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Evolution of the electron spectra with the effective value of the weak axial-vector coupling constant gA was
followed for 26 first-, second-, third-, fourth- and fifth-forbidden β− decays of odd-A nuclei by calculating
the involved nuclear matrix elements (NMEs) in the framework of the microscopic quasiparticle-phonon model
(MQPM). The next-to-leading-order terms were included in the β-decay shape factor of the electron spectra.
The spectrum shapes of third- and fourth-forbidden nonunique decays were found to depend strongly on the
value of gA, while first- and second-forbidden decays were mostly unaffected by the tuning of gA. The gA-driven
evolution of the normalized β spectra was found to be quite universal, largely insensitive to the small changes in
the nuclear mean field and the adopted residual many-body Hamiltonian producing the excitation spectra of the
MQPM. This makes the comparison of experimental and theoretical electron spectra, coined “the spectrum-shape
method” (SSM), a robust tool for extracting information on the effective values of the weak coupling constants.
In this exploratory work two new experimentally interesting decays for the SSM treatment were discovered: the
ground-state-to-ground-state decays of 99Tc and 87Rb. Comparing the experimental and theoretical spectra of
these decays could shed light on the effective values of gA and gV for second- and third-forbidden nonunique
decays. The measurable decay transitions of 135Cs and 137Cs, in turn, can be used to test the SSM in different
many-body formalisms. The present work can also be considered as a (modest) step towards solving the gA

problem of the neutrinoless double beta decay.

DOI: 10.1103/PhysRevC.95.044313

I. INTRODUCTION

The observation of the neutrinoless mode of double beta
decay (0νββ) would be groundbreaking since it would prove
that the neutrino is its own antiparticle. The half-life of
0νββ decay is proportional to the fourth power of the weak
axial-vector coupling constant gA [1,2], but it is not quite
clear what value to use for it when calculating theoretical
predictions for the decay rates [3,4]. Theoretical predictions for
the half-lives are crucial when designing optimal experimental
setups to detect 0νββ events. In this context it is crucial to
conceive complementary ways to address the gA problem of
0νββ decay. One alternative is the study of β decays, both
allowed and forbidden, since experimental data is available to
compare with the calculated physical observables. The related
quenching of the computed nuclear matrix elements (NMEs)
was addressed already for the allowed Gamow–Teller [4]
and first-forbidden [3] transitions in medium-heavy even-mass
nuclei. In the present work we extend these studies to first-,
second-, third-, fourth- and fifth-forbidden β− decays of
odd-mass (odd-A) nuclei by studying the shape evolution of
the associated electron spectra and by calculating the involved
nuclear matrix elements (NMEs) in the framework of the
microscopic quasiparticle-phonon model (MQPM). In this
way we hope to shed light on the effective value of gA in
forbidden β transitions, which play also a prominent role in
the virtual transitions mediating the 0νββ decay.

*joel.j.kostensalo@student.jyu.fi
†jouni.suhonen@phys.jyu.fi

The weak interaction is parity nonconserving, which is
reflected in the fact that the hadronic current can be written as
a mixture of vector and axial-vector components [5–7]. The
weak coupling constants gV and gA appear in the theory of
β decay as means to renormalize the hadronic current, when
moving from the quark level to nucleons [8]. The conserved
vector-current hypothesis (CVC) and the partially conserved
axial-vector-current hypothesis (PCAC) of the standard model
can be used to derive the free-nucleon values gV = 1.00
and gA = 1.27 [9]. In nuclear matter, however, the value
of gA is affected by many-nucleon correlations, and so in
practical calculations a quenched effective value could give
results which are closer to experimental results [10]. In the
practical calculations the shortcomings in the treatment of the
many-body quantum mechanics could also be absorbed into
the value of gA [11,12].

In earlier studies the effective value of the weak axial-vector
coupling constant was probed by comparing the experimental
half-lives of Gamow–Teller and first-forbidden unique decays
to those predicted by the proton-neutron quasiparticle random-
phase approximation (pnQRPA) [3,4,13–15]. These studies
show consistently that a quenched value of gA is needed to
reproduce the experimental data. In Ref. [16] a systematic
study of high-forbidden unique decays showed similar features
as the earlier studies supporting the fact that a quenched
effective value of gA might need to be used for the high-
forbidden decay branches as well.

In a recent study (see Ref. [17]) an interesting new feature
was found regarding the weak coupling constants gV and gA.
The shape of the electron spectra of the fourth-forbidden
nonunique ground-state-to-ground-state β− decays of 113Cd
and 115In depend strongly on the value of gV and gA due to
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TABLE I. Change in angular momentum �J and parity π in
a Kth forbidden β decay. The decays with �J = K (in the case
of K = 1 also �J = 0) are known as nonunique, while those with
� = K + 1 are known as unique.

