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University Printing House
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Introduction

This dissertation addresses stochastic game theory and partial differential
equations (PDEs for short). A basic observation in the theories of linear
PDEs and probability is that harmonic functions and martingales share
similar mean value properties. To illustrate this connection, we fix ε > 0
and denote by Ω ⊂ Rn a bounded domain with the smooth boundary ∂Ω.
We put a token at x0 ∈ Ω with Bε(x0) ⊂ Ω, where Bε(x0) is an open ball
centered at x0 with the radius ε. In general, when the token is at xk ∈ Ω,
it is moved to xk+1 ∈ Bε(xk) according to the uniform probability density.
The process stops when the token hits the complement of Ω, and the final
payoff is given by a continuous function F : Ωc → [−M,M ]. The expected
payoff at x0 is denoted by uε(x0), and uε : Ω → [−M,M ] is called a value
function. The value function satisfies the mean value property over the ball
Bε(x0),

uε(x0) =

∫

Bε(x0)
uε(y) dy :=

1

|Bε(x0)|

∫

Bε(x0)
uε(y) dy. (1)

When ε→ 0, value functions converge uniformly towards the unique solution
of the Dirichlet problem of the Laplace equation −∆u := −div (Du) = 0
with boundary data F . We recall that the solution of this linear PDE is
called harmonic and satisfies a similar mean value property.

Probabilistic interpretations for nonlinear PDEs arose in 1950s and 1960s
from optimal control problems and differential games. Bellman [Bel57]
showed that a continuously differentiable value function of a certain op-
timal control problem is a solution to the first order nonlinear PDE that is
now called the Hamilton-Jacobi-Bellman equation,

ut(x, t) + inf
α

(f(x, t, α) ·Du(x, t) + r(x, t, α)) = 0,

where Du(x, t) is the gradient of u in space, α is the control, r is the run-
ning cost, and f gives the state dynamics. Isaacs [Isa65] studied connections
between two-player zero-sum differential games and the corresponding non-
linear second order PDE that is now called Isaac’s equation,

sup
α

inf
β

(Lαβu− fαβ) = 0,

where Lαβ is a family of elliptic operators with bounded measurable coef-
ficients, and fαβ are real valued functions. These connections were based
on the concept of dynamic programming principle (DPP for short), which
describes Bellman’s Principle of optimality ([Bel57, III.3]): Whatever the
initial state and initial decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first decision.
Equation (1) is an example of DPP.

The Hamilton-Jacobi-Bellman equation does not necessarily have contin-
uously differentiable solutions. Since this equation is in non-divergence form,
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distributional weak theory based on integration by parts is not applicable. It
was not clear how to relax the concept of solution. In the early 1980s Evans,
Crandall and Lions [Eva80, CL84] introduced the concept of viscosity solu-
tion as an appropriately defined weak solution to PDEs in non-divergence
form. The name viscosity solution refers to the method of vanishing viscos-
ity to prove existence results. The method of vanishing viscosity is no longer
central, but it lead to the modern definition.

1. Tug-of-war games

1.1. Background. In 2006 Peres, Schramm, Sheffield and Wilson intro-
duced a two-player zero-sum stochastic game which they called tug-of-war,
and showed that for a fixed ε > 0 and a bounded final payoff F , the value
function uε of this game satisfies the DPP

uε(x) =
1

2
( sup
Bε(x)

uε + inf
Bε(x)

uε).

In the seminal article [PSSW09], they showed that when ε→ 0, value func-
tions converge uniformly towards the unique viscosity solution u of the ho-
mogeneous infinity Laplace equation

−∆∞u := −〈D2uDu,Du〉 = 0

with boundary data F . The infinity Laplace equation is a nonlinear PDE
in non-divergence form, and the solution u is called infinity harmonic. This
equation was introduced by Aronsson [Aro67] in the context of absolutely
minimizing Lipschitz extensions. Existence, uniqueness and regularity prop-
erties of this equation gained increasing interest in 1980s and 1990s when the
viscosity theory developed. After [PSSW09], game-theoretic interpretations
for different variants of the infinity Laplace type equations were studied for
example by Atar and Budhiraja [AB10], Antunović, Peres, Sheffield and
Somersille [APSS12], Armstrong and Smart [AS12], as well as Bjorland,
Caffarelli and Figalli [BCF12].

Peres and Sheffield [PS08] developed a new variant tug-of-war with noise
and showed that it has close connections to the nonlinear PDEs that are
sometimes called normalized or game-theoretic p-Laplace equations, 1 < p <
∞. The case p = 1 is related to the mean curvature flow [KS06]. The version
of tug-of-war with noise we present in Section 1.2 below was formulated by
Manfredi, Parviainen and Rossi in [MPR12]. Ferrari, Liu and Manfredi
[FLM14] extended game-theoretic methods to Heisenberg groups, whereas
the game related to the obstacle problem of the p-Laplacian was studied by
Lewicka and Manfredi [LM]. In [MPR10a], the authors introduced time-
dependent tug-of-war games related to certain parabolic equations.

The dynamic programming principle is often the link between differential
games and PDEs. In the spirit of tug-of-war games, Liu and Schikorra [LS15]
obtained solutions to discrete DPPs satisfying certain general conditions.
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1.2. Tug-of-war with noise and the normalized p-Laplacian. A cen-
tral variant of tug-of-war games for this thesis is the tug-of-war with noise,
played between Max and Minnie in Ω ⊂ Rn as follows. First we fix p > 2
and ε > 0. The game token is placed at x0 ∈ Ω. With the probability
α = (p − 2)/(n + p) ∈ (0, 1), the players flip a fair coin and the winner
can move the token anywhere in Bε(x0). With the probability β = 1 − α,
the token is moved randomly to a point in Bε(x0) according to the uniform
probability density. The game continues until the token hits the ε-boundary
strip

Γε := {x ∈ Rn \ Ω : dist(x, ∂Ω) ≤ ε}
for the first time at, say xτ . Then Minnie pays Max the amount F (xτ ),
where F : Γε → R is a bounded, Borel-measurable payoff-function. Max
tries to maximize the payoff and Minnie tries to minimize it. We define the
value of the game for Max in x0 ∈ Ω as

uεI (x0) := sup
SI

inf
SII

Ex0SI,SII
[F (xτ )] ,

while the value of the game for Minnie is

uεII(x0) := inf
SII

sup
SI

Ex0SI,SII
[F (xτ )] .

Here SI and SII are the strategies of the players.

It turns out that there is a unique value function uε := uεI = uεII in
Ωε := Ω ∪ Γε, uε = F on Γε, satisfying the DPP

uε(x) =
α

2

(
sup
Bε(x)

uε + inf
Bε(x)

uε

)
+ β

∫

Bε(x)
uε(y) dy. (2)

Heuristically, the rules of the game can be read from this equation. More-
over, when ε → 0, value functions converge uniformly towards the unique
viscosity solution of the normalized p-Laplace equation

−∆N
p u = 0 (3)

with boundary data F . Here

∆N
p u :=

1

p
|Du|2−p div(|Du|p−2Du) =

1

p
∆u+

p− 2

p
∆N
∞u,

where ∆N
∞u := 〈D2u Du

|Du| ,
Du
|Du|〉 is the normalized infinity Laplacian.

The definition of viscosity solution for equation (3) is based on the fol-
lowing observation: If u is a smooth solution of (3), Du(x0) 6= 0 for x0 ∈ Ω,
and u−φ attains a local maximum at x0 for some function φ ∈ C2(Ω), then
it holds −∆N

p φ(x0) ≤ 0. The viscosity solution u of (3) is required to satisfy
the following conditions:

• The function u is continuous.
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• For all x0 ∈ Ω and for all test functions φ ∈ C2(Ω) such that
u − φ attains a local maximum at x0 and Dφ(x0) 6= 0, one has
−∆N

p φ(x0) ≤ 0.

• For all x0 ∈ Ω and for all test functions ϕ ∈ C2(Ω) such that
u − ϕ attains a local minimum at x0 and Dϕ(x0) 6= 0, one has
−∆N

p ϕ(x0) ≥ 0.

This is not the whole definition. The case Dφ(x0) = 0 requires special atten-
tion, because then −∆N

p φ(x0) is not well defined. For the precise definition,
see for example [C, Definition 2.1]. It follows from the work of Juutinen,
Lindqvist and Manfredi [JLM01] (see also [JJ12]) that viscosity solutions
of (3) are distributional weak solutions of the standard p-Laplace equation
−div(|Du|p−2Du) = 0. Hence, viscosity solutions of (3) are p-harmonic, see
also Section 3 below.

To give an idea of the connection between equations (2) and (3), we
assume again that u is a smooth solution of (3) with Du 6= 0, and obtain
heuristically a generalized mean value formula for u. Averaging the Taylor
expansion

u(y) = u(x) + 〈Du(x), (y − x)〉+
1

2
〈D2u(x)(y − x), (y − x)〉+ o(|y − x|2)

over the ball Bε(x) and calculating
∫

Bε(x)
〈Du(x), (y − x)〉 dy = 0

and ∫

Bε(x)

1

2
〈D2u(x)(y − x), (y − x)〉 dy =

ε2

2(n+ 2)
∆u(x),

we obtain

u(x)−
∫

Bε(x)
u(y) dy = − ε2

2(n+ 2)
∆u(x) + o(ε2). (4)

Moreover, by using the Taylor expansion for u(x+ h) with h = ε Du(x)
|Du(x)| and

h = −ε Du(x)
|Du(x)| , we get

u(x)− 1

2

(
u(x+ ε

Du(x)

|Du(x)|) + u(x− ε Du(x)

|Du(x)|)
)

≈ −1

2
ε2∆N

∞u(x) + o(ε2).

From this we heuristically deduce

u(x)− 1

2

(
sup
Bε(x)

u+ inf
Bε(x)

u

)
= −1

2
ε2∆N

∞u(x) + o(ε2). (5)
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By combining the expressions (4) and (5) and recalling that α = (p−2)/(n+
p) and β = (n+ 2)/(n+ p), we get a generalized mean value formula for u,

u(x) =
α

2

(
sup
Bε(x)

u+ inf
Bε(x)

u

)
+ β

∫

Bε(x)
u(y) dy + o(ε2).

However, not all viscosity solutions of (3) are smooth in general, and
the actual proof of the connection between value functions and viscosity
solutions of (3) is more subtle, see [MPR10b].

2. Local regularity of tug-of-war games and articles [A, B]

In [A, B] we study the local regularity properties of two variants of tug-of-
war games. The main goal is to understand the properties of these games on
their own right. In [A] we study the game tug-of-war with noise and running
payoff, where after each move Max gains a small payoff. In [B] we study the
local regularity of time-dependent tug-of-war games where the probabilities
α and β may vary. In the following we denote by Br ⊂ Rn a ball centered
at the origin with the radius r, and

osc (uε, Br) := sup
Br

uε − inf
Br
uε.

2.1. Tug-of-war with noise and running payoff. In [A] we study the
following variant of tug-of-war games. We fix ε > 0 and denote by Ω ⊂ Rn
a bounded domain satisfying the exterior ball condition. The final payoff of
the game is given by a bounded, measurable function F : Γε → [−M,M ].
Moreover, we add a bounded, measurable running payoff f : Ω → (0,M ].
The players play the tug-of-war with noise as explained in Section 1, but
when the token moves from xk to xk+1, the amount ε2f(xk) is charged. First
we show that this game has a unique value function uε satisfying the DPP

uε(x) =
α

2

(
sup
Bε(x)

uε + inf
Bε(x)

uε

)
+ β

∫

Bε(x)
uε(y) dy + ε2f(x).

Moreover, uε is uniformly bounded with respect to ε, that is, there is a
constant C = C(p, n) for which

|uε| ≤ C(sup
Γε

F + sup
Ω
f).

We focus on the local regularity of the value function. Luiro, Parviainen
and Saksman [LPS13] proved asymptotic Lipschitz regularity for value func-
tions of tug-of-war with noise by using an idea they call cancellation strategy.
They estimate the value function by setting sub-optimal strategies where
players first try to cancel each others’ moves and then pull the token in a
certain fixed direction. Suppose that B6R ⊂ Ω, x, y ∈ BR with |x− y| ≥ ε,

and for z ∈ B2R it holds |x − z| = |y − z| ≤ |x − y| and 3|x−z|
ε =: m ∈ N.

The precise strategies used in [A] are the following. When the game starts
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from x, we fix the following strategy for Minnie: If Max has won more coin
tosses than Minnie, then she cancels the earliest move of Max she has not
yet cancelled. Otherwise, she moves the token to the direction of the vec-
tor z−x

m . The length of her move is always ε
3 . We re-examine the situation

(technically speaking, we define a new stopping time) if Minnie wins m coin
tosses more than Max, or if Max wins at least 2R/ε times more than Min-
nie, or if the length of the sum of random vectors exceeds 2R. Then the
game stays in B6R before the re-examination. For the game that starts from
y, Max follows the cancellation strategy where he cancels the earliest move
of Minnie he has not yet cancelled, or otherwise moves the token to the
direction of the vector z−y

m .

The authors showed in [LPS13] that because of translation invariance and
the fact that the game stops almost surely in a finite time, such strategies
yield an asymptotic Lipschitz estimate. The most important difference be-
tween the game with a strictly positive running payoff f and the game with
f ≡ 0 considered in [LPS13] is that for our purpose it is not enough to know
that the game ends almost surely in a finite time. We usually need an esti-
mate for the expected stopping time of the game. By using the cancellation
strategies, we get an estimate

|uε(x)− uε(y)| ≤ (1− P ) osc (uε, B6R) + ε2E[τ∗] osc (f,B6R),

where P is the probability that the game, started from x, was re-examined
because Minnie won m coin tosses more than Max. (By symmetry, P is
also the probability that the game, started from y, was re-examined because
Max won m coin tosses more than Minnie.) To obtain the Lipschitz estimate
with a Lipschitz constant independent of ε in the proof of [A, Theorem 4.1],
the main task is to estimate E[τ∗], which is the expected number of steps
before the re-examination.

In [A, Theorem 4.2] we use the Lipschitz estimate and an iteration in
dyadic balls to prove Harnack’s inequality for non-negative value functions.
As in the proof of the Lipschitz estimate, the main task is to control the
cumulative effect of the running payoff. The following theorem summarizes
the main results of [A].

Theorem 1. [A, Theorems 4.1 and 4.2] Suppose that for some R > ε it
holds B30R ⊂ Ω. Let r ∈ (ε,R]. Then there is a constant C = C(p, n) for
which the value function uε satisfies the asymptotic Lipschitz estimate

osc (uε, Br) ≤ C
r

R
[osc (uε, B6R) + osc (f,B6R)] .

Moreover, in the case u ≥ 0 the value function satisfies Harnack’s inequality

sup
BR

uε ≤ C(inf
BR

uε + sup
B30R

f).

2.2. Time-dependent tug-of-war with varying probabilities. In this
section we consider the time-dependent variant of tug-of-war games which
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we study in [B]. For T > 0, we denote by ΩT := Ω × (0, T ) a parabolic
cylinder with the parabolic boundary

ΓT := {∂Ω× [0, T ]} ∪ {Ω× {0}}

and the parabolic boundary strip of width ε > 0,

ΓεT :=

(
Γε × [−ε

2

2
, T ]

)
∪
(

Ω× [−ε
2

2
, 0]

)
.

Here Γε is the ε-boundary strip of Ω. For a measurable function p : ΩT →
(2,∞), we define the functions α : ΩT → (0, 1) and β : ΩT → (0, 1),

α(x, t) =
p(x, t)− 2

p(x, t) + n
, β(x, t) =

n+ 2

p(x, t) + n
.

The game starts from the point (x0, t0) ∈ ΩT . When the token is at a
point (xk, tk), with the probability α(xk, tk), the players flip a fair coin, and
the winner of the toss moves the token to a point

(xk+1, tk+1) ∈ Bε(xk)× {tk −
ε2

2
},

according to his or her strategy. With the probability β(xk, tk), the to-

ken is moved to (xk+1, tk+1) in a set Bε(xk) × {tk − ε2

2 } according to the
uniform probability density. We denote by (xτ , tτ ) ∈ ΓεT the first point of
the sequence on ΓεT . Then Minnie pays Max the amount F (xτ , tτ ), where
F : ΓεT → [−M,M ] is a given measurable payoff function.

It follows that the number of steps during the game is bounded, and the
value function satisfies the DPP

uε(x, t) =
α(x, t)

2

(
sup

y∈Bε(x)
u(y, t− ε2

2
) + inf

y∈Bε(x)
u(y, t− ε2

2
)

)

+ β(x, t)

∫

Bε(x)
u(y, t− ε2

2
) dy.

Manfredi, Parviainen and Rossi showed in [MPR10a] that in the case of con-
stant probabilities this game has a connection to the parabolic normalized
p-Laplace equation. For this variant with constant probabilities α(x, t) ≡ α
and β(x, t) ≡ β we show asymptotic Lipschitz continuity by relying on a
similar cancellation strategy that was first used in [LPS13], and later in
[Hei] in the context of game regularity.

Theorem 2. [B, Theorem 3.3] Suppose that B6r ⊂ Ω, where 0 < ε < r <
(
αT
6

) 1
2 . Suppose also that x, y ∈ Br and 6r2

α < t0 < t1 < T with t1− t0 ≤ r2.
Then for the constant probabilities α and β, the value function satisfies the
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Lipschitz estimate

|uε(x, t1)− uε(y, t0)| ≤ C(p, n)
|x− y|+ |t1 − t0|1/2

r
‖uε‖∞

+ C ′(p, n)
ε1/2

r
‖uε‖∞ .

For the general case with varying probabilities α(x, t) and β(x, t) the
cancellation strategy does not seem to work, mainly because the game lacks
good symmetry properties and translation invariance. To study local Hölder
regularity, we use a time-dependent version of the idea that was first intro-
duced by Luiro and Parviainen in [LP]. This strategy uses a suitable com-
parison function defined in R2n+1 and having a certain favorable curvature
in space.

Theorem 3. [B, Theorems 4.1, 4.2 and 4.7] Suppose that for r > 0 it holds
B2r ⊂ Ω and r2 < t0 < t1 < T . Then the value function satisfies the Hölder
estimate for some δ = δ(n) ∈ (0, 1),

|uε(x, t1)− uε(y, t0)| ≤ C(n)
|x− y|δ + |t1 − t0|δ/2

rδ
+ C ′(n)

εδ/2

rδ
.

Moreover, in the case uε ≥ 0 the value function satisfies Harnack’s inequality

sup
x∈Br

uε(x, t0 − r2) ≤ C(n) inf
x∈Br

uε(x, t0).

As an application, we show that when ε → 0, the value functions uε
approximate uniformly the viscosity solution of the normalized parabolic
p(x, t)-Laplace equation

(n+ p(x, t))ut = ∆u+ (p(x, t)− 2)∆N
∞u (6)

with continuous boundary data F . As a consequence of Theorem 3, it
follows that the viscosity solution u of (6) is locally Hölder continuous with a
Hölder constant depending only on the dimension n, and if u ≥ 0, it satisfies
Harnack’s inequality.

3. The normalized p-Poisson problem and articles [A, C]

In [PS08] Peres and Sheffield showed the connection between the tug-of-
war with noise and running payoff and smooth solutions of the PDE

−∆N
p u = f. (7)

We call equation (7) the normalized p-Poisson problem. It is a nonlin-
ear PDE in non-divergence form. For 1 < p < ∞, the normalized p-
Laplacian ∆N

p is a uniformly elliptic operator with ellipticity constants
Λ = max(p− 1, 1) and λ = min(p− 1, 1). Krylov and Safonov [KS79, KS80]
proved Harnack’s inequality and Hölder continuity for solutions of linear
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uniformly elliptic equations with bounded and measurable coefficients. Caf-
farelli [Caf89] extended these results for viscosity solutions of fully nonlinear
uniformly elliptic equations. For equations in non-divergence form, these
results have a similar role as the De Giorgi−Nash−Moser theorem has for
equations in divergence form. Caffarelli also proved C1,α regularity under
such regularity assumptions which the normalized p-Laplacian does not sat-
isfy because of gradient dependence and discontinuity. Hence, only Hölder
continuity for solutions of (7) follows from the general regularity theory for
uniformly elliptic equations.

In [A] we show that for a given continuous boundary data and a contin-
uous, strictly positive and bounded f , value functions of tug-of-war with
noise and running payoff converge uniformly towards the unique viscosity
solution of (7). From Theorem 1 we get a game-theoretic proof that in the
case p > 2 the unique viscosity solution of (7) is locally Lipschitz continuous
and satisfies Harnack’s inequality. (Uniqueness was shown in [KMP12] in
the case f > 0.) Earlier Charro, De Philippis, Di Castro and Máximo had
obtained Lipschitz-type estimates in the case of p > n in [CPCM13] by using
PDE methods. In the case p ≥ 2 Birindelli and Demengel [BD10] proved
C1,α regularity for a class of operators including the normalized p-Laplacian.

After [PS08], other normalized p-Laplace equations have received atten-
tion as well. For the normalized parabolic p-Laplace equation, Banerjee
and Garofalo [BG15] studied the boundary behavior, Jin and Silvestre [JS]
showed local C1,α regularity, and Does [Doe11] studied applications to image
processing.

In [C] we study higher regularity of viscosity solutions of (7). The main
theorem is the following regularity result in the whole range 1 < p <∞.

Theorem 4. [C, Theorem 1.1] Assume that p > 1 and f ∈ L∞(Ω) ∩ C(Ω).
There exists α = α(p, n) > 0 such that any viscosity solution u of (7) is in

C1,α
loc (Ω), and for any Ω′ ⊂⊂ Ω,

[u]C1,α(Ω′) ≤ C = C
(
p, n, d, d′, ||u||L∞(Ω), ||f ||L∞(Ω)

)
,

where d = diam(Ω) and d′ = dist(Ω′, ∂Ω).

Heuristically, we show that if a solution u can be approximated by a
plane in a small ball, then in a smaller ball there is a plane giving a better
approximation. To get a C1,α estimate, we have to show that the error in
the approximation improves by a multiplicative factor ρ < 1. An inductive
argument leads us to analyze the regularity of deviations of solutions from
planes, and the required oscillation estimate for these deviations is called
improvement of flatness. Recently, Imbert and Silvestre [IS13] used this
method to show C1,α regularity for viscosity solutions of |Du|γF (D2u) = f ,
where F is uniformly elliptic.
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In the case p ≥ 2 we give another proof, which is essentially to show that
viscosity solutions of (7) are distributional weak solutions of

−div(|Du|p−2Du) = |Du|p−2f.

Then we can rely on the known regularity results for quasilinear PDEs.
When using these techniques, it seems necessary that the C1,α estimate
depends on the L∞ norm of f . Relaxing the dependence to ||f ||Lq(Ω) for
some q <∞ requires a stricter assumption on p and a different method for
the proof.

Theorem 5. [C, Theorem 1.2] Assume that p > 2, q > max(2, n, p/2),

f ∈ C(Ω) ∩ Lq(Ω). Then any viscosity solution u of (7) is in C1,α
loc (Ω) for

some α = α(p, q, n). Moreover, for any Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω, with Ω′ smooth
enough, we have

[u]C1,α(Ω′′) ≤ C = C
(
p, q, n, d, d′′, ||u||L∞(Ω), ||f ||Lq(Ω)

)
,

where d = diam (Ω) and d′′ = dist (Ω′′, ∂Ω′).

The proof is based on proving uniform gradient estimates for weak so-
lutions vε of certain regularized equations in divergence form. We use the
potential estimates of Duzaar and Mingione [DM10] together with the De
Giorgi iteration. From the result of Lieberman [Lie93] we get a uniform
estimate for [vε]C1,β(Ω) for some β > 0, and Theorem 5 follows from a com-
pactness argument.

We also study the question of optimal regularity of solutions of (7). We
recall that distributional weak solutions of the standard p-Laplace equation
−div(|Du|p−2Du) = 0 are called p-harmonic, and they are of class C1,α0

loc
for some α0 > 0 depending only on p and the dimension n. Since the case
f ≡ 0 is covered in Theorem 4 and viscosity solutions of the homogeneous
normalized p-Laplace equation are p-harmonic, viscosity solutions of (7)
should not be expected to be more regular than p-harmonic functions in
general. Hence, α0 is a natural upper bound for Hölder exponent of gradients
of solutions of (7). By approximating the solutions of (7) by p-harmonic
functions and using suitable rescaled function and iteration, for arbitrary
ε > 0 we show local C1,α0−ε regularity for solutions of (7) in [C, Theorem
1.3]. The possible C1,α0 regularity remains an open problem.
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1 Introduction
Max andMinnie play a zero-sum stochastic game as follows. Fix å > 0. First a token is placed at x0 ∈ Ω, where
Ω ⊂ ℝn is a boundeddomain.Withprobabilityá ∈ (0, 1) they�ip a fair coin and thewinner canmove the token
anywhere in an open ball Bå(x0). With probability â = 1 − á the token moves to a random point in Bå(x0). The
game continues until the token hits the boundary of Ω for the �rst time in, say xó. Then Minnie pays Max
a total payo�

F(xó) + å
2
ó−1

∑
j=0

f(xj),

where F is a bounded �nal payo� on the boundary and f a positive, bounded running payo� in Ω. Since
â > 0, the game ends almost surely in a �nite time. Max tries to maximize the total payo� and Minnie tries to
minimize it.

For given payo�s and å > 0, the game has a value uå, which is locally Lipschitz continuous up to the
scale å. To be more precise, we show in Theorem 4.1 that if B6R(a) ⊂ Ω and å < r ≤ R, then

osc(uå, Br(a)) ≤ C
r
R
[osc(uå, B6R(a)) + osc(f, B6R(a))],

where C > 0 depends only on p and n. In Theorem 4.2 we show that if B30r(a) ⊂ Ω, the value function uå
satis�es Harnack’s inequality

sup
Br(a)

uå ≤ K( inf
Br(a)

uå + sup
Ω

f),

whereK = K(p, n) > 0. In the proofs of Theorems 4.1 and 4.2 key ideas are related to controlling the expected
cumulative e�ect of running payo� during the game under proper strategies.

According to Lemmas 2.1 and 2.2, the value functions satisfy

uå(x) =
á
2
{sup
Bå(x)

uå + infBå(x)
uå} + â −∫

Bå(x)

uådy + å
2f(x) (1.1)

for all x ∈ Ω. Choosing the probabilities á and â properly, this dynamic programming principle (hereafter DPP)
gives a connection to viscosity solutions of the inhomogeneous p-Laplace equation

−
1
p
|∇u|2−p div(|∇u|p−2∇u) =: −ΔN

pu = f, (1.2)
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where p > 2. Let f > 0 be continuous and bounded. If u is a viscosity solution to (1.2) in Ω with some con-
tinuous and bounded boundary values, by Lemma 5.4 there is a sequence (uå) of value functions converging
locally uniformly to u. By Theorems 4.1 and 4.2, the function u is locally Lipschitz continuous and satis�es
Harnack’s inequality. To the best of our knowledge, Lipschitz estimate is unavailable in the literature in the
case 2 < p ≤ n. In the case p > n ≥ 2 similar estimates were proven in [7] by using PDE methods. Harnack’s
inequality also follows by utilizing PDEmethods described, e.g., in [6, 10]. For recent advances, see, e.g., [8].

Tug-of-war games were �rst introduced by Peres, Schramm, She�eld andWilson in [21] and by Peres and
She�eld in [22]. Various versions of the gamehave connections to the theory of non-linear PDEs. For example,
value functions of the tug-of-war approximate in�nity harmonic functions and value functions of the tug-of-
war with noise approximate p-harmonic functions. Game-theoretic arguments have generated many new,
intuitive proofs for uniqueness and regularity properties of in�nity harmonic and p-harmonic functions. See,
e.g., [1–5, 13, 15, 20]. For existence of viscosity solutions to certain parabolic equations, see, e.g., [9, 17]. For
di�erent versions of DPP, see, e.g., [11].

In Section 2 we de�ne the game, show that it has a value which satis�es DPP (1.1), and give tools to
estimate the value functions under di�erent strategies and payo�s. In Section 3 we prove lemmas regard-
ing expected stopping times under speci�c strategies, local comparison of value functions and control of
in�mum. In Section 4 we prove Theorems 4.1 and 4.2. In Section 5 we discuss the connection to the inhomo-
geneous p-Laplace equation.

2 Background of the game
Fix å > 0 and p > 2. The probabilities in the game are á = (p − 2)/(n + p) and â = (n + 2)/(n + p). De�ne

Γå := {x ∈ ℝ
n \ Ω : dist(x, àΩ) ≤ å}

and

Ωå := Ω ∪ Γå.

Then Bå(x) ⊂ Ωå for all x ∈ Ω. The game ends when the token hits Γå for the �rst time. In Sections 2, 3 and 4
the payo�s F : Γå → ℝ and f : Ω → (0,∞) are bounded and Borel measurable.

Let us brie�y describe the stochastic terminology used in this paper. Strategies SI for Max and SII for
Minnie are collections of Borel measurable functions that give the next game position given the history of
the game. When we �x a certain strategy for a player, we usually write SMax

I for Max and SMin
II for Minnie. By

a history of the game up to step k we mean a sequence

(x0, (c1, x1), . . . , (ck, xk)),

where x0, . . . , xk ∈ Ωå are game positions and cj ∈ C := {0, 1, 2}. Here cj = 0 means that Max wins, cj = 1 that
Minnie wins and cj = 2 that a random step occurs. Our probability space is the space of all game sequences

H∞ := {ø : ø ∈ x0 × (C, Ωå) × ⋅ ⋅ ⋅ }.

Put F0 := ò(x0) and

Fk := ò(x0, (c1, x1), . . . , (ck, xk))

for k ≥ 1. Note that here (c1, x1) etc. are random variables. Then

ó(ø) := inf{k : xk ∈ Γå, k = 0, 1, . . . }

is a stopping time relative to the �ltration {Fk}
∞
k=0.

The �xed starting point x0 and the strategies SI and SII determine a unique probability measure ℙx0
SI ,SII

on
the product ò-algebra, see, e.g., [15].
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The expected total payo�, when starting from x0 and using strategies SI and SII, is obtained as a sum of
�nal payo� and running payo�

Ex0
SI ,SII

[F(xó) + å
2
ó−1

∑
i=0

f(xi)] := ∫
H∞

(F(xó(ø)) + å
2
ó−1

∑
i=0

f(xi))dℙ
x0
SI ,SII

(ø).

The value of the game for Max in x0 ∈ Ω is given by

uåI (x0) := sup
SI
inf
SII
Ex0

SI ,SII
[F(xó) + å

2
ó−1

∑
i=0

f(xi)],

while the value of the game for Minnie is given by

uåII(x0) := infSII
sup
SI
Ex0

SI ,SII
[F(xó) + å

2
ó−1

∑
i=0

f(xi)].

If a function u is de�ned inΩå, u = F on Γå and

u = uåI = u
å
II

inΩ, then u is the value of the game.
The next two lemmas guarantee that the game has a value which satis�es DPP (1.1). For similar results

without a running payo�, see [16, Theorems 2.1, 2.2, 3.2].

Lemma 2.1. For given payo�s and å > 0, there is a unique Borel measurable function uå : Ωå → ℝ, uå = F on Γå,
which satis�es DPP (1.1) for all x ∈ Ω.

Proof. First we show the existence. Let (uk)∞k=0 be a sequence of functions Ωå → ℝ such that uk = F on Γå for
all k ∈ ℕ, u0 = infΓå F inΩ and

uk+1(x) =
á
2
{ sup

Bå(x)
uk + infBå(x)

uk} + â −∫
Bå(x)

ukdy + å
2f(x)

for all k ∈ ℕ and x ∈ Ω. If k ≥ 1 and uk ≥ uk−1, then

uk+1(x) ≥
á
2
{ sup

Bå(x)
uk−1 + infBå(x)

uk−1} + â −∫
Bå(x)

uk−1dy + å
2f(x) = uk(x)

for all x ∈ Ω. Since f > 0, we have u1 ≥ u0. By induction, the sequence (uk) is increasing.
The sequence (uk) is also bounded. LetD = diam(Ω) andN = supΩ f. Note that for any point y0 ∈ Ω there

is a sequence (yi)
2D/å
i=0 for which |yi+1 − yi| ≤

å
2 and y2D/å ∈ Γå. Choose an arbitrary k0 ∈ ℕ. We may assume

sup
Ω

uk0 ≥ supΓå
F.

