 students, altogether 184
ECTS in general, illustrates that a good start on
the study activity carries over the semesters. Three
mostly characteristics students were again all males,
one MSc student and two BSc students. Note that
similar finding on the importance of active start in
an individual course level was given in (Saarela and
Kärkkäinen, 2015a).

Students who are mostly in need of academic ad-
vising are the ones in the first cluster. They can be
identified either in the beginning of their studies or af-
ter the second semester, because even if still making
studies, their accumulation is much less than in the
third and fourth cluster. Their characterization also
suggests the department to rethink the study entrance
criteria.

Figure 4: Boxplot for A2013.

A2013

For A2013 all cluster indices suggested three pro-
files, which are illustrated in Figure 5. This and the
fact that there are now one profile less than in A2012
suggests more stable organization of the curriculum.
Also the boxplot in Figure 4 supports such finding,
especially showing smaller variability in the obtained
credits between the autumn and spring terms com-
pared to A2012 in Figure 2.

Student group in the need of intrusive academic
advising consists of those 23 students with small-
est accumulation of credits. These students start and
continue very slowly in their studies, although the
level of activity was increasing in the fourth and fifth
semesters. Their general ECTS accumulation after
five semesters was 44 ECTS. Analysis of the five most
representative students revealed two older male stu-
dents (birth year before 1990), two males with indi-
cations of military service, and a female student. Ac-
cording to (Study Amanuensis, 2016), especially the
younger students showed signs of low self-regulation
during academic advising sessions.

The second profile of 17 students, completing typ-
ically 80 ECTS, showed similar behavior to the sec-
ond profile in A2012: the minimal first year is raised
to a good level of study activity later. A closer look on
the five most representative students showed young,
two female and three male students. Four of these had
identified themselves as a non-active student during
the first study year, again mostly due to the military
service of the young male students.

The third profile of 36 most active students, ac-
complishing 123 ECTS typically, showed similar
overall behavior than the fourth profile in A2012. The
first semester is slightly smaller but then the study
path proceeds in the desired way. Recapitulation of



Figure 5: Credit accumulation prototypes for A2013.

the meta data of five most representative students
showed five male students, of whom three were ori-
ented towards game programming and development -
the most recent study line of the department.

We note that even if the boxplot in Figure 4 in-
dicated more stable study path with respect to au-
tumn and spring semesters, the two profiles of truly
active students still illustrated larger study accumula-
tions in the spring than in the autumn. These findings
are, however, mostly explained by the longer calen-
der time for the two periods in the spring term com-
pared to the autumn term – a general peculiarity of the
Finnish higher education system.

The similarities and differences between the two
sets of profiles just discussed emphasize the impor-
tance of the use of evidence-based information in aca-
demic advising. On one hand, there are repetitive pro-
files of students proceeding in their studies well or
slowly. The latter ones needs to be detected and sup-
ported in an intrusive manner in academic advising.
The home department responsible for major subject
studies and the other departments providing minor
subject studies should be informed about the found
hindrances of the study paths. In the case analyzed
here, there is a clear change of study accumulation
profiles from A2012 to A2013, which suggests that
the organization of courses, the capabilities of stu-
dents, and/or their support through academic advising
have improved in the educational organization under
study.

4 PROPOSITION OF A SYSTEM
MODEL

As shown, it is important to follow the actual progress
of the students in their studies. There might be no

need for an advising intervention, but if so, one should
automatically notify the students and the study coun-
selling on the deviations in the study path. The
problems of not passing courses and not following
suggested study plans usually also call for organiza-
tional considerations whether learner ability and the
difficulty level of the recommended curriculum are
matched to each other properly (Huang et al., 2007).

4.1 Proposed System Architecture

This subsection describes the novel system architec-
ture for AA and automatic feedback based on recog-
nized student group profiles which are obtained by us-
ing clustering. We also present an overview of the AA
process as both manual and automated process.

The architecture of the proposed system’s model
for the AA is presented in Figure 6. The system
has two main databases: learner profile database
and curriculum database. Learner profile database
stores learner’s data about studies, assessment re-
sults, timetables of completed studies, etc. Curricu-
lum database stores information about compulsory
courses, other courses, timetables, etc. The academic
advising system’s part consists of several blocks like
linking individual students to their peers with similar
study path profile together with the recommendation
block and planning block.

Based on the system architecture, the details of
system’s main functionality read as follows:

1. Collection of learner’s personal information.

2. Collection of information about the courses and
completed studies.

3. Creation of study progress profiles along the lines
of Section 3.

4. Linking the individual student to student peers
with similar study profile in the institutional en-
vironment.

5. Student’s progress check. If student is linked to a
profile requiring intrusive advising, inform the ad-

Figure 6: Architecture of the Academic Adviser.



viser and the student by providing the interpreted
study profile to support the communication and
problem solving.

6. Modification of the study plan on recommended
courses and their timetables by taking into ac-
count the evidence related to the identified study
profile.

7. Planning and realization of an intrusive profile in-
tervention adaptively for a larger pool of students.

Data collection related to the system is, naturally,
all the time active. The evidence-based study profiles
can and should be recomputed on regular basis. A
natural suggestion would be to do this after the studies
made during the previous semester have been stored
and become available for clustering.

4.2 Automated Academic Advising
process

The automated process of Academic Advising, re-
lated to the system’s architecture and main function-
ality as described above, is presented in Figure 7. The
given proposition allows manual control of the contin-
uous advising activity for every learner individually,
or the more automated process where the role of the
advisers is shifted to the higher level of abstraction.
The difference on the level of learner’s life cycle be-
tween these two use cases is depicted in Figure 8. The
automated process is highlighted with the red color
in the figure. In the automated scenario, the respon-
sible persons of the study organization only provide
policies, planning and regulations. This can reduce
the responsibility for the daily routine work and could
help to provide recommendations for a larger pool of
students rather than for the each individual learner.

The work-flow related to Figure 7 reads as fol-
lows: The learner is choosing the study program of an
educational institution. After that he or she chooses
with AA the proper courses which are related to the
chosen program and creates a study plan. Information
about the student, the required courses and progress
in them is stored in the database and is automatically
changed/refreshed after each passed course. After
passing several courses, system can attach a student
to a group of students with similar, actual study path.
If learners are doing well, evidence-based determina-
tion and communication of this during advising en-
courages them to continue like that. If they are at-
tached to a profile which does not progress with the
studies as expected, the system can identify this early
and provide intrusive academic advising support for
both the advisor and the students in question.

The proposed automated mechanism solve an im-
portant problem of improving and providing aca-
demic advising, because more and more students
should receive guidance with their study plans before
graduating. This system will help to plan when and
how to provide the courses, especially the compulsory
ones, as well as to plan a profile intervention adap-
tively for a larger pool of students, which will reduce
the human effort of academic advising.

5 CONCLUSIONS

Academic Advising is an essential part of daily ac-
tivities in an educational institution and an important
component in the learner’s study life. Nowadays, we
need to be able to create and manage personalized
study plans and study paths taking into account learn-
ers abilities and regulations of the learning environ-
ment. And in order to better help students, Academic
Adviser should be able to manage a rich set of infor-
mation, e.g., on short-range program planning, evalu-
ation of students, and generation of the proper teach-
ing schedule, as well as plan possible interventions
adaptively for a group of students instead of follow-
ing all individual students separately. It is decisive
that learner should receive proper advising – poor or
no advising is known to have a negative effect on the
progress in studies (Al-Ansari et al., 2015).

In this paper, we presented a compact literature re-
view about Academic Advising, mostly focusing on
Automated Academic Advising and Intelligent Aca-
demic Advising. It was then described how, by using
a robust variant of prototype-based clustering method,
which is especially suitable for data with missing val-
ues, one can create prototypical student group profiles
characterizing the overall progress of the studies. This
allows academic advisers to provide evidence-based
information on the study paths that were actually re-
alized by individual students. Moreover, academic in-
stitutions can focus on management and updates on
course schedule having an effect on clearly charac-
terized and recognized groups of students. Note that
even if the sample groups of students that were pro-
filed here were very small, the used method is scal-
able to hundreds of thousands of students (Saarela and
Kärkkäinen, 2015b).

Then a reference model for automated Academic
Advising system was proposed. The proposed archi-
tecture and model of the system are intended for a
development phase to prototype the whole automated
process, where the learners will be profiled regularly,
and where the proper study path will be presented,
as well as deviating learners detected. The proposed



Figure 7: Automated Academic Advising process.

Figure 8: Comparison of the manual and automated pro-
cesses of learner’s study life cycle.

model of the AA system will have automated process
of study path recommendation. This system will help
to plan when and how to provide the courses, espe-
cially the compulsory ones, as well as to plan a profile
intervention adaptively for a larger pool of students,

which will reduce the human effort of academic ad-
vising.

By continuing the development of the line of
work, we could consider the study paths with higher
granularity than per semester. Also, the main func-
tionality of the proposed system – to provide an au-
tomated notification for the academic advisers about
students and their progress, with the interpretation of
needs to modify and re-plan the study path – should
be properly evaluated. Moreover, better availability of
learner’s personal information concerning the study
entrance criteria and current life situation, e.g., a part-
time job or living far from the institute, could support
both interpretation of the generated student profiles
and better preparation and management of the inter-
vention patterns of academic advising.
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The  Finnish publication channel quality ranking system  was  established in 2010.  The  sys-

tem  is expert-based, where  separate  panels decide  and  update  the rankings of  a  set of

publications  channels allocated  to  them.  The aggregated rankings have a  notable role  in

the  allocation of public  resources into universities. The  purpose  of this  article is  to  ana-

lyze  this national  ranking system.  The  analysis is mainly based  on two publicly available

databases  containing the publication  source  information  and the actual national publica-

tion  activity  information.  Using  citation-based indicators  and other  available  information

with  association rule mining, decision  trees,  and confusion  matrices, it is shown that  most  of

the  expert-based rankings can be  predicted  and  explained  using  automatically  constructed

reference  models. Publication channels,  for  which the Finnish expert-based rank is higher

than  the estimated  one,  are  mainly  characterized  by  higher publication  activity or recent

upgrade  of the rank. Such findings emphasize the  importance of openness  of information

on  a  ranking system, with its  multifaceted evaluation.

© 2016  The Authors. Published by  Elsevier Ltd. This  is an open  access  article under  the  CC

BY-NC-ND  license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The  quality  or impact of a publication channel (i.e., source of publications) can be used for many purposes. Traditionally,

the  impact of  a serial has been used to determine the most important sources of disciplinary knowledge to  be  acquired for  the

university libraries – nowadays in  digital form. Another, more recent function is  to use the research output of  universities to

evaluate their operational performance through a Performance-based Research Funding System (PRFS). Currently, in  many

countries, PRFSs have a prominent role in national resource allocation (Abramo &  D’Angelo, 2015; Auranen & Nieminen,

2010; Fairclough &  Thelwall, 2015). According to Hicks (2012), a PRFS can utilize either an  evaluation-based (peer-review)

or  an  indicator-based (bibliometric) model. The prime example of the evaluation-based model was the emergence of the

Research Assessment Exercise in 1986 and its transformation to Research Excellence Framework in  England (Wilsdon et  al., 2015).

For indicator-based models, which are of the main interest here, one  has witnessed a transition from the  raw numbers of

different kinds  of publications (e.g., books, articles, and reports) towards their aggregated quality indicators (Haustein &

Larivière, 2015). Here an  important lesson comes from  the Composite Index (CI) that was  implemented in  Australia in 1995,

where university funding was based only  on the number of publications. However, as  shown by Butler (2003), this mostly

led to a higher publishing activity in  lower quality  journals so that the overall impact of  the publications dropped. As  a
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result, the national PRFS  (Excellence for Research in  Australia 2012) uses  both indicators and peer evaluation by an evaluation

committee (Vanclay & Bornmann, 2012).

National allocation of research funding using solely an  indicator-based model is not common (Hicks, 2012). The PRFS

in Flanders (Belgium), as depicted in Verleysen, Ghesquière, and  Engels (2014), provides one  example, where one of  the

four pillars of funding for the Flemish universities is  based on publications and  citations. The Italian research assessment

exercise (Valutazione della Qualita’ della Ricerca) first applied a hybrid peer-review/bibliometrics method during 2004–2010

(Giovanni, Tindaro, &  D’Angelo, 2014), and in 2011, introduced a model in which universities were free to choose between

peer-reviews and bibliometric indicators as their research evaluation method (Cattaneo,  Meoli, &  Signori, 2014). The research

funding evaluation methodology in  Czech (Metodika hodnocení) counts all research outputs – among them publications –

and then uses aggregated research output points as the basis for the university funding (Good, Vermeulen, Tiefenthaler,

& Arnold, 2015). Generally in Europe, as  recently summarized by Pruvot, Claeys-Kulik, and Estermann (2015), an  output-

oriented funding formula as  the primary mechanism for research funding is used in  England, Finland, Flanders, Ireland, and

Poland.

The Nordic system, together with that of  Flanders, is distinguished from the other indicator-based PRFS models by

the development of open, full coverage national databases in  order to  record  and validate academic publication activity

(Verleysen et al., 2014). These databases provide  the first basic element of the so-called Norwegian Model (NM) that has

been described by Ahlgren, Colliander, and  Persson (2012), Sivertsen (2010), and Schneider (2009). The main purpose of

the NM is to combine (assess) production and quality of publications, without directly using citations. The purpose of the

other main components of the model is  to create  a  unified ranking system among various academic disciplines. Finally,

the publication points counted using the aggregated ranks determine the university’s share in annual government research

funding. According to a recent evaluation by  Schneider, Aagaard, and  Bloch (2015), the NM has  proved to serve its  purposes

in Norway. In  particular, in comparison with  the above mentioned CI in  Australia, the quantity of publications has grown,

while the overall quality of publications remained basically the same (Ahlgren et al.,  2012; Schneider et al.,  2015).

