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dInstitute of Problems of Mechanical Engineering RAS, Russia

Abstract

During recent years it has been shown that hidden oscillations, whose basin of attraction does not overlap with small
neighborhoods of equilibria, may significantly complicate simulation of dynamical models, lead to unreliable results
and wrong conclusions, and cause serious damage in drilling systems, aircrafts control systems, electromechanical
systems, and other applications. In this article a survey of various phase-locked loop based circuits (used in satellite
navigation systems, optical, and digital communication), where such difficulties take place in MATLAB and SPICE,
is provided. Considered examples can be used for testing other phase-locked loop based circuits and simulation tools,
and motivate the development and application of rigorous analytical methods for the global analysis of phase-locked
loop based circuits.

Keywords: Phase-locked loop, two-phase PLL, optical Costas loop, simulation, MATLAB, SPICE,
synchronization, nonlinear control system, dynamical system, hidden attractor, multistability

1. Introduction

The phase-locked loop (PLL) based circuits are widely used nowadays in various applications such as telecom-
munications, computer architectures, navigation (e.g. in GPS, GLONASS) and many others. One of the main
features of PLL-based circuits is synchronization of the controlled oscillator (slave oscillator) frequency to the fre-
quency of reference signal (master oscillator). An important engineering characteristic of PLL-based circuit is a set
of frequency deviations for which the PLL-based circuit achieves a synchronized (locked) state for any initial state
[1, 2]: for a dynamical model of PLL-based circuit in the signal’s phase space the pull-in range corresponds to such
frequency deviations that any solution of dynamical model is attracted to one of the equilibria (rigorous definition
can be found in [3–5]).

Since PLL is essentially nonlinear control system and its nonlinear analysis is a challenging task (see, e.g. [4, 6–
12]), in practice, simulation is widely used for the study of PLL-based circuits (for a discussion of PLL-based circuits
simulation in SPICE and MATLAB see, e.g. [13–15]). However, recently it was shown that simulation may not
reveal complex behavior of PLL: such examples where the simulation of PLL-based circuits leads to unreliable
results, are demonstrated in [16, 17]. These examples demonstrate the difficulties of numerical search of so-called
hidden oscillations, whose basin of attraction does not overlap with the neighborhood of an equilibrium point, and
thus may be difficult to find numerically [18–20]. In this case the observation of one or another stable solution may
depend on the initial data and integration step.

This article provides a survey of various classical PLL-based circuits for which difficulties of simulation related
to the hidden oscillations take place in MATLAB and SPICE. Considered examples can be used for testing other
simulation software and models of PLL-based circuits. S. Goldman, who has worked at Texas Instruments over
20 years, notes [21, p.XIII] that PLLs are used as pipe cleaners for breaking simulation tools. Also the considered
examples motivate to develop and apply rigorous analytical methods for the global analysis of PLL-based circuits
[4].

2. Simulation of PLL-based circuits

2.1. Simulation of two-phase phase-locked loop

Let us consider the two-phase PLL operation ([22, 23]) (see Fig. 1). The input carrier is cos(θref(t)) with

∗Corresponding author email: nikolayv.kuznetsov@tdt.edu.vn, nkuznetsov239@gmail.com
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Filter
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Figure 1: Two-phase PLL model in the signal space

θref(t) as a phase. Hilbert block shifts the phase of the carrier by 90o producing the output sin(θref(t)). The
voltage-controlled oscillator (VCO) generates sin(θvco(t)) and cos(θvco(t)). Figure 2 shows the structure of complex
multiplier (phase detector). The phase detector consists of two analog multipliers and analog subtractor. The

+

-
cos(θref(t))

sin(θvco(t))

cos(θvco(t))

sin(θref(t))

vpd(t) = sin(θref(t)-θvco(t))

Figure 2: Phase detector (complex multiplier) in the two-phase PLL

output of phase detector is as follows

vpd(t) = sin(θref(t)− θvco(t)). (1)

The relation between the input vpd(t) and the output vf (t) of the Loop filter has the following form

ẋ = Ax+ bvpd(t), vf (t) = c∗x+ hvpd(t), (2)

where A is a constant (n × n)-matrix, x ∈ Rn is the Loop filter state, b and c are constant vectors, and h is a
number. A widely used lead-lag filter is described by the transfer function

H(s) = c∗(sI −A)−1b+ h =
a(s)

d(s)
=

1 + τ2s

1 + (τ1 + τ2)s
,

A = − 1

τ1 + τ2
, b = 1− τ2

τ1 + τ2
, c =

1

τ1 + τ2
, h =

τ2
τ1 + τ2

,

(3)

where τ1 > 0 and τ2 > 0 are parameters. The error signal vf (t) adjusts the VCO frequency to the frequency of the
input signal:

θ̇vco = ωfree
vco +Kvcovf (t), (4)
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where ωfree
vco is a free-running frequency of the VCO (i.e. for vf(t) ≡ 0) and Kvco is the VCO input gain.