K 1 2 3 4 5

�J 0,1,2 2,3 3,4 4,5 5,6
πiπf −1 +1 −1 +1 −1

the complicated shape factor featuring vector, axial-vector,
and mixed vector-axial-vector parts containing a number of
different NMEs and phase-space factors. The shapes of the
theoretical and experimental spectra can be compared to find
the effective values of the coupling constants in a new method
called the spectrum-shape method (SSM). The study [17]
used two nuclear models; namely, the MQPM [18,19] and
the nuclear shell model (NSM) [20–22]. When the computed
electron spectra of 113Cd were compared with the experimental
spectrum of Ref. [23], a close match was found by using the
effective values gA ≈ 0.90 and gV = 1.0 (equal to its CVC
value!). This study was extended in Ref. [24] to include also the
NMEs calculated within the microscopic interacting boson-
fermion model (IBFM-2) [25,26]. The remarkable result of this
study was that the three models MQPM, NSM, and IBFM-2
yielded a consistent result of gA ≈ 0.92 by comparison with
the experimental electron spectrum of Ref. [23]. This is the
more surprising when considering the very different theory
frameworks of the three models. The qualitative behavior of the
MQPM, NSM, and IBFM-2 spectra was remarkably similar for
both the 113Cd and 115In decays, suggesting that the details of
the nuclear residual Hamiltonian and the many-body methods
to solve the associated eigenvalue problem do not affect much
the the evolution of the electron spectra and thus the SSM
itself. Based on this, it is reasonable to conjecture that just
one of these models could be used to further explore new,
potentially interesting β decays and their basic features.

In this paper we set out to find if the β spectra of
other forbidden decays depend sensitively on the value of
gA using the MQPM, which can be relatively easily applied
to a large number of odd-A nuclei. We will explore unique
and nonunique first- and second-forbidden decays and third-,
fourth-, and fifth-forbidden nonunique decays. The identifica-
tion of the degree of forbiddeness of a β-decay transition is
presented in Table I. Most of these transitions and the associ-
ated electron spectra can be measured in the present and future
low-background (underground) experiments. Some of the con-
sidered higher-forbidden transitions, with competing allowed
transitions, cannot be easily measured. They were, however,
included to better access the possible systematic features in
transitions of increasing forbiddeness. As in Refs. [17] and [24]
we take into account the next-to-leading-order terms in the
shape factor, and so the spectra of unique-forbidden decays
also depend on the axial-vector coupling constant in a nontriv-
ial way. Based on the conclusions of Ref. [17], we adopt the
CVC value gV = 1.00 in the calculations. In the analyzes we
use the normalized electron spectra (the normalized spectra are
also used when comparing with available experimental data)

for which the integrated area under the spectrum curve is unity.
While the half-life is affected by the absolute values of the
weak coupling constants, the normalized electron spectra de-
pend only on the ratio gA/gV, so varying only gA is sufficient.

The microscopic quasiparticle-phonon model is a fully
microscopic model, which can be used to describe spherical
and nearly spherical open-shell odd-A nuclei. In the MQPM
all three parts of the Hamiltonian, namely the quasiparticle,
phonon, and quasiparticle-phonon terms are treated in an inter-
nally consistent way. The odd-A nucleus is built from a basis
of one- and three-quasiparticle states. The one-quasiparticle
states are obtained by performing a BCS calculation for
the neighboring even-even reference nucleus, and the three-
quasiparticle states by coupling the BCS quasiparticles to the
QRPA phonons of Ref. [18]. Finally, the residual Hamiltonian,
which contains the interaction of the odd nucleon and the
even-even reference nucleus, is diagonalized in the combined
one- and three-quasiparticle basis [19].

This article is organized as follows: In Sec. II we give the
theoretical background behind the MQPM and the β spectrum
shape. In Sec. III we describe the application of the MQPM
to the spectrum shape of forbidden β− decays. In Sec. IV we
present our results, and in Sec. V we draw the conclusions.

II. THEORETICAL FORMALISM

In this section we give the theoretical background behind
the nuclear model MQPM used in the calculations (see
Sec. II A) and present the practical aspects of the theory of
forbidden β− decays and the shape of the electron spectra (see
Sec. II B). The description of the MQPM summarizes the two
original papers describing the model (see Refs. [18] and [19]).
For a more complete description of the theory of β decays, see
Ref. [27].

A. Microscopic quasiparticle-phonon model

The starting point of the MQPM is a realistic A-fermion
Hamiltonian consisting of the mean-field part and the residual-
interaction part. In the occupation-number representation the
Hamiltonian reads [10]

H =
∑

α

εαc†αcα + 1

4

∑
αβγ δ

v̄αβγ δc
†
αc

†
βcδcγ , (1)

where c†ι and cι are the creation and annihilation operators
of the Hartree–Fock quasiparticles and v̄αβγ δ = 〈αβ|v|γ δ〉 −
〈αβ|v|δγ 〉 is the antisymmetrized two-body matrix element.
Here we adopt the notation of Baranger [28], where the
Roman letter a includes the single-particle quantum numbers
na (principal), la (orbital angular momentum), and ja (total
angular momentum) and the Greek letter α, the quantum
numbers a, and the magnetic quantum number ma .

The approximate ground state of the even-even reference
nucleus is obtained by using BCS theory [29]. The occu-
pation and vacancy amplitudes va and ua emerge from the
Bogoliubov–Valatin transformation [30,31],

a†
α = uac

†
α + vac̃α, (2)

ãα = uac̃α − vac
†
α, (3)
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where a†
α is the BCS quasiparticle creation operator and ãα

is the time-reversed BCS quasiparticle annihilation operator.
After the Bogoliubov–Valatin transformation, the Hamiltonian
of Eq. (1) can be written as

H = H11 + H22 + H40 + H04 + H31 + H13, (4)

where the indices correspond to the number of BCS creation
and annihilation operators [32]. The terms H20 and H02 are
missing from Eq. (4), since they vanish when minimizing the
BCS ground-state energy.

