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Abstract. A clustering result needs to be interpreted and evaluated for knowl-
edge discovery. When clustered data represents a sample from a population with
known sample-to-population alignment weights, both the clustering and the eval-
uation techniques need to take this into account. The purpose of this article is
to advance the automatic knowledge discovery from a robust clustering result
on the population level. For this purpose, we derive a novel ranking method by
generalizing the computation of the Kruskal-Wallis H test statistic from sample
to population level with two different approaches. Application of these enlarge-
ments to both the input variables used in clustering and to metadata provides
automatic determination of variable ranking that can be used to explain and dis-
tinguish the groups of population. The ranking method is illustrated with an open
data and then, applied to advance the educational knowledge discovery from large
scale international student assessment data, whose robust clustering into disjoint
groups on three different levels of abstraction was performed in [19].

Keywords: Population analysis; Kruskal-Wallis test; Robust Clustering; Educational
Knowledge Discovery

1 Introduction

Various large-scale educational assessments, like the Programme for International Stu-
dent Assessment (PISA), regularly collect large amount of data characterizing world-
wide student populations to assess and compare arrangements and policies between
different educational systems [16]. Although data originating from these assessments
are of high quality and publicly available, there is surprisingly little research activity
on the secondary analysis. This is due to the technical complexities within the dif-
ferent representations and transformations of data and the lack of methods that allow
advanced analysis of these large datasets [18]. One example of the complication of an-
alyzing PISA datasets are the weights. Through complex sampling designs only certain
students of the studied population are selected for the assessment and weights are used
to indicate the number of students in the population that a sampled student represents.
This means that these weights must be taken into account in all steps of the knowledge
discovery to analyze the population instead of the collected sample (e.g., [20, 14]).



The purpose of this paper is to advance the educational knowledge discovery from
a robust, weighted clustering result. There exists various clustering methods and ap-
proaches, like e.g. density-based, probabilistic, grid-based, and spectral clustering [2],
together with their comparisons and evaluations (e.g., [6]). Although hierarchical meth-
ods allow summarization and exploration of a given dataset through the visual dendro-
gram, the basic form of the technique is not scalable to large number of observations
because of the pairwise distance matrix requirement [25]. Moreover, it is not clear how
to take into account the weights in hierarchical clustering as presented, e.g., in PISA
datasets. On the other hand, in [3] a robust (cf. [24]) prototype-based clustering algo-
rithm was developed that can handle large datasets with high and unknown sparsity
patterns (i.e., tens of percents of missing values). This paper continues the efforts of
[19], where the weighted enlargement of the above-mentioned algorithm was applied
to create prototypes for the PISA 2012 dataset on three different levels of abstraction,
with different numbers of clusters of the student population. The dynamic numbers of
clusters were based on the use of multiple cluster indices (e.g., [13]) suggesting the
number of clusters, again taking into account the weights (see [19] for details).

One main advantage of crisp, prototype-based clustering result is the guarantee of
globally separable subsets of data. The data division is completely determined by the
disjoint labels, typically integers from 1 to K for K clusters, encoding the clustering
result. This means that, in order to make an interpretation of the result, one can con-
sider and compare data distributions of both the actual variables used in clustering as
well as relevant metadata. Note that the use of a hierarchical clustering method with
locally greedy aggregation could produce clusters of arbitrary shape in the data space,
which could then be difficult or even impossible to interpret because of the overlapping
variable distributions.

