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ABSTRACT

The optimal shape design of a two-dimensional elastic body on
a rigid foundation is analyzed. The influence of the friction between
the body and the support will be taken into account by applying the
model with a given friction. The aim is to redesign the contact
surface of the body in order to achieve such a shape that the total
potential energy of the system in the equilibrium state will be mini-
mized.

The solvability of the problem is proved. Discretization by
finite elements as well as the sensitivity analysis is given which
is necessary for solving numerically the problem in question.

1. Introduction

It is the aim of this paper to extend the analysis of [5,61],
where the optimal shape design of a two-dimensional elastic body on
a rigid frictionless foundation was analyzed. Here the influence
of the friction between the body and the support will be taken into




account. Even in the simplest model with a given friction the situ-
ation is more involved than in the frictionless case.

In our design problem the contact boundary of the body with
unilateral boundary conditions must be redesigned in such a way that
the total potential energy of the system in the equilibrium state
will be minimized. In chapter 2 we shall prove the existence of a
solution to this contour design problem. In chapter 3 a finite el-
ement discretization with linear triangular elements is presented.
We shall prove that the solution of the discrete state problem
(governed by variational inequality) is directionally differentiable
with respect to shape control of the body (Theorem 3.1). The main
result of chapter 3 is Theorem 3.2 which contains formula for the
directional derivative for the criteria functional. We present two
ways to obtain the directional derivative: one based on variational
inequality approach and second based on min-max principle (saddle-
point approach). The gradient formulae are necessary for the use of
efficient nonlinear programming algorithms in solving numerically
the problem in question.

For contributions to shape optimization in problem governed by
equations we refer to [8, 9, 10, 11, 13] and to bibliography therein.

2. Existence result

Let us assume an elastic body, represented by a bounded plane
domain @(a) < R (see Fig. 1), where

ala) = (x5 x,y) € R | a<xy<b, alx;)<x,<y}, y>0
and

a€l g = ta e cM(la,b]) [ 0<alx,) $Co<ys
|0L'(X1)| <G Ia"(x1)| <Gy

meas (a(a)) = C3} .




We suppose that positive constants Co »Cy .6 ,C3 are chosen in
such a way that U, # p. Let the boundary 3a(a) of Q(a) be
decomposed as follows (for the meaning see (2.2)-(2.6)):

SQ(a)

rDurPurc(a), rp # P
and

2
|

l“c(a) = {(X1 ,X2) € R X2 = G(X1) ’ X1 € (a sb)}

A
X2
Y ko
Q(a)

o — -

e -
IIIﬁIf/////!I/////r//

a b X

Fig. 1. Q(a), a € Uad.

Let the elastic body be unilaterally supported by a rigid foundation
(the set {(x1 ,x2) € R2| Xo < 0}) and subjected to a body force

F = (F1 ,F2) and to a surface traction P = (P1 ,P2) on the por-
tion Tp - Moreover, the influence of friction between the body

and the support will be taken into account. Here we shall discuss
the simplest model involving friction, namely the so called model
with a given friction. Classical formulation of a contact problem
with a given frictioncan be stated as follows (with o € U gy being
fixed): we look for a displacement field u = u(a) = (uq(a) s Up(a)),




satisfying the equilibrium equations

9T

(2.1) 5 () +Fi=0  in aa) , i=1,2 )!
XJ- 1

where the stress tensor t(u) = (Tij(u))? is related to the

iyJ=1

strain (linearized) tensor e(u) = (eiiﬁﬂ)g,jz 1> With Eij(”) =
g, AUy duy - |
=5 ( 3}5 + 3;;-) by means of a linear Hooke's law:
35U = ci560 gaw

Elasticity coefficients Cijk] are supposed to be bounded and
measurable in ¢ = (a,b)x(0,y), i.e. ¢ 1 € L*(&) , satisfying
the symmetry conditions

ijk

cijkl(x) = Cjikl(x) = Ck]ij(x) a.e. in §
as well as the ellipticity condition

Further, the displacement field u has to satisfy the following
system of boundary conditions:

(2.2) u: = 0 “on Ip» i=1,23

n
—_
-
Ny
ve

(2.3) Tij(u) nj = P, on Ip » 1

(n = (n1 ,n2) denotes the unit outward normal to 39)
(2.4) Uy (Xq 5 a(xy)) 2 -alxy) vxy € (a,b) ;

(2.5) To(u) = rzj(u) Ny 20, (uy+a) Ty(u) =0 on rela);

—

)1 Throughout the paper, the summation convention is used




u)n

1T, (W)l <g on re(a); Tylu) ;

T

(2.6) IT (W (x) <g = uy(x) =03

|T2(U)(X)| =g = 1 )\(X) 2 0: U‘(x) = ')\(X) T1(U)(X) .