When solving the BCS equations (see formulation in, e.g.,
Ref. [10]), the monopole matrix elements of the two-body
interaction can be scaled by pairing-strength parameters g(n)

pair

and g
(p)
pair to reproduce the semi-empirical pairing gaps. The

proton and neutron pairing gaps �p and �n needed for solving
the BCS equations can be calculated by using the three-point
formulas [33,34],

�p(A,Z) = 1
4 (−1)Z+1[Sp(A + 1,Z + 1)

− 2Sp(A,Z) + Sp(A − 1,Z − 1)],

�n(A,Z) = 1
4 (−1)A−Z+1[Sn(A + 1,Z)

− 2Sn(A,Z) + Sn(A − 1,Z)], (5)

where Sp is the proton separation energy and Sn the neutron
separation energy.

Once the one-quasiparticle states have been calculated
by using BCS theory, the next step is to consider two-
quasiparticle excitations, i.e., treat the H22, H40, and H04 terms
of the Hamiltonian (4). In the MQPM, the two-quasiparticle
excitations are the quasiparticle random-phase approximation
(QRPA) [28] phonons of the even-even reference nucleus
defined by the QRPA phonon-creation operator

Q†
ω =

∑
a�a′

[
Xω

aa′A
†
aa′ (JωM) − Yω

aa′Ãaa′ (JωM)
]
, (6)

where ω denotes the angular momentum Jω, parity πω, and
the index kω which identifies the different excitations with
the same J and π . The quantity A

†
aa′ (JωM) = (1 + δaa′ )−1/2

[a†
aa

†
a′ ]Jω

is the two-quasiparticle creation operator, and
Ãaa′ (JωM) = (1 + δaa′ )−1/2[ãaãa′ ]Jω

is the corresponding an-
nihilation operator. The forward- and backward-going ampli-
tudes X and Y are solved by diagonalizing the QRPA matrix
(see, e.g., Ref. [10]).

The basis states of the microscopic quasiparticle-phonon
model are the one-quasiparticle states given by the BCS
calculation and the three-quasiparticle states emerging from
the coupling of QRPA phonons with BCS quasiparticles. The
states of the odd-A nucleus are created by the MQPM creation
operator [19]

�
†
i (jm) =

∑
n

Ci
na

†
njm +

∑
aω

Di
aω[a†

aQ
†
ω]jm, (7)

where Ci
n and Di

aω are the amplitudes determined by the
MQPM matrix equation. The use of the equations-of-motion
method [35] leads to the generalized eigenvalue problem [18](

A B

BT A′

)(
Ci

Di

)
= �i

(
1 0
0 N

)(
Ci

Di

)
, (8)

where the submatrices A, A′, and B are the matrix elements of
H11, H22, and H31 of equation (4), respectively. The explicit
expressions for these submatrices are listed in Ref. [19].
The overlap between a one-quasiparticle state and a three-
quasiparticle state is always zero leading to a block-diagonal
structure of the overlap matrix on the right-hand side of Eq. (8).
The overlaps between one-quasiparticle states lead to the unity
matrix and the overlaps between three-quasiparticle states lead
to the submatrix N of the overlap matrix. The appearance of the
nondiagonal submatrix N in the overlap matrix leads, in turn,
to a non-Hermitian eigenvalue problem in a nonorthogonal,
often over-complete, basis set.

To solve the non-Hermitian eigenvalue problem of Eq. (8),
we turn it into a Hermitian problem by writing it in a new
orthogonal basis and diagonalizing it in the usual way. We
start by solving the eigenvalue problem of the overlap matrix
N , which reads ∑

j

Niju
(k)
j = nku

(k)
i . (9)

The eigenvectors of N can be written in the basis |i〉 =
�
†
i |QRPA〉, where |QRPA〉 is the correlated ground state of

the reference nucleus, as [19]

|k̃〉 = 1√
nk

∑
i

u
(k)
i |i〉 . (10)

The states |k̃〉 with a nonzero eigenvalue nk form an orthonor-
mal complete set. In the orthonormal basis of Eq. (10) the
MQPM matrix equation (8) can be written as a real and
symmetric eigenvalue problem,∑

l

〈k̃|H |l̃〉g(n)
l = λng

(n)
k , (11)

where

〈k̃|H |l̃〉 = 1√
nknl

∑
ij

u
(k)∗
i 〈i|H |j 〉 u

(l)
j . (12)

The coefficients Cn
i of the MQPM matrix equation can be

calculated from the coefficients g using the equation [19]

Cn
i =

∑
k

1√
nk

g
(n)
k u

(k)
i . (13)

As an example of the kind of excitation spectrum that the
microscopic quasiparticle-phonon model produces, the exper-
imental and MQPM spectra of 87Sr are presented in Fig. 1.
The experimental spectrum was obtained from Ref. [36].

