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Abstract. A full understanding of the spacetime evolution of the QCD matter created
in a heavy ion collision requires understanding the properties of the initial stages. In the
weak coupling picture these are dominated by classical gluon �elds, whose properties
can also be studied via the scattering of dilute probes o� a high energy hadron or nucleus.
A particular challenge is understanding small systems, where LHC data is also showing
signs of collective behavior. We discuss some recent results of on the initial matter pro-
duction and thermalization in heavy ion collisions, in particular in the gluon saturation
framework.

1 Introduction

Experimentally studying properties of the quark gluon plasma requires one to interpret measurements
in relativistic heavy ion collisions. Relating these observables to the fundamental properties of QCD
matter requires one to understand and quantitatively model the whole collision process, from the initial
particle production up to the �nal freezeout. In this program, the initial stages are, by de�nition, least
directly constrained by experiment. Their description must therefore rely most on QCD theory in the
high energy limit; this will be the subject of this talk.

In the high collision energies reached in the LHC experiments one reaches the gluon saturation
regime of QCD. In this regime the phase space density of small-x gluons becomes nonperturbatively
large even at semihard transverse momentum scales, i.e. scales where one can use weak coupling
QCD methods. Here the CGC e� ective theory of QCD in the high energy limit allows one to organize
the calculation in terms of a nonperturbatively large classical color �eld and quantum �uctuations
around it [1, 2]. In this talk we will �rst discuss how one can calculate properties of the initial state
of the quark gluon plasma in this picture, using Classical Yang-Mills (CYM) simulations. We will
then discuss some recent work on independently studying the structure of the classical �eld with
dilute probes, where many of the needed cross sections are now being worked out to next-to-leading
order accuracy in the QCD coupling. We �nally discuss long range rapidity correlations in small
(proton-proton or proton-nucleus) collision systems, which could potentially provide a more direct
experimental access to the correlation structure of the color �elds in the initial stage of the collision.
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2 From small- x to the glasma initial state

The bulk of the matter produced in the central rapidity region of a heavy ion collision originates from
interactions of gluons that have only a small fractionx of the energy of the incoming nuclei. Gluons
dominate over quarks because the strong logarithmic enhancement of the brehmsstrahlung spectrum:
the probability to emit a gluon withx � 1 is proportional to� s dx=x. Thus to leading order in the
weak coupling the distribution of initial matter production is independent of rapidityy = ln 1=x. The
experimentally observed approximate boost-invariance of the particle multiplicity is therefore natural
in a weak coupling picture.

When the total collision energy is very large, there is enough phase space for the emitted gluons to
themselves act as sources for a further emission of even smaller-x gluons. This leads to an exponen-
tially developing cascade of gluon emissions, where every subsequent step in the emission process is
proportional to an additional power of� s ln s. At high enough energys this cascade of gluon emis-
sions needs to be resummed, because the large energy logarithm compesates for the smallness of the
coupling. The result of this resummation is that the produced gluon multiplicity is proportional to a
small power∼ � s of the total center of mass energy: again a trend in agreement with the experimental
observations. Making these statements more quantitative requires an actual procedure for performing
this resummation of the large energy logarithms: this is performed with high energy renormalization
group equations known by the acronyms BFKL, BK or JIMWLK.

The BFKL equation resums the gluon cascade as a perturbative process, including the emissions of
soft gluons to all orders in� s in the leading logarithmic limit. It is a linear equation that indeed leads
to a solution that grows exponentially with rapidity. However, eventually this approach will lead to
nonperturbatively large occupation numbers for gluon states in the wavefunction. When this happens,
the perturbative approximation ceases to be valid. Gluon mergings become parametrically equally
important as the splittings, and the linear BFKL high energy renormalization group equation must be
replaced with a nonlinear BK or JIMWLK one. This phenomenon is known as gluon saturation.

