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We demonstrate that in diffusive superconductor/ferromagnet/superconductor (S/F/S) junctions a finite,
anomalous Josephson current can flow even at zero phase difference between the S electrodes. The conditions
for the observation of this effect are noncoplanar magnetization distribution and a broken magnetization
inversion symmetry of the superconducting current. The latter symmetry is intrinsic for the widely used
quasiclassical approximation and prevented previous works based on this approximation from obtaining the
Josephson anomalous current. We show that this symmetry can be removed by introducing spin-dependent
boundary conditions for the quasiclassical equations at the superconducting/ferromagnet interfaces in diffusive
systems. Using this recipe, we consider generic multilayer magnetic systems and determine the ideal experimental
conditions in order to maximize the anomalous current.

DOI: 10.1103/PhysRevB.95.184508

I. INTRODUCTION

In its minimal form the current-phase relation (CPR)
characterizing the dc Josephson effect reads I (ϕ) = Ic sin ϕ,
where ϕ is the phase difference between superconducting
electrodes and |Ic| is the critical current that is the maximum
supercurrent that can flow through the junction [1,2]. Ordinary
Josephson junctions are characterized by Ic > 0, yielding the
zero-phase-difference ground state ϕ = 0. In certain cases,
however, Ic < 0, and the ground state corresponds to ϕ =
π . Such π junctions can be realized, for example, in su-
perconductor/ferromagnet/superconductor (S/F/S) structures
[3–6], Josephson junctions with nonequilibrium normal metal
interlayer [7], d-wave superconductors [8], semiconductor
nanowires [9], gated carbon nanotubes [10], and multiterminal
Josephson systems [11]. The π junctions have been suggested
for building scalable superconducting digital and quantum
logic [12–14].

As for ϕ = 0,π junctions, no physical argument speaks
against a CPR of the form [15]

I (ϕ) = Ic sin(ϕ + ϕ0), (1)

with an arbitrary phase shift ϕ0 �= πn and the Josephson energy
EJ = −Ic cos(ϕ + ϕ0) corresponding to the ground state at
ϕ = −ϕ0. The CPR, Eq. (1), can be written in the alternative
form

I (ϕ) = I0 sin ϕ + Ian cos ϕ, (2)

where I0 = Ic cos ϕ0 is the usual Josephson current and Ian =
Ic sin ϕ0 is referred to as the anomalous current. The latter
leads to a nonzero supercurrent even if the phase difference
between the superconductor vanishes. This effect is referred
to as the anomalous Josephson effect (AJE) and takes place
only in systems with a broken time-reversal symmetry.

The AJE has been predicted in junctions which com-
bine conventional superconductors with magnetism and spin-
orbital interaction [15–23], between unconventional supercon-

ductors [24], and between topologically nontrivial supercon-
ducting leads [25]. In the presence of magnetic flux piercing
the normal interlayer superconducting proximity currents are
generated, which naturally leads to a phase shift of the CPR
[26,27]. Experimentally, a ϕ0 junction has been reported
between two superconductors coupled via a nanowire quantum
dot [28] controlled by an electrostatic gate.

Another type of system predicted to exhibit the AJE
is conventional S/F/S junctions with a nonhomogeneous
magnetization texture [29–36]. In such systems the current is
a function of the magnetization distribution M, I = I (ϕ,M).
Time-inversion symmetry dictates that I (ϕ,M) = −I (−ϕ,

−M). If the system has an additional magnetization inversion
symmetry such that

I (ϕ,M) = I (ϕ, − M), (3)

then I (ϕ,M) = −I (−ϕ,M), and obviously, the system does
not exhibit the AJE. In other words, it is necessary to break
the symmetry (3) in order to obtain the ϕ0 state.

For any coplanar magnetization distribution there exists
a global SU(2) spin rotation that flips the direction of M,
and the condition (3) is fulfilled. For this reason, the AJE
requires a noncoplanar magnetization texture as predicted for
ballistic S/F/F/F/S systems [32–34]. The anomalous current
obtained in those works shows rapid oscillations as a function
of the ferromagnetic thickness. These oscillations result from
the Fabry-Pérot interference of electronic waves reflected at
the S/F and F/F interfaces.

In diffusive S/F/S structures, such as those used in ex-
periments [4,5,13,37–39], the impurity scattering randomizes
directions of electron propagation, and hence one expects
the suppression of the rapidly oscillating anomalous current.
Studies, based on quasiclassics, of the diffusive Josephson
junctions through various noncoplanar structures, including
a helix [40], magnetic vortex [41], and skyrmion [42], have
shown no AJE. In contrast, in diffusive systems with half-
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metallic elements [29,31] and in junctions between magnetic
superconductors with spin filters [35,36] a finite anomalous
current has been predicted. From this apparent contradiction,
the general condition for the AJE in diffusive systems still
remains elusive.

