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Strassen’s classical martingale coupling theorem states that two random vectors are ordered in the convex
(resp. increasing convex) stochastic order if and only if they admit a martingale (resp. submartingale) cou-
pling. By analysing topological properties of spaces of probability measures equipped with a Wasserstein
metric and applying a measurable selection theorem, we prove a conditional version of this result for ran-
dom vectors conditioned on a random element taking values in a general measurable space. We provide an
analogue of the conditional martingale coupling theorem in the language of probability kernels, and discuss
how it can be applied in the analysis of pseudo-marginal Markov chain Monte Carlo algorithms. We also il-
lustrate how our results imply the existence of a measurable minimiser in the context of martingale optimal
transport.

Keywords: conditional coupling; convex stochastic order; increasing convex stochastic order; martingale
coupling; pointwise coupling; probability kernel

1. Introduction and main results

1.1. Convex stochastic orders

Stochastic orders and relations provide powerful tools to compare distributions of random vari-
ables and processes, and they have been used in various applications [22,25,28,33]. We focus
here on two closely related stochastic orders which are characterised by expectations of convex
functionals, the convex order and the increasing convex order. The convex order is a common
measure of ‘variability’ or ‘dispersion’ of random variables and vectors, and it arises naturally
for example in majorisation [24]. The increasing convex order allows to compare also random
vectors with different means.

Let μ and ν be probability measures on Rd . We say that μ is less than ν in the convex order,
denoted μ ≤cx ν, if ∫

φ dμ ≤
∫

φ dν (1.1)

for all convex φ : Rd → R+. We say that μ is less than ν in the increasing convex order, denoted
μ ≤icx ν, if (1.1) holds for all convex φ : Rd → R+ which are increasing with respect to the usual
coordinate-wise partial order x ≤ y.
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The following type of characterisation of convex orders in terms of martingale couplings will
be of our main interest. We denote by Mn(R

d) (resp. M∗
n(R

d)) the set of probability measures λ

on (Rd)n such that λ is the joint distribution of some Rd -valued martingale (resp. submartingale)
(Xt ) parametrised by t ∈ {1, . . . , n}. Recall that a coupling of probability measures μ1, . . . ,μn

on Rd is a probability measure on (Rd)n having μ1, . . . ,μn as its marginal distributions.

Theorem 1.1 (Strassen [31]). For any probability measures μ and ν on Rd with finite first
moments:

(i) μ ≤cx ν if and only if μ and ν admit a coupling λ ∈M2(R
d),

(ii) μ ≤icx ν if and only if μ and ν admit a coupling λ ∈M∗
2(R

d).

Stochastic orders are often expressed in the notation of random variables instead of probability
measures. Let X and Y be random vectors on Rd defined on a probability space (�,A,P). Then
we denote X ≤cx Y (resp. X ≤icx Y ) if the corresponding probability distributions P ◦ X−1 and
P ◦ Y−1 are ordered according to ≤cx (resp. ≤icx), that is,

Eφ(X) ≤ Eφ(Y ) (1.2)

for all convex (resp. increasing convex) functions φ : Rd → R+. Recall that a coupling of random
vectors X1, . . . ,Xn on Rd is a random vector (X̂1, . . . , X̂d) defined on some probability space

and taking values in (Rd)n such that X̂i
d= Xi for all i, where

d= denotes equality in distribution.
In this notation, Theorem 1.1 can be reformulated as follows.

Theorem 1.2. For any real-valued random vectors X and Y with finite first moments:

(i) X ≤cx Y if and only if X and Y admit a coupling (X̂, Ŷ ) which satisfies X̂ = E(Ŷ |X̂)

almost surely.
(ii) X ≤icx Y if and only if X and Y admit a coupling (X̂, Ŷ ) which satisfies X̂ ≤ E(Ŷ |X̂)

almost surely.

1.2. Main results

The main contribution of the present paper is the following theorem which extends the martingale
characterisation in Theorem 1.1 to pairs of probability measures indexed by a parameter θ with
values in some measurable space S. Recall that a probability kernel from S to Rd is a map
P : (θ,B) �→ Pθ(B) such that

• Pθ is a probability measure on Rd for every θ ∈ S, and
• θ �→ Pθ(B) is measurable for every Borel set B ⊂Rd .

We say that P has finite first moments if
∫ |x|Pθ(dx) < ∞ for all θ . We extend the notion of

coupling to probability kernels as follows. Let P and Q be probability kernels from S to Rd , and
assume that R is a probability kernel from S to Rd ×Rd . We say that R is a pointwise coupling
of P and Q if Rθ is a coupling of Pθ and Qθ for every θ .
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Theorem 1.3. For any probability kernels P and Q from a measurable space S to Rd with finite
first moments:

(i) Pθ ≤cx Qθ for all θ if and only if P and Q admit a pointwise coupling R such that
Rθ ∈M2(R

d) for all θ ,
(ii) Pθ ≤icx Qθ for all θ if and only if P and Q admit a pointwise coupling R such that

Rθ ∈M∗
2(R

d) for all θ .

Conditional versions of integral stochastic orders may be defined by considering conditional
analogues of (1.2). Let Z be a random element with values in a measurable space S, defined on
the same probability space as random vectors X and Y on Rd . Then we denote X | Z ≤cx Y | Z

(resp. X | Z ≤icx Y | Z) if

E
(
φ(X) | Z) ≤ E

(
φ(Y ) | Z)

almost surely

for all convex (resp. increasing convex) functions φ : Rd → R such that φ(X) and φ(Y ) are
integrable. As a corollary of Theorem 1.3, we will prove the following conditional analogue of
Theorem 1.2. Here a Z-conditional coupling of X and Y is a random element (X̂, Ŷ , Ẑ) such

that (X̂, Ẑ)
d= (X,Z) and (Ŷ , Ẑ)

d= (Y,Z).

Theorem 1.4. For any real-valued random vectors X and Y with finite first moments and any
random element Z in a measurable space S:

(i) X | Z ≤cx Y | Z if and only if X and Y admit a Z-conditional coupling (X̂, Ŷ , Ẑ) such
that X̂ = E(Ŷ | X̂, Ẑ) almost surely.

(ii) X | Z ≤icx Y | Z if and only if X and Y admit a Z-conditional coupling (X̂, Ŷ , Ẑ) such
that X̂ ≤ E(Ŷ | X̂, Ẑ) almost surely.

1.3. Related work

Theorem 1.1 extends by induction to the case where one has countably many distributions
(μn)n∈N with μn ≤cx μn+1 or μn ≤icx μn+1. Kellerer [18] extended this to the uncountable
setting, by showing that a collection of probability distributions parametrised by t ∈R+ satisfies
μs ≤cx μt (resp. μs ≤icx μt ) for all s ≤ t if and only if there exists a martingale (resp. submartin-
gale) (Xt ) with Xt distributed according to μt for all t ∈R+. This relation is further explored in
the recent monograph [13]; see also [23]. The ‘if’ part of Theorem 1.1 can be proved by a simple
application of Jensen’s inequality, whereas the ‘only if’ part is more subtle. Strassen’s proof [31],
Theorems 8 and 9, uses the Hahn–Banach theorem. Müller and Stoyan [25], Theorem 1.5.20 and
Corollary 1.5.21, provide a more constructive proof, still relying on a limiting argument. In fact,
Strassen’s work [31] addresses more general integral stochastic orders, defined by requiring (1.1)
for a general class of functions φ. This allows to define orderings of random variables with val-
ues in general measurable spaces, as further investigated by Shortt [29] and Hirshberg and Shortt
[14]; see also Kertz and Rösler [19]. Another direction of extending the theory of stochastic or-
ders is to consider nontransitive relations, see Leskelä [22]. Conditional stochastic orders have
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been considered earlier more generally by Rüschendorf [27], following the work due to Whitt
[36,37].