The other two Nordic countries –  first Denmark (Schneider, 2009) in  2009, and then Finland (Puuska, 2014, pp. 81–83) in

2010 – have introduced their national PRFSs that follow the NM.  Similarly to Norway, the main reason to creating a unified

national ranking system in Finland for all relevant publication channels was the difficulty in  using available quality indicators

to compare the various research and publication cultures of different disciplines (e.g., comparing humanities or social science

(SSH) to technology or natural science). The  purpose of  the Finnish database, JuFo1 is to highlight  for the national scientific

community the characteristics of all relevant publication channels. Currently, 13% of  public university funding in Finland is

based on the average weighted sum of quality ranks of all  the publications that were produced over a period of three years.

The national goal is to  target research activity in prestigious international forums, and to enable national evaluation and

management of research activities and  quality over the years. Hence,  JuFo  serves in Finland both as  an  available indicator of

the quality of publication channels and as a guideline for allocating funding to its national research institutions.

Generally,  the quality of a  publication channel can be evaluated by an  expert in that channel’s area of academia (expert-

based), or by citation-based indicators of scientific impact (Ahlgren et  al., 2012; Ahlgren & Waltman, 2014). The classifications

of publication channels in JuFo –  i.e. the Finnish ranks – are expert-based, like they generally are in the NM as well. Though

citation-based indicators can be used as an  aid in  the NM, the final decisions about the ranks should be  made by  experts

(Sivertsen, 2010). In  February 2015, JuFo incorporated 29,443 different publication channels, assigning every journal and

conference proceeding publication channel to one of 24 expert panels. Each of these 24 panels is composed of  experienced

and respected Finnish researchers in  different scientific fields (all  fields can be found in  Table A.12). A  steering committee

allocates publication channels to the panels and  provides common ranking rules.

Although the PRFSs of the three Nordic countries following the NM are fairly similar, some crucial differences exist. The

Danish and Norwegian PRFSs have  the same number of  quality ranks: 0  (non-scientific publication channel), 1 (scientific

publication channel), and  2 (publication channel with especially great scientific prestige). In  both  countries, the ranks are

updated annually. Publication channels at rank 2 can, at most,  account for  20% of  the world’s publications in a discipline.

In Finland, each expert panel must classify  all assigned publication channels to  one  quality  category. However, unlike the

Norwegian and Danish PRFSs, in Finland, the number of publication channels (not the number of  publications) is used  to

define the quality  ranks percentages. Moreover, the Finnish JuFo system has  one additional rank, (3), which is  reserved for

the top (at  most 5%) of  the rank 2 publication channels from each discipline. An additional difference is that in Finland, the

ranks of all publication channels in  the list  are reevaluated only every fourth year. The last  reevaluation of  all publication

channels took place during 2014, and were available in the JuFo list in  early 2015.

The purpose of this paper is to  analyze the  expert-based ranks in the  JuFo list. At the  moment, the state covers all  costs

associated  with  the publication forum, its management, and  the evaluating panels. Furthermore, as  argued by the Danish

Centre for Studies in Research and Research Policy (2014),  one weakness of an  indicator  like the JuFo-rank is the lack  of

transparency in  the nomination process of the steering committee and the panels. As  Serenko and  Dohan (2011) discovered,

an expert’s current research interest can strongly influence his  or her ranking of publication channels. Therefore, our basic

research questions are:

1 JuFo is the abbreviation of  “Julkaisusfoorumi”, which means “publication forum” in Finnish.
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(i) Do we need the system in  its  current form, or can the ranks be automated by rules using available information?

(ii) Can possible deficiencies in rankings be linked to certain characteristics of the decision-making process or the  decision

makers?

The similarity of the Finnish system to that of  Norway and  Denmark implies that the present study compares expert judgment

on the individual publication channel level  across three countries, which involves, as far  as we know, a novel research setting.

As a result, the main question of  the present study  –  following the research  track of the previous studies by  Ahlgren et al.

(2012), Ahlgren and  Waltman (2014), and the Danish Centre for Studies in  Research and Research Policy (2014)  –  is to address

the two basic approaches for  evaluating publication quality: expert-based versus citation-based publication channel ranking.

We propose to answer the research questions by linking two publicly available national datasets to external reference

measures retrieved from Thomson Reuters’ Journal Citation Reports® and Scopus®. We argue that repeatable patterns and

rules, based on available relevant information, can be used to  modify the entire ranking system, using central decision making

to improve ranking efficiency and transparency. Thus, automatic and repeatable rules would help to open up  the  nomination

process, assist panel members in  their decision-making, and possibly save work and costs related to the system. Notably,

studies that discuss automatization of expert judgment in  research evaluation on the basis of advanced methodology and

large datasets presently have a broad interest in  research policy (Wilsdon et  al., 2015).

In the existing quantitative evaluations of expert-based rankings (e.g., Ahlgren et al., 2012; Ahlgren & Waltman, 2014;

Vanclay, 2011), typically a small set of  citation-based indicators are linked to the expert-based rankings. This  means that only

those publication channels that have  a reference citation-based indicator can be assessed. Here, our goal is to enlarge (even

maximize) the coverage of each expert-rank evaluation by incorporating into  it more explanatory variables (metadata) and

involved data analysis techniques than existing studies do.  For instance, the binary information concerning whether or not

certain citation-based indicators are available has clear relationship to  the ranking, as will  be evident later on. Therefore,

our contributions are two-fold: First, we address the broad international relevance concerning the question of expert-

based versus citation-based publication channel rankings. Second, we  use  a novel methodological approach combined with

available data from large datasets to  analyze the expert-based decisions.

The structure of this paper is as follows: First, we describe the JuFo  data and its available attributes (Section 2). Second, we

present our overall analysis method (Section 3), which is based on  triangulated (Bryman, 2004) machine learning techniques.

Third, we present how well  the rules we identified can predict the Finnish expert-based ranking (Section 4). Moreover, we

characterize the publication channels that are misclassified when the aforementioned rules are used. Finally, overall patterns

and findings are presented in Section 5.

2.  Data

The  data for this study comes from three sources:

1. JuFoDB: Database of the Finnish publication forum, JuFo2, which contains all nationally evaluated publication channels.

Data  was retrieved from this database in February 2015.

2. JuuliDB: The publicly accessible database of Juuli3 that contains all  publications of Finnish researchers. Each publication

channel in  JuFoDB has a  unique Juuli ID,  through which all  Finnish publications in  that particular channel can be found.

Data  was retrieved from this database in September 2015.

3. The Journal Citation Reports® (JCR): Published by Thomson Reuters, there is no direct link available from JuFoDB to the JCR.

However,  8178  of all the 8539 observations from the Thomson Reuters database were linked to publication channels in

JuFoDB  by using the  ISSN available in both databases. Data from this database was  retrieved in September 2014.

Altogether, 29,443 different publication channels with 33 attributes were retrieved from  JuFoDB. The example in  Table 1

shows available attributes for the Journal of  Informetrics. As can  be seen from the table, the Journal of Informetrics has  been

evaluated as one  of the most prestigious journals in its field (rank 3). The Finnish expert-based rank (i.e., the JuFo-level) of

each publication channel as well as the Norwegian and Danish expert-based rankings can be obtained directly through the

JuFoDB. Moreover, as can be  seen in  Table 1, the three indicators from the bibliographic database Scopus®,  that is the SJR,

the SNIP and the IPP, are featured. Furthermore, by using the ISSN linkage to Thomson Reuters’ JCR, we  can, for the common

publication channels, access the six  original JCR  variables (Total Cites, Articles, Impact Factor, Cited Halflife, Immediacy Index,

and 5-Year Impact Factor), as well as the two Eigenfactor metrics (Eigenfactor Score  and Article Influence Score).

In addition to some more general data, such as the unique identifier (ID), ISSN, and publisher, the JuFoDB also provides the

information on  the panel (see Table A.12)  responsible for evaluating a publication channel. Moreover, through the link to

JuuliDB (the last attribute in Table 1), one can  directly access the information of all  researchers in Finland who  have published

in the particular channel. Additional information such as abbreviation, ISBN, end year, continued under the  name and  continued

JuFo-rank are available for some publication channels, but were not included in Table 1  because they were not available for

2 Available at: http://www.tsv.fi/julkaisufoorumi/haku.php.
3 Available at: http://www.juuli.fi/?&lng=en.
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Table  1

Information available in  JuFoDB with  the example of the Journal of Informetrics.

Attribute Value

Level 3

JuFo ID  60692

Title Journal of Informetrics

Parallel title or  subtitle

Title  details

Website http://www.journals.elsevier.com/journal-of-informetrics/

Type Serial

ISSN (print) 1751-1577

ISSN (online) 1875-5879

Starting year 2007

Country of  publication NETHERLANDS

Publisher Elsevier BV

Language English

Norway level 1

Denmark level 2

ERIH field

SJR 2.541

SNIP 2.018

IPP 3.51

DOAJ No

Sherpa/Romeo Green

Evaluating panel 17

Field ;1 Natural Science;5 Social Science;

MinEdu field  111 Mathematics

112 Statistics

113 Computer and information sciences

512 Business and management

518  518 Media and communications

Web  of Science fields INFORMATION SCIENCE &LIBRARY SCIENCE (SSCI)

Scopus fields Modelling and Simulation

Management Science

Evaluation  history Level  2015: 3

Level  2014: 2

Level  2013: 2

Level  2012: 2

Juuli  60692

Table 2

Comparison of  the discipline-wise rankings in JuFo.

Discipline ID  Rank 0  Rank 1 Rank 2  Rank  3 Total occurrences

Natural science 1 1243 (14%) 6628 (75%) 733 (8%) 248  (3%) 8852 (100%)

Technology  2 1294 (26%) 3300 (65%) 348 (7%) 100 (2%) 5042 (100%)

Medical  and health 3 250  (5%) 4615 (85%) 430 (8%) 113  (2%) 5408 (100%)

Agriculture  and forestry 4 106  (10%) 904 (83%) 61 (6%) 24 (2%) 1095 (100%)

Social  science 5 1521 (18%) 5777 (69%) 865 (10%) 267  (3%) 8430 (100%)

Humanities  6 652  (9%) 5196 (75%) 837 (12%) 219  (3%) 6904 (100%)

Other  9 22 (27%) 52 (64%) 1 (1%) 6  (7%) 81 (100%)

All  disciplines – 5088 (14%) 26,472  (74%) 3275 (9%) 977  (3%) 35,812 (100%)

the Journal of Informetrics. None of the observations in the database  is complete, meaning that all of the publication channels

have missing values for at least some of the 33 total attributes. Hence,  for utilizing all  of available data in  the analysis, one

faces a significant sparsity problem (see, e.g.,  Saarela & Kärkkä inen, 2015, and  articles therein).

Each  publication channel in  JuFoDB is assigned to at least one discipline. Rankings are  presented according to discipline

in Table 2, in  which most of the publication channels have been evaluated as  basic, or rank 1. We  can see from the table

that the percentages do not differ much between the disciplines. However, Natural Science has more than ten  times more

rank 2  and 3 publication channels than Agriculture and Forestry. Even if this should reflect  the size of the overall publication

channel population, it probably better reflects the size of the national researcher population in a discipline. From both a

discipline and panel perspective, the more publication channels can be brought under evaluation, the more high ranks can

be given in absolute terms.

Table  A.12 provides information about the distribution of the different ranks according to  the panels. Although a discipline

may have multiple possible linkings, each publication channel is attached to only one  panel. As can be seen  in the table, some

differences exist when it  comes to the  percentage of the  highest classified publication channels across the panels. However,

all panels adhere to the rule  (see Section 1) that 20% of the publication channels at most are  allowed to be classified as rank

2, and 5% at most as rank 3.  There is no panel information available in JuFoDB for 6562 observations (see the first column
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Table 3

Overview of used variables, their availabilities in  percentages, and preprocessings.

Variable Availability Preprocessing

rank 100% The categorical (0–3) Finnish expert-based rank (JuFo-rank).

panel  100% The categorical indicator which panel (1–24) was  responsible for evaluating the channel.

type  100% 3 for  journals, 2 for  conferences, 1 for book publishers.

inJCR  100% 1 if the publication channel can be found in  Thomson Reuters’ JCR, 0 otherwise.

nrOfPub  100% The total number of publication in  this channel as  retrieved from JuuliDB.

rankChange 100%
0  if  there was  no change compared to the rank in  the previous year,

1 if the current rank is  lower, and 2 if the  current rank  is  higher than  in  the previous year.

language  94.76% 3 for  English, 2 for  Finnish or Swedish, 1 for other languages. NaN if  not available.

age 91.12% Current year (2015) minus the start year of  the channel. NaN if start year cannot be  found.

NORrank 76.56% The categorical (0–2) Norwegian expert-based rank.  NaN if not  available.

DNKrank  71.0% The categorical (0–2) Danish expert-based rank. NaN if not  available.

SJR  67.81% The continuous SJR value. NaN  if not  available.

SNIP 65.06% The continuous SNIP value. NaN if  not  available.

IPP 64.69% The continuous IPP value. NaN  if not available.

sherpaCode1 60.10% 5 for  green, 4 for blue,  3  for gray, 2  for yellow, 1 for  white.  NaN if  not available.

1 Definitions and terms of  Sherpa are provided at  http://www.sherpa.ac.uk/romeoinfo.html.

in  Table A.12). The publication channels that have not been assigned to any panel have a special profile: they are all  book

publishers and  have mostly been evaluated as rank 0  (see Table A.12). What is not clear, based on the general description

of the ranking system as described in Section 1,  is who could update the ranking of the non-panel-allocated publication

channels?

2.1.  Observations and  variables used for the  study

For further analysis, we selected all 22,881 observations from JuFoDB that were assigned to a panel. Moreover, we utilized

all available variables that might affect the expert rank of  a publication channel. Table 3 provides an  overview of all the used

variables, their preprocessings, and their availability with respect to the 22,881 observations under study. It is important to

note that the distribution of ranks (0–3) of our observations is very imbalanced: 2.01% are  rank 0, 2.87% are rank 3, 9.85% are

rank 2, and 85.27% are rank 1.  Hence, for example a trivial classifier returning always ‘rank  1’ would be more than  85% correct.

As will be seen  below, by  using the proposed methods and techniques, we only obtain slightly better overall classification

accuracies than this. However, compared to the trivial classifier, the advantage of these methods and techniques is their

explicit construction allowing one to identify and discuss salient variables of  the models.