The results in [19] were obtained with a robust clustering method with (available
data) spatial median as the cluster prototype, which is characterized by the Laplace
density distribution. A feature selection approach for the robust EM-algorithm with
Laplace mixture models was suggested in [5]. There the feature selection, similarly
to the construction of classifiers [11], referred to ranking the given input features to
select the most important ones for the clustering result. Here, our purpose is, similarly
to the techniques proposed in [23, 4], to assess the importance of variables with a given
labeling. For this purpose, we apply the same method as in [5] where it was suggested
that the feature ranking can be realized by Kruskal-Wallis (KW) statistical test. More
precisely, the estimate of importance of a random variable with clustering provided
labeling is supplied by the H statistics of the KW test [15], without need to compute
the p-values and perform the actual statistical testing. To omit the hypothesis testing
relaxes both the requirements of the KW test concerning the equal variances [15] and
selection of appropriate distribution for the test statistics [21]. Moreover, because KW
is a univariate method, it is easy to restrict the computation of the test statistic to the
available values of a variable. This means utilizability with an arbitrary sparsity pattern.

Hence, one needs to generalize the KW H into the population level by using the
weights. This is a difficult problem in statistics because of the reliance of KW on data
ranking. After an extensive search for relevant literature and knowledge we were able
to identify one related work generalizing KW [1], but not solving the problem at hand.



The only article that was identified as fully relevant was [22], which suggested a very
natural generalization of KW for integer weights: create univariate data to compute the
KW test statistic, where each observation is copied as many times as the integer weight
suggests. Clearly, we then precisely test the target population and not the sample. The
purpose of this paper is to propose an approximate extension of this approach to real-
valued weights, by utilizing the classical bootstrapping [8], and to compare this to an
analytically derived novel heuristic formula. Both of these approaches are tested and
evaluated with two different existing clustering results from [19], when ranking both
actual input variables and selected set of metadata variables.

2 On PISA data

The collected data of each PISA assessment, which since 2000 is conducted every three
years, can be downloaded from the website1 of the Organisation of Economical and
Cultural Development (OECD). To select a reliable sample of the population, which in
PISA are all 15-year-old students within the participating countries, the OECD applies a
two-stage sampling design: First, schools attended by 15-year-old students are assigned
to mutually exclusive groups based on explicit strata and schools from these groups
are selected with probabilities proportional to their size. Then, students within those
school are selected randomly with equal probability. The weight wi assigned to each
participating student i consists of the school base weight, the within-school base weight,
and five adjustment factors, especially the one which compensates the non-participation
of a sampled student [17]. Students that are sampled for the PISA test are asked to show
their proficiencies in a cognitive test and answer a background questionnaire, which
gathers information about demographics, activities, and attitudes of the students.

Table 1 details all PISA 2012 variables used in this study. The left-hand side of the
table shows all the variables that in [19] were clustered on a population-level. The ESCS
combines all information of the PISA background questionnaire that relate to the stu-
dents’ economic, social and cultural situation. The next five variables on the left-hand
side of Table 1 are generally associated with the students’ success in the PISA cognitive
test, and the remaining nine variables relate directly to the students’ mathematics per-
formance, which was the main assessment area in PISA 2012. All of these 15 variables
are so-called PISA scale indices that summarize many of the original questions in the
students’ background questionnaires by employing the Rasch model [17]. Since only a
subset of all test item are allocated to each student (this is called rotated design), around
one third of the values for these 15 variables are missing.

On the right-hand side of Table 1, the meta-variables to be used in this study are
listed. The first eight variables of general interest are all PISA scale indices that were
computed to summarize the information obtained from the ICT questionnaire, which
assessed the students’ computing availability and familiarity as well as their attitudes
towards computers. The next and last set of variables in Table 1 are the plausible values
(PVs) for each assessment domain (mathematics, reading, and science). PISA does not
provide individual test performance scores. Instead, to reliably assess the proficiencies

1 https://www.oecd.org/pisa/pisaproducts/



of populations, five PVs for each assessment domain are estimated with Bayesian statis-
tics and reported for each student. Note that we have allocated only one line in the table
per assessment domain for the three sets of PVs but there are five single PVs vectors
per assessment domain, i.e., 15 PVs altogether, that are used in the analysis.

Table 1. PISA variables used in this study with the original variables (i.e., the data that was used
for clustering) on the left-hand side and metadata (i.e., additional PISA variables used to explain
the clustering result) on the right-hand side.