B. β spectrum shape

To simplify the description of the β− decay, we assume
that at the very moment of decay the decaying nucleus only
interacts via the weak interaction, and the strong interaction
with the A − 1 other nucleons can be neglected. In this scheme,
known as the impulse approximation, the flow lines of the
nucleons, i.e., the hadronic current, and the flow lines of the
emitted leptons, i.e., the leptonic current, interact at a weak-
interaction vertex. Since the vector boson W− has a large
mass, and thus propagates only a short distance, the vertex
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FIG. 1. Experimental and MQPM excitation spectra for the
nucleus 87Sr.

can be considered to be point like with an effective coupling
constant GF, the Fermi constant. The weak interaction is parity
nonconserving, which is reflected in the fact that the hadronic
current can be written at the quark level as a mixture of vector
and axial-vector components as [5–7]

J
μ
H = ū(x)γ μ(1 − γ5)d(x), (14)

where γ μ and γ5 are the usual Dirac matrices. When moving
from the quark level to the nucleon level, one must take into
account renormalization effects of strong interactions. The
hadronic current at the nucleon level (proton p and neutron n)
can then be written as [8]

J
μ
H = p̄(x)γ μ(gV − gAγ5)n(x), (15)

where gV and gA are the weak vector and axial-vector
coupling constants, respectively. The conserved vector-current
hypothesis (CVC) and the partially conserved axial-vector-
current hypothesis (PCAC) of the standard model give the
so-called bare nucleon values gV = 1.0 and gA = 1.27 [9]. In
nuclear matter the value of gA is affected by many-nucleon
correlations, and so the bare nucleon value might not be the
one to use in practical calculations [10].

In the impulse approximation the probability of the electron
being emitted with kinetic energy between We and We + dWe

is

P (We)dWe = GF

(h̄c)6

1

2π3h̄
C(We)pecWe(W0 − We)2

×F0(Z,We)dWe, (16)

where pe is the momentum of the electron, Z is the proton
number, F0(Z,We) is the Fermi function, and W0 is the
endpoint energy of the β spectrum. The shape factor C(we)
encodes the nuclear-structure information.

The half-life of a β decay can be expressed as

t1/2 = κ

C̃
, (17)

where C̃ is the integrated shape factor and κ is a constant with
value [37]

κ = 2π3h̄7ln 2

m5
ec

4(GF cos θC)2 = 6147 s, (18)

with θC being the Cabibbo angle. For convenience, it is com-
mon to introduce unitless kinematic quantities we = We/mec

2,
w0 = W0/mec

2, and p = pec/(mec
2) = (w2

e − 1)1/2. Using
these quantities the integrated shape factor can be written as

C̃ =
∫ w0

1
C(we)pwe(w0 − we)2F0(Z,we)dwe. (19)

In Eq. (19) the kinematic factors are universal and the shape
factor C(we) has a complicated expression including both
kinematic and nuclear form factors. The choice of nuclear
model (in the case of this paper, MQPM) enters the picture
when calculating the one-body transition densities [38] related
to the NMEs of the shape factor. The details of the shape
factor and the constitution of its NMEs can be found from
Refs. [27] and [38]. As in the Refs. [17] and [24] we take into
account the next-to-leading-order terms of the shape function
(for details see Ref. [24]). In the commonly adopted leading-
order approximation the shape of the electron spectrum of
unique-forbidden decays does not depend on the NMEs and
it is just scaled by g2

A. When the next-order terms are taken
into account, the shape factor of these decays depends on
the computed NMEs and through this on gA in a nontrivial
way [24]. This means that, at least in theory, the SSM could
be applied also to unique decays.

The shape factor C(we) can be decomposed into vector,
axial-vector, and vector-axial-vector parts. In this decomposi-
tion the shape factor reads

C(we) = g2
VCV(we) + g2

ACA(we) + gVgACVA(we). (20)

For the integrated shape factor we get the analogous expression

C̃ = g2
VC̃V + g2

AC̃A + gVgAC̃VA. (21)

In should be noted that in Eq. (20) the shape factors Ci are
functions of electron kinetic energy, while the integrated shape
factors C̃i in Eq. (21) are real numbers.

III. NUMERICAL APPLICATION OF FORMALISM

The electron spectra of 26 forbidden β− transitions were
calculated for different values of the coupling constants
gA by using the NMEs produced by the MQPM model.
The application of the MQPM model followed the same
basic steps as the earlier studies regarding the fourth-
forbidden nonunique ground-state-to-ground-state β− decays
of 113Cd, 115In [17,24,38], and 115Cd [39], including the use
of the Bonn one-boson exchange potential with G-matrix
techniques [19].

The single-particle energies needed to solve the BCS
equations were calculated by using the Coulomb-corrected
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Woods–Saxon potential with the Bohr–Mottelson parametriza-
tion [40]. For the protons of the even-even reference nuclei
the valence space spanned 10 single-particle states in the
range 0f7/2–0h11/2. This valence space was also used for
the neutrons of the reference nuclei with A < 90, while
for the heavier nuclei a larger valence space spanning the
single-particle-orbitals 0f5/2–0i13/2 (15 single-particle states)
was used.