Choose a point x0 ∈ Ω such that

uk0 (x0) > (1 −
1
2
(
á
2
)
2D/å

) sup
Ω

uk0 .

Let (xj)
J
j=0 ⊂ Ωå be a sequence for which |xj+1 − xj| ≤

å
2 , xJ ∈ Γå and J ≤ 2D

å . By using the rough estimates

sup
Ωå

uk0−1 ≤ sup
Ω

uk0 ,

inf
Bå(xj)

uk0−1 ≤ uk0 (xj)

and DPP we obtain
uk0 (x0) ≤ (

á
2
+ â) sup

Ω
uk0 +

á
2
uk0 (x1) + å

2N.
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Repeating this estimate for the values uk0 (xj), j ∈ {1, . . . , J}, we get

uk0 (x0) ≤ (
á
2
+ â) sup

Ω
uk0

2D/å

∑
j=0

(
á
2
)
j
+ å2N

2D/å

∑
j=0

(
á
2
)
j

≤ (1 − (
á
2
)
2D/å

) sup
Ω

uk0 + 2å
2N.

Remembering how x0 was chosen, we have

sup
Ω

uk0 ≤ 4å
2N (

2
á
)
2D/å

.

Since k0 was arbitrary and the right hand side does not depend on k0, the sequence (uk) is bounded. Hence
it converges pointwise to a bounded, Borel measurable limit function u. We show that the convergence is
uniform. Suppose not. Since a sequence supΩå

(u − uk) is positive, decreasing and bounded, we have

M = lim
k
sup
Ωå

(u − uk) > 0.

If 1 ≤ k1 ≤ k2, we have

max { sup
Bå(x)

uk2 − sup
Bå(x)

uk1 , infBå(x)
uk2 − infBå(x)

uk1} ≤ sup
Bå(x)

(u − uk1 )

for all x ∈ Ω. Using DPP we estimate

uk2+1(x) − uk1+1(x) ≤ á sup
Bå(x0)

(u − uk1 ) + â −∫
Bå(x)

(u − uk2 )dz. (2.1)

Fix ä > 0. Select k1 such that
sup
Ωå

(u − uk1 ) <M + ä

and
sup
x∈Ω

â −∫
Bå(x)

(u − uk1 )dz ≤ ä.

Then pick y ∈ Ω such that u(y) − uk1 (y) >M − ä, and �nally k2 ≥ k1 such that u(y) − uk2 (y) < ä. Then

uk2+1(y) − uk1+1(y) >M − 2ä,

and since á < 1, the estimate (2.1) contradicts the assumption M > 0 when ä is small enough. Since the
convergence is uniform, the limit function u satis�es DPP (1.1).

In the proof of uniqueness the running payo� plays a minor role, so we just explain the ideas and refer to
the proof of [16, Theorem 2.2] for details. Assume that u and v are de�ned inΩå, satisfy DPP inΩ and u = F = v
on Γå. Assume that u(y) > v(y) for some y ∈ Ω. Since u − v is bounded, we have

sup
Ω

(u − v) =: M > 0.

Using DPP, we can estimate

u(x) − v(x) ≤
á
2
( sup
Bå(x)

u(x) − sup
Bå(x)

v(x)) +
á
2
( inf
Bå(x)

u(x) − inf
Bå(x)

v(x)) + â −∫
Bå(x)

(u − v)dz + f(x) − f(x)

≤ áM + â −∫
Bå(x)

(u − v)dz.

Because of absolute continuity of the integral, a set

G := {x : u(x) − v(x) =M}

is non-empty, and if x0 ∈ G, then u − v =M almost everywhere in a ball Bå(x0). This contradicts the assump-
tion that G is bounded. A similar contradiction follows if v(y) > u(y) for some y ∈ Ω. Hence u = v inΩå.



E. Ruosteenoja, Regularity of game value functions | 5

Lemma 2.2. Given the payo�s and å > 0, the tug-of-war with noise and running payo� has a unique value func-
tion uå := u

å
I = u

å
II which satis�es DPP (1.1) inΩ.

Proof. By Lemma 2.1, there is a unique function uå, uå = F in Γå, satisfying DPP (1.1). We show that

uåII ≤ uå ≤ u
å
I ≤ u

å
II.

Since

sup
SI
Ex0

SI ,SII
[F(xó) + å

2
ó−1

∑
i=0

f(xi)] ≥ u
å
I

for all strategies SII, we get uåI ≤ u
å
II.

Next we show that uå ≤ uåI . Max follows a strategy SMax
I in which from xk−1 he steps to a point xk ∈ Bå(xk−1)

so that for �xed ç > 0
uå(xk) ≥ sup

Bå(xk−1)
uå − ç2

−k.

Minnie uses a strategy SII. Using DPP for uå at a point xk−1, we estimate

Ex0
SMax
I ,SII

[uå(xk) + å
2
k−1

∑
i=0

f(xi) − ç2
−k|Fk−1]

≥
á
2
{ sup
Bå(xk−1)

uå − ç2
−k + inf

Bå(xk−1)
uå} + â −∫

Bå(xk−1)

uådy + å
2f(xk−1) + å

2
k−2

∑
i=0

f(xi) − ç2
−k

= uå(xk−1) + å
2
k−2

∑
i=0

f(xi) − ç2
−k(1 +

á
2
)

≥ uå(xk−1) + å
2
k−2

∑
i=0

f(xi) − ç2
−(k−1).

Therefore the process

Mk := uå(xk) + å
2
k−1

∑
i=0

f(xi) − ç2
−k

for k ≥ 1, M0 = uå(x0) − ç, is a submartingale with respect to the strategies SMax
I and SII. Using the Optional

Stopping Theorem we obtain

uåI (x0) = sup
SI
inf
SII
Ex0

SI ,SII
[F(xó) + å

2
ó−1

∑
i=0

f(xi)]

≥ inf
SII
Ex0

SMax
I ,SII

[F(xó) + å
2
ó−1

∑
i=0

f(xi) − ç2
−ó]

= inf
SII
Ex0

SMax
I ,SII

[uå(xó) + å
2
ó−1

∑
i=0

f(xi) − ç2
−ó]

≥ inf
SII
Ex0

SMax
I ,SII

[uå(x0) − ç]

= uå(x0) − ç.

Since ç > 0 was arbitrary, we have uåI (x0) ≥ uå(x0). The inequality

uåII(x0) ≤ uå(x0)

follows from a symmetric argument, so
uå = u

å
I = u

å
II

inΩ. Hence uå is the value of the game.

The next two lemmas are useful tools in estimating the value function.
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Lemma 2.3. Let ó be the stopping time of the game and let ó∗ ≤ ó be a stopping time with respect to the
�ltration Fk. Then

uå(y) ≥ infSII
Ey

SMax
I ,SII

[uå(xó∗ ) + å
2
ó∗−1

∑
i=0

f(xi)]

for any �xed strategy SMax
I , and

uå(y) ≤ sup
SI
Ey

SI ,SMin
II
[uå(xó∗ ) + å

2
ó∗−1

∑
i=0

f(xi)]

for any �xed strategy SMin
II .

Proof. We only prove the �rst inequality, since the second follows from a similar argument. Max has
�xed a strategy SMax

I . Let ç > 0. Minnie follows a strategy SMin
II in which from xk−1 ∈ Ω she steps to a point

xk ∈ Bå(xk−1) in which
uå(xk) ≤ infBå(xk−1)

uå + ç2
−k.

Let us �rst prove that

Mk := uå(xk) + å
2
k−1

∑
i=0

f(xi) + ç2
−k

for k ≥ 1,M0 = uå(x0) + ç, is a supermartingale under the strategies SMax
I and SMin

II .

Ex0

SMax
I ,SMin

II
[Mk|Fk−1] ≤

á
2
{ sup
Bå(xk−1)

uå + infBå(xk−1)
uå + ç2

−k} + â −∫
Bå(xk−1)

uådy + å
2
k−1

∑
i=0

f(xi) + ç2
−k

≤ uå(xk−1) + å
2
k−2

∑
i=0

f(xi) + ç2
−(k−1) =Mk−1.

HenceMk is a supermartingale, and we get

inf
SII
Ey

SMax
I ,SII

[uå(xó∗ ) + å
2
ó∗−1

∑
i=0

f(xi)] ≤ E
y
SMax
I ,SMin

II
[uå(xó∗ ) + å

2
ó∗−1

∑
i=0

f(xi) + ç2
−ó∗]

≤ Ey
SMax
I ,SMin

II
[M0] = uå(y) + ç.

Since ç > 0 was arbitrary, the result follows.

Lemma 2.4. If vå and uå are value functions with payo� functions fv and Fv for vå, fu and Fu for uå, and fv ≥ fu,
Fv ≥ Fu, then vå ≥ uå.

Proof. Max plays with a strategy SI and Minnie follows a strategy SMin
II in which from xk−1 ∈ Ω she steps to a

point xk ∈ Bå(xk−1) in which
v(xk) ≤ infBå(xk−1)

v + ç2−k

for some �xed ç > 0. Then

Ex0

SI ,SMin
II
[v(xk) + å

2
k−1

∑
i=0

fu(xi) + ç2
−k |Fk−1] ≤

á
2
{ inf
Bå(xk−1)

v + ç2−k + sup
Bå(xk−1)

v} + â −∫
Bå(xk−1)

vdy + å2
k−1

∑
i=0

fu(xi) + ç2
−k

≤ v(xk−1) + å
2
k−1

∑
i=0

fu(xi) − å
2fv(xk−1) + ç2

−(k−1)

≤ v(xk−1) + å
2
k−2

∑
i=0

fu(xi) + ç2
−(k−1),

since v is a value function and fv ≥ fu. Thus

Mk = v(xk) + å
2
k−1

∑
i=0

fu(xi) + ç2
−k
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for k ≥ 1, M0 = vå(x0) + ç, is a supermartingale. Since Fv ≥ Fu on Γå, we deduce by the Optional Stopping
Theorem that

uå(x0) = infSII
sup
SI
Ex0

SI ,SII
[Fu(xó) + å

2
ó−1

∑
i=0

fu(xi)]

≤ sup
SI
Ex0

SI , SMin
II

[Fv(xó) + å
2
ó−1

∑
i=0

fu(xi) + ç2
−ó]

≤ sup
SI
Ex0

SI , SMin
II

[M0]

= v(x0) + ç.

Since ç was arbitrary, this proves the claim.

3 Stopping time estimates and regularity lemmas
Recall that since the running payo� is positive, the value function uå is bounded from below by infΓå F. In the
proof of Lemma 2.1 we saw that uå is bounded from above by

max { sup
Γå

F, 4å2(
2
á
)
2 diam(Ω)/å

sup
Ω

f}.

Unfortunately, this upper bound depends on å. Using the lemmas of Section 2, we can now show that the
value functions uå for di�erent å are uniformly bounded. The idea is to �x for Minnie a strategy in which she
tries to push the token to a certain boundary point. No matter which strategy Max uses, the expected value
of the stopping time can be estimated so that the total e�ect of the running payo� is under control.

Lemma 3.1. For given payo�s F and f, there is a constant C > 0, independent of å, such that

uå ≤ C(sup
Γå

F + sup
Ω

f).

Proof. Fix å > 0 and let x0 ∈ Ω. Choose z ∈ ℝn \ Ωå, then r > 0 such that Br(z) ⊂ ℝ
n \ Ωå, and �nally R > 0

such thatΩå ⊂ BR/2(z). Let v be a solution to the problem

{{{{{{
{{{{{{
{

Δv = −2(n + 2) in BR+å \ Br(z),

v = 0 on àBr(z),
àv
àí
= 0 on àBR+å(z),

where àv
àí is the normal derivative. As discussed in the proof of [19, Lemma 4.5], the function v is concave

in r = |x − z|, satis�es

v(x) = −∫
Bå(x)

vdy + å2 (3.1)

and can be extended as a solution to the same equation to Br(z) \ Br−å(z) so that equation (3.1) holds also near
the boundary àBr(z).

The game starts fromx0 ∈ Ω. Max playswith any strategy andMinnie playswith the strategy SMin
II inwhich

from a point xk−1 ∈ BR(z) she moves to a point xk for which

v(xk) ≤ infBå(xk−1)
v +

â
á
å2.

Let ó be the smallest k for which xk ∈ BR(z) \ Ω and ó∗ the smallest k for which xk hits the complement
of BR(z) \ Br(z). Then ó ≤ ó∗ for any game sequence (xk). Let us estimate the expected value of ó∗. By radial
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concavity of v we get

Ex0

SI ,SMin
II
[v(xk)|Fk−1] ≤

á
2
{ sup
Bå(xk−1)

v + inf
Bå(xk−1)

v +
â
á
å2} + â −∫

Bå(xk−1)

vdy

≤ áv(xk−1) +
â
2
å2 + â(v(xk−1) − å

2)

= v(xk−1) −
â
2
å2.

HenceMk := v(xk) + k
â
2 å

2 is a supermartingale. In particular, we have

Ex0

SI ,SMin
II
[Mó∗ ] ≤ v(x0) ≤ C,

where C is independent of å. On the other hand, since v(xó∗ ) = 0, we have E[Mó∗ ] ≥
â
2 å

2Eó∗. Hence

E[ó] ≤ E[ó∗] ≤ Cå−2.

Then

uå(x0) ≤ sup
SI
Ex0

SI ,SMin
II
[F(xó) + å

2
ó−1

∑
i=0

f(xi)] ≤ C(sup
Γå

F + sup
Ω

f).

Since x0 ∈ Ω and å > 0 were arbitrary, the proof is complete.

In the proof of Theorem 4.1 we need the following lemma, which is proven in the appendix of [15].
Put a token to the point (0, t) ∈ B2r(0) × [0, 2r] ⊂ ℝ

n+1 and �x r > 0. From a point (xj, tj), with probability á
2

the token moves to the point (xj, tj − å), and with the same probability to (xj, tj + å). With probability â the
token moves to the point (xj+1, tj), where xj+1 is randomly chosen from the ball Bå(xj) ⊂ ℝ

n.

Lemma 3.2. The probability that the token does not escape the cylinder through its bottom is less than

C(p, n)(t + å)
r

for all å > 0 small enough.

Also the next lemma is needed in the proof of Theorem 4.1, because it describes the expected total e�ect of
the running payo� under the strategies used there.

Let 0 < å < t0 < 1 and start a randomwalk from t0 as follows. From thepoint tj−1 we stepwithprobability á
2

to tj = tj−1 + å, with the same probability to tj = tj−1 − å, and with probability âwe do not move, tj = tj−1. The
random walk stops when xj ∈ ℝ \ (0, 1) for the �rst time. Let ó be the stopping time.

Lemma 3.3. In the random walk described above,

E[ó] ≤ 5t0á
−1å−2.

Proof. Since
E[t2j |t0, . . . , tj−1] =

á
2
(tj−1 + å)

2 +
á
2
(tj−1 − å)

2 + ât2j−1 = t
2
j−1 + áå

2,

we have
E[(t2j − jáå

2)|t0, . . . , tj−1] = t
2
j−1 − (j − 1)áå

2.

Hence also (t2j − jáå
2) is a martingale. Let p = ℙ(xó ≤ 0). Then

t0 = Etó ≥ p(−å) + (1 − p) = −p(å + 1) + 1.

For the function f : [0,∞) → ℝ, f(x) = (1 − t0)(1 + x)−1 + x + t0 − 1 it holds that f(0) = 0 and f� ≥ 0, so we
have

p ≥ (1 − t0)(1 + å)
−1 ≥ 1 − t0 − å.

Since (t2j − jáå
2) is a martingale, we have

t20 = t
2
0 − 0 ⋅ áå

2 = E(t2ó − óáå
2) ≤ på2 + (1 − p)(1 + å)2 − áå2Eó.
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We can estimate

Eó ≤ å−2(på2 + (1 − p)(1 + å)2 − t20)

= å−2á−1((1 + å)2 − t20 + på
2 − p(1 + å)2)

≤ å−2á−1((1 + å)2 − t20 − p)

≤ å−2á−1((1 + å)2 − t20 + t0 + å − 1)

= å−2á−1(å2 + 3å + t0 − t
2
0)

≤ å−2á−1(t0 + 4å)

≤ 5t0á
−1å−2.

The next two lemmas are needed in the proof of Harnack’s inequality. The �rst is a simple local comparison
estimate, and the second gives estimates for inf uå in balls of radius 2å < r < 1.

Lemma 3.4. Let uå > 0 be a value function and x, y ∈ BR(z) ⊂ Ω, |x − y| ≤ 10å. Then

uå(x) ≥ (
á
2
)
20
uå(y).

Proof. Start the game from x. Max uses a strategy SMax
I in which he takes å

2 -step towards y, and jumps to y
if possible. The game is stopped when the token reaches either y or Ωå \ BR(z). Let this stopping time be ó∗.
Since the probability to stop at y is bigger than ( á2 )

20, we obtain from Lemma 2.3

uå(x) ≥ infSII
Ex0

SMax
I ,SII

[uå(xó∗ )] + 20å
2 inf

Ω
f ≥ (

á
2
)
20
uå(y).

Lemma 3.5. Let uå > 0 be a value function and B30R(y) ⊂ Ω for some R > 0. For z ∈ B2R(y) and r ∈ (2å, R)

inf
Br(z)

uå ≤ Cr
−nuå(y),

where C = C(p, n)

Proof. Without a loss of generality, we may assume that y = 0 and R = 1. Fix å > 0 and r ∈ (2å, 1). Let
U = B4(z) \ Br(z). There is no loss of generality in assuming that 0 ∈ U.

De�ne

v(x) =
{
{
{

(|x − z|2−n − 42−n)(r2−n − 42−n)−1 if n ≥ 3,
log( 4

|x−z| ) log(
4
r )
−1 if n = 2.

Then v is harmonic in U with boundary values

{
v = 1 on àBr(z),

v = 0 on àB4(z).

In both the cases there is a constant c > 0 such that

v(0) ≥ crn.

The game starts from x0 = 0. Minnie uses any strategy and Max uses the following strategy SMax
I : In a ball

Bå(xk−1), he aims to a point xk where

v(xk) ≥ sup
Bå(xk−1)

v − çrnå2,

where ç > 0 is selected so that the stopping time estimation of the proof of Lemma 3.1 is at our disposal. The
game is stopped at the å-boundary Γå of U and employing the boundary values (uå)|Γå . The corresponding
stopping time is ó∗.

We want to estimate the probability of stopping at the inner boundary.
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Since y Ü→ v(x + y) is radially decreasing and the map 0 < t Ü→ v(x + ty0) is convex for any �xed y0 ̸= 0,
we obtain

Ex0
SMax
I ,SII

[v(xk+1)|x0, x1, . . . , xk] ≥
á
2
{ sup
Bå(xk)

v − çrnå2 + inf
Bå(xk)

v} + â −∫
Bå(xk)

vdy

≥ áv(xk) + âv(xk) − çr
nå2

= v(xk) − çr
nå2.

HenceMk := v(xk) + kçr
nå2 is a submartingale. Denote byP the probability of stopping at the inner boundary.

The Optional Stopping Theorem gives

crn ≤ v(0) = v(x0) ≤ E
x0
SMax
I ,SII

[v(xó∗ ) + çr
nå2ó∗] ≤ 2n+1P + çC1r

n,

where C1 > 0 is a constant such that Eó∗ ≤ C1å
−2, and the term 2n+1P comes from the fact that v ≤ 2n+1

in Br(z) \ Br−å(z). We can select ç so that çC1 < c. Thus P ≥ c�rn, where c� > 0. Using Lemma 2.3 we obtain

uå(0) = uå(x0) ≥ infSII
Ex0

SMax
I ,SII

[uå(xó∗ ) + å
2ó∗ inf

Ω
f]

≥ P inf
Br(z)

uå

≥ c�rn inf
Br(z)

uå.

We get
inf
Br(z)

uå ≤ (c
�rn)−1uå(0) ≤ Cr

−nuå(0),

where C = c�−1.

4 Lipschitz and Harnack estimates
We are ready to prove the main results, Lipschitz continuity and Harnack’s inequality. In the proof of the
following theoremwe use the cancellation strategy idea that was introduced in the proof of [15, Theorem 3.2].
Because of Lemma 3.3, the running payo� behaves well under this strategy.

Theorem 4.1. Let uå > 0 be a value function and B6R(a) ⊂ Ω, where R > å. When å < r ≤ R, we have

osc(uå, Br(a)) ≤ C
r
R
[osc(uå, B6R(a)) + osc(f, B6r(a))], (4.1)

where C is a constant depending only on p and n.

Proof. Take x, y ∈ Br(a), |x − y| ≥ å, and then z ∈ B2r(a) such that

|x − z| = |y − z| = |x − y|.

When the game starts from x, Minnie plays according to the following cancellation strategy SMin
II : If Max has

wonmore coin tosses thanMinnie, then she cancels one of themoves ofMax. Otherwise, shemoves towards z
length å

2 or keeps the token in z. We stop the game if Minnie wins 3|x−z|
å coin tosses more than Max, or if Max

wins at least 2R
å times more than Minnie, or if the length of the sum of random vectors exceeds 2R. Then the

game stays in B6R. For the game that starts from y, Max follows the cancellation strategy SMax
I , and we de�ne

stopping time ó∗ as previously. For this stopping time ó∗ ≤ ó, where ó is the normal stopping time of the game.
Hence Lemma 2.3 is at our disposal.

Notice that by putting

t0 =
3|x − y|

3|x − y| + 2R
,

Lemma 3.3 gives
E[ó∗] ≤ 5á−1

3|x − y|
3|x − y| + 2R

å−2 ≤ C1
|x − y|

R
å−2.
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LetP be the probability that the game, started from x, ended becauseMinniewonmore (hereafterMinw).
By symmetry, P is also the probability that the game, started from y, ended because Maxwonmore (hereafter
Max w). Then, because of the cancellation e�ect, by using Lemma 2.3 we can estimate

|uå(x) − uå(y)| ≤
!!!!!!P(E

x
SI ,SMin

II
[uå(xó) | Min w] − Ey

SMax
I ,SII

[uå(xó) | Max w])
!!!!!!

+ (1 − P) oscB6R(z0) uå + å
2E[ó∗] oscB6R(z0) f

≤ (1 − P) oscB6R(z0) uå + C1|x − y|R
−1 oscB6R(z0) f

≤ C
r
R
[osc(uå, B6R(a)) + osc(f, B6R(a))]

for C = C(p, n), since by Lemma 3.2 we have

1 − P ≤
C2|x − y|

R
,

where C2 depends only on p and n.
If x, y ∈ Br and |x − y| < å, we can take a point z ∈ Br such that |x − z| ≥ å and |z − y| ≥ å. By the triangle

inequality the estimate follows from previous estimate.

Next we prove Harnack’s inequality. The idea is to show that if Harnack’s inequality does not hold for a �xed,
large constant, then by iteration argument the value functions are unbounded when å is small. The cumula-
tive e�ect of oscillations of the running payo� during iteration seems to cause trouble, but surprisingly, it is
not even necessary to require the running payo� to be continuous.

Theorem 4.2. Let uå > 0 be a value function. AssumingB30r(a) ⊂ Ω, where r > 0, there exists a positive constant
K, depending only on p and n, for which

sup
Br(a)

uå ≤ K( inf
Br(a)

uå + sup
Ω

f).

Proof. Without a loss in generality, we may assume that r = 1 and a = 0. For convenience of notation, let

N := sup
Ω

f.

First we show that
inf
B1(0)

uå > 0. (4.2)

Suppose not. Then there is a converging sequence (xj) ⊂ B1(0), xj → x0, such that uå(xj) <
1
j . According to

Lemma 3.4,
uå(y) ≥ (

á
2
)
20
uå(x0)

when |y − x0| < 10å. This is a contradiction, so (4.2) holds.
Pick �rst a point x1 ∈ B1(0) such that

uå(x1) < 2 infB1(0)
uå,

and then a point x2 ∈ B2(x1) such that

M1 := uå(x2) ≥ sup
B2(x1)

uå −N.

For k ≥ 2, let Rk = 2
1−k and pick xk+1 ∈ BRk

(xk) such that

Mk := uå(xk+1) ≥ sup
BRk

(xk)
uå −N.

We are going to show that
M1 < (2

1+2nC)1+2nuå(x1) + 2N, (4.3)

where C = C(p, n) is a constant such that Lemma 3.5 and Theorem 4.1 are valid.
On the contrary, suppose that inequality (4.3) does not hold. Put ä := (21+2nC)−1. Let us showby induction

that the counter assumption yields
Mk ≥ 2C(äRk+1)

−2nuå(x1). (4.4)
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Notice �rst that from a straightforward calculation we get

2C(äRk+1)
−2n = (2Cä)−k+1(21+2nC)1+2n. (4.5)

By observation (4.5) the case k = 1 holds. Assume that (4.4) holds for k ≤ j. Let k ∈ {2, . . . , j + 1}. Then

inf
BäRk

(xk)
uå ≤ C(äRk)

−2nuå(x1) ≤
Mk−1

2
=

uå(xk)
2

, (4.6)

where we used a weakened form of Lemma 3.5 and the induction assumption that (4.4) holds for k ≤ j.
By Theorem 4.1,

osc(uå, BäRk
(xk)) ≤ Cä(osc(uå, BRk

(xk)) + osc(f, BRk
(xk))),

or in other words,
osc(uå, BRk

(xk)) ≥ (Cä)
−1 osc(uå, BäRk

(xk)) − osc(f, BRk
(xk)). (4.7)

By using �rst (4.7) and then (4.6) we obtain

Mk ≥ osc(uå, BRk
(xk)) −N

≥ (Cä)−1( sup
BäRk

(xk)
uå − infBäRk

(xk)
uå) − osc(f, BRk

(xk)) −N

≥ (Cä)−1(u(xk) − 2
−1u(xk)) − 2N

= (2Cä)−1Mk−1 − 2N.

Now we come to an important point, when we want an estimation between Mj+1 and M1. At �rst glance it
seems that the cumulative e�ect of the oscillation of running payo� is an issue, but it turns out to be under
control. We get

Mj+1 ≥ (2Cä)
−1Mj − 2N

≥ (2Cä)−1[(2Cä)−1Mj−1 − osc(f, BRj
(xj))] − 2N

≥ (2Cä)−jM1 − 2N
j

∑
i=1

(2Cä)−i+1.

Remembering the counter assumption M1 ≥ (2
1+2nC)1+2nuå(x1) + 2N and noticing that 2Cä = 2−2n < 1

2 , we
obtain

Mj+1 ≥ (2Cä)
−j(21+2nC)1+2nuå(x1) + 2N[(2Cä)−j −

j

∑
i=1

(2Cä)−i+1] ≥ (2Cä)−j(21+2nC)1+2nuå(x1).

Taking into account the observation (4.5), the induction is complete.
Take k0 such that äRk0 ∈ (2å, 4å]. By Lemma 3.4,

inf
BäRk0

(xk0 )
uå ≥ (

á
2
)
20
sup

BäRk0
(xk0 )

uå.

By using Lemma 3.5 and inequality (4.4) we obtain

(
á
2
)
−20
≥
supBäRk0

(xk0 )
uå

infBäRk0
(xk0 )

uå

≥
uå(xk0 )

C(äRk0 )
−nuå(x1)

=
Mk0−1

C(äRk0 )
−nuå(x1)

≥
(2Cä)2−k0 (21+2nC)1+2n

C(ä21−k0 )−n

≥ Ĉ(Cä2n+1)−k0

= Ĉ2nk0 ,
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where Ĉ is independent of k0. This is a contradictionwhen k0 is big enough, or in other words, when å is small
enough. Therefore inequality (4.3) holds and we get

sup
B1(0)

uå ≤ sup
B2(x1)

uå ≤M1 +N

≤ (21+2nC)1+2nuå(x1) + 3N

≤ 2(21+2nC)1+2n inf
B1(0)

uå + 3 sup
Ω

f

≤ K( inf
B1(0)

uå + sup
Ω

f),

whereK depends only on p and n.

5 Relation to PDE
In this section we study local regularity of viscosity solutions to the inhomogeneous p-Laplace equation

−ΔN
pu = f (5.1)

in Ω. As before, p > 2. In the whole section f > 0 is continuous and bounded in Ω, and boundary values of
viscosity solutions are required to be continuous and bounded. Recall that

ΔN
pu =

1
p
|∇u|2−pΔpu

is the normalized p-Laplacian. Here

Δpu = div(|∇u|
p−2∇u) = |∇u|p−2((p − 2)ΔN

∞u + Δu),

where
ΔN

∞u = |∇u|−2Δ∞u = |∇u|−2⟨D2u ∇u, ∇u⟩.

By [12, Proposition 3], we can de�ne viscosity solutions to (5.1) as follows.

De�nition 5.1. A continuous function u is a viscosity solution to (5.1) at x ∈ Ω if and only if every C2-func-
tion õ, ∇õ(x) ̸= 0 orD2õ(x) = 0, that touches u from below in x ∈ Ω, satis�es

−ΔN
põ(x) ≥ f(x),

and every C2-function õ, ∇õ(x) ̸= 0 orD2õ(x) = 0, that touches u from above in x ∈ Ω, satis�es

−ΔN
põ(x) ≤ f(x).

Note that if a test function õ satis�es ∇õ(x) = 0 andD2õ(x) = 0 for some x ∈ Ω, by the convergence argument
explained in [12] we can set

ΔN
põ(x) = 0.

The idea for showing local regularity properties for viscosity solutions to (5.1) is to notice that viscosity
solutions can be approximated uniformly by value functions of tug-of-war with noise and running payo�.
We need the following Arzela–Ascoli type lemma, which is proven in [19, Lemma 4.2].

Lemma 5.2. Let {uå : Ω → ℝ, å > 0} be a uniformly bounded set of functions such that given ç > 0, there are
constants r0 and å0 such that for every å < å0 and any x, y ∈ Ω with |x − y| < r0 it holds that

|uå(x) − uå(y)| < ç.

Then there exists a uniformly continuous function u : Ω → ℝ and a subsequence still denoted by uå such
that uå → u uniformly inΩ as å → 0.
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Let u be a viscosity solution to (5.1) in Ω. We may assume 0 ∈ Ω. Choose R > 0 such that B2R(0) ⊂ Ω. Let uå,
0 < å < R, be the value function of tug-of-war with noise and running payo� in BR(0), where running payo�
is f from equation (5.1), and �nal payo� is u on the boundary strip

Γå = {x ∈ Ω \ BR(0) : dist(x, àBR(0)) ≤ å}.

Lemma 5.3. The sequence (uå), de�ned in BR(0) ∪ Γå as described above, satis�es the conditions of Lemma 5.2
in BR(0).

Proof. By Lemma 3.1, the sequence (uå) is uniformly bounded in BR(0). Fix ç > 0. Since u is uniformly contin-
uous in BR(0) ∪ Γå, there is r1 > 0 such that x, y ∈ BR(0) ∪ Γå, |x − y| < r1, implies

|u(x) − u(y)| <
ç
2
.

When x, y ∈ àBR(0), the same estimate holds between uå(x) and uå(y) for all 0 < å < R, since uå = u on Γå.
Let us next work out the case x ∈ BR(0), y ∈ àBR(0). Select 0 < s < S < r1 and z ∈ Γå such that y ∈ àBs(z)

and B2S(z) ⊂ BR(0) ∪ Γå. Consider a function v : B2S(z) \ Bs(z) → ℝ,

{{{{{{{
{{{{{{{
{

Δv = −4(n + 2) sup
Ω

f in B2S(z) \ Bs(z),

v = sup
BR(z)

u on àBs(z),

v = sup
Γå

u on àB2S(z).

Note that this function satis�es
v(a) = −∫

Bå(a)

vdy + 2å2 sup
Ω

f

when Bå(a) ⊂ B2S(z) \ Bs(z).
Let r2 < S − s be so small that

sup
Br2 (y)

v < sup
BS(z)

u +
ç
2
.