3. Method

Our analysis was based on a combination of different machine learning techniques (e.g., Alpaydin, 2010) with a unified

analysis pattern: We first generated an automatic indication of ranks and, then, studied the  deviations from this to analyze

their characteristics. All  computations were performed using Matlab 2015b. The applied techniques and deviations used are

as follows:

• Association  rules to determine patterns in the data based  on the availability of variables (deviations are defined as

publication channels for which the rules do not apply)
• Decision tree with  stratified cross-validation to construct a classification model for the ranks,  using the through association

rules detected patterns in  data  (deviations are defined as misclassified publication channels)
• Reference indicator detection using triangulated PCA for Thomson Reuters’ JCR (confusion matrices are used  to define

deviations from the baseline)

3.1. Decision tree

We  aim to predict the Finnish expert-based ranking by  automatic rules. Decision tree is a supervised machine learning

technique  that can  predict the categorical output (rank) from given categorical and continuous predictor variables. It is very

suitable in our case because  we  are interested in a  prediction model that provides explicit rules with respect to the predictor

variables used.  A decision tree presents the rules in a tree-like  structure, whose nodes provide readable and easily accessible

rules on the so-called splitting variable for human interpretation. We  use  the CART (Breiman, Friedman, Stone, &  Olshen,

1984) decision tree induction algorithm (default in Matlab), in which the splitting is based on Gini’s diversity index.

However, one problem with  using a decision tree (explicitly visible in Table 3) is the  high percentage of missing values

in data. Observations that have a  missing value  for a splitting variable are automatically assigned to the most frequent class.

This is especially unsuitable in our case, since we  have (as  already discussed in Section 2.1) very imbalanced class sizes. If

we use a  decision tree for the whole data, we receive an almost perfect classifier. However, this is not because the classifier
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Table  4

Confusion matrix to identify highly deviating publication channels.

Ref. rank  JuFo-rank

Rank 0  Rank 1 Rank 2  Rank 3

Rank 0  + +  − −

Rank  1  + +  +  −

Rank  2  − +  +  +

Rank  3  − − +  +

itself has built a valuable model  that captures the data very well. Instead,  every time a variable with missing values is used

as the splitting attribute, the classifier can assign all observations with missing values for this variable to the most  common

class (i.e., rank 1, which by default is  in more  than 85% of  the cases  correct).

We solve this sparsity problem by using association rules indicating for each variable whether the value is missing or

not (see Section 3.2). Furthermore, we solve the problem of the imbalanced class sizes in the decision tree by  assigning the

inverse of its class frequency to each observation as a weight. This technique is called oversampling (He & Garcia, 2009).

3.2. Association rules

The  goal of  association rule mining (Agrawal, Imieliński, &  Swami,  1993) is  to automatically find patterns that describe

strongly associated attributes in data. The  discovered patterns are usually represented in the form of  implication rules or

attribute subsets. If  I is the set  of  all  items and  S1 a subset of the set of items (S1 ⊆ I), a transaction ti ∈  T, where T  denotes the

set of all transactions, is said to contain itemset S1 if S1 is a subset of ti. The  support count, �(S1),  for  an itemset S1 is  defined

as  �(S1)  =  |{ti |  S1 ⊆ ti,  ti ∈  T}|, where |·| stands for  the cardinality, i.e., the number of elements in  a set.

An association rule is then an  implication expression of the form S1 → S2, where S1,  S2 ⊆  I and S1∩ S2 =  ∅.  The support,

s(S1 → S2) =
�(S1∪S2)

|T |
,  determines how often a rule is applicable to  a given data set. Furthermore, the confidence, c(S1 →

S2) =
�(S1∪S2)

�(S1)
,  determines how frequently items in  S2 appear in the transactions that contain S1.

Association rule mining  is applied to the  whole data set, i.e., to all  22,881 observations under study. Our itemsets consist

of binary representation (encoding) of all the variables presented in  Table 3, except the number of publications and  the

rank change, as those should not have an effect  on the expert-based rank. Hereby, we use for all  categorical variables in

each case one  variable for each  category, and, if there can be missing values, one additional variable indicating whether the

value is missing. For example, with this strategy we  have for language the binary  indications isEnglish, isFinnishOrSwedish,

otherLanguage,  and languageNaN, while for rank (which is available for all observations), we  only have the binary indications

rank 0, rank  1, rank 2, and  rank 3. Furthermore, for  our three continuous variables (SJR, SNIP and IPP) and one discrete variable

(age), we use two variables (e.g., SJRavail, and SJRnan) in  each case to indicate whether these variables are  available or not.

Altogether, that gives us 59 binary variables for each observation.

We  are interested in association rules with high confidence, as confidence represents the reliability and accuracy of  a

rule. On the other hand, support can be relatively small,  since we are interested in all rules that contain rank information.

For example, a transaction that  contains the item rank 0 can by construction be supported by at most  2.01% (see Section 2.1)

of all  transactions in the itemset.

3.3. Confusion matrix using a reference metric

The idea for our third analysis technique is to compare the  existing JuFo-rank of  each observation in  the  database to  an

overall reference indicator, using a simple confusion matrix (Alpaydin, 2010). Thus, the  (continuous) reference indicator is

categorized to have the same number of ranks as present in  JuFo.  Hereby, we accept small deviations from perfect matches.

We entitle the JuFo-rank of  a publication channel to be in accordance with  the reference indicator (denoted as  + in  Table 4)

if the reference indicator rank is either equal to or at most one  rank higher or lower  than the JuFo-rank. Furthermore,

we  characterize the JuFo-rank as highly deviating (denoted as −)  if the JuFo-rank is at least two ranks higher (or  lower,

respectively) than the reference indicator. We  study further those observations that deviate greatly from  the reference

indicator, asking, “Which publication channels have been evaluated very differently by the Finnish panels compared to a

constructed reference indicator, and can they be summarized by a general profile?”

Defining one  overall reference indicator is challenging. Traditionally, the impact factor (IF) published by Thomson Reuters

in the JCR (see Section 2) has been the most well-established ranking for  the evaluation of publication channels. How-

ever, as discussed by numerous scholars before (Archambault &  Larivière, 2009; Falagas, Kouranos, Arencibia-Jorge, &

Karageorgopoulos, 2008; Moed, 2010; Seiler & Wohlrabe, 2014; Vanclay, 2012), the IF has several limitations, such as the

lack of quality assessment of the citations and the influence of  journal  self-citations. Due to its simple formula (the IF is

computed by dividing the number of  citations in the JCR yearly by the total number of  articles  published in  the two previous

years), a  journal can easily boost its  IF by  accepting only articles that cite a certain percentage of  recent articles from the

same journal. Furthermore, citation practices differ between disciplines (Moed, 2010) and, as a consequence, the likeliness of
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being cited depends also on the research  field. Reference lists in  mathematical articles, for example, tend to be  much shorter

than those in biology. More precisely, as shown in (Moed, 2005, Chapter 5),  the top journals in large disciplines typically

have higher citation  impact than the top journals of  smaller disciplines. Therefore, especially because we intend to evaluate

the JuFo-rank across different scientific fields using the same indicator, the IF alone cannot serve as  our  external reference

quality indicator.

With  the exception of considering another yearly time interval (and for  IPP, another database), the 5-Year Impact Factor

(five years), Immediacy Index (current year), and  IPP (three years) are  fairly similar in construction to the traditional IF

(two years). Although we  cannot use  these metrics because of the aforementioned reasons, we  note that these  still seem

to be the most established external citation-based metrics. This  is evidenced by the  fact that usually, when a new indicator

is introduced, it is compared against the IF of  some yearly time interval. For example, Moed  (2010) compared the  SNIP

indicator against the three-year IF (IPP4), Guerrero-Bote and Moya-Anegón (2012) compared the SJR2 against the three-year

IF (IPP), and González-Pereira, Guerrero-Bote, and Moya-Anegón (2010)  compared the  SJR against the three-year IF (IPP).

Furthermore, after  the two Eigenfactor® metrics had been introduced by Bergstrom, West, and Wiseman (2008), Franceschet

(2010) compared both to the two-year IF, and the five-year IF.

To sum up, despite the fact that all recent studies seem to agree that the IF  of  some yearly time interval is outdated and

not adequate for  a  fair comparison across disciplines, no other external citation-based metric seems to have  reached the

same status yet.  Bollen, Van de Sompel, Hagberg, and Chute (2009) point out that there is not even a “workable definition of

the notion of ‘scientific impact’ itself.” The general conclusion is that no single indicator alone “captures all the criteria that

are needed for  a  rigorous and comprehensive measure of scientific output” (Kreiman & Maunsell, 2011). Instead, the quality

of scientific publication channels is  a “multi-dimensional concept  that cannot be expressed in  any  single measure” (Moed,

2010).

3.3.1. Finding an  overall  reference quality indicator

Based on our  conclusion that the quality of scientific publication channels must be described by multiple features (and

possibly several metrics), we used the different quality indicators published by Thomson Reuters as our starting point. Six

different JCR metrics were available, plus the two Eigenfactor® metrics (see Section 2). However, two of these eight measures,

namely Cited Halflife and Articles were not directly connected to the quality of a publication channel. Hence, we  left out the

Cited Halflife as “a higher or  lower cited half-life does not imply any  particular value for a journal”5.  Furthermore, we decided

to omit  the Articles indicator since  it does not necessarily increase the quality of a journal if  more articles are  published, and

does not correlate as strongly with the other variables.

All  remaining six indicators in  the Thomson Reuters database are  positively correlated (see Fig.  1). Hereby, we observe

immediately two groups that have especially strong metric correlations with each other. The first group (composed of  Total

Cites and Eigenfactor Score) represent the not-normalized metrics (see also Table A.13). The  second group (Impact Factor, 5-

Year Impact Factor, Immediacy Index, Article Influence Score) is composed of metrics that normalize the influence of a journal

with regard to its publishing volume, i.e., they measure the average influence of an article in the journal. A  high correlation

between different variables of the JCR data has been observed by  other scholars, as well.  In Chang, McAleer, and Oxley

(2013), a table can be found that provides an overview of which correlation between which variables have been observed

by which researchers. Since these six indicators all  measure the same concept, i.e., the quality of a publication channel, and

our intention was to describe this concept in  a compact way (ideally at once), we scaled all six variables to the interval [0,

1] using min-max scaling to prepare them for dimension reduction. Then, we applied Principal Component Analysis (PCA).

Because we had missing values (see Table A.14,  which summarizes the availability for each indicator in the JCR), we  had to

use PCA for  sparse data. To strengthen the result using  methodological triangulation (Bryman, 2004), we used three different

approaches.

The classical PCA for sparse data, the robust PCA for sparse data (see both Kärkkäinen & Saarela, 2015) and the ALS

algorithm (Kuroda, Mori, Masaya, &  Sakakihara, 2013) all  suggest that the first two  principal components explain more  than

90% of the variance in the data and that the first three components account for nearly 90% of the geometric variability,

respectively. Moreover, the angles between the three principal derived subspaces are  very  small, which means that the

results of  the three different PCA  variants coincide in practice (cf.  Kärkkäinen &  Saarela, 2015). Hence, we  use the projection

of data into the most significant principal (major) component to summarize the six  different quality measures in  the JCR

data.

3.3.2. Relation of  the  combined JCR data to  the three  Scopus indicators

Next,  we study the relation of the SJR, SNIP and IPP indicators to the major component just defined. The three indicators

from Scopus offer two main advantages over the quality indicators offered by Thomson Reuters: First of all, the SJR, SNIP and

IPP indicators are open-access resources, while access to the JCR data requires a paid subscription. Furthermore, possibly

as a consequence of the accessibility, the three indicators can also be obtained directly from the  public JuFoDB, while the

connection to  the Thomson Reuters data requires substantially more action (see Section 2). Second, considerably more

4 Back then, the IPP was  known as “Raw Impact per Paper.”
5 See http://admin-apps.webofknowledge.com/JCR/help/h ctdhl.htm.
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Fig. 1. Spearman correlations of Thomson Reuter measures of  quality.

publication channels published in  a  wider variety of countries and languages are listed in  the Scopus database  (with SJR,

SNIP and IPP values available) than can be  found in the Thomson Reuters  database (Bornmann et  al.,  2009; Falagas et al., 2008;

Guerrero-Bote & Moya-Anegón, 2012). In  our case, only within JuFo, 8178 publication channels can be linked to Thomson

Reuters JCR, but  17,355 readily  have an SJR  indicator available.

The  correlation between the SJR, SNIP and  IPP and each available quality indicator in Thomson Reuters’ JCR for  those 8178

publication channels that are stored in  both databases can be found in  Table A.14. As the table  shows, the highest correlation

(r = 0.97411) is observed between the IPP and  Thomson Reuters’ IF.  The  second highest correlation (r =  0.941) is  observed

between the SJR and Thomson Reuters’ Article Influence Score (AI).  The very strong correlation of these two  metrics is not

surprising, given that the SJR is very similar in  construction to AI. Both indicators take into  account not only the quantity

but also (by  giving each citation a weight) the quality of the citations using Google’s PageRank algorithm. Besides being

computed over different databases (Scopus versus  JCR), the SJR differs in three additional respects from the AI. First, the SJR

is computed over a  three-year-window while the AI  is  computed over a five-year-window. Second, journal self-citations

are  only limited so that they count for not more than one  third of  the total citations, while they are totally excluded in the

AI. Third, the AI is  normalized only by  the number of  identified references in the  citing journals (i.e., those in  the JCR data),

while the SJR  is normalized by the number of all  references in the  citing journals.

The  correlation of SJR  with  the representation of the Thomson Reuters data spanned by  the first principal component using

robust PCA is very strong (r  = 0.913). Likewise, the correlation of the first principal component to SNIP is  r =  0.7398, and the

correlation to IPP is r =  0.9191. We conclude that the three Scopus indicators are, with reference to the Thomson Reuters data

and with  respect to their availability, the most appropriate choices as  the citation-based indicators of publication channel

quality.

4. Results

4.1. Association rules

We  applied association rule  mining for the variables and observations, as explained in  Section 3.2. Our main interest was

in those rules that contained Finnish expert-based rank information. Since we wanted to  have rules for all  ranks and  only
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Table 5

Association  rules  for the whole JuFo  data.