In contrast to the classical PLL-based circuits this model does not contain high-frequency components in the
output of phase detector (complex multiplier). Therefore the two-phase PLL model in the signal space is equivalent
to the model in the signal’s phase space (Fig. 3). This model considers only phases θvco and θref , and, thus, simplifies
analytical and numerical study. The frequency of the input signal (reference frequency) is usually assumed to be

Loop filterVCO

PD

θVCO(t)

θVCO(0) x(0)

θref(t) sin(θref (t) - θVCO(t))

Figure 3: Two-phase PLL model in the signal’s phase space

constant:
θ̇ref(t) ≡ ωref . (5)

Introduce
θe(t) = θref(t)− θvco(t), ωfree

e = ωref − ωfree
vco ,

where |ωfree
e | is called a frequency deviation. Combining equations (1),(2),(3), and (4) we get the following equations

of the model in the signal’s phase space

ẋ =
−1

τ1 + τ2
x+ (1− τ2

τ1 + τ2
) sin(θe),

θ̇e = ωfree
e −Kvco(

1

τ1 + τ2
x +

τ2
τ1 + τ2

sin(θe)).

(6)

The equilibria points of (6) are defined as follows

xeq = τ1 sin(θeq), sin(θeq) =
ωfree
e

Kvco

(7)

and their local analysis can be done by the Routh-Hurwitz criterion. To study the global stability and the pull-in
range we apply numerical methods.

Consider MATLAB Simulink model of the two-phase PLL (Fig. 4). We use the block Loop filter to take into
account the initial filter state x(0); the initial phase error θe(0) can be taken into account by the property initial
data of the Intergator blocks.

The simulation results of the Loop filter output are shown in Fig. 5. If the max step size parameter is “auto”,
then the simulation shows that the two-phase PLL synchronizes to the carrier (left subfigure). This fact suggests
that ωfree

e belongs to the pull-in range. However, more precise simulation with the max step size set to “1e-4” shows
that the Loop filter output does not synchronize to the carrier (right subfigure). Considered oscillations shows that
ωfree
e can not belong to the pull-in range.

Now we consider the corresponding simulation in SPICE. Consider the two-phase PLL model in SPICE (Fig. 6).
This model corresponds to Fig. 1 and Fig. 2. The model in Fig. 6 corresponds to the following NGSPICE listing1:

1 ∗NGSPICE
2 V1 s in Inpu t 0 0 Sine (0 1 1.5915494k 0 0)
3 V2 co s input 0 0 Sine (0 1 1.5915494k
4 + −157.03518u 0)
5 R1 C2 N 0 1 .85 k
6 V3 vco f r equency 0 9 .811 k

1Official ngspice web page http://ngspice.sourceforge.net/. Online realization is available at http://www.ngspice.com/index.

php?public_circuit=AK3QmA
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Loop filter

1
s

Integrator3

1
s

Integrator2

Add1

feedback2s in

Trigonometric
Function2

cos

Trigonometric
Function3

P roduct

P roduct1

cos

Trigonometric
Function4

s in

Trigonometric
Function5

theta

Figure 4: Realization of the two-phase PLL in MATLAB Simulink (A → A, b → B, c → C, h → D; ωfree
e → omega e, Kvco → K vco,

ωref = 10000).