In this paper we show that the AJE is a robust effect that
can exist in any diffusive S/F/S system with noncoplanar
magnetization texture under quite general conditions. We
demonstrate that the reason why anomalous currents have not
been found in previous studies on diffusive S/F/S systems is
due to the additional magnetization inversion symmetry (3)
that the quasiclassical approximation [43,44] has with respect
to the original Hamiltonian and that prevents the description
of the AJE in ferromagnetic junctions. In the second part of
the paper we consider a spin filter at the S/F interfaces and
demonstrate the existence of anomalous currents in diffusive
S/F structures. This allow us to study the AJE without having
to renounce the widely used quasiclassical approximation
[6,45] and to suggest different magnetic hybrid structures in
which the anomalous phase can be experimentally detected.
In order to facilitate the reading we have included most of the
mathematical derivation in the Appendix.

II. QUASICLASSICAL SYMMETRY OF THE
CHARGE CURRENT

We start by analyzing the inherent symmetries of the
Usadel equation, which is a diffusionlike equation for the
quasiclassical Green’s functions (GFs). In the Matsubara
representation it has the form [6,44,45]

D∇(ǧ∇ǧ) = [�̌ + τ̂3(ω + iσ̂ h),ǧ], (4)

where [a,b] = (ab − ba)/2, ω is the Matsubara frequency,
h(r) is the exchange field which is parallel to the local
magnetization M(r), σ̂ = (σ̂1,σ̂2,σ̂3) is the vector of Pauli
matrices in spin space σ̂1,2,3, and τ̂1,2,3 are the Pauli matrices
in Nambu space. The gap matrix is defined as �̌ = τ̂1�e−iτ̂3ϕ ,
where � and ϕ are the magnitude and phase of the order
parameter. The 4 × 4 matrix GF in spin-Nambu space can be
written in the following form, which takes into account the
general particle-hole symmetry of Eq. (4):

ǧ =
(

ĝ f̂

¯̂f − ¯̂g

)
, (5)

with 2 × 2 components ĝ and f̂ in the spin space and the
time-reversed operation defined as X̄ = σ̂2X

∗σ̂2. Equation (4)
is complemented by the normalization condition ǧ2 = 1.

We introduce the following transformation:

ǧnew = σ̂2τ̂1ǧ
∗τ̂1σ̂2, (6)

which is a combination of two transformations ǧnew =
T �ǧ�†T †: the time-reversal transformation, T = iσ̂2K, with
K being the complex conjugate operation, and the transposition
of the electron and hole blocks of ǧ, � = τ̂1. Applying the
transformation (6) to the Usadel Eq. (4), one obtains that

ǧnew(ω,h) = ǧ(−ω, − h). (7)

On the other hand, the current is expressed as

j = i
σn

8e
πT

∞∑
ω=−∞

Tr τ̂3ǧ∇ǧ, (8)

where σn = e2NF D is the normal-metal conductivity and NF

is the density of states at the Fermi level. The summation is
done over Matsubara frequencies ω = πT (2n + 1), where n

is an integer number and T is the temperature. It follows from
Eqs. (6) and (7) that the current is invariant with respect to
the magnetization inversion, j (h) = j (−h), as anticipated in
Eq. (3). By combining this extra symmetry with the general
time-reversal symmetry, j (ϕ,h) = − j (−ϕ, − h), one obtains
that j (ϕ) = − j (−ϕ), and hence within the quasiclassical
approach, the AJE cannot take place for any spatial dependence
of the exchange field h(r). However, we know from previous
works that anomalous current may be generated at least in
ballistic S/F/S junctions with noncoplanar configuration of the
magnetization [32–34]. What is the origin of the apparent
contradiction between the explicit ballistic calculations in
those references and the magnetization reversal symmetry of
the Usadel equation? Is the absence of AJE a specific feature
of diffusive systems, or is there a deeper reason for the above
symmetry?

To answer these questions let us first recall the Bogoliubov–
de Gennes (BdG) Hamiltonian:

HBdG =
(

ξ − σ̂ h �

�∗ −ξ − σ̂ h

)
,

where ξ = p2/2m − EF is the quasiparticle energy relative
to the Fermi energy EF . The general symmetries of the
BdG Hamiltonian are well known [46]. In the quasiclassical
limit, which is equivalent to the Andreev approximation [47],
transport properties are determined by particles living exactly
at the Fermi surface. In the BdG Hamiltonian this corresponds
to the ξ = 0 case. In this and only in this case, the BdG
Hamiltonian acquires an additional symmetry with respect
to the transposition of the electron and hole blocks, namely,
τ̂1HBdG(ξ = 0,ϕ,h)τ̂1 = HBdG(ξ = 0, − ϕ,h). According to
Eq. (6), this symmetry together with the time-reversal opera-
tion leads to the invariance of the current under magnetization
inversion. Obviously, this invariance is a general feature of the
quasiclassical theory, which holds true not only in the diffusive
(Usadel) limit but also for the full Eilenberger equation. In
particular it explains why no AJE is obtained at the leading
quasiclassical order in ballistic junctions with generic spin
fields [48].