Pick x ∈ Br2 (y) ∩ BR(0). Since |x − y| < S − s, by the triangle inequality x ∈ BR(0) ∩ BS(z). Let å < S. We start
a game from x0 = x. Minnie plays with the following strategy SMin

II : at xk−1, she aims to a point xk where

v(xk) ≤ infBå(xk−1)
v +

1
2
å2 sup

Ω
f.

We stop the game when xk ∈ B2S(z) \ (BS(z) ∩ BR(0)) for the �rst time. Let this stopping time be ó∗.
Max plays with a strategy SI. From radial convexity of v we obtain

Ex0

SI ,SMin
II
(v(xk)|Fk−1) ≤

á
2
{ sup
Bå(xk−1)

v + inf
Bå(xk−1)

v +
1
2
å2 sup

Ω
f} + â −∫

Bå(xk−1)

vdy

≤ áv(xk−1) +
á
4
å2 sup

Ω
f + âv(xk−1) − 2å

2 sup
Ω

f

≤ v(xk−1) − å
2 sup

Ω
f.

HenceMk := v(xk) + kå
2 supΩ f is a supermartingale, and we obtain

uå(x0) ≤ sup
SI
Ex0

SI ,SMin
II
[uå(xó∗ ) + å

2
ó∗−1

∑
i=0

f(xi)]

≤ sup
SI
Ex0

SI ,SMin
II
[v(xó∗ ) + ó

∗å2 sup
Ω

f]

≤ v(x0).
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We conclude that when x ∈ BR(0), y ∈ àBR(0), |x − y| < r2 and å < S, we have

|uå(x) − uå(y)| ≤ |uå(x0) − sup
BS(z)∩Γå

u| + | sup
BS(z)∩Γå

u − uå(y)| < ç.

Finally, let us examine the case x, y ∈ BR(0). If dist(x, àBR(0)) <
r2
5 and |x − y| < r2

5 , there is y0 ∈ àBR(0)
such that |x − y0| < r2 and |y − y0| < r2. Then

|uå(x) − uå(y)| < 2ç.

Hence we can assume that x, y ∈ BR−r2/3(0), and the asymptotic estimate

|uå(x) − uå(y)| < ç

follows straightforwardly from Theorem 4.1.

The ideas in the proof of Lemma 5.4 are similar to those used in the proof of [19, Theorem 4.9], where the
uniform limit of the value functions of tug-of-war with noise was shown to be a viscosity solution to the
homogeneous p-Laplace equation.

Lemma 5.4. Let u be a viscosity solution to (5.1) in Ω and B2R(0) ⊂ Ω. Then u can be approximated uniformly
by value functions of tug-of-war with noise and running payo� in BR(0).

Proof. Let (uå) be a sequence of value functions in BR(0) with �nal payo� u and running payo�

f =
pâ

2(n + 2)
f.

By Lemma 5.2, it follows from Lemma 5.3 that there is a uniformly continuous function v in BR(0), v = u
on àBR(0), such that there is a subsequence of (uå) converging uniformly to v in BR(0)when å → 0. For conve-
nience of notation, we denote this subsequence (uå). We are going to show that the function v is a viscosity
solution to (5.1) in BR(0). By comparison principle (see, e.g., [12, Theorem 5] and also [14]), we will con-
clude v = u in BR(0).

Choose a point x ∈ BR(0). We only work out the supersolution part, since the subsolution part is similar.
Let õ ∈ C2(B), ∇õ(x) ̸= 0 or D2õ(x) = 0, be de�ned in a neighborhood B of x, touching v from below in x.
We need to show that

p(ΔN
põ(x) + f(x)) = (p − 2)Δ

N
∞õ + Δõ + pf(x) ≤ 0. (5.2)

If ∇õ(x) = 0 and D2õ(x) = 0, we have ΔN
põ(x) = 0 and inequality (5.2) cannot hold. Hence we can assume

that ∇õ(x) ̸= 0. From Taylor expansion results in [18] it follows that there is a point xå ∈ Bå(x) in the direction
of ∇õ(x) such that

á
2
{sup
Bå(x)

õ + inf
Bå(x)

õ} + â −∫
Bå(x)

õ(y)dy − õ(x)

≥
âå2

2(n + 2)
((p − 2)⟨D2õ(x)(

xå − x
|xå − x|

), (
xå − x
|xå − x|

)⟩ + Δõ(x)) + o(å2).

Since v is the uniform limit of the sequence (uå), there is a sequence (xå) ⊂ B converging to x so that

uå(y) − õ(y) ≥ −å
3

when y ∈ Bå(xå). Using the DPP characterization of uå, we obtain

å3 ≥ −õ(xå) +
á
2
{sup
Bå(x)

õ + inf
Bå(x)

õ} + â −∫
Bå(x)

õ(y)dy + å2f(xå).

Hence

−å3 ≥
âå2

2(n + 2)
((p − 2)⟨D2õ(x)(

xå − x
|xå − x|

), (
xå − x
|xå − x|

)⟩ + Δõ(x)) + å2f(xå) + o(å
2).
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Since f is continuous and ∇õ(x) ̸= 0, dividing by å2 and then letting å → 0 we get

0 ≥
â

2(n + 2)
((p − 2)ΔN

∞õ(x) + Δõ(x)) + f(x).

Remembering how the running payo� f was chosen, we have

0 ≥
â

2(n + 2)
((p − 2)ΔN

∞õ(x) + Δõ(x) + pf(x)).

Hence v is a viscosity supersolution to (5.1) in BR(0). By similar argument v is also a viscosity subsolution,
hence a viscosity solution. By the discussion in the beginning of the proof, the proof is complete.

Theorem 5.5. Nonnegative viscosity solutions of (5.1) are locally Lipschitz continuous and satisfy Harnack’s
inequality.

Proof. By the previous lemma, each viscosity solution can be approximated locally uniformly by value func-
tions. Hence, Harnack’s inequality for viscosity solutions follows immediately from Theorem 4.2. By Theorem
4.1, value functions are locally Lipschitz continuousup to the scale åwith a Lipschitz constant depending only
on p and n. Therefore viscosity solutions are locally Lipschitz continuous.

Acknowledgement: The author would like to thank Mikko Parviainen for many discussions and insightful
comments regarding this work.
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Abstract

We study local regularity properties of value functions of time-dependent tug-of-war games. For games 
with constant probabilities we get local Lipschitz continuity. For more general games with probabilities 
depending on space and time we obtain Hölder and Harnack estimates. The games have a connection to the 
normalized p(x, t)-parabolic equation ut = �u + (p(x, t) − 2)�N∞u.
© 2016 Published by Elsevier Inc.
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1. Introduction

In this paper we study local regularity properties of tug-of-war type games related to parabolic 
PDEs. First, we establish asymptotic Lipschitz continuity for value functions of the game with 
constant probabilities, and then continue analyzing the regularity of a more general game with 
space and time dependent probabilities that we call p(x, t)-game.

The value functions of this particular two player zero sum game satisfy the so called dynamic 
programming principle (hereafter DPP)
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uε(x, t) = α(x, t)

2
( sup
Bε(x)

u(y, t − ε2

2
) + inf

Bε(x)
u(y, t − ε2

2
))

+ β(x, t)

∫
Bε(x)

u(y, t − ε2

2
) dy,

which may arise for example from stochastic games or discretization schemes. In game terms, 
this equation can be heuristically interpreted as summing up the three different alternatives of the 
game round with the corresponding (x, t)-dependent probabilities while the step takes ε

2

2 time.
Lipschitz estimate for the game with constant probabilities is based on the good symmetry 

properties produced by utilizing cancellation strategies that allows us to directly obtain Lips-
chitz continuity. In the p(x, t)-case the symmetry properties and sharp cancellation effects break 
down. Moreover, global approaches to the problem are hampered by the of loss of translation 
invariance, which makes it hard to keep track of accumulated error.

Our proofs are of local nature. The idea of the proof for Hölder continuity of p(x, t)-game 
arises from the stochastic game theory: we start the game simultaneously at two points x and z
and try to pull the points closer to each other, where ‘closer’ is in terms of a suitable comparison 
function. In particular, in the stochastic terminology the process is a supermartingale. To show 
that we may pull the points closer in this sense, we may consider the process in the higher 
dimensional space by setting (x, z) ∈ R2n and then apply suitable strategies for such a game. 
There are several differences in the parabolic setting compared to the elliptic proofs in [17] and 
[16] related to controlling the dynamic effects. Indeed, in the Lipschitz proof we utilize estimates 
for probability distributions on different time instances whereas in the elliptic case it suffices to 
deal with the long time limit distribution. In the case of the p(x, t)-game the resulting DPP is in 
R2n+1, and the comparison function will have to take the time direction into account.

As an application, our results can be used to prove local Lipschitz continuity for the solutions 
to the normalized p-parabolic equation

ut = |∇u|2−p div(|∇u|p−2 ∇u) = �u + (p − 2)�N∞u,

where �N∞u = 〈D2u ∇u
|∇u| , 

∇u
|∇u| 〉 is the normalized or game theoretic infinity Laplacian. This equa-

tion has been recently studied by Jin and Silvestre [14], Banerjee and Garofalo [2], Does [7], as 
well as Manfredi, Parviainen and Rossi [19]. In the p(x, t)-case, we show that under suitable 
assumptions the value functions of the game converge to the unique viscosity solution of the 
Dirichlet problem to the normalized p(x, t)-parabolic equation

ut = �u + (p(x, t) − 2)�N∞u.

However, a priori our methods and results are not relying on the PDE techniques; rather they are 
quite different from those.

The connection between the infinity Laplacian and tug-of-war games was established by 
Peres, Schramm, Sheffield and Wilson in [22], for the p-Laplacian in [21] and for the normalized 
p-parabolic equation by Manfredi, Parviainen and Rossi in [19], see also [4].

This paper is organized as follows. In Section 2 we fix the notation and define the game. In 
Section 3 we assume that p(x, t) ≡ p > 2 is a constant and obtain local asymptotic Lipschitz 
continuity for value functions by using game-theoretic methods. In Section 4 we get Hölder 
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and Harnack estimates for the p(x, t)-game. In Section 5 it is proved that value functions of 
the p(x, t)-game converge uniformly to a viscosity solution of the normalized p(x, t)-parabolic 
equation. In Section 6 we show that there is a unique viscosity solution to the p(x, t)-parabolic 
equation with given continuous boundary data.

2. Preliminaries

Throughout the paper � ⊂ Rn is a bounded domain. If not mentioned otherwise, for T > 0, 
�T := � × (0, T ) is a parabolic cylinder with the parabolic boundary

�T := {∂� × [0, T ]} ∪ {� × {0}}.
For our game we also need the parabolic boundary strip of width ε > 0,

�ε
T :=

(
�ε × (−ε2

2
, T ]

)
∪
(

� × (−ε2

2
,0]

)
.

Here

�ε := {x ∈ Rn \ � : dist(x, ∂�) ≤ ε}
is the ε-boundary strip of �.

For a measurable function p : �T → (2, ∞), we define the functions α : �T → (0, 1) and 
β : �T → (0, 1),

α(x, t) = p(x, t) − 2

p(x, t) + n
, β(x, t) = n + 2

p(x, t) + n
.

Notice that α(x, t) + β(x, t) = 1 for all (x, t) ∈ �T .
Next we define a tug-of-war type game, which we call p(x, t)-game to emphasize the con-

nection with p(x, t)-Laplacian, see Section 5. The game is a zero sum stochastic game between 
Player I and Player II in �T . Fix ε > 0. First a token is placed at (x0, t0) ∈ �T . With probability 
α(x0, t0), the players flip a fair coin, and the winner of the toss moves the token to a point

(x1, t1) ∈ Bε(x0) × {t0 − ε2

2
},

according to his or her strategy. We use a notation Bε(x0) for an open ball centered at x0 with 
radius ε. With probability β(x0, t0), the token moves according to the uniform probability to a 
random point (x1, t1) in a set Bε(x0) × {t0 − ε2

2 }, and in this paper we call such moves random 
vectors for short. From (x1, t1) the game continues according to the same rules, and the token 
moves to a point

(x2, t2) ∈ Bε(x1) × {t1 − ε2

2
}.

We denote by (xτ , tτ ) ∈ �ε
T the first point of the sequence on �ε

T . Then Player II pays Player I the 
payoff F(xτ , tτ ), where F : �ε

T → [−M, M] is a given measurable payoff function. Naturally, 
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Player I tries to maximize the payoff and Player II tries to minimize it. The number of steps 
during the game is bounded,

τ ≤ 2ε−2t0 + 1 ≤ 2ε−2T + 1.

The value function uε of the game is

uε(x0, t0) = sup
SI

inf
SII

E(x0,t0)
SI,SII

[F(xτ , t − ε2

2
τ)],

where SI and SII are strategies of Player I and Player II. For further details on stochastic vocabu-
lary regarding tug-of-war games, we refer to [22].

Since the number of steps during the game is bounded, adding a bounded running payoff to 
the game would not cause any new difficulties. In the case of unlimited number of steps the 
situation is different, see [23].

A crucial property of value functions of tug-of-war type games is DPP characterization. In the 
parabolic case this characterization is much easier to verify than in the elliptic case. Moreover, 
proving DPP characterization for value functions of our game does not differ from the case where 
the probabilities α and β are space independent. The following two lemmas can be proved by 
using the techniques of [18]. We use the notation

∫
Br

udx := 1

|Br |
∫
Br

udx

for the mean value of a function u in a ball Br . Here |Br | denotes the Lebesgue measure of Br .

Lemma 2.1. For given ε > 0 and payoff function F on �ε
T , there is a unique measurable function 

u equal to F on �ε
T and satisfying the parabolic DPP

u(x, t) = α(x, t)

2
( sup
Bε(x)

u(y, t − ε2

2
) + inf

Bε(x)
u(y, t − ε2

2
))

+ β(x, t)

∫
Bε(x)

u(y, t − ε2

2
) dy

for (x, t) ∈ �T .

Lemma 2.2. Given ε > 0 and a bounded payoff function F on �ε
T , the value function uε satisfies 

the parabolic DPP.

A typical idea to estimate the value function uε is to fix a strategy for one of the players. We 
may also localize the situation by using a new stopping time τ ∗ ≤ τ . The following lemma is a 
standard tool for fixed strategies. Again we omit the proof which is similar to [23, Lemma 2.3].
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Lemma 2.3. If the game starts from (x0, t0) ∈ �T and τ ∗ < 2t0ε
−2 is a stopping time, then

uε(x0, t0) ≥ inf
SII

E(x0,t0)

S0
I ,SII

uε(xτ∗ , t0 − τ ∗

2
ε2)

for any fixed strategy S0
I of Player I, and

uε(x0, t0) ≤ sup
SI

E(x0,t0)

SI,S
0
II

uε(xτ∗ , t0 − τ ∗

2
ε2)

for any fixed strategy S0
II of Player II.

3. Lipschitz estimate for p-game

In this section we study local regularity properties of p(x, t)-games when p(x, t) ≡ p > 2 is 
a constant. Then the probability functions are also constants, α(x, t) ≡ α ∈ (0, 1) and β(x, t) ≡
β ∈ (0, 1). This game was defined in [19].

We start with constant p for simplicity: these games have symmetry properties suitable for 
cancellation strategy idea, developed in [17], to get asymptotic Lipschitz continuity. In order to 
establish this, we use the following stochastic estimate, which combines well known Hoeffding’s 
and Kolmogorov’s inequalities.

Lemma 3.1. Consider i.i.d. symmetric real-valued random variables Ym, m = 1, . . . , N , for 
which |Ym| ≤ b for some b > 0. Then for λ > 0 the following inequalities hold:

P(|Y1 + . . . + YN | ≥ λ) ≤ 2 exp

(
− λ2

2Nb2

)
,

P( max
1≤m≤N

|Y1 + . . . + Ym| ≥ λ) ≤ 2P(|Y1 + . . . + YN | ≥ λ).

When the game starts from (x0, t0) ∈ �T and Player I follows a cancellation strategy with 
target z, she tries to cancel the earliest move of Player I which she has not yet canceled. If there 
are no moves to cancel, she tries to pull the token to the direction of vector (z − x0) ∈ �. Notice 
that Player I pays no attention to random moves.

We want to use the cancellation strategy to prove asymptotic Lipschitz estimate for the 
p(x, t)-game with constant p. The two main difficulties are the possibility to reach the maxi-
mum number of steps too soon and the case of different time levels. We estimate the probability 
for reaching maximum number of steps in the proof of Theorem 3.2, and the problem of different 
time levels is solved in Theorem 3.3.

Theorem 3.2. Suppose that B6r (z0) ⊂ �, where 0 < ε < r <
(

αT
6

) 1
2 . Then, for points 

(x, t), (y, t) ∈ Br(z0) × ( 6r2

α
, T ) ⊂ �T and for sufficiently small ε, the value function uε sat-

isfies the Lipschitz estimate

|uε(x, t) − uε(y, t)| ≤ C(p,n)
|x − y|

r
‖uε‖∞ + C′(p,n)

ε

r
‖uε‖∞ .
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Proof. Because of the error term, we may suppose that |x − y| ≥ ε. Let z be the midpoint of 
[x, y] ⊂ � and suppose first that

uε(y, t) ≥ uε(x, t).

When the game starts from (x, t) =: (x0, t0), Player II follows the cancellation strategy with a 
target z. Let us define the stopping time τ ∗. There are four conditions to stop the game:

(1) Player II wins �|x − z|/ε� fair coin tosses more than Player I.
(2) Player I wins �r/ε� fair coin tosses more than Player II.
(3) The sum of random vectors has length larger than r .
(4) We reach the maximum number of steps.

When the game starts from (y, t) =: (y0, t0), Player I follows the cancellation strategy with target 
z, and we define τ ∗ as before by changing the roles of the players. By using the cancellation effect 
and Lemma 2.3, we obtain

|uε(x0, t0) − uε(y0, t0)| ≤ 2‖uε‖∞
k∑

j=1

P j + 2δ ‖uε‖∞ ,

where P j is the probability that τ ∗ = j and the game ended because of Condition 2 or 3, and δ
is the probability that the game ended because the maximum number of steps was reached. The 
number k is the maximum number of steps during the game, k = �2ε−2t0�.

We get an upper estimate for 
∑

P j from [17, Lemma 3.1]. The lemma gives an upper bound 
C(p, n)|x − y|/r for the probability P ′ that the tug-of-war with noise ends because of Condi-
tion 2 or 3. Since there is not Condition 4 in the elliptic case (there is not an upper bound for the 
number of steps during the game), we have

k∑
j=1

P j ≤ P ′ ≤ C(p,n)
|x − y|

r
.

Hence, we get

|uε(x, t) − uε(y, t)| ≤ C(p,n)
|x − y|

r
‖uε‖∞ + 2δ ‖uε‖∞ . (3.1)

The previous inequality also holds if uε(x, t) > uε(y, t), which can be seen by fixing a can-
cellation strategy for Player I when starting from (x, t) and for Player II when starting from 
(y, t).

The main part of this proof is to estimate the probability δ that the game ends when the 
maximum number �2t0/ε

2� of steps is reached. First we need a rough estimate for the number of 
fair coin tosses between the players during the game. Denote by Zm the Bernoulli variables with 
Zm ∈ {0, 1} and P(Zm = 1) = α. Define

A :=
{

l∑
m=1

Zm >
α

2
l for all l ≥ ε−1

}
.
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We estimate

P(Ac) = P

(
l∑

m=1

Zm ≤ α

2
l for some l ≥ ε−1

)

≤
∑

l≥ε−1

P

(
l∑

m=1

Zm ≤ α

2
l

)

≤
∑

l≥ε−1

P

(∣∣∣∣∣
l∑

m=1

Zm − lα

∣∣∣∣∣ ≥ α

2
l

)

=
∑

l≥ε−1

P

(∣∣∣∣∣
l∑

m=1

(Zm − α)

∣∣∣∣∣ ≥ α

2
l

)
.

Using Lemma 3.1 with Ym = Zm − α, λ = α
2 l, b = 1 and N = l gives

∑
l≥ε−1

P

(∣∣∣∣∣
l∑

m=1

(Zm − α)

∣∣∣∣∣ ≥ α

2
l

)
≤

∑
l≥ε−1

2 exp(−α2

8
l) ≤ O(ε).

Hence, for small enough ε there is a constant C′(p, n) > 0 such that

P(A) ≥ 1 − C′(p,n)
ε

r
. (3.2)

Supposing that �α
2 ε−2t0� is an even number, we estimate combinatorially the probability P̃0

that after exactly �α
2 ε−2t0� fair coin flips there have been exactly the same number of heads and 

tails,

P̃0 =
( �α

2 ε−2t0�
1
2�α

2 ε−2t0�
)(

1

2

)� α
2 ε−2t0�

= 1

2

3

4

5

6
. . .

�α
2 ε−2t0� − 1

�α
2 ε−2t0�

≤
(

1

2

2

3

3

4
. . .

�α
2 ε−2t0�

�α
2 ε−2t0� + 1

) 1
2

=
(

1

�α
2 ε−2t0� + 1

) 1
2

≤ ε

3r
,
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where in the last inequality we used the requirement t0 > 6r2

α
. For probability P̃k , k ∈ Z, that after 

�α
2 ε−2t0� of fair coin flips there have been k heads more than tails, we have P̃k ≤ P̃0. (When k

is negative, P̃k means that there have been −k tails more than heads.) We get the estimate

�|x−y|/ε�∑
k=−�|x−y|/ε�

P̃k ≤
(

2|x − y|
ε

+ 1

)
P̃0 ≤ |x − y|

r
.

Denote by D an event that the event A occurred and at the time �α
2 ε−2t0� of fair coin flips there 

have been at least � |x−y|
ε

� heads more than tails. Moreover, denote by E an event that the event A
occurred and there have been at least � |x−y|

ε
� heads more than tails at some point before �α

2 ε−2t0�
fair coin flips. By the previous estimate we have

P(D) ≥ 1

2

(
1 − |x − y|

r

)
(1 − C′(p,n)

ε

r
)

≥ 1

2

(
1 − 2C′(p,n)

|x − y|
r

)
.

To estimate P(E), observe first that

P(E ∩ D) = 1

2
P(E)

and

P(Ec ∩ D) ≤ ε

3r
.

Since

P(D) = P(E ∩ D) + P(Ec ∩ D),

we get

P(E) ≥ 1 − 2C′(p,n)
|x − y|

r
− ε

3r
.

Since the probability that the game ends before step �2t0/ε
2� is greater than P(E), we get an 

estimate for δ,

δ ≤ C(p,n)
|x − y|

r
+ 3C′(p,n)

ε

r
,

and recalling estimate (3.1), we have

|uε(x, t) − uε(y, t)| ≤ C(p,n)
|x − y|

r
‖uε‖∞ + 2δ ‖uε‖∞

≤ 2C(p,n)
|x − y|

r
‖uε‖∞ + 6C′(p,n)

ε

r
‖uε‖∞ . �
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Theorem 3.3. Let x, y ∈ � and t =: t0 satisfy the conditions of Theorem 3.2 and t1 ∈ (t0, T )

satisfy t1 − t0 ≤ r2. Then for (x, t1), (y, t0) ∈ �T we have the Lipschitz estimate

|uε(x, t1) − uε(y, t0)| ≤ C(p,n)
|x − y| + |t1 − t0| 1

2

r
‖uε‖∞

+ C′(p,n)
ε

1
2

r
‖uε‖∞ .

Proof. We prove the case x = y, for otherwise we use triangle inequality and Theorem 3.2. 
Because of the error term, we may suppose that t1 ≥ t0 + ε2. Denote

s := √
t1 − t0 ≥ ε.

Suppose first that uε(y, t1) ≥ uε(y, t0). The game starts from (y, t1). Player II uses a strategy S0
II

in which he pulls towards y and stays there if possible. The game ends when the token leaves the 
cylinder S := Bs(y) × (t0, t1) for the first time. Let A be the event that the token hits the bottom 
of S. Then, regardless of the strategy of Player I,

P := P(A) ≥
(

1

10

)2(n+1)2

.

This estimate follows from the proof of Lemma 4.6 below.
Denote

M := C(p,n)
s

r
||uε||∞,

where C(p, n) is the constant from Theorem 3.2. By using Theorem 3.2 to estimate values of uε

in the ball Bs(y), we get

uε(y, t1) − uε(y, t0) ≤ P(uε(y, t0) + M) + (1 − P) sup
∂Bs(y)×[t0,t1]

uε − uε(y, t0)

= PM + (1 − P)( sup
∂Br (y)×[t0,t1]

uε − uε(y, t0))

≤ PM + (1 − P)( sup
t∈[t0,t1]

uε(y, t) + M − uε(y, t0))

= M + (1 − P)( sup
t∈[t0,t1]

uε(y, t) − uε(y, t0)).

Choose k ∈ N such that

(1 − P)k ≤ C(p,n)
s

r
.

By continuing the previous estimation we get
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uε(y, t1) − uε(y, t0) ≤ M

k−1∑
j=0

(1 − P)j + (1 − P)k( sup
t∈[t0,t1]

uε(y, t) − uε(y, t0))

≤ 1

P
M + 2C(p,n)

s

r
||uε||∞

= C̃(p,n)
s

r
||uε||∞.

If uε(y, t1) < uε(y, t0), we fix a strategy for Player I when starting from (y, t1) and by symmetric 
argument we get

uε(y, t0) − uε(y, t1) ≤ C̃(p,n)
s

r
||uε||∞.

Hence, we have

|uε(y, t1) − uε(y, t1)| ≤ C̃(p,n)
s

r
||uε||∞

= C̃(p,n)
|t1 − t0| 1

2

r
||uε||∞.

The error term of the scale ε1/2 has to be added when t1 − t0 ≤ ε2. �
4. Hölder and Harnack estimates for p(x, t)-game

In this section we study regularity properties of the p(x, t)-game, which was defined in Sec-
tion 2. We assume throughout the section that uε > 0 is a value function of the game. In the 
first subsection we show asymptotic Hölder continuity for uε, and then continue with Harnack’s 
inequality in the second subsection.

4.1. Asymptotic Hölder continuity

Since our location dependent parabolic game is not translation invariant, we cannot immedi-
ately use the cancellation strategy. Instead, we use a more general idea developed by Luiro and 
Parviainen for the elliptic case in [16]. The main idea is to start the game simultaneously at two 
points and try to pull them closer to each other by using a suitable comparison function f with a 
certain favorable curvature in space. The player trying to pull the two points closer, say Player I, 
has a certain flexibility in her strategy depending on what the opponent does. If Player II does 
not pull the points further away from each other, then Player I tries to pull them directly closer. 
Instead, if Player II tries to pull the points almost optimally further away, then Player I aims at 
the exactly opposite step.

As in the previous section concerning Lipschitz regularity, we break the proof of parabolic 
Hölder continuity into two parts. In the first part, Theorem 4.1, we consider the case where 
the points x, y ∈ � are at the same time level t in �T . We use the strategy of [16], but add a 
time-dependent term g(t) = |t |δ/2 to the comparison function f . The purpose of the term g in 
our comparison function F(x, t) = f (x) + g(t) is to get the right boundary values for F without 
allowing too large error in estimates.



M. Parviainen, E. Ruosteenoja / J. Differential Equations 261 (2016) 1357–1398 1367

In the other part of the proof of Hölder continuity we handle the time direction. This part is 
easier, and we could actually prove it by utilizing the technique we used in the proof of The-
orem 3.3. However, we present another proof relying more on the DPP property of the value 
function uε .

Theorem 4.1. Let B2r (0) × [−2r2, 0] ⊂ � × (−T , T ). Then uε satisfies the Hölder estimate

|uε(x, t) − uε(y, t)| ≤ C(n)
|x − y|δ

rδ
‖uε‖∞ + C′(n)

εδ

rδ
‖uε‖∞ ,

when x, y ∈ Br(0) and t ∈ (−r2, 0).

Proof. Denote

S1 := Br(0) × (−r2,0), S2 := B2r (0) × (−2r2,0).

To define a suitable comparison function, define the functions g, f1 and f2,

g(t) = |t |δ/2,

f1(x, z) = C(n)|x − z|δ + |x + z|2,

as well as

f2(x, z) =
{

C2(N−i)εδ if (x, z) ∈ Ai,

0 if |x − z| > N ε
10 .

Here

Ai := {(x, z) ∈ R2n : (i − 1)
ε

10
< |x − z| ≤ i

ε

10
}

for i = {1, . . . , N}. Finally, our comparison function is

F(x, z, t) = f (x, z) + g(t),

where

f (x, z) = f1(x, z) − f2(x, z).

We use this notation to emphasize the time dependent term g needed in the parabolic case.
By scaling, we may assume that

0 ≤ uε ≤ rδ in S2 \ S1.

This implies

uε(x, t) − uε(z, t) − F(x, z, t) ≤ C2Nεδ in S2 \ S1,
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and we want to show that the same inequality holds in S1. Suppose not. Then

M := sup
(x′,t ′),(z′,t ′)∈S1

(uε(x
′, t ′) − uε(z

′, t ′) − F(x′, z′, t ′)) > C2Nεδ.

Thriving for contradiction, let η > 0 and choose (x, t), (z, t) ∈ S1 such that

uε(x, t) − uε(z, t) − F(x, z, t) ≥ M − η. (4.3)

Recall that DPP for uε reads as

uε(x, t) = α(x, t)

2

{
sup

y∈Bε(x)

uε(y, t − ε2

2
) + inf

y∈Bε(x)
uε(y, t − ε2

2
)

}

+ β(x, t)

∫
Bε(x)

uε(y, t − ε2

2
)dy.

By using the DPP characterization for the difference uε(x, t) − uε(z, t), it is easy to see that

uε(x, t) − uε(z, t) = I1 + I2 + I3,

where

I1 = α(z, t)

2
( sup
Bε(x)

uε(y, t − ε2

2
) − inf

Bε(z)
uε(y, t − ε2

2
)

+ inf
Bε(x)

uε(y, t − ε2

2
) − sup

Bε(z)

uε(y, t − ε2

2
)),

I2 = β(x, t)

⎛⎜⎝ ∫
Bε(x)

u(y, t − ε2

2
)dy −

∫
Bε(z)

u(y, t − ε2

2
)dy

⎞⎟⎠ ,

and

I3 = α(x, t) − α(z, t)

2⎛⎜⎝ sup
Bε(x)

uε(y, t − ε2

2
) + inf

Bε(x)
uε(y, t − ε2

2
) − 2

∫
Bε(z)

u(y, t − ε2

2
)dy

⎞⎟⎠ .

This identity together with inequality (4.3) gives

M ≤ I1 + I2 + I3 − F(x, z, t) + η. (4.4)

We are going to estimate the terms I1, I2 and I3 to get a contradiction with (4.4). To be more 
precise, we are going to show the following inequalities,
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α(z, t)M > I1 − α(z, t)(F (x, z, t) − η),

β(x, t)M > I2 − β(x, t)((F (x, z, t) − η),

as well as

(α(x, t) − α(z, t))M > I3 − (α(x, t) − α(z, t))(F (x, z, t) − η).

To estimate I1, first we prove the following inequalities

sup
Bε(x)

uε(y, t − ε2

2
) − inf

Bε(z)
uε(y, t − ε2

2
) ≤ M + sup

Bε(x)×Bε(z)

F (x, z, t − ε2

2
) + η

and

inf
Bε(x)

uε(y, t − ε2

2
) − sup

Bε(z)

uε(y, t − ε2

2
) ≤ M + inf

Bε(x)×Bε(z)
F (x, z, t − ε2

2
) + η.

The first inequality follows by picking x′ ∈ Bε(x), z′ ∈ Bε(z) such that uε(x
′) ≥ supBε(x) uε −

η/2 and uε(z
′) ≤ infBε(z) uε − η/2 and estimating

sup
y∈Bε(x)

uε(y, t − ε2

2
) − inf

Bε(z)
uε(y, t − ε2

2
)

≤ uε(x
′, t − ε2

2
) − uε(z

′, t − ε2

2
) + η

≤ M + F(x′, z′, t − ε2

2
) + η

≤ M + sup
(y,y′)∈Bε(x)×Bε(z)

F (y, y′, t − ε2

2
) + η.