7 R2 f i l t e r o u t PD output 4 .48 k
8 . subckt mu l t i p l i e r 1 N1 N2 OUT
9 B1 OUT 0 V=V(N1)∗V(N2)

10 . ends mu l t i p l i e r 1
11 Xmult1 s i n Inpu t vco cos output ARB1 OUT
12 + mu l t i p l i e r 1
13 ∗
14 . subckt mu l t i p l i e r 2 N1 N2 OUT
15 B1 OUT 0 V=V(N1)∗V(N2)
16 . ends mu l t i p l i e r 2
17 Xmult2 co s i nput vco s in ou tput E3 CN
18 + mu l t i p l i e r 2
19 ∗
20 . subckt s in waveform N1 OUT
21 B1 OUT 0 V=s in (V(N1) )
22 . ends s in waveform
23 Xsin i n t e g r a t o r ou t vco s in ou tput
24 + sin waveform
25 ∗
26 . subckt cos waveform N1 OUT
27 B1 OUT 0 V=cos (V(N1) )
28 . ends cos waveform
29 Xcos i n t e g r a t o r ou t vco cos output
30 + cos waveform
31 ∗
32 . subckt i n t e g r a t o r N1 OUT
33 Aintegrator N1 OUT time count
34 . model t ime count i n t ( i n o f f s e t =0.0 gain=1.0
35 + ou t l owe r l im i t=−1e12
36 + out uppe r l im i t=1e12
37 + l im i t r ang e=1e−9 ou t i c =0.0)
38 . ends i n t e g r a t o r
39 Xintegrator i n t e g r a t o r i n i n t e g r a t o r ou t
40 + in t e g r a t o r
41 ∗
42 E2 i n t e g r a t o r i n 0 vco f r equency E2 CN 1
43 C2 f i l t e r o u t C2 N 10u IC=50m
44 E3 PD output 0 ARB1 OUT E3 CN 1
45 E6 E2 CN 0 f i l t e r o u t 0 −250
46 ∗ .TRAN 1m 5 0 1m UIC

4
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-0.5

0

0.5

1
Loop filter output Loop filter output

step size: auto step size: 1e-4

0 5 t 0 5 t
Figure 5: Simulation of the two-phase PLL in MATLAB. Simulation of the same circuit shows qualitatively different results for different
simulation steps (sampling, integration step). The left subfigure shows synchronization (step size “auto”), the right subfigure —
oscillations (step size “1e-4”). Parameters: K vco = 250, A = −15.7978, B = 0.7077, C = 15.7978, D = 0.2923 (τ1 = 0.0448, τ2 =
0.0185), omega e = 178.9, initial state of the Loop filter is x(0) = 0.01, θe(0) = 0.

47 .TRAN 10m 5 0 10m UIC

The results of simulation are shown in Fig. 7. If the integration step in SPICE is equal to 10m, then the simulation
shows that VCO locks to the reference signal. The simulation with step 1m reveals oscillations. To consider the
performance effect of additive white Gaussian noise (AWGN) added to the input signal one can use the following
code-snippet for NGSPICE2:

1 E16 s i n n o i s e 0 s i n Inpu t no i s e 1 1
2 E17 c o s n o i s e 0 co s i nput no i s e 2 1
3 V4 no i s e 1 0 0 TRNOISE(10m 100m 0 0)
4 V5 no i s e 2 0 0 TRNOISE(10m 100m 0 0)

In this example the two-phase PLL may lock or not lock depending on noise. Also to make the model more realistic
one may consider non-linear VCO characteristic (see, e.g. example of hidden oscillations with non-linear VCO in
[24]), the effect of frequency dependence of Hilbert transformer, and the effect of asymmetry of complex multiplier.
However, for simplicity in this article we follow the classical analysis of the pull-in range [1, 2].

2.2. Simulation of the optical Costas loop

Consider the optical Costas loop model (see, e.g. [25]). The input signal is a BPSK (Binary Phase Shift Keying)
signal, which is the product of the transferred data m(t) = ±1 and the harmonic carrier

√
Pref sin(θref(t)) with high

frequency ωref(t) = θ̇ref(t). The VCO signal is sinusoidal
√
Pvco sin(θvco(t)) with the frequency ωvco(t) = θ̇vco(t).

Block 90o Hybrid has the following outputs:

E1 =
1

2

(
m(t)

√
Pref cos(θref(t)) +

√
Pvco cos(θvco(t))

)
,

E2 =
1

2

(
m(t)

√
Pref cos(θref(t))−

√
Pvco cos(θvco(t))

)
,

E3 =
1

2

(
m(t)

√
Pref cos(θref(t)) +

√
Pvco cos(θvco(t) +

π

2
)
)
,

E4 =
1

2

(
m(t)

√
Pref cos(θref(t))−

√
Pvco cos(θvco(t) +

π

2
)
)
.