Above (2.4) and (2.5) are conditions of the unilateral contact
along Pc(a) , (2.6) is the mathematical formulation of our model
of friction. In order to give the variational formulation, we in-
troduce some notations: Let

V(o) = V(a(e)) = tve (H'(@@)N?] vi=0 on Ty, i=1,2)
be the set of virtual displacements and
K(a) = K(a(a)) = {veV(a)] volxqsalx)) 2-alx;) vx,€(a,b)}

be its closed, convex subset. By a vauational sofution of a con-
tact problem with given friction we call a function u(a) € K(a)
such that

(P@)) (elu) s elv=ud)ggy * dg(V) = 7w 2 <L, v -
vv € K(a) ,

where

(T(u),E(V»Q(u) = { ) Tij(“) Eij(V) dx
Qla

j W)y =g [ dvyl ds

Tc(a)
<L,v> = Q{a) Fliv; dx +FfPP1. viyds = (F,V)Q(a)+(P,V)FP

with Fe (L2@)%, Pe (L5rpn?, ge R', g > 0. It is well-

known that for any o€ U,,, the problem (P(a)) has a unique
solution u (see [4]). Up to now, a function o € Uyg has been




fixed. Our aim will be to design the contact surface rc(a) to
achieve a shape, the total potential energy of which is minimal.
More precisely, we look for o* € U, 4 such that ([7])

(P) E(a*) < E(a) Va € Uq s

E(a) = E(u(a) ,a) = (Tij(“(“)) ’eij(”(“)))g(a)

Nj—

+

§ (u(@)) = <L, ula)>,

with u(a) € K(a) being the solution of (P(a)).
The main result of the paper is

Theorem 2.1. There exists at least one solution of (P) .

Before we prove the result, we shall need some auxiliary results.

Lemma 2.1. Let aj 3 (uniformly) in [a,b] and let ¢ € K(a) »
)2 and a

)) and

@ = (w1 ,mz) be given. Then there exists ®; € (H1(ﬁ)

subsequence {“n(j)} < {a,} such that 5 € K(a
Q(a . )

X n(J)

(w1,<b2) denotes the Calderon

n(J

05 > ¢ in (H1(§))2, where @

extension of @ fram Q(a) on Q.
Proof. Define a function
¢2(X1’X2) = maX{(.DZ(X‘i > X2) s~ XZ} 5 (X1 ’ XZ) € Q

We find that vy, € H1(ﬁ) s ¥y =0 and

Ty

‘1’2()(1 s 0'-(X1)): (02(X1,(1(X1)) 2 ‘Ot(x/‘) >

i.e. w|9(a) € K(a) , where ¢ = (¢1 ,wz) with ¢, = @1. Let us

split @ as follows: @ =% + &. From the construction of v




we see that

¢1| = ozlr = Qzlrc(a) =0 , ¢= (<1>1 ,@2).

i u

u

Applying the classical density result, one can find a sequence

_ o, ~ 2 N . . o
{¢j} 05 = (¢1j ’f?j) € (C(R))" with 2152 %23 vanishing in a
neighbourhood of Tys Ty U rc(a) , respectively and such that
o5 >0 i mh(@)?.

Let us define now:

Then
”‘p'wjlh’ﬁ = |l¢ "’I’j”1’ﬁ "'03 J >,

Let us denote dj = dist {supp 95Ty U Fc(a) } and Tet j, be

fixed. As a5 3@ in [a,b], then exists n, = n(jO) such
that the graph of the function ano doesn't intersect supp ¢2j0‘

As

| @os =Y on £~ supp o,.
‘ 230 2 x 230

and
| o(xg 3 %y) 2 =%y V(xg,%y) €0
(as follows from the definition of ¥y )} we immediately get

YolXy sa (Xx4)) > =a (x,).
2' 1 ng 1 Ny 1

Hence




(.DJ-O ( ) € K(O.no) . o
Qla
o

Lemma 2.2. Let o > a in C1([a ,b]) -topology and let u_ =
u(an) €K, = K(an) be solutions of (P(an)) . Then there exists
a subsequence of {upl} denoted again by {u,} such that

u, = u (weakly) in (H1(Gm(u)))2

for any m, where

(2.7) G (a) = 1xy 2 x) € RE| Xy € (a4D) 4 alxy) +3<xp <)

and u = u(a) € K(a) solves (P(a)) .