The second inequality follows the same way, and we get an estimate for I1,

I1 − α(z, t)

2
η

≤ α(z, t)

(
M + 1

2

(
sup

Bε(x)×Bε(z)

F (x, z, t − ε2

2
) + inf

Bε(x)×Bε(z)
F (x, z, t − ε2

2
)

))
.

Let us show that

F(x, z, t) >
1

2

(
sup

Bε(x)×Bε(z)

F (x′, z′, t − ε2

2
) + inf

Bε(x)×Bε(z)
F (x′, z′, t − ε2

2
)

)
+ 2η

= 1

2

(
sup

Bε(x)×Bε(z)

f (x′, z′) + inf
Bε(x)×Bε(z)

f (x′, z′)
)

+
∣∣∣∣t − ε2

2

∣∣∣∣δ/2

+ η.
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Since

∣∣∣∣t − ε2

2

∣∣∣∣δ/2

− |t |δ/2 ≤
∣∣∣∣ε2

2

∣∣∣∣δ/2

≤ εδ, (4.5)

it suffices to show that

f (x, z) >
1

2

(
sup

Bε(x)×Bε(z)

f + inf
Bε(x)×Bε(z)

f

)
+ εδ.

Throughout the proof the error caused by the term g is in the acceptable scale εδ .
During the rest of the argument we just write supf and inff meaning that sup and inf are 

taken over Bε(x) × Bε(z).
Suppose first that |x − z| > N ε

10 . Then f2 = 0. Choose hx, hz ∈ Bε(0) such that

supf1 ≤ f1(x + hx, z + hz) + η.

Let θ = 1
10 and assume first that

(hx − hz)
2
V ≥ (4 − θ)ε2,

where V is the space spanned by x − z and

(hx − hz)V = (hx − hz) · x − z

|x − z| .

To estimate supf1 + inff2 − 2f1, it is useful to write Taylor’s expansion for f1(x + hx, z + hz)

as

f1(x + hx, z + hz)

= f1(x, z) + Cδ|x − z|δ−1(hx − hz)V + 2(x + z) · (hx + hz)

+ C

2
δ|x − z|δ−2

(
(δ − 1)(hx − hz)

2
V + (hx − hz)

2
V ⊥

)
+ |hx + hz|2 + Ex,z(hx,hz).

Here Ex,z is an error term satisfying

Ex,z(hx,hz) ≤ C|(hx,hz)|3(|x − z| − 2ε)δ−3

≤ 10ε2|x − z|δ−2

when N is large enough, for example N > 100C/δ.
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By using the Taylor estimate and the estimate for the error term, we obtain

supf1 + inff2 − 2f1

≤ f1(x + hx, z + hz) + f1(x − hx, z − hz) − 2f1(x, z) + η

= C

2
δ|x − z|δ−2

(
2(δ − 1)(hx − hz)

2
V + 2(hx − hz)

2
V ⊥

)
+ 2|hx + hz|2 + Ex,z(hx,hz) + Ex,z(−hx,−hz) + η

≤ |x − z|δ−2(20 − Cδ)ε2 + 8ε + η + εδ

≤ −C̃εδ + 8ε2 + η + εδ < −2εδ,

when C̃ = Cδ − 20 has been chosen large.
If

(hx − hz)
2
V < (4 − θ)ε2,

then

(hx − hz)V ≤ (2 − θ/4)ε,

and the second order term of the Taylor estimate, together with the error term, can be estimated 
by

C

2
δ|x − z|δ−2(2ε)2 + (2ε)2 + 10ε2|x − z|δ−2

≤ 30C

N
δ|x − z|δ−1ε

< δ2|x − z|δ − 1ε.

Now we get

supf1 + inff1 − 2f1

≤ f1(x + hx, z + hz) + f1(x − ε
x − z

|x − z| , x + ε
x − z

|x − z| ) − 2f1(x, z) + η

≤ Cδ|x − z|δ−1(−θε/4) + 16ε + δ2|x − z|δ−1ε + η

≤ (δ − θ

4
C)δ|x − z|δ−1ε + 16ε + η + εδ

≤ (δ − θ

4
C)δεδ + 16ε + η

< −εδ,

when C is large enough.
Suppose next that |x − z| ≤ N ε

10 . Then a straightforward estimate gives
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|f1(x + hx, z + hz) − f1(x, z)| ≤ 3Cεδ.

We also have

inf(f1 − f2) ≤ supf1 − 10Cεδ − 2f2,

which implies

supf + inff ≤ 2 supf1 − 10Cεδ − 2f2(x, z)

≤ 2f1 + 6Cεδ − 10Cεδ − 2f2 + εδ

≤ 2f − 2εδ

when C is large enough. It follows that

f (x, z) >
1

2

(
sup

Bε(x)×Bε(z)

f + inf
Bε(x)×Bε(z)

f

)
+ εδ.

Hence, we have shown that

I1 − α(z, t)

2
δ < α(z, t)(M + F(x, z, t)),

or equivalently,

α(z, t)M > I1 − α(z, t)F (x, z, t) − α(z, t)

2
δ.

Let us next estimate I2. We want to show that

β(x, t)M > I2 − β(x, t)((F (x, z, t) + η),

where

I2 = β(x, t)

⎛⎜⎝ ∫
Bε(x)

u(y, t − ε2

2
)dy −

∫
Bε(z)

u(y, t − ε2

2
)dy

⎞⎟⎠ .

Let Px,z(h) be a mirror point of h with respect to span(x−z)⊥. If |x−z| ≥ 2ε, we get an estimate

I2 = β(x, t)

|Bε|

⎛⎜⎝ ∫
Bε(0)

uε(x + h) − uε(z + Px,z(h)) − F(x + h, z + Px,z(h))dy

+
∫

Bε(0)

F (x + h, z + Px,z(h))dy

⎞⎟⎠
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≤ β(x, t)M + β(x, t)

|Bε|
∫

Bε(0)

F (x + h, z + Px,z(h))dy.

If |x − z| ≤ 2ε, there is a perfect cancellation in the intersection Bε(x) ∩ Bε(z). We refer to [16]
for details and just state that in this case we have an estimate

I2 ≤ β(x, t)M + β(x, t)J1,

where

J1 = 1

|Bε|

⎛⎜⎝ ∫
Bε(0)\Bε(x−z)

F (x + h, z + Px,z(h))dh +
∫

Bε(x)∩Bε(z)

F (y, y)dy

⎞⎟⎠ .

We want to show that

F(x, z, t) > J1.

Notice that since ∫
Bε(0)\Bε(x−z)

F (x + h, z + Px,z(h))dh +
∫

Bε(x)∩Bε(z)

F (y, y)dy

≤
∫

Bε(0)\Bε(x−z)

f (x + h, z + Px,z(h))dh +
∫

Bε(x)∩Bε(z)

f (y, y)dy

+ 2

|Bε|
∫
Bε

∣∣∣∣t − ε2

2

∣∣∣∣δ/2

dy,

it is sufficient to show that

f (x, z, t) − 2εδ

>
1

|Bε|

⎛⎜⎝ ∫
Bε(0)\Bε(x−z)

f (x + h, z + Px,z(h))dh +
∫

Bε(x)∩Bε(z)

f (y, y)dy

⎞⎟⎠ .

If |x − z| > N ε
10 , the key estimate is

ε2|x − z|δ−2(10 − Cδ

4(n + 2)
) + 2εδ < 0,

which holds when C is sufficiently large. In the same manner, if |x − z| ≤ N ε
10 , the additional 

error term 2εδ does not cause extra difficulty compared to the elliptic case. These estimates can 
be obtained by using similar Taylor expansion ideas than in the case I1, see [16].

In the last case we need to show that
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(α(x, t) − α(z, t))M > I3 − (α(x, t) − α(z, t))(F (x, z, t) + η),

where

I3 = α(x, t) − α(z, t)

2⎛⎜⎝ sup
Bε(x)

uε(y, t − ε2

2
) + inf

Bε(x)
uε(y, t − ε2

2
) − 2

∫
Bε(z)

uε(y, t − ε2

2
)dy

⎞⎟⎠ .

Again the extra error term compared to the elliptic case is on the scale of εδ. By choosing a 
sequence (xj ) such that uε(xj ) → supBε(x) uε , we have

sup
Bε(x)

uε −
∫

Bε(z)

uε(y, t − ε2

2
)dy

=
∫

Bε(z)

lim
j

(uε(xj ) − uε(y) − F(xj , y, t − ε2

2
) + F(xj , y, t − ε2

2
))dy

≤ M + sup
a∈Bε(x)

∫
Bε(z)

F (a, y, t − ε2

2
)dy.

We also get

inf
Bε(x)

uε −
∫

Bε(z)

uε(y)dy ≤ M +
∫

Bε(z)

inf
b∈Bε(x)

F (b, y, t − ε2

2
)dy,

and finally

I3 ≤
(

α(x, t) − α(z, t)

2

)
⎛⎜⎝2M + sup

a∈Bε(x)

∫
Bε(z)

F (a, y, t − ε2

2
) + inf

b∈Bε(x)
F (b, y, t − ε2

2
)dy

⎞⎟⎠ .

Hence, it is sufficient to show that

f (x, z) >
1

2
sup

a∈Bε(x)

⎡⎢⎣ ∫
Bε(z)

f (a, y) + inf
b∈Bε(x)

f (b, y)dy

⎤⎥⎦+ 2εδ.

The arguments are analogous to those used before, and we refer to [16] for details. �
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Next we consider the time direction. For the similar oscillation estimate in the PDE context, 
we refer to [14, Lemma 4.3] and [1].

Theorem 4.2. Let B2r (0) × [−2r2, 0] ⊂ � × (−T , T ) and −r2 < t0 < t1 < 0. Then uε satisfies

|uε(x, t1) − uε(x, t0)| ≤ C(n)
|t1 − t0|δ/2

rδ
+ C′(n)

εδ

rδ
,

when x ∈ Br(0).

Proof. Define

Qr := Br(0) × (−r2,0).

We want to show that the oscillation of u in Qr is comparable with the oscillation of u on 
the bottom of Qr by a constant depending only on the dimension n. The idea is to control the 
oscillation of uε by suitable comparison functions v and v. We use the DPP together with suitable 
iteration to get estimates for uε and the comparison functions.

Denote

A := oscBr(0)×{−r2} uε

and set the first comparison function v as

v(x, t) = c + 7r−2At + 2r−2A|x|2,

where c is chosen so that v(x, −r2) ≥ uε(x, −r2) for all x ∈ Br(0), and there is an equality for 
some x ∈ Br(0). Then actually x ∈ Br(0), for otherwise

2A = v(x,−r2) − v(0,−r2) ≤ uε(x,−r2) − uε(0,−r2) ≤ A,

a contradiction. First we estimate

β(x, t)r−2A

∫
Bε(0)

|x + h|2dh ≤ β(x, t)r−2A

∫
Bε(0)

|x|2 + 2x · h + h2dh

≤ β(x, t)r−2A(|x|2 + ε2).

Supposing that |x| ≥ ε and using the previous estimate together with a simple calculation

sup
Bε(x)

|y|2 + inf
Bε(x)

|y|2 = |x + ε|2 + |x − ε|2 = 2(|x|2 + ε2),

we obtain
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α(x, t)

2
( sup
y∈Bε(x)

v(y, t − ε2

2
) + inf

y∈Bε(x)
v(y, t − ε2

2
)) + β(x, t)

∫
Bε(x)

v(y, t − ε2

2
)dy

= 2r−2Aα(x, t)(|x|2 + ε2) + 2r−2Aβ(x, t)(|x|2 + ε2) + 7r−2A(t − ε2

2
) + c

= c + 2r−2A|x|2 + 7r−2At +
(

2r−2Aα(x, t) + 2r−2Aβ(x, t) − 7r−2A

2

)
ε2

< v(x, t).

One can easily see that the same inequality holds when |x| < ε.
We want to show that

M := sup
Qr

(uε − v) ≤ 0.

Suppose not, so that M > 0. By using the DPP for uε we get

uε(x, t) − v(x, t)

≤ T uε(x, t) − T v(x, t)

≤ α(x, t) sup
Bε(x)

(uε(y, t − ε2

2
) − v(y, t − ε2

2
))

+ β(x, t)

∫
Bε(x)

(uε(y, t − ε2

2
) − v(y, t − ε2

2
))dy

≤ α(x, t)M + β(x, t)

∫
Bε(x)

(uε(y, t − ε2

2
) − v(y, t − ε2

2
))dy.

Since we can find a sequence (xj , tj ) ⊂ � × (−T , T ) such that (xj , tj ) → (x0, t0) and (uε −
v)(xj , tj ) → M , by absolute continuity of integral we have∫

Bε(x0)

(uε − v)(y, t0)dy = lim
j

∫
Bε(xj )

(uε − v)(y, tj )dy = M.

Hence the set

G := {(x, t) : uε(x, t) − v(x, t) = M}

is non-empty, and if (x0, t0) ∈ G, then (uε − v)(y, t0) = M for almost all y ∈ Bε(x0). This con-
tradicts the assumption that G is bounded. Hence M ≤ 0.

Similarly, we can show that for

v(x, t) = c − 7r−2At − 2r−2A|x|2
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we have v ≤ u in the cylinder Qr . Hence

v(x,−r2) − v(x,−r2) ≤ oscBr (0)×{−r2} uε,

so

c − c ≤ 3A.

Finally, we get

oscQr u ≤ supv − infv ≤ c − c + 4A ≤ CA,

so the oscillation in the cylinder Qr is comparable with the oscillation on the bottom of the 
cylinder. �
Remark 4.3. Another way to prove the previous lemma is to use the same technique that was 
used in the proof of Theorem 3.3.

Combining the two previous theorems, we get local Hölder continuity for the p(x, t)-game.

Theorem 4.4. Under the conditions of Theorem 4.2, uε satisfies the Hölder estimate

|uε(x, t1) − uε(y, t2)| ≤ C(n)
|x − y|δ + |t1 − t2|δ/2

Rδ
+ C′(n)

εδ

Rδ
.

4.2. Harnack’s inequality

In this subsection we assume that uε > 0. We are going to prove Harnack’s inequality for uε, 
Theorem 4.7, by using a well known iteration technique. Besides Hölder continuity, we need two 
lemmas to control the iteration process. We assume for function p : �T → (2, ∞) that

infp > 2,

which implies that infα > 0. This requirement is not absolutely necessary, but makes the proof 
less technical.

Since Hölder continuity for uε breaks down at the ε-scale, we need a rough estimate to control 
the oscillation of the value function at this scale.

Lemma 4.5. If a2 ε2 > t2 − t1 > 0 for a ∈ Z+, and |x − y| < 2(t2 − t1)/ε, then

uε(x, t2) ≥
(

infα

2

)a

uε(y, t1).

Proof. When the game starts from (x, t2), Player I uses a strategy in which she takes |x−y|
a

-steps 
towards y and steps to y if possible. We stop the game when the token hits the time level t1, and 
denote the stopping time by τ ∗. By simply estimating the probability that the first a moves are 
tug-of-war won by Player I and using Lemma 2.3, we obtain
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uε(x, t2) ≥ inf
SII

E(x,t2)

S0
I ,SII

[F(xτt∗ , t2 − τ ∗

2
ε2)]

≥
(

infα

2

)a

uε(y, t1). �
Another lemma needed for Theorem 4.7 gives estimates for the infimum of uε . We use a 

comparison function which is often used in the literature to get Harnack estimates for parabolic 
equations.

Lemma 4.6. When x0 ∈ B2R(z) ⊂ � for R ≤ 1, r ∈ [9ε, R) and t0 ≥ 0, then

inf
y∈Br(z)

uε(y, t0) ≤ C(n)r−2(n+1)2
uε(x0, t0 + R2).

Proof. Without a loss of generality, we may assume that z = 0 and t0 = 0. Consider a comparison 
function

�(x, t) =
(

1

9

)3

inf
y∈Br (0)

uε(y,0)
( 1

3 r)2(n+1)2

(t + ( 1
3 r)2)(n+1)2

(
9 − |x|2

t + ( 1
3 r)2

)2

+

in �T . We have

max
x∈Br (0)

�(x,0) = 1

9
inf

y∈Br (0)
uε(y,0),

and �(x, 0) = 0 when |x − z| ≥ r .
When x ∈ B2R(0) and R2 ≤ t ≤ 2R2, we get

�(x, t) ≥
(

1

9

)3

inf
y∈Br(0)

uε(y,0)
( 1

3 r)2(n+1)2

(2R2 + ( 1
3R)2)(n+1)2

(
9 − 4R2

R2

)2

+

≥
(

1

9

)3

3−3(n+1)2
r2(n+1)2

inf
y∈Br (0)

uε(y,0).

We use a martingale argument to show that

uε(x, t) > �(x, t),

when x ∈ � and t > 0. Let us start the game from (x0, ̃t), where ̃t = R2. The fixed strategy S0
I

of Player I is to push towards 0 ∈ � and stay there if possible. We show in Appendix that the 
function � satisfies the following inequalities:

Case 1) If x = 0 and t ≥ ε2/2, then for e ∈ Rn, |e| = 1,

1

2
[�(0, t − ε2

2
) + �(εe, t − ε2

2
)] ≥ �(0, t).

Case 2) If 0 < |x| < ε, then
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1

2
[�(0, t − ε2

2
) + �(x + x

|x|ε, t − ε2

2
)] ≥ �(x, t).

Case 3) If |x| ≥ ε, then

1

2
[�(x + x

|x|ε, t − ε2

2
) + �(x − x

|x|ε, t − ε2

2
)] ≥ �(x, t).

The previous three inequalities guarantee that � satisfies

�(x, t) ≤ 1

2
( sup
y∈Bε(x)

�(y, t − ε2

2
) + inf

y∈Bε(x)
�(y, t − ε2

2
)).

In the appendix we also show that � is a subsolution to the scaled heat equation

(n + 2)ut (x, t) = �u(x, t).

According to [19], this implies

�(x, t) ≤
∫

Bε(x)

�

(
y, t − ε2

2

)
dy + o(ε2),

when x ∈ � and t > 0. Denote tk := t̃ − k(ε2/2). For arbitrary η > 0, we obtain

ES0
I ,SII

[�(xk+1, tk+1)|(x0, t̃), . . . , (xk, tk)]

≥ α(x)�(xk, tk) + β(x)

∫
Bε(xk)

� (y, tk+1) dy − η

2R2
ε2k

≥ �(xk, tk) − η

2R2
ε2k,

when ε is sufficiently small. According to Lemma 2.3, uε satisfies

ES0
I ,SII

[uε(xk+1, tk+1)|(x0, t̃), . . . , (xk, tk)] ≤ uε(xk, tk).

Hence Mk := uε(xk, tk) − �(xk, tk) − η

2R2 ε2k is a supermartingale. Let us stop the game when 
either � = 0 or tk = 0. Denote the stopping time by τ ∗. We have

−η ≤ ES0
I ,SII

[Mτ∗ |(x0, t̃), . . . , (xτ∗−1, t̃ − τ ∗ − 1

2
ε2] ≤ M0 = uε(x0, t̃) − �(x0, t̃).

Since η > 0 was arbitrary, we obtain

uε(x0, t̃) − �(x0, t̃) ≥ 0.

Hence
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inf
y∈Br(z)

uε(y, t0) ≤ C(n)r−2(n+1)2
uε(x0, t0 + R2). �

Using the Hölder estimate together with Lemmas 4.5 and 4.6, we get Harnack’s inequality for 
uε .

Theorem 4.7. If B10r (0) × [t0 − r2, t0] ⊂ �T , then for sufficiently small ε > 0, uε satisfies Har-
nack’s inequality

sup
x∈Br(0)

uε(x, t0 − r2) ≤ C(n) inf
x∈Br (0)

uε(x, t0).

Proof. By scaling, we may assume that there is a point x1 ∈ Br(0) such that

1 = uε(x1, t0) < 2 inf
x∈Br(0)

uε(x, t0).

Let Rk := 21−kr for all natural numbers k ≥ 2, and pick x2, x3, . . . ∈ � such that

M1 := uε(x2, t0) = sup
x∈Br(x1)

uε(x, t0),

and for k ≥ 2

Mk := uε(xk+1, t0 − r2 + R2
2k−1) = sup

x∈BRk
(xk)

(x, t0 − r2 + R2
2k−1).

Let η = (21+3(n+1)2
C)−1, where C = C(n) is a constant from the Hölder and infimum estimates. 

We are going to show that

M1 < η−1−3(n+1)2δ−1
, (4.6)

where δ is a Hölder exponent for uε.
On the contrary, suppose that inequality (4.6) does not hold. Let us show by induction that the 

counter assumption yields

Mk ≥ (2Cη)−k+1η−1−3(n+1)2δ−1 = 2C(η1/δRk+1)
−3(n+1)2

. (4.7)

The case k = 1 is clear, so assume that the inequality holds for Mk−1. Then

inf
B

η1/δRk
(xk)

uε(x, t0 − r2 + R2
2(k−1)) ≤ Mk−1

2

= uε(xk, t0 − r2 + R2
2(k−1)−1)

2
, (4.8)

where we first used Lemma 4.6 and then the induction assumption.
Hölder estimate gives
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osc(uε,Bη1/δRk
(xk) × {t0 − r2 + R2

2(k−1)})
≤ Cη osc(uε,BRk

(xk) × {t0 − r2 + R2
2k−1}),

so we get

osc(uε,BRk
(xk) × {t0 − r2 + R2

2k−1})
≥ (Cη)−1osc(uε,Bη1/δRk

(xk) × {t0 − r2 + R2
2(k−1)})

≥ (2Cη)−1Mk−1

≥ (2Cη)−k+1M1,

and the induction is complete.
Take k0 such that η1/δRk0 ∈ (10ε, 20ε]. Then

R2
2(k0−1) ≤ 100η−2/δε2 ≤ (28+3(n+1)2

C)2/δε2,

and we obtain(
infα

2

)−2(28+3(n+1)2 C)2/δ

≥
supBRk0−1 (xk0−1)

uε(x, t0 − r2 + R2
k0−1)

infB
η1/δRk0

(xk0 ) uε(x, t0 − r2 + R2
k0

)

≥ uε(xk0−1, t0 − r2 + R2
k0−1)

C(η1/δRk0)
−2(n+1)2

= Mk0−2

C(η1/δRk0)
−2(n+1)2

≥ (2Cη)3−k0M1

C(η1/δ21−k0)−2(n+1)2

≥ Ĉ(n)2(n+1)2k0,

which is a contradiction when k0 is big enough, or in other words, when ε is small enough. 
Therefore inequality (4.6) holds and the proof is complete. �
5. Uniform convergence to viscosity solution

In Section 6 we will show that if the function p is Lipschitz continuous, there is a unique 
viscosity solution u to the boundary value problem{

(n + p(x, t))ut = �N
p(x,t)u, for (x, t) ∈ �T ,

u = F, for (x, t) ∈ ∂p�T ,

where F is continuous and bounded. Let (uεj
), εj → 0, be a sequence of value functions of the 

p(x, t)-game with final payoff equal to F on the parabolic boundary strip �ε
T . In this section 

we show that uεj
→ u uniformly on �T . The most notable difference is that now we don’t have 
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translation invariance at our disposal. Instead, we will make use of local Hölder continuity of 
functions uεj

, see Theorem 4.4. We assume during the rest of the paper that � satisfies exterior 
sphere condition.

First we need the following Arzela–Ascoli-type lemma. For the proof in the elliptic context, 
see [20, Lemma 4.2].

Lemma 5.1. Let 
{
uε : �T → R, ε > 0

}
be a uniformly bounded set of functions such that given 

η > 0, there are constants r0 and ε0 such that for every ε < ε0 and any (x, t), (y, s) ∈ �T with

|x − y| + |t − s| < r0

it holds that

|uε(x, t) − uε(y, s)| < η.

Then there exists a uniformly continuous function v : �T → R and a subsequence still denoted 
by (uε) such that uε → v uniformly in �T as ε → 0.

The plan is to first show that the sequence (uεj
) satisfies the conditions of Lemma 5.1, and 

then show that the uniform limit v is a viscosity solution to

(n + p(x, t))vt = �N
p(x,t)v

with boundary data F . By using the uniqueness result of Section 6, we will conclude that v =
u on �T . Our proofs yield that an arbitrary subsequence of (uεj

) has a uniformly convergent 
subsequence. Hence, by uniqueness of u, the sequence (uεj

) itself converges uniformly to u.
To show that the sequence (uεj

) satisfies the conditions of Lemma 5.1, we first need the fol-
lowing technical lemma, in which the function p(x, t) does not cause extra difficulties compared 
to the case where p > 2 is a constant. The method for proof has been used before for different 
games, see [19, Lemma 4.9] and [20, Lemma 4.5].

Lemma 5.2. For arbitrary η > 0, there are r0 > 0 and ε1 > 0 such that when (y, t) ∈ ∂p�T , 
(x, s) ∈ �T , ε < ε1 and |y − x| + |t − s| < r0, we have

|uε(y, t) − uε(x, s)| < η.

Proof. If (y, t) is on the bottom of the cylinder �T , the result follows from Theorem 4.2. Assume 
next that y ∈ ∂�. It is enough to verify the case t = s =: t0, since otherwise triangle inequality 
gives

|uεj
(x, t) − uεj

(y, s)| ≤ |uεj
(x, t) − uεj

(y, t)| + |uεj
(y, t) − uεj

(y, s)|,

and the last term can be estimated by using uniform continuity of the boundary data.
Since � satisfies the exterior sphere condition, we have y ∈ ∂Bδ(z) for some Bδ(z) ⊂ Rn \�. 

Let us start the game from (x, t) =: (x0, t0) and fix for Player I a strategy S0
I of pulling towards z. 

Player II uses a strategy SII. Then,
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E(x0,t0)

S0
I ,SII

[|xk − z||x0, . . . , xk−1]

≤ α(xk−1, tk−1)

2
(|xk−1 − z| + ε + |xk−1 − z| − ε)

+ β(xk−1, tk−1)

∫
Bε(xk−1)

|x − z|dx

≤ |xk−1 − z| + Cε2,

where C does not depend on ε. Therefore, Mk = |xk − z| − Cε2k is a supermartingale. Jensen’s 
inequality gives

E(x0,t0)

S0
I ,SII

[|xτ − z| + |tτ − t0| 1
2 ] ≤ |x0 − z| + Cε

(
E(x0,t0)

S0
I ,SII

[τ ]
) 1

2

.

Suppose that for the stopping time τ we have the estimate

E(x0,t0)

S0
I ,SII

[τ ] ≤ C(R/δ)dist(∂Bδ(z), x0) + o(1)

ε2
, (5.9)

where R > 0 is chosen so that � ⊂ BR(z), and o(1) → 0 when ε → 0. Then we have

E(x0,t0)

S0
I ,SII

[|xτ − z| + |tτ − t0| 1
2 ] ≤ |x0 − z| + C(R/δ)|x0 − y| + o(1),

and the proof is complete by uniform continuity of the boundary function F .
It remains to justify estimate (5.9). In �, let v be a solution to the problem⎧⎨⎩

�v = −2(n + 2) in BR+ε \ Br(z),

v = 0 on ∂Br(z),
∂v
∂ν

= 0 on ∂BR+ε(z),

where ∂v
∂ν

is the normal derivative. The function v satisfies

v(x) =
∫

Bε(x)

v dy + ε2, (5.10)

and it can be extended as a solution to the same equation in Br(z) \Br−ε(z) so that equation (5.10)
holds also near the boundary ∂Br(z).

By concavity of v, it follows from (5.10) that (v(xk) + kε2) is a supermartingale. Define a 
new stopping time τ ∗,

τ ∗ = inf{k : xk ∈ Bδ(z)}.
Since

v(x0) ≤ C(R/δ)dist(∂Bδ(z), x0),
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we have

Ex0 [τ ∗] ≤ v(x0) − E[v(xτ∗)]
ε2

≤ C(R/δ)dist(∂Bδ(z), x0) + o(1)

ε2
.

Since the function v is concave in r = |x − z| and τ ≤ τ∗, we obtain estimate (5.9), and the proof 
is complete. �
Lemma 5.3. The sequence (uε) of value functions satisfies the conditions of Lemma 5.1.

Proof. Since uε ≤ maxF , the sequence (uε) is uniformly bounded. For asymptotic uniform 
continuity, fix η. Since u is uniformly continuous in �T × �ε , there is r1 > 0 such that 
(x, t), (y, s) ∈ �T × �ε ,

|x − y| + |t − s| < r1,

implies

|u(x, t) − u(y, s)| < η/2.

When x, y ∈ ∂BR(0), the same estimate holds between uε(x) and uε(y) for all 0 < ε < R, since 
uε = u on �ε .

When y ∈ �ε and x ∈ �T , by the previous lemma there are r0 > 0 and ε1 > 0 such that when 
|y − x| + |t − s| < r0, we have

|uε(y, t) − uε(x, s)| < η/2.

If x, y ∈ �T and dist({x, y}, �ε) < r0/2, then by using the triangle inequality with a boundary 
point, we obtain |uε(y) − uε(x)| < η.

Finally, assume that dist({x, y}, �ε) ≥ r0/2. By local Hölder continuity there is ε2 > 0 such 
that when ε < ε1, we have

|uε(y, t) − uε(x, s)| < η.

The proof is complete by taking ε0 = min(ε1, ε2). �
We have shown that the sequence (uε) converges uniformly towards a uniformly continuous 

limit function v, and next we show that the function is a viscosity solution to the normalized 
parabolic p(x, t)-equation.

Below we denote by λmax((p(x, t) − 2)D2φ(x, t)), and λmin((p(x, t) − 2)D2φ(x, t)) the 
largest, and the smallest of the eigenvalues to the symmetric matrix (p(x, t) − 2)D2φ(x, t) ∈
Rn×n for a smooth test function.

Definition 5.4. A function u : �T → R is a viscosity solution to

ut = �u + (p(x, t) − 2)�N∞u,

if u is continuous and whenever (x0, t0) ∈ �T and φ ∈ C2(�T ) is such that
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i) u(x0, t0) = φ(x0, t0),
ii) φ(x, t) > u(x, t) for (x, t) ∈ �T , (x, t) �= (x0, t0),

then we have at the point (x0, t0){
(n + p(x, t))φt ≤ (p(x, t) − 2)�N∞φ + �φ, if ∇φ(x0, t0) �= 0,

(n + p(x, t))φt ≤ λmax((p(x, t) − 2)D2φ) + �φ, if ∇φ(x0, t0) = 0.

Moreover, we require that when touching u with a test function from below all the inequalities 
are reversed and λmax((p(x, t) − 2)D2φ) is replaced by λmin((p(x, t) − 2)D2φ).

Lemma 5.5. The limit function v is a viscosity solution to

ut = �u + (p(x, t) − 2)�N∞u,

with boundary data F .

Proof. We only show that the function v is a viscosity supersolution. (Showing that v is a sub-
solution is similar.) Choose (x, t) ∈ QR and ϕ ∈ C2 touching v from below at (x, t). We need to 
show that

β(x, t)

2(n + 2)

(
(p(x, t) − 2)�N∞ϕ(x, t) + �ϕ(x, t) − (n + p(x, t))ϕt (x, t)

)
≤ 0. (5.11)

As a direct consequence of [19, Theorem 2.4], we have

α(x, t)

2

{
sup
Bε(x)

ϕ(y, t − ε2

2
) + inf

Bε(x)
ϕ(y, t − ε2

2
)

}

+ β(x, t)

∫
Bε(x)

ϕ(y, t − ε2

2
)dy − ϕ(x, t)

≥ β(x, t)ε2

2(n + 2)

(
(p(x, t) − 2)

〈
D2ϕ(x, t)

(
xε − x

|xε − x|
)

,

(
xε − x

|xε − x|
)〉

+ �ϕ(x, t) − (n + p(x, t))ϕt (x, t)

)
+ o(ε2),

where xε ∈ Bε(x) is nearly to the direction of ∇ϕ(x).
By the uniform convergence, there is a sequence (xε, tε) → (x, t) such that when (y, s) is near 

(xε, tε), we have

uε(y, s) − ϕ(y, s) ≥ uε(xε, tε) − ϕ(xε, tε) − ηε.

