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Abstract. We discuss the evolution of an energetic jet which propagates through a dense
quark-gluon plasma and radiates gluons due to its interactions with the medium. Within
perturbative QCD, this evolution can be described as a stochastic branching process, that
we have managed to solve exactly. We present exact, analytic, results for the gluon
spectrum (the average gluon distribution) and for the higher n-point functions, which
describe correlations and fluctuations. Using these results, we construct the event-by-
event picture of the gluon distribution produced via medium-induced gluon branching.
In contrast to what happens in a usual QCD cascade in vacuum, the medium-induced
branchings are quasi-democratic, with offspring gluons carrying sizable fractions of the
energy of their parent parton. We find large fluctuations in the energy loss and in the
multiplicity of soft gluons. The multiplicity distribution is predicted to exhibit KNO
(Koba-Nielsen-Olesen) scaling. These predictions can be tested in Pb+Pb collisions at
the LHC, via event-by-event measurements of the di-jet asymmetry.
Based on [1, 2].

1 Introduction

One of the observables in which the formation of a collective medium in heavy-ion collisions man-
ifests in a very clear way is the dijet asymmetry, the energy difference between two approximately
back-to-back jets [3, 4]. The usual interpretation of this observation is the following:

• The two energetic jets are initially created in a hard process, due to momentum conservation the
two jets will have back-to-back directions and approximately the same energy.

• For simplicity we consider central collisions in which the interaction plane has rotational symmetry.
The point of the collision region in which the hard process takes place is not always the center, a
deviation from this point will have as a consequence that the effective size of the medium seen by
each jet will be different.

• The two jets will lose energy inside of the medium, however the amount of energy loss will depend
on the size of the medium that they traverse.

In summary, the fact that the formation of the two jets does not happen at the center of the fireball
translates in an asymmetry in the effective length of the medium seen by each jet that at the same time
translates into an asymmetry in the energy loss.
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However, this might not be the whole story. In the previous discussion we were assuming that the
energy loss is always the same at fixed medium size, in other words, we were neglecting fluctuations.
The question is then, how big are these fluctuations? This is one of the main problems we are going
to address in this proceedings and the answer we are going to find is that the typical deviation in the
energy loss is of the order of the average value and therefore fluctuations can not be neglected. We
are going to arrive to this conclusion be performing an analytical computation based on the results
obtained in [5, 6]. A similar result was obtained recently by a Monte Carlo computation in [7].

Let us discuss with more detail how fluctuations can affect the dijet asymmetry. Imaging the case
in which the hard process happens indeed at the center of the collision and therefore the medium length
seen by each jet is exactly the same. Even in this case, because energy loss is a stochastic process,
it can happen that by chance one of the jets loses more energy than the other, and if fluctuations are
large this will be quite common. In real world there would be fluctuations both in the effective length
and in the energy loss and there is no trivial way to disentangle them.

Another issue we want to discuss in this proceedings is what are the properties of gluons produced
by the energy loss mechanism. In [5, 6] it was understood that the energy loss is dominated by the
emission of a few quite energetic gluons by the leading particle but these gluons will subsequently
branch democratically (in a way that the two daughter gluons have a similar energy) and the result of
this secondary branching will also emit more gluons and so on... At the end of the day all the energy
that was originally loss by the emission of few gluons will be distributed in a lot of very soft gluons
emitted at large angles. This qualitative picture has been confirmed by experimental observations
[8, 9]. Here we want to understand the event-by-event picture of the production of these soft gluons,
this will allow to compare with what is known about the emission of gluons by a jet in the vacuum and
the observation of these properties will be a non-trivial cross-check of the energy loss mechanism.

This work will be divided as follows. In section 2 we will review the theory that we are going
to use to make the computations. In section 3 we are going to review what is already known about
the average of the energy loss. In section 4 we will compute its fluctuations. In section 5 we will
study the distribution of soft gluons emitted by a jet losing energy in a medium and we will discover
that it fulfils the Koba-Nielsen-Olesen (KNO) scaling [10]. Finally, in section 6 we will give our
conclusions.

2 Jet quenching formalism

We are going to perform the computation using the BDMPS-Z theory [11, 12]. In this formalism all
the information that we need from the medium is encoded in its length L and a parameter called q̂.
q̂ controls jet broadening, the amount of transverse momentum k⊥ that a jet gets due to the random
kicks from particles in the medium. Similarly to what happens in a Brownian process k⊥ ∼

√
q̂L.