The occupation numbers of gluons in the high energy nuclear wavefunction always decrease as
a function of the transverse momentumkT , reverting to the linear regime at largekT . The intrinsic
transverse momentum scale at which the nonlinearities become important is known as the saturation
scaleQs. When the energy is high enough, the QCD coupling at the scaleQs is weak. At the saturation
scale the two terms of the Yang-Mills covariant derivative@� +igA� are of the same order becauseA� ∼

1=g, signaling a breakdown of the perturbative expansion. This leads to the typical gluon saturation
power counting, where occupation numbers are nonperturbatively largef (k) ∼ A� A� ∼ 1=� s at the
scalek ∼ Qs � � QCD so that� s � 1. A gluonic system satisfying these conditions is, to leading
order in� s, aclassical color �eld. The question of whether this weak coupling, but nonperturbative,
saturation picture is relevant for a particular kinematical regime can always be debated; this cannot be
resolved within the (self consistent) classical approximation alone. It is however clear that the picture
becomes better and better justi�ed when the collision energy

√
s increases.

In the saturation regime the number of gluons in the nucleus, i.e. the gluon distribution, is in fact
not the most convenient degree of freedom to describe the target. In stead, in practical calculations
are performed in terms of theWilson line, which for a left-moving nucleus is written as

V(xT) = Pexp
{

ig
∫

dx+A−(xT ; x−)
}
∈ SU(3), (1)

a path-ordered exponential in the target color �eld along the eikonal trajectory of a high energy probe
advancing along the positivez axis. The Wilson line depends on the transverse coordinate. The light
cone time coordinatex+ is integrated over following the trajectory of a probe particle. The dependence

    
 

DOI: 10.1051/, 07013 (2017) 713707013137EPJ Web of Conferences epjconf/201

XII th  Quark Confinement & the Hadron Spectrum

2



4 8 16 32 64 128
r/a

0

0.2

0.4

0.6

0.8

1

C
(r

)

y = 0
y = 1.30
y = 2.59
y = 3.89
y = 5.18

Figure 1. Wilson line correlator (2) as a function of
transverse coordinate, from the JIMWLK
simulations [3]. The dashed lines indicate the
saturation scale as de�ned by the condition (2).

on the light cone longitudinal coordinatex− is insigni�cant in the high energy limit, since a probe with
a largep+ momentum interacts with the target instantaneously inx−.

Expressed in terms of the Wilson lines, the saturation scaleQs is the inverse of their correlation
length in the transverse plane. A gauge invariant de�nition can be obtained using the expectation
value of the dipole operator TrV†(xT)V(yT), which interpolates betweenNc at xT = yT and zero at
large distances, when the Wilson lines are completely uncorrelated. For a precise de�nition, one must
choose some limiting value betweenNc and 0; for concreteness one often takes

1
Nc

〈
Tr V†(0T)V(xT)

〉
= e−

1
2 ⇐⇒ xT

2 =
2

Q2
s
: (2)

Figure 1 demonstrates the extraction of this characteristic length from a numerical solution [3] of the
JIMWLK renormalization group equation.

The Wilson line is formed from the covariant gauge color �eld, whose largest component for a
color charge with a large momentump± is A±. In order to have an interpretation of this color �eld
in terms of partons one must gauge transform this �eld into the light cone gauge. The result is a
transverse pure gauge �eld

Ai =
i
g

V(xT)@iV†(xT): (3)

While the covariant gauge �eld lives on the light cone of the corresponding source,∼ � (x∓) for a color
current in the±-direction, the transverse pure gauge �eld is delocalized in the longitudinal coordinate,
∼ � (x∓). Physically this is the spacetime picture [4] that can be interpreted in terms of the Heisenberg
uncertainty principle: the classical �eld corresponds to small-x degrees of freedom, i.e. gluons with a
small p±, it is therefore delocalized inx∓.