Rule Support Confidence Rule Support Confidence

rank 3  → isJournal 2.87% 100% SherpaNaN →  rank 1 36.77% 92.17%

rank  3  → SJRavail 2.85% 99.24% SNIPnan →  rank  1 32.1% 91.86%

rank  3  → SNIPavail 2.85% 99.24% IPPnan →  rank 1 32.39% 91.73%

rank  0 →  notInJCR 1.99% 99.13% SJRnan →  rank  1 29.45% 91.5%

rank  3  → IPPavail 2.84% 98.93% NOR 1  → rank 1 59.75% 91.43%

rank  0 →  IPPnan 1.96% 97.39% rank 3 →  DNK 2 2.62%  91.31%

rank  2  → isJournal 9.57% 97.07% rank 2 →  SJRavail 9%  91.31%

rank  1  → isJournal 80.31% 94.18% DNKnan →  rank 1 26.71% 90.96%

rank  3  → isEnglish 2.67% 93.29% rank 2 →  SNIPavail 8.96% 90.91%

DNK  1 →  rank 1 54.69% 93.21% NORnan → rank 1  21.59% 90.68%

otherLanguage →  rank 1  19.77% 92.29% rank 2 →  IPPavail 8.92% 90.55%

a bit more than 2% of  all  the publication channels under study were rank 0, we set  the minimal support to  1.95. When the

confidence was set  to 90% and we explicitly searched for the rules that included the rank information, we  obtained the set

of rules as presented in Table 5.

As can be  seen from Table 5,  only one  rule  is  supported 100%. All publication channels evaluated as 3 in  JuFo were journals.

However, also 97% of the publication channels evaluated as 2  in  JuFo, and 94%  of the publication channels evaluated as  1

in JuFo  were journals. Therefore, the  type  of publication channel did  not  seem to be a very useful indicator of the Finnish

expert-based rank.

The  most interesting subset  of the obtained rules was  the one that included the availability of reference indicators. We

see from Table 5  that if a  publication channel has been highly evaluated (i.e., as rank 3 or 2), then the three indicators from

Scopus are available with a very high percentage. If the Finnish expert rank is  3, SJR  and SNIP are  available for more than

99% of all  the publication channels, and  IPP  is available for almost 99% of  all the publication channels. If the Finnish expert

rank is 2, SJR, SNIP and IPP are available for  more than 90% of all  publication channels. Vice versa, for  more than 97% of those

publication channels that have  been evaluated as 0, the IPP  value is missing. Moreover, we  see from the table that  of those

publication channels missing SNIP, IPP,  and SJR, more than 91% have been ranked as 1  in  Finland. Hence, it  can be concluded

that the availability of the three Scopus metrics already provides a very good prediction of  the Finnish expert-based rank.

Table 6

Characteristics of  misclassified publication channels with association rules.

SJR, SNIP or  IPP missing SJR, SNIP and IPP missing

Rank 3 Rank 2 Rank 3  Rank 2

total sum 7  (0.03%) 214 (0.94%) 5 (0.02%) 196 (0.86%)

in  JCR 2  (28.57%) 11 (5.14%) 2 (40%) 9 (4.59%)

mean  number of  publications 13.29 13.44 14.2 14.32

rank  now higher 2  (28.57%) 64 (29.91%) 1 (20%) 55 (28.06%)

no  rankChange 5  (71.43%) 138 (64.49%) 4 (80%) 130 (66.33%)

rank  now lower 0  (0%) 12 (5.61%) 0 (0%) 11 (5.61%)

Language NaN 0  (0%) 29 (13.55%) 0 (0%) 29 (14.8%)

English 4  (57.14%) 115 (53.74%) 3 (60%) 99 (50.51%)

Finnish  or Swedish 0  (0%) 16 (7.48%) 0 (0%) 16 (8.16%)

other Language 3  (42.86%) 54 (25.23%) 2 (40%) 52 (26.53%)

Journal 7  (100%) 148 (69.16%) 5 (100%) 137 (69.9%)

Conference 0  (0%) 66 (30.84%) 0 (0%) 59 (30.1%)

Age  NaN 0  (0%) 37 (17.29%) 0 (0%) 37 (18.88%)

Age  (mean of  avail) 49.57 41.5  39.4 41.41

NOR  rank NaN  2  (28.57%) 84 (39.25%) 2 (40%) 82 (41.84%)

NOR  rank equals FI  rank 5  (71.43%) 52 (24.3%) 3 (60%) 46 (23.47%)

NOR  rank higher FI  rank 0  (0%) 0 (0%) 0 (0%) 0 (0%)

NOR  rank lower FI  rank 0  (0%) 78 (36.45%) 0 (0%) 68 (34.69%)

DNK  rank NaN 2  (28.57%) 103 (48.13%) 2 (40%) 99 (50.51%)

DNK  rank equals FI  rank 5  (71.43%) 60 (28.04%) 3 (60%) 57 (29.08%)

DNK  rank higher FI rank 0  (0%) 0 (0%) 0 (0%) 0 (0%)

DNK  rank lower FI rank 0  (0%) 51 (23.83%) 0 (0%) 40 (20.41%)
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Table  7

Characteristics of publication channels that are  JuFo-rank 2 but have no

other available reference indicator.

total sum 73

in JCR  0  (0%)

mean number of publications 15.22

rank now higher 22  (30.14%)

no rankChange 50 (68.49%)

rank now lower 1  (1.37%)

Language NaN 29 (39.73%)

English 30 (41.10%)

Finnish or  Swedish 5  (6.85%)

other Language 9  (12.33%)

Journal 23 (31.51%)

Conference 50 (68.49%)

NOR rank NaN 73  (100%)

DNK rank NaN 73 (100%)

4.1.1. Deviations

In  Table 6,  we summarized the characteristics of those publication channels in which (i) SJR, SNIP or IPP were not available

but the Finnish expert-based rank was still 3  or 2 (columns 2 and 3), and (ii) SJR, SNIP and IPP  were not available but the

Finnish expert-based rank was still 3  or 2 (columns 4 and  5).

As  can be seen from the fourth column in  Table 6, five publication channels are classified as JuFo-rank 3, although SJR,

SNIP and  IPP are not available. However, three of these have been classified as the highest rank  in  Norway and Denmark,

and for the other two publication channels (namely British Medical Journal and Light: Science &  Applications), the SJR, SNIP

and IPP indicators seem to  have  been incorrectly not included in JuFoDB. They can be  found by manually using  the Browse

Sources search function in  Scopus,6 and in both cases, the values are so high that rank 3 seems appropriate.

As  can be seen from the fifth column in  Table 6, 196 publication channels have been classified as JuFo-rank 2 but  no SJR,

SNIP or IPP value is available. However, again for most of these  channels, a Norwegian or Danish rank is available and  in each

case, at least one is classified as rank 1  or  higher. Only 73 publication channels remain that are JuFo-rank 2 but have no SJR,

IPP or SNIP, nor is a Norwegian or Danish expert-based rank available. All of  these publication channels are explicitly listed

in Table A.15, and  a summary is provided in  Table 7.

From Table 7, we see already that in the subgroup of those 73 publication channels that have a  Finnish expert-based

ranking  of 2  but no other reference indicator available, a high percentage of conference series  exists (68.49%). It  is interesting

that the number of publications for these channels is  very high, with  an  average of more than 15 per  channel. Moreover,

for  more than one third  of  the publication channels in this subgroup, the JuFo-rank was  upgraded during the last evaluation

round.

Then, just as above for the JuFo-rank 3 publication channels, we tried  to manually find SJR, SNIP and IPP values using the

search interface in  Scopus. Indeed, for 15 publication channels, SJR, SNIP and IPP values were detected, and for 14 others,

the coverage discontinued in  Scopus (both  are  reported in  Table A.15). If  we subtract these 15 + 14 from the 73 publication

channels that are JuFo-rank 2  but  have no  other reference indicator available, 44  publication channels remain.

These  44 publication channels show a clear profile: most of  them (precisely 26) are conference proceedings evaluated

by the Computer and  Information Sciences panel. The  remaining publication channels that do not  belong to  the Computer and

Information Sciences panel are  journals, mostly published in  another language than English. They belong to  five  different

panels: 17,18, 19,  22 and  23.  To  this end, we also scanned manually through these 44 publication channels and  their links to

JuuliDB. Then, two slightly alarming cases were noticed, in which  the highly deviating JuFo-rank 2 of a publication channel

could be linked to an active publication profile of  a panel member responsible for  deciding the rank.

However, these results must  be interpreted cautiously. As discussed in Section 1, one  of the main reasons for establishing

the expert-based JuFo-ranks instead of using citation-based indicators to measure the quality of  a publication channel was

to include the SSH and engineering sciences on the same terms as the other major areas. For example, it is known that

publication channels belonging to the SSH are less covered in  the international citation databases (although there has been  a

positive trend towards broader coverage, especially in Scopus) than other disciplines (Sivertsen, 2014). Table 8  summarizes

for all  panels the number and percentages of  journals (JuFo-rank 0  publication channels as  well  as book publishers and

conference series are  excluded) and articles, i.e. publications in  JuuliDB, within these journals that are covered in Scopus.

The table clearly shows the disciplinary differences. While the journals that belong to  the panels of the so so-called hard

sciences are  covered very well in  Scopus, the journals that belong to SSH panels are  covered relatively less  in  Scopus. This

trend is even more visible when looking at  the number and percentages of  articles. On  average, almost 78% of the total

6 See http://www.scopus.com/source/browse.url?zone=TopNavBar&origin=searchbasic.
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Table 8

Disciplinary differences of  journal coverage in  Scopus and Finnish publication activity within those (JuFo-ranks 0 as well as book publishers and conference series are excluded).

Journals Publications in  journals

Panel name All In Scopus Not  in Scopus All In  Scopus  Not  in Scopus

(%  of all) (%  in FI/SWE) (% of all) (% in FI/SWE)

Mathematics and statistics 804 644 (80.1%) 160  (0%)  1438  1345  (93.53%) 93 (0%)

Computer  and information scis. 652 518 (79.45%) 134 (0.75%)  1874  1705 (90.98%) 169 (1.18%)

Physical  scis., space scis. & Astronomy 486 424 (87.24%) 62 (0%)  5136  5023 (97.8%) 113 (0%)

Chemical  scis. 444 404 (90.99%) 40  (0%)  2459  2427  (98.7%) 32 (0%)

Geosciences  & environmental scis. 624 545 (87.34%) 79 (1.27%) 2028 1967  (96.99%) 61 (0%)

Biosciences  I 621 573 (92.27%) 48 (4.17%) 2839  2744  (96.65%) 95 (49.47%)

Biosciences  II 622 567 (91.16%) 55 (0%)  2496  2435  (97.56%) 61 (0%)

Civil  engr. and mechanical engr.  502 461 (91.83%) 41 (2.44%) 825  754 (91.39%) 71 (53.52%)

Electrical  & electronic engr.,  information engr.  356 312 (87.64%) 44 (0%)  1730 1695  (97.98%) 35 (0%)

Chemical,  materials, & Environmental engr. 734 630 (85.83%) 104  (0%)  2804 2738  (97.65%) 66 (0%)

Medical  engr., biotechnology & Basic medicine 1121 1016 (90.63%) 105 (0.95%) 4433 4236  (95.56%) 197 (43.65%)

Clinical  medicine I 893 833 (93.28%) 60  (5%) 5450 4633  (85.01%) 817 (90.7%)

Clinical  medicine II & Dentistry 1196 1120 (93.65%) 76 (3.95%) 4988  4798  (96.19%) 190 (45.26%)

Health  scis. and other medical scis. 863 751 (87.02%) 112 (10.71%) 3441  2679  (77.86%) 762 (78.61%)

Agricultural  sciences 795 706 (88.81%) 89 (1.12%) 1987  1818  (91.49%) 169 (25.44%)

Economics  and business 1242 904 (72.79%) 338 (0.89%)  2858  2244  (78.52%) 614 (21.82%)

(Interdisc.)  social scis., media &  Comm.  1575 1045 (66.35%) 530  (6.6%) 4008 1883  (46.98%) 2125 (74.35%)

Psychology  and educational scis. 1230 893 (72.6%) 337 (4.75%) 3402 2054 (60.38%) 1348 (45.4%)

Political  scis., public administration & Law 1080 590 (54.63%) 490  (4.69%) 2219  485 (21.86%) 1734 (73.41%)

Philosophy  & theology 1144 588 (51.4%) 556 (3.78%) 1880 752 (40%) 1128 (41.13%)

Languages  974 401 (41.17%) 573 (1.92%) 1772  861 (48.59%) 911 (21.95%)

Literature,  arts & architecture 1685 736 (43.68%) 949 (2.85%) 1622  535 (32.98%) 1087 (58.97%)

History,  archaeology & cultural studies 1815 777 (42.81%) 1038 (5.01%)  4036 1102 (27.3%) 2934 (69.67%)

Multidisciplinary  journals 34 26 (76.47%) 8 (50%) 1883  1656  (87.94%) 227 (87.67%)

Total  21,492 15,464 (71.95%) 6028 (3.6%) 67,608  52,569  (77.76) 15,039 (58.44%)
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Fig. 2. Pruned decision tree.

Finnish journal publications (see last row in  the  table) are  in journals that are covered in  Scopus. However, for the journals

assigned to  the Political Science and  Public Administration panel, less  than 22% of the journal publications are in journals that

are covered in  Scopus. Similar observations have been made by Sivertsen (2014), who  compared  the coverage of  journals

and articles  in the  SSH to the other major disciplines from Norway’s research institutions.

Table 8 also illustrates the language differences across disciplines. Altogether, the percentage of the not-covered-by-

Scopus  journals that are in  Finnish and Swedish language is very small (see the fourth column in the table). However, for

many disciplines (especially medicine and SSH) most of the not-covered-in-Scopus publications are articles  in Finnish or

Swedish language journals (see last column in  the table). Again, this situation is  comparable to that in Norway where only

a few journals in  the national language exist but a high percentage of the national articles from the SSH are concentrated in

them (Sivertsen &  Larsen, 2012). Actually, as  described in  (Puuska, 2014, pp.82–83), in both Norway and Finland groups of

scholars and scientific societies had an effect of the higher rankings of  publications with native languages.