(8)

2Official ngspice web page http://ngspice.sourceforge.net/. Online realization is available at http://www.ngspice.com/index.

php?public\_circuit=Av4Mbb
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E6

-250

E2

1

integrator_in

9.811k
V3

vco_cos_output

vco_sin_output

+ C2
10u IC=50m

R1
1.85k

vco_frequency

sin(V(N1))

N1OUT

PD_output

E3

1

V(N1)*V(N2)

OUT
N2
N1

sin_Input

0 Sine(0 1 1.5915494k 0 0)
V1

V(N1)*V(N2)

OUT
N2
N1

0 Sine(0 1 1.5915494k -157.03518u 0)
V2

cos_input

cos(V(N1))

N1OUT

R2

4.48k

filter_out

integrator_out

filter_out

Integrator

N1OUT

Loop �lter

VCO

Figure 6: Realization of the two-phase PLL model in SPICE.

mV

200

100

0

-100 0 1 2 3 4 t0 1 2 3 4 t

mV

200

100

0

-100

400

300

Loop �lter outputLoop �lter output

step size: 1mstep size: 10m

Figure 7: Simulation of the two-phase PLL in NGSPICE. For default simulation step (10m) the VCO synchronizes to the reference signal
(left subfigure). For simulation step 1m an undamped oscillation exists (right subfigure). Parameters: Kvco = 250, A = −15.7978,
b = 0.7077, c = 15.7978, h = 0.2923 (τ1 = 0.0448, τ2 = 0.0185), ωfree

e = 189. Initial charge of capacitor C2 is 50m (corresponds to
initial state of the Loop filter), θe(0) = 0, ωref = 10000.

Four outputs of the receivers are the following

I1(t) =
R

8

(
Pref + Pvco + 2m(t)

√
PrefPvco cos(θe(t))

)
,

I2(t) =
R

8

(
Pref + Pvco − 2m(t)

√
PrefPvco cos(θe(t))

)
,

I3(t) =
R

8

(
Pref + Pvco + 2m(t)

√
PrefPvco cos(θe(t)−

π

2
)
)
,

I4(t) =
R

8

(
Pref + Pvco − 2m(t)

√
PrefPvco cos(θe(t)−

π

2
)
)
.

(9)

The amplifier multiplies its inputs by a positive number a, and then two pairs of signals are subtracted:

II(t) = aI1(t)− aI2(t) =
m(t)Ra

√
PrefPvco

2
cos(θe(t)),

IQ(t) = aI3(t)− aI4(t) =
m(t)Ra

√
PrefPvco

2
cos(θe(t)−

π

2
).

(10)

6
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Hybrid

sref(t)=m(t)√P sin(θ (t))

Trans.
Ampl.
(TIA)

+
II(t)

+
IQ(t)

Loop
Filter

vf(t)VCO
I I(t)IQ(t)

=
data ±1

carrier

s (t) = √P sin(θ (t))

I1

I2

I3

I4

E1

E2

E3

E4

ref ref

vco vco vco vpd(t)=

Figure 8: The optical Costas loop in the signal space

After the multiplication
⊗

the Loop filter input becomes

vpd(t) = II(t)IQ(t) =
R2a2PrefPvco

4
cos(θe(t)) sin(θe(t)) =

R2a2PrefPvco

8
sin(2θe(t)). (11)

Combining equations (11), (2), (3), and (4) we get nonlinear model of optical Costas loop. This model corresponds
to the classical signal’s phase model of PLL shown in Fig. 3. Now we construct the corresponding model in MATLAB
Simulink (see Fig. 9).

10000-353.5

vco free-running frequency

10000

carrier frequency

500

VCO input gain

sin

Trigonometric
Function1

x' = Ax+Bu
 y = Cx+Du

Loop filter

1
s

Integrator

1
s

Integrator2

Add feedback

2

gain gain1

vco phase

theta

Figure 9: Signal’s phase space model of optical Costas loop in MATLAB Simulink (A → A, b → B, c → C, h → D; ωfree
e = 353.5,

Kvco = 500, ωref = 10000).

The simulation of optical Costas loop reveals the same effect, as in previous examples.
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0 2 4 6 8 10
-0.2

0

0.2
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step size: auto step size: 1e-4

Figure 10: Simulation of the optical Costas loop in MATLAB Simulink (Fig. 9), Loop filter output. The left subfigure shows syn-
chronization (step size “auto”), the right subfigure — oscillations (step size “1e-4”). Parameters: VCO input gain is Kvco = 500,
A = −15.7978, b = 0.7077, c = 15.7978, h = 0.2923. Initial state of Loop filter is zero, θe(0) = 0.