PISA data used for clustering PISA metadata
variable ID variable ID
economic, social and cultural status ESCS ICT availability at home ICTHOME
sense of belonging BELONG ICT availability at school ICTSCH
attitude towards school: learning outcome ATSCHL ICT entertainment use ENTUSE
attitude towards school: learning activities ATTLNACT ICT use at home for school-related tasks HOMSCH
perseverance PERSEV use of ICT at school USESCH
openness to problem solving OPENPS use of ICT in math lessons USEMATH
self-responsibility for failing in math FAILMAT positive attitudes towards computers ICTATTPOS
interest in mathematics INTMAT positive attitudes towards computers ICTATTPOS
instrumental motivation to learn math INSTMOT plausible values 1-5 in mathematics PVMATH
self-efficacy in mathematics MATHEFF plausible values 1-5 in reading PVREADING
anxiety towards mathematics ANXMAT plausible values 1-5 in science PVSCIENCE
self-concept in math SCMAT
behaviour in math MATBEH
intentions to use math MATINTFC
subjective norms in math SUBNORM

The PVs are random draws from the Bayesian posterior distribution of a student’s
ability. In PISA, the prior distribution is a population model that is estimated with a
latent regression model. This latent regression computes the average proficiencies of
examinee subgroups given evidence about the distribution and associations of collateral
variables in the data. In PISA 2012, these collateral variables included to the latent
regression model were all available student-level information besides their performance
in the cognitive test [17, page 157]. That means, in particular, that also all variables
listed in Table 1 except the 15 PVs themselves have been used to estimate the PVs, and
therefore, the PVs cannot be seen totally independent of them. The likelihood of the
success in test is a Rasch model, where the probability of success is a logistic function
of the latent ability and some parameters (e.g. difficulties) of the test items. The obtained
posterior distribution of a student’s ability is specific for each student, since each student
has different values of background variables and test results.

To sum up, student proficiencies in PISA are not directly observed. The PVs are
estimates for group performance and only a selection of likely proficiencies for students
that attained each score. Moreover, for the study at hand, it is important to note that all
background information (i.e., all data that were clustered and all metadata except the
PVs themselves) have been used in the latent regression model which contributes to the
posterior distribution from which the PVs are drawn from.



3 Methods and formulations

Let {xi}N
i=1 be a given, multidimensional dataset, where N observations xi ∈ Rn are

given. Assume further that a given set of positive, real-valued weights {wi}N
i=1 is also

given. Moreover, assume that there is a set of missing values in {xi} with unknown
sparsity pattern. To identify this pattern, define the projection vectors pi, i = 1, . . . ,N,
that capture the existing variable values:

(pi) j =

{
1, if (xi) j exists,
0,otherwise.

(1)

3.1 Robust, prototype-based clustering method for weighted sparse data

Let us briefly recapitulate the clustering method and the overall approach that was used
hierarchically in [19], to produce three levels of disjoint clusters of PISA 2012 popula-
tion with 2, 8, and 53 clusters, respectively.

The spatial median clustering algorithm, k-SpatMeds, proceeds similarly to any
prototype-based method: first, an initial set of complete (i.e., no missing values) pro-
totypes is created and second, these are refined by iteratively linking observations to
the closest prototype whose value is then recomputed. The algorithm stops when there
are no more changes in the linking. Mathematically, the score function that is locally
minimized via the search procedure reads as follows:

Jw =
K

∑
j=1

n j

∑
i=1

wi‖Diag{pi}(xi− c j)‖2. (2)

Here, Diag transforms a vector into a diagonal matrix. The latter sum is computed over
the subset of data attached to the jth cluster. One observes from (2) that to take into
account the first-order alignment of the sample data with the corresponding population
is straightforward. Moreover, projection of the Euclidean distance between the observa-
tion and the prototype to available values creates an implicit (secondary) weighting that
favors more complete observations over the sparser ones in cluster creation. Algorith-
mically, one still needs to check that the iterative refinement of the prototypes does not
introduce missing values to them, because the resulting set of cluster prototypes {ci}K

i=1
should be complete to allow proper interpretation. The robustness of this algorithm as
thoroughly described and tested in [3], refers to the tolerance of both missing values
and noisy data. To this end, one can apply the k-SpatMeds algorithm hierarchically to
refine a set of disjoint clusters further.