The BCS one-quasiparticle spectra were tuned by adjusting
manually some of the key single-particle energies computed
by using the Woods–Saxon potential. This was done to get
a closer mach between the low-lying one-quasiparticle states
and the measured experimental ones. The adjustments were
kept minimal with some changes in the span of spin-orbit
gap(s) close to the proton and/or neutron Fermi surfaces.
The computed pairing gaps were adjusted to fit the empirical
values by tuning the pairing strength parameters g

p
pair and gn

pair
for protons and neutrons, separately. The empirical values
were calculated by using the three-point formulas (5) and
the experimental separation energies given in Ref. [41]. The
QRPA spectra of the reference nuclei were tuned by scaling
the particle-hole matrix elements with the parameter gph in
order to reproduce the excitation energy of the lowest state of
a given multipolarity. In the MQPM calculations a 3.0 MeV
cutoff energy was used for the QRPA phonons to decrease the
formidable computational burden.

IV. RESULTS AND DISCUSSION

Below we present our results: the electron spectra of 26
forbidden β− decays (Figs. 2–9) and their integrated shape
factors (Table II). The electron spectra are discussed in
Sec. IV A and the integrated shape factors in Sec. IV B.

A. Electron spectra and effective value of gA

The electron spectra for the studied first-forbidden decays
are presented in Figs. 2–4 for gA = 0.80–1.20 (the identi-
fication of the decay type is presented in Table I). Similar
figures for second-, third-, fourth-, and fifth-forbidden decays
are presented in Figs. 5–9.

For the nonunique decay of 125Sb, presented in Fig. 2(a),
decreasing the value of gA increases the intensity of electrons
emitted with low energies (0–100 keV), while decreasing
the intensity of electrons with energies 250–350 keV. The
differences in the shapes of the spectra are however very
small—nothing like the dramatic behavior observed for the
fourth-forbidden decays of 113Cd and 115In in Refs. [17]
and [24]. From the other first-forbidden decays very slight
changes in the low-energy spectrum can be seen for the
nonunique decays of 141Ce in Fig. 2(b) and 169Er in Fig. 3(a),
as well as for the unique decay of 79Se below it in Fig. 3(b).
For the other first-forbidden decays the β spectrum seems
to be independent of the value of gA. The slight variation
in the spectrum of 79Se can only be seen when the next-to-
leading-order terms of the shape factor are taken into account.
In the lowest-order approximation the spectrum would be
completely unaffected when gA is varied. The variation is
minimal, but on the other hand, it is also minimal for the
nonunique first-forbidden decays.

FIG. 2. The β spectra for first-forbidden nonunique β− decays of
the ground states of 125Sb, 141Ce, 159Gd, and 161Tb. The color coding
represents the value of the weak axial-vector coupling constant gA.
For the vector coupling constant gV the value 1.00 was adopted.

Another interesting feature for the first-forbidden decays
is the remarkably similar shapes of the 125Sb, 141Ce, 161Tb
[Figs. 2(a), 2(b), and 2(d)], 169Er, 79Se [Figs. 3(a) and 3(b)], and
107Pd [Fig. 4(a)] spectra. For all of these the spectrum shape
can be described as linearly decreasing with a slight downward
bend at approximately 75% of the Q value. This is remarkable,
since the Q values vary from a tiny 34.1(23) keV for 107Pd to
a much larger 580.4(11) keV for 141Ce [36]. Another group of
decays with very similar spectra are the first-forbidden unique
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FIG. 3. The same as Fig. 2, but for the first-forbidden nonunique
decay of 169Er and the unique decays of 79Se, 85Kr, and 89Sr.

decay of 125Sb and 137Cs to the isomeric 11/2− states of the
daughter nuclei presented in Figs. 4(b) and 4(c) and the second-
forbidden unique decay of 129I shown in Fig. 5(a). Common to
this group of decays is that the initial state has spin-parity 7/2+.
For the decays of the first group no such obvious common
feature is seen.

The electron spectra of second-forbidden decays shown
in Fig. 5 differ from each other much more than the first-
forbidden ones. In the case of the second-forbidden unique
decay of 129I the next-to-leading-order terms of the shape
factor do not make the beta spectrum, shown in Fig. 5(a),

FIG. 4. The same as Fig. 2, but for the first-forbidden unique
decays of 107Pd, 125Sb, and 137Cs.

dependent on gA in a noticeable way. Slight bending is seen
for the nonunique decay of 93Zr [Fig. 5(b)], but the only
second-forbidden transition showing heavy gA dependence
is the ground-state-to-ground-state decay of 99Tc presented
in Fig. 5(c). The dependence is similar to that observed in
Refs. [17,24] for 113Cd and 115In: when gA ≈ gV a bell-
shaped spectrum is produced, while otherwise the spectrum is
monotonically decreasing. This decay is an excellent candidate
for SSM. Comparison with experimental spectra could shed
light on the effective value of gA for second-forbidden
nonunique transitions, and even second-forbidden β decays
in general. The shape of 135Cs and 137Cs spectra on the other
hand does not depend on the value of axial-vector coupling
constant at all, as seen from Figs. 5(d) and 5(e). Decays such
as the ground-state-to-ground-state decays of 135,137Cs, which
are practically independent of gA, are also experimentally
important, since they could be used to check the accuracy
of the theoretical spectra predicted by the MQPM as well as
by other nuclear models, such as the nuclear shell model and
the microscopic interacting boson-fermion model.
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FIG. 5. The same as Fig. 2, but for the second-forbidden unique
decay of 129I and the nonunique decays of 93Zr, 99Tc, 135Cs, and 137Cs.

