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We study the pair correlations and excitations of a dipolar Bose gas layer. The anisotropy of the dipole-

dipole interaction allows us to tune the strength of pair correlations from strong to weak perpendicular and

weak to strong parallel to the layer by increasing the perpendicular trap frequency. This change is

accompanied by a roton-roton crossover in the spectrum of collective excitations, from a roton caused by

the head-to-tail attraction of dipoles to a roton caused by the side-by-side repulsion, while there is no roton

excitation for intermediate trap frequencies. We discuss the nature of these two kinds of rotons and the

relation to instabilities of dipolar Bose gases. In both regimes of trap frequencies where rotons occur, we

observe strong damping of collective excitations by decay into two rotons.

DOI: 10.1103/PhysRevLett.107.065303 PACS numbers: 67.85.De, 03.75.Kk, 67.85.Hj

Ultracold dipolar Bose gases (DBGs) have become a
focus in the study of cold quantum gases [1–3]. Magnetic
dipole moments of atoms lead to an anisotropic and long-
ranged dipole-dipole interaction. Although small even for
high-spin atoms like 52Cr, experiments have shown that the
dipole-dipole interaction can influence the shape and
stability of a quantum gas [4]. Furthermore, there is
much experimental progress in the formation and cooling
of dipolar molecules [5–11]. Their electric dipole moment
can be much larger than magnetic dipole moments, making
the dipolar interaction the dominant one. Interesting
effects have been predicted such as crystallization without
a lattice potential [12,13] or the influence of rotons on the
Berezinskii-Kosterlitz-Thouless transition [14].

In the present work we investigate a DBG layer of finite
thickness, i.e., the limit of a DBG in a pancake-shaped trap
with the small trapping frequencies going to zero. Particles
can explore the full anisotropy of the dipole-dipole inter-
action, since the restriction to two dimensions is lifted. The
weakly interacting limit of a DBG layer has been studied
by using the mean field approximation (Gross-Pitaevskii
equation), where indeed dynamical instabilities were found
[15,16], accompanied by ‘‘rotonization,’’ i.e., the appear-
ance of a local minimum at a characteristic parallel wave
number in the dispersion relation. This roton excitation is
the soft mode driving the DBG toward instability and can
appear at arbitrarily low density if the layer is thick
enough. This roton has a completely different physical
origin than the roton predicted for a strongly interacting
DBG in the two-dimensional limit [17], where it is a
consequence of short-range order.

Going beyond the mean field, the hypernetted chain
Euler-Lagrange (HNC-EL) method was used in Ref. [18].
Consistent with mean field results, instabilities due to the
attractive part of the dipole-dipole interaction were found.
Close to the instability, the Bijl-Feynman approximation
[19] predicts a roton, and a pronounced peak in the pair

distribution function is observed, at a position correspond-
ing to head-to-tail configurations of the dipoles. Here we
present calculations of the excitation spectrum based on
the correlated basis function Brillouin-Wigner (CBF-BW)
method. CBF-BW not only yields an accurate dispersion
relation but also takes into account decay processes due to
scattering of elementary excitations.
We model a layer of polarized dipoles (pointing in the z

direction, having mass m and a short-range isotropic re-
pulsive interaction) in a harmonic trap in the z direction
with the Hamiltonian
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dipole-dipole interaction. We use ð�=rÞ12 as a simple
model for the repulsion. Our length and energy units r0
and �0 are given by r0 ¼ mCdd
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, respectively,

effectively eliminating the parameters m and Cdd. All
quantities are expressed in these units and are therefore
dimensionless. The parameters of this system are the re-
pulsion �, the frequency of the confining potential �, and
the area density n, defined as n � R

dz�ðzÞ, where �ðzÞ is
the particle density. Dynamical instability is approached by
decreasing � (which shields the attractive part of the
potential), decreasing �, increasing n (both increasing
the width of the layer), or a combination of the three.
The theoretical basis of HNC-EL and CBF-BW for layer

geometries is given in Ref. [20]. The present work is
formally similar to studies of 4He confined between walls
[21]. In a nutshell, a generalized Jastrow-Feenberg ansatz
�0 ¼ exp½Piu1ðziÞ þ