Proof. There exists a constant ¢ > 0 independent on o € uad

and such that

(2.8) Nu thy o S¢ (g, = alay)) .
**n

Indeed,

J C llunllf,gné (cug) » E(“n))nn < (T_(“n) g e(un))gn+ inluy)

< (xlug) s e(v))gn‘+ <L,v-u, >an+jn(v)

holds for any v € K(a ) (4y = 4, ). Setting v=1(0,0) €K, Vvn
n

in the last inequality, we arrive at (2.8). Here we used the fact

that the constant C, appearing in the Korn's inequality can be

chosen independently on n (for the proof see Appendix in [6]). Let

U, € (H1(§))2 denote the Calderon extension of u = from &, on

Q0. As {o(a)}, a € U,g POsesses the so called ‘“"uniform exten-
sion property" (see [2]), the norm of ﬁn in (H1(s‘z))2 can be




estimated independently on n, i.e.

_ 2
(2.9) Ml 4 <c )

Therefore there exists a subsequence of {Gn} (denoted by {Gn}
again) and an element U € (H1(s‘2))2 such that

(2.10) @ ~a in (H(@)°

Our goal is to show that u = Glﬂ(a) solves (P(a)).

First we prove that u € K(a). It is clear that u =0 on
Ip - Let us denote by P the penalty mapping associated with the
geametrical constraint u(a) € K(a):

P(Z(OL))(X1) = (Z(a) + OL)_ = (Z(X1 ,Ot(X1)) + O‘(X1)) B

Xy € (a,b) ,
(a = (lal - a)/2) and let

(1_(u,) »¢)

b
[ Plugla))xy) ey > alxy)) dxps e € D(R?) .

Because of (2.10) and the fact that a, 3@ in [a,b]l, we have

@11 1, Gg) 2 8) > (1,005) - )
(for the proof see [5], Lemma 2.2). As u, € K, implies

(I (uy)»€) =0 VEE D(R%) it holds by virtue of (2.11) that
n

(Iu(uz) ,E) = 0. This means that u € K(a).
From (2.10) it follows that

(2.12)  u ~u in (WG (@)

)2 In what follows, ¢ will denote a generic strict positive
constant with different values on different places.
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for any m. It remains to prove that u solves (P(a)).
Let £ € K(a) be an arbitrary and let g5 € (H1(ﬁ))2 be func-
tions with properties given by Lemma 2.2 :

(2.13) gy &  in ' (a))?

and €. € K(an ) . Denoting by wu, ~ solutions of (P(aﬁ.)) we
e, j J j
J
have:

(2.14)  {clug daeley - ug Mg+ 4 (£5) - o (g )

J J "j J J ]
2(F,€_,-"U ) +(P,€ = u )
Y 3N Tp
J
One can write:
(t(u_),e(e; = u_ ))
nj J nj an

(T(unj) s E(EJ = unj))Gm + (T(unj) ’ E(EJ = unj))gn '.\Q(d.)

+ (T(Unj) > C(EJ' - Unj))(g(a)\Gm)ﬂan

(VAN

(T(unj),e(ﬁj -unj))qn+ (T(unj) ’E(Ej))gni\n(a)

+ (T(un ) ) e(g\]))ﬂ(d)\G

J m’
where G = Gm(u). From (2.10), (2.12) and (2.13) it follows that
(2.15) Tim sup (t(u_ ) ,e(e. - u_))
o n Jj n;toey

J

< (t(u) , elg - U))G + C "E’|I1,Q(u)\G .
m m
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Analogously,

(F,€~'U ) =(F,E-'U ) +(F,E_,-"U )
J nj Q. j nj Gm : J nj nn_\n(a)
J J
+ (Fsg5-Un Ng(a)ng )nn. .
j m nj

Arguing in the same way as before we have:

(2.16)  Tim inf (F,g;-uy )

8 Z(FsE'U)G
J® J n. m

J

- c(”F“Q(a)\G + ”EHQ(G)\G ).
m m

Further,

where
M= (xpax) €R| %y € (ala) sala) + 1) or
x, € (a(b) , a(b) + l}I)}.