Setting ϕ̃ = ϕ + uε(xε, tε) − ϕ(xε, tε) we have

uε(xε, tε) = ϕ̃(xε, tε), uε(y, s) ≥ ϕ̃(y, s) − ηε.
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We get

ηε ≥ α(x, tε)

2

{
sup
Bε(x)

ϕ̃(y, tε − ε2

2
) + inf

Bε(x)
ϕ̃(y, tε − ε2

2
)

}

+ β(x, tε)

∫
Bε(x)

ϕ̃(y, tε − ε2

2
)dy − ϕ̃(xε, tε)

Let us first assume that ∇ϕ(x, t) �= 0. Then, since we can choose ηε = o(ε2), we obtain

0 ≥ β(xε, tε)ε
2

2(n + 2)

(
(p(xε, tε) − 2)

〈
D2ϕ(xε, tε)

(
xε − xε

|xε − xε|
)

,

(
xε − xε

|xε − xε|
)〉

+ �ϕ(xε, tε) − (n + p(xε, tε))ϕt (xε, tε)

)
+ o(ε2).

When ε → 0, it follows that

β(x, t)

2(n + 2)

(
(p(x, t) − 2)�N∞ϕ(x) + �ϕ(x) − (n + p(x, t))ϕt (x, t)

)
≤ 0.

When ∇ϕ(x, t) = 0, also D2ϕ(x, t) = 0, and it is easy to verify the required inequality 
ϕt (x, t) ≥ 0. �
6. Uniqueness for p(x, t)-equation

In this section we assume that the function p is Lipschitz continuous in �T with Lipschitz 
constant C1. We prove that there is a unique viscosity solution to

(n + p(x, t))ut = �N
p(x,t)u (6.12)

with classical Dirichlet boundary conditions. Existence is well known, and in fact the previous 
section provided a game-theoretic proof.

The technique for uniqueness is well known; p(x, t) causes slight modifications. For the con-
venience of the reader, we give the details. For additional literature, see [15,10,2,3].

The parabolic equation (6.12) is discontinuous when the gradient vanishes. We recall the 
definition of viscosity solution based on semicontinuous extensions of the operator, and refer the 
reader to Chen–Giga–Goto [5], Evans–Spruck [8], and Giga’s monograph [9].

The next lemma allows us reduce the test functions in the case ∇φ(x0, t0) = 0 and only test 
by those having D2φ(x0, t0) = 0.

Lemma 6.1. A function u : �T → R is a viscosity solution to (6.12) if u is continuous and 
whenever (x0, t0) ∈ �T and φ ∈ C2(�T ) is such that

i) u(x0, t0) = φ(x0, t0),
ii) φ(x, t) > u(x, t) for (x, t) ∈ �T , (x, t) �= (x0, t0),
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then at the point (x0, t0) we have{
(n + p(x, t))φt ≤ (p(x, t) − 2)�N∞φ + �φ, if ∇φ(x0, t0) �= 0,

φt (x0, t0) ≤ 0, if ∇φ(x0, t0) = 0, andD2φ(x0, t0) = 0.

We also require that when testing from below all the inequalities are reversed.

Proof. The proof is by contradiction: We assume that u satisfies the conditions in the statement 
but still fails to be a viscosity solution in the sense of Definition 5.4. If this is the case, we must 
have φ ∈ C2(�T ), (x0, t0) ∈ �T and η > 0 such that

i) u(x0, t0) = φ(x0, t0),
ii) φ(x, t) > u(x, t) for (x, t) ∈ �T , (x, t) �= (x0, t0),

for which ∇φ(x0, t0) = 0, D2φ(x0, t0) �= 0 and

(n + p(x0, t0))φt (x0, t0) − η

> λmin((p(x0, t0) − 2)D2φ(x0, t0)) + �φ(x0, t0), (6.13)

or the analogous inequality when testing from below (in this case the argument is symmetric and 
we omit it). Let

wj(x, t, y, s) = u(x, t) − φ(y, s) −
(j2

4
|x − y|4 + j

2
|t − s|2

)
(6.14)

and denote by (xj , tj , yj , sj ) the maximum point of wj in �T × �T . Since (x0, t0) is a local 
maximum for u − φ, we may assume that

(xj , tj , yj , sj ) → (x0, t0, x0, t0) as j → ∞,

and (xj , tj ) , (yj , sj ) ∈ �T for all large j , similarly to [11]. Since (x0, t0) is a local maximum of 
u − φ, it follows from (6.14) that

j2

4

∣∣xj − yj

∣∣4 → 0 and
j

2

∣∣tj − sj
∣∣2 → 0,

when j → ∞. If not, there would be α > 0 and subsequences (xj ), . . . (sj ) such that

j2

4
|x − y|4 + j

2
|t − s|2 > α.

Let Uα be a neighborhood of (x0, t0) where oscillation of (u − φ) is less than α. Since the 
subsequences converge to (x0, t0), we get a contradiction.

We consider two cases: either xj = yj infinitely often or xj �= yj for all j large enough. First, 
let xj = yj , and denote
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ϕ(y, s) = j2

4

∣∣xj − y
∣∣4 + j

2
(tj − s)2.

Then

φ(y, s) + ϕ(y, s)

has a local minimum at (yj , sj ). Since the function p is continuous, by (6.13) we have

(n + p(yj , sj ))φt (yj , sj ) − η > λmin((p(yj , sj ) − 2)D2φ(yj , sj )) + �φ(yj , sj )

for j large enough. As φt (yj , sj ) = ϕt (yj , sj ) and −D2φ(yj , sj ) ≤ D2ϕ(yj , sj ), we have by the 
previous inequality

η < (n + p(yj , sj ))ϕt (yj , sj ) + λmax((p(yj , sj ) − 2)D2ϕ(yj , sj )) + �ϕ(yj , sj )

= (n + p(xj , sj ))j (tj − sj ),
(6.15)

where we also used the fact that yj = xj and thus D2ϕ(yj , sj ) = 0.
Next denote

ψ(x, t) = j2

4

∣∣x − yj

∣∣4 + j

2
(t − sj )

2.

Similarly,

u(x, t) − ψ(x, t)

has a local maximum at (xj , tj ), and thus since D2ψ(xj , tj ) = 0, our assumptions imply

0 ≥ (n + p(xj , tj ))ψt (xj , tj ) = (n + p(xj , tj ))j (tj − sj ), (6.16)

for j large enough. This contradicts (6.15), because both tj and sj converge to t0 and the func-
tion p is continuous.

Next we consider the case yj �= xj . For the following notation, we refer to [6] and [12,13]. We 
also use the parabolic theorem of sums for wj which implies that there exists symmetric matrices 
Xj , Yj such that

(
j (tj − sj ), j2

∣∣xj − yj

∣∣2 (xj − yj ), Xj

)
∈ P2,+

u(xj , tj ),(
j (tj − sj ), j2

∣∣xj − yj

∣∣2 (xj − yj ), Yj

)
∈ P2,−

φ(yj , sj ),

and (
Xj 0
0 −Yj

)
≤ D2�j(xj , yj ) + 1

j
[D2�j(xj , yj )]2
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with �j(xj , yj ) = j2

4

∣∣xj − yj

∣∣4. Here

D2�j(xj , yj ) =
(

M −M

−M M

)
,

where M = j2
∣∣xj − yj

∣∣2 (2
xj −yj∣∣xj −yj

∣∣ ⊗ xj −yj∣∣xj −yj

∣∣ + I
)

, and

[D2�j(xj , yj )]2 = 2

(
M2 −M2

−M2 M2

)
.

Let ξ := xj −yj∣∣xj −yj

∣∣ and use (
√

p(xj , tj )ξ, 
√

p(yj , sj )ξ). The above implies

p(xj , tj )ξ
′Xj · ξ − p(yj , sj )ξ

′Yj · ξ

≤ C
(
p(xj , tj ) − p(yj , sj )

)2
(
ξ ′Mξ + 2

j
ξ ′M2ξ

)
,

where we used a simple estimate

(√
p(xj , tj ) −

√
p(yj , sj )

)2
≤ (p(xj , tj ) − p(yj , sj ))

2,

which holds since the function p is greater than 2.
We obtain

η < (n + p(xj , tj ))j (tj − sj ) − (n + p(yj , sj ))j (tj − sj )

− (p(xj , tj ) − 2)〈Xj

(xj − yj )∣∣xj − yj

∣∣ , (xj − yj )∣∣xj − yj

∣∣ 〉 − tr(Xj )

+ (p(yj , sj ) − 2)〈Yj

(xj − yj )∣∣xj − yj

∣∣ , (xj − yj )∣∣xj − yj

∣∣ 〉 + tr(Yj )

≤ (n + p(xj , tj ))j (tj − sj ) − (n + p(yj , sj ))j (tj − sj )

− p(xj , tj )〈Xj

(xj − yj )∣∣xj − yj

∣∣ , (xj − yj )∣∣xj − yj

∣∣ 〉 + p(yj , sj )〈Yj

(xj − yj )∣∣xj − yj

∣∣ , (xj − yj )∣∣xj − yj

∣∣ 〉.
Since the function p is Lipschitz continuous, we have
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|−(n + p(xj , tj ))j (tj − sj ) + (n + p(yj , sj ))j (tj − sj )|
= |j (tj − sj )(p(yj , sj ) − p(xj , tj ))|
< C1j |tj − sj |(|xj − yj |2 + |tj − sj |2) 1

2

≤ C1j |tj − sj |
√

2(|xj − yj | + |tj − sj |)
= √

2C1

(
(j |tj − sj |2) 1

2 (j2|xj − yj |4) 1
4 + j |tj − sj |2

)
<

η

2

when j is large enough. By theorem of sums, we get

η

2
< −p(xj , tj )〈Xj

(xj − yj )∣∣xj − yj

∣∣ , (xj − yj )∣∣xj − yj

∣∣ 〉 + p(yj , sj )〈Yj

(xj − yj )∣∣xj − yj

∣∣ , (xj − yj )∣∣xj − yj

∣∣ 〉
≤ C

(
p(xj , tj ) − p(yj , sj )

)2
(
ξ ′Mξ + 2

j
ξ ′M2ξ

)
≤ C

(
|xj − yj |2 + |tj − sj |2

)
(j2|xj − yj |2 + j3|xj − yj |4)

< C
(
j2|xj − yj |4 + (j2|xj − yj |4)3/2

)
when j is large. This is a contradiction, since j2|xj − yj |4 → 0 when j → ∞. In the last two 
estimates we used Lipschitz continuity of p. �

By modifying the above proof we also get the uniqueness. For viscosity solutions we assume 
continuity on �T .

Lemma 6.2. Viscosity solutions to (6.12) are unique.

Proof. The proof is by contradiction: We assume that u and v are viscosity solutions with the 
same boundary values and yet

u(x0, t0) − v(x0, t0) = sup(u − v) > 0.

Further, by considering

u − η

T − t
,

we may assume that

(n + p(x, t))ut ≤ �N
p(x,t)u − η

T

in the viscosity sense when testing from above.
Let
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wj(x, t, y, s) = u(x, t) − v(y, s) −
(j2

4
|x − y|4 + j

2
|t − s|2

)
and denote by (xj , tj , yj , sj ) the maximum point of wj in �T × �T . Since (x0, t0) is a local 
maximum for u − v, we may assume that

(xj , tj , yj , sj ) → (x0, t0, x0, t0), as j → ∞

and (xj , tj ) , (yj , sj ) ∈ �T .
We consider two cases: either xj = yj infinitely often or xj �= yj for all j large enough. First, 

denote

ϕ(x, t, y, s) = j2

4
|x − y|4 + j

2
(t − s)2

and let xj = yj . Then (y, s) �→ v(y, s) + ϕ(xj , tj , y, s), has a local minimum at (yj , sj ), and 
(x, t) �→ u(x, t) − ϕ(x, t, yj , sj ) a local maximum at (xj , tj ). From this we deduce (denote with 
abuse of notation ϕ(y, s) = ϕ(xj , tj , y, s) in the next display)

(n + p(yj , sj ))j (tj − sj ) = (n + p(yj , sj ))ϕs(yj , sj ) ≥ 0

and (denote with abuse of notation ϕ(x, t) = ϕ(x, t, yj , ss) in the next display)

(n + p(xj , tj ))(tj − sj ) = (n + p(xj , tj ))ϕt (xj , tj ) ≤ −η/T .

Thus

η

T
≤ (n + p(xj , tj ))(tj − sj ) − (n + p(yj , sj ))(tj − sj ) = 0,

a contradiction.
Next we consider the case yj �= xj . For the following notation, we refer to [6] and [12]. We 

also use the parabolic theorem of sums for wj which implies that there exist symmetric matrices 
Xj , Yj such that Yj − Xj is positive semidefinite and

(
j (tj − sj ), j2

∣∣xj − yj

∣∣2 (xj − yj ), Xj

)
∈ P2,+

u(yj , sj )(
j (tj − sj ), j2

∣∣xj − yj

∣∣2 (xj − yj ), Yj

)
∈ P2,−

v(xj , tj ).

Using (6.13) and the assumptions on u, we get

η

T
≤ −(n + p(yj , sj ))j (tj − sj ) + (n + p(xj , tj ))j (tj − sj )

+ (p(xj , tj ) − 2)〈Yj

(xj − yj )∣∣xj − yj

∣∣ , (xj − yj )∣∣xj − yj

∣∣ 〉 + tr(Yj )

− (p(yj , sj ) − 2)〈Xj

(xj − yj )∣∣xj − yj

∣∣ , (xj − yj )∣∣xj − yj

∣∣ 〉 − tr(Xj ).
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The right hand side can be estimated similarly as in the previous lemma to obtain a contradic-
tion. �
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Appendix A

Let us show Cases 1, 2, and 3 from the proof of Lemma 4.6. Recall that the comparison 
function in that lemma was

�(x, t) =
(

1

9

)3

inf
y∈Br (0)

uε(y,0)
( 1

3 r)2(n+1)2

(t + ( 1
3 r)2)(n+1)2

(
9 − |x|2

t + ( 1
3 r)2

)2

+

Starting from Case 1, we need to show that for e ∈ Rn, |e| = 1,

�(0, t) ≤ 1

2
[�(0, t − ε2

2
) + �(εe, t − ε2

2
)].

Since

�(0, t) = 1

9
inf

y∈Br(0)
uε(y,0)

( 1
3 r)2(n+1)2

[t + ( 1
3 r)2](n+1)2 ,

�(0, t − ε2

2
) = 1

9
inf

y∈Br(0)
uε(y,0)

( 1
3 r)2(n+1)2

[t − ε2

2 + ( 1
3 r)2](n+1)2

,

and

�(εe, t − ε2

2
) =

(
1

9

)3

inf
y∈Br(0)

uε(y,0)
( 1

3 r)2(n+1)2

[t − ε2

2 + ( 1
3 r)2](n+1)2

[
9 − ε2

t − ε2

2 + ( 1
3 r)2

]2

,

we have to show that

1 ≤ 1

2

[
t + ( 1

3 r)2

t − ε2

2 + ( 1
3 r)2

](n+1)2 ⎡⎣1 +
(

1

9

)2
(

9 − ε2

t − ε2

2 + ( 1
3 r)2

)2
⎤⎦ =: A1.

Since

1 +
(

1

9

)2
(

9 − ε2

t − ε2

2 + ( 1
3 r)2

)2

≥ 2 − 2

9

(
ε2

t − ε2

2 + ( 1
3 r)2

)
,

we get
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A1 ≥
[

t + ( 1
3 r)2

t − ε2

2 + ( 1
3 r)2

][
1 − 1

9

(
ε2

t − ε2

2 + ( 1
3 r)2

)]

=
[

1 + 1

2

(
ε2

t − ε2

2 + ( 1
3 r)2

)][
1 − 1

9

(
ε2

t − ε2

2 + ( 1
3 r)2

)]

≥ 1 − 1

9

(
ε2

t − ε2

2 + ( 1
3 r)2

)
+ 1

2

(
ε2

t − ε2

2 + ( 1
3 r)2

)
− 1

18

(
ε2

t − ε2

2 + ( 1
3 r)2

)
≥ 1,

and Case 1 is complete.
In Case 2, |x| = ηε for some 0 < η < 1, and we need to show that

�(x, t) ≤ 1

2
[�(0, t − ε2

2
) + �(x + x

|x|ε, t − ε2

2
)].

Since

�(x, t) =
(

1

9

)3

inf
y∈Br(0)

uε(y,0)
( 1

3 r)2(n+1)2

[t + ( 1
3 r)2](n+1)2

[
9 − |ηε|2

t + ( 1
3 r)2

]2

,

�(0, t − ε2

2
) = 1

9
inf

y∈Br(0)
uε(y,0)

( 1
3 r)2(n+1)2

[t − ε2

2 + ( 1
3 r)2](n+1)2

,

and

�(x + x

|x|ε, t − ε2

2
) =

(
1

9

)3

inf
y∈Br(0)

uε(y,0)
( 1

3 r)2(n+1)2

[t − ε2

2 + ( 1
3 r)2](n+1)2

[
9 − |(1 + η)ε|2

t − ε2

2 + ( 1
3 r)2

]2

,

it is sufficient to show that

[
9 − |ηε|2

t + ( r
3 )2

]2

≤ 1

2

(
t + ( 1

3 r)2

t − ε2

2 + ( 1
3 r)2

)⎡⎣92 +
(

9 − (1 + η)2ε2

t − ε2

2 + ( 1
3 r)2

)2
⎤⎦ .

Notice that in Cases 1 and 2 we don’t need to take the cut-off into account, since �(x, t) > 0
when |x| ≤ 2ε.

Recalling that r ≥ 9ε, we have

92 +
(

9 − (1 + η)2ε2

t − ε2

2 + ( 1
3 r)2

)2

≥ 144,

from which it follows that
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1

2

(
t + ( 1

3 r)2

t − ε2

2 + ( 1
3 r)2

)⎡⎣92 +
(

9 − (1 + η)2ε2

t − ε2

2 + ( 1
3 r)2

)2
⎤⎦

= 1

2

(
1 + 1

2

ε2

t − ε2

2 + ( 1
3 r)2

)⎡⎣92 +
(

9 − (1 + η)2ε2

t − ε2

2 + ( 1
3 r)2

)2
⎤⎦

≥ 1

2

⎡⎣92 +
(

9 − (1 + η)2ε2

t − ε2

2 + ( 1
3 r)2

)2
⎤⎦+ 36

ε2

t − ε2

2 + ( 1
3 r)2

.

Hence, it is enough to show that

[
9 − |kε|2

t + ( r
3 )2

]2

− 1

2

⎡⎣92 +
(

9 − (1 + k)2ε2

t − ε2

2 + ( 1
3 r)2

)2
⎤⎦

≤ 36
ε2

t − ε2

2 + ( 1
3 r)2

. (A.17)

The left hand side can be written as

−18
|kε|2

t + ( r
3 )2

+
( |kε|2

t + ( r
3 )2

)2

+ 9

(
(1 + η)2ε2

t − ε2

2 + ( 1
3 r)2

)
− 1

2

(
(1 + η)2ε2

t − ε2

2 + ( 1
3 r)2

)2

.

Since

9

(
(1 + η)2ε2

t − ε2

2 + ( 1
3 r)2

)
≤ 36

ε2

t − ε2

2 + ( 1
3 r)2

and ( |kε|2
t + ( r

3 )2

)2

≤ |kε|2
t + ( r

3 )2
,

inequality (A.17) holds, and Case 2 is proved.
In Case 3, we need to show that if |x| ≥ ε, then

1

2
[�(x + x

|x|ε, t − ε2

2
) + �(x − x

|x|ε, t − ε2

2
)] ≥ �(x, t).

Suppose first that

(|x| + ε)2

t − ε2

2 + ( r
3 )2

< 9.

Then also
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|x|2
t + ( r

3 )2
< 9 and

(|x| − ε)2

t − ε2

2 + ( r
3 )2

< 9.

Since 
(

1
9

)3
infy∈Br (0) uε(y, 0) 

(
r
3

)2(n+1)2
cancels out, it is enough to show that

(
t − ε2

2 + ( r
3 )2

t + ( r
3 )2

)(
9 − |x|2

t + ( r
3 )2

)2

≤ 1

2

⎡⎣(
9 − (|x| + ε)2

t − ε2

2 + ( r
3 )2

)2

+
(

9 − (|x| − ε)2

t − ε2

2 + ( r
3 )2

)2
⎤⎦ ,

or equivalently,[
9 − |x|2

t + ( r
3 )2

]2

≤ 1

2

(
1 + 1

2

ε2

t − ε2

2 + ( r
3 )2

)⎡⎣(
9 − (|x| + ε)2

t − ε2

2 + ( r
3 )2

)2

+
(

9 − (|x| − ε)2

t − ε2

2 + ( r
3 )2

)2
⎤⎦ .

This is equivalent to showing that

18

(
ε2

t − ε2

2 + ( 1
3 r)2

)
≤ 1

2

(
(|x| + ε)4 + (|x| − ε)4

[t − ε2

2 + ( 1
3 r)2]2

)
− |x|4

[t + ( 1
3 r)2]2

+ 1

4

(
ε2

t − ε2

2 + ( 1
3 r)2

)
I,

where

I =
(

9 − (|x| + ε)2

t − ε2

2 + ( r
3 )2

)2

+
(

9 − (|x| − ε)2

t − ε2

2 + ( r
3 )2

)2

.

Since

|x|4
[t + ( 1

3 r)2]2
=

(
1 − 1

2

ε2

t + ( r
3 )2

)2 ( |x|4
[t − ε2

2 + ( 1
3 r)2]2

)

≤
(

1 − 1

2

ε2

t + ( r
3 )2

)(
|x|4

[t − ε2

2 + ( 1
3 r)2]2

)

and

(|x| + ε)4 + (|x| − ε)4 ≤ 2|x|4 + 12|x|2ε2,
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we get an estimate

1

2

(
(|x| + ε)4 + (|x| − ε)4

[t − ε2

2 + ( 1
3 r)2]2

)
− |x|4

[t + ( 1
3 r)2]2

≥ 1

2

(
(|x| + ε)4 + (|x| − ε)4

[t − ε2

2 + ( 1
3 r)2]2

)
−

(
1 − 1

2

ε2

t + ( r
3 )2

)(
|x|4

[t − ε2

2 + ( 1
3 r)2]2

)

≥ 6

(
|x|2

t − ε2

2 + ( 1
3 r)2

)(
ε2

t − ε2

2 + ( 1
3 r)2

)
+ 1

2

(
|x|2

t − ε2

2 + ( 1
3 r)2

)2 (
ε2

t − ε2

2 + ( 1
3 r)2

)
.

Hence, it is sufficient to show that

18

(
ε2

t − ε2

2 + ( 1
3 r)2

)

≤ 6

(
|x|2

t − ε2

2 + ( 1
3 r)2

)(
ε2

t − ε2

2 + ( 1
3 r)2

)
+ 1

2

(
|x|2

t − ε2

2 + ( 1
3 r)2

)2 (
ε2

t − ε2

2 + ( 1
3 r)2

)

+ 1

4

(
ε2

t − ε2

2 + ( 1
3 r)2

)
I.

If

|x|2
t − ε2

2 + ( 1
3 r)2

≥ 5

2
,

the previous inequality clearly holds. If

|x|2
t − ε2

2 + ( 1
3 r)2

≤ 5

2
,

then I ≥ 72 and the previous inequality holds again.
When

(|x| + ε)2

t − ε2

2 + ( r
3 )2

≥ 9,

we need to show that

(
9 − |x|2

t + ( r
3 )2

)2

+
≤ 1

2

(
1 + 1

2

ε2

t − ε2

2 + ( r
3 )2

)(
9 − (|x| − ε)2

t − ε2

2 + ( r
3 )2

)2

+
,

and this follows by the previous estimates of Case 3.
Let us next show that � is a viscosity subsolution to
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(n + 2)ut (x, t) = �u(x, t).

Denote

|z|2 = |x|2
t + r2

.

Then

(n + 2)�t (x, t) − ��(x, t)

= ( r
3 )2(n+1)2

(t + ( r
3 )2)(n+1)2+1

(9 − |z|2)+[
−(n + 2)(n + 1)2(9 − |z|2)+ + 2(n + 2)|z|2 + 4n − 8|z|2

(9 − |z|2)+
]

=: ( r
3 )2(n+1)2

(t + ( r
3 )2)(n+1)2+1

(9 − |z|2)+A.

When a := 9 − |z|2 > 0, we get

1

a
A = −(n + 2)(n + 1)2a2 + 2(n + 2)(9 − a)a + 4na − 8(9 − a)

=
[
−(n + 2)(n + 1)2 − 2(n + 2)

]
a2 + 22(n + 2)a − 72 < 0

when a = 8, and the discriminant is

D = 222(n + 2)2 − 4 × 72(n + 2)[(n + 1)2 + 2] < 0,

since (n + 1)2 + 2 > 2(n + 2). Hence A < 0 when 0 < a ≤ 9.
That � is a subsolution in �T follows from the fact that the maximum of two subsolutions is 

a subsolution.
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Abstract

We consider the normalized p-Poisson problem

−∆N
p u = f in Ω ⊂ Rn.

The normalized p-Laplacian ∆N
p u := |Du|2−p∆pu is in non-divergence form and arises for example

from stochastic games. We prove C1,α
loc regularity with nearly optimal α for viscosity solutions of

this problem. In the case f ∈ L∞ ∩ C and p > 1 we use methods both from viscosity and weak
theory, whereas in the case f ∈ Lq∩C, q > max(n, p2 , 2), and p > 2 we rely on the tools of nonlinear
potential theory.

Résumé

On considère l’équation de Poisson pour le p-Laplacien normalisé

−∆N
p u = f dans Ω ⊂ Rn.

Le p-Laplacien normalisé est un opérateur sous forme non-divergence et il apparâıt dans l’étude
de certains jeux aléatoires. On démontre un résultat de régularité C1,α

loc pour des solutions de
viscosité de ce problème avec un exposent α quasi optimal. Dans le cas d’une function f ∈ L∞∩C
et pour p > 1, on combine des arguments utilisés dans la théorie des solutions de viscosité avec
des arguments provenant de la théorie des solutions distributionnelles. Dans le cas d’une fonction
f ∈ Lq ∩ C où q > max(n, p2 , 2) et p > 2, on se base sur des outils de la théorie du potentiel
non-linéaire.

Keywords: Normalized p-Laplacian, p-Poisson problem, viscosity solutions, local C1,α regularity.
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1. Introduction

In this paper we study local regularity properties of the inhomogeneous normalized p-Laplace
equation

−∆N
p u = f in Ω, (1.1)
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where Ω ⊂ Rn is a bounded domain. The normalized p-Laplacian is defined as

∆N
p u := |Du|2−p∆pu = ∆u+ (p− 2)∆N

∞u,

where ∆N
∞u := 〈D2u Du

|Du| ,
Du
|Du|〉 denotes the normalized infinity Laplacian. The motivation to study

these types of normalized operators stems partially from their connections to stochastic games and
their applications to image processing. Equation (1.1) is different from the standard p-Laplace
equation due to the right hand side f . Indeed, it is in non-divergence form. The normalized
p-Laplacian is gradient dependent and discontinuous, so we cannot directly rely on the existing
general C1,α regularity theory of viscosity solutions. Only Hölder continuity for solutions of (1.1)
follows from the regularity theory for uniformly elliptic equations, see [7, 8].

Our aim is to show local Hölder continuity for gradients of viscosity solutions of (1.1) by relying
on different methods depending on regularity assumptions of the source term f . Assuming first
that f ∈ L∞(Ω)∩C(Ω), we show that solutions of (1.1) for p > 1 are of class C1,α

loc for some α > 0
depending on p and the dimension n.

Theorem 1.1. Assume that p > 1 and f ∈ L∞(Ω)∩C(Ω). There exists α = α(p, n) > 0 such that
any viscosity solution u of (1.1) is in C1,α

loc (Ω), and for any Ω′ ⊂⊂ Ω,

[u]C1,α(Ω′) ≤ C = C
(
p, n, d, d′, ||u||L∞(Ω), ||f ||L∞(Ω)

)
,

where d = diam(Ω) and d′ = dist(Ω′, ∂Ω).

By translation and scaling, we may prove the result at the origin and assume that u(0) = 0 and
oscB1 u ≤ 1. It is sufficient to show that for some ρ ∈ (0, 1) and for all k ∈ N, there exists qk ∈ Rn
for which

osc
x∈Brk

(u(x)− qk · x) ≤ r1+α
k ,

where rk := ρk. Heuristically, we want to show that if a solution u can be approximated by a plane
qk · x in a small ball Brk , then in a smaller ball Brk+1

there is a slightly different plane qk+1 · x
giving a better approximation. To get a C1,α estimate, we have to show that the approximation
improves by a sufficiently small multiplicative factor. An inductive argument leads us to analyze
regularity of deviations of solutions from planes, w(x) = u(x) − q · x for different q ∈ Rn. The
required oscillation estimate for these deviations is called improvement of flatness:

osc
x∈Bρ

(w(x)− q′ · x) ≤ 1

2
ρ

for some q′ ∈ Rn, under the assumption that the oscillation of f is sufficiently small. This is shown
in Lemma 3.3 by using a compactness and contradiction argument. Recently, Imbert and Silvestre
[18] used this method to show C1,α regularity for viscosity solutions of |Du|γF (D2u) = f , where
F is uniformly elliptic. In our case, the most technical part of the proof of Lemma 3.3 is to show
a uniform C1,α estimate for functions w under the assumption f ≡ 0. This is done in the proof of
Lemma 3.2 by using the Ishii-Lions method.

Earlier, in the restricted case p ≥ 2, a C2 domain Ω and f ∈ C(Ω), Birindelli and Demengel
[5, Proposition 3.5] proved global Hölder continuity for the gradient of viscosity solutions of (1.1)

2



in connection to eigenvalue problems related to the p-Laplacian. In the case p ≥ 2 we provide an
alternative proof by showing first that viscosity solutions of (1.1) are weak solutions of

−∆pu = |Du|p−2f in Ω, (1.2)

and then relying on the known regularity results for quasilinear PDEs to see that weak solutions
of (1.2) are locally of class C1,α.

Restricting to the case p > 2, we can relax the estimate of Theorem 1.1 by providing a control
on the Hölder estimate of the gradient that depends on a weaker norm of f .

Theorem 1.2. Assume that p > 2, q > max(2, n, p/2), f ∈ C(Ω) ∩ Lq(Ω). Then any viscosity
solution u of (1.1) is in C1,α

loc (Ω) for some α = α(p, q, n). Moreover, for any Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω, with
Ω′ smooth enough, we have

[u]C1,α(Ω′′) ≤ C = C
(
p, q, n, d, d′′, ||u||L∞(Ω), ||f ||Lq(Ω)

)
,

where d = diam (Ω) and d′′ = dist (Ω′′, ∂Ω′).

In the proof we first consider weak solutions uε of certain regularized equations, and by using the
De Giorgi iteration and the potential estimates of Duzaar and Mingione [15] we obtain local uniform
estimates for ||Duε||L∞(Ω). From the classical result of Lieberman we get a uniform estimate for
[Duε]Cβ(Ω) for some β > 0, and Theorem 1.2 follows from a compactness argument. In the proof
we also show that under the assumptions of Theorem 1.2, there exists a weak solution of equation
(1.2) which is in C1,α

loc (Ω).

It is well known that p-harmonic functions are of class C1,α0

loc for some maximal exponent
0 < α0 < 1 that depends only upon n and p. This was shown independently by Uraltseva [43] and
Uhlenbeck [42] in the case p > 2, and later extended to the case p > 1, see [13, 29] and also [34, 20]
for related research. The question of optimal regularity for p-Laplace equations in divergence form
has attracted a lot of attention recently, see Section 5 for further references. Since the solutions of
(1.1) should not be expected to be more regular than p-harmonic functions, the maximal exponent
α0 is a natural upper bound for C1,α regularity for equation (1.1). In the following theorem we
obtain nearly optimal regularity for solutions of (1.1).