If the max step size parameter is “auto”, then simulation shows that the model of optical Costas loop synchronizes
to the carrier (left subfigure) and, thus, the considered ωfree

e can correpond to the pull-in range. However, if the
max step size is set to “1e-4”, then the Loop filter output does not synchronize to the carrier (right subfigure) and,
thus, the considered ωfree

e is outside of the pull-in range.

2.3. Simulation of the BPSK Costas loop

m(t)sin(θref(t))

VCO

LPF

LPF

Loop Filter
2cos(θvco(t))

2sin(θvco(t))

vf(t) vpd(t)

I1(t) I2(t)

Q1(t) Q2(t)

Figure 11: BPSK Costas loop

Consider the BPSK Costas loop circuit [5, 26, 27], which is used for carrier recovery and signal demodulation
(Fig. 11). The input signal is a Binary Phase-Shift Keying (BPSK) signal, which is the product of data m(t) and
carrier sin(θref(t)). In the following analysis we are not interested in m(t), therefore we consider m(t) ≡ 1. The
input signal is multiplied by the VCO outputs 2 cos(θvco(t)) and 2 sin(θvco(t)):

I1(t) = 2 cos(θvco(t)) sin(θref(t)),

Q1(t) = 2 sin(θvco(t)) sin(θref(t)).

The transfer functions of low-pass filters LPF are equal to H(s) = 1
s
a+1 (i.e. A = −a, b = a, c = 1, h = 0). The

product of outputs of low-pass filters vpd(t) = I2(t)Q2(t) is filtered by the Loop filter defined by (3). The VCO
phase is defined by (4). The frequency of the input signal (reference frequency) is usually assumed to be constant,
i.e.

θref(t) = ωreft.

8
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carrier frequency1
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 y = Cx+D u

Loop �lter1

1
s

Integrator3

1
s

Integrator2
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Tr igonometric
Function2

cos

Tr igonometric
Function4

sin

Tr igonometric
Function5

Pr oduct

Pr oduct1

feedback1

1
0.001s+1

Tr ans fer Fc n

1
0.001s+1

Tr ans fer Fc n1

Pr oduct2

2

gain1

2

gain2

vco phase theta

Figure 12: MATLAB Simulink model of BPSK Costas loop in the signal space (A → A, b → B, c → C, h → D; ωfree
e = 87.307, VCO

input gain is Kvco = 250, ωref = 10000, a = 1000)

Therefore the BPSK Costas loop is described by the following equations

ẋ1 = −ax1 + 2a sin(ωreft) cos(θvco(t)),

ẋ2 = −ax2 + 2a sin(ωreft) sin(θvco(t)),

ẋ =
−1

τ1 + τ2
x+ (1− τ2

τ1 + τ2
)x1x2,

θ̇vco = ωfree
vco +Kvco(

1

τ1 + τ2
x +

τ2
τ1 + τ2

x1x2).

(12)

The model of BPSK Costas loop in MATLAB is shown in Fig. 12. Here blocks “LPF” are modeled using
Transfer Function element from the standard library.

In Fig. 13 the BPSK Costas loop model, simulated with relative tolerance set to 10−5 or smaller, does not
acquire lock. However the model, simulated with standard parameters (the max step size set to “auto”), acquires
lock after approximately 12 seconds. Here the input signal frequency is 10000, the VCO free-running frequency
ωfree
e = 87.307, the VCO input gain is Kvco = 250, the initial state of the Loop filter is x(0) = 0.

0.2 0.4 0.6 0.8

50

100

0.2 0.4 0.6 0.8

50

100

Max step size: 10-5Max step size: auto

t

0

0.2 0.4 0.6 0.8

0

0.2 0.4 0.6 0.8 t
0 8 16 24 320 8 16 24 32 tt

Loop �lter outputLoop �lter output

max step size: 10-5max step size: auto

Figure 13: Simulation of the BPSK Costas loop in MATLAB. The Loop filter outputs vf (t) for the initial data x0 =0, θe(0) = 0, obtained
for default “auto” max step size and max step size set to 10−5. Parameters: A = −15.7978, b = 0.7077, c = 15.7978, h = 0.2923
(τ1 = 0.0448, τ2 = 0.0185), VCO input gain is Kvco = 250, a = 1000, ωfree

e = 87.307.

Note that any initial state of the Loop filter less than 0.4 leads to a similar effect.