FIG. 6. The same as Fig. 2, but for the third-forbidden nonunique
decays of 85Br and 87Rb.

While doing the MQPM calculation for the 137Cs decay, an
important new feature of the β spectra was discovered. While
the area under the curve depends significantly on the computed
MQPM level scheme (e.g., the one shown in Fig. 1), the shape
of the normalized (to unit area) electron spectrum does not.
Even shifting the single-particle energies enough to change
the ordering of energy levels in the odd-A nucleus did not
change the shape of the normalized spectrum at all. The other
studied nuclei behave similarly, although for some of them
slight changes in the electron spectrum were seen. At the mean-
field level, moving arbitrarily the key single-particle orbitals
at the proton and/or neutron Fermi surfaces by 0.5–1.5 MeV
had very little effect. However, the shape is not completely
independent of the computed level scheme, and large changes
in it can deform the electron spectrum considerably. In terms
of practical calculations it appears that getting the low end of
the level scheme to reasonably agree with data, with the right
ground-state spin-parity and few low-lying states near their
experimental counterparts, is sufficient to produce an electron
spectrum which is largely unaffected by further fine tuning.
On the other hand, the theoretical half-life predictions can
change by orders of magnitude when small changes to the
single-particle energies are made, especially in cases where
the even-even reference nucleus is (semi-)magic [16]. This
stems from the sharp Fermi surface and vanishing pairing
gap, making the BCS-approach sensitive to the details of the
single-particle spectrum at the Fermi surface.

The results for third-forbidden nonunique ground-state-to-
ground-state decays of 85Br and 87Rb are shown in Fig. 6.
The shape factor depends on gA in a very similar manner,
even though the Q value for 85Br is tenfold larger than
the one for 87Rb. Both of these decays are from a 3/2−
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FIG. 7. The same as Fig. 2, but for the fourth-forbidden
nonunique decays of 113Cd, 115Cd, and 115In.

initial state to a 9/2+ final state. The decay of 87Rb is
experimentally measurable and thus another candidate for
application of the spectrum-shape method. Unlike in the case
of 99Tc, the dependence is fairly simple: when gA decreases,
the low-energy intensity increases, and the intensity at larger
energies decreases.

The results for fourth-forbidden decays, all nonunique, are
presented in Figs. 7 and 8. The transitions are split into two
groups according to their basic features. The first one consists
of the decays of 113Cd, 115Cd, and 115In shown in Fig. 7. The
transitions of 113Cd and 115In are experimentally measurable
and have been studied extensively (see Refs. [17,24,38,42]).
The spectra show a distinctive hump when gA ≈ gV. Interest-
ingly, the behavior is similar to that of 99Tc [see Fig. 5(c)].
These decays have one common feature: the 9/2+ state is
either the initial or final state. For 113Cd and 115In the effect
of varying the weak axial-vector coupling constant is in line
with the results of Ref. [24]. However, in the earlier study [17]
the turning point of the MQPM spectrum of 113Cd was found
to be at gA ≈ 0.9 and for 115In at gA ≈ 0.95. It seems that
the use of a larger model space for neutrons in this study and

FIG. 8. The same as Fig. 2, but for the fourth-forbidden
nonunique decays of 97Zr, 101Mo, 117Cd, and 119In.

in Ref. [24] has a notable effect on the shape of the electron
spectrum. In Ref. [42] the electron spectra of these decays
were calculated with the proton-neutron variant of MQPM
with the free-nucleon values gV = 1.0 and gA = 1.25. The
shapes of the resulting spectra are nearly identical, which
further supports the results of this paper.

To see whether the strong dependence of the shape factor on
the weak coupling constants of the fourth-forbidden nonunique
decays is limited to the three neighboring nuclei, 113Cd, 115Cd,
and 115In, four further fourth-forbidden nonunique ground-
state-to-ground-state transitions were studied. These were the
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FIG. 9. The same as Fig. 2, but for the fifth-forbidden nonunique
decay of 123Sn.

ground-state-to-ground-state β− decays of 97Zr, 101Mo, 117Cd,
and 119Cd, for which the spectra are presented in Fig. 8. These
four decays also behave almost identically as functions of gA.
For these decays the spectrum shape is rather similar when
gA = 1.00–1.20, but the shape changes radically when gA is
quenched below unity.

As shown thus far the dependence of the shape factor on the
value of gA seems to increase when the degree of forbiddeness
grows. To test this hypothesis the fifth-forbidden decay of
123Sn to the lowest 1/2+ excited state in 123Sb (see Fig. 9) was
included in this study. This transition is not experimentally

measurable, but the theoretical results are important. As seen
in the figure for this decay the spectrum shape does not depend
on gA in any significant way, thus invalidating the above-
mentioned hypothesis. The sensitivity to gA seems to connect
more to the specific nuclear-structure details [like the almost
magical involvement of a 9/2+ state in all the SSM-sensitive
nuclei of Figs. 7, 8, and 5(c)] rather than to the forbiddeness
of the decay transition.