Clearly, in real materials quantum effects always break
this symmetry to a degree determined by the accuracy of
quasiclassical approximation, which is the ratio h/EF . Once
this symmetry is broken, the AJE may occur in any S/F/S
system with an arbitrary degree of nonmagnetic disorder and
noncoplanar magnetization distribution. The magnitude of
the anomalous current will then be in the leading order of
the parameter h/EF . Typical experiments on S/F/S junctions
showing the π -junction behavior used weak ferromagnets
[4,5,49], for which h/EF � 1. Therefore, at first glance, the
AJE is hardly expected to be observed in these structures.

This conclusion is, however, not fully correct, and there is
indeed a way to enhance the anomalous Josephson currents
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in systems with weak ferromagnets if one introduces spin-
filtering tunnel barriers at the S/F interfaces, i.e., barriers with
spin-dependent transmission for up and down spins. As we
show below such barriers break the quasiclassical symmetry,
Eq. (3), and can lead to a measurable AJE in realistic S/F/S
junctions.

III. SPIN-FILTERING BOUNDARY CONDITIONS BEYOND
THE QUASICLASSICAL CONSTRAINTS

Spin-filtering barriers are described by the generalized
Kuprianov-Lukichev boundary conditions [50], which include
spin-polarized tunneling at the SF interfaces [51,52],

γ ǧ∂nǧ = [�̌ǧS�̌
†,ǧ]. (9)

Here ∂n = (n · ∇) is the normal derivative at the surface,
γ = σnR is the parameter describing the barrier strength,
R is the normal-state tunneling resistance per unit area, and
ǧS is the Green’s function of the superconducting electrode.
We assume that the magnetization of the barriers points in
the m direction. The spin-polarized tunneling matrix has the
form �̌ = t σ̂0τ̂0 + u(mσ̂ )τ̂3, with t =

√
(1 + √

1 − P 2)/2,
u =

√
(1 − √

1 − P 2)/2, and P being the spin-filter efficiency
of the barrier that ranges from 0 (no polarization) to 1 (100%
filtering efficiency).

By applying the transformation (6) to Eq. (9) one can check
that the sign of the barrier polarization does not change, and
hence

I (ϕ,h,P) = I (ϕ, − h,P), (10)

where P = P m. On the other hand, the time-reversal transfor-
mation flips all the magnetic moments, including the exchange
field and the barrier polarizations,

I (ϕ,h,P) = −I (−ϕ, − h, − P). (11)

Combining Eqs. (10) and (11), we see that, in principle,
I (ϕ,h,P) �= −I (−ϕ,h,P) and the zero-phase-difference cur-
rent at ϕ = 0 is not prohibited by symmetry.

From this simple analysis it is clear that the general features
of the CPR can be deduced from the symmetry relations
(10) and (11). First, we consider the S/FI/F/FI/S structure
of Fig. 1(a). Here FI stands for the spin-filtering barriers
with magnetizations P r,l , and F is the monodomain weak
ferromagnet with exchange field h. From previous works
[32–34] one would expect the anomalous current to be
proportional to the spin chirality χ = h · (P r × P l). However,
such a term does not satisfy the symmetry (10) because
the sign of χ changes when h → −h. Instead, one can
construct a scalar that satisfies the symmetry (10) by writing
Ian ∝ (P r,l h)χ . Thus, for the structure sketched in Fig. 1(a),
two conditions have to be satisfied in order to obtain a finite
anomalous current: (i) all three vectors, h, P r , and P l , are
noncoplanar, and (ii) h has a component parallel to at least
one of the magnetizations, P l or P r .

The second condition contradicts the results based on
the Bogolubov– de Gennes calculations [33], which yield
Ian �= 0 for any noncoplanar spin texture, including the case
when h ⊥ P l,r . To get agreement with those results one has
to take into account the magnetic proximity effect [53–56]
that induces an effective exchange field br and bl in the

(a)

(b)

(c)

FIG. 1. Generic noncoplanar trilayer S/F/S systems: (a) Non-
collinear spin-filtering barriers (FI) with polarizations P r,l and a
metallic ferromagnetic layer (F) with exchange field h. (b) The same
configuration as in (a) and Zeeman fields br,l in superconducting
electrodes. (c) Spin-filtering barrier with polarization P and two
layers of metallic ferromagnet with noncollinear magnetizations h1

(F) and h2 (F′).

superconducting electrodes [Fig. 1(b)]. In this case we define
the chiralities χl,r = P l,r · (br,l × h), which are invariant with
respect to the quasiclassical symmetry since they contain two
exchange fields changing signs under the transformation (10).
Thus in this case the AJE is expected to be proportional to a
linear combination of the chiralities χl,r .

A similar behavior can be expected for the structure shown
in Fig. 1(c). It is a S/FI/F/F′/S junction with noncoplanar
configuration of the one barrier polarization P l and two
ferromagnetic layers h and h1. In this case the chirality
(P l × h1)h �= 0 is invariant under the symmetry (10), thus
allowing for the existence of the AJE.

In the next section we confirm this results by calculating
analytically the current in the structures shown in Fig. 1.

IV. ANOMALOUS CURRENT-PHASE RELATIONS FOR
GENERIC S/F STRUCTURES

To quantify the effects described qualitatively in the
previous section we calculate here the CPR focusing on
the weak proximity effect in the F layer that allows for
a linearization of the Usadel equation with respect to the
anomalous Green’s function [45]. In order not to saturate the
main text with mathematical expressions we present the details
of the calculations in the Appendix.