P
i<ju2ðzi; zj; rk;ijÞ� is made for the

ground state where rk;ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2

q
is the

parallel distance of two particles. The symmetry of
this ansatz follows from the trap geometry (in-plane
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translational invariance) as well as from the anisotropy of
the dipole-dipole interaction. According to the Ritz varia-
tional principle the ui’s are obtained by minimization of
the energy: �h�0jHj�0i=�ui ¼ 0. For 4He, quantitative
results are obtained only by taking into account triplet
correlations u3 and the so-called elementary diagrams E.
In the present case of a DBG layer, we set the area density
to n ¼ 2 for which we will show that u3 and E have only a
small effect even in the worst case of the 2D limit, and we
can neglect them. Solving the HNC-EL equations, we
obtain the pair distribution function gðz; z0; rkÞ, which fol-

lows from division of the probability density to find two
particles at perpendicular coordinates z and z0 and parallel
distance rk by the one-body densities �ðzÞ and �ðz0Þ.

The CBF-BW approximation for excited states [22] can
be derived by allowing for time-dependent fluctuations in

the above ansatz: �ðtÞ ¼ e�iE0t=@ e�UðtÞ=2
h�ðtÞj�ðtÞi�0, where

�UðtÞ ¼ P
N
i¼1 �u1ðri; tÞ þ

P
i<j�u2ðri; rj; tÞ are fluctua-

tions of the correlations. �UðtÞ is obtained by minimizing
the action S ¼ R

dth�ðtÞjH � i@ @
@t j�ðtÞi and linearizing

the resulting Euler-Lagrange equations. Assuming a per-
turbing external potentialUperte

�i!t, we obtain the density-

density response operator � from its definition
��1ð!Þ�� ¼ Upert, where �� is the density fluctuation

induced by Upert. In CBF-BW, �ð!Þ is given by �ð!Þ ¼
Gð!Þ þGð�!Þ, where Gð!Þ in coordinate representation
is given by

Gðz; z0; rk;!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðzÞ�ðz0Þ

q X
m;n

Z
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�m;kðzÞeiðkxxþkyyÞ are the Feynman excitation functions for
parallel wave vector k and perpendicular quantum number
m, and "mðkÞ is the excitation energy in the Bijl-Feynman
approximation. The dynamic pair correlations �u2 (absent
in the Bijl-Feynman approximation) give rise to the com-
plex self-energy �mnðk;!Þ [20]. CBF-BW is the minimal
variational theory that describes excitation energies and
damping qualitatively correctly for strongly correlated sys-
tems like 4He. The dynamic structure function is obtained
from the fluctuation-dissipation theorem Sð!Þ ¼
�Im�ð!Þ=�. Of particular interest are plane wave pertur-
bations with wave vector k, which correspond to Bragg
spectroscopy measurements. The resulting Sðk; !Þ ¼R
d3rd3r0e�ikðr�r0ÞSðz; z0; rk; !Þ is the dissipation cross

section for transferring momentum k and energy @! to
the system. Thus Sðk; !Þ has a peak whenever @! coin-
cides with an excitation energy, and homogeneous broad-
ening of Sðk; !Þ indicates decay of excitations.

We have calculated the ground state and excited states
for � ¼ 0:3 and area density n ¼ 2 and varied the trap
frequency�. For a system of fermionic KRb molecules [9]
these values correspond to the physical parameters � ¼
0:18 
m, n ¼ 5:32 
m�2, and the unit value of the trap-
ping frequency �0 ¼ 1:33 kHz. For the magnetic dipoles
of Er2 [23] these values correspond to � ¼ 25:4 nm, n ¼
278 
m�2, and �0 ¼ 26:3 kHz. Thus, our results are in a
parameter regime that is somewhat outside the typical
experimental regime. By varying the trap frequency �
we drastically change the properties of the system. A small
value of � leads to a wide density profile �ðzÞ (shown in
the top panel of Fig. 1) with a high probability for head-to-
tail configurations, where pairs of particles are located in
the attractive well of the dipolar interaction. Increasing �
decreases this probability, until eventually the DBG be-
comes two-dimensional. The smallest value of � that we
achieved was � ¼ 3:16, below which the numerical solu-
tion of the HNC-EL equations became unstable, as
discussed below.