The main result of this article (Theorem 1.3) extends Theorem 1.1 to parametrised collections
of ordered pairs of probability distributions, in contrast with ordered sequences as in [13,18]. The
proof of Theorem 1.3 is based on measurability properties of related set-valued mappings and an
application of a measurable selection theorem of Kuratowski and Ryll-Nardzewski [20]. We are
unaware of earlier results which would be directly applicable in this context. However, similar
results related to martingale couplings have appeared recently in the context of optimal transport.
Beiglböck and Juillet [6] consider the problem of finding an optimal transport plan under the
constraint that the transport plan is a martingale. The work of Fontbona, Guérin and Méléard [10]
has the most similarities with our developments. With the notation above, they consider finding
a measurable optimal transport plan between Pθ and Qθ . The work of Hobson [16], brought to
our attention by a referee, provides an explicit Skorokhod embedding of two univariate convex
ordered distributions. This embedding could be used to prove our result in the scalar case.

1.4. Outline of the rest of the paper

Section 2 discusses the definitions and basic properties related to conditional convex stochastic
orders. The proofs of Theorems 1.3 and 1.4 are given in Section 3 after analysing the measura-
bility of related set-valued mappings.

Our problem was initially motivated by applied work on so-called pseudo-marginal Markov
chain Monte Carlo algorithms [2]. In Section 4, we summarise the application and discuss why
a martingale coupling is crucial in this context. We discuss in Section 5 some extensions of our
results and their applicability in the context of martingale optimal transport.

2. Conditional convex orders

2.1. Definitions and basic properties

We denote the d-dimensional Euclidean space by Rd , the real line by R1 = R and the set of
positive real numbers by R+. We follow the convention that a number x is positive if x ≥ 0
and a function f is increasing if f (x) ≤ f (y) for all x ≤ y, with the usual coordinate-wise
partial order, which holds if all the coordinates are ordered by xi ≤ yi for 1 ≤ i ≤ d . Unless
otherwise mentioned, all measures on a topological space will considered as measures defined
on the corresponding Borel sigma-algebra. A random vector X is called integrable if E|X| < ∞.
When X and Y are integrable, it is not hard to verify that X ≤cx Y (resp. X ≤icx Y ) if and only
if (1.2) holds for all convex (resp. increasing convex) φ : Rd → R such that φ(X) and φ(Y ) are
integrable.

The following definition extends the Z-conditional order in Section 1 to an order conditioned
on a sigma-algebra. Let X and Y be integrable random variables defined on a probability space
(�,A,P), and let F ⊂ A be a sigma-algebra. We denote X | F ≤cx Y | F (resp. X | F ≤icx Y |
F ) if

E
(
φ(X) |F) ≤ E

(
φ(Y ) | F)

almost surely
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for all convex (resp. increasing convex) functions φ : Rd → R such that φ(X) and φ(Y ) are
integrable. When this is the case we say that X is less than Y in the conditional convex (resp.
increasing convex) order given F . In the special case when F = σ(Z) is generated by a random
element Z with values in some measurable space, we write X | Z ≤cx Y | Z and X | Z ≤icx Y | Z.

We state next a proposition which suggests that conditional convex orders can be seen as
interpolations between (unconditional) convex orders and the corresponding strong stochastic
orders.

Proposition 2.1. Let X and Y be integrable random vectors defined on (�,A,P) and let F ⊂ G
be subsigma-algebras of A.

(i) X | G ≤icx Y | G ⇒ X | F ≤icx Y | F ⇒ X ≤icx Y .
(ii) X | G ≤cx Y | G ⇒ X | F ≤cx Y | F ⇒ X ≤cx Y .

(iii) X |A ≤icx Y | A ⇐⇒ X ≤ Y almost surely.
(iv) X |A ≤cx Y | A ⇐⇒ X = Y almost surely.

Proof. For (i) assume that X | G ≤icx Y | G, and let φ be an increasing convex function such that
φ(X) and φ(Y ) are integrable. Then by the tower property of conditional expectations,

E
(
φ(X) |F) = E

[
E

(
φ(X) | G) | F] ≤ E

[
E

(
φ(Y ) | G) |F] = E

(
φ(Y ) |F)

almost surely. Therefore X | F ≤icx Y | F . The second implication in (i) follows by writing the
above inequality for F = {∅,�}. Part (ii) follows similarly.

Part (iii) is direct, and for (iv), notice that X | A ≤cx Y | A implies X | A ≤icx Y | A and
−X | A ≤icx −Y | A. By (iii), we conclude that X = Y almost surely. The reverse implication is
trivial. �

2.2. Countable characterisations

Instead of testing the expectations of all (increasing) convex functions, the following lemma
states that it is enough to restrict to a countable family of such functions.

Lemma 2.2. There exist countable sets of convex functions C and increasing convex functions
C+ such that

X ≤cx Y ⇐⇒ Eφ(X) ≤ Eφ(Y ) for all φ ∈ C,

X ≤icx Y ⇐⇒ Eφ(X) ≤ Eφ(Y ) for all φ ∈ C+.

The proof of Lemma 2.2 is given in Appendix A.
In the univariate case, Lemma 2.2 follows from the following well-known characterisations

[28], Theorems 3.A.2 and 4.A.2. Here (x)+ := max{0, x} denotes the positive part of a number x.
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Proposition 2.3. Let X and Y be integrable random variables. Then

X ≤cx Y ⇐⇒ E|X − t | ≤ E|Y − t | for all t ∈R,

X ≤icx Y ⇐⇒ E(X − t)+ ≤ E(Y − t)+ for all t ∈ R.

Remark 2.4. It is easy to see that we may restrict to t ∈ Q in Proposition 2.3, implying that in
the univariate case, we may take C = {x �→ |x − t | : t ∈ Q} and C+ = {x �→ (x − t)+ : t ∈ Q} in
Lemma 2.2.

The characterisations in Proposition 2.3 are often easier to check in practice. In the insurance
context, the quantity E(X − t)+ has an interpretation as a stop-loss [7]. Unfortunately, such sim-
ple parametrisations are not available in the multivariate case; see the discussion in [25], page 98.
Both Lemma 2.2 and proposition extend naturally to the conditional case; see Lemma 2.7 and
Proposition 2.8.

2.3. Characterisations using regular conditional distributions

If X is a real-valued random vector defined on a probability space (�,A,P) and F ⊂ A is a
sigma-algebra, recall that a regular conditional distribution of X given F is a map (ω,B) �→
PF

ω (B) such that PF
ω is a probability measure on Rd for every ω, and ω �→ PF

ω (B) is a version
of E(1(X ∈ B) | F) for every Borel set B ⊂ Rd . Hence, PF is a random probability measure,
and the probability that PF assigns to a Borel set B is an F -measurable random variable with
expectation P(X ∈ B). If PF is a regular conditional distribution of a X given F , then

E
(
φ(X) |F) =

∫
φ(x)PF (dx) (2.1)

almost surely for any φ such that φ(X) is integrable [17], Theorem 6.4.
The next result shows that conditional convex orders can be expressed equivalently by the

corresponding orders of the related conditional distributions.