The light cone gauge �eld is the basis of using the classical �eld picture to calculate the color �eld
in a heavy ion collision. One starts from separate independent pure gauge �elds, Eq. (3), for the two
colliding nuclei (1) and (2). The transverse pure gauge �eld is gauge equivalent to the vacuum outside
of the light cone, i.e. it carries no energy density. However, the superposition of two such �elds from
independent sources is not any more a pure gauge. A straightforward calculation [5, 6] in fact allows
one to calculate the �eld at� =

√
2x+ x− = 0+ after a collision of two sheets of color glass as

Ai
∣∣∣
� =0

= Ai
(1) + Ai

(2) and A� |� =0 =
ig
2

[Ai
(1); Ai

(2)]; (4)

where we are working in the gaugeA� = 0 with the spacetime rapidity� = 1
2 ln x+=x− as the longitu-

dinal coordinate. This spacetime structure is illustrated in Fig. 2. The �eld inside the future light cone
is referred to as theglasma�eld [4].
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τ = cst. Figure 2. The classical gauge �eld in the collision of
color charged systems. The �elds in the regions (1)
and (2) are transverse pure gauges, Eq. (3). The
initial condition for the nontrivial �eld inside the
future light cone,x+ > 0;x− > 0 is given by Eq. (4).

No analytical solution for the Yang-Mills equation of motion for the glasma �eld is known, but
based on the initial condition one can easily deduce some of its most important features (see also
[7–9]. Precisely at� = 0 the �eld consists of purely longitudinal chromoelectric and -magnetic �elds.
They vary in the transverse direction at the typical length scale 1=Qs, and could thus be thought of
equivalently as gluons of momentum∼ Qs or color strings of size 1=Qs. The interpretation of 1=Qs

as acorrelation lengthis crucial for understanding the e�ect of the glasma �elds on multiparticle
correlations. After a time∼ 1=Qs the �eld modes decohere, and the energy density consists in equal
amounts of longitudinal and transverse componentsE2

z ∼ B2
z ∼ B2

x + B2
y ∼ E2

x + E2
y. Translating

these into diagonal components of the energy momentum tensor one �nds that precisely at� = 0 the
system has a very strong negative vacuum-energy-like longitudinal pressurePL ∼ −" ∼ −P⊥. After
the decoherence time� ∼ 1=Qs it becomes very strongly anisotropic, corresponding to gluons with
momenta only in the transverse directions,P⊥ ∼ 1=� � PL. This is the starting point of the initial
state isotropization problem in heavy ion collisions, great progress on which has recently been made
in a kinetic theory framework going beyon the classical �eld limit [10].

The nature of the saturation scale as the dominant characteristic scale in the problem carries over
from the wavefunction of one nucleus to the matter produced in the collision of two. By Fourier-
decomposing the classical �eld into momentum modes, one can calculate the corresponding gluon
spectrum, see Fig. 3. For large momentapT � Qs it reduces to a perturbatively calculable spectrum
whose form depends on the initial condition, i.e. on the distribution of Wilson lines. For small
momentapT � Qs the gluon spectrum collapses to a universal form close to a classical thermal
distribution∼ 1=pT . An alternative manifestly gauge invariant way of studing the same universality
is to look at the area-dependence of a spatial Wilson loop in the transverse plane [11]:

W(A) = Tr Pexp
{

ig
∮

@A
dx� A�

}
: (5)

Here a very similar phenomenon is observed: for small loopsA� 1=Q2
s the area-dependence depends

on the details of the distribution of Wilson lines, but for large loops both the magnitude and the
area dependence are universal (see Fig. 3). This universality due to nonlinear gluon interactions is a
manifestation of gluon saturation in the �nal state.
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Figure 3. Left: gluon spectrum in the glasma expressed in terms of the scaling variablepT=Qs [3]. The small
momentum part of the spectrum collapses to an universal curve. Right: area-dependence of the spatial Wilson
loopW(A) [11] shows the same collapse to a (� -dependent) universal value for large areasA.