3.2 Construction of test statistic for Kruskal-Wallis with weights

Next we describe two different approaches to estimate the test statistic H of the KW
rank-test with real-valued weights. Because the KW test is univariate, we can restrict
ourselves to univariate random variable.



Integer approximation with bootstrapping Let {xi, li}N
i=1 be the pairs of a univariate

observation xi ∈R and its cluster-indicating label li ∈N, where 1≤ li ≤ K for K denot-
ing the number of clusters/groups. Let nk = |Ck|= {i ∈N | li = k} determine the size of
cluster Ck. The original formula for the KW H is given by [15]

H =
12

N(N +1)

K

∑
k=1

s2
k

nk
−3(N +1), (3)

where ri denotes the rank of observation xi in global sorting and sk = ∑i∈Ck
ri the sum

of ranks in cluster Ck. When there are equal values (ties) in data, one can compute the
mean rank of equal observations and share this value among the ties.

As described, wi ∈ R measures the amount of population that the ith observation
represents. If all wi’s are integers, then in [22] it was proposed how to modify the basic
KW test: rank a derived dataset representing the whole population, where each (avail-
able) observation is copied as many times as the weight suggests. This approach is re-
ferred from now on as Integerweighted-KW, IW-KW. Note that when such an enlarged
data are ranked we end up with multiple ties whose mean ranks are then shared. In the
following, we describe a novel approach how to approximate this integer-weighted KW
using a bootstrapping technique.

Let w denote an arbitrary, real-valued weight. The proposed technique is, firstly,
based on approximating w up to an accuracy of the first decimal place. This can be
simply done as follows: determine the two integers wl = bwc and wh = dwe that provide
lower and upper bound of w as integers. Let then d = [10 ∗ (w−wl)] be the rounded
integer that encapsulates the decimal place 1 of w. Vector v of ten integers, which is
created by repeating wl 10−d times and wh d times, provides an integer-approximating
set of real-valued w in such a way that the mean of v is exactly the same as w up to
the first decimal. For instance, for w = 8.647, wl = 8,wh = 9, and d = 6. And, for v =[
8 8 8 8 9 9 9 9 9 9

]
, we have mean{v} = 8.6. Similarly, in order to create an integer-

approximation of w being accurate to the second decimal place, it is enough to just
redefine d = [100∗(w−wl)]. Proceeding with the example just given, the integer vector
of size 100 with 65 nines and 35 eights would yield to mean{v}= 8.65. For the general
procedure, the result of the just proposed integer approximation of all weights is stored
in the matrix W∈NN×D, where D is 10 when approximating the first decimal place and
100 for the second decimal place, correspondingly.

Next we suggest to use the classical bootstrapping [8] to create a set of KW test
statistics based on the IW-KW and W . Hence, we create a random sample of indices
{1, . . . ,N} with replacement, and for the resulting unique set of indices Ĩ, for the avail-
able values of {xi}i∈Ĩ , we apply IW-KW. When this is repeated D times for all the
integer columns of W , we obtain D different samples of the bootstrap estimate of the
KW H. To this end, similarly as with the derivation of W , we then simply take the mean
of the D-vector to produce the final approximation of H for the real-valued weights.