Proposition 2.5. Assume that X and Y are integrable random vectors defined on a probability
space (�,A,P), and let F ⊂ A be a sigma-algebra. Let PF and QF stand for regular condi-
tional distributions of X and Y given F , respectively. Then,

X | F ≤cx Y | F ⇐⇒ PF ≤cx QF almost surely, (i)

X | F ≤icx Y | F ⇐⇒ PF ≤icx QF almost surely. (ii)

Proof. Assume first that PF ≤cx QF almost surely. Let φ : Rd → R be a convex function such
that φ(X) and φ(Y ) are integrable. Then by (2.1),

E
(
φ(Y ) | F) −E

(
φ(X) | F) =

∫
φ(y)QF (dy) −

∫
φ(x)PF (dx) ≥ 0

almost surely. As a consequence, X |F ≤cx Y |F .
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To prove the converse in (i), assume that X | F ≤cx Y | F . Let �0 be the event that PF and
QF have finite first moments. Then P(�0) = 1. Recall Lemma 2.2, fix a function f ∈ C and
define

Zf (ω) =
∫

f (x)QF
ω (dx) −

∫
f (x)PF

ω (dx)

for ω ∈ �0, and let Zf (ω) = 0 otherwise. Then by (2.1),

Zf = E
(
f (Y ) |F) −E

(
f (X) | F) ≥ 0

almost surely. This further implies that inff ∈C Zf ≥ 0 almost surely. We conclude from
Lemma 2.2 that PF ≤cx QF almost surely.

The proof if (ii) is identical, except with functions f ∈ C+. �

Let us now consider the case where the sigma-algebra F = σ(Z) is generated by a random
element Z taking values in a general measurable space S. Then for any random vector X defined
on the same probability space as Z there exists [17], Thm 6.3, a probability kernel P from S to
R such that ω �→ PZ(ω)(B) is a version of E(1(X ∈ B)|Z) for every Borel set B ⊂ Rd . Such P

is called a regular conditional distribution of X given Z, and we note that (ω,B) �→ PZ(ω)(B)

is a regular conditional distribution of X given σ(Z) in the sense defined in the beginning of the
section. In this case, the conditional convex and increasing convex orders can be characterised as
follows.

Proposition 2.6. Let X and Y be integrable random vectors and Z a random element in a mea-
surable space S, all defined on a common probability space. If P and Q are regular conditional
distributions of X and Y given Z, then

X | Z ≤cx Y | Z ⇐⇒ Pθ ≤cx Qθ for μ-almost every θ ∈ S, (i)

X | Z ≤icx Y | Z ⇐⇒ Pθ ≤icx Qθ for μ-almost every θ ∈ S, (ii)

where μ stands for the distribution of Z.

Proof. Let F = σ(Z) and denote PF
ω (B) = PZ(ω)(B) and QF

ω (B) = QZ(ω)(B) for ω ∈ � and

Borel sets B ⊂ R. Then PF and QF are regular conditional distributions of X and Y given F ,
respectively. Let S0 = {θ ∈ S : Pθ ≤cx Qθ }. The argument used in the proof of Proposition 2.5
shows that

S0 =
⋂
f ∈C

{
θ ∈ S :

∫
f (x)Pθ (dx) ≤

∫
f (y)Qθ(dy)

}
,

from which we conclude that S0 is a measurable subset of S. Proposition 2.5 now tells us that
X | Z ≤cx Y | Z if and only if PZ(ω) ≤cx QZ(ω) for P-almost every ω. The latter condition is
equivalent to requiring that μ(S0) = P(Z ∈ S0) = 1. Hence, we have proved claim (i). The proof
of claim (ii) is analogous. �
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As another corollary of Proposition 2.5, we obtain the following conditional version of
Lemma 2.2.

Lemma 2.7. Let X and Y be integrable random vectors defined on a probability space
(�,A,P), and let F ⊂ A be a sigma-algebra. Then, there exist countable sets of convex func-
tions C and C+ such that

X | F ≤cx Y |F ⇐⇒ E
[
f (X)|F] ≤ E

[
f (Y )|F]

, f ∈ C, (i)

X |F ≤icx Y |F ⇐⇒ E
[
f (X)|F] ≤ E

[
f (Y )|F]

, f ∈ C+, (ii)

where the inequalities on the right hold almost surely for any f ∈ C or f ∈ C+.

Proof. The forward directions of both claims follow trivially, as f ∈ C are convex and f ∈ C+
are increasing convex functions.

For the opposite direction, assume that the inequality on the right of (i) holds for all f ∈
C almost surely. Let PF and QF be regular conditional distributions of X and Y given F ,
respectively. Then ∫

f (x)PF (dx) ≤
∫

f (y)QF (dy) (2.2)

almost surely for all f ∈ C. Let �0 be the event that (2.2) holds for all f ∈ C, then P(�0) = 1.
Lemma 2.2 hence implies that PF

ω ≤cx QF
ω for all ω ∈ �0, and Proposition 2.5 shows that X |

F ≤cx Y | F . The opposite direction of claim (ii) is proved in a similar way. �

We also state the conditional version of Proposition 2.3, which follows from Lemma 2.7 as
suggested in Remark 2.4.

Proposition 2.8. Let X and Y be integrable random variables defined on a probability space
(�,A,P), and let F ⊂A be a sigma-algebra. Then,

X |F ≤cx Y |F ⇐⇒ E
[|X − t ||F] ≤ E

[|Y − t ||F]
,

X |F ≤icx Y |F ⇐⇒ E
[
(X − t)+|F] ≤ E

[
(Y − t)+|F]

,

where the inequalities on the right hold almost surely for any t ∈R.

3. Proofs of the main results

This section is devoted to proving Theorems 1.3 and 1.4. Our proof of Theorem 1.3 is based
on a measurable selection theorem of Kuratowski and Ryll-Nardzewski [20]. To apply it, we
first need to analyse the regularity of coupling constructions and probability kernels with respect
to suitable measurable structures on spaces of probability measures. Because convex orders are
essentially restricted to probability measures with finite first moments, our natural choice is to
consider Borel sigma-algebras generated by the Wasserstein metric which will be discussed in
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Section 3.1. A similar measurability analysis for the topology corresponding to convergence
in distribution has been carried out in [22]. The space of martingale distributions with respect
to the Wasserstein metric is analysed in Section 3.2, whereas Section 3.3 establishes crucial
measurability properties of probability kernels and marginalising maps. Section 3.4 concludes
the proof of Theorem 1.3 and Section 3.5 concludes the proof of Theorem 1.4.

3.1. Wasserstein metric

For a probability measure μ on S and a measurable function f : S → S′, we denote by f#μ =
μ ◦ f −1 the pushforward measure of μ by f . When S = S1 × · · · × Sd , we denote the ith
coordinate projection by πi(x1, . . . , xd) := xi . Then πi

#μ equals the ith marginal distribution of
μ. The set of couplings of μ ∈P(S1) and ν ∈P(S2) will be denoted by


(μ,ν) := {
λ ∈P(S1 × S2) : π1

# λ = μ,π2
# λ = ν

}
.