3 Control measurements

As we have discussed, the properties of the glasma �elds can be calculated once one knows the
Wilson lines (1) describing the color �elds of the colliding nuclei. To make the glasma picture of the
initial stage consistent, controlled and quantitative, one must be able to probe these same Wilson lines
separately in control experiments. This means collisions of small, dilute, well-controlled probes o� a
large nucleus.

The simplest such process is deep inelastic scattering (DIS). To connect it to the CGC framework
it is convenient to think of the scattering process in the “dipole picture.” Here a virtual photon
 ∗

�uctuates into a quark-antiquark pair, which then eikonally interacts with the target color �eld, see
Fig. 4. The cross section can correspondingly be factorized as

� 
 ∗H
tot =

∫
d2rT dz

∣∣∣	 
 ∗→qq̄(rT ; z)
∣∣∣2 � dip(rT ; z); (6)

where the QED light cone wave function	 
 ∗→qq̄ quanti�es the probability for the virtual photon to
split into a dipole of sizer, enforcingr ∼ 1=Q. The QCD dynamics is parametrized by the dipole
cross section� dip, which is a nothing but our previous Wilson line correlation function

� dip(rT) =
∫

d2bT
1
Nc

Tr
〈
1− V†

(
bT +

rT

2

)
V

(
bT −

rT

2

)〉
: (7)

The high energy renormalization group equations (BK or JIMWLK) predict the dependence of the
dipole cross section on energy (or equivalently Bjorkenx in the case of DIS). Although the evolution
equations are derived in weak coupling QCD, they still need a nonperturbative initial condition that
needs to be �t to experimental data. Thus a good CGC description of the initial stages of a heavy
ion collision should be consistent with HERA measurements, and give testable predictions for future
nuclear DIS experiments, e.g. at the EIC [12]. The agreement with HERA data has indeed been
demonstrated in several recent calculations, see e.g. [13, 14].

Another important control measurement is to use another dilute, relatively well understood, sys-
tem of quarks and gluons as a probe, namely a proton at relatively largex. This is done by looking
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Figure 4. Deep inelastic scattering, i.e.
 -target
collision, in the dipole picture. The virtual photon
splits into a quark-antiquark pair, which interacts
eikonally with the target color �eld. Here one is
interested in the total cross section which, via the
optical theorem, is related to the imaginary part of
the forward elastic scattering amplitude. Thus in the
�nal state the dipole must recombine to give the
same virtual photon state.

at single particle production and multiparticle correlations at forward rapidity in proton-nucleus col-
lisions. Here the particle production cross section is proportional to the nuclearunintegratedgluon
distribution, which is given simply by a Fourier-transform of the dipole cross section. Leading order
calculations with up-to-date dipole cross sections now give a relatively good description of the spectra,
albeit with the normalization corrected by a “K-factor” [14–17]. This normalization uncertainty can-
cels out inRpA, the ratio of proton-nucleus and proton-proton cross sections, corrected by the nuclear
geometry. Since other uncertainties inRpA are rather small, it is important to treat the nuclear geom-
etry correctly also in the theory calculations, indeed the largest di�erence between earlier [15] and
more recent [14] calculations is precisely here. In a similar way the importance of treating carefully
the nuclear geometry has been seen in calculations ofJ=	 production at forward rapidity [18, 19].

More recently attention on the theory side has turned to carrying out the program of NLO calcu-
lations of dilute-dense collision systems to next-to-leading order (NLO) accuracy. The leading order
Balitsky-Kovchegov (BK) [20–22] equation is now routinely used in phenomenology. Also the NLO
version of the equation was derived some time ago [23], but no serious attempts to solve it were un-
dertaken for a long time. The equation as originally derived is unstable [24] due to large transverse
momentum logarithms. Recently a way to resum these logarithms was developed [25, 26], leading to
a stable solution of the whole equation at NLO accuracy. It turns out [27] that with a suitable choice
of a constant under the log, one can arrange so that most of the NLO corrections are included in the
resummation and the remaining �nite NLO terms are small. A �rst �t of HERA DIS data in this
framework has been performed [26], and the NLO equation could be expected to become a frequently
used tool in high energy QCD.