4.2.  Decision tree

Next,  we built a decision tree for all  14,798 publication channels with the three indicators from Scopus (i.e.  SJR, SNIP

and IPP) available. 12,096 of  these publication channels are rank 1, i.e. a trivial classifier predicting always ‘rank 1’ (compare

Section 2.1) for this subset would be 81.74% correct. For our decision tree model, we  used all  variables that could have  an

effect on the expert-based rank decision in  such a way that we  utilized each variable from Table 3, either as it  is if the

variable had available values for all  observations, or as  a binary indicator on the availability of the variable if the variable

had missing values. We used this strategy to ensure that the  data set fed to the decision tree classifier had  no missing values.

Altogether, we  had the three continuous variables (SJR, SNIP and IPP), two categorical variables (panel and typeOfChannel),

and  five binary variables (inJCR, inNOR, inDNK, hasLanguageAvailable,  and hasSherpaCodeAvailable).

With stratified cross-validation (according to the four classes of ranks) and the inverse class frequencies as  weights (see

Section 3.1), we obtained a classifier that predicted the actual expert-based rank for  nearly 88% of all publication channels

correctly. Only  1853 (12.09%) of the publication channels were misclassified. In comparison with the trivial classifier, our

decision tree was circa 6%  more accurate. Fig.  2 shows the pruned decision tree. As can be  seen from the figure, the SNIP

indicator is the variable with the highest predictive power. However, also the other two  Scopus metrics, as well as the

panel and  the information whether or not the publication channel is covered in the Norwegian and Danish databases, are

important variables in  the decision tree model.

4.2.1. Deviations

In  Table 9, the characteristics of misclassifed observations are summarized, characterizing the subset  of misclassified

publication channels, for which (i) the Finnish expert-based rank was higher than  the prediction (second column), and (ii)

the subset for which the prediction was higher than the Finnish expert-based rank (third column) separately. For comparison

reasons, the subset of correctly classified publication channels was characterized according to  the same variables (fourth

column in  the table).

We  see from Table 9 that the group of  misclassified publication channels incorporates the most channels in which there

has been a recent change in  the expert-based rank. Interestingly, those misclassified publication channels with Actual rank

higher than prediction have  the highest percentage (12.5%) of positive change in rank, while those misclassified publication

channels with  Actual rank  lower  than prediction have the highest percentage (27.2%) of negative change in  rank. The group

with the highest percentage (86.6%) of publication channels in  which the Finnish expert-based rank has not been changed

recently indicates the correctly predicted observations. Moreover, we see  from Table 9 that similar to the  finding from the
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Table 9

Characteristics of  misclassified and correctly classified publication channels with decision tree.

Misclassificed publication channels Correctly classified publication channels

Actual rank  higher

than  prediction

Actual rank lower than

prediction

total sum 360 (2.43%) 1430 (9.66%) 13,008 (87.9%)

in  JCR 154 (42.78%) 587 (41.05%) 7077 (54.4%)

mean  number of  publications 8.56 4.09 3.19

rank  now higher 45 (12.5%) 9 (0.63%) 207 (1.59%)

no  rankChange 286 (79.44%) 1032 (72.17%) 11265 (86.6%)

rank now lower 29 (8.06%) 389 (27.2%) 1536 (11.81%)

Language NaN 0  (0%) 0  (0%) 13 (0.1%)

English 309 (85.83%) 1245 (87.06%) 10865 (83.53%)

Finnish or Swedish 2  (0.56%) 1 (0.07%) 10 (0.08%)

other Language 49 (13.61%) 184 (12.87%) 2120 (16.3%)

Journal 360 (100%) 1430 (100%) 12999 (99.93%)

Conference 0 (0%) 0  (0%) 9  (0.07%)

NOR rank NaN  9  (2.5%) 43 (3.01%) 1501 (11.54%)

NOR rank equals FI  rank 203  (56.39%) 1210 (84.62%) 10,146 (78%)

NOR rank higher FI  rank 0 (0%) 78 (5.45%) 233 (1.79%)

NOR rank lower FI  rank 148 (41.11%) 82 (5.73%) 934 (7.18%)

DNK rank NaN 8  (2.22%) 106 (7.41%) 2341 (18%)

DNK rank equals FI  rank 237  (65.83%) 1070  (74.83%) 9481 (72.89%)

DNK rank higher FI rank 0 (0%) 194 (13.57%) 516 (3.97%)

DNK rank lower FI rank 115 (31.94%) 55 (3.85%) 669 (5.14%)

deviation study of association rules  (Section 4.1.1), those publication channels for which the  actual  Finnish expert-based

rank was higher than the prediction have with an  average of  8.56, the most publications per publication channel.

4.3.  Confusion matrix using reference indicator

As described in Section 3,  we compared the JuFo-rank against the reference indicator using confusion matrices. As argued

and concluded in Section 3.3.1, the three Scopus metrics met  the requirement of fair external quality indicators the best.

For interpretation purposes, we analyzed only that set  of publication channels that had a highly deviating SJR, SNIP and  IPP

value (see Section 3.3).

To fractionalize the three Scopus metrics, we divided the available SJR, SNIP  and IPP values into categories (0–3) such that

the same frequencies of  JuFo-ranks were present also in the SJR, SNIP and  IPP categories. This fractionalization according to

reference metrics was  also used by Ahlgren and Waltman (2014) for the Norwegian expert-based ranking. With this rule,

a publication channel is classified as rank 0  if  the SJR value is smaller than 0.1, as rank 1 if  SJR is in (0.1, 1.303], as rank 2 if

SJR is in (1.303, 2.925], and, finally, as rank 3  if SJR is in (2.925, 45.894]. Similarly, SNIP is  rank 1 if in  (0, 1.442], rank 2  if in

(1.442, 2.513, and rank 3 if  in (2.513, 71.662]; and  IPP is rank 1 if  in  (0, 2.419], rank 2 if  in (2.419, 4.749], and  rank 3  if in

(4.7490, 159.283]. The confusion matrix between these sets are  provided in Table 10.

We  aim to  have the same number of observations for each rank of the categorized Scopus metrics and the JuFo-ranking.

However,  the total  number of observations of the JuFo-ranking and the categorized Scopus metrics do not coincide for  each

rank level. For  example, 328 publication channels have  an  SJR value smaller than 0.1  and  444 publication channels have an

SJR value of exactly 0.1. Therefore, we  have 290 fewer publication channels that  have SJR-rank 1 compared to the JuFo-rank

(see all column and row for SJR in  Table 10).  Furthermore, 12,805 publication channels have an  SJR value smaller than 1.303,

and four publication channels have  an  SJR  value of  exactly 1.303,  which results in three  fewer publication channels that have

SJR-rank 2  than JuFo-rank 2. Similar observations can be made for SNIP and IPP.

4.3.1. Deviations

As  explained in Section 3,  we  entitle a publication channel to be highly deviating if  the JuFo-rank is at least two ranks

higher  (or lower respectively) than the SJR, SNIP and IPP rank. As can be seen in Table 10,  225  publication channels are highly

deviating in the sense that they have a higher, and 161 are highly deviating in  the sense that they  have  a lower JuFo-rank

than the SJR metric indicates. Furthermore, 259 publication channels have  a higher JuFo-rank and 176 have a lower JuFo-rank

than the SNIP metric indicates, while 427 publication channels have a higher JuFo-rank and 214 have a lower JuFo-rank than

the IPP metric indicates. If  we combine all  subsets, 140 publication channels remain that have a higher JuFo-rank than all

three reference indicators (the list of these publication channels can be found in  Table A.16), and 60 have a lower JuFo-rank

than all three indicators (these are explicitly listed  in Table A.17).
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Table  10

Confusion Matrices of  fractionalized SJR, SNIP, IPP and JuFo.

JuFo 0 JuFo  1 JuFo 2  JuFo 3 All

SJR 0 14  311  3 0 328

SJR  1 21  11080 1158 222 12,481

SJR  2 0  1219 646 191 2056

SJR  3 0  161  252 238 651

All  35  12771  2059 651 15,516

SNIP  0 1  657  108 4 770

SNIP  1 18  10257 994 147 11,416

SNIP  2 0  1076 710 263 2049

SNIP  3 0  176  238 237 651

All  19  12166  2050 651 14,886

IPP  0 0  654  108 4 766

IPP  1  12  9786 1234 315 11347

IPP  2 0 1445 444 151 2040

IPP  3  0  214  256 179 649

All  12  12,099  2042 649 14,802

Table 11 provides a  summary of meta information for all publication channels for which the fractionalized SJR, SNIP and

IPP are highly deviating. As can be  seen from the table, the highly deviating channels combined make up less than 1% of all

the publication channels in  the  system. Interestingly, we  see again exactly as  for the misclassified publication channels with

decision tree in  Section 4.2.1 that for  the subset of publication channels in which the Finnish expert-based rank is higher than

all three reference indicators (second column in  the table), a high percentage of ranks has  recently been changed to a  higher

rank, while for the publication channels for which the Finnish expert-based rank is lower than  all three reference indicators

suggest (third column in  the table), a high percentage of ranks (70%) was recently changed to a lower one. Moreover, as

already detected with the decision tree, we see  that for  the group for which the JuFo-rank is  higher than suggested by all

three reference indicators, on average, more  publications of  Finnish researchers exists. However, compared to the decision

tree result, this time the difference is not significant.

The 140 publication channels that have a higher JuFo-rank than  they should have according to the SJR, SNIP and IPP

values can mostly be characterized by  their SSH orientation (see Table A.16). This is,  as discussed in  Section 1, the underlying

reason behind the expert-based final rankings according to  the Norwegian model followed in  Finland. As commented by

Hicks (2012), SSH journals might be badly indexed in  databases (like Scopus) and the language of the  published articles can

Table 11

Characteristics of  publication channels for which the expert-based rank is highly deviating from SJR, SNIP and IPP.

Publication channels for which the JuFo-rank is highly deviating from SJR, SNIP and IPP

JuFo-rank higher than all three Scopus metrics JuFo-rank lower than all three Scopus metrics

total sum 140 (0.61%) 60 (0.26%)

in  JCR 9 (6.43%) 53 (88.33%)

mean  number of publications 2.59 2.52

rank now higher 17  (12.14%) 0  (0%)

no  rankChange 123 (87.86%) 18 (30%)

rank now lower 0 (0%) 42 (70%)

Language NaN 0 (0%) 0  (0%)

English 118  (84.29%) 59 (98.33%)

Finnish or Swedish 0 (0%) 0  (0%)

other  Language 22  (15.71%) 1 (1.67%)

Journal 140 (100%) 60 (100%)

Conference 0 (0%) 0  (0%)

NOR  rank NaN 0 (0%) 6 (10%)

NOR  rank equals FI rank 125  (89.29%) 45 (75%)

NOR  rank higher FI rank  0 (0%) 7 (11.67%)

NOR  rank lower FI rank 15 (10.71%) 0 (0%)

DKN  rank  NaN 0 (0%) 8 (13.33%)

DKN  rank  equals FI rank  131  (93.57%) 17 (28.33%)

DKN  rank  higher  FI rank 0 (0%) 35 (58.33%)

DKN  rank  lower FI rank 9 (6.43%) 0  (0%)
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be other than English (see Table 8). This, with other disciplinary variations of the publication and citation patters (see Puuska

(2014)), effects citation-based indicators. However, the SNIP indicator takes “subject field” into  account (see Table A.13).

Moreover, for more than 93% of the 140 publication channels under study, the Danish expert-based rank (and for almost

90% of these publication channels, the Norwegian expert-based rank) coincides with  the Finnish expert-based rank (see

Table 11). If we combine all lists of publication channels, i.e. those which are  evaluated higher in  JuFo than the fractionalized

SJR, SNIP and IPP,  and  those that have a Norwegian or  Danish rank which is also lower than the JuFo-rank, only five  pub-

lication channels remain.7 Interestingly, again  for four out of these five journal, the rank was  recently updated to a higher

one. Furthermore, according to JuuliDB, Finnish researcher have published in three of these journals, and in two cases the

publications can  again be linked to panel members.

The 60 publication channels that have  a lower JuFo-rank than SJR, SNIP  and IPP suggest can mostly be characterized by

their review related orientation (see Table A.17). It is clear that review journals generally accumulate more citations than

the original research articles. Therefore, they can  be characterized by  higher citation-based than expert-based rank. For

75% of these 60  publication channels the JuFo-rank coincides with  the Norwegian (and for more than 28% with the Danish)

expert-based rank (see Table 11). Altogether, only  five publication channels were evaluated higher by the three citation-

based reference indicators and the Norwegian and Danish expert-based ranks than by the Finnish experts.8 Interestingly,

again according to  the pattern, the rank has  recently been downgraded for all  of  these five channels. However, the  most

likely explanation why these seemingly very prestigious journals have not been ranked higher in JuFo is that all  five, in  fact,

are review journals.

Summing up, for more than 99% of all publication channels under study (see the first row, total sum, in Table 11)  the

JuFo-rank was not highly deviating from SJR, SNIP and  IPP. Moreover, for most of the publication channels for which

the  JuFo-rank was highly deviating from the three Scopus metrics, the JuFo-rank was  supported by the Norwegian or

Danish expert-based rank. Only ten publication channels (five for which the JuFo-rank was higher and five  for which

the  JuFo-rank was lower) remained for which the JuFo-rank could not be  explained by  another citation- or expert-based

metric.

5. Discussion and conclusions

The purpose of  this study was to  analyze whether or not the assignment of quality ranks to  publication chan-

nels  –  which currently is performed by experts –  could (at  least partially) be replaced by automatic rules. We  have

provided  an analysis of  the  national expert-based ranking system that used more variables, encodings, and compu-

tational  methods than are found in  the existing, relevant literature. Especially using novel techniques to cope with

missing values (e.g., binary indication of whether a citation-based indicator is available or not) allowed us to analyze

a  much higher portion of the publication channels in JuFoDB than could have been analyzed by using other existing

methodologies, which always restrict researchers to a  subset of publication data and/or indicators that are completely

available.