Let us recall the definition of the Wasserstein (a.k.a. Kantorovich–Rubinstein) metric between
two probability measures μ,ν ∈P1(R

d):

dW (μ, ν) := min
λ∈
(μ,ν)

∫
Rd×Rd

|x − y|λ(dx × dy).

The minimum is attained by lower semicontinuity properties and the relative compactness of

(μ,ν), and the map dW is a metric on P1(R

d) [1], Section 7.1.
The space P1(R

d) equipped with the Wasserstein metric is a complete separable metric space
[1], Proposition 7.1.5. The same proposition also shows that dW (μn,μ) → 0 if and only if μn →
μ in distribution and (μn) is uniformly integrable in the sense that

sup
n

∫
Rd

|x|1(|x| > t
)
μn(dx) → 0 as t → ∞.

Hereafter, we equip P1(R
d) by the topology induced by dW .

The following results are probably well-known in transport theory, but we were unable to find
them in the literature. We provide proofs in Appendix A for the reader’s convenience.

Lemma 3.1. The ith marginal map πi
# :P1((R

d)n) → P1(R
d) is continuous for all i.

Lemma 3.2. For any μ,ν ∈ P1(R
d), the set of couplings 
(μ,ν) is compact in P1(R

d ×Rd).

3.2. Two-parameter martingales and submartingales

Recall that M2(R
d) (resp. M∗

2(R
d)) denotes the collection of probability measures on Rd ×Rd

which are joint distributions of a two-parameter martingale (resp. submartingale). The following
elementary lemmas stated without a proof give convenient ways to characterise these collections.
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Lemma 3.3. The following are equivalent for any λ ∈P1(R
d ×Rd):

(i) λ ∈M2(R
d).

(ii) E[Y | X] = X a.s. for any random vector (X,Y ) with distribution λ.
(iii)

∫
y1(x ∈ A)λ(dx × dy) = ∫

x1(x ∈ A)λ(dx × dy) for all Borel sets A ⊂Rd .
(iv)

∫
yφ(x)λ(dx × dy) = ∫

xφ(x)λ(dx × dy) for all continuous bounded φ :Rd → R+.

Lemma 3.4. The following are equivalent for any λ ∈P1(R
d ×Rd):

(i) λ ∈M∗
2(R

d).
(ii) E[Y | X] ≥ X a.s. for any random vector (X,Y ) with distribution λ.

(iii)
∫

y1(x ∈ A)λ(dx × dy) ≥ ∫
x1(x ∈ A)λ(dx × dy) for all Borel sets A ⊂Rd .

(iv)
∫

yφ(x)λ(dx × dy) ≥ ∫
xφ(x)λ(dx × dy) for all continuous bounded φ : Rd →R+.

The following lemma shows that martingale and submartingale measures form closed sets with
respect to the Wasserstein metric.

Lemma 3.5. The sets M2(R
d) and M∗

2(R
d) are closed in P1(R

d ×Rd).

Proof. Assume that μn ∈M∗
2(R

d) and μ ∈P1(R
d ×Rd) such that dW (μn,μ) → 0. Then μn →

μ in distribution and (μn) is uniformly integrable. Let φ : Rd →R+ be continuous and bounded.
By Lemma 3.4, it is sufficient to verify that∫

Rd×Rd

(x2 − x1)φ(x1)μ(dx) ≥ 0. (3.1)

To do this, let g(x) := (x2 − x1)φ(x1), fix t > 0 and choose a continuous function kt : Rd ×
Rd → [0,1] such that kt (x) = 1 for |x| ≤ t and kt (x) = 0 for |x| > t +1. Let us write g = g0

t +g1
t

where g0
t (x) := g(x)kt (x) and g1

t (x) := g(x)(1 − kt (x)). Then

μn(g) − μ(g) = (
μn

(
g0

t

) − μ
(
g0

t

)) + (
μn

(
g1

t

) − μ
(
g1

t

))
.

Now g0
t is continuous and bounded, so that μn(g

0
t ) → μ(g0

t ) by convergence in distribution.
Moreover, |g1

t (x)| ≤ 2|x|‖φ‖∞1(|x| > t). This bound together with uniform integrability shows
that supn(μn(g

1
t ) − μ(g1

t )) → 0 as t → ∞. We can make the last two terms on the right-hand
side above arbitrarily close to zero by choosing t large enough, uniformly in n. Then by letting
n → ∞, we may conclude that μn(g) → μ(g) as n → ∞. The submartingale property implies
by Lemma 3.4 that μn(g) ≥ 0 for all n, so we conclude that μ(g) ≥ 0 and therefore (3.1) is valid.

The proof that M2(R
d) is closed is identical, with equality in (3.1). �

3.3. Measurability of the coupling map

In what follows, we consider set-valued mappings (a.k.a. multifunctions [30]) from a measurable
space (S,S) to the topological space P1((R

d)n) equipped with the Wasserstein metric. A set-
valued mapping G maps a point θ ∈ S to a set G(θ) ⊂ P1((R

d)n). The set-valued inverse of
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such a mapping G is defined by

G−(A) := {
θ ∈ S : G(θ) ∩ A �=∅

}
, A ⊂P1

((
Rd

)n)
.

The set-valued map G is called measurable if G−(A) ∈ S for all closed A ⊂ P1((R
d)n). By

expressing an open set U ⊂ P1((R
d)n) as a countable union of closed balls, we see that the

measurability of G implies that G−(U) ∈ S also for open sets U .

Proposition 3.6. Let P and Q be probability kernels from S to Rd with finite first moments.
Then

F(θ) := 
(Pθ ,Qθ)

is measurable as a set-valued mapping from S to P1(R
d ×Rd).

The proof of Proposition 3.6 is based on the three auxiliary lemmas which will be stated and
proved next.

Lemma 3.7. Let P be probability kernel from S to Rd with finite first moments. Then θ �→ Pθ is
a measurable map from S to P1(R

d).

Proof. Let us first verify that θ �→ Pθf is measurable for every Borel function f :Rd →R such
that

∫ |f (y)|Pθ (dy) < ∞ for all θ ∈ S. Choose a sequence of simple Borel functions such that
fn → f and |fn| ≤ |f | pointwise. By linearity, θ �→ Pθfn is measurable for any n. By dominated
convergence,

Pθf = lim
n→∞Pθfn

by which θ �→ Pθf is measurable as a pointwise limit of measurable functions.
Let then Bε(μ) denote the closed dW -ball with radius ε > 0 and centre μ ∈ P1(R

d). We
will next show that the preimages Aε,μ := {θ : Pθ ∈ Bε(μ)} of closed balls are measurable. By
Lemma B.1 in Appendix B, there exists a countable set Td of 1-Lipschitz functions on Rd such
that

Aε,μ =
{
θ : sup

g∈Td

[
Pθ(g) − μ(g)

] ≤ ε
}

=
⋂

g∈Td

{
θ : [Pθ(g) − μ(g)

] ≤ ε
}
.

Therefore, Aε,μ is measurable as a countable intersection of measurable sets.
Let then U be an open set in P1(R

d). Because P1(R
d) is a separable metric space, U may be

expressed as a countable union of dW -balls B1,B2, . . . , and therefore

{θ : Pθ ∈ U} =
∞⋃
i=1

{θ : Pθ ∈ Bi}

is measurable. This implies the claim. �
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We next consider the marginaliser map � :P((Rd)n) → P(Rd)n defined by

�(μ) = (
π1

# μ, . . . , πn
# μ

)
.