Analytic formula Let r̄ denote the global mean rank (equal to 1+N
2 ) and r̄k the mean

rank of the observations in cluster Ck. An equivalent form of the original formula (3)



for the KW test statistic H, as given in [9], reads as

H = (N−1)
∑

K
k=1 nk(r̄k− r̄)2

∑
N
i=1(ri− r̄)2

. (4)

From this form, it is easy to derive an interpretation of the KW test statistic. With clus-
terwise r̄k and global r̄ mean ranks, the dividend presents sum of clusterwise variances
multiplied by the size of the cluster whereas the divisor computes the global variance of
ranks. Hence, when the weights represent the number of samples in the population, it
is straightforward to derive an analogous formula to (4) in the population level. Hence,

let r̄w =
∑

N
i=1 wiri

∑
N
i=1 wi

be the weighted average rank and (r̄w)k the weighted average rank of

cluster Ck. Then, we define

Hw =
∑

K
k=1(∑i∈Ck

wi)((r̄w)k− r̄w)
2

∑
N
i=1 wi(ri− r̄w)2

. (5)

Note that we have omitted the multiplier (N−1) from (4), which would be generalized
into (∑i wi−1) to represent the whole population. With PISA 2012 weights, which align
the half a million students sample to the 24 million population, this means we do not
include multiplication of Hw by over 24 million. Because the final ranking of variables,
as suggested in [5], is based on sorting the H values of the variables in descending order,
this omission does not change the result.

4 Evaluation

Implementation We computed the KW rank-test H test statistics for real-value weighted
data with two approaches, as described in Section 3. The bootstrapping with the IW-KW
was tested with two different W s. We will refer to the bootstrapping based method as
Bootstrap KW. Further, Bootstrap KW with D = 10 refers to the one decimal place ap-
proximation of real-valued weights. Similarly, the two decimal place approximation is
referred as Bootstrap KW with D = 100. In addition, the KW test statistics were com-
puted directly from formula (5). In the following, this is shortly referred as Analytic
KW. The two clustering results that are used in the experiments corresponded to 8 (La-
bels 1) and 53 (Labels 2) clusters from [19] in the second and third levels of refinement,
respectively. The first result in [19] with the two clusters is excluded here, since the KW
rank-test exactly generalizes the MannWhitney U-test for the two groups.

To speed up the computations, we implemented a parallel version of Bootstrap KW
with Matlab PCT, SPMD blocks and message passing functions. The tests were run in
Matlab 8.5.0 environment by using a cluster of 8 nodes. Each node consists of Intel
Xeon CPU E7-8837 with 8 cores and 128 GB RAM. Each worker in the distributed
computations corresponds to one of the 64 cores. Since Bootstrap KW computes the
KW H values independently for each variable in a loop, those loop iterations can be
easily parallelized with SPMD blocks. First, each worker reads one column of variable
values from the data matrix and the corresponding sparsity indicator (1). Next, each



worker computes the KW H values by utilizing its local data. Finally, results are aggre-
gated and rankings for the variables based on the H values are formed. The number of
workers is equal to the number of variables in all parallel runs.

The five individual PVs for mathematics, reading, and science, as given in Table 1,
were first treated as independent variables, such that five H values were computed for
them. The final value of the test statistic was then taken as the mean of these according
to the recommended way of analysis in [17].

Results To generally test the proposed approaches, we first used the Iris data from UCI
machine-learning repository. For this, we created random integer weights in the range
5–25 and newly generated the data for each run. The KW H values for Analytic KW and
Bootstrap KW D = 100 approaches gave the same variable ranking results in eight out
of ten runs. After adding 5% zero-mean uniformly distributed noise to make weights
real-values, we obtained the same ranking order for the different approaches in nine out
of ten runs. Moreover, similarly as in [7], features 4 and 3 were always selected as the
important ones while features 1 and 2 were always last in the list. When we used the
same data for each run the ranking order was always the same.

Table 2 summarizes all ranking for the combined (originally clustered and meta)
PISA data. In the table, the last column rank of rankings indicates for each variable the
total rank, i.e. the rank of the sum of rankings of all methods on both labeling levels.

Table 2. Rankings for full (original and metadata) variables for the different analysis approaches
for both PISA clustering results.