Forward single inclusive particle production in proton-nucleus collisions has similarly been the
focus of much attention recently. The cross section was calculated to NLO order in an important cal-
culation a few years ago [28, 29]. First numerical evaluations of the cross section [30] led to the result
that the NLO corrections cause the cross section to turn negative at large transverse momenta. Several
interpretations of this “negativity problem” have been presented in the subsequent literature [31–33].
The negativity problem can be traced back to the way the small-x divergence is subtracted from the
cross section in order to be absorbed into the BK evolution of the target [34]. A physical feature in
these discussions is the need to impose ordering in the longitudinal momentum in the target (k−, if
the probe is moving in the positivez direction) in stead of the probek+ , which would be the more
straightforward variable in the cross section calculation. Imposing this ordering in target longitudinal
momentum seems to signi�cantly alleviate the negativity problem. More recently a reformulation
of the cross section that evokes an exact integral representation of the BK equation and makes the
cross section explicitly positive was presented [35]. This proposal has yet to be implemented in a
quantitative numerical calculation.
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4 Correlations

Let us now move back to denser collision systems for a short discussion of long range rapidity cor-
relations. A very generic causality argument [36] shows that correlations between very far away
rapidities can only originate at a very early stage of the collision. This is completely analogous to the
way large scale structrures in the cosmological microwave background reveal information about the
earliest stages of the universe, because the correlations can only originate at a time when the regions
were in causal contact. Thus long range rapidity correlations have the potential to be directly sensitive
to the initial stage of the collision.

The most analyzed multiparticle correlations, usually one that is long range in rapidity, in a heavy
ion collision arevn's, i.e. the Fourier series coe�cients of the azimuthal anisotropy in the produced
particle spectra. These “�ow coe�cients” are traditionally presented as the Fourier-coe�cients of
the single particle distribution with respect to a reaction plane determined by the impact parameter
direction between the colliding nuclei. The impact parameter is, however, not actually measured ex-
perimentally. In stead, the impact parameter direction is determined from the other particles produced
in the event, often with a rapidity separation to the “single” particle. This makes avn measurement
always a multiparticle correlation one, which is even more explicit in more recent (cumulant) analysis
methods (see e.g. Ref. [37]).

The geometry of the collision system is the ultimate in�nite-range rapidity correlation: particle
production at all rapidities is sensitive to the same positions of the incoming nucleons in the nucleus.
Geometry gives rise to a coordinate space azimuthal asymmetry, but in most particle production sce-
narios the momentum distribution is initially azimuthally symmetric. If interacting matter is produced
in the collision and lives for a long enough time, collective interactions in the form of work done
by pressure gradients can transform the initial coordinate space asymmetry into an asymmetry in the
local �uid velocity, i.e. the momentum distribution of the particles. This is the conventional hydrody-
namical explanation of anisotropic azimuthal �ow, and we have every reason to believe that it is the
correct interpretation in the case of large collision systems, i.e. nucleus-nucleus collisions.

For parametrically smaller systems, where the size in the transverse plane is not much larger
than the correlation area of the color �elds 1=Q2

s, there is an alternative mechanism that can generate
correlations between the produced particles directly in momentum space, unrelated to the overall
coordinate space geometry of the collision system. Although the mechanism is present also in a
“dense-dense” collision system, it is more straightforward to explain the e�ect in the case of a dilute
probe of the target color �eld. Here the physical picture of particle production is the following [38, 39].
One starts from a collinear high-x quark or gluon from the probe hadron. To produce hadrons it will
scatter from the target color �eld, getting a transverse momentum kick∼ Qs from the transverse
chromoelectric �eld of the target. Now the target consists of domains of color �elds of typical size
∼ 1=Q2