It takes a probability measure on (Rd)n as its input and returns its marginal distributions on Rd .
If the input of � has a finite first moment, then so do its marginal distributions. Therefore, we
may also consider � as a mapping from P1((R

d)n) onto P1(R
d)n.

Lemma 3.8. Let S and S′ be Polish spaces and f : S → S′ a Borel map such that f −1(y) is
compact for all y ∈ S′. Then f maps closed sets into Borel sets.

Proof. By [30], Propositions 3.1.21 and 3.1.23, the graph of f

graph(f ) := {(
x,f (x)

) : x ∈ S
}

is a Borel set in S × S ′. For any closed set A ⊂ S, the image f (A) can be represented as a
projection of the set

B := graph(f ) ∩ (
A × S′).

Observe next that for any y ∈ S′ the section{
x : (x, y) ∈ B

} = f −1(y) ∩ A

is compact. Therefore, Novikov’s theorem [30], Theorem 4.7.11, implies that f (A) is Borel. �

Lemma 3.9. The marginaliser map � :P1((R
d)n) →P1(R

d)n defined by

�(μ) = (
π1

# μ, . . . , πn
# μ

)
maps closed sets into Borel sets.

Proof. � is continuous by Lemma 3.1, and hence also Borel. The spaces P1((R
d)n) and

P1(R
d)n are Polish. The preimage of � for any singleton is compact by Lemma 3.2, because

�−1({ν1, . . . , νn}) = 
(ν1, . . . , νn). The rest follows from Lemma 3.8. �

Proof of Proposition 3.6. We write the set of couplings of Pθ and Qθ again as a preimage of
the marginaliser,

F(θ) = �−1({(Pθ ,Qθ )
})

.

Note that F(θ) ∩ A �= ∅ if and only if μ ∈ F(θ) for some μ ∈ A, that is, �(μ) = (Pθ ,Qθ) for
some μ ∈ A. Therefore, the set-valued inverse of F may be written as

F−(A) = {
θ ∈ S : F(θ) ∩ A �=∅

} = {
θ ∈ S : (Pθ ,Qθ) ∈ �(A)

}
.

By Lemma 3.9, �(A) is a Borel set in P1(R
d) ×P1(R

d) whenever A ⊂P1(R
d ×Rd) is closed.

By Lemma 3.7, the maps θ �→ Pθ and θ �→ Qθ are measurable from S to P1(R
d). Thus also

the map θ �→ (Pθ ,Qθ) is measurable from S to P1(R
d) ×P1(R

d). We may hence conclude that
F−(A) is a measurable subset of S for any closed A ⊂P1(R

d ×Rd). �
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3.4. Proof of Theorem 1.3

Assume that Pθ ≤cx Qθ for all θ ∈ S. Consider the set-valued mapping G(θ) := F(θ) ∩ M,
where F(θ) = 
(Pθ ,Qθ ) is the set of couplings of Pθ and Qθ , and M := M2(R

d) is the collec-
tion of joint distributions of two-parameter martingales. Proposition 3.6 shows that F is a mea-
surable set-valued mapping from S to the subsets of P1(R

d × Rd). For any A ⊂ P1(R
d × Rd),

the set-valued inverse of G can be written as

G−(A) = F−(M∩ A).

Because M is closed by Lemma 3.5, we see that G is a measurable set-valued mapping from S

to the subsets of P1(R
d ×Rd). Furthermore, because F(θ) is compact for all θ by Lemma 3.2,

also G(θ) is compact for all θ . Hence, G is a measurable compact-valued mapping from S to the
subsets of P1(R

d × Rd). Strassen’s coupling characterisation (Theorem 1.1) implies that G(θ)

is nonempty for all θ . A measurable selection theorem of Kuratowski and Ryll-Nardzewski [20]
(see alternatively [30], Theorem 5.2.1) now implies that there exists a measurable selection for
G, that is, a measurable function g : S → P1(R

d × Rd) such that g(θ) ∈ G(θ) for all θ . Let us
now define a map (θ,B) �→ Rθ(B) by setting

Rθ(B) := evB

(
g(θ)

)
for θ ∈ S and Borel sets B ⊂ Rd × Rd , where evB(μ) = μ(B). Then Rθ ∈ M(Rd × Rd) is a
coupling of Pθ and Qθ for every θ ∈ S. We are left with showing that θ �→ Rθ(B) is measurable
for any Borel set B ⊂ Rd × Rd . This follows because the map evB : P1(R

d × Rd) → R is
measurable by Lemma C.1 in Appendix C. Hence, R is a pointwise coupling of the probability
kernels P and Q.

If Pθ ≤icx Qθ for all θ ∈ S, then by repeating the above construction with M replaced by
M∗ := M∗

2(R
d) we obtain a probability kernel R which is a pointwise coupling of P and Q

such that Rθ ∈ M∗ for all θ ∈ S.
Finally, we note that if R is pointwise coupling of P and Q such that Rθ ∈ M2(R

d) (resp.
M∗

2(R
d)) for all θ , then Theorem 1.1 immediately implies that Pθ ≤cx Qθ (resp. Pθ ≤icx Qθ )

for all θ . �

3.5. Proof of Theorem 1.4

Let us first prove the forward implication in (ii). Suppose that X | Z ≤icx Y | Z. Let P and Q be
regular conditional distributions of X and Y given Z, respectively, and denote the distribution of
Z by μ. Then by Proposition 2.6, Pθ ≤icx Qθ for all θ ∈ S outside a set of μ-measure zero. By
redefining Pθ and Qθ as equal on this set of μ-measure zero, we may assume that Pθ ≤icx Qθ

for all θ ∈ S. By Theorem 1.3, there exists a probability kernel R from S to Rd ×Rd which is a
pointwise coupling of P and Q and satisfies Rθ ∈M∗

2(R
d) for all θ .

Let (X̂, Ŷ , Ẑ) be a random element in Rd ×Rd × S with distribution

λ(dx × dy × dθ) := μ(dθ)Rθ (dx × dy).
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Because λ(dx ×Rd × dθ) = μ(dθ)Pθ (dx) and λ(Rd × dy × dθ) = μ(dθ)Qθ (dy), it follows that

(X̂, Ẑ)
d= (X,Z) and (Ŷ , Ẑ)

d= (Y,Z). Hence, (X̂, Ŷ , Ẑ) is a Z-conditional coupling of X and Y .
We still need to verify that

X̂ ≤ E(Ŷ | X̂, Ẑ) almost surely. (3.2)

For any measurable A ⊂ Rd × S, by denoting Aθ := {x ∈ Rd : (x, θ) ∈ A}, we see with the help
of Lemma 3.4 that

E
[
E[Ŷ | X̂, Ẑ]1(

(X̂, Ẑ) ∈ A
)] = E

[
Ŷ1

(
(X̂, Ẑ) ∈ A

)]
=

∫
μ(dθ)

∫
y1(x ∈ Aθ)Rθ (dx × dy)

(3.3)

≥
∫

μ(dθ)

∫
x1(x ∈ Aθ)Rθ (dx × dy)

= E
[
X̂1

(
(X̂, Ẑ) ∈ A

)]
,

because Rθ ∈ M∗
2(R

d) for all θ . This implies (3.2).
To prove the other direction in (ii), assume next that (X̂, Ŷ , Ẑ) is a Z-conditional coupling of

X and Y satisfying (3.2). Recall Lemma 2.7 and let f ∈ C+, then conditional Jensen’s inequality
implies that

f (X̂) ≤ f
(
E(Ŷ | X̂, Ẑ)

) ≤ E
(
f (Ŷ )|X̂, Ẑ

)
almost surely. By taking Ẑ-conditional expectations on both sides above, it follows that

E
(
f (X̂)|Ẑ) ≤ E

(
f (Ŷ )|Ẑ)

.