Labels 1 Labels 2
Bootstrap KW Bootstrap KW rank of

Variable Analytic KW D = 10 D = 100 Analytic KW D = 10 D = 100 rankings
ESCS 3 1 1 1 1 1 1

BELONG 11 13 13 9 13 13 12
ATSCHL 7 6 6 7 7 7 6

ATTLNACT 4 3 3 4 2 2 3
PERSEV 15 15 15 15 16 16 15
OPENPS 12 11 11 11 11 11 11

FAILMAT 20 18 18 17 18 18 19
INTMAT 1 2 2 3 3 3 2

INSTMOT 5 5 5 5 6 6 5
MATHEFF 9 9 9 10 12 12 9
ANXMAT 6 7 7 6 8 8 7
SCMAT 2 4 4 2 4 4 4

MATHBEH 14 14 14 12 9 9 13
MATINTFC 8 8 8 8 5 5 8
SUBNORM 13 10 10 13 10 10 10
ICTHOME 10 19 19 14 19 19 17
ICTSCH 25 24 24 25 25 25 25
ENTUSE 24 22 22 24 22 22 22
HOMSCH 22 21 21 23 21 21 21
USESCH 16 26 26 18 26 26 23

USEMATH 26 23 23 26 23 23 24
ICTATTPOS 21 20 20 21 20 20 20
ICTATTNEG 23 25 25 22 24 24 26

PVMATH 17 12 12 16 14 14 14
PVREADING 19 17 17 20 17 17 18
PVSCIENCE 18 16 16 19 15 15 16



(a) Analytic KS for Labels 1 (b) Analytic KS for Labels 2

(c) Bootstrap KS for Labels 1 (d) Bootstrap KS for Labels 2

Fig. 1. KW H values for two clustering results for the combined (originally clustered and meta)
PISA data determined with the analytic and the two bootstrap KW approaches.

KW H values for both clustering results are shown in Figure 1. As can be seen from
Table 2, variable rankings between the analytic and the bootstrapped results are highly
similar with the exception that variable USESCH had a ranking difference 10 for Labels
1 and ranking difference 8 for Labels 2. In addition, variable ICTHOME had ranking
difference 9 for Labels 1 and ranking difference 5 for Labels 2.

The Kendall’s tau distance (see [10]) provides a way to compute distance between
two ranking lists with an equal set of variables. The Kendall’s tau distance is equal to
the bubble sort algorithm steps to convert one list to the same order as the other one.
If m is the number of elements in the list, then the maximum value for the Kendall’s
tau distance is m(m− 1)/2 which is typically used to normalize this distance metric.
Thus, the Kendall’s tau distance is limited to an interval [0,1], where value 0 refers to
the identical lists and value 1 to the case where one list is the reverse of the other list.
The Kendall’s tau distances between the Analytic KW and Bootstrap KW with D =
100 were 0.1015 for Labels 1 and 0.1138 for Labels 2. This concludes that, overall, the
rankings are highly similar as measured by the Kendall’s tau distance.

Bootstrap KW with D = 10 and Bootstrap KW with D = 100 gave identical rank-
ings for the variables. Experimentally, it seems that approximation of the real-valued
weights using just the first decimal place (D = 10) is accurate enough. However, for
a few variables slight differences can be noticed from the Figures 1c and 1d. We also
computed speedups for the distributed Bootstrap KW. We measured running time for



the first variable computations by using a serial implementation of the Bootstrap KW,
and multiplied this with the total number of variables to get an estimate for the serial
implementation running time. Further, we measured running time for the corresponding
parallel implementation. Thus, parallel Bootstrap KW with D = 100 gives 34× speedup
compared to sequential code for Labels 1 and 35 × speedup for Labels 2. Correspond-
ingly, parallel Bootstrap KW with D = 10 gives 28 × speedup for Labels 1 and 33 ×
speedup for Labels 2. In practice, this means that using the distributed version enables
one to carry out the whole cluster analysis chain in realtime.