Theorem 1.3. Fix an arbitrary ξ ∈ (0, α0), where α0 is the optimal Hölder exponent for gradients
of p-harmonic functions in terms of an a priori estimate.

If p > 1 and f ∈ L∞(Ω) ∩ C(Ω), then viscosity solutions to (1.1) are in C1,α0−ξ
loc (Ω).

If p > 2, q > max(2, n, p/2) and f ∈ C(Ω) ∩ Lq(Ω), then viscosity solutions to (1.1) are in

C
1,αξ
loc (Ω), where αξ := min(α0− ξ, 1−n/q). Moreover the estimates given in the previous theorems

hold for αξ.

When the gradient is sufficiently large, the result follows from the classical regularity results
for uniformly elliptic equations. When the gradient is small, the first step is to use local C1,α

regularity of the solutions of (1.1), proved in Theorems 1.1 and 1.2, to show that the solutions
can be approximated by p-harmonic functions in C1,α. The next step is to use suitable rescaled
functions and iteration to obtain the required oscillation estimate.

Over the last decade, equation (1.1) and similar normalized equations have received growing
attention, partly due to the stochastic zero-sum tug-of-war games defined by Peres, Schramm,
Sheffield and Wilson in [37, 38]. In [37] Peres and Sheffield studied a connection between equation

3



(1.1) and the game tug-of-war with noise and running pay-off. The game-theoretic interpretation
led to new regularity proofs in the case f = 0 in [32], and later in the case of bounded and positive
f in [39], see also [9] for a PDE approach. Regularity studies were extended to the parabolic version
ut = ∆N

p u in [35, 4, 21] and led to applications in image processing, see e.g. [14, 16].
This paper is organized as follows. In Section 2 we fix the notation and gather some definitions

and tools which we need later. In Section 3 we give two proofs for Theorem 1.1, in Section 4 we
prove Theorem 1.2, and in Section 5 Theorem 1.3.

2. Preliminaries

Throughout the paper Ω ⊂ Rn is a bounded domain. We use the notation
∫

A
udx :=

1

|A|

∫

A
udx

for the mean value of a function u in a measurable set A ⊂ Ω with Lebesgue measure |A| > 0. The
oscillation of a function u in a set A is denoted by

osc
A
u := sup

A
u− inf

A
u.

For p > 1, we denote by Λ and λ the ellipticity constants of the normalized p-Laplacian ∆N
p .

Recalling the expression

∆N
p u = ∆u+ (p− 2)∆N

∞u = tr

(
(I + (p− 2)

Du⊗Du
|Du|2 )D2u

)

and calculating for arbitrary η ∈ Rn, |η| = 1,

〈(I + (p− 2)
Du⊗Du
|Du|2 )η, η〉 = |η|2 + (p− 2)

〈η,Du〉2
|Du|2

= 1 + (p− 2)
〈η,Du〉2
|Du|2 ,

we see that Λ = max(p− 1, 1) and λ = min(p− 1, 1).
We denote by Sn the set of symmetric n × n matrices. For a, b ∈ Rn, we denote by a ⊗ b the

n× n-matrix for which (a⊗ b)ij = aibj .
We will use the Pucci operators

P+(X) := sup
A∈Aλ,Λ

− tr(AX)

and
P−(X) := inf

A∈Aλ,Λ
− tr(AX),

where Aλ,Λ ⊂ Sn is a set of symmetric n× n matrices whose eigenvalues belong to [λ,Λ].
When studying Hölder and C1,α regularity, for α ∈ (0, 1] and a ball Br ⊂ Rn we use the notation

[u]C0,α(Br) := sup
x,y∈Br,x 6=y

|u(x)− u(y)|
|x− y|α

4



for Hölder continuous functions, and

[u]C1,α(Br) := [u]C1(Br) + sup
x,y∈Br,x 6=y

|Du(x)−Du(y)|
|x− y|α

for functions of class C1,α. Here [u]C1(Br) := supx∈Br |Du(x)|.
Recall that weak solutions to −∆pu := −div(|Du|p−2Du) = 0 are called p-harmonic functions.

We will use the known C1,α0

loc a priori estimate in Sections 4 and 5. The existence of the optimal
α0 = α0(p, n) follows from the known regularity estimates for the homogeneous p-Laplace equation.

The normalized p-Laplacian is undefined when Du = 0, where it has a bounded discontinu-
ity. This can be remediated adapting the notion of viscosity solution using the upper and lower
semicontinuous envelopes (relaxations) of the operator, see [10].

Definition 2.1. Let Ω be a bounded domain and 1 < p < ∞. An upper semicontinuous function
u is a viscosity subsolution of (1.1) if for all x0 ∈ Ω and φ ∈ C2(Ω) such that u− φ attains a local
maximum at x0, one has





−∆N
p φ(x0) ≤ f(x0), if Dφ(x0) 6= 0,

−∆φ(x0)− (p− 2)λmax(D2φ(x0)) ≤ f(x0), if Dφ(x0) = 0 and p ≥ 2,

−∆φ(x0)− (p− 2)λmin(D2φ(x0)) ≤ f(x0), if Dφ(x0) = 0 and 1 < p < 2.

A lower semicontinuous function u is a viscosity supersolution of (1.1) if for all x0 ∈ Ω and
φ ∈ C2(Ω) such that u− φ attains a local minimum at x0, one has





−∆N
p φ(x0) ≥ f(x0), if Dφ(x0) 6= 0,

−∆φ(x0)− (p− 2)λmin(D2φ(x0)) ≥ f(x0), if Dφ(x0) = 0 and p ≥ 2,

−∆φ(x0)− (p− 2)λmax(D2φ(x0)) ≥ f(x0), if Dφ(x0) = 0 and 1 < p < 2.

We say that u is a viscosity solution of (1.1) in Ω if it is both a viscosity sub- and supersolution.

We will make use of the equivalence between weak and viscosity solutions to the p-Laplace
equation ∆pu = 0. This was first proved in [23] by using the full uniqueness machinery of the
theory of viscosity solutions, and later in [22] without relying on the uniqueness. The techniques of
the second paper are particularly important for us in Section 3.2, where we do not have uniqueness.

3. Two proofs for Theorem 1.1

In this section we give two proofs for Theorem 1.1. In the first subsection we use an iteration
method often used to show C1,α regularity for elliptic equations.

In Section 3.2 we give another proof for Theorem 1.1 in the case p ≥ 2 by showing that a
viscosity solution to (1.1) is also a weak solution to (1.2).

3.1. First proof by improvement of flatness and iteration

In this subsection we give a first proof for Theorem 1.1. We assume that p > 1 and f ∈
L∞(Ω) ∩ C(Ω), and we want to show that there exists α = α(p, n) > 0 such that any viscosity
solution u of (1.1) is in C1,α

loc (Ω), and for any Ω′ ⊂⊂ Ω,

[u]C1,α(Ω′) ≤ C = C
(
p, n, d, d′, ||u||L∞(Ω), ||f ||L∞(Ω)

)
,
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where d = diam(Ω) and d′ = dist(Ω′, ∂Ω).
Since Hölder continuous functions can be characterized by the rate of their approximations by

polynomials (see [25]), it is sufficient to prove that there exists some constant C such that for all
x ∈ Ω and r ∈ (0, 1), there exists q = q(r, x) ∈ Rn for which

osc
y∈Br(x)

(u(y)− u(x)− q · (x− y)) ≤ Cr1+α.

If one also starts with a solution u such that oscu ≤ 1, then it is sufficient to choose a suitable
ρ ∈ (0, 1) such that the previous inequality holds true for r = rk = ρk, q = qk and C = 1 by
proceeding by induction on k ∈ N. The balls Br(x) for x ∈ Ω and r < dist (x, ∂Ω) covering the
domain Ω, we may work on balls. By translation, it is enough to show that the solution is C1,α at
0, and by considering

ur(y) = r−2u(x+ ry),

we may work on the unit ball B1(0). Finally, considering u − u(0) if necessary, we may suppose
that u(0) = 0. We also reduce the problem by rescaling. Let κ = (2||u||L∞(B1) + ε−1

0 ||f ||L∞(B1))
−1.

Setting ũ = κu, then ũ satisfies
−∆N

p (ũ) = f̃

with ||ũ||L∞(B1) ≤ 1
2 and ||f̃ ||L∞(B1) ≤ ε0. Hence, without loss of generality we may assume in

Theorem 1.1 that ||u||L∞(B1) ≤ 1/2 and ||f ||L∞(B1) ≤ ε0, where ε0 = ε0(p, n) is chosen later.
The idea of the proof is to first study the deviations of u from planes w(x) = u(x)− q ·x which

satisfy

−∆w − (p− 2)

〈
D2w

Dw + q

|Dw + q| ,
Dw + q

|Dw + q|

〉
= f in B1 (3.1)

in the viscosity sense, and show equicontinuity for uniformly bounded solutions in Lemma 3.1. By
the Arzelà-Ascoli theorem we get compactness, which, together with Lemma 3.2, we use to show
improvement of flatness for solutions of (3.1) in Lemma 3.3. Finally, we prove C1,α regularity for
solutions of (1.1) in Lemma 3.4 by using Lemma 3.3 and iteration.

In order to prove Theorem 1.1, we will first need the following equicontinuity lemma for viscosity
solutions to equation (3.1).

Lemma 3.1. For all r ∈ (0, 1), there exist a constant β = β(p, n) ∈ (0, 1) and a positive constant
C = C(p, n, r, osc

B1

(w), ||f ||Ln(B1)) such that any viscosity solution w of (3.1) satisfies

[w]C0,β(Br) ≤ C. (3.2)

Proof. Equation (3.1) can be rewritten as

− tr

((
I + (p− 2)

Dw + q

|Dw + q| ⊗
Dw + q

|Dw + q|

)
D2w

)
= f.

Recalling the definitions of the Pucci operators P+ and P− respectively, we have
{
P+(D2w) + |f | ≥ 0
P−(D2w)− |f | ≤ 0.

By the classical result of Caffarelli in [7, Proposition 4.10], there exists β = β(p, n) ∈ (0, 1) such
that

[w]C0,β(Br) ≤ C = C

(
p, n, r, osc(w)

B1

, ||f ||Ln(B1)

)
.
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The next lemma is needed to prove the key Lemma 3.3, where we show improvement of flatness.
For convenience, we postpone the technical proof of Lemma 3.2 and present it at the end of this
section.

Lemma 3.2. Assume that f ≡ 0 and let w be a viscosity solution to equation (3.1) with oscw
B1

≤ 1.

For all r ∈ (0, 1
2 ], there exist constants C0 = C0(p, n) > 0 and β1 = β1(p, n) > 0 such that

[w]C1,β1 (Br)
≤ C0. (3.3)

We are now in a position to show an improvement of flatness for solutions to equation (3.1) by
using the previous lemmas together with known regularity results for elliptic PDEs. Intuitively,
we show that graphs of the solutions get more flat when we look at them in smaller balls.

Lemma 3.3. There exist ε0 ∈ (0, 1) and ρ = ρ(p, n) ∈ (0, 1) such that, for any viscosity solution
w of (3.1), oscB1(w) ≤ 1 and ||f ||L∞(B1) ≤ ε0, there exists q′ ∈ Rn such that

osc
x∈Bρ

(w(x)− q′ · x) ≤ 1

2
ρ.

Proof. Thriving for a contradiction, assume that there exist a sequence of functions (fj) with
||fj ||L∞(B1) → 0, a sequence of vectors (qj) and a sequence of viscosity solutions (wj) with
oscB1(wj) ≤ 1 to

−∆wj − (p− 2)

〈
D2wj

Dwj + qj
|Dwj + qj |

,
Dwj + qj
|Dwj + qj |

〉
= fj , (3.4)

such that, for all q′ ∈ Rn and any ρ ∈ (0, 1)

osc
x∈Bρ

(wj(x)− q′ · x) >
ρ

2
. (3.5)

Using the compactness result of Lemma 3.1, there exists a continuous function w∞ such that
wj → w∞ uniformly in Bρ for any ρ ∈ (0, 1). Passing to the limit in (3.5), we have that for any
vector q′,

osc
x∈Bρ

(w∞(x)− q′ · x) >
ρ

2
. (3.6)

Suppose first that the sequence (qj) is bounded. Using the result of Appendix A, we extract a
subsequence (wj) converging to a limit w∞, which satisfies

− tr

((
I + (p− 2)

Dw∞ + q∞
|Dw∞ + q∞|

⊗ Dw∞ + q∞
|Dw∞ + q∞|

)
D2w∞

)
= 0 inB1

in a viscosity sense. (Here qj → q∞ up to the same subsequence.) By the regularity result of
Lemma 3.2, there exist β1 = β1(p, n) > 0 and C0 = C0(p, n) > 0 such that ||w∞||C1,β1 (B1/2) ≤ C0.

If the sequence (qj) is unbounded, we extract a converging subsequence from ej =
qj
|qj | , ej → e∞,

and obtain (see Appendix A)

−∆w∞ − (p− 2)
〈
D2w∞ e∞, e∞

〉
= 0 in B1, (3.7)

with |e∞| = 1. Noticing that equation (3.7) can be written as

− tr ((I + (p− 2)e∞ ⊗ e∞)D2w∞) = 0,

7



we see that equation (3.7) is uniformly elliptic and depends only on D2w∞. By the regularity

result of [8, Corollary 5.7], there is β2 = β2(p, n) > 0 so that w∞ ∈ C1,β2

loc and there exists
C0 = C0(p, n) > 0 such that ||w∞||C1,β1 (B1/2) ≤ C0.

We have shown that w∞ ∈ C1,β
loc for β = min(β1, β2) > 0. Choose ρ ∈ (0, 1/2) such that

C0ρ
β ≤ 1

4
. (3.8)

By C1,β
loc regularity, there exists a vector kρ such that

osc
x∈Bρ

(w∞(x)− kρ · x) ≤ C0ρ
1+β ≤ 1

4
ρ. (3.9)

This contradicts (3.6) so the proof is complete.

Proceeding by iteration, we obtain the following lemma.

Lemma 3.4. Let ρ and ε0 ∈ (0, 1) be as in Lemma 3.3 and let u be a viscosity solution of (1.1)
with oscB1(u) ≤ 1 and ||f ||L∞(B1) ≤ ε0. Then, there exists α ∈ (0, 1) such that for all k ∈ N, there
exists qk ∈ Rn such that

osc
y∈Brk

(u(y)− qk · y) ≤ r1+α
k , (3.10)

where rk := ρk.

Proof. For k = 0, the estimate (3.10) follows from the assumption oscB1(u) ≤ 1. Next we take
α ∈ (0, 1) such that ρα > 1/2. We assume for k ≥ 0 that we already constructed qk ∈ Rn such
that (3.10) holds true. To prove the inductive step k → k + 1, we rescale the solution considering
for x ∈ B1

wk(x) = r−1−α
k

(
u(rkx)− qk · (rkx)

)
.

By induction assumption, we have osc
B1

(wk) ≤ 1, and wk satisfies

−∆wk − (p− 2)

〈
D2wk

Dwk + (qk/r
α
k )∣∣Dwk + (qk/r
α
k )
∣∣ ,

Dwk + (qk/r
α
k )∣∣Dwk + (qk/r
α
k )
∣∣

〉
= fk,

where fk(x) = r1−α
k f(rkx) with ||fk||L∞(B1) ≤ ε0 since α < 1. Using the result of Lemma 3.3, there

exists lk+1 ∈ Rn such that

osc
x∈Bρ

(wk(x)− lk+1 · x) ≤ 1

2
ρ.

Setting qk+1 = qk + lk+1r
α
k , we get

osc
Brk+1

(u(x)− qk+1 · x) ≤ ρ

2
r1+α
k ≤ r1+α

k+1 .

Since the estimate (3.10) holds for every k, the proof of Theorem 1.1 is complete.

The rest of the section is devoted to the proof of Lemma 3.2. First we need the following
technical lemma concerning Lipschitz regularity of solutions of equation (3.1) in the case f ≡ 0.
For n× n matrices we use the matrix norm

||A|| := sup
|x|≤1
{|Ax|}.
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Lemma 3.5. Assume that f ≡ 0 and let w be a viscosity solution to equation (3.1) with oscw
B1

≤ 1.

For all r ∈ (0, 3
4), there exists a constant Q = Q(p, n) > 0 such that, if |q| > Q, then for all

x, y ∈ Br,

|w(x)− w(y)| ≤ C̃ |x− y| , (3.11)

where C̃ = C̃(p, n) > 0.

Proof. We use the viscosity method introduced by Ishii and Lions in [19].

Step 1

It suffices to show that w is Lipschitz in B3/4, because this will imply that w is Lipschitz in

any smaller ball Bρ for ρ ∈
(
0, 3

4

)
with the same Lipschitz constant. Take r = 4

5 . First we fix
x0, y0 ∈ B 15r

16
, where now 15r

16 = 3
4 , and introduce the auxiliary function

Φ(x, y) := w(x)− w(y)− Lφ(|x− y|)− M

2
|x− x0|2 −

M

2
|y − y0|2 ,

where φ is defined below. Our aim is to show that Φ(x, y) ≤ 0 for (x, y) ∈ Br × Br. For a proper
choice of φ, this yields the desired regularity result. We take

φ(t) =

{
t− tγφ0 0 ≤ t ≤ t1 := ( 1

γφ0
)1/(γ−1)

φ(t1) otherwise,

where 2 > γ > 1 and φ0 > 0 is such that t1 ≥ 2 and γφ02γ−1 ≤ 1/4.
Then

φ′(t) =

{
1− γtγ−1φ0 0 ≤ t ≤ t1
0 otherwise,

φ′′(t) =

{
−γ(γ − 1)tγ−2φ0 0 < t ≤ t1
0 otherwise.

In particular, φ′(t) ∈ [3
4 , 1] and φ′′(t) < 0 when t ∈ [0, 2].

Step 2

We argue by contradiction and assume that Φ has a positive maximum at some point (x1, y1) ∈
B̄r × B̄r. Since w is continuous and its oscillation is bounded by 1, we get

M |x1 − x0|2 ≤ 2 oscB1 w ≤ 2,

M |y1 − y0|2 ≤ 2 oscB1 w ≤ 2.
(3.12)

Notice that x1 6= y1, otherwise the maximum of Φ would be non positive. Choosing M ≥
(

32

r

)2

,

we have that |x1 − x0| < r/16 and |y1 − y0| < r/16 so that x1 and y1 are in Br.
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We know that w is locally Hölder continuous and that there exists a constant Cβ > 0 depending
only on p, n, r such that

|w(x)− w(y)| ≤ Cβ|x− y|β forx, y ∈ Br.

Using that w is Hölder continuous, it follows, adjusting the constants (by choosing 2M ≤ Cβ),
that

M |x1 − x0| ≤ Cβ |x1 − y1|β/2 ,
M |y1 − y0| ≤ Cβ |x1 − y1|β/2 .

(3.13)

By Jensen-Ishii’s lemma (also known as theorem of sums, see [10, Theorem 3.2]), there exist

(ζ̃x, X) ∈ J 2,+
(
w(x1)− M

2
|x1 − x0|2

)
,

(ζ̃y, Y ) ∈ J 2,−
(
w(y1) +

M

2
|y1 − y0|2

)
,

that is

(a,X +MI) ∈ J 2,+
w(x1),

(b, Y −MI) ∈ J 2,−
w(y1),

where (ζ̃x = ζ̃y)

a = Lφ′(|x1 − y1|)
x1 − y1

|x1 − y1|
+M(x1 − x0) = ζ̃x +M(x1 − x0),

b = Lφ′(|x1 − y1|)
x1 − y1

|x1 − y1|
−M(y1 − y0) = ζ̃y −M(y1 − y0).

If L is large enough (depending on the Hölder constant Cβ), we have

|a| , |b| ≥ Lφ′(|x1 − y1|)− Cβ |x1 − y1|β/2 ≥
L

2
.

Moreover, by Jensen-Ishii’s lemma, for any τ > 0, we can take X,Y ∈ Sn such that

−
[
τ + 2 ||B||

](I 0
0 I

)
≤
(
X 0
0 −Y

)
(3.14)

and
(
X 0
0 −Y

)
≤
(
B −B
−B B

)
+

2

τ

(
B2 −B2

−B2 B2

)
(3.15)

= D2φ(x1, y1) +
1

τ

(
D2φ(x1, y1)

)2
,

where

B =Lφ′′(|x1 − y1|)
x1 − y1

|x1 − y1|
⊗ x1 − y1

|x1 − y1|

+
Lφ′(|x1 − y1|)
|x1 − y1|

(
I − x1 − y1

|x1 − y1|
⊗ x1 − y1

|x1 − y1|

)
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and

B2 =
L2(φ′(|x1 − y1|))2

|x1 − y1|2

(
I − x1 − y1

|x1 − y1|
⊗ x1 − y1

|x1 − y1|

)

+ L2(φ′′(|x1 − y1|))2 x1 − y1

|x1 − y1|
⊗ x1 − y1

|x1 − y1|
.

Notice that φ′′(t) +
φ′(t)
t
≥ 0, φ′′(t) ≤ 0 for t ∈ (0, 2) and hence

||B|| ≤ Lφ′(|x1 − y1|), (3.16)

∣∣∣∣B2
∣∣∣∣ ≤ L2

(
|φ′′(|x1 − y1|)|+

φ′(|x1 − y1|)
|x1 − y1|

)2

. (3.17)

Moreover, for ξ = x1−y1

|x1−y1| , we have

〈Bξ, ξ〉 = Lφ′′(|x1 − y1|) < 0, 〈B2ξ, ξ〉 = L2(φ′′(|x1 − y1|))2.

Choosing τ = 4L

(
|φ′′(|x1 − y1|)|+

φ′(|x1 − y1|)
|x1 − y1|

)
, we have that for ξ = x1−y1

|x1−y1| ,

〈Bξ, ξ〉+
2

τ
〈B2ξ, ξ〉 = L

(
φ′′(|x1 − y1|) +

2

τ
L(φ′′(|x1 − y1|))2

)

≤ L

2
φ′′(|x1 − y1|) < 0. (3.18)

In particular applying inequalities (3.14) and (3.15) to any vector (ξ, ξ) with |ξ| = 1, we have that
X − Y ≤ 0 and ||X|| , ||Y || ≤ 2 ||B||+ τ . We refer the reader to [19, 10] for details.
Thus, setting η1 = a+ q, η2 = b+ q, we have for |q| large enough (depending only on L)

|η1| ≥ |q| − |a| ≥
|a|
2
≥ L

4
,

|η2| ≥ |q| − |b| ≥
|b|
2
≥ L

4
, (3.19)

where L will be chosen later on and L will depend only on p, n, Cβ. We write the viscosity
inequalities

0 ≤ tr(X +MI) + (p− 2)
〈(X +MI)(a+ q), (a+ q)〉

|a+ q|2

0 ≥ tr(Y −MI) + (p− 2)
〈(Y −MI)(b+ q), (b+ q)〉

|b+ q|2 .

In other words

0 ≤ tr(A(η1)(X +MI))

0 ≤ − tr(A(η2)(Y −MI))

where for η 6= 0 η̄ =
η

|η| and

A(η) := I + (p− 2)η ⊗ η.
11



Adding the two inequalities, we get

0 ≤ tr(A(η1)(X +MI))− tr(A(η2)(Y −MI)).

It follows that

0 ≤ tr(A(η1)(X − Y ))︸ ︷︷ ︸
(1)

+ tr((A(η1)−A(η2))Y )︸ ︷︷ ︸
(2)

+M
[

tr(A(η1)) + tr(A(η2))︸ ︷︷ ︸
(3)

]
. (3.20)

Estimate of (1). Notice that all the eigenvalues of X − Y are non positive. Moreover, applying
the previous matrix inequality (3.15) to the vector (ξ,−ξ) where ξ := x1−y1

|x1−y1| and using (3.18), we
obtain

〈(X − Y )ξ, ξ〉 ≤ 4

(
〈Bξ, ξ〉+

2

τ
〈B2ξ, ξ〉)

)

≤ 2Lφ′′(|x1 − y1|) < 0. (3.21)

Hence at least one of the eigenvalue of X − Y that we denote by λi0 is negative and smaller than
2Lφ′′(|x1 − y1|). The eigenvalues of A(η1) belong to [min(1, p− 1),max(1, p− 1)]. Using (3.21), it
follows by [40] that

tr(A(η1)(X − Y )) ≤
∑

i

λi(A(η1))λi(X − Y )

≤ min(1, p− 1)λi0(X − Y )

≤ 2 min(1, p− 1)Lφ′′(|x1 − y1|).

Estimate of (2). We have

A(η1)−A(η2) = (η1 ⊗ η1 − η2 ⊗ η2)(p− 2)

= [(η1 − η2 + η2)⊗ η1 − η2 ⊗ (η2 − η1 + η1)](p− 2)

= [(η1 − η2)⊗ η1 + η2 ⊗ η1 − η2 ⊗ (η2 − η1)− η2 ⊗ η1](p− 2)

= [(η1 − η2)⊗ η1 − η2 ⊗ (η2 − η1)](p− 2).

Hence,

tr((A(η1)−A(η2))Y ) ≤ n ||Y || ||A(η1)−A(η2)||
≤ n |p− 2| ||Y || |η1 − η2| (|η1|+ |η2|)
≤ 2n |p− 2| ||Y || |η1 − η2|.

On one hand we have

|η1 − η2| =
∣∣∣∣
η1

|η1|
− η2

|η2|

∣∣∣∣ ≤ max

( |η2 − η1|
|η2|

,
|η2 − η1|
|η1|

)

≤ 8Cβ
L
|x1 − y1|β/2 ,
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where we used (3.19) and (3.13).

On the other hand, by (3.14)–(3.17),

||Y || = max
ξ
|〈Y ξ, ξ〉| ≤ 2|〈Bξ, ξ〉|+ 4

τ
|〈B2ξ, ξ〉|

≤ 4L

(
φ′(|x1 − y1|)
|x1 − y1|

+ |φ′′(|x1 − y1|)|
)
.

Hence, remembering that |x1 − y1| ≤ 2, we end up with

tr((A(η1)−A(η2))Y ) ≤ 128n |p− 2|Cβφ′(|x1 − y1|) |x1 − y1|−1+β/2

+ 128n |p− 2|Cβ|φ′′(|x1 − y1|)|.

Estimate of (3). Finally, we have

M(tr(A(η1)) + tr(A(η2))) ≤ 2Mnmax(1, p− 1).

Step 3

Gathering the previous estimates with (3.20) and recalling the definition of φ, we get

0 ≤ 128n |p− 2|Cβ
(
φ′(|x1 − y1|) |x1 − y1|β/2−1 + |φ′′(|x1 − y1|)|

)

+ 2 min(1, p− 1)Lφ′′(|x1 − y1|) + +2Mnmax(1, p− 1)

≤ 128n |p− 2|Cβ |x1 − y1|β/2−1 + 2nM max(1, p− 1)

+ 128n |p− 2|Cβγ(γ − 1)φ0 |x1 − y1|γ−2

− 2 min(1, p− 1)γ(γ − 1)φ0L |x1 − y1|γ−2 .

Taking γ = 1 + β/2 > 1 and choosing L large enough depending on p, n, Cβ, we get

0 ≤ −min(1, p− 1)γ(γ − 1)φ0

200
L |x1 − y1|γ−2 < 0,

which is a contradiction. Hence, by choosing first L such that

0 > 128n |p− 2|Cβ
(
φ′(|x1 − y1|) |x1 − y1|β/2−1 + |φ′′(|x1 − y1|)|

)

+ min(1, p− 1)Lφ′′(|x1 − y1|) + 2nM max(1, p− 1)

and then taking |q| large enough (depending on L, it suffices that |q| > 6L > 3
2 |a| see (3.19)), we

reach a contradiction and hence Φ(x, y) ≤ 0 for (x, y) ∈ Br × Br. The desired result follows since
for x0, y0 ∈ B 15r

16
, we have Φ(x0, y0) ≤ 0, we get

|w(x0)− w(y0)| ≤ Lφ(|x0 − y0|) ≤ L|x0 − y0|.

Remembering that 15r
16 = 15·4

16·5 = 3
4 , we get that w is Lipschitz in B 3

4
.

Finally, once we have a control on the Lipschitz norm of w, we can prove Lemma 3.2.
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Proof of Lemma 3.2. Introducing the function v(x) := w(x) + q · x, we notice that v is a viscosity
solution to

−∆N
p v = 0 inB1,

and thus also a viscosity solution to the homogeneous p-Laplace equation ∆pv = 0, see [23]. By the
equivalence result first proved by [23], v is a weak solution to the homogeneous p-Laplace equation.

By the classical regularity result, there is β1 = β1(p, n) > 0 so that v ∈ C1,β1

loc (B1) and hence also

w ∈ C1,β1

loc (B1). The main difficulty is to provide C1,β1 estimates which are uniform with respect
to q.

We notice that if |q| is large enough, then the equation satisfied by w is uniformly elliptic and
the operator is not discontinuous. Taking Q from Lemma 3.5 and assuming that |q| > Q, we
know from Lemma 3.5 that |Dw(x)| is controlled by some constant C̃ depending only on p, n and
independent of |q| for any x ∈ B3/4. It follows that, if q satisfies

|q| ≥ θ0 := max(Q, 2C̃) ≥ 2 ||Dw||L∞(B3/4) ,

then denoting ν := 1
|q| and e := q

|q| , we have

1

2
≤ |e| − |νDw| ≤ |νDw + e| ≤ |e|+ |νDw| ≤ 3

2
.

Defining

Σ(x) := (p− 2)
Dw(x) + q

|Dw(x) + q| ⊗
Dw(x) + q

|Dw(x) + q| ,

we note that (3.1) can be rewritten as

− tr(F (D2w, x)) = 0,

where F : Sn ×B3/4 → R,
F (M,x) = − tr((I + Σ(x))M),

is continuous.
Since Dw is Hölder continuous, we can see this equation as a linear elliptic equation with Cα

coefficients. The standard Calderón-Zygmund theory provides local C2,α regularity on w (boot-
strapping the argument gives even C∞ regularity on w).

Moreover, since v is a weak solution to the usual p-Laplacian, it follows that w is a weak solution
to

− div
(
|Dw + q|p−2(Dw + q)

)
= 0 in B3/4. (3.22)

Writing the weak formulation, we have that for any test function ϕ ∈ C∞0 (B3/4)

∫

B3/4

|Dw + q|p−2(Dw + q) ·Dϕdx = 0. (3.23)

Fixing k, 1 ≤ k ≤ n, taking ϕk =
∂ϕ

∂xk
instead of ϕ as a test function and integrating by parts,

we obtain ∫

B3/4

(|Dw + q|p−2(I + Σ(x))Dwk) ·Dϕdx = 0.
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Dividing by |q|p−2, we have for any function ϕ ∈ C∞0 (B3/4)

∫

B3/4

(
|νDw + e|p−2(I + Σ(x))Dwk

)
·Dϕdx = 0.

We conclude that h := wk is a weak solution to the linear uniformly elliptic equation

−div(A(x)Dh) = 0,

where A(x) := |νDw(x) + e|p−2(I + Σ(x)) ∈ Sn satisfies

A(x) ≥ min(1, p− 1) min

((
3

2

)p−2

,

(
1

2

)p−2
)
I,

A(x) ≤ max(1, p− 1) max

((
3

2

)p−2

,

(
1

2

)p−2
)
I.

Using the classical result of De Giorgi [12] for uniformly elliptic equations with bounded coefficients
(see also [36], [17, Theorems 8.24, 12.1]) we get that h is locally Hölder continuous and

[h]C0,β1 (B1/2) ≤ C(p, n) ||h||L2(B3/4) (3.24)

for some β1 = β1(p, n) > 0.
We conclude that if |q| > θ0 = θ0(p, n), then there exist C = C(p, n, ||w||L∞(B1) , ||Dw||L∞(B3/4)) =

C0(p, n) > 0 (see Lemma 3.5) and β1 = β1(n, p) > 0 such that

[w]C1,β1 (B1/2) ≤ C0.

If |q| ≤ θ0, we have
osc
B1

v ≤ oscw
B1

+ 2|q| ≤ 1 + 2θ0.