3. Hidden oscillations

Now we give mathematical explanation of the considered problems of simulation. An oscillation in a dynamical
system can be localized numerically if the initial conditions from its open neighborhood lead to the long-time
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behavior that approaches the oscillation. Such an oscillation (or a set of oscillations) is called an attractor, and
its attracting set is called a basin of attraction. Thus, from a point of view of the numerical analysis of nonlinear
dynamical models it is essential to classify an attractor as self-excited or hidden attractor depending on simplicity
of finding its basin of attraction [18–20]: An attractor is called a self-excited attractor if its basin of attraction
intersects with an arbitrarily small open neighborhood of an unstable equilibrium, otherwise it is called a hidden
attractor.

For a self-excited attractor, its basin of attraction is connected with an unstable equilibrium and, thus, it can
be localized numerically by a standard computational procedure in which after a transient process a trajectory,
starting from a point in a neighborhood of the unstable equilibrium, reaches a state of oscillation and, therefore,
visualizes the attractor. While many classical attractors are self-exited attractors and therefore can be obtained
numerically by the standard computational procedure, for localization of hidden attractors it is necessary to develop
special analytical-numerical procedures in which initial point is chosen from the basin of attraction. The numerical
search of hidden attractors can be also complicated due to the small size of the basin of attraction with respect to
the considered set of parameters and subset of the phase space (see, e.g. a discussion of rare hidden attractors in
[28, 29]). For example, hidden attractors are attractors in the system without equilibria or in multistable system with
only stable equilibria. During recent years it has been shown that hidden attractors may significantly complicate
simulation of dynamical models, lead to unreliable results and wrong conclusions, and even cause serious damage
in aircrafts control systems [30, 31], drilling systems [32–34], electromechanical systems [35], and other applications
[36, 37]. Recent examples of hidden attractors can be found e.g. in [29, 35, 38–45].

Following pioneering works [1, 2], classical PLL-based circuits are often described by a models in the signal’s
phase space (rigorous justification can be done by the averaging methods, see, e.g. the corresponding discussion
in [46–49]). One of the first analytical study of classical PLL circuit with lead-lag Loop filter in the signal’s phase
space was done in 1956 [50] by the phase-plane analysis. In this work Kapranov assumed that all oscillations in
the considered two-dimensional model are self-excited. However, in 1961 Gubar’ [51] revealed a gap in Kapranov’s
consideration and showed that in classical PLL circuit with lead-lag Loop filter a stable periodic trajectory, which is
a hidden attractor, can exist and bound the basin of attraction of equilibria. This stable periodic trajectory (stable
cycle) coexists with an unstable periodic trajectory (unstable cycle) and if the gap between these two trajectories
is small (see Fig. 14a) and the discretization step (sampling) in numerical integration is larger than this gap, then
the numerical integration may step over both stable and unstable periodic trajectories. We can avoid this problem
if we choose simulation step much smaller than the distance between the cycles.

simulationreal trajectories

x

e

stable
unstable

equilibrium equilibrium

(a)

simulationreal trajectories

x

semi-stable

e

equilibrium equilibrium

(b)

Figure 14: Phase portrait of PLL-based circuits dynamical model in the signal’s phase space: (a) coexistence of stable periodic
trajectory (which is a local hidden attractor — locally attracting, closed, and bounded set in cylindrical phase space) and unstable
periodic trajectory close to each other; (b) semistable periodic trajectory.

The localization of hidden oscillation is shown in Fig. 5, Fig. 10, and Fig. 13 (right subfigures). The case
corresponds to the close coexisting attractors and the bifurcation of birth of semistable trajectory (semistable
cycle) [18, 51–53]. In this case the numerical methods are limited by the integration errors (see [54, 55]). However,
the cycles may merge together and form semi-stable cycle (see Fig. 14b), which is difficult to reveal by the numerical
procedure with any integration step.

Conclusion

The considered examples motivate to apply rigorous analytical methods for the global analysis of PLL-based
circuits. As it was noted in [56] stability in simulations may not imply stability of the physical control system and,
thus, stronger theoretical understanding is required.

For two-dimensional models of PLL-based circuits with first-order Loop filters, the phase-plane analysis can be
effectively applied (see, e.g. [52]). For high-order filters and multi-dimensional models one can apply the corre-
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sponding modifications of classical stability criteria for the nonlinear analysis of control systems in the cylindrical
phase space (see, e.g. [4, 57]). However these methods give often only sufficient conditions and rough estimates.
Thus, a comprehensive study of PLL-based circuits with high-order filters is a challenging problem.
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