Association rules for the  whole JuFo data showed that the availability of the three metrics provided by Scopus (SJR,

SNIP and IPP), predict the Finnish expert-based rank  very well. Furthermore, using  decision trees with data for  which the

three Scopus measures were available, we found that a  significant part of the work accomplished by the panels could be

automated, or could at least provide a justified reference rank for panel discussion and decision-making. Similar to  the

study by Ahlgren and Waltman (2014), in which the Norwegian expert-based rank was predicted, our  prediction model for

the Finnish expert-based rank also showed that the  SNIP indicator had the highest predictive power. The third part of  our

analysis illustrated that for more than 99%  of the publication channels under study,  the Finnish expert-based decisions did

not deviate significantly from SJR, SNIP and IPP.

However, although the citation-based indicators showed the highest predictive power in our analysis, automatic rules

using only these measures would certainly not  be an alternative to the expert-based ranks. Ahlgren et al. (2012) concluded

that with regard to coverage, currency, legitimacy, and transparency, the Norwegian model  is preferable to  automatic ranks

constructed using citation-based indicators. Here, we  argue that automatic rules could be  utilized more under the condition

that all  relevant and available information is used to  construct the prediction models. For example, our decision tree (Fig. 2)

showed that besides the citation-based indicators, the panel (i.e., the discipline) of  the publication channel – as well as the

information whether the channel is  covered in  other relevant databases – are important variables to include in an  automatic

decision-support model. This  fact was especially evident in Table 8, which showed the large disciplinary differences in

coverage of both the journals in  Scopus  and the Finnish publications in  them. Consequently, an automatic decision-support

model should be based not  only  on citation-based indicators but also on  information such as the discipline, language, and

coverage in  other databases.

Through  our analysis of the publication channels for which the Finnish expert-based rank was  higher than the rules

suggested, we found multiple signs that the higher-than-predicted rank of a  publication channel could be linked to the

publication profile of Finnish scholars or even those who can influence the decision-making process. This discovery is

7 Etudes Classiques, Journal of  Agricultural Science, Journal of  American Folklore, Journal of  Higher Education Policy and  Management, and New German Critique.
8 Biological Reviews, Natural Product Reports, Neuroscience and Biobehavioral Reviews, Progress in  Neurobiology, and Trends in  Plant Science.
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interesting when linked to  the study by Serenko and  Dohan (2011), who found a relationship between the current research

interests of scholars and an overranking of publication channels in that particular research field. However, as also discussed

by Ahlgren and Waltman (2014), opposite interpretations are possible for  high deviations between expert-based ranks and

citation-based indicators. Are these deviations a sign that expert-based opinions are truly necessary for avoiding the under-

or overrating of certain publication channels? Or  do they reveal (deliberate or unintentional) inaccuracies in the judgments

of experts? We  are not in  the position to  answer these questions, nor do we have the expertise to do so. However, our

analysis of  the highest deviating publication channels revealed certain patterns, and  we think they should also be presented

to the steering committee as part  of the panel discussions.

In  fact, interestingly, all three analysis methods showed that for the subset of publication channels with a higher-than-

predicted rank,  a high percentage of  the Finnish expert-based rankings had been upgraded during the most recent panel

evaluation. Similarly, in each case, the subset of  publication channels with a lower-than-predicted rank showed the high-

est percentage of channels for which the rank  had  been downgraded during the most recent evaluation round. Basically,

this  result means that the old ranks coincided better with the other available  quality information about the publication

channels. However, as discussed in the  paragraph above, there are two  opposite interpretations of this finding that are

possible.

As a whole, a data analysis methodology – expected ranks by a reference technique and  the study of deviations

–  was proposed and  demonstrated. This methodology can be applied in other similar instances of  sparse data and

tens  of thousands of observations. From the report by  Wilsdon et al. (2015), it is  evident that automatization of

expert  judgment in  research evaluation on the basis of  advanced methodology and large  datasets are currently a broad

interest in  research policy making. Naturally, this is possible only with open and  accessible databases on publica-

tion  channels and publication activity, according to the Norwegian model. Our analysis and results indicate that using

repeatable methods and the detected rules and  patterns, even if they are  enlarged and improved (e.g. by consider-

ing also whether the publication channel publishes original research or  reviews), could save money and man-hours

in managing one of  the three main components of the  Norwegian performance-based funding model  – the  national

database  –  and bring more transparency and objectivity into  the second main component: the  publication channel

rankings.
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Appendix A. Additional tables

Table A.12

Evaluating Panels: distribution of  ranks.

Panel ID and name Rank 0  Rank 1 Rank 2 Rank 3 Total

– 5329 1127 91 15 6562

1  Mathematics and statistics 5 (0.6%) 678 (82.1%) 106 (12.8%) 37 (4.5%) 826

2  Computer and Information Scis. 122 (8.2%) 1157 (78.0%) 153  (10.3%) 51 (3.4%) 1483

3  Physical Scis., Space Scis. & Astronomy 4 (0.8%) 472 (91.6%) 21 (4.1%) 18 (3.5%) 515

4  Chemical Scis. 1 (0.28%) 413 (92.6%) 25 (5.6%) 7 (1.6%) 446

5  Geosciences &  Environmental Scis. 4 (0.68%) 571 (90.6%) 42 (6.7%) 13 (2.1%) 630

6  Biosciences I 5 (0.88%) 570 (91.5%) 36 (5.8%) 12 (2.0%) 623

7  Biosciences II 0 (0%) 568 (91.3183%) 34 (5.5%) 20 (3.2%) 622

8  Civil Engr. and Mechanical Engr. 25 (4.48%) 477 (84.9%) 48 (8.5%) 12 (2.1%) 562

9  Electrical & Electronic Engr., Information Engr. 32 (5.3%) 491 (81.0%) 68 (11.2%) 15 (2.5%) 606

10  Chemical, Materials, &  Environmental Engr. 21 (2.8%) 669 (88.0%) 55 (7.2%) 15 (2.0%) 760

11  Medical Engr., Biotechnology &  Basic Medicine 2 (0.2%) 1012 (89.8%) 92 (8.2%) 21 (1.9%) 1127

12  Clinical Medicine I 1 (0.1%) 815 (91.2%) 63 (7.1%) 15 (1.7%) 894

13  Clinical Medicine II & Dentistry 2 (0.2%) 1091 (90.9%) 81 (6.7%) 26 (2.2%) 1200

14  Health Scis. and other Medical Scis. 15 (1.7%) 781 (90.0%) 59 (6.8%) 13 (1.5%) 868

15  Agricultural sciences 2 (0.2%) 730 (91.5%) 51 (6.4%) 15 (1.9%) 798

16  Economics and Business 79 (6.2%) 1034 (81.7%) 117  (9.2%) 35 (2.8%) 1265
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Table  A.12 (Continued)

Panel ID  and name Rank 0 Rank 1 Rank 2  Rank 3  Total

17 (Interdisc.) Social Scis., Media &  Comm. 26 (1.6%) 1317 (83.0%) 190 (12.0%) 55 (3.5%) 1588

18  Psychology and Educational Scis. 34 (2.7%) 1068 (84.4%) 120 (9.5%) 44 (3.5%) 1266

19  Political Scis., Public  Administration & Law 11 (1.0%) 887 (82.0%) 147 (13.6%) 37 (3.4%) 1082

20  Philosophy &  Theology 13 (1.1%) 959 (83.5%) 140 (12.2%) 36 (3.1%) 1148

21  Languages 23 (2.3%) 820  (81.0%) 138 (13.6%) 31 (3.1%) 1012

22  Literature, Arts & Architecture 11 (0.6%) 1413  (82.9%) 216 (12.7%) 65 (3.8%) 1705

23  History, Archaeology & Cultural Studies 11 (0.6%) 1507 (82.8%) 248 (13.6%) 53 (2.9%) 1819

24  Multidisciplinary journals 11 (30.6%) 10 (27.8%) 5 (13.9%) 10 (27.8%) 36

Total  5789 (20%) 20,637 (70%) 2346 (8%)  671 (2%) 29,443

Table A.13

Overview of reference quality indicators.

Indicator Source Original paper Journal

self-citations

Normalized Description

Total Cites

(ToCi)

Thomson

Reuters’  JCR

–  included no The total number of citations to the

journal in  the  JCR year.

Impact  Factor

(IF)

Thomson

Reuters’  JCR

Garfield (1972) included yes The average number of times articles

from the journal published in  the past

two years have been cited in  the JCR

year. The IF  is  calculated by  dividing

the number of  citations in  the JCR year

by the total number of  articles

published  in the two previous years.

An IF of  3.5  means that, on average, the

articles published one or  two year ago

have been cited three and a half times.

(Note that only  citations that are

indexed  themselves in JCR contribute

to  the citation count.)

5-Year  Impact

Factor (5y IF)

Thomson

Reuters’ JCR

Fundamental

idea  goes  back

to  Garfield

(1972)

included  yes The average number of times articles

from the journal published in  the past

five years have  been  cited in the JCR

year. It is calculated by dividing the

number of  citations in the JCR  year by

the total number of articles published

in the five  previous years.

Immediacy

Index  (II)

Thomson

Reuters’ JCR

Fundamental

idea  goes  back

to  Garfield

(1972)

included  yes The average number of times an  article

is cited in the year it is  published. The

Immediacy Index is calculated by

dividing the number of  citations to

articles published in a given year by

the number of  articles published in

that year.

Articles  Thomson

Reuters’ JCR

−  not  applicable no The total number of articles published

in the journal  in the JCR year.

Eigenfactor

Score (EF)

Thomson

Reuters’ JCR

Bergstrom

et al. (2008)

excluded  no The Eigenfactor Score measures the

importance of  a citation by the

influence of the  citing journal divided

by  the total number of  citations

appearing  in  that journal. The

calculation  is based on the number of

times articles from the  journal

published  in the past five  years have

been cited in  the JCR year, but it also

considers which journals have

contributed these citations so that

highly cited journals will  influence the

network more than lesser cited

journals.
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Table  A.13 (Continued)

Indicator Source Original paper Journal

self-citations

Normalized Description

Article

Influence

Score (AI)

Thomson

Reuters’ JCR

Bergstrom

et al. (2008)

excluded yes The  journal’s average EF score per

published article. It is computed by

dividing the EF  through the number of

articles published by  the journal over

the 5-year period.

IPP  (Impact per

Publication)

Scopus Fundamental

idea goes back

to  Garfield

(1972)

included  yes The  impact per publication, calculated

as the number of  citations given in the

present year to publications in  the past

three years divided by the total number

of publications in  the past three years.

SJR (SCImago

Journal

Rank)

Scopus  González-

Pereira et  al.

(2010)

limited  to  max.

one  third

yes  The  SJR is a measure of the scientific

prestige of  scholarly channels. SJR

assigns relative scores to all of the

channels in  a citation network.  Its

methodology is inspired by  the Google

PageRank algorithm, in  that  not all

citations are  equal. A publication

channel  transfers its own ‘prestige’, or

status, to another publication channel

through the act of  citing it.  A citation

from a  publication channel with a

relatively high SJR  is worth more than

a citation from  a  publication channel

with a  lower SJR.  A  publication

channel’s  prestige for a  particular year

is shared equally over all  the citations

that it makes in that year; this is

important because it corrects for the

fact that typical citation counts vary

widely between subject fields. The SJR

of a publication channel in a field  with

a high likelihood of citing is  shared

over a lot  of citations, so  each citation

is worth  relatively little. The SJR  of a

publication channel in a field with a

low likelihood  of citing  is  shared over

few citations, so  each citation is worth

relatively much. The result is to  even

out the differences in  citation practice

between subject fields, and facilitate

direct comparisons of publication

channels.

SNIP  (Source

Normalized

Impact)

Scopus Moed (2010) included yes The  SNIP per paper measures

contextual  citation impact by

weighting citations based on the total

number of citations in  a subject field.

Table A.14

Availability of quality metrics in Thomson Reuters’ JCR and their Spearman correlation to SJR, SNIP and IPP.

Thomson Reuters metric Unavailable Correlation

(isNaN) SJR  SNIP IPP

Total cites 0  0.3638  0.22226 0.34126

Impact  factor 45  0.8709 0.80517 0.97411

5-Year  impact factor 450 0.9076 0.76697 0.94966

Immediacy index 205 0.7500 0.66563 0.82632

Eigenfactor score 0  0.4123  0.23787 0.36926

Article influence score 450 0.9407 0.71489 0.86817
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Table A.15

JuFo-rank 2 but no other reference of  quality.