(This consideration can be omitted if dist(rc(a),rp) >0.)
Then

(2.17) 1im inf (P, €, - up )r > (P,e-u)
oo 3Nyt P'm

- c(IPlly + lEly ).
Mm Mm

Finally we prove that

(2.18) 4, (up ) >4 (w) s o=

J J
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Indeed:

fnj(“nj) - §,(u) =g I'c(in )Iumjl ds - g rc{a)lu”ds
J

b b
g [ luy, oo | /14 (a )2 dxg= g [ lujoal /1+(a')” dx,
a nj nJ. nj a

b
g f 1U, oa, =-i,0al /1+(a' )° dx
a 1nJ. nJ. 1 nJ. 1

IN

b . .
+géf |G100,||l/1+(0.;].)2 -/1+(a')2|dx1 = I*11+I% .
J

From_
ag>a in cl(ta,b]) ,

we immediately get

(2.19) 1~2"+0 . 5 P

Further,
(2.20) 1d1<c jb oy, oa, - Gyoaldx,
a J J
b - - -
= caf Iumjoanj + u1njoa - u1.0aldx1
b
< Céf lﬁijanj - u1nj°°‘|dx1
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b
+c [ lo,, oa - Uyoaldx
a
/ g+ clliyy -
<c¢ /[ by, 0a, = Uy, oaldx, + cllU - ugll .
H 1nj nj 1n‘j 1 1nj 1 rc(u)

As the imbedding of H1(Q(a)) into Lz(rc(a)) is completely con-
tinuous, one has

(2.21) "u1n.' U1”I1 ((1) > 0 ’ J+ ® .
J C
Moreover:
b b *Nj
[ lag 0w -y oaldey = [ 1) 5o Oy, dxyldxy
a Jj J J a o 2

<c max |a

Tk ey m el Mgy g g0 e

This, together with (2.19), (2.20), (2.21) yield (2.18). In the
same way one can show that

(2:22) gy (e5) > 4y (8) o 3w

Taking into account (2.15), (2.16), (2.17), (2.18) and (2.22) we
have that

(‘[(U) N E(g"U))G + C ”€"1 Q((!.)\G + J(!(E) = j(!(u)
m ’ m

2 (F, E-U)Gm - C("F”Q(a)\Gm + "F’“Q(a)\Gm)

+ (P,&g-u) - c(lPIl + 1Ell,, )
I1P\Mm Mm Mm

holds for any m and any £ € K(a) . Passing to the limit with
m, we are finally led to




-14-

(t(u) ’E(E-u))n(a) + ja(g) - ja(u) 2 <Ls€'u>a

ve € Kla),

j.e. u€ K(a) 1is a solution of (P(a)). o

Proof of Theorem 2.1. Denote by

p = inf E(u(a),a)
aEUad

and by a, € uad a minimization sequence, i.e.:

p = 1im E(an) s

N->c0

where E(an) = E(un ,an) ,  with u u(an) €K, = K(an) being
the solutions of (P(un)) . In view of the compactness of U.g
with respect to C1([a , b]) -topology, one can find a subsequence
of {o,} (denoted by {an}) such that

ay > o in C1([a s bl)-norm

and o* € uad .
According to Lemma 2.3, there exists a subsequence of {un} (de-
noted by {ug} again) and an element u = u(a*) € K(a*) such that

u ~u (weakly) in (H'(6 (a*)))

for any m, where u(o*) solves (P(a*)). Let m be fixed.
Then for n sufficiently large

E(an) - EGm(a*)(an) + EQd\Gm(a*)(an) )
where

1 .
EGm(a*)(an) =7 (xluy) ’E(un))Gm(a*) i Jan(un)
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N—

(T(Un) s E(un))gn\Gm(o"*)

- (F ’ un)Qn\Gm(O’*) = (P ’ un)Mn

-(F’un)gn\Gm(a*) . (P’Un)Mm

(with Mm defined in the same way as in the proof of the Lemma 2.2).
As

Tim inf E(a ) 2 Tim inf EGm(a*)(“n) +1im inf EQn\Gm(a*)(an)

N> N->co N>

+

[ AV

1im inf (-(F ,un)

E * (OL* *) = (P s ) )
G, (o*) )+ Nim 1 2,6, (%) “n’M

m

(A4

E * (OL* = ”F” * * “P” )
6 (a*) (@) = cUIFlg(uyg (ax) * 1Pl

holds for any m, we obtain fqy m-—> e
p = lim inf E(an) > E(o*) ,
N-oo

i.e. &* is a solution of (P). o

3. Sensitivity analysis

be a triangulation of @(a) , nodes of which,

Let Th(a)
lying on rc(a) will be denoted by A, = (a; ’a(ai)) , i=0,
N(h), « € Uad » 8y =
partition. With Th(a) we associate the finite-dimensional space

Vi {a) , of functions, defined on 5a,h = U {Tj € Tp(a) | Tyn ala) #0}
(see Fig. 2) and given by

a, Ay = b, where a; € [a,b] define its
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Upla) = {v = Qg s V) € (€ 1) Lyl € (Py(r?,

i.e. Vh(a) contains all piecewise linear functions over Th(a) .
Let K (a) =V (a) be the closed convex subset:

Ko (a) = {v, € Vp(a) | vpp(a; sala;)) 2 -alag) s 1=0,..uN(h)} .