s. Thus two produced particles will be correlated if they hit the same domain. This is very likely
if the overlap areaS⊥ of the probe and target is not much larger than 1=Q2

s, otherwise the correlation is
washed out by the increasing likelihood that the particles are produced from independent domains. In
order to get a momentum kick in the same direction from the target color �eld domain in a particular
color state, the two incoming particles have to have the same color. Combining these two e�ects
we see that the correlation is suppressed by a factor 1=(S⊥Q2

sNc
2) compared to uncorrelated particle

production. Thus this is an e�ect that is parametrically larger for smaller collision systems, contrary
to the usual �nal state collective �ow-induced correlation, which requires a long lifetime and thus a
large volume.

The same physical mechanism is behind several recent calculations of azimuthal anisotropies in
the CGC framework. Di�erent approximation strategies are most straightforwardly discussed in terms
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of the Wilson lineV(xT), which can be parametrized in terms of a color charge density� as:

V(xT) = Pexp
ig

∫
dx−

�(x T ; x−)

∇2
T

 ; (8)

For a calculation of two-particle correlations one needs at some level to calculate correlators of four
Wilson lines such as 〈

Tr V†(xT)V(yT) Tr V†(uT)V(vT)
〉

; (9)

which brings a sensitivity to the statistical properties of the Wilson lines beyond the two-point function
used for single inclusive particle production.

The “ridge” correlation was calculated in Ref. [40] in terms of the “glasma graph” approximation.
This is akT-factorized approximation which can be derived by linearizing the Wilson lines in terms of
the color charge�, and calculating higher point functions such as (9) by assuming that the correlators
of � are Gaussian. The property of Gaussianity allows one to express all higher point operators in
terms of the two point function of�'s: in the usual kT-factorized approximation this is then again
replaced by the full nonlinear two-point function of Wilson lines that satis�es the BK equation. The
“electric �eld domain model” of [41] investigated the e�ect of an additional intrinsically non-Gaussian
correlation between the color charges� that has not been seen in the usual JIMWLK/BK setup. The
dilute-dense case with a full JIMWLK evolution was studied in Ref. [42], treating the probe in the
dilute collinear approximation, but without linearizing in the color charge�. The CYM calculation
of [43] used the MV model, but includes fully the nonlinear color �eld, supplemented with a CYM
evolution that introduced also non-equilibrium �nal state correlations. We stress that the main physics
idea in these calculations is the same, only approximations in treating the nonlinearities di�er. In a
later study [39] we compared the di�erences of these approximations in an apples way in the dilute-
dense limit. The “nonlinear Gaussian” approximation where the�'s are assumed to have Gaussian
correlators, but the nonlinear relation between them and the Wilson lineV(xT) is treated to all orders,
was found to be accurate at least within 10%. The di�erence between the full JIMWLK result and the
“Glasma graph” calculation that is linearized in� at intermediate stages di�ers from the full result by
at most a factor of 2 (for the coe�cientv2) and in most cases less.

5 Conclusions

In conclusion, we have here given a brief overview of the connection between the CGC picture of the
small-x degrees of freedom in a high energy hadron or nucleus, and the initial stage of a relativistic
heavy ion collision. We have seen that this is characterized by the concept of a nonperturbatively
strong classical gauge �eld, which leads to an anisotropic system of gluons in the initial stage of quark
gluon plasma formation. We have then discussed recent advances in calculating at NLO accuracy cross
sections for processes where this strong color �eld is probed by a dilute probe. Following through
the full calculation of the glasma �eld to NLO accuracy is yet a more challenging undertaking for the
future [44]. Finally we discussed azimuthal multiparticle correlations, usually parametrized in terms
of the �ow coe�cients vn in small collision systems. Here there is likely an intreresting interplay
between initial state color �eld and �nal state hydrodynamical correlations, which still remains to be
fully understood quantitatively.

This work has been supported by the Academy of Finland, projects 267321, 273464 and 303756
and by the European Research Council, grant ERC-2015-CoG-681707.
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