Name Panel SJR  IPP SNIP

Manually found

Panel 2:  50

ACM  conference on computer and communications security 2 1.997 1.687 2.286

ACM  conference on computer-supported cooperative work

and social  computing

2  coverage discontinued

ACM  international conference and exhibition on computer

graphics  and interactive techniques

2 –  – –

ACM  international conference on information and knowledge

management

2  0.528 0.461 0.677

ACM  international conference on mobile computing and

networking

2  1.786 1.059 1.129

ACM  international joint conference on pervasive and

ubiquitous  computing

2  coverage discontinued

ACM  multimedia conference 2 coverage discontinued

ACM  sigact-sigmod-sigart symposium on principles of

database systems

2  2.208 1.554 1.518

ACM  SIGCHI annual conference on  human factors in

computing  systems

2  0.900 0.931 1.150

ACM  sigkdd conference on knowledge discovery and data

mining

2  2.879 2.023 2.331

ACM  sigmod international conference on management of data  2 3.015 2.107 2.241

ACM  sigplan conference on programming language design  and

implementation

2 3.141 2.099 2.768

ACM  sigplan-sigact symposium on principles  of programming

languages

2  1.495 1.099 2.136

ACM  sigsoft international symposium on the foundations of

software engineering

2  coverage discontinued

ACM  symposium on computational geometry 2 0.670 0.548 0.770

ACM  symposium on principles of distributed computing 2  1.127 0.894 1.165

ACM  symposium on user interface software and technology 2 coverage discontinued

ACM/IEEE  international conference on human-robot

interaction

2 − − −

ACM/siam  symposium on discrete algorithms 2 2.247 1.520 1.644

Annual  conference of  the special interest group on data

communication

2  –  – –

Annual  conference on neural information processing systems 2 –  – –

Annual  international acm sigir conference on research

&development on information retrieval

2 coverage discontinued

Computer  aided verification 2 –  – –

Conference on uncertainty in  artificial intelligence 2 –  – –

European  conference on computer vision 2 –  – –

European  conference on information retrieval 2 –  – –

European  software engineering conference 2 –  – –

European  symposium on algorithms 2 –  – –

IEEE  annual symposium on foundations of  computer science 2 –  – –

IEEE  international conference on data mining 2 –  – –

IEEE  international conference on pervasive computing and

communications

2  coverage discontinued

IEEE  international symposium on parallel &distributed

processing

2 coverage discontinued

IEEE/ACM  international conference on automated software

engineering

2  –  – –

International  colloquium on automata, languages and

programming

2  –  – –

International  conference on  artificial intelligence and statistics 2 –  – –

International  conference on  autonomous agents and

multiagent  systems

2  coverage discontinued

International  conference on  information processing in  sensor

networks

2  coverage discontinued

International  conference on  information systems 2 –  – –

International  conference on  intelligent user interfaces 2 0.596 0.544 0.886

International  conference on  machine learning 2 coverage discontinued

International  conference on  network protocols 2 –  – –

International  conference on  pervasive computing 2 –  – –

International  conference on  principles and practice of

constraint  programming

2  –  – –

International  conference on  the theory and application of

cryptographic techniques EUROCRYPT

2 –
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Table  A.15 (Continued)

Name Panel SJR  IPP SNIP

Manually found

International conference on  tools and algorithms for  the

construction  and analysis of systems

2 –  – –

International cryptology conference CRYPTO 2 –  – –

International semantic web conference 2 –  – –

International symposium on software testing and analysis 2 –  – –

Working IEEE/IFIP conference on  software architecture 2 –  – –

Www  international conference on world wide web 2 –  – –

Panel  5:  1

Journal  of  geophysical research: oceans 5 2.031 3.108 1.249

Panel  17:  2

Mir  rossii 17 –  – –

Yhteiskuntapolitiikka 17 –  – –

Panel  18:  3

Kasvatus  18 –  – –

Language, cognition and neuroscience 18 0.0  0.0 0.0

Psykologia 18 –  – –

Panel  19:  7

Current  legal  problems 19 –  – –

Hallinnon tutkimus 19 –  – –

Legisprudence 19 coverage discontinued

Mcgill  law journal 19 coverage discontinued

Oikeus  19 –  – –

Politiikka  19 –  – –

Zeitschrift  fur europarecht, internationales privatrecht und

rechtsvergleichung

19 –  – –

Panel  22:  4

Journal  of  dance education 22 –  – –

Storyworlds  22 –  – –

Taidehistoriallisia tutkimuksia 22 –  – –

Theatre arts journal: studies in  scenography and performance 22 –  – –

Panel  23:  6

Mitteilungen des  Deutschen Archaologischen Instituts: Orient

Abteilung:  Baghdad

23  coverage discontinued

Mitteilungen  des  Deutschen Archaologischen Instituts: Orient

Abteilung:  Damaskus

23  –  – –

Studia  fennica: anthropologica 23 –  – –

Studia  fennica: historica 23 –  – –

Studia  historica 23 –  – –

Suomen muinaismuistoyhdistyksen aikakauskirja 23 –  – –

Table A.16

JuFo-rank at least two  ranks higher than SJR, SNIP and IPP.

Name Panel JuFo rank  SJR SNIP IPP NOR DAN

Panel 1:  1

Journal of  mathematical biology 1  3  1.183 1.432 2.017  2  2

Panel  2:  1

Neural computation 2  3  0.878 1.13 1.572 2  2

Panel  15: 2

Canadian journal of  forest research-revue Canadienne de recherche

forestiere

15 3  1.071 1.045 1.862 1  2

Journal  of  agricultural science 15 3  0.813 1.423 1.959 1  1

Panel  17: 4

Acta sociologica 17 3  0.752 1.205 1.089  2  2

Communication  monographs 17 3  1.024 1.223 1.326 2  2

Differences:  a journal of feminist cultural studies 17 3  0.166 1.095 0.265  2  2

Feminist  theory 17 3  0.672 1.299 0.782  2  2

Panel  18: 4

Comparative education 18 3  0.812 0.766 0.747  2  2

Journal  of  cross-cultural psychology 18 3  0.917 1.228 1.64 2  2

Journal  of  higher education policy and management 18 3  0.881 1.151 1.008 1  1
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Table  A.16 (Continued)

Name Panel JuFo rank SJR SNIP IPP  NOR DAN

Journal of  philosophy of education  18 3 0.687 1.221 0.622 2 2

Panel  19: 11

Common  market law review 19 3 0.645 1.12 0.495 2 2

Crime  and delinquency 19 3 1.038 1.035 1.162 2 2

European  journal of  international law 19 3 0.573 1.36 0.616 2 2

European  law journal 19 3 0.706 1.052 0.587 2 2

European  law review 19 3 0.618 1.391 0.526 2 2

International  and comparative law quarterly 19 3 0.59 1.156 0.484 2 2

Journal  of  law and society 19 3 0.381 1.16 0.656 2 2

Law  and philosophy 19 3 0.352 1.026 0.269 2 2

Oxford  journal of legal studies 19 3 0.454 1.121 0.554 2 2

Public  management review 19 3 0.815 1.044 1.299 1 2

The  modern law review 19 3 0.356 1.308 0.43 2 2

Panel  20: 19

British  journal for  the history of  science 20 3 0.254 1.391 0.462 2 2

Erkenntnis  20 3 0.621 0.961 0.49 2 2

International  journal of systematic theology 20 3 0.139 0.257 0.033 2 2

Journal  of  biblical literature 20 3 0.332 0.564 0.106 2 2

Journal  of  contemporary religion 20 3 0.311 1.025 0.588 2 2

Journal  of  ecclesiastical history 20 3 0.166 0.443 0.106 2 2

Journal  of  the history of  ideas 20 3 0.15 0.831 0.21 2 2

Journal  of  the history of  philosophy 20 3 0.15 0.858 0.161 2 2

Method  and theory in the study of  religion 20 3 0.236 0.572 0.226 2 2

Neue  zeitschrift fur systematische theologie und religionsphilosophie 20 3 0.104 0.075 0.031 2 2

New  testament studies 20 3 0.353 1.089 0.224 2 2

Novum  testamentum 20 3 0.123 0.282 0.036 2 2

Numen  20 3 0.133 1.015 0.175 2 2

Philosophy  of science 20 3 1.086 1.303 0.877 2 2

Phronesis  20 3 0.159 1.44 0.231 2 2

Technology  and culture 20 3 0.313 1.327 0.541 2 2

Vetus  testamentum 20 3 0.196 0.131 0.014 2 2

Zeitschrift  fur  die alttestamentliche wissenschaft 20 3 0.28 0.049 0.01 2 2

Zeitschrift  fur  die neutestamentliche wissenschaft und die kunde der

alteren kirche

20 3 0.121 0.209 0.043 2 2

Panel  21: 14

Cognitive  linguistics 21 3 0.718 1.356 0.812 2 2

English  language and linguistics 21 3 0.544 1.254 0.686 2 2

Journal  of  African languages and linguistics 21 3 0.177 0.418 0.182 2 2

Journal  of  child language 21 3 1.04 1.329 1.475 2 2

Journal  of  pragmatics 21 3 1.038 1.226 0.909 2 2

Language  variation and change 21 3 0.903 1.437 1.067 1 2

Langue  francaise 21 3 0.331 1.055 0.222 2 2

Linguistic  typology 21 3 0.304 0.445 0.385 2 2

Linguistics 21 3 0.584 1.068 0.642 1 2

Natural  language engineering 21 3 0.316 1.126 0.695 2 2

Target:  international journal of  translation studies 21 3 0.293 1.323 0.39 2 2

Text  and talk 21 3 0.433 0.656 0.339 2 2

Transactions  of the philological society  21 3 0.339 1.159 0.351 2 2

Voprosy  yazykoznaniya 21 3 0.1 0 0  2 2

Panel  22: 54

Art  history 22 3 0.13 0.505 0.067 2 2

Art  journal 22 3 0.126 0.659 0.083 2 2

Boundary  2: an international journal of  literature and culture 22 3 0.172 0.963 0.2  2 2

British  journal of  aesthetics 22 3 0.398 1.068 0.296 2 2

Burlington  magazine 22 3 0.145 0.152 0.059 2 2

Cambridge  opera journal 22 3 0.169 0.53 0.069 2 2

Cinema  journal 22 3 0.138 0.916 0.25 2 2

Classical  philology 22 3 0.132 0.463 0.05 2 2

Computer  music journal 22 3 0.23 0.787 0.433 2 2

Critical  quarterly 22 3 0.116 0.249 0.048 2 2

Design  issues 22 3 0.274 0.832 0.571 2 2

Deutsche  vierteljahrsschrift fr literaturwissenschaft und

geistesgeschichte

22 3 0.115 0.098 0.029 2 2

Diacritics:  a review of  contemporary criticism  22 3 0.101 0 0  2 2

Early  music history 22 3 0.169 0.743 0.167 2 2

Elh  22 3 0.148 0.879 0.102 2 2

Essays  in  criticism 22 3 0.1 0.15 0.025 2 2

Ethnomusicology 22 3 0.183 0.982 0.24 2 2
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Table  A.16 (Continued)

Name Panel JuFo rank  SJR SNIP IPP NOR DAN

Etudes classiques 22 3  0.1 0 0 1  1

History  of photography 22 3  0.173 0.902 0.123  2  2

Journal  of  aesthetics and  art criticism 22 3  0.203 0.514 0.161  2  2

Journal  of  architecture 22 3  0.242 0.372 0.143  2  2

Journal  of  design history 22 3  0.136 0.42 0.109  2  1

Journal  of  hellenic studies 22 3  0.179 0.549 0.065 2 2

Journal  of  musicology 22 3  0.208 0.839 0.105  2  2

Journal  of  new music research 22 3  0.26 0.857 0.575  2  2

Journal  of  the American musicological society 22 3  0.361 1.112 0.357  2  2

Journal  of  the royal musical association 22 3  0.233 0.691 0.184  2  2

Journal  of  the society  of architectural historians 22 3  0.101 1.29 0.153  2  2

Journal  of  the warburg and courtauld institutes 22 3  0.111 0.895 0.086  2  2

Journal  of  visual culture 22 3  0.161 0.958 0.333  2  2

Leonardo  22 3  0.253 0.729 0.203  2  2

Mfs:  modern fiction studies 22 3  0.179 0.578 0.094  2  2

Modern  language quarterly 22 3  0.127 0.952 0.155  2  2

Music  analysis  22 3  0.18 0.854 0.314  2  2

Music  education research 22 3  0.761 1.075 0.519  2  2

Music  theory spectrum 22 3  0.196 0.91 0.186  2  2

Narrative  22 3  0.181 1.138 0.23 2  2

New  German critique 22 3  0.106 0.436 0.097 1 1

Nineteenth-century literature 22 3  0.127 0.574 0.111  2  2

October  22 3  0.1 0.508 0.049  2  1

Philologus  22 3  0.13 0.201 0.028  2  2

Popular  music 22 3  0.201 1.188 0.348  2  2

Renaissance  studies: journal of the  society for  renaissance studies 22 3  0.16 0.496 0.054  2  2

Representations  22 3  0.124 0.735 0.185  2  2

Screen  22 3  0.117 0.836 0.128  2  2

Scriptorium  22 3  0.1 0.557 0.043  2  2

Slavic  and east European journal  22 3  0.126 0.353 0.104  2  2

Tdr  22 3  0.213 1.035 0.126  1  2

Television  and new media 22 3  0.329 1.193 0.434  2  2

Textual  practice 22 3  0.17 0.686 0.106  2  2

Theatre  journal 22 3  0.192 0.985 0.143  2  1

Theatre  research international 22 3  0.161 0.556 0.068  2  2

Yearbook  for traditional music 22 3  0.168 0.839 0.188  1  2

Zeitschrift  fur kunstgeschichte 22 3  0.1 0 0 2  2

Panel  23: 30

American anthropologist 23 3  0.818 1.147 1.129 2  2

American  antiquity 23 3  0.807 1.257 1.038  2  2

American  journal of  archaeology 23 3  0.376 1.284 0.422  2  2

Annales:  histoire, sciences sociales 23 3  0.157 0.951 0.187  2  2

Anthropological  theory 23 3  0.758 1.437 0.866  2  2

Antiquity  23 3  0.873 1.167 1.352 2  2

Archaeological  dialogues 23 3  0.238 0.886 0.4  2  2

Early  medieval Europe 23 3  0.137 1.291 0.261  2  2

Environmental  history 23 3  0.28 0.987 0.44 1  2

Geschichte  und gesellschaft 23 3  0.148 1.177 0.235  2  2

Historical  methods 23 3  0.254 0.306 0.316  2  2

Historische  zeitschrift 23 3  0.133 0.632 0.086  2  2

History  23 3  0.125 0.955 0.178  2  2

International  history review 23 3  0.152 0.52 0.153  2  2

International  review of social history 23 3  0.216 1.18 0.295  2  2

Jahrbucher  fur geschichte osteuropas 23 3  0.155 0.91 0.109  1  2

Journal  of  American folklore 23 3  0.12 0.573 0.167  1  1

Journal  of  American history 23 3  0.16 1.125 0.267  2  2

Journal  of  contemporary history 23 3  0.186 1.159 0.33 2  2

Journal  of  folklore research 23 3  0.135 0.393 0.1  2  1

Journal  of  material culture 23 3  0.451 1.113 0.641  2  2

Journal  of  social history 23 3  0.165 0.882 0.212  2  2

Journal  of  womens history 23 3  0.257 1.389 0.449  2  2

Journal  of  world prehistory 23 3  0.829 0.885 1.724 2  2

Past  and present 23 3  0.315 1.383 0.393  2  2

Rethinking  history 23 3  0.227 1.156 0.349  2  2

Russian  history 23 3  0.137 0.198 0.056  1  2

Scandinavian  journal of  history 23 3  0.153 1.041 0.274  1  2

Speculum:  a  journal of medieval studies 23 3  0.115 1.362 0.191  2  2

Vierteljahrshefte  fur zeitgeschichte 23 3  0.145 1.425 0.27 2  2
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Table A.17

JuFo-rank at least  two ranks below SJR, SNIP and IPP.