Because (X̂, Ẑ)
d= (X,Z) and (Ŷ , Ẑ)

d= (Y,Z), we may remove the hats above to conclude that

E
(
f (X)|Z) ≤ E

(
f (Y )|Z)

(3.4)

almost surely. By Lemma 2.7, this implies X | Z ≤icx Y | Z.
The proof of the forward implication of claim (i) is obtained by imitating the proof of (ii);

by replacing the inequality in (3.2) and (3.3) by equality, and applying Lemma 3.3 in place of
Lemma 3.4. Similarly, the reverse implication of claim (i) is obtained by using f ∈ C in place of
f ∈ C+ in (3.4). �

4. Application to pseudo-marginal Markov chain Monte Carlo

We discuss here briefly the application which initially motivated the present work. The applica-
tion focuses on Markov chain Monte Carlo (MCMC) algorithms targeting a probability distribu-
tion π on a general state space X. In particular, the interest lies in the so-called pseudo-marginal
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MCMC with transition probability

K(x,w;dy × du) := q(x,dy)Qy(du)min

{
1, r(x, y)

u

w

}
+ 1dy×du(x, t)ρ(x,w),

parametrised by a proposal kernel (x,B) �→ q(x,B) on X and an auxiliary kernel (x,B) �→
Qx(B) from X to R+, satisfying

∫
Qx(dw)w = 1 for every x ∈ X. The function r(x, y) is the

Radon–Nikodym derivative π(dy)
π(dx)

q(y,dx)
q(x,dy)

whenever well-defined, and zero otherwise cf. [34], and
the ‘probability of rejection’ ρ(x,w) ∈ [0,1] is such that K defines a transition probability. We
advise an interested reader to consult [4] for details and [2,3] and references therein for more
thorough introduction to the method.

It is not difficult to check that K is reversible with respect to the distribution

π̃(dx × dw) = π(dx)Qx(dw)w,

and it is evident that π̃ admits π as its first marginal. This means that, if the Markov chain
(Xk,Wk)k≥1 with transition probability K is irreducible, the ergodic averages approximate the
integral of any π -integrable function f : X →R:

1

n

n∑
k=1

f (Xk)
n→∞−→ π(f ) :=

∫
X
f (x)π(dx).

The so-called asymptotic variance is a common MCMC efficiency criterion, which is infor-
mative about the asymptotic rate of convergence above. It is defined in the present setting for any
f ∈ L2(π) := {f : X → R : π(f 2) < ∞} through

σ 2(K,f ) := lim
n→∞E

[
1√
n

n∑
k=1

[
f

(
X′

k

) − π(f )
]]2

, (4.1)

where (X′
k,W

′
k)k≥1 is a stationary version of the MCMC chain – that is, (X′

1,W
′
1) ∼ π̃ and

(X′
k,W

′
k)k≥1 follows the transition probability K . The limit in (4.1) always exists, but can be

infinite [34]. In the pseudo-marginal context, we are interested in how the choice of the laws
{Qx}x∈X affects the asymptotic variance.

The usual method to compare asymptotic variances of reversible Markov chains is Peskun’s
theorem [26] and its generalisations [8,21,34]. It states that if two Markov transition probabilities
K and K ′ are reversible with respect to the same probability distribution μ, then

σ 2(K,f ) ≤ σ 2(K ′, f
)

for all f ∈ L2(μ),

if and only if

〈g,Kg〉μ ≤ 〈
g,K ′g

〉
μ

for all g ∈ L2(μ),

where 〈f,g〉μ := ∫
f (x)g(x)μ(dx). This is inapplicable in the present application, as the two

Markov chains K and K ′ with {Qx}x∈X and {Q′
x}x∈X are reversible with respect to different

invariant distributions π̃ and π̃ ′, respectively.
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Because the interest lies only in functions which are constant in the second coordinate, it is
still possible to pursue such an ordering. Indeed, given a pointwise martingale coupling Rx of
Qx and Q′

x , which exists by Theorem 1.3 if Qx ≤cx Q′
x for all x ∈ X, it turns out to be possible

to deduce a ‘Peskun-type’ order of the asymptotic variances [4], Theorem 10,

σ 2(K,f ) ≤ σ 2(K ′, f
)

for all f (x,w) = f (x) ∈ L2(π). (4.2)

We will next briefly summarise why a strong martingale coupling as in Theorem 1.3 is funda-
mental to prove this result.

The key of the proof of (4.2) relies in ‘embedding’ the two Markov kernels K and K ′ on
a common Hilbert space. The martingale coupling allows to construct the following Markov
kernels K̆ and K̆ ′ and a distribution π̆ :

K̆(x,w,v;dy × du × dt) = q(x,dy)Ry(du × dt)
t

u
min

{
1, r(x, y)

u

w

}
+ 1dy×du×dt (x,w, v)ρ(x,w),

K̆ ′(x,w,v;dy × du × dt) = q(x,dy)Ry(du × dt)min

{
1, r(x, y)

t

v

}

+ 1dy×du×dt (x,w,v)ρ′(x, v),

π̆(dx × dt × du) = π(dx)Rx(dw × dv)v.

It is not difficult to check that both K̆ and K̆ ′ are reversible with respect to π̆ , and π̆ coin-
cides marginally with π̃ and π̃ ′ so that π̃ (dx × dw) = π̆ (dx × dw × R+) and π̃ ′(dx × dv) =
π̆(dx ×R+ × dv). Similarly, the kernels K̆ and K̆ ′ coincide marginally with K and K ′; see [4],
Lemma 20. This construction enables the Hilbert space techniques, on L2(π̆), to be used. The
martingale coupling allows to show that ([4], Theorem 22(b)),

〈g, K̆g〉π̆ ≤ 〈
g, K̆ ′g

〉
π̆

for all g(x,w,v) = g(x,w) with g ∈ L2(π̃),

which ultimately leads to the order σ 2(K,f ) ≤ σ 2(K ′, f ) for all f (x,w) = f (x) with f ∈
L2(π).

5. Extensions and implications

We discuss next some extensions and implications of our results. In Strassen’s original paper,
Theorem 1.1 is formulated for countably many distributions instead of a pair. Extension of The-
orems 1.3 and 1.4 into a context with countably many kernels is straightforward. For instance,
we may formulate the following result.

Proposition 5.1. Suppose that for each i ∈ N, (θ,B) �→ P
(i)
θ (B) is a probability kernel from S

to Rd .
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(i) P
(i)
θ ≤cx P

(i+1)
θ for all i ∈ N if and only if there exists a pointwise coupling R of {P (i)

θ }i∈N
such that Rθ ∈MN(Rd).

(ii) P
(i)
θ ≤icx P

(i+1)
θ for all i ∈N if and only if there exists a pointwise coupling R of {P (i)

θ }i∈N
such that Rθ ∈M∗

N
(Rd).