It follows that

[w]C1,β1 (B1/2) ≤ [v]C1,β1 (B1/2) + 2|q| ≤ C(p, n)osc v
B1

+ 2θ0 ≤ C0(p, n).

3.2. Second proof by using distributional weak theory

In this part we establish a second method to show that viscosity solutions to (1.1) are in
C1,α

loc (Ω), when f ∈ L∞(Ω) ∩ C(Ω) and p ≥ 2. Recall that equation (1.2) reads as

−∆pu = |Du|p−2f in Ω.

Since the exponent of the nonlinear gradient term is less than p and f ∈ L∞(Ω), locally Hölder
continuous weak solutions of (1.2) are known to be of class C1,α

loc for some α ∈ (0, 1), see [41]. More
precisely, if u is a weak solution to (1.2) in B2r, then

[u]C1,α(Br) ≤ C = C
(
p, n, r, ||u||L∞(B2r)

, ||f ||L∞(B2r)

)
.
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We know that in the case p ≥ 2 viscosity solutions of (1.1) are viscosity solutions to (1.2),
and our aim is to show that they are also weak solutions to (1.2). The next theorem holds for
the more general case f ∈ Lq(Ω) ∩ C(Ω), where q > max(n, p/2), and will be useful not only in
this subsection, but in Section 4 and Section 5 as well. Our proof cannot rely on uniqueness, see
Example 3.7 below. Instead, we use a technique developed by Julin and Juutinen in [22]. We point
out that the uniqueness of viscosity solutions is known only when f is either 0 or has constant
sign (see [24]). A detailed discussion can be found in [3, 38] for the case of the normalized infinity
Laplacian.

Theorem 3.6. Assume that p ≥ 2, max(n, p/2) < q ≤ ∞, and f ∈ Lq(Ω) ∩ C(Ω). Let u be a
bounded viscosity solution to (1.1). Then u is a weak solution to (1.2).

Proof. We will prove that a viscosity supersolution u to (1.2) is also a weak supersolution to (1.2)
(the proof adapts to the case of subsolutions with obvious changes). We need to show that

∫

Ω
|Du|p−2Du ·Dϕdx ≥

∫

Ω
|Du|p−2fϕ dx,

where ϕ ∈ C∞0 (Ω).

Step 1: regularization.

Let us start by showing that the inf-convolution uε of u,

uε(x) := inf
y∈Ω

(
u(y) +

|x− y|2
2ε

)
, (3.25)

is a weak supersolution to
−∆puε ≥ |Duε|p−2fε in Ωr(ε), (3.26)

where
fε(x) = inf

|y−x|≤2
√
ε oscΩ u

f(y)

and
Ωr(ε) = {x : dist(x, ∂Ω) > 2

√
ε oscΩ u} .

We recall some properties of inf-convolutions. For more general discussion and proofs, see the
appendix of [22]. First we mention that uε is a semi-concave viscosity supersolution to (3.26).
Moreover, uε ∈W 1,∞

loc (Ωr(ε)) is twice differentiable a.e and satisfies

−∆puε = −|Duε|p−2

(
∆uε + (p− 2)D2uε

Duε
|Duε|

· Duε|Duε|

)

≥ |Duε|p−2fε (3.27)

a.e. in Ωr(ε). Finally we mention that uε → u locally uniformly and ||uε||L∞(Ωr(ε)) ≤ ||u||L∞(Ω), see

[10].

Since the function φ(x) := uε(x)− 1

2ε
|x|2 is concave in Ωr(ε), we can approximate it by a sequence

(φj) of smooth concave functions by using standard mollification. Denoting uε,j := φj +
1

2ε
|x|2, we

can integrate by parts to obtain
∫

Ωr(ε)

|Duε,j |p−2Duε,j ·Dϕdx =

∫

Ωr(ε)

(−∆puε,j)ϕdx. (3.28)
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Since Duε is locally bounded, the dominated convergence theorem implies

lim
j→∞

∫

Ωr(ε)

|Duε,j |p−2Duε,j ·Dϕdx =

∫

Ωr(ε)

|Duε|p−2Duε ·Dϕdx. (3.29)

Next, using the concavity of uε,j (we have D2uε,j ≤ 1
εI) and the local boundedness of Duε,j , we

get

−∆puε,j ≥ −
Cp−2(n+ p− 2)

ε
locally in Ωr(ε). Applying Fatou’s lemma, we obtain

lim inf
j→∞

∫

Ωr(ε)

(−∆puε,j)ϕdx ≥
∫

Ωr(ε)

lim inf
j→∞

(−∆puε,j)ϕdx. (3.30)

Since
lim inf
j→∞

(−∆puε,j(x)) = −∆puε(x)

almost everywhere, by using (3.28), (3.29) and (3.30) we obtain
∫

Ωr(ε)

|Duε|p−2Duε ·Dϕdx ≥
∫

Ωr(ε)

(−∆puε)ϕdx

≥
∫

Ωr(ε)

|Duε|p−2fεϕdx.

Hence, we have shown that uε ∈W 1,p
loc (Ωrε) is a weak supersolution to (3.26).

Step 2: passing to the limit in the regularization.

Take an arbitrary test function ϕ ∈ C∞0 (Ω). We finish the proof by showing that
∫

Ωr(ε)

|Duε|p−2Duε ·Dϕdx→
∫

Ω
|Du|p−2Du ·Dϕdx (3.31)

and ∫

Ωr(ε)

|Duε|p−2fεϕdx→
∫

Ω
|Du|p−2fϕ dx. (3.32)

Let Ω′′ be the support of ϕ and ε so small that Ω′′ ⊂ Ω′ ⊂⊂ Ωr(ε). We start by showing
that Duε is uniformly bounded in Lp(Ω′). Take a compactly supported smooth cut-off function
ξ : Ωr(ε) → [0, 1] such that ξ ≡ 1 on Ω′′ and such that the support of ξ is included in Ω′. Choose
the test function (2L − uε)ξp in the weak formulation, where L = supΩ′ |uε|. By using Hölder’s
inequality we obtain

∫

Ωr(ε)

ξp|Duε|p dx ≤
∫

Ωr(ε)

|Duε|p−2(2L− uε)ξ2ξp−2|fε| dx

+ p

∫

Ωr(ε)

ξp−1|Duε|p−2Duε ·Dξ(2L− uε) dx

≤ 1/4

∫

Ωr(ε)

ξp|Duε|p dx+ C(p)Lp/2
∫

Ωr(ε)

|fε|p/2ξp dx

+ C(p)

∫

Ωr(ε)

Lp|Dξ|pdx+ 1/4

∫

Ωr(ε)

ξp|Duε|p dx.
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It follows that
∫

Ωr(ε)

ξp|Duε|p dx ≤ C(p)Lp/2
∫

Ωr(ε)

|fε|p/2ξp dx+ C(p)

∫

Ωr(ε)

Lp|Dξ|pdx

≤ C = C
(
p, n, ||u||L∞(Ω) , ||f ||Lq(Ω)

)
. (3.33)

Hence, Duε is uniformly bounded with respect to ε in Lp(Ω′). It follows that there exists a
subsequence such that Duε → Du weakly in Lp(Ω′), and we can also show that Duε → Du
strongly in Lp(Ω′). Indeed, taking this time the test function (u− uε)ξp, we estimate

−
∫

Ωr(ε)

ξp|Duε|p−2Duε · (Du−Duε) dx ≤
∫

Ωr(ε)

|Duε|p−2(u− uε)ξp|fε| dx

+ p

∫

Ωr(ε)

ξp−1|Duε|p−1|Dξ|(u− uε) dx.

Adding
∫

Ωr(ε)
|Du|p−2Du · (Du−Duε)ξp dx to this inequality and recalling that for p > 2

(|a|p−2a− |b|p−2b) · (a− b) ≥ C(p)|a− b|p,

we get

C(p)

∫

Ωr(ε)

|Du−Duε|pξp dx ≤ ||u− uε||L∞(Ω′) ||Duεξ||
p−2
Lp(Ω′) ||fεξ||Lp/2(Ω′)

+ p ||u− uε||L∞(Ω′) ||Duεξ||
p−1
Lp(Ω′) ||Dξ||Lp(Ω′)

+

∫

Ωr(ε)

|Du|p−2Du · (Du−Duε)ξp dx.

By using the local uniform convergence of uε to u, the facts that ||fε||Lq(Ω′) ≤ C(q,Ω) ||f ||Lq(Ω),

Du ∈ Lp(Ω′) and the weak convergence of Duε in Lp(Ω′), we obtain

∫

Ωr(ε)

|Du−Duε|pξp dx→ 0,

so Duε → Du strongly in Lp(Ω′).
Finally, we are ready to show that (3.31) and (3.32) hold. First we use the triangle inequality

to obtain
∣∣∣∣
∫

Ω′
|Duε|p−2fεϕdx−

∫

Ω′
|Du|p−2fϕ dx

∣∣∣∣

≤
∣∣∣∣
∫

Ω′
|Duε|p−2(fε − f)ϕdx

∣∣∣∣+

∣∣∣∣
∫

Ω′
(|Duε|p−2 − |Du|p−2)fϕ dx

∣∣∣∣
=: I1 + I2.

Using the generalized Hölder’s inequality, we get

I1 ≤ ||Duε||Lp(Ω′)||fε − f ||Lq(Ω)||ϕ||L∞(Ω′) ≤ C||fε − f ||Lp/2(Ω′) → 0.
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To estimate I2, notice first that since f and ϕ are continuous in Ω′, fϕ is bounded in Ω′. By using
Hölder’s inequality and the convexity of p

p−2 power function, we obtain

I2 ≤ C
∣∣∣∣|Duε|p−2 − |Du|p−2

∣∣∣∣
L

p
p−2 (Ω′)

≤ C
∣∣∣||Duε||pLp(Ω′) − ||Du||

p
Lp(Ω′)

∣∣∣
p−2
p → 0,

since Duε → Du in Lp(Ω′). Hence, (3.32) holds, and by using the same argument, also (3.31)
holds. The proof is complete.

Finally, we give an example to show why we deliberately avoided using the uniqueness machin-
ery. For similar counterexamples in the case of the infinity Laplacian, see [11].

Example 3.7. We give an example to show that for given continuous boundary data, there can be
several weak solutions to equation (1.2). Let f = (p − 1). Consider the 1-dimensional situation,
where for R ∈ [0, 1] we define a function

u(x) =





C − C( x+R
−1+R)2 x ∈ (−1,−R)

C [−R,R]

C − C(x−R1−R )2 x ∈ (R, 1).

Solving C from

−(p− 1)u′′ = (p− 1)

gives

2C

(−1 +R)2
= 1 i.e. C =

1

2
(−1 +R)2.

This gives different weak solutions for the whole range of R. Indeed, assuming that u ∈W 1,p((−1, 1)),
for any test function ϕ ∈ C∞0 ((−1, 1))

∫ 1

−1
|u′|p−2u′ϕ′ dx = −

∫ −R

−1
(x+R)p−1ϕ′(x) dx+

∫ 1

R
(x−R)p−1ϕ′(x) dx

= (p− 1)
(∫ −R

−1
(x+R)p−2ϕ(x) dx

+

∫ 1

R
(R− x)p−2ϕ(x) dx

)

=

∫ 1

−1
|u′|p−2ϕf dx.

Only the largest i.e. R = 0 is a solution to the original −∆N
p u = (p− 1).

This counterexample also shows that in general weak solutions to (1.2) are not necessarily viscosity
solutions to (1.1).
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4. Uniform gradient estimates when f ∈ C(Ω) ∩ Lq(Ω)

In this section we assume that p > 2, f ∈ C(Ω)∩Lq(Ω) for some q > max
(
n, p2 , 2

)
. Our aim is

to prove Theorem 1.2, which states that viscosity solutions of (1.1) are of class C1,α
loc (Ω) for some

α = α(p, q, n), and for any Ω′′ ⊂ Ω′ ⊂⊂ Ω,

[u]C1,β(Ω′′) ≤ C = C
(
p, q, n, d, d′′, ||u||L∞(Ω), ||f ||Lq(Ω)

)
,

where d = diam (Ω) and d′′ = dist (Ω′′, ∂Ω′).
Let u be a viscosity solution of (1.1). From Lemma 3.1, we know that u is locally of class C0,β

for some β = β(p, n). From Section 3, we know that u is a weak solution to (1.2) and passing to
the limit in (3.33), we know that for any Ω′ ⊂⊂ Ω,

||Du||Lp(Ω′) ≤ C(p, n, ||u||L∞(Ω) , ||f ||Lq(Ω)). (4.1)

Moreover, for any λ > 0 the function u is a bounded viscosity solution to the following equation

−∆N
p v(x) + λv(x) = h(x) := f(x) + λu(x), x ∈ Ω. (4.2)

Let Ω′ ⊂⊂ Ω with Ω′ smooth enough so that weak solutions to (1.2) satisfy the boundary condition
in a classical sense. In the sequel we fix small enough λ = λ(p, n,Ω′) > 0 and a viscosity solution u
of (1.1). We take Hölder continuous functions fε ∈ C(Ω)∩Lq(Ω) such that fε converges uniformly
to f in Ω′ and fε converges to f in Lq(Ω′). The idea for the proof of Theorem 1.2 is to obtain
uniform estimates for solutions vε to the following regularized problems

{
−div

((
|Dvε|2 + ε2

)(p−2)/2
Dvε

)
= (|Dvε|2 + ε2)

p−2
2 (hε − λvε), x ∈ Ω′,

vε = u x ∈ ∂Ω′, (4.3)

where hε = fε+λu. Notice that the right-hand side of the equation has a growth of power less than
p with respect to the gradient, and hε is bounded. Since the regularized equations are uniformly

elliptic with smooth coefficients, in Step 1 we notice that vε ∈ C1,β(ε)
loc (Ω′) ∩W 2,2

loc (Ω′). In the next
two steps we obtain uniform estimate for the norm ||Dvε||Lp(Ω′) and local Lipschitz estimate for vε.

Once we know that vε and |Dvε|p−2 are locally uniformly bounded, in Step 4 we use the regularity
result of Lieberman [30] to get a local uniform Hölder estimate for the gradient Dvε. By using
the equicontinuity of (Dvε), we obtain a subsequence (vε) converging to a viscosity solution v of
equation (4.2) in C1,α

loc (Ω′) when ε→ 0.
For λ > 0 and a given continuous boundary data, uniqueness for viscosity solutions of (4.2) is easy
to prove. By using uniqueness, we conclude in Step 5 that the function v is the unique viscosity
solution to (4.2) with given boundary data u. Since u is a solution to (4.2), we get that u = v.
This gives a proof for Theorem 1.2.

Step 1: Local C1,β regularity for vε. Let vε ∈ W 1,p(Ω′) be a weak solution of the regular-
ized problem (4.3). Since p − 2 < p and hε ∈ Lq(Ω′) with q > n/2, regularity theory implies
that the solutions vε are bounded and locally Hölder continuous. This follows from the Sobolev
embedding for p > n and from [28, Theorems 7.1,7.2, Chapter 4 p. 286–290] for p ≤ n. Since
hε ∈ C(Ω′) is bounded and the exponent on the gradient in the left term is less than p, we also

have vε ∈ C
1,α(ε)
loc (Ω′) ∩W 2,2

loc (Ω′) (see [28, Theorem 8.7, chapter 4, p. 311], and also [13, 41] for
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more general regularity results.) This observation is useful, since we will derive estimates for Dvε
by using test functions involving the derivatives of vε.

Step 2: Uniform boundedness of ||Dvε||Lp(Ω′) and ||vε||L∞(Ω′). First we derive a uniform
bound for ||Dvε||Lp(Ω′). Considering the weak formulation and taking ϕ = vε−u as a test function,
we have

∫

Ω′

(
|Dvε|2 + ε2

) p−2
2 |Dvε|2 dx ≤

∫

Ω′
(|Dvε|+ ε)p−2|vε − u||hε| dx

+

∫

Ω′

(
|Dvε|2 + ε2

) p−2
2 |Dvε ·Du| dx

+ λ

∫

Ω′
(|Dvε|+ ε)p−2|vε||vε − u| dx

≤
∫

Ω′
(|Dvε|+ ε)p−2|vε − u||hε| dx

+

∫

Ω′

(
|Dvε|2 + ε2

) p−2
2 |Dvε||Du| dx

+ λ

∫

Ω′
(|Dvε|+ ε)p−2|vε − u|2 dx

+ λ

∫

Ω′
(|Dvε|+ ε)p−2|vε − u||u| dx.

Using the inequality ∫

Ω′
|Dvε|p dx ≤

∫

Ω′

(
|Dvε|2 + ε2

) p−2
2 |Dvε|2 dx

together with Young’s inequality and the previous estimate, we obtain

∫

Ω′
|Dvε|p dx ≤ δ0

∫

Ω′
|Dvε|p dx+ C(p)εp|Ω′|+

∫

Ω′
|Du|p dx

+ C(p)

∫

Ω
|vε − u|p/2|hε|p/2 dx

+ λC(p)

∫

Ω′
|vε − u|p dx+ C(p)λ

∫

Ω′
|u|p dx. (4.4)

If λ = λ(p, n,Ω′) > 0 is small enough, then using the Sobolev embedding, we get

∫

Ω′
|Dvε|p dx ≤ δ1

∫

Ω′
|Dvε|p dx+ C(p)

∫

Ω′
|vε − u|p/2|hε|p/2 dx

+δ2

∫

Ω′
|Dvε|p dx+ C(p, n)

∫

Ω′
|Du|p dx (4.5)

+C(p)λ

∫

Ω′
|u|p dx+ C(p)εp|Ω′|. (4.6)

Now we have to estimate
∫

Ω′ |vε − u|p/2|hε|p/2 dx. We deal separately with the cases p < n, p = n
and p > n.
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Case p < n

We denote by p∗ =
np

n− p the Sobolev’s conjugate exponent of p. Using Sobolev’s and Hölder’s

inequalities and noticing that p∗p
2p∗−p = np

n+p , we get

∫

Ω′
|vε − u|

p
2 |hε|

p
2 dx ≤ ||vε − u||

p
2

Lp∗ (Ω′)

(∫

Ω′
|hε|

p∗p
2p∗−p dx

) 2p∗−p
2p∗

≤ C(p, n, |Ω′|) ||Dvε −Du||
p
2

Lp(Ω′) ||hε||
p/2

L
np
n+p (Ω′)

≤ δ3

∫

Ω′
|Dvε −Du|p dx+ C(p, n, |Ω′|) ||hε||p

L
np
n+p (Ω′)

≤ δ4

∫

Ω′
|Dvε|p dx+ C(p, n, |Ω′|) ||Du||pLp(Ω′)

+C(p, n, |Ω′|) ||hε||p
L
np
n+p (Ω′)

. (4.7)

Combining (4.4) and (4.7) and choosing δ1 +δ2 +C(p)δ4 = 1/2 in order to absorb terms, we obtain
remembering the definition of the function hε

||Dvε||pLp(Ω′) ≤ C(p, n, |Ω′|)
(
||hε||p

L
np
n+p (Ω′)

+

∫

Ω′
(|Du|+ 1 + |u|)p dx

)

≤ C(p, n, |Ω′|)
(
||f ||p

L
np
n+p (Ω′)

+ |Ω′|1+p/n ||u||pL∞(Ω)

)

+ C(p, n, |Ω′|)
∫

Ω′
(|Du|+ 1 + |u|)p dx. (4.8)

Case p = n

First we calculate
∫

Ω′
|vε − u|p/2|hε|p/2 dx ≤ δ5 ||vε − u||pLp(Ω′) + C(p) ||hε||pLp(Ω′)

≤ δ5C(p, n, |Ω′|) ||Dvε −Du||pLp(Ω′) + C(p) ||hε||pLp(Ω′)

≤ δ6 ||Dvε||pLp(Ω′) + C(n, p, |Ω′|) ||Du||pLp(Ω′)

+ C(p) ||hε||pLp(Ω′) . (4.9)

Combing (4.4) and (4.9) and choosing δ1 + δ2 + C(p)δ6 = 1/2, we obtain

||Dvε||pLp(Ω′) ≤ C(p, n, |Ω′|) ||hε||pLp(Ω′) + C(p, n,Ω′)
∫

Ω′
(|Du|+ |u|+ 1)p dx

≤ C(p, n, |Ω′|)
(
||f ||pLn(Ω′) + |Ω′| ||u||pL∞(Ω′)

)

+ C(p, n,Ω′)
∫

Ω′
(|Du|+ |u|+ 1)p dx. (4.10)
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Case p > n

First we calculate
∫

Ω′
|vε − u|p/2|hε|p/2 dx ≤ δ7 ||vε − u||pL∞(Ω′) + C(p, n) ||hε||p

L
p
2 (Ω′)

≤ δ7C(p, n, |Ω′|) ||Dvε −Du||pLp(Ω′)

+ C(p, n) ||hε||p
L
p
2 (Ω′)

≤ δ8 ||Dvε||pLp(Ω′) + C(p, n) ||hε||p
L
p
2 (Ω′)

+ C(p, n, |Ω′|) ||Du||pLp(Ω′) . (4.11)

Combing (4.4) and (4.11) and choosing δ1 + δ2 + C(p)δ8 = 1/2, we get

||Dvε||pLp(Ω′) ≤ C(p, n, |Ω′|) ||hε||p
L
p
2 (Ω′)

+ C(p, n, |Ω′|)
∫

Ω′
(|Du|+ 1 + |u|)p dx

≤ C(p, n, |Ω′|)
(
||f ||p

L
p
2 (Ω′)

+ |Ω′|2 ||u||pL∞(Ω′)

)

+ C(p, n, |Ω′|)
∫

Ω′
(|Du|+ 1 + |u|)p dx. (4.12)

Once the boundedness of ||Dvε||Lp(Ω′) is proved, we can derive a uniform bound for ||vε||L∞(Ω′).
Using the Sobolev embedding, in the case p > n we get

||vε||L∞(Ω′) ≤ ||vε − u||L∞(Ω′) + ||u||L∞(Ω′)

≤ C(n,Ω′, p) ||Dvε −Du||Lp(Ω′) + ||u||L∞(Ω′)

≤ C(p, n, |Ω′|)
(
||f ||Lq(Ω′) + ||u||W 1,p(Ω′) + ||u||L∞(Ω′) + 1

)
.

For p ≤ n, since hε ∈ Lq(Ω) for q > n
2 , we can apply [28, Theorem 7.1, Chapter 4] giving an

estimate for ||vε||L∞(Ω′) when combined with the previous estimates of ||Dvε||Lp(Ω′). We get

||vε||L∞(Ω′) ≤ C
(
||u||L∞(Ω) , p, n, |Ω′|, ||hε||Lq(Ω′) , ||vε||Lp∗ (Ω′)

)

≤ C
(
||u||L∞(Ω′) , p, n, q, |Ω′|, ||f ||Lq(Ω′) , ||u||W 1,p(Ω′)

)
,

where we also used the estimate

||vε||Lp∗ (Ω′) ≤ ||vε − u||Lp∗ (Ω′) + ||u||Lp∗ (Ω′)

≤ C(p, n,Ω′)(||u||L∞(Ω′) + ||u||W 1,p(Ω′) + ||vε||W 1,p(Ω′)).

In both cases p ≤ n and p > n, by using the estimate (4.1) we get

||vε||L∞(Ω′) ≤ C
(
||u||L∞(Ω′) , p, n, q, |Ω′|, ||f ||Lq(Ω′)

)
. (4.13)

Step 3: Local uniform Lipschitz estimate for vε. In this subsection we derive a uniform local
gradient estimate for vε by combining [15, Theorem 1.5] with the previous estimates (4.8)-(4.13).
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We follow the main steps of Duzaar and Mingione [15]. For the sake of completeness, we give some
details of these steps. We denote by V (x) := hε(x)− λvε(x). Then vε solves the equation

{
−div

((
|Dvε|2 + ε2

)(p−2)/2
Dvε

)
= (|Dvε|2 + ε2)

p−2
2 V, x ∈ Ω′,

vε = u x ∈ ∂Ω′.

The Duzaar-Mingione gradient estimate relies on the use of a nonlinear potential of the function
|V |2 defined by

PV (x,R) :=

∫ R

0

( |V |2(B(x, ρ))

ρn−2

) 1
2 dρ

ρ
, (4.14)

where

|V |2(B(x, ρ)) :=

∫

B(x,ρ)
|V (y)|2 dy.

Let us recall the main ingredients of the proof of the result of [15]. A key step is to derive a
Caccioppoli type estimate for the function (|Dvε|2 + ε2)

p
2 with a suitable remainder involving |V |2.

Relying on the regularity result of Step 1, this can be done by taking

ϕij(x) :=
∂

∂xj

(
η(x)2

(
(|Dvε(x)|2 + ε2)

p
2 − k

)
+

∂vε(x)

∂xi

)

as test functions in the weak formulation, where η is a non negative cut-off function. Next, a
modification of the De Giorgi techniques allowed them to get pointwise estimate of |Dvε|p in terms
of the L2p norm of Dvε and the nonlinear potential PV . Finally, using interpolation, they improved
the estimate in terms of the natural Lp norm of the gradient and the L∞ norm of the nonlinear
potential.

Our approximation is slightly different, but the Caccioppoli type estimate of [15, Lemma 3.1]
(adapted for the new right hand side) holds for 2 < p ≤ n and also for p > n. Indeed, by using
the weak formulation with the test function ϕij and integration by parts, there exists a constant
C = C(p, n) such that for any ball BR := B(x,R) ⊂ Ω′,

∫

BR
2

∣∣∣∣D
(

(|Dvε|2 + ε2)
p
2 − k

)
+

∣∣∣∣
2

dy ≤ C

R2

∫

BR

(
(|Dvε|2 + ε2)

p
2 − k

)2

+
dy

+C

∫

BR

∣∣∣∣
(
ε2 + ||Dvε||2L∞(BR)

)(p−1)/2
V

∣∣∣∣
2

dy.

It follows that the oscillation improvement estimate [15, Lemma 3.2] holds. Once we have such
control on the level sets of |Dvε|p, a standard modification of the De Giorgi iteration argument
implies the following potential estimate (see for example [15, Lemma 3.3])

(
|Dvε(x)|2 + ε2

) p
2 ≤ C

(∫

BR

(
|Dvε|2 + ε2

)p
dy

)1/2

+ C
(
ε2 + ||Dvε||2L∞(BR)

) p−1
2 PV (x,R),
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where C = C(p, n). Proceeding as in [15] we get for R/2 < ρ < r < R,

(
||Dvε||2L∞(Bρ) + ε2

) p
2 ≤ C

(
ε2 + ||Dvε||2L∞(Br)

) p
4

(r − ρ)n/2

(∫

Br

(
|Dvε|2 + ε2

)p/2
dy

)1/2

+ C
(
ε2 + ||Dvε||2L∞(Br)

) p−1
2
∣∣∣∣PV (·, R)

∣∣∣∣
L∞(BR)

≤ 1

2

(
ε2 + ||Dvε||2L∞(Br)

) p
2

+ C
∣∣∣∣PV (·, R)

∣∣∣∣p
L∞(BR)

+
C

(r − ρ)n

∫

Br

(
|Dvε|2 + ε2

)p/2
dy,

where C = C(p, n). Now the standard iteration lemma (see for example [15, Lemma 2.1]) implies
that

(
||Dvε||2L∞(BR/2) + ε2

) p
2 ≤ C

∫

BR

(
|Dvε|2 + ε2

)p/2
dy

+C
∣∣∣∣PV (·, R)

∣∣∣∣p
L∞(BR)

, (4.15)

where C = C(p, n). Consequently, combining (4.8), (4.10), (4.12) and (4.15) we get

||Dvε||L∞(BR/2) ≤ C
(
R−n/p ||Dvε||Lp(BR) +

∣∣∣∣PV (·, R)
∣∣∣∣
L∞(BR)

+ 1
)
,

for all R such that BR ⊂ Ω′ and where C = C(p, n). Since vε is uniformly bounded in L∞(Ω′) and
hε is uniformly bounded in Lq(Ω′), we have V ∈ Lq(Ω′). We obtain

∫

B(x,ρ)
|V (y)|2 dy ≤ ||V ||2Lq(Ω′) |B(x, ρ)|

q−2
q ≤ C ||V ||2Lq(Ω′) ρ

n(q−2)
q ,

where C = C(n), and

PV (x,R) ≤ ||V ||Lq(Ω′)
∫ R

0
ρ
n(q−2)

2q
−n

2 dρ ≤ CR
q−n
q ,

where C = C(q, n) ||V ||Lq(Ω′). It follows that

sup
B(x,R)

PV (·, R) ≤ C sup
B(x,R)

R
q−n
q <∞, (4.16)

where C = C(n, q, ||V ||Lq(Ω′)). Recalling that V = hε − λvε, and using the bound (4.13) for
||vε||L∞(Ω′), we get

||V ||Lq(Ω′) ≤ C
(
p, n, q, |Ω′|, ||f ||Lq(Ω′) , ||u||L∞(Ω′)

)
. (4.17)

Hence,

||Dvε||L∞(BR/2) ≤ C̃
(
p, n,Ω, q, ||f ||Lq(Ω′) , ||u||L∞(Ω′) , R

)
.

Step 4: Local uniform C1,β estimate for uε. Since Dvε is locally uniformly bounded in L∞

with respect to ε, the function

µε := (|Dvε|2 + ε2)
p−2

2 V
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is also locally bounded in Lq with q > n and satisfies
∫

Br(x)
|µε|dy ≤ C(p)

(
||Dvε||p−2

L∞(Br(x)) + 1
)∫

Br(x)
|V (y)| dy

≤ C(p, n)
(
||Dvε||p−2

L∞(Br(x)) + 1
)
||V ||Lq(Ω′) r

n(q−1)
q

≤ C̃
(
q, n, p,Ω′, ||f ||Lq(Ω′) , ||u||L∞(Ω′)

)
rn−p+δ,

where δ = qp−n
q , δ ∈ (p − 1, p). Applying the result of Lieberman [30, Theorem 5.3] ((vε) being

also bounded in L∞), we get that vε are locally of class C1,β for some β = β(p, q, n) and for any
Ω′′ ⊂⊂ Ω′

[vε]C1,β(Ω′′) ≤ C = C
(
p, q, n, |Ω′|, ||u||L∞(Ω′) , d

′′, ||f ||Lq(Ω′)
)
, (4.18)

where d′′ = dist(Ω′′, ∂Ω′).
Step 5: Convergence in the weak and viscosity sense and conclusion. We get from (4.18)
and the Arzelà-Ascoli theorem that (uε) converges (up to a subsequence) to a function v in C1,α

loc (Ω′)
for some α = α(q, p, n) < β. Passing to the limit within the weak formulation, v is a weak solution
to

−∆pv = |Dv|p−2(h− λv), (4.19)

see Appendix B for details. Passing to the limit in (4.18), we get that for any Ω′′ ⊂⊂ Ω′, we have
the estimate

||v||C1,α(Ω′′) ≤ C
(
p, n, q, d′′, |Ω′|, ||u||L∞(Ω′) , ||f ||Lq(Ω′)

)
.

From the boundedness of vε, it follows that v is a bounded weak solution of the Dirichlet problem
associated to (4.19). Since (vε− u) is uniformly bounded in W 1,p

0 (Ω′), we have (v− u) ∈W 1,p
0 (Ω′).

Assuming sufficient regularity for the boundary ∂Ω′, we have v ∈ C(Ω′) and for any x0 ∈ ∂Ω′

lim
x→x0

v(x) = u(x0). The reader can find further discussion of the boundary regularity problem for

elliptic equations in the monograph of Malý and Ziemer [33]. On the other hand, the local Hölder
continuity of Dvε and the Hölder continuity of hε imply, by the classical elliptic regularity theory,
that vε is also a classical solution to

−div
((
|Dvε|2 + ε2

)(p−2)/2
Dvε

)
= (|Dvε|2 + ε2)

p−2
2 (hε − λvε) in Ω′.