The effect of the trap frequency on the pair distribution
gðz; z0; rkÞ is shown in Fig. 1. In the middle panel,

gðz; z0; rkÞ is plotted for z ¼ �z0 and rk ¼ 0 as a function

of z. G?ðzÞ � gðz;�z; 0Þ is a measure of out-of-plane pair
correlations. With decreasing �, a correlation peak is
growing in G?ðzÞ, shifted from the classical potential
minimum for two particles (indicated by a filled circle)
by zero-point motion. Indeed, at � ¼ 3:16, G?ðzÞ is ele-
vated above unity for all values of z, which means that
particles tend to cluster up atop each other. This is not
manifested in the translationally invariant one-body den-
sity �ðzÞ but only in the pair distribution function. G?ðzÞ
even has a second correlation peak at a much larger z value,
but �ðzÞ is almost zero there. It is this clustering in head-to-
tail configurations that brings the DBG closer to instability,
as we will see in the excitation spectrum. The lower panel
of Fig. 1 shows GkðrkÞ � gð0; 0; rkÞ, a measure of in-plane

pair correlations. Variation of � reveals a trend for GkðrÞ
opposite to G?ðzÞ: Increasing � (i.e., making the system
more two-dimensional) increases in-plane correlations.
Confining the dipoles shields them from the attractive
part of the dipole-dipole interaction. Hence the correlation
peak inGkðrkÞ for large� is due to the repulsive part of the

dipole-dipole interaction [and to a smaller degree due
to the ð�=rÞ12 repulsion]. A comparison between
Monte Carlo results [13] and GkðrkÞ in the two-

dimensional limit can be found in Ref. [18], where it is
shown that for the low area densities used here the HNC-
EL method gives very accurate results.
In Fig. 2, we show the main result of this work, the

dynamic structure function Sðk; !Þ for a wave vector
parallel to the layer (k ¼ kk, k? ¼ 0). Wave numbers

and frequencies are given in units of the trap length, a�1
ho ¼ffiffiffiffiffi

�
p

in our units, and the trap frequency �, respectively.
The Bijl-Feynman approximation "nðkÞ is shown by dotted
lines. The six panels correspond to the different values of
� used also in the ground state calculations above (again
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� ¼ 0:3 and n ¼ 2). Sðkk; !Þ is shown as a gray-scale map

for damped modes. To enhance low intensity regions, the

scale is mapped to Sðkk; !Þ1=4. Undamped modes lead to

�-like contributions and cannot be displayed in this fash-
ion. Therefore, they are traced by lines in Fig. 2. Since the
layer is translationally invariant, parallel momentum is
conserved and kk is a good quantum number. Sðkk; !Þ
probes the dispersion relation of excitations characterized
by a wave vector kk. The strongest signal comes from the

excitations with the lowest perpendicular quantum number
@!0ðkkÞ.

Close to instability, at � ¼ 3:16, the lowest mode ex-
hibits a roton, i.e., a local minimum in the dispersion
relation !0ðkkÞ (full line), at a wave number kk � a�1

ho .

Because of the negative curvature of the dispersion for low
kk, the phonon and roton excitations are not damped. When

we increase kk beyond a�1
ho , !0ðkkÞ bends over to form a

plateau at twice the roton energy Er, and the undamped
mode loses spectral weight (not visible in Fig. 2, since we
refrained from artificial broadening). This effect is well-
known for superfluid 4He. It is caused by the high density
of states at Er, leading to a high probability for immediate
decay into two rotons, when this decay channel opens at
@! ¼ 2Er. Beyond a�1

ho , more and more spectral weight is

carried by a damped, free-particle-like excitation at ener-
gies above 2Er. We note that "0ðkÞ predicts a value for Er

very similar to CBF-BW. Thus the system is far less
correlated than 4He, where CBF-BW is a significant cor-
rection to the Bijl-Feynman approximation for the roton
energy.

The appearance of such a roton in dipole layers was
predicted already in the mean field approximation [15,16]
and later in the Bijl-Feynman approximation [18]. The
mean field calculations have shown that, upon further
decreasing �, the roton energy Er can drop to zero,
triggering a dynamical instability driven by a perturbation
with finite momentum and caused by the dipole-dipole
attraction. Unlike the mean field approach, HNC-EL cal-
culations show signs of this instability already in the
ground state calculation. Indeed, numerical solution of
the HNC-EL equations is exceedingly difficult for smaller
�, smaller �, or higher area density n. As explained in
Ref. [18], this is an indication that the Jastrow-Feenberg
ansatz �0 leads only to a metastable solution even if
Er > 0. The true ground state would lie energetically
lower than �0. The correlation peak in G?ðzÞ suggests a
dimerized phase, where pairs of dipoles are bound [18].
Whether such a phase exists would have to be answered
by using either a different ansatz for �0 or a method that
does not require a variational ansatz.
Tightening the trap by increasing � enhances stability