More precisely, R above is a kernel from S to (Rd)N such that Rθ(·) is the law of the Rd -valued
(sub-)martingale (X

(i)
θ )i≥1 such that P(X

(i)
θ ∈ A) = P

(i)
θ (A).

Proof. For, (i) assume that for each i ∈ N P
(i)
θ ≤cx P

(i+1)
θ and let R

(i)
θ stand for their pointwise

coupling. There exist kernels T (i) from S ×Rd to Rd (regular conditional probabilities) such that

R
(i)
θ (dxi−1 × dxi) = P

(i−1)
θ (dxi−1)T

(i)
θ,xi−1

(dxi).

We may define Rθ inductively through its finite-dimensional distributions by letting Rθ(dx1 ×
dx2 ×RN) = R

(2)
θ (dx1 × dx2) and for i ≥ 3

Rθ

(
dx1 × · · · × dxi ×RN

) = Rθ

(
dx1 × · · · × dxi−1 ×RN

)
T

(i)
θ,xi−1

(dxi).

The other direction follows from Jensen’s inequality. The proof of (ii) follows similar lines. �

The following characterisation of increasing convex orders in terms of convex stochastic order
and strong stochastic order [25], Theorem 3.4.3, is sometimes convenient.

Theorem 5.2. If X ≤icx Y , then there exist a probability space with random variables X̂, Ŵ , Ŷ

such that X̂
d= X, Ŷ

d= Y , X̂ ≤ Ŵ almost surely and Ŵ ≤cx Ŷ .

We record the following result, which is a conditional version Theorem 5.2.

Proposition 5.3. If X | Z ≤icx Y | Z, then there exist a probability space with random variables

X̂, Ŷ , Ẑ and Ŵ such that (X̂, Ẑ)
d= (X,Z), (Ŷ , Ẑ)

d= (Y,Z), X̂ ≤ Ŵ almost surely and Ŵ |
Ẑ ≤cx Ŷ | Ẑ.

Proof. We may take the triple (X̂, Ŷ , Ẑ) from Theorem 1.4 and set Ŵ := E(Ŷ | X̂, Ẑ). Then
X̂ ≤ Ŵ , and for any convex φ : Rd → R, Jensen’s inequality yields E(φ(Ŵ )|Ẑ) ≤ E(φ(Ŷ )|Ẑ). �

We next turn into so-called martingale optimal transport problem [6] which is linked to
applications in mathematical finance, e.g., [5,9,11,15]. Optimal transport problems, in gen-
eral, mean finding a coupling of two probability measures μ such that the ‘cost’ μ(c) :=∫∫

c(x, y)μ(dx × dy) is minimised. Usually the minimisation is over all couplings, but in the
martingale optimal transport the minimisation is constrained to martingale couplings.

We illustrate that when a parametric version of such a problem is considered, our results allow
to ensure that minimisers can be chosen in a measurable manner in this context.
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Proposition 5.4. Suppose that P and Q are probability kernels from S to Rd and c : Rd ×Rd →
(−∞,∞] is lower semi-continuous and satisfies the lower bound

c(x, y) ≥ −C
(
1 + |x| + |y|) for all x, y ∈Rd

for some finite constant C.

(i) If Pθ ≤cx Qθ for all θ , then there exists a measurable optimal martingale transport plan
γ , that is, a kernel (θ,B) �→ γθ (B) from S to Rd × Rd such that for every θ , γθ is a
martingale coupling of Pθ and Qθ which minimises μ(c) over all martingale couplings μ

of Pθ and Qθ .
(ii) If Pθ ,Qθ ∈ P1(R

d), then there exists a measurable optimal transport plan γ ∗, that is, a
kernel (θ,B) �→ γ ∗

θ (B) from S to Rd × Rd such that for every θ , γ ∗
θ is a coupling of Pθ

and Qθ which minimises μ(c) over all couplings μ of Pθ and Qθ .

Proof. Consider first (i), and denote for brevity 
(θ) := 
(Pθ ,Qθ) ∩ M2(R
d). Recall that

θ → 
(θ) is compact-valued and measurable; see the proof of Theorem 1.4. Denote vθ :=
infμ∈
(θ) μ(c), and let us check that vθ > −∞. Let μ1,μ2, . . . ∈ 
(θ), then because 
(θ) is
compact, there exists a convergent subsequence μ′

n → μ. By assumption,

c−(x, y) := −min
{
c(x, y),0

} ≤ C
(
1 + |x| + |y|),

implying that c− is uniformly integrable with respect to (μ′
n). Lemma 5.17 of [1] states that then

lim infn→∞ μ′
n(c) ≥ μ(c) > −∞.

Define next for each q ∈ Q the level sets Lq := {μ ∈ P1(R
d × Rd) : μ(c) ≤ q}, which are

closed following the argument above. The set-valued mapping

L̃q(θ) :=
{

Lq ∩ 
(θ), if Lq ∩ 
(θ) �=∅,

(θ), otherwise,

is compact-valued. Let us turn next into showing that θ �→ L̃q(θ) is a measurable as a set-valued
mapping, by considering the set-valued inverse of a closed F

L̃−
q (F ) = {

θ ∈ S : L̃q(θ) ∩ F �=∅
}

= {
θ ∈ S : 
(θ) ∩ Lq ∩ F �=∅

} ∪ {
θ : 
(θ) ∩ F �=∅,
(θ) ∩ Lq =∅

}
= 
−(F ∩ Lq) ∪ (


−(F ) \ 
−(Lq)
)
,

which is measurable due to the measurability of θ �→ 
(θ).
It is straightforward to check that


opt(θ) := {
μ ∈ 
(θ) : μ(c) = vθ

} =
⋂
q∈Q

Lq(θ).
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Because 
opt(θ) is a countable intersection of compact-valued mappings θ → L̃q(θ), and be-
cause P1(R

d ×Rd) is a complete separable metric space, it follows ([12], Theorems 3.1 and 4.1),
that it is measurable as a set-valued mapping. Because 
opt is non-empty, compact-valued and
measurable, we may apply the measurable selection theorem [20] and the evaluation map evB as
in the proof of Theorem 1.4 to conclude the existence of the desired γθ .

The proof of (ii) is similar, because also θ → 
∗(θ) := 
(Pθ ,Qθ) is compact-valued and
measurable by Lemma 3.2 and Proposition 3.6. �

We record the following remarks about Proposition 5.4:

(i) The results may be extended into countably many P
(i)
θ in similar lines as Proposition 5.1.

(ii) The assumptions on the cost function c coincide with those of Beiglböck, Henry-
Labordère and Penkner [5], who consider the martingale optimal transport problem in
the scalar case.

(iii) Proposition 5.4(ii) is probably well known, but we included it for completeness. Indeed,
Corollary 5.22 of Villani [35] is similar, without the integrability assumption on Pθ and
Qθ , but with constant lower bound and continuity assumption on c.