The anomalous Green’s function can be written as a
superposition of the scalar singlet amplitude fs and the
vector of triplet states f t = (fx,fy,fz), f̂ = fsσ̂0 + f t σ̂ .
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From Eq. (4) we get the following system of equations for
ω > 0:

(D∇2 − 2ω)fs − ih f t = 0, (12)

(D∇2 − 2ω) f t − ifs h = 0. (13)

For the general spin structure of a GF in the superconducting
electrode the linearized boundary condition obtained from
Eq. (9) can be written as follows:

γ ∂nf̂ = F̂s − (Ĝs f̂ + f̂
¯̂Gs)/2, (14)

where

Ĝs = t2Ĝs + u2(mσ̂ Ĝsmσ̂ ) + 2ut{Ĝs,mσ̂ }, (15)

F̂s = t2F̂s − u2(mσ̂ F̂smσ̂ ) − 2ut[Ĝs,mσ̂ ]. (16)

Here Ĝs and F̂s are the normal and anomalous components
of the GF ǧs . In the presence of exchange field b in the
superconducting electrode these components are given by

Ĝs ≈ G0 − i(σ̂ b)dG0/dω, (17)

F̂s ≈ F0 − i(σ̂ b)dF0/dω, (18)

where G0 = ω/
√

ω2 + |�|2 and F0 = �G0/ω. Because ω =
πT (2n + 1), the expansions (17) and (18) are valid provided
b � max(T ,�). Note that for real frequencies (for example,
when calculating the retarded GF and corrections to the density
of states) a similar expansion would fail near the spectral
gap singularity. There is no such danger in the Matsubara
formalism, which makes it possible to safely use (17) and (18)
to study thermodynamic properties.

Below we assume that the exchange field is collinear
with the barrier polarization b ‖ m. In this case the boundary
condition (14) acquires the simplified form

γ ∂nf̂ = −[Ĝs P σ̂ ,f̂ ] − {Ĝs,f̂ } +
√

1 − P 2F̂s, (19)

where {a,b} = (ab + ba)/2. The first term on the right-hand
side of Eq. (19) makes it qualitatively different from the bound-
ary condition for nonmagnetic interfaces (P = 0). This term
provides a π/2 phase rotation of the triplet superconducting
components noncollinear with the barrier polarization P . It is
precisely this phase rotation that may lead to an effective shift
of the phase difference between the Cooper pairs across the
junction, resulting in the AJE.

On the right-hand side of Eq. (19) the first and second terms
are much smaller than the third one. Both the first and second
terms are proportional to the small tunneling parameter γ −1

but have different symmetry. The second term can be safely
neglected since it has the same symmetry as the left-hand side
and therefore does not provide any qualitative corrections. We
keep the first term, which is important to obtain the anomalous
Josephson effect.

To calculate the charge current in the ferromagnetic layer
we use the expression

j = 2σn

e
πT

∑
ω>0

Im(f ∗
s ∇fs − f ∗

t ∇ f t ), (20)

which is obtained from the general equation (8) in the leading
order of a weak proximity effect. Below we derive analytical

expressions for the anomalous and usual Josephson current
components in generic trilayer S/F/S structures shown in Fig. 1
using Usadel equations (12) and (13) with boundary conditions
(19) and current (20).

We calculate the amplitudes of anomalous currents for the
structures shown in Fig. 1 in the practically relevant regime
when the coherence length in the middle ferromagnetic layer
ξF = √

D/h is much shorter than that in a normal metal ξN =√
D/T . Analytical results can be obtained by assuming that

the length d of the junction is ξF � d � ξN . Under such
conditions the Josephson current is mediated by long-range
triplet superconducting correlations (LRTSC) [45] since short-
range modes decay over ξF .

We now consider the three situations illustrated in Fig. 1
and calculate the corresponding anomalous currents.

A. The S/FI/F/FI/S structure

For the structure shown in Fig. 1(a) we neglect the magnetic
proximity effect and assume that bulk GFs in the S electrodes
are Ĝs = G0, F̂s = F0. Then the anomalous current is given
by (see the detailed derivation in Sec. A 1)

eRIan

2π
= χ (h P̄)

√(
1 − P 2

l

)(
1 − P 2

r

) ξ 2
F T

γ 5h2d2

∑
ω>0

F 2
0 G2

0

8k4
ω

,

(21)

where P̄ = P r + P l and kω = √
ω/D. As expected for this

case, the anomalous current is proportional to (h P̄)χ , where
χ = h · (P r × P l) is the spin chirality. It is important to
note that the usual contribution to the Josephson current
I0 = I (ϕ = π/2) determined by the LRTSC is proportional
to I0 ∝ γ −4, and hence it dominates over the anomalous one,
I0 � Ian ∝ γ −5.