Name Panel JuFo rank SJR SNIP IPP NOR DKN

Panel 1:  1

Archives of  computational methods in  engineering 1  1  6.284 5.712 7.175  1 1

Panel  2:  3

ACM  transactions on intelligent systems and technology 2  1  4.966 12.305 10.085 NaN NaN

Foundations  and trends in machine learning 2  1  12.076 17.015 19.5 NaN 1

Journal  of  statistical software 2 1  6.131 4.372 6.402  1 2

Panel  3:  11

Advances in  optics and photonics 3  1  7.988 9.249 11.28  NaN NaN

Annual  review of  condensed matter physics 3  1  13.19 5.928 14.5 NaN NaN

Astroparticle  physics 3  1  3.012 2.776 3.828  1 1

Astrophysical  journal letters 3  1  3.914 1.487 4.852  1 NaN

Astrophysical  journal supplement series 3  1  6.857 3.125 9.687  2 1

Living  reviews in  solar  physics 3  1  3.382 3.039 5.889  0 NaN

Monthly  notices of the royal astronomical society 3  1  3.196 1.494 4.911  1 2

Monthly  notices of the royal astronomical society: letters 3 1  3.661 1.503 4.106  NaN NaN

Nano  energy 3  1  3.403 2.379 5.951  NaN NaN

Progress  in  quantum electronics 3  1  3.97 5.066 7.24  1 2

Publications  of the astronomical society of  the pacific 3  1  2.99 1.266 3.147  1 1

Panel  4:  13

Accounts of chemical research 4  1  11.33 4.865 20.685 1 2

Acs  catalysis 4 1  3.47 1.839 6.278  1 NaN

Acta  crystallographica section D: biological crystallography 4  1  20.717 5.01 13.344 1 1

Aldrichimica  acta 4  1  7.861 2.175 12.353 1 NaN

Annual  review of  analytical chemistry 4  1  3.082 2.445 7.841  NaN NaN

Annual  review of  physical chemistry issn 4  1  7.602 4.836 14.741 1 1

Chemical  society reviews 4  1  13.505 6.593 26.899 1 2

Coordination  chemistry reviews 4  1  4.624 3.612 11.321 1 1

Journal  of  applied crystallography 4 1  3.119 6.457 5.829  1 2

Journal  of  photochemistry and photobiology c:  photochemistry reviews 4  1  4.143 4.034 11.133 1 2

Mass  spectrometry reviews 4  1  3.08 2.716 7.981  1 1

Natural  product reports 4  1  3.116 3.778 9.338  2 2

Progress  in  solid state chemistry 4  1  3.448 6.624 7.692  1 1

Panel  5:  2

Journal of  the atmospheric sciences 5  1  3.464 1.491 2.992  2 1

Monthly  weather review 5  1  4.039 1.692 3.345  1 1

Panel  6:  12

Annual review of  ecology evolution and systematics 6  1  6.226 4.259 13.275 1 2

Annual  review of  entomology 6  1  6.476 6.562 13.532 1 2

Annual  review of  phytopathology 6  1  6.037 4.47 12.257 1 2

Biological  reviews 6  1  5.651 4.057 10.268 2 2

Current  opinion in  plant biology 6  1  5.656 2.201 8.833  2 2

Genome  biology and evolution 6  1  3.162 1.017 4.314  1 NaN

Methods  in  ecology and evolution 6  1  2.946 2.384 4.64  1 NaN

Molecular  ecology resources 6  1  3.468 2.927 6.913  1 1

Oceanography and marine biology 6  1  3.05 3.084 6  1 2

Quarterly  review of  biology 6  1  3.556 2.441 5.774  1 2

Studies  in mycology 6  1  3.393 4.141 8.625  1 2

Trends  in  plant science 6  1  7.209 4.218 14.831 2 2

Panel  7:  43

Advances in  genetics 7  1  3.772 1.964 5.273  1 1

Annual  review of  biochemistry 7  1  27.902 6.978 29.52  1 2

Annual  review of  cell  and developmental biology 7  1  19.686 4.777 20.105 1 2

Annual  review of  genetics 7  1  18.504 4.183 18.197 1 2

Annual  review of  microbiology 7  1  10.107 3.888 14.535 1 2

Biochimica  et biophysica acta: gene regulatory mechanisms 7  1  3.642 1.309 5.607  1 1

Biochimica  et biophysica acta: molecular cell  research 7  1  2.999 1.344 4.93  1 1

Bioessays  7  1  3.251 1.139 4.577  2 1

Biotechnology  advances 7  1  3.001 3.941 10.365 1 2

Cell  reports 7  1  8.134 1.666 6.562  1 NaN

Chromosoma  7  1  2.942 0.756 3.068  1 1

Cold  spring harbor perspectives in  biology 7 1  4.857 1.276 4.689  1 NaN

Cold  spring harbor symposia on quantitative biology 7  1  4.2  0.789 3.424  1 1

Critical  reviews in biochemistry and molecular biology 7  1  5.107 1.558 6.436  1 2

Current  opinion in  biotechnology 7  1  3.382 2.146 7.812  1 2

Current  opinion in  cell biology 7  1  8.519 2.206 9.514  1 2

Current  opinion in  genetics and development 7  1  7.581 1.722 7.716  1 2
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Table  A.17 (Continued)

Name Panel JuFo rank SJR SNIP IPP NOR DKN

Current opinion in microbiology 7 1 5.036 1.906 7.455 1 2

Current  opinion in structural biology 7 1 6.88 1.987 8.377 1 2

Current  opinion in virology 7 1 3.195 1.588 5.572 NaN NaN

Current  topics in developmental biology 7 1 3.988 1.385 5.457 1 1

Cytokine  and growth factor reviews 7 1 3.939 2.488 9.133 1 2

Developmental  biology 7 1 3.219 1.059 3.684 1 1

Epigenetics and chromatin 7 1 4.134 0.887 4.344 1 NaN

Fems  microbiology reviews 7 1 7.649 4.143 13.299 1 2

Journal  of  biological chemistry 7 1 3.391 1.219 4.564 2 2

Journal  of  molecular biology 7 1 3.158 1.091 3.803 1 1

Journal  of  molecular cell biology 7 1 3.2 1.246 4.919 1 NaN

Microbiology and molecular biology reviews 7 1 10.607 5.107 16.429 1 2

Molecular plant 7 1 3.357 1.676 6.14 NaN 1

Mutation  research: reviews in  mutation research  7 1 3.285 2.041 6.719 1 2

Nature  protocols 7 1 6.328 2.273 8.188 2 1

Nature  reviews molecular cell  biology 7 1 23.593 5.945 25.446 1 2

Open  biology 7 1 4.545 1.25 4.23 NaN NaN

Progress  in lipid research 7 1 4.97 3.573 12.125 1 2

Reviews  in medical virology 7 1 3.529 2.129 6.962 1 2

Seminars  in cell  and developmental biology 7 1 4.939 1.518 6.22 1 2

Trends  in  biochemical sciences 7 1 11.198 3.072 13.309 1 2

Trends  in  cell biology 7 1 10.198 2.71 11.754 1 2

Trends  in  genetics 7  1 9.354 2.263 10.754 1 2

Trends  in  microbiology 7 1 5.211 2.338 8.865 1 2

Wiley  interdisciplinary reviews-computational molecular science 7 1 4.045 4.136 9.248 0 NaN

Wiley  interdisciplinary reviews. rna 7 1 5.014 1.251 6.421 NaN NaN

Panel  10: 2

Annual  review of  chemical and biomolecular engineering 10 1 3.774 2.735 8.484 NaN NaN

Geotechnique 10 1 3.91 3.156 2.372 1 2

Panel  11: 30

Advances in  immunology 11 1 4.303 1.447 5.271 1 2

Aids  11 1 3.701 1.756 5.759 2 1

Biochimica et  biophysica acta: reviews on  cancer 11  1 3.823 2.143 7.96 1 2

Brain  behavior and immunity 11 1 2.967 1.447 5.83 2 1

Brain  research reviews 11 1 4.54 2.903 8.682 1 2

Brain  structure and function 11 1 3.304 0.942 3.365 2 1

Cancer  discovery 11 1 4.676 1.13 5.129 1 NaN

Chemistry  and biology 11 1 3.054 1.355 5.187 2 2

Circulation:  cardiovascular genetics 11 1 3.337 1.35 5.563 1 NaN

Cold  spring harbor perspectives in  medicine 11 1 3.353 1.683 5.866 NaN NaN

Current  opinion in chemical biology 11 1 4.491 2.241 9.032 1 2

Current  opinion in immunology 11 1 5.988 1.855 7.966 1 2

Current  opinion in neurobiology 11 1 6.13 1.826 7.254 1 2

Developmental  neurobiology 11 1 2.991 1.102 4.206 1 1

Disease  models and mechanisms 11 1 3.06 1.308 4.856 1 NaN

Drug  resistance updates 11 1 3.686 2.997 10.364 1 2

Frontiers  in neuroendocrinology 11 1 3.632 2.34 8.49 2 2

Glia  11 1 3.15 1.41 5.452 1 2

Hippocampus  11 1 3.402 1.257 4.723 1 1

Immunological reviews 11 1 8.712 2.98 11.808 1 2

Molecular cancer therapeutics 11 1 3.117 1.441 5.926 1 1

Mucosal  immunology 11 1 3.99 1.598 6.889 1 NaN

Neurobiology of  disease 11 1 3.156 1.399 5.723 1 2

Neuroscience and biobehavioral reviews 11 1 5.666 3.344 10.596 2 2

Neuroscientist 11 1 3.392 1.891 7.075 1 1

Physiology  11 1 3.674 1.644 5.828 1 2

Progress  in neurobiology 11 1 5.234 2.801 9.988 2 2

Seminars  in immunology 11 1 4.207 1.081 5.262 1 2

Trends  in  immunology 11 1 7.5 2.412 10.435 1 2

Trends  in  neurosciences 11 1 10.184 3.393 13.309 1 2

Panel  12: 19

Advances in  cancer research 12 1 3.738 0.927 3.763 1 1

American  heart journal 12 1 3.457 1.779 4.807 1 1

Cancer  and metastasis reviews 12 1 4.053 2.157 8.21 1 2

Cancer  treatment reviews 12 1 2.934 2.241 6.445 1 1

Circulation:  arrhythmia and electrophysiology 12 1 3.968 2.081 5.288 1 NaN

Circulation:  cardiovascular interventions 12 1 4.193 2.138 5.569 1 NaN

Circulation:  cardiovascular quality  and outcomes 12 1 4.515 2 4.989 1 NaN

Heart  rhythm 12 1 3.335 1.744 4.209 1 1
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Table  A.17 (Continued)

Name Panel JuFo rank  SJR SNIP IPP NOR DKN

JAMA internal medicine 12  1  4.898 3.554 8.101  2 NaN

Journal  of  investigative dermatology symposium proceedings 12  1  4.223 3.412 7.875 1 1

Journal  of  mammary gland biology and neoplasia 12  1  3.22 1.783 6.596 1 1

Journal  of  thoracic oncology 12  1  3.051 1.87 5.394 1 1

Molecular  oncology 12  1  3.5 1.392 5.926 1 NaN

Neoplasia  12  1  3.14 1.227 5.392 1 1

Neuro-oncology 12  1  3.023 1.741 6.012  1 NaN

Obesity  reviews 12  1  3.638 2.904 8.497 1 2

Oncotarget  12  1  3.053 1.378 5.207  1 NaN

Seminars  in  cancer biology 12  1  5.117 2.108 8.265 1 2

Seminars  in  liver disease 12  1  3.471 2.855 8.045  1 1

Panel  13: 6

Acta  psychiatrica scandinavica 13  1  3.14 2.097 5.175 2 1

Alzheimers  and dementia 13  1  5.814 4.251 13.075 1 NaN

Human  reproduction update 13 1  4.341 4.107 9.89 1 1

Progress  in  retinal and eye research 13  1  5.174 4.087 10.778 1 2

Schizophrenia  research 13  1  3.163 1.453 4.673 2 1

World  psychiatry 13  1  3.34 4.073 7.074  1 2

Panel  14: 2

Health  affairs 14  1  4.636 3.001 4.538 1 2

Skeletal  muscle 14 1  3.314 1.928 5.717 NaN NaN

Panel  15: 1

Renewable and sustainable energy reviews 15  1  3.273 3.644 6.822 1 1

Panel  16: 12

Academy  of management annals 16  1  9.928 4.74 8.225 NaN 1

Annual  review of  economics 16 1  7.843 2.514 2.849 1 NaN

Annual  review of  financial economics 16  1  3.706 1.447 1.426 1 NaN

Brookings  papers  on economic activity 16  1  5.301 2.708 2.308  1 1

Computers  and operations research 16  1  2.97 2.942 3.076  2 1

Economic  policy 16  1  5.212 4.003 3.875 1 1

Imf  economic review 16  1  4.335 2.602 2.563 1 1

Journal  of  economic perspectives 16  1  8.485 5.176 5.138 1 2

Nber  macroeconomics annual 16 1  3.03 1.498 1.182 1 1

Qme:  quantitative marketing and  economics 16  1  3.976 0.897 1.238 1 2

Review  of  environmental economics and policy 16  1  3.175 2.58 3.661 1 1

Tax  policy and the  economy 16  1  3.22 3.012 2.125 1 1

Panel  17: 1

Foundations  and trends in communications and information theory 17  1  6.471 3.324 4.778 1 1

Panel  18: 3

Neuropsychology review 18  1  3.193 2.432 6.861 1 1

Perspectives  on psychological science 18  1  5.179 3.892 7.596 1 1

Psychological  science in  the  public interest 18  1  4.451 9.167 12.75 1 1
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