The observation that the β spectra of many transitions
behave similarly is a strong indication that significant changes
in the MQPM-predicted level schemes do not affect the shape
evolution of the β spectra. Similar conclusions can be drawn
from Ref. [24] where the three nuclear models, MQPM, NSM,
and IBFM-2 were used to study 113Cd and 115In decays. An
obvious conclusion drawn from this is that the SSM seems to be
quite insensitive to the fine details of the nuclear Hamiltonian
and the different approximations adopted to solve the related
eigenvalue problem. This makes the SSM very robust, and thus
a reliable tool for determining the effective value of gA.

B. Integrated shape factor C̃

In Refs. [17] and [24] it was noticed that for the decays
of 113Cd and 115In the components C̃V, C̃A, and C̃VA of
the decomposed integrated shape function C̃ [see Eq. (21)]
have much larger absolute values than C̃. The integrated shape
function and its components are listed in Table II for each of
the presently studied transitions.

TABLE II. Unitless integrated shape functions C̃ of the studied transitions and their vector C̃V, axial-vector C̃A, and mixed components
C̃VA. For the total integrated shape factor C̃ the values of the coupling constants were set to gV = gA = 1.0.

Transition Type C̃V C̃A C̃VA C̃

125Sb(7/2+) → 125Te(9/2−) 1st non-uniq. 1.524 × 10−5 4.734 × 10−6 −1.428 × 10−5 5.696 × 10−6

141Ce(7/2−) → 141Pr(5/2+) 1st non-uniq. 1.906 × 10−1 2.944 × 10−1 −1.494 × 10−1 7.069 × 10−2

159Gd(3/2−) → 159Tb(5/2+) 1st non-uniq. 9.439 × 10−1 2.436 × 10−1 9.563 × 10−1 2.144
161Tb(3/2+) → 161Dy(5/2−) 1st non-uniq. 7.937 × 10−3 3.309 × 10−4 −3.223 × 10−3 5.045 × 10−3

169Er(1/2−) → 169Tm(3/2+) 1st non-uniq. 1.833 × 10−2 3.097 × 10−3 −1.506 × 10−2 6.369 × 10−3

79Se(7/2+) → 79Br(3/2−) 1st unique 2.224 × 10−15 1.161 × 10−12 6.105 × 10−14 1.224 × 10−12

85Kr(9/2+) → 85Rb(5/2−) 1st unique 1.724 × 10−10 2.540 × 10−5 8.921 × 10−8 2.549 × 10−5

89Sr(5/2+) → 89Y(1/2−) 1st unique 2.219 × 10−16 3.366 × 10−11 1.233 × 10−13 3.378 × 10−11

107Pd(5/2+) → 107Ag(1/2−) 1st unique 8.332 × 10−17 1.472 × 10−10 6.432 × 10−14 1.473 × 10−10

125Sb(7/2+) → 125Te(11/2−) 1st unique 1.600 × 10−9 1.397 × 10−4 6.427 × 10−7 1.404 × 10−4

137Cs(7/2+) → 137Ba(11/2−) 1st unique 4.492 × 10−9 3.311 × 10−4 1.617 × 10−6 3.328 × 10−4

93Zr(5/2+) → 93Nb(9/2+) 2nd non-uniq. 2.020 × 10−16 8.460 × 10−15 −2.191 × 10−15 6.471 × 10−15

99Tc(9/2+) → 99Ru(5/2+) 2nd non-uniq. 4.342 × 10−9 4.386 × 10−9 −8.713 × 10−9 1.602 × 10−11

135Cs(7/2+) → 135Ba(3/2+) 2nd non-uniq. 1.133 × 10−8 1.656 × 10−8 2.737 × 10−8 5.526 × 10−8

137Cs(7/2+) → 137Ba(3/2+) 2nd non-uniq. 3.217 × 10−5 2.654 × 10−5 5.822 × 10−5 1.169 × 10−4

129I(7/2+) → 129Xe(1/2+) 2nd unique 8.191 × 10−22 5.634 × 10−17 2.685 × 10−19 5.661 × 10−17

85Br(3/2−) → 85Kr(9/2+) 3rd non-uniq. 1.597 × 10−6 3.022 × 10−7 −1.309 × 10−6 5.902 × 10−7

87Rb(3/2−) → 87Sr(9/2+) 3rd non-uniq. 1.531 × 10−13 2.718 × 10−14 −1.264 × 10−13 5.387 × 10−14

97Zr(1/2+) → 97Nb(9/2+) 4th non-uniq. 6.210 × 10−11 4.995 × 10−11 −1.055 × 10−10 6.588 × 10−12

101Mo(1/2+) → 101Tc(9/2+) 4th non-uniq. 8.370 × 10−11 6.529 × 10−11 −1.399 × 10−10 9.131 × 10−12

113Cd(1/2+) → 113In(9/2+) 4th non-uniq. 1.925 × 10−19 2.094 × 10−19 −4.002 × 10−19 1.385 × 10−21

115Cd(1/2+) → 115In(9/2+) 4th non-uniq. 2.030 × 10−14 2.091 × 10−14 −4.059 × 10−14 6.238 × 10−16

115In(9/2+) → 115Sn(1/2+) 4th non-uniq. 6.503 × 10−18 6.126 × 10−18 −1.256 × 10−17 6.492 × 10−20