B. The S/FI/F/FI/S structure with magnetic proximity effect

If we now take the inverse proximity effect into account
and assume effective exchange fields br and bl in the super-
conductors [Fig. 1(b)], we obtain (see the detailed derivation
in Sec. A 2)

eRIan

2π
= (χl−χr )

√(
1−P 2

r

)(
1 − P 2

l

) ξF

γ 3hd

∑
ω>0

T F ′
0F0G0

2
√

2k2
ω

,

(22)

eRI0

2π
= −(br⊥bl⊥)

√(
1 − P 2

l

)(
1 − P 2

r

) 1

2γ 2d

∑
ω>0

T F ′2
0

k2
N

,

(23)

where the chiralities χr,l are defined above and F ′
0 = dF0/dω.

The usual current carried by the LRTSC is, to the lowest
order in transparency, given by I0 ∝ γ −2(br⊥bl⊥), where
br,l⊥ = br,l − h(br,l h)/h2 are the projections onto the plane
perpendicular to the exchange field h. In contrast to the
previous example, I0 is given by the lower order in γ −1

since the LRTSC can tunnel directly from the superconducting
electrodes modified by the exchange fields br,l . Hence, in
general, if (br⊥bl⊥) �= 0, the anomalous current (22) is a factor
ξF /γ � 1 smaller than I0. However, if either br or bl vanishes,
then I0 ∝ γ −4, and the anomalous current dominates. This
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leads to a large AJE with I = Ian cos ϕ, so that the Josephson
current has its maximal value at zero phase difference.

C. The S/FI/F/F′/S structure

In practice a situation which is qualitatively similar to the
presence of exchange fields in superconducting electrodes
can be realized by introducing thin metallic ferromagnetic
elements (F′) to the junction such as in the S/FI/F/F′/S structure
shown in Fig. 1(c). We assume that the middle F layer satisfies
the above condition, ξF � d � ξN , but the right layer, F′,
is thin enough (d1 � ξF ) to ensure the penetration of singlet
and short-range triplet correlations. As a result the boundary
condition at the interface between the F and F′ electrodes has
the same structure as the one between the F electrode and the
superconductor with internal exchange field.

In this case the anomalous and usual currents are given by
(see Sec. A 3 for details)

eRIan

2π
= χ

√
1 − P 2

l

d1T

4γ 3h2d

∑
ω>0

F 2
0 G0

k2
ω

, (24)

eRI0

2π
=

√
1 − P 2

l (P l h)(P l h1⊥)
d1T

8γ 4d2h2

∑
ω>0

F 2
0 G2

0

k4
ω

, (25)

where χ = (P l × h1)h is the chirality and h1⊥ = h1 −
h(hh1)/h2 is the perpendicular component of the exchange
field h1. As in our first example, the usual component of the
current is proportional to I0 ∝ γ −4, and therefore Ian � I0.
This type of S/FI/F/F′/S structure provides the maximal AJE
since the anomalous current is of the same order as the critical
one, Ian ∼ Ic.

As discussed in the previous section, the CPR can be
substantially modified by the effective exchange field in
superconducting electrodes. Let us assume that the FI barrier
induces a finite exchange field bl in the left electrode of
Fig. 1(c) via the magnetic proximity effect. This results in
the usual Josephson current proportional to I0 ∝ γ −2(h1⊥bl).
On the one hand, this contribution is of the lower order by
transparency γ −1 compared to the anomalous current (24). On
the other hand, it vanishes when bl ⊥ h1 and h ⊥ h1, so that
(h1⊥bl) = 0. In this case the nonvanishing contribution to I0

is given by Eq. (25).
All previous results are, strictly speaking, valid only in

the quasiclassical limit in which h/EF � 1. However, in
the case of strong ferromagnets, h/EF � 1, the difference
between Fermi velocities for spin-up and -down electrons can
be described by an effective spin-filtering effect at the S/F
interfaces, and therefore they also apply for ballistic systems
and strong ferromagnets.

V. CONCLUSION

To summarize, the proposed mechanism for the AJE and ϕ0

ground states in S/F/S structures is rather generic and exists in
any system with a noncoplanar magnetization configuration.
This conclusion is in contrast to a number of previous studies
which did not obtain anomalous currents in diffusive and
ballistic systems in the framework of quasiclassical approxi-
mation. We clarify this apparent controversy by demonstrating
that the absence of AJE within quasiclassics is due to an

additional symmetry which is exact only at the Fermi level.
In order to restore the symmetries of the original Hamiltonian
we have considered spin-filtering boundary conditions to the
Usadel equations and found analytical expressions for the
anomalous current in different geometries. Our results show
that in structures such as those shown in Figs. 1(b) and 1(c)
the amplitude of the anomalous current is comparable to the
critical one, Ian ∼ Ic, and therefore the AJE may be observed
in such junctions.
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APPENDIX: DERIVATION OF
CURRENT-PHASE RELATIONS

1. S/FI/F/FI/S structure

First of all, we consider the simplest possible trilayer
noncoplanar structure, S/FI/F/FI/S, where FI stands for the
spin-filtering barriers with magnetizations P r,l and F is the
monodomain weak ferromagnet with exchange field h. We
calculate the CPR for the structure shown in Fig. 1(a),
assuming, without loss of generality, that the exchange filed
is h = hz and P r,l can have arbitrary directions. Equation (4)
in the ferromagnet gives for the different components of the
anomalous Green’s functions:

D∇2fs = ihfz, (A1)

D∇2 f z = ihfs, (A2)

D∇2fx = 2ωfx, (A3)

D∇2fy = 2ωfy. (A4)

In Eqs. (A1) and (A2) we neglected ω, which is small compared
to the exchange energy.