and suppresses the roton and the associated two-roton

FIG. 2. Sðkk; !Þ for the trap frequency increasing from � ¼
3:16 (top left) to � ¼ 224 (bottom right). Undamped modes are
shown by lines, and the dotted lines are the excitation energies in
the Bijl-Feynman approximation. Roton excitations appear both
in the weak and in the strong trapping limit.
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FIG. 1 (color online). Density profile �ðzÞ (top panel) and out-
of-plane pair distribution G?ðzÞ (middle panel) for several trap
frequencies � (z is scaled by the oscillator length). As the
correlation peak of G?ðzÞ decreases with increasing �, a small
peak appears in the in-plane pair distribution GkðrkÞ (bottom

panel). The location of the potential minimum for two particles
is indicated by filled circles.
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plateau. !0ðkkÞ becomes markedly more straight for, e.g.,

� ¼ 22:4. As for � ¼ 3:16, also for higher � low exci-
tations are undamped for small kk and become damped

when decay into two lower energy modes becomes kine-
matically possible. For kkaho > 2:4, decay into perpendic-

ularly excited modes leads to additional broadening. Upon
increasing � further towards the two-dimensional limit,
we observe a reappearance of a roton mode, albeit not at
kk � a�1

ho . Between � ¼ 22:4 and � ¼ 54:8 the bend in

@!0ðkkÞ increases, and at � ¼ 224 (bottom right panel in

Fig. 2) the dispersion becomes almost flat at kkaho � 0:4,
and the in-plane correlation increases; see GkðrkÞ in Fig. 1.

We have calculated the dynamic structure function also
in the 2D limit, S2Dðk;!Þ, by using precisely the same
approximations as for the DBG layer for � ¼ 224. We
confirmed that Sðkk; !Þ is very similar to the 2D limit

S2Dðk;!Þ and becomes indistinguishable for � ¼ 707. In
the left and middle panels in Fig. 3, we show Sðkk; !Þ for
� ¼ 707 and S2Dðk;!Þ, respectively, as a function of
k=

ffiffiffi
n

p
and @!=n, which is the more appropriate scaling

for a 2D system of density n. The small difference between
Sðkk; !Þ and S2Dðk;!Þ is due to including triplets and

elementary diagrams in the 2D HNC-EL calculations,
which demonstrates that they are indeed of minor impor-
tance at n ¼ 2. In the right panel, S2Dðk;!Þ is shown at
twice the density, n ¼ 4. This increases the correlations
further and leads to a roton minimum. This is the ‘‘tradi-
tional’’ roton, as it is also found in 4He films, that results
from the short-range order caused by repulsive interac-

tions. The roton wave number is approximately kr �
6n1=2, the same value found in Ref. [17] for � ¼ 0.

We have demonstrated a roton-roton crossover between
two regimes of a DBG layer. (i) In the weak trapping
regime, the system is close to an instability due to the
head-to-tail attraction of the dipole-dipole interaction.
Using HNC-EL, we calculated the pair distribution func-
tion, which shows a strong out-of-plane correlation in the
weak trapping regime. We obtained the excitation energies
from the dynamic structure function in the CBF-BW ap-
proximation. The head-to-tail attraction of dipoles leads to

a roton minimum at wave number kk ¼ a�1
ho in the lowest

collective mode, which is a precursor to dynamical insta-
bility and has been found previously by more approximate
methods [15,16,18]. The out-of-plane correlation peak and
the associated roton vanish upon increasing the trapping
strength. (ii) In the strong trapping regime, we find in-
creased in-plane correlations, caused by the side-by-side
repulsion of dipoles. In this regime, it is this repulsion and
the corresponding short-range order that give rise to a roton

at a wave number of about kk ¼ 6n1=2. Thus by tuning the

confinement strength, the anisotropy of the dipole-dipole
interaction allows us to explore two kinds of rotons with
different physical origin: an ‘‘attractive’’ roton close to the
border to instability and the traditional ‘‘repulsive’’ roton.
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