Appendix A: Proofs of Lemmas 2.2, 3.1 and 3.2

Proof of Lemma 2.2. We can take C as the countable family of max-affine convex functions
f : Rd → R taking the form

f (x) = max
{
αT

1 x + β1, . . . , α
T
n x + βn

}
,

where n ∈ N and αi,βi ∈Qd .
To confirm this, take first a non-negative convex φ : Rd → R+ with Eφ(X) < ∞. It is not

difficult to see that for any ε > 0, we may find a piecewise linear function g defined as an infinite
maximum of affine functions with αi,βi ∈Qd

g(x) = max
{
αT

i x + βi : i ∈ N
}
,

such that |g(x) − φ(x)| ≤ ε/2 for all x ∈ Rd . Consequently, |Eg(x) −Eφ(x)| ≤ ε/2. Taking

gn(x) := max
{
αT

i x + βi : i = 1, . . . , n
}
,

then gn ∈ C and gn(x) ↑ g(x) pointwise. We conclude by monotone convergence that there exists
gm ∈ C such that |Eφ(x) −Egm(x)| ≤ ε.

For general φ :Rd →R+, with Eφ(X) finite, it is sufficient to observe that

lim
n→∞Emax

{
φ(x),−n

} = Eφ(x),
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and then one can take any φm = (φ(x)−m)+ and apply the result above to conclude the existence
of f ∈ C such that |Eφ(X) −Ef (X)| is arbitrarily small.

Similarly one can take C+ as the set of increasing f ∈ C. �

Proof of Lemma 3.1. Assume that μn → μ ∈ P1((R
d)n). Then μn → μ in distribution and

(μn) is uniformly integrable. If f : Rd → R is continuous and bounded, then so is f ◦ πi :
(Rd)n → R. Therefore, (πi

#μn)(f ) = μn(f ◦πi) → μ(f ◦πi) = (πi
#μ)(f ). Thus, πi

#μ
n → πi

#μ

in distribution. It is also easy to see that (πi
#μn) is uniformly integrable because∫

Rd

|xi |1
(|xi | > t

)
πi

#μn(dxi) =
∫

(Rd )n
|xi |1

(|xi | > t
)
μn(dx)

≤
∫

(Rd )n
|x|1(|x| > t

)
μn(dx). �

Proof of Lemma 3.2. Let λ ∈ 
(μ,ν). Note that |(x, y)|/2 ≤ max{|x|, |y|} =: |x| ∨ |y| for all
x, y ∈Rd . Therefore, for any t > 0

1

2

∫ ∣∣(x, y)
∣∣1(∣∣(x, y)

∣∣ > t
)
λ(dx × dy)

≤
∫ (|x| ∨ |y|)1

(
2
(|x| ∨ |y|) > t

)
λ(dx × dy)

≤
∫

|x|1
(

|x| > t

2

)
μ(dx) +

∫
|y|1

(
|y| > t

2

)
ν(dy).

Because the measures μ and ν have finite first moments, the right-hand side above tends to
zero as t → ∞, uniformly with respect to λ ∈ 
(μ,ν) We conclude that 
(μ,ν) is uniformly
integrable and hence also tight. By [1], Proposition 7.1.5, it follows that 
(μ,ν) is relatively
compact in P1(R

d ×Rd).
To verify that 
(μ,ν) is closed, it suffices to observe that it can be written as a preimage


(μ,ν) = �−1({(μ, ν)}) of the map � : P1(R
d ×Rd) →P1(R

d) ×P1(R
d) defined by �(λ) =

(π1
# λ,π2

# λ) which is continuous by Lemma 3.1. �

Appendix B: Wasserstein distance as a countable supremum

Let Lip1(R
d) := {f : Rd → R : |f (x) − f (y)| ≤ |x − y| for all x, y ∈ Rd} stand for the set of

1-Lipschitz functions on Rd .

Lemma B.1. There exists a countable subset Td ⊂ Lip1(R
d) such that

dW (μ, ν) = sup
f ∈Lip1(R)

[
μ(f ) − ν(f )

] = sup
g∈Td

[
μ(g) − ν(g)

]
(B.1)

for all μ,ν ∈ P1(R
d).
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Proof. The first equality in (B.1) is the Kantorovich–Rubinstein duality [35], Remark 6.5. In-
spired by [32], Theorem 3.1.5, we may take Td as all functions of the form

g(x) = min
{
g1(x), g2(x), . . . , gn(x)

}
,

(B.2)
gk(x) = qk + |x − yk|,

where n ∈ N, qk ∈Q and yk ∈Qd .
Clearly Td ⊂ Lip1(R

d), and for any function f ∈ Lip1(R
d), any compact set K ⊂ Rd and

ε > 0 there exists g ∈ Td such that

sup
x∈K

∣∣f (x) − g(x)
∣∣ ≤ ε.

Namely, take y1, . . . , yn such that for all x ∈ K there exists m(x) such that |x − ym(x)| ≤ ε/3,
and choose qk such that 0 ≤ qk − f (yk) ≤ ε/3. Then, g(x) ≥ f (x) for all x ∈ Rd , and for any
x ∈ K we have∣∣g(x) − f (x)

∣∣ = (
g(x) − g(ym(x))

) + (
g(ym(x)) − f (ym(x))

) + (
f (ym(x)) − f (x)

)
≤ ε

3
+ (

qm(x) − f (ym(x))
) + ε

3
.

Fix then μ,ν ∈ P1(R
d) and f ∈ Lip1(R

d), which we may assume without loss of generality
to satisfy f (0) = 0. For any ε > 0, we may find M < ∞ such that∫

|x|>M

|x|(μ(dx) + ν(dx)
) ≤ ε

8
,

because μ,ν are integrable. Let g ∈ Td such that |f (x) − g(x)| ≤ ε/8 for all |x| ≤ M . Then,

μ(g) − ν(g) ≥ μ(f ) − ν(f ) − μ
(|f − g|) − ν

(|f − g|) ≥ μ(f ) − ν(f ) − ε,

because

μ
(|f − g|) ≤ ε

8
+

∫
|x|>M

(∣∣f (x)
∣∣ + ∣∣g(x)

∣∣)μ(dx)

≤ ε

8
+ 2

∫
|x|>M

|x|μ(dx) + ∣∣g(0)
∣∣,

so μ(|f − g|) ≤ ε/2 and similarly ν(|f − g|) ≤ ε/2. �

Appendix C: From measure-valued mappings to kernels

Lemma C.1. For any Borel set B ⊂ Rd , the evaluation map evB : μ �→ μ(B) from P1(R
d) to

R is measurable with respect to the Borel sigma-algebra generated by the Wasserstein metric on
P1(R

d).
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Proof. Assume first that B is open. Let fn be bounded positive continuous functions such that
fn ↑ 1B pointwise; such functions exist by Urysohn’s lemma.

Note that for each n, the map �n : P1(R
d) → R defined by �n(μ) = μ(fn) is continuous and

thus measurable. Furthermore, the monotone convergence theorem implies that �n(μ) ↑ evB(μ)

for every μ in P1(R
d). Thus the map evB is measurable, being a pointwise limit of measurable

maps.
We next show that the claim holds for any Borel set. Denote by E the collection of Borel sets

B ⊂Rd such that evB is measurable. If A,B ∈ E and A ⊂ B , then evB\A(μ) = evB(μ)−evA(μ),
so B \ A ∈ E . Similarly, one can show that E is closed under monotone unions, and clearly
Rd ∈ E . We conclude that E is a Dynkin’s λ-system which contains the open sets of Rd . Because
the collection of open sets is closed under finite intersections, an application of a monotone class
theorem ([17], Theorem 1.1), shows that E contains all Borel sets of Rd . �
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