The boundary conditions at the left electrode x = −d/2 are

γ ∂xfs = −F0

√
1 − P 2

l e−iϕ/2, (A5)

γ ∂xfz = iG0
(
P l

xfy − P l
yfx

)
, (A6)

γ ∂xfx = iG0
(
P l

yfz − P l
zfy

)
, (A7)

γ ∂xfy = iG0
(
P l

zfx − P l
xfz

)
, (A8)

and those at the right electrode x = d/2 are

γ ∂xfs = F0

√
1 − P 2

r eiϕ/2, (A9)

γ ∂xfz = −iG0
(
P r

x fy − P r
y fx

)
, (A10)

γ ∂xfx = −iG0
(
P r

y fz − P r
z fy

)
, (A11)

γ ∂xfy = −iG0
(
P r

z fx − P r
x fz

)
. (A12)
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Using the above boundary conditions and the general
expression for current (20), we get

eRI

2π
=

√
1 − P 2

r

γ
T

∑
ω>0

F0Im[f ∗
s (d/2)eiϕ/2]. (A13)

To simplify the derivation we assume that the length is
ξF � d � ξω, where ξF = √

D/h and ξω = √
D/ω are the

coherence lengths in normal and ferromagnetic regions.
To the first order in tunneling γ −1 we can calculate fs and

fz near each interface independently without overlapping. For
example, at x = d/2 we have

f (1)
s = A1+ek1(x−d/2) + A2+ek2(x−d/2), (A14)

f (1)
z = A1+ek1(x−d/2) − A2+ek2(x−d/2), (A15)

where k2
1,2 = ±ih/D. Then we get

f (1)
s (d/2) =

√
1 − P 2

r (ξF /
√

2γ )F0e
iϕ/2, (A16)

f (1)
z (d/2) = −

√
1 − P 2

r (ξF /
√

2γ )F0e
iϕ/2+iπ/2 (A17)

and

f (1)
s (−d/2) =

√
1 − P 2

l (ξF /
√

2γ )F0e
−iϕ/2, (A18)

f (1)
z (−d/2) = −

√
1 − P 2

l (ξF /
√

2γ )F0e
−iϕ/2+iπ/2. (A19)

To the next order in γ −1 we find corrections to fs using
the boundary conditions (A9) and (A10). The amplitudes fx,y

change negligibly and therefore can be calculated integrating
Eqs. (A3) and (A4) and using the boundary conditions (A11)
and (A7):

fx − iβP̄zfy = −iβPyfz, (A20)

fy + iβP̄zfx = iβPxfz, (A21)

where

β = G0ξ
2
ω/(2γ d), (A22)

Pyfz = P r
y fz(d/2) + P l

yfz(−d/2), (A23)

P̄z = P l
z + P r

z . (A24)

Hence we obtain

fx = −iβPyfz − β2P̄zPxfz, (A25)

fy = iβPxfz − β2P̄zPyfz. (A26)

For the anomalous current we need the second terms in
Eqs. (A25) and (A26) so that

P r
x fy − P r

y fx

= β2P̄z

(
P r

y P l
x − P r

x P l
y

)
f (0)

z (−d/2) + i(other terms).

(A27)

Now we can insert Eq. (A27) into the boundary conditions
(A10) and (A9) to find the corrections to the component
fs(d/2) needed to calculate the current (A13). The corrections

f̃s , f̃z have the form (A14) and (A15) and satisfy the following
conditions,

γ ∂xf̃s = 0, (A28)

γ ∂xf̃z = −iG0β
2P̄z

(
P r

y P l
x − P r

x P l
y

)
f (1)

z (−d/2), (A29)

which yields

Ã2+ = −Ã1+k1/k2, (A30)

Ã1+ = −iG0
β2

2γ k1
P̄z

(
P r

y P l
x − P r

x P l
y

)
f (1)

z (−d/2). (A31)

Therefore f̃s(d/2) = (1 − k1/k2)Ã1+ = (1 − i)Ã1+. Substi-
tuting Eq. (A31), we obtain

f̃s(d/2) = −(1 + i)
G0β

2

2γ k1
P̄z

(
P r

y P l
x − P r

x P l
y

)
f (1)

z (−d/2)

= −G0
β2ξF√

2γ
P̄z

(
P r

y P l
x − P r

x P l
y

)
f (1)

z (−d/2), (A32)

where we used the relation

k−1
1 = e−iπ/4ξF = (1 − i)√

2
ξF .