There are two time-scales that have a very important role in this problem. The first one we are
going to discuss is the formation time. In quantum mechanics the precise moment at which a particle
branches is not exactly known, the cross-section of any process is the square of the sum of all the
amplitudes contributing to that process, therefore there will be contributions from the products of an
amplitude and a complex conjugate amplitude in which a given gluon has been emitted at different
times. However these two times can not be infinitely far away and their typical difference is called the
formation time τ f . In fact there exists an uncertainty relation that ensures that τ f ∼

2ω
k2
⊥

where ω is the

energy of the gluon that is being emitted. In a medium, as we discussed before, k⊥ ∼
√

q̂τ f , this gives

a self consistent equation that gives τ f ∼

√
2ω
q̂ .
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Another important time-scale is the branching time. In the BDMPS-Z theory the probability to
emit a gluon during a small time ∆t is

P(ω,∆t) ∝
Ncαs

π

√
q̂
ω

∆t , (1)

the branching time τbr is the period after which we are almost sure that a gluon with a given energy
will be emitted, looking at the previous equation we can see that τbr(ω) = π

Ncαs
τ f (ω), this shows that in

perturbation theory the formation time is much smaller than the branching time and therefore, at first
approximation, the branching process can be thought as an almost classical process in which gluons
are formed instantaneously.

The branching time allows to divide the gluons in two different types:

• Soft gluons have an energy such that τbr � L therefore they will be emitted abundantly. However
the soft gluons emitted by the leading particle will not contribute importantly to the energy loss.

• The harder gluons which are likely to be emitted are those with τbr ∼ L, this implies that they will
have an energy of order ωbr ∼ α2

s q̂L2. Their emission by the leading particle will dominate the
energy loss, in fact we are going to see that the energy loss is of the order of ωbr. However, this
gluons with energy ωbr will subsequently branch and at the end of the day what will be found is a
lot of soft gluons emitted at large angles.

The equations and the consequences of the multiple branching obtained with the previous as-
sumptions were discussed in [5, 6], there it was observed the importance of the so-called democratic
branching, the process in which a parton branches in a way such that the resulting partons have a
similar energy. This will be a rare event for the leading particle because their energy is much bigger
than ωbr, however for the gluons emitted by the leading particle, that will typically have an energy of
the order of ωbr or smaller, this will be a very common process and a very efficient way to transfer
energy into low energy gluons emitted at large angles. This is completely different to the emission of
gluons by a jet in the vacuum in which the emissions tend to be collinear.

3 The gluon spectrum and the average energy loss

The main focus of this section is going to be the gluon spectrum that we define as

D(x, t) = x〈
∑

i

δ(xi − x)〉 , (2)

where x is the energy fraction carried by the gluon. This quantity evolves with time following the
equation [13]

∂

∂τ
D(x, τ) =

∫
dzK(z)

[√
z
x

D
( x

z
, τ

)
−

z
√

x
D(x, τ)

]
, (3)

where τ =
αsNc
π

√
q̂
E t = t

τbr(E) . E in this case is the energy of the leading particle. The case interesting
for jet quenching at LHC is therefore the one in which τ � 1, however the case τ ∼ 1 is also interesting
in order to understand how jets are absorbed by the medium.

The kernel K(z) in eq. (3) has the form

K(z) =
[1 − z(1 − z)]5/2

[z(1 − z)]3/2 , (4)
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Figure 1. Plot (in log-log scale) of
√

xD(x, τ), with D(x, τ) given by Eq. (5), as a function of x for various values
of τ: solid (black): τ = 0.1; dashed–dotted (purple): τ = 0.2; dashed double–dotted (blue): τ = 0.4; dotted
(brown): τ = 0.75; dashed (green): τ = 1; dashed triple–dotted (red) : τ = 1.35.

however eq. (3) has not been analytically solved so far with this kernel. In [6] it was solved with the
approximate kernel K0(z) = 1

[z(1−z)]3/2 and the initial condition D(x, 0) = δ(1 − x)

D(x, τ) =
τ

√
x(1 − x)3/2

exp{−
πτ2

1 − x
} . (5)

In fig. 1 we plot eq. (5) at different times, we see that at small times the peak of the leading particle is
clearly visible, however as time passes this peak starts to disappear and we see that the energy starts
to accumulate in soft gluons. It is also seen that the energy diminishes as time passes, in fact

〈X(τ)〉 =

∫ 1

0
dxD(x, τ) = e−πτ

2
. (6)