As expected, we see from Table 2 and Figure 1 that the actually clustered variables
generally contribute more to the clustering result than the metadata variables. However,
this first observation does not hold for all variables: The metadata PVs in mathematics
were more important than the level of self-responsibility for failing in mathematics
(see row FAILMAT in Table 2), which was clustered. Generally, the PVs are the most
important variables from the metavariables. This ranking result makes sense because the
clustered variables are, as explained in Section 2, part of the posterior model from which
the PVs were sampled. Moreover, most of the clustered variables are directly associated
with the students’ mathematics proficiencies. Hence, the PVs in mathematics should be
important variables when explaining the clustering result and, thus, these observations
support the validity of our results.

As can be seen in Table 2, the students’ ESCS is the most important variable de-
termining the different clusters. This was already assumed in [19] where the most dis-
tinguishing country clusters were those that showed different stages of development.
Moreover, the students’ ESCS is the single variable in the whole PISA data, which
accounts for most of the variance in performance [16]. Therefore, it is reasonable to
assume that the variable that explains the mathematics proficiency the most, is also the
most important when variables associated with the mathematics performance, are clus-
tered. The students’ ESCS takes not only the highest parental education and occupation
into account but also the students’ home possessions. Therefore, the ICTHOME, which
summarizes the home possessions in the ICT area, is partly associated with the stu-
dents’ ESCS [17, page 132]. Hence, it seems reasonable that ICTHOME is next to the
PVs one of the most important variables from the metadata (see Table 2).

To sum up, weighted enlargements with all approaches proposed in Section 3 suc-
cessfully enabled ranking of input and metadata. Triangulation for both actual input
and metadata by using two clustering results of a PISA dataset and two different algo-
rithms/formulae showed very similar results for all methodological approaches and also
for the two clustering results that were analyzed. Hence, it seems that the interpretation
is not an artifact of the method used to analyze the data or only a result of the particular
sample, but reflects genuine and overarching aspects of the data [12].

5 Discussion and conclusions

Large scale educational assessment data provide interesting and high quality resources
for educational knowledge discovery. Although the data from these assessments are
made available to the public a scarce pool of research outcomes exist that make use of
those rich datasets because of the technical difficulties in them. Only one study [19] was



identified, in which the whole PISA 2012 contextual data were clustered by taking the
complexities of these data (especially the sparsity and the weights) into account. How-
ever, the work in [19] lacked a clear frame how to assess the importance of individual
variables to interpret the clustering results.

In this study, we proposed weighted enlargements of the KW H test with different
approaches, which as an independent statistical problem is not trivial. All approaches
successfully enabled ranking of input and metadata. In particular, when applied to the
two clustering results in [19], all approaches supported the finding that the students’
ESCS is the most important variable determining the clusters—a fact that was also hy-
pothesized in [19] but could not be statistically shown in there. Moreover, also the
ranking of the other variables seem to support the interpretations made in [19].

The y-scales of Figures 1c and 1d illustrate the very large size of the KW test statis-
tic(s) H for a large population, which in our case is characterized by over 24 million
students worldwide. Hence, even if the nonparametric KW test can be used for testing
large samples [9], the actual hypothesis testing seems practically useless. We tested the
computation of the p-values for the original sample, for both clustering results and for
all data and metadata variables, and found in each case that the p-value was equal to
zero up to six decimal places. Hence, the hypothesis test itself does not provide any
useful information for educational knowledge discovery.

Based on the high similarity of the results of the different ranking approaches, we
suggest the direct KW formula with weights to be used for quick evaluation of signifi-
cance of a variable on the population level. If the weighted estimates are used to derive,
e.g., confidence intervals for the test statistics and the resulting rankings, the bootstrap-
based approach should be used. This approach is also better aligned to the existing
literature [8, 5, 22]. To this end, we conclude that the proposed approach supports quan-
tified educational knowledge discovery from PISA and similar large-scale educational
datasets.
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