Using Eq. (A19), we obtain

f̃s(d/2) = iP̄z

(
P r

y P l
x − P r

x P l
y

)√
1 − P 2

l

×β2ξ 2
F

2γ 2
G0F0e

−iϕ/2. (A33)

Finally, substituting this expression into Eq. (A13) for the
current we obtain the anomalous current amplitude

eRIan

2π
= P̄z

(
P r

x P l
y − P r

y P l
x

)√
1 − P 2

l

√
1 − P 2

r

× ξ 2
F T

8d2γ 5

∑
ω>0

F 2
0 G2

0

k4
ω

. (A34)

We can write the amplitude of the current (A34) in the
coordinate-independent form

h2P̄z

(
P r

x P l
y − P r

y P l
x

) = (h P̄)χ,

where χ = h(P r × P l) and P̄ = P r + P l ,

eRIan

2π
= χ (h P̄)

√
1 − P 2

l

√
1 − P 2

r

ξ 2
F T

8γ 5h2d2

∑
ω>0

F 2
0 G2

0

k4
ω

.

(A35)

2. S/FI/F/FI/S structure with exchange field in
superconducting electrodes

Next, let us consider the same S/FI/F/FI/S trilayer system
but take into account the induced exchange field in super-
conducting electrodes br,l shown in Fig. 1(b). In this case
one can compose the chirality as follows: χl = P l · (br × h)
or χr = P r · (bl × h), which are both robust against the
quasiclassical symmetry since both h and br,l change sign.

In the presence of effective exchange fields br and bl GFs
in the superconducting electrodes are given by Eqs. (17) and
(18), with b = br (bl) for right (left) electrodes.
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Substituting these expressions into the boundary conditions
(19), we obtain at the left electrode x = −d/2

γ ∂xfs = −F0

√
1 − P 2

l e−iϕ/2, (A36)

γ ∂xfz = iG0(Plxfy − Plyfx) + i

√
1 − P 2

l blzF
′
0e

−iϕ/2,

(A37)

γ ∂xfx = iG0(Plyfz − Plzfy) + i

√
1 − P 2

l blxF
′
0e

−iϕ/2,

(A38)

γ ∂xfy = −iG0(Plxfz − Plzfx) + i

√
1 − P 2

l blyF
′
0e

−iϕ/2

(A39)

and at the right electrode x = d/2

γ ∂xfs = F0

√
1 − P 2

r eiϕ/2, (A40)

γ ∂xfz = −iG0(Prxfy − Pryfx) − i

√
1 − P 2

r brzF
′
0e

iϕ/2,

(A41)

γ ∂xfx = −iG0(Pryfz − Przfy) − i

√
1 − P 2

r brxF
′
0e

iϕ/2,

(A42)

γ ∂xfy = iG0(Prxfz − Przfx) − i

√
1 − P 2

r bryF
′
0e

iϕ/2.

(A43)

Using these boundary conditions, the current is given by

eRI

2π
=

√
1 − P 2

r

γ

×T
∑
ω>0

Im{eiϕ/2[F0f
∗
s + iF ′

0(br f ∗
t )]}. (A44)

To calculate the anomalous Josephson current we assume
again the regime where ξF � d � ξN . In this case we can
substitute the long-range components fx,y by their averages
given by(

2dk2
ω

)
f̄i = ∂xfi(d/2) − ∂xfi(−d/2). (A45)

Substituting the boundary conditions (A38), (A39), (A42), and
(A43) into Eq. (A45) and neglecting the terms of the order of
γ −3, we obtain

ibr f ∗
t = G0

2dγ k2
ω

(Prxbry − Prybrx)f ∗
z (d/2)

+ G0

dγ k2
ω

(Plxbry − Plybrx)f ∗
z (−d/2)

− F ′
0

2dγ k2
ω

√
1 − P 2

l (brxblx + brybly)eiϕ/2

− F ′
0

2dγ k2
ω

√
1 − P 2

r

(
b2

rx + b2
ry

)
e−iϕ/2.

Thus the second term in the current equation (A44) is given
by

Im(ibr f ∗
t e

iϕ/2)

= −
√

1 − P 2
l

F ′
0

dγ k2
ω

(brxblx + brybly) sin ϕ

+
√

1 − P 2
l

F0G0ξF

2
√

2dγ 2k2
ω

(Plxbry − Plybrx) cos ϕ.

(A46)

To find the contribution of the first term in the current
equation (A44) we need to calculate the generation of the
singlet component at the boundary x = d/2 by the long-range
triplet ones fx,y . To find this we take into account only the first
term on the left-hand side of the boundary conditions (A41),

∂xf̃s = 0, (A47)

γ ∂xf̃z = −iG0(Prxf̄y − Pryf̄x). (A48)

Using the general solution (A14) and (A15), we obtain

fs(0) = −ξF G0√
2γ

(Prxf̄y − Pryf̄x). (A49)

Therefore we get

Im(eiϕ/2f ∗
s ) = −

√
1−P 2

l

F ′
0G0ξF

2
√

2dγ 2k2
ω

(Prxbly−Pryblx) cos ϕ.