This leaves the question of where this missing energy goes. Eq. (3) is only valid for particles with a
momentum much bigger than that of the particles in the medium. This can be quantified by an infrared
cut-off in momentum fraction x0, remarkably D(x, τ) can be accurately computed setting x0 = 0. The
energy that is not captured inside of D(x, τ) goes to degrees of freedom with energy fraction smaller
than x0, in other words, to the medium. In summary, the energy loss into the medium is

E(τ) = E
(
1 − e−πτ

2)
. (7)

4 The 2-point function and the fluctuations of the energy loss

In order to quantify the importance of the energy loss we will compute its variance (more details on
the computation are given in [1])

σ2
E = E2(〈X2〉 − 〈X〉2) . (8)
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We already computed the value of 〈X(τ)〉. In order to compute 〈X2(τ)〉 apart from D(x, τ) we also
need the 2-point function defined as

D(2)(x, x′, t) = xx′〈
∑
i, j

δ(xi − x)δ(x j − x′)〉 , (9)

which gives information about the pairs of partons with different energy found inside the jet. Knowing
this 〈X2〉 is determined as

〈X2(t)〉 =

∫ 1

0
dxxD(x, t) +

∫ 1

0
dx

∫ 1

0
dx′D(2)(x, x′, t) . (10)

D(2) fulfills an evolution equation similar to the one in eq. (3)

∂

∂τ
D(2)(x, x′, τ) =

∫
dzK(z)

[√
z
x

D(2)
( x

z
, x′, τ

)
−

z
√

x
D(2)(x, x′, τ)] +

(
x ↔ x′

)
+

xx′

(x + x′)2 K
( x

x + x′
) 1
√

x + x′
D(x + x′, τ) . (11)

The second line in this equations represents the fact that in order to have a pair of partons we need
an already existing parton to split (note that our initial condition is D(2)(x, x′, 0) = 0). The analogy
between the first line of eq. (11) and eq. (3) indicates that after the branching the two resulting partons
will evolve independently. Eq. (11) has the formal solution

D(2)(x, x′, τ) =

∫ τ

0
dτ′

∫ 1

x

dx1

x1

∫ 1−x1

x′

dx2

x2
D
( x

x1
,
τ − τ′
√

x1

)
D
( x′

x2
,
τ − τ′
√

x2

)
S (x1, x2, τ

′) , (12)

where S (x, x′, τ) is the second line in eq. (11). This solution has a straight-forward interpretation.
With S (x1, x2, τ

′) we compute all the branchings that happen at a time τ′. Then we compute the
evolution of each resulting sub-jet from τ′ to τ independently, for example in the case of the parton

with momentum fraction x1 we multiply by D
(

x
x1
, τ−τ

′

√
x1

)
and integrating for all x1. With this we have

the contribution to D(2) from all the branchings that happen at time τ′, to get the full result we just
need to integrate for all τ′. Similarly to what happens with D, it is possible to solve this evolution
analytically making the approximation K → K0

D(2)(x, x′, τ) =
1

2π
1

√
xx′(1 − x − x′)

[
e−

πτ2
1−x−x′ − e−

4πτ2
1−x−x′

]
. (13)

At small times this equation has a peak corresponding to pairs whose sum of energy correspond
approximately to the original energy of the leading particle x + x′ ∼ 1. However this peak will
disappear quite quickly as time passes. There is another peak that indicates that there will be a large
number of pairs formed by soft particles (both x and x′ much smaller than 1).

With this result we can already compute σ2
E
. In the limit τ � 1, which is the one interesting for

LHC physics

σ2
E(τ) = E2

(
1
3
π2τ4 −

11
15
π3τ6

)
+ O(E2τ8) , (14)

this result means that the typical deviation will go like Eτ2 ∼ ωbr. This means that both the average
and the typical deviation are of the same order of magnitude and that both are of the size of ωbr. A
comparison between these two quantities is shown in fig. 2.
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Figure 2. Comparison of the average energy loss with the typical deviation. Both are normalized to E

Let us now discuss the phenomenological consequences of this result. We focus in back-to-back
pairs from which we assume that initially both of them have an energy E but they will typically see
different path length. On top of that we will have the fluctuations of the energy loss mechanism itself
that we have just computed, in this situation

〈E1 − E2〉
2 = (Ncαsq̂)2(〈L2

1〉 − 〈L
2
2〉)

2 , (15)

where the symbol 〈·〉 applied on Lx means average over the geometry of the fireball in the different
events. This equation tells us that the observation of a 〈E1 − E2〉