117Cd(1/2+) → 117In(9/2+) 4th non-uniq. 7.361 × 10−12 6.610 × 10−12 −1.342 × 10−11 5.545 × 10−13

119In(9/2+) → 119Sn(1/2+) 4th non-uniq. 5.370 × 10−12 4.441 × 10−12 −9.441 × 10−12 3.708 × 10−13

123Sn(11/2−) → 123Sb(1/2+) 5th non-uniq. 3.791 × 10−28 8.323 × 10−30 −9.932 × 10−29 2.881 × 10−28
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For all transitions the C̃V and C̃A components are positive,
but the sign of C̃VA varies. Although the next-to-leading-
order terms are taken into account, C̃ is dominated by the
axial-vector component in the unique decays. The vector
and vector-axial components add small positive corrections,
which are about two orders of magnitude smaller than CA

at their largest. For the nonunique first-forbidden decays
the largest contribution comes from C̃V. The axial-vector
component introduces a small positive correction, while the
C̃VA is negative, and has an absolute value of about 50%–90%
of C̃V. As an exception, the C̃VA component is positive for
159Gd. The second-forbidden nonunique transitions on the
other hand, have very different decompositions from each
other. For 93Zr the axial-vector component dominates, and
the negative correction of C̃VA is about 25%. In the case of
99Tc, C̃V and C̃A have almost identical values, while C̃VA

is twice as large and negative. The resulting total integrated
shape function C̃ is two orders of magnitude smaller than
the absolute values of its components. For 135Cs and 137Cs the
results are rather similar, but C̃VA is positive. For the two third-
forbidden nonunique decays the vector component dominates,
the axial-vector component is small, and the absolute value
of the negative C̃VA is about 80% of the vector component.
The fourth-forbidden decays are divided into the same groups
as suggested by the electron spectra. The decomposition is
similar to 99Tc for 113Cd, 115Cd, and 115In. For the rest of
the fourth-forbidden decays C̃V dominates, C̃A is about 20%
smaller, and C̃VA is negative and has an absolute value of
slightly less than the sum of C̃V and C̃A. The resulting total
integrated shape factor is one order of magnitude smaller than
its components. For the fifth-forbidden transition of 123Sn, C̃ is
dominated by C̃V, and the corrections from other components
are small.

V. CONCLUSIONS

The sensitivity of the shapes of electron spectra for 26
forbidden β− decays of odd-A nuclei were studied by using
the nuclear matrix elements derived from the microscopic
quasiparticle-phonon model (MQPM) and by varying the value
of the axial-vector coupling constant gA. The next-to-leading-
order terms were included in the corresponding β-decay shape
factors. In the spectrum-shape method (SSM) the shapes of
computed electron spectra can be compared with the measured
ones to access the effective value of gA. The shape of the
computed electron spectrum was found to be unaffected by
minor changes in the computed excitation spectra of the
involved nuclei, implying stability against the variations of
the details of the nuclear Hamiltonian. This is supported
by the study [24] where three different nuclear Hamiltonians
were used. The study of Ref. [24] suggests also that the SSM is

not very sensitive to the many-body framework used to solve
the Hamiltonian-related eigenvalue problem since the three
nuclear-structure models produced quite compatible SSM
results despite their completely different theory frameworks.
At the level of the mean field, in turn, in most cases moving
the single-particle energies of the underlying mean field by as
much as 1.5 MeV did not affect the normalized β spectra, even
though the half-life was affected significantly. Furthermore,
transitions of the same type (forbiddeness, uniqueness) in
neighboring nuclei produce similar spectrum shapes regardless
of the Q value. The above features make the SSM a much
more robust method than just comparing the theoretical and
experimental half-lives to extract the effective value of gA.

The electron spectrum of the ground-state-to-ground-state
decays of 99Tc and 87Rb depend significantly on the effective
value of the axial-vector coupling constant gA. Since these
decays are experimentally measurable, they can be used to
gain knowledge on the effective value of gA in second- and
third-forbidden nonunique beta decays by using the spectrum-
shape method. The decays for which the spectrum shape does
not depend on the values of the weak coupling constants, such
as the transitions of 135Cs and 137Cs, could be used to test the
accuracy of the theoretical spectra.

The shape factors of the third- and especially fourth-
forbidden decays depend very sensitively on the value of the
coupling constants. Besides the transitions in this study, there
are no other medium-heavy odd-A nuclei which have a third-
or fourth-forbidden decay branch with a significant branching
ratio. However, for example 50V decays via a fourth-forbidden
nonunique transition and could be a candidate for SSM when
a shell-model type of framework would be used to evaluate the
needed wave functions.

In general, the decomposition of the integrated shape
functions C̃ into vector, axial-vector, and vector-axial-vector
components is similar when the normalized β spectra resemble
each other. However, the decompositions of the studied first-
and third-forbidden nonunique decays are similar, with the
exception of the one of 159Gd, but the normalized β spectra of
these decays are nothing alike.

Finally, the information gained through SSM on the
effective value of gA in forbidden decay transitions could help
in solving the gA problem related to the neutrinoless double
beta decay, which proceeds via virtual transitions, and largely
via the forbidden ones.
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