(A50)

The anomalous current is given by Eq. (A50) and second
term in (A46)

eRIan

2π
= (χl − χr )

√
1 − P 2

r

√
1 − P 2

l ξF

2
√

2hdγ 3

∑
ω>0

T F ′
0F0G0

k2
ω

,

(A51)

where the chiralities are given by χl = P l · (br × h) and χr =
P r · (bl × h). The usual current is given by

eRI0

2π
= −(br⊥bl⊥)

√(
1 − P 2

l

)(
1 − P 2

r

) 1

2γ 2d

∑
ω>0

T F ′2
0

k2
N

.

(A52)

It is proportional to the product of the components br,l⊥ =
br,l − (br,l h)/h perpendicular to the exchange field in the
ferromagnetic interlayer h.

In general, if br and bl are nonzero, Ian � I0. However, if
either br = 0 or bl = 0, the usual component of the Josephson
current is absent, I0 = 0. In this case we obtain the giant
anomalous Josephson effect when the CPR is given by I =
Ian cos ϕ, and the current is maximal at zero phase difference.

Physically, a situation equivalent to the case when the
exchange field in one of the superconducting electrodes is
absent can be realized in the setup with nonhomogeneous,
noncollinear magnetization in the metallic layer shown in
Fig. 1(c).

3. S/FI/F/F/S structure with noncollinear exchange field

We consider the noncoplanar trilayer structure shown
in Fig. 1(c) consisting of a spin filter and two metallic
ferromagnets. The boundary conditions at the left electrode
x = −d/2 are

γ ∂xfs = −F0

√
1 − P 2

l e−iϕ/2, (A53)

184508-7
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γ ∂xfz = iG0
(
P l

xfy − P l
yfx

)
, (A54)

γ ∂xfx = iG0
(
P l

yfz − P l
zfy

)
, (A55)

γ ∂xfy = iG0
(
P l

zfx − P l
xfz

)
, (A56)

and those at the right electrode x = d/2 + d1 are

γ ∂xfs = F0e
iϕ/2, (A57)

γ ∂x f t = 0. (A58)

To obtain the boundary conditions at x = d/2 we can
integrate through the layer d/2 < x < d/2 + d1 to obtain the
effective boundary conditions at x = d/2, which read

γ ∂xfs = F0e
iϕ/2 − i

γ d1

D
(h1 f t ), (A59)

γ ∂x f t = −i
γ d1

D
h1fs, (A60)

and those at x = −d/2, which read

γ ∂xfs = −F0

√
1 − P 2

l e−iϕ/2, (A61)

γ ∂xfz = 0, (A62)

γ ∂xfx = iG0
(
P l

yfz − P l
zfy

) + G0fx, (A63)

γ ∂xfy = iG0
(
P l

zfx − P l
xfz

) + G0fy. (A64)

These boundary conditions are qualitatively similar to (A42),
(A43), and (A41).

Boundary conditions (A57) yield the current given by

eRI

2π
= T

∑
ω>0

F0

γ
Im[eiϕ/2f ∗

s ], (A65)

where f ∗
s = f ∗

s (d/2). To find the current we need to determine
corrections fs with the help of boundary conditions (A59) due
to the triplet components generated at the x = −d/2 boundary.
The short-range solution f̃s ,f̃z have the form (A14) and (A15)
with the amplitudes determined by the boundary conditions
(A59) and (A60). Thus we obtain

f̃s = −i
d1ξF√

2D
(h1 f t ). (A66)

The components f t to be substituted in Eq. (A66) can be found
using Eq. (A45),

ih1 f ∗
t = −(

h2
1x + h2

1y

) d1

Ddk2
ω

f ∗
s (d/2)

+β
(
h1yP

l
x − h1xP

l
y

)
f ∗

z (−d/2)

−iβ2P l
z

(
h1xP

l
x + h1yP

l
y

)
f ∗

z (−d/2),

where β is given by (A22). Using Eqs. (A16) and (A19), we
obtain

Im[eiϕ/2f ∗
s ] = d1ξF√

2D
Im[ieiϕ/2(h1 f ∗

t )].

Thus the anomalous and usual parts of the current (A65) are
given by

eRIan

2π
=

√
1 − P 2

l

(
h1yP

l
x − h1xP

l
y

) d1T

2γ 2h

∑
ω>0

βF 2
0 , (A67)

eRI0

2π
=

√
1 − P 2

l Pz

(
h1xP

l
x + h1yP

l
y

) d1T

2γ 2h

∑
ω>0

β2F 2
0 .

(A68)

These expressions can be rewritten in the coordinate-
independent form

eRIan

2π
= χ

√
1 − P 2

l

d1T

4γ 3h2d

∑
ω>0

F 2
0 G0

k2
ω

, (A69)

eRI0

2π
=

√
1 − P 2

l (P l h)(P l h1⊥)
d1T

8γ 4h2d2

∑
ω>0

F 2
0 G2

0

k4
ω

,

(A70)

where the chirality is given by χ = (P l × h1)h and h1⊥ =
h1 − h(hh1)/h2 is the perpendicular component of the ex-
change field h1. The usual current is given by corrections in
the tunnel barrier transparency I0 ∝ γ −4 that are higher order
than the anomalous one Ian ∝ γ −3. Therefore in the tunneling
limit Ian � I0.
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