This implies that vε solves in the classical sense

−∆vε − (p− 2)
D2vεDvε ·Dvε
|Dvε|2 + ε2

= hε − λvε in Ω′. (4.20)

Hence vε is a continuous viscosity solution of the Dirichlet problem associated to equation (4.20)
with continuous boundary data u. Passing to the limit in (4.20), we get that the limit function v
is also a continuous viscosity solution of (4.2) with boundary data equals u, see Appendix C. The
viscosity solution to (4.2) is understood in the sense of Definition C.1. It is easy to see that the
fixed viscosity solution u of (1.1) is a viscosity solution to (4.2) with the weaker Definition C.1 (η
is then taken as an eigen-vector of D2φ(x0)). It follows (see the Appendix D for details) that, for a
given boundary data, the Dirichlet problem associated to (4.2) admits a unique viscosity solution.
By uniqueness, we conclude that the limit function v is the unique viscosity solution of (4.2) and
since u is a viscosity solution to this problem, we conclude that u = v in Ω′. It follows that u is of
class C1,α

loc for some α = α(p, q, n) and the estimate of Theorem 1.2 holds.
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5. Nearly optimal Hölder exponent for gradients

In this section we prove Theorem 1.3. Assume that f ∈ Lq(Ω) ∩ C(Ω) and fix arbitrary ξ > 0.

We will prove that the viscosity solutions to (1.1) are of class C
1,αξ
loc , where

αξ =

{
α0 − ξ when q =∞,
min(α0 − ξ, 1− n

q ) when max(n, p2 , 2) < q <∞,

and α0 is the optimal Hölder exponent in an a priori estimate for gradients of p-harmonic functions.
In the case q =∞ we only assume that p > 1, whereas in the case q <∞ we require p > 2.

The question of optimal regularity for inhomogeneous p-Laplacian in divergence form has re-
ceived attention as well, see [31, 27, 1, 2]. An alternative approach to study optimal regularity
questions for p-Poisson problem in divergence form could be based on [26, equation (1.38)]. In our
paper we do not try to quantify the explicit optimal value of α in C1,α estimate to the homogenous
case.

Remark 5.1. If p ≥ 2 and f is a continuous and bounded function, in the case that Ω is either
a ball or an annulus, radial viscosity solutions to (1.1) have a better regularity and they are in
C1,1(Ω) (see [6, Theorem 1.1]).

5.1. The case q =∞
In this subsection we prove Theorem 1.3 when f ∈ L∞(Ω)∩C(Ω). Since our results are local, by

translation and rescaling we can restrict our study in the unit ball B1 ⊂ Ω and show the regularity
at 0 ∈ B1 ⊂ Ω. Like previously, it is useful to do suitable rescaling to get an Arzelà-Ascoli type
compactness lemma. During the rest of this section, for δ0 > 0 to be determined later, we assume
that ||u||L∞(B1) ≤ 1 and ||f ||L∞(B1) ≤ δ0 without loss of generality. This can be seen like before:

Let κ = (||u||L∞(B1) + δ−1
0 ||f ||Lq(B1))

−1. Setting ũ = κu, then ũ satisfies

−∆N
p (ũ) = f̃

with ||ũ||L∞(B1) ≤ 1 and ||f̃ ||Lq(B1) ≤ δ0.
For convenience, in this subsection we denote by C different constants depending only on p

and n. First we use our regularity result from Section 3 to show that the solutions to (1.1) can be
approximated by p-harmonic functions in C1,α

loc for some small α > 0.

Lemma 5.2. Let u ∈ C(B1) be a viscosity solution to equation (1.1). For given ε > 0, there exists
δ0 = δ0(p, n, ε) such that for ||u||L∞(B1) ≤ 1, ||f ||L∞(B1) ≤ δ0, there exists a p-harmonic function
h in B3/4 satisfying

||u− h||L∞(B1/2) < ε and ||Du−Dh||L∞(B1/2) < ε.

Proof. Suppose that the lemma is not true. Then, for some ε0 > 0 there is a uniformly bounded
sequence of continuous functions (uj) and a sequence (fj) ⊂ C(Ω)∩L∞(Ω), ||fj ||L∞(B1) → 0, such
that

−∆N
p uj = fj ,

but for all p-harmonic functions h defined in B3/4 we have either ||uj −h||L∞(B1/2) ≥ ε0 or ||Duj −
Dh||L∞(B1/2) ≥ ε0.
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By Theorem 1.1, (uj) ⊂ C1,α(B3/4) for some α > 0, so by the Arzelà-Ascoli theorem there
is a subsequence, still denoted by (uj), which converges to some function h in C1,α(B1/2). Then

the limit function h satisfies ∆N
p h = 0 in the viscosity sense, so it also satisfies ∆ph = 0 in

the weak sense. By C1,α convergence, there is j0 ∈ N such that ||uj0 − h||L∞(B1/2) < ε0 and

||Duj0 −Dh||L∞(B1/2) < ε0. We have reached a contradiction.

By using the approximation with p-harmonic functions, in the next lemma we obtain an oscil-
lation estimate for solutions u to (1.1) near the critical set {x : Du(x) = 0}.

Lemma 5.3. There exist λ0 = λ0(p, n) ∈ (0, 1
2) and δ0 > 0 such that if ||f ||L∞(B1) ≤ δ0 and

u ∈ C1,α(B1) is a viscosity solution to (1.1) in B1 with ||u||L∞(B1) ≤ 1, then

sup
x∈Bλ0

|u(x)− u(0)| ≤ λ1+αξ
0 + |Du(0)|λ0.

Proof. Take the approximating p-harmonic function h from the previous lemma. By the a priori
estimate for p-harmonic functions, there exist λ0 = λ0(p, n) ∈ (0, 1

2) such that

sup
x∈Bλ0

|h(x)− [h(0) +Dh(0) · x]| ≤ Cλ1+α0
0 ,

and Cλ1+α0
0 ≤ 1

2λ
1+αξ
0 . Now we choose ε > 0 satisfying ε < 1

6λ
1+αξ
0 . This ε determines δ0 through

the previous lemma. We get for all x ∈ Bλ0 ,

|u(x)− [u(0) +Du(0) · x]| ≤ |h(x)− [h(0) +Dh(0) · x]|
+ |(u− h)(x)|+ |(u− h)(0)|+ |D(u− h)(0) · x|
≤ Cλ1+α0

0 + 3ε

≤ λ1+αξ
0 .

The result follows by the triangle inequality.

Next we iterate the previous estimate to control the oscillation of the solutions in dyadic balls.

Theorem 5.4. Under the assumptions of the previous lemma, there exists a constant C such that

sup
x∈Br

|u(x)− u(0)| ≤ Cr1+αξ
(
1 + |Du(0)|r−αξ

)

for all sufficiently small r ∈ (0, 1).

Proof. For k ∈ N, consider the rescaled function defined in B1,

vk(x) =
u(λk0x)− u(0)

λ
k(1+αξ)
0 +

∑k−1
j=0 |Du(0)|λk+jαξ

0

.

We have vk(0) = 0,

Dvk(0) =
λk0

λ
k(1+αξ)
0 +

∑k−1
j=0 |Du(0)|λk+jαξ

0

Du(0),
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and

−∆N
p vk(x) =

λ2k
0

λ
k(1+αξ)
0 +

∑k−1
j=0 |Du(0)|λk+jαξ

0

f(λk0x) ≤ |λk(1−αξ)
0 f(λk0x)|,

where |λk(1−αξ)
0 f(λk0x)| ≤ δ0, since λ

k(1−αξ)
0 ≤ 1.

Let us show by induction that ||vk||L∞(B1) ≤ 1. By the previous lemma, this holds for k = 1,
so assume that ||vj ||L∞(B1) ≤ 1 for j ≤ k. As shown above, the function vk satisfies the conditions
of the previous lemma, so we have

sup
x∈Bλ0

|vk(x)− vk(0)| ≤ λ1+αξ
0 + |Dvk(0)|λ0.

Hence,

sup
x∈B1

|u(λk+1
0 x)− u(0)|

λ
k(1+αξ)
0 +

∑k−1
j=0 |Du(0)|λk+jαξ

0

≤ λ1+αξ
0 +

λk+1
0

λ
k(1+αξ)
0 +

∑k−1
j=0 |Du(0)|λk+jαξ

0

|Du(0)|,

which reads

sup
x∈B1

|u(λk+1
0 x)− u(0)| ≤ λ(k+1)(1+αξ)

0 +
k∑

j=0

|Du(0)|λk+jαξ+1
0 .

This is equivalent to ||vk+1||L∞(B1) ≤ 1, so induction is complete.
We obtain for arbitrary k,

sup
x∈B

λk+1
0

|u(x)− u(0)|
λ

(k+1)(1+αξ)
0

≤ 1 +

∑k
j=0 |Du(0)|λk+jαξ+1

0

λ
(k+1)(1+αξ)
0

≤ 1 + |Du(0)|λ−(k+1)αξ
0

k∑

j=0

λ
jαξ
0

≤
(

1 +
1

1− λαξ0

)(
1 + |Du(0)|λ−(k+1)αξ

0

)

= C
(

1 + |Du(0)|λ−(k+1)αξ
0

)
.

Since this holds for all k ∈ N, we obtain for all sufficiently small r > 0,

sup
x∈Br

|u(x)− u(0)| ≤ Cr1+αξ
(
1 + |Du(0)|r−αξ

)
.

We are ready to show C
1,αξ
loc regularity for solutions to equation (1.1). If the gradient Du(0) is

very small, we obtain the result from the previous theorem. In the other case the result follows
from a more classical reasoning using the regularity theory of uniformly elliptic equations.

Theorem 5.5. Under the assumptions of Lemma 5.3, we have for all sufficiently small r ∈ (0, 1),

sup
x∈Br

|u(x)− [u(0) +Du(0) · x]| ≤ Cr1+αξ .
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Proof. When |Du(0)| ≤ rαξ , Theorem 5.4 gives

sup
x∈Br

|u(x)− [u(0) +Du(0) · x]| ≤ sup
x∈Br

|u(x)− u(0)|+ |Du(0)|r

≤ Cr1+αξ .

When |Du(0)| > rαξ , define µ := min (3
4 , |Du(0)|1/αξ) and use the rescaled function

w(x) =
u(µx)− u(0)

µ1+αξ
.

We have w(0) = 0, |Dw(0)| ≥ 1, and

−∆N
p w(x) =

µ2f(µx)

µ1+αξ
= µ1−αξf(µx),

where ||µ1−αξf ||L∞(B1) ≤ δ0. From Theorem 5.4 we obtain

sup
x∈B1

|w(x)| = sup
x∈Bµ

|u(x)− u(0)|
µ1+αξ

≤ C
(
1 + |Du(0)|µ−αξ

)
= C.

Since u ∈ C1,α
loc (B1) for some α > 0, there exists γ ∈ (0, 1

2) such that

|Dw(x)| ≥ 1

2
in Bγ .

For all p > 1 w is a viscosity solution to −∆pw = |Dw|p−2µ1−αξf(µx) =: g ∈ C(Bγ) in Bγ , so by
[22] it is a weak solution to the same equation, which also satisfies the conditions of [28, Theorem
5.2, p. 277], see also [41]. Hence, w ∈W 2,2(Bγ), so by the local version of [17, Lemma 9.16, p 241],
for arbitrary ε > 0 it holds w ∈ C1,1−ε(Bγ). In particular, w ∈ C1,αξ(Bγ). Hence, for all s ∈ (0, γ2 ),
we have

sup
x∈Bs

|w(x)−Dw(0) · x| ≤ Cs1+αξ ,

or equivalently,

sup
x∈Bs

∣∣∣∣
u(µx)− u(0)

µ1+αξ
− µ−αξDu(0) · x

∣∣∣∣ ≤ Cs1+αξ ,

and we get
sup
x∈Bs

|u(µx)− [u(0) +Du(0) · (µx)]| ≤ C(µs)1+αξ .

If r < µγ
2 , then the previous estimate gives

sup
x∈Br

|u(x)− [u(0) +Du(0) · x]| ≤ Cr1+αξ .

If r ≥ µγ
2 , noticing that r < µ and |Du(0)| ≤ Cµαξ we obtain

sup
x∈Br

|u(x)− [u(0) +Du(0) · x]| ≤ sup
x∈Bµ

|u(x)− u(0)|+ |Du(0)|µ

≤ Cµ1+αξ

≤ C
(

2

γ

)1+αξ

r1+αξ

≤ Cr1+αξ .
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This theorem completes the proof of Theorem 1.3 when f ∈ C(Ω) ∩ L∞(Ω).

5.2. The case f ∈ C ∩ Lq
In this subsection we assume that p > 2 and f ∈ C(B1)∩Lq(B1), and use Theorem 1.2 to show

that the solutions to equation (1.1) are of class C
1,αξ
loc . As previously, for δ0 > 0 to be determined

later, we take the assumptions ||u||L∞(B1) ≤ 1 and ||f ||Lq(B1) ≤ δ0 without loss of generality. We
also denote by C different constants depending only on p and n.

We follow the reasoning of the first subsection. First we show that the solutions to equation
(1.1) can be approximated by p-harmonic functions in C1,α

loc .

Lemma 5.6. Let u ∈ C(B1), ||u||L∞(B1) ≤ 1, be a viscosity solution to equation (1.1). Given
ε > 0, there is δ0 = δ0(p, n, ε) such that if ||f ||Lq(B1) ≤ δ0, there is a p-harmonic function h in
B3/4 satisfying

||u− h||L∞(B1/2) < ε and ||Du−Dh||L∞(B1/2) < ε.

Proof. Thriving for contradiction, assume that there exists ε0 > 0 such that there are sequences
(uj) and (fj) satisfying ||uj ||L∞(B1) ≤ 1, fj ∈ C(B1) ∩ Lq(B1), ||fj ||Lq(B1) → 0, and

−∆N
p uj = fj ,

but for all p-harmonic functions h in B3/4

||uj − h||L∞(B1/2) > ε0 or ||Duj −Dh||L∞(B1/2) > ε0.

Recall from Theorem 3.6 that uj is a weak solution to

−∆puj = |Duj |p−2fj in B1.

From Theorem 1.2 we know that (uj) ⊂ C1,α(B3/4) for some α > 0, so by the Arzelà-Ascoli
theorem, there is a subsequence, still denoted by (uj), converging in C1,α(B3/4) to a function h.
By Appendix B, h is a p-harmonic function. We have reached a contradiction.

The next lemma follows from the previous approximation result as in the first subsection.

Lemma 5.7. There exists λ0 = λ0(p, n) ∈ (0, 1
2) and δ0 > 0 such that if ||f ||Lq(B1) ≤ δ0 and

u ∈ C1,α
loc (B1) is a viscosity solution to (1.1) in B1 with ||u||L∞(B1) ≤ 1, then

sup
x∈Bλ0

|u(x)− u(0)| ≤ λ1+αξ
0 + |Du(0)|λ0.

Theorem 5.8. Under the assumptions of the previous lemma, we have

sup
x∈Br

|u(x)− u(0)| ≤ Cr1+αξ
(
1 + |Du(0)|r−αξ

)

for all sufficiently small r > 0.
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Proof. The proof is similar to the proof of Theorem 5.4. Again we consider the rescaled function

vk(x) =
u(λk0x)− u(0)

λ
k(1+αξ)
0 +

∑k−1
j=0 |Du(0)|λk+jαξ

0

,

and see that vk(0) = 0,

Dvk(0) =
λk0

λ
k(1+αξ)
0 +

∑k−1
j=0 |Du(0)|λk+jαξ

0

Du(0),

and

−∆N
p vk(x) =

λ2k
0

λ
k(1+αξ)
0 +

∑k−1
j=0 |Du(0)λ

k+jαξ
0

f(λk0x) =: fk(x).

Since q(1− αξ)− n > 0, we estimate

∫

B1

|fk(x)|qdx ≤
∫

B1

(
λ
k(1−αξ)
0 |f(λk0x)|

)q
dx

=

∫

B
λk0

(
λ
k(1−αξ)
0 |f(y|)

)q
λ−nk0 dy

=

∫

B
λk0

λ
kq(1−αξ)−nk
0 |f(y)|qdy

≤
∫

B
λk0

|f(y)|qdy.

Hence, we have ||fk||Lq(B1) ≤ δ0. By continuing as in the proof of Theorem 5.4, we get the
result.

Theorem 5.9. Under the assumptions of Lemma 5.7, we have

sup
x∈Br

|u(x)− [u(0) +Du(0) · x]| ≤ Cr1+αξ

for all sufficiently small r ∈ (0, 1).

Proof. We follow the ideas of the proof of Theorem 5.5. We get the result from Theorem 5.8
when |Du(0)| ≤ rαξ . In the case |Du(0)| > rαξ , define the rescaled function w(x) = (u(µx) −
u(0))/µ1+αξ), for which w(0) = 0, |Dw(0)| ≥ 1, and

−∆N
p w(x) =

µ2f(µx)

µ1+αξ
= µ1−αξf(µx) =: fµ(x),

where ||fµ||Lq(B1) ≤ δ0. From Theorem 5.8 we get

sup
x∈B1

|w(x)| = sup
x∈Bµ

|u(x)− u(0)|
µ1+αξ

≤ C
(
1 + |Du(0)|µ−αξ

)
= C.
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Since u ∈ C1,α
loc (B1) for some α > 0, there exists γ ∈ (0, 1/2) such that

|Dw(x)| ≥ 1

2
in Bγ .

As explained in the proof of Theorem 5.5, we know that w ∈ C1,1−n/q(Bγ). Since αξ ≤ 1 − n/q,
we have w ∈ C1,αξ(Bγ). Hence, for all s ∈ (0, γ2 ), we have

sup
x∈Bs

|w(x)−Dw(0) · x| ≤ Cs1+αξ ,

and the rest of the argument follows as in the proof of Theorem 5.5.

The proof of Theorem 1.3 is complete.

Appendix

A. The limit equation in Lemma 3.3

We prove two convergence results needed in the proof of Lemma 3.3. Assume that there exist
a sequence of continuous functions (fj) with ||fj ||L∞(B1) → 0, a sequence of vectors (qj) and a
sequence of viscosity solutions (wj) with oscB1 wj ≤ 1 to

−∆wj − (p− 2)

〈
D2wj

Dwj + qj
|Dwj + qj |

,
Dwj + qj
|Dwj + qj |

〉
= fj .

Case 1: (qj) is bounded

First we show that if (qj) is bounded, there is a subsequence (wj) converging to a limit w∞,
which satisfies

− tr

((
I + (p− 2)

Dw∞ + q∞
|Dw∞ + q∞|

⊗ Dw∞ + q∞
|Dw∞ + q∞|

)
D2w∞

)
= 0 inB1 (A.1)

in a viscosity sense. Here qj → q∞ up to the same subsequence. We show that w∞ is a subsolution
of (A.1) (the case of supersolution being similar). We fix φ ∈ C2(Ω) such that w∞− φ has a strict
maximum at x0. As w∞ is the uniform limit of the subsequence (wj) and x0 is a strict maximum
point, there exists a sequence of points xj → x0 such that (wj − φ) has a local maximum at xj .

Suppose first that −Dφ(x0) 6= q∞. Then −Dφ(xj) 6= qj when j is large, and at those points
we have

−∆φj − (p− 2)

〈
D2φj

Dφj + qj
|Dφj + qj |

,
Dφj + qj
|Dφj + qj |

〉
≤ fj .

Passing to the limit, we get the desired result.
Suppose next that −Dφ(x0) = q∞. We have to consider two cases. Assuming that there exists

a subsequence still indexed by j such that |Dφ(xj) + qj | > 0 for all j in the subsequence, then

−∆φj − (p− 2)

〈
D2φj

Dφj + qj
|Dφj + qj |

,
Dφj + qj
|Dφj + qj |

〉
≤ fj ,

and we conclude by passing to the limit. If such a subsequence does not exist, then we have

−∆φ(xj)− (p− 2)λmax(D2φ(xj)) ≤ fj(xj)
for j large enough. Passing to the limit we get

−∆φ(x0)− (p− 2)λmax(D2φ(x0)) ≤ 0.

We have shown the desired result.
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Case 2: (qj) is unbounded
When (qj) is unbounded, take a subsequence, still denoted by (qj), for which |qj | → ∞, and

then a converging subsequence from ej =
qj
|qj | , ej → e∞. We have

−∆wj − (p− 2)

〈
D2wj

Dwj |qj |−1 + ej
|Dwj |qj |−1 + ej |

,
Dwj |qj |−1 + ej
|Dwj |qj |−1 + ej |

〉
= fj .

We show that the uniform limit w∞ (up to a subsequence) satisfies in the viscosity sense

−∆w∞ − (p− 2)
〈
D2w∞ e∞, e∞

〉
= 0 in B1, (A.2)

with |e∞| = 1.
We only show that w∞ is a subsolution of (A.2) (the case of supersolution is similar). We fix

φ ∈ C2(Ω) such that w∞−φ has a strict maximum at x0. By the uniform convergence of wj to w∞,
there are points xj such that wj − φ has a maximum at xj and xj → x0. Since Dφ(xj)→ Dφ(x0)
and |qj | → ∞, we know that

Dφ(xj)

|qj |
6= −ej

for j large. Denoting Aj := Dφ(xj)|qj |−1 for short, we get at those points

−∆φ(xj)− (p− 2)

〈
D2φ(xj)

Aj + ej
|Aj + ej |

,
Aj + ej
|Aj + ej |

〉
≤ fj(xj).

Since Aj → 0, we get the desired result.

B. Convergence in the weak formulation

Assume that p > 2, q > max(2, n, p/2), fε, f ∈ C(Ω) ∩ Lq(Ω) and fε → f in Lq(Ω). We show
that if uε is a weak solution to

−∆puε = |Duε|p−2fε,

and if uε → u in C1,α(K) for any K ⊂⊂ Ω, then u is a weak solution to

−∆pu = |Du|p−2f.

For any test function φ ∈ C∞0 (Ω), uε satisfies
∫

Ω
|Duε|p−2Duε ·Dφdx =

∫

Ω
|Duε|p−2fεφdx.

Since Duε → Du locally uniformly, we have for all sufficiently small ε,

|Duε|p−2|Duε ·Dφ| ≤ (||Du||L∞(suppφ) + 1)p−1|Dφ| ∈ L1(Ω),

so by the dominated convergence theorem,∫

Ω
|Duε|p−2Duε ·Dφdx→

∫

Ω
|Du|p−2Du ·Dφdx.

It remains to show that ∫

Ω
|Duε|p−2fεφdx→

∫

Ω
|Du|p−2fφ dx. (B.1)

Notice that
|Duε|p−2fεφ = |Duε|p−2(fε − f)φ+ |Duε|p−2fφ. (B.2)

Since Duε ∈ L∞loc(Ω), by the dominated convergence and identity (B.2), (B.1) holds.
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C. Convergence in the viscosity sense

Assume that hε ∈ C(Ω) and let vε be a viscosity solution to

−∆vε − (p− 2)
D2vεDvε ·Dvε
|Dvε|2 + ε2

+ λvε = hε in Ω′, (C.1)

and assume that vε → v locally uniformly in Ω′ and hε → h locally uniformly. We prove that the
limit v is a viscosity solution of (4.2). Viscosity solutions to (4.2) are understood in the following
sense

Definition C.1. Let Ω′ be a bounded domain and 2 < p <∞. An upper semicontinuous function
v is a viscosity subsolution of (4.2) if, for all x0 ∈ Ω′ and φ ∈ C2(Ω′) such that v − φ attains a
local maximum at x0 and v(x0) = φ(x0), one has either

−∆N
p φ(x0) + λv(x0) ≤ h(x0) if Dφ(x0) 6= 0,

or there exists a vector η ∈ Rn with |η| ≤ 1 such that

−∆φ(x0)− (p− 2)〈D2φ(x0)η, η〉+ λv(x0) ≤ h(x0) if Dφ(x0) = 0.

The notion of viscosity supersolution is defined similarly and a function v is a viscosity solution to
(4.2) if and only if it is a sub- and supersolution.

We only show that v is a viscosity subsolution to (4.2). To show that v is a viscosity super-
solution, one proceeds similarly. Let φ ∈ C2 be such that v − φ has a local strict maximum at
x0 and v(x0) = φ(x0). Since vε → v locally uniformly, there exists a sequence xε → x0 such that
vε − φ has a local maximum at xε. Since vε is a viscosity solution of (4.20), it follows that

−∆φ(xε)− (p− 2)
D2φ(xε)Dφ(xε) ·Dφ(xε)

|Dφ(xε)|2 + ε2
+ λvε(xε) ≤ hε(xε). (C.2)

First suppose that Dφ(x0) 6= 0, then Dφ(xε) 6= 0 for ε small enough. Since hε converges to h
locally uniformly and vε converges to v locally uniformly, passing to the limit in (C.2), we get that

−∆φ(x0)− (p− 2)
D2φ(x0)Dφ(x0) ·Dφ(x0)

|Dφ(x0)|2 + λv(x0) ≤ h(x0).

Next suppose that Dφ(x0) = 0. Noticing that

∣∣∣∣∣
Dφ(xε)√

|Dφ(xε)|2 + ε2

∣∣∣∣∣ ≤ 1, it follows that (up to a

subsequence) the sequence
Dφ(xε)√

|Dφ(xε)|2 + ε2
converges to a vector η ∈ Rn with |η| ≤ 1. Passing to

the limit in (C.2), we get that, there exists a vector η such that

−∆φ(x0)− (p− 2)〈D2φ(x0)η, η〉+ λv(x0) ≤ h(x0).
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D. Uniqueness of viscosity solutions to (4.2)

In this section we prove the uniqueness of viscosity solutions to (4.2), where viscosity solutions
of (4.2) are understood in the sense of Definition C.1 and λ > 0. Notice that, for λ > 0, the
operator

F (X, ξ, r, x) := − tr(A(ξ)X) + λr − h(x)

where

A(ξ) :=

{
I + (p− 2)ξ ⊗ ξ if ξ 6= 0

I + (p− 2)η ⊗ η for a certain η, |η| ≤ 1 if ξ = 0

with ξ :=
ξ

|ξ| is proper, that is

F (X, ξ, s, x) ≤ F (Y, ξ, r, x) for Y ≤ X, s ≤ r.

Now, let v1 and v2 be two continuous viscosity solutions to (4.2) in Ω′ and such that v1 = v2 on
∂Ω′. We want to show that v1 = v2. We argue by contradiction. Without loss of generality, we
assume that v1 − v2 reaches a positive maximum at an interior point x0 ∈ Ω′. For ε > 0, the
function

Φ(x, y) := v1(x)− v2(y)− |x− y|
4

4ε
,

reaches a maximum in Ω′ × Ω′ at (xε, yε). By classical arguments we have that xε ∈ Ω′, yε ∈ Ω′

for ε > 0 small enough and xε → x0, yε → x0 when ε → 0. We also observe that the function

x 7→ v1(x) −
(
v2(yε) +

|x− yε|4
4ε

)
= v1(x) − φ1(x) reaches a maximum at xε and y 7→ v2(y) −

(
v1(xε)−

|xε − y|4
4ε

)
= v2(y) − φ2(y) reaches a minimum at yε. From the definition of viscosity

sub- and supersolution we obtain the following. If xε = yε then D2φ1(xε) = D2φ2(yε) = 0 and
writing the viscosity inequalities we get that

λv1(xε) ≤ h(xε), λv2(xε) ≥ h(xε).

It follows that λ(v1(xε)− v2(xε)) ≤ 0 and passing to the limit we get that λ(v1(x0)− v2(x0)) ≤ 0,
which is a contradiction since λ > 0 and v1(x0)− v2(x0) > 0.
If xε 6= yε, then by the theorem of sums [10, Theorem 3.2] there are

(ξx, X) ∈ J 2,+
(v1(xε)), (ξy, Y ) ∈ J 2,−

(v2(yε))

with X ≤ Y and ξx = ξy = Dφ1(xε) = Dφ2(yε) 6= 0. Writing the viscosity inequalities, we have

− tr(A(ξx)X) + λv1(xε) ≤ h(xε)

− tr(A(ξx)Y ) + λv2(yε) ≥ h(yε).

Since A(ξx) = I + (p− 2)ξx⊗ ξx ≥ 0 and X − Y ≤ 0, subtracting the previous two inequalities, we
get that

λ(v1(xε)− v2(yε)) ≤ h(xε)− h(yε)

and passing to the limit we get a contradiction.
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the infinity Laplacian. Calc. Var. Partial Differential Equations, 48(3-4):667–693, 2013.
[10] M.G. Crandall, H. Ishii, and P-L Lions. User’s guide to viscosity solutions of second order partial differential

equations. Bull. Am. Math. Soc., 27(1):1–67, 1992.
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[12] E. De Giorgi. Sulla differenziabilitá e l’analiticitá delle estremali degli integrali multipli regolari. Mem. Accad.

Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3:25–43, 1957.
[13] E. DiBenedetto. C1,α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal.,

7(8):827–850, 1983.
[14] K. Does. An evolution equation involving the normalized p-Laplacian. CPAA, 10(1):361–396, 2011.
[15] F. Duzaar and G. Mingione. Local Lipschitz regularity for degenerate elliptic systems. Ann. Inst. H. Poincaré
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1. Final comments

During the preparation of this dissertation we noticed the following errors
and typos in the published articles [A,B]:

[A] In the statement of Theorem 4.1, instead of osc (f,B6r(a)) should read
osc (f,B6R(a)). In the proof of the same theorem, p.10, l.-10, instead of
’Otherwise, she moves towards z length ε

2 or keeps the token at z.’ should

read: ’Otherwise, she moves the token towards vector z−x
m , where m =

3|x−z|
ε .’

In the proof of Lemma 5.3, in the case x ∈ BR(0) and y ∈ ∂BR(0), we
choose ε < s

2 , so we do not require that B2S(z) ⊂ BR(0)∪Γε. The boundary
values of a radially concave v should read v = supBs(z) u on ∂Bs(z) and v =

supΩ u on ∂B2S(z). Then the argument of the proof gives uε(x)−uε(y) < η,
and the other inequality uε(y) − uε(x) < η follows from the symmetric
argument by considering a radially convex function v′ with boundary values
v′ = infBs(z) u on ∂Bs(z) and v′ = infΩ u on ∂B2S(z).

[B] The citation [19] ([MPR10b] in the introduction of this thesis) was meant
to be [MPR10a] by the same authors.

In p.1389, l.5, the correct choice is to use
(√

p(xj , tj)− 1 ξ,
√
p(yj , sj)− 1 ξ

)
.

Then the argument, starting from line 11, reads as follows:

We have

η < −(n+ p(xj , tj))j(tj − sj) + (n+ p(yj , sj))j(tj − sj)
+ (p(xj , tj)− 2)〈Xjξ, ξ〉+ tr(Xj)− (p(yj , sj)− 2)〈Yjξ, ξ〉 − tr(Yj).

Since the function p is Lipschitz continuous, we have

| − (n+ p(xj , tj))j(tj − sj) + (n+ p(yj , sj))j(tj − sj)| <
η

2

when j is large enough. Hence, we get
η

2
< (p(xj , tj)− 2)〈Xjξ, ξ〉+ tr(Xj)− (p(yj , sj)− 2)〈Yjξ, ξ〉 − tr(Yj)

≤ 〈(Xj − Yj)ξ, ξ〉+ (p(xj , tj)− 2)〈Xjξ, ξ〉 − (p(yj , sj)− 2)〈Yjξ, ξ〉

≤ 〈Xj(
√
p(xj , tj)− 1 ξ), (

√
p(xj , tj)− 1 ξ)〉

− 〈Yj(
√
p(yj , sj)− 1 ξ), (

√
p(yj , sj)− 1 ξ)〉

≤ C (p(xj , tj)− p(yj , sj))2
(
ξ′Mξ +

2

j
ξ′M2ξ

)

≤ C
(
|xj − yj |2 + |tj − sj |2

)
(j2|xj − yj |2 + j3|xj − yj |4)

< C
(
j2|xj − yj |4 + (j2|xj − yj |4)3/2

)

1



2

when j is large. This is a contradiction, since j2|xj−yj |4 → 0 when j →∞.
In the last two estimates we used Lipschitz continuity of p.

All occurrences of the parabolic normalized p(x, t)-Laplace equations should
be (n+ p(x, t))ut = ∆u+ (p(x, t)− 2)∆N

∞u.
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