2 different from 0 indicates an
asymmetry in the path length seen by the jets. However, what is observed experimentally is 〈|E1−E2|〉

rather than 〈E1 − E2〉. Therefore the following quantity might give a more precise picture of what is
actually observed in experiments

σ2
E1−E2

= 〈(E1 − E2)2〉 − 〈E1 − E2〉
2 = (Ncαsq̂)2

[
1
3

(〈L4
1〉 + 〈L

4
2〉) + σ2

L2
1

+ σ2
L2

2

]
, (16)

looking at this equation we see that indeed the asymmetry on the path length contributes but we also
see that even in the case L1 = L2 there will be a non-zero contribution. We also see, looking at eq.
(16), that both effects are of the same order of magnitude.

5 The n-point functions and KNO scaling
In order to compute the average energy loss 〈E〉 and the average number of particles inside the jet 〈N〉
we need to know the gluon spectrum D. If we want to compute 〈E2〉 and 〈N2〉 we also need to know
D(2). If we want to have more detailed information on the energy loss and the distribution of particles
we need to compute higher order n-point functions D(n). They fulfill an evolution equation similar to
eq. (11), they can be analytically solved using the same approximations [2]

D(n)(x1, · · · , xn|τ) =
(n!)2

2n−1n
(1 −

∑n
i=1 xi)

n−3
2

√
x1 · · · xn

hn

 τ√
1 −

∑n
j=1 x j

 , (17)
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Figure 3. Comparison of the exact value of h3 with the approximation that give KNO scaling h0
3 and the asymp-

totic limit for large l.

where

hn(l) =

∫ l

0
dln−1 · · ·

∫ l2

0
dl1(nl −

n−1∑
i=1

li)e−π(nl−
∑n−1

j=1 l j)2
. (18)

This equation and eq. (13) have a very similar physical interpretation. We follow a sequence on n − 1
branchings at different times (represented by li) and then we integrate for all the times in which these
branchings happened.

As was already mentioned, the interesting limit for LHC is τ � 1. If we are also in the limit
x0 � τ2 (very small resolution scale) the number of particles will be completely dominated by soft
gluons and we can compute the leading order contribution to 〈N〉 analytically. In the more restrictive
case in which x0 � τ2 and also πn2τ2 � 1 we can, using eq. (17), do the same for 〈Nn〉. All the
moments of the number of particles will diverge as x0 → 0, however the ratio

Cp =
〈N p〉

〈N〉p
=

(p + 1)!
2p , (19)

will be a constant that does only depend of p. This property is called KNO scaling [10] and appears
in several processes in heavy-ion as well as in collider physics. In fact, eq. (19) corresponds to a
negative binomial distribution with parameter k = 2. This distribution gives the probability of having
n successful attempts in a Bernoulli trial before having k failures, in this case 2. Similar properties
were also found in the vacuum [14], there it was seen that KNO scaling is also fulfilled and that the
distribution of emitted gluons was approximately described by a negative binomial distribution but
this time with k = 3. In conclusion we can see that the distribution of gluons produced by a jet, either
in a medium or in the vacuum, can be approximately described by a negative binomial distribution
and therefore they approximately fulfill KNO scaling. The difference is that in a medium fluctuations
and correlations are much more important.
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We can also obtain an asymptotic result for eq. (17) in the limit τ � 1 to complete the analytic
knowledge that we can get from this equation

D(n)(x1, · · · , xn|τ) =
n!e
− πτ2

1−
∑n

i=1 xi (1 −
∑n

i=1 xi)n−5/2

(4π)n−1τn−2 √x1 · · · xn
, (20)

as a cross-check in fig. 3 we plot the exact result that can be obtained for h3 with the result we obtain
in the two asymptotic limit that we have discussed.

6 Conclusions

In this proceedings we have reviewed the computation of the fluctuations of the energy loss. We have
seen that they large, of the order of the average value. This means that they can not be neglected when
interpreting experimental results. This is particularly important for the dijet asymmetry, our result
show that such an asymmetry can be generated even if the medium path length that each jet traverses
is the same. This is in contradiction with the usual picture.

We have also shown that the gluons emitted during the process in which the jet loses energy fulfill
KNO scaling and can be approximately described by a negative binomial distribution. Remarkably
this is similar to what is found in the vacuum where the physics is very different. Comparing the two
cases we see that in the medium correlations and fluctuations are much bigger.
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