Qa,h
A
0 A.
'\,\ALJ A; ‘2 An(h)
a a; , 3. a

Fig. 2. Qa’h

By the approximation of (P(a)) we call the problem:

find uh(a) € Kh(a) such that

(Pe)ly | (xlup) s vy =up)lg  +ign(¥) = g )

2<L,Vh'uh>a,h Vvk€Kh(a),

where

N(h)-1
Jahh) =9 [ Wpglds, Tplad = U ARy
? Fh 0!.) 1=0
<L,Vh>(1,h = (F,Vh)Q h + (P’Vh)F )
Qs P

An equivalent expression for (P(a))h is

find up, € Kh(a) such that
(P(a))y,

J(uh) < J(vh) Vv, € Kh(a)
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where

J(vp) = % ((vy) ,a(vh))Q mh-+ju’h(vh) - <l"vh>a,h .

Writing (P(a))ﬁ in a matrix form, we are led to the following
problem:

find x = x(a) € K(a) such that
(3.1)
J(x(a)) < J(2) vz € K(a) ,
where
I2) = 5 (2 A 2) - (ve)a2) + 9 T wgladizg |,
J;i€ly L
Kla) = {z € R"| Zji 2 -a; = -alay) v&i € 12} .

Here o = (a1,... ,aq) €ElUc Rq, U closed and bounded, denotes
the desdign variables - Xy coordinates of A, i=10,... ,N(h)
in our case, A(a) is a stifness matrix, y(a) a discretization
of applied force§, both defending on « ,wi(a) > 0 are weights of
a quadrature formula, used for the approximation of jah(vh)‘

I1 ,I2 are sets, containing indices of Xq s Xo Tresp. components
of the nodal displacement field at Ay, 1=0,... s N(h) . By
the approximation of the optimal shape design problem we mean the

problem:

find a* € U such that
(P),

E(a*) < E(a) Ya € U
where

E(a) = J(x(e)) = % (x(a) s Ala) x(a)) = (y(a), x(a))
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and x(a) € K(a) solves (3.1).
Next we shall suppose that A(o) are wuriformly positive defi-
nite with respect to o € U and mappings

a > A(a)
o > y(a)

” o > w;(a)

~

are one time continuously differentiable in Uou, U open.

In what follows we prove that the mapping o - x(a) is
dinectionally differentiable, i.e. there exists x'(a,a) for any
« €U, a€RI, where

| x'(a,d) = 1in Xlortd) - x(o)
t-+0+

and this limit is finite. For sensitivity analysis of problems
’ with unilateral constraints we refer to [1, 6, 12]. Here the
situation is more involved than in those papers.
It is easy to see that the mapping o > x(a) is Lipschitz
| continuous. This is a direct consequence of

a Lemma 3.1. For any o,a € U it holds

(3.2) lix(a) = x(a)ll < ¢ {HA(a) = A(a) 1l + max lw;(a) - w (@)l

+ lly(a) ~y(@@) It + la-all}

where ¢ > 0 doesn't depend on a,a € U.

Proof. Following the definition of x(o) , x(a) one has

(3.3) (M) x(e) s z-x(@) v 9 T wyla)(izy |- 1xy ()
J{€l4 ' i i
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> (y(a) s z-x(a)), v z € K(a)

(3.4)  (AGG) x(@),7-x(a)) +g ) wi(@)0Zz; 1= x5 (a)1)
1

31611 i

> (y(a) s 2-x(a)) s v Z € K(a) .

It is readily seen that any element belonging to K(a),K(&d) can
be written in the form g+K(0), 8 +K(0), respectively, where

K(O) = {ze R"| z; 20 Vviel},

and g € R" s such that g, =0 if j, ¢ I,, By =-o5 if
i i
j; €1, (analogously for g). Splitting x(a), x(a) as follows

x(a)
x(a)

B +x(a) » x(a) € K(0)

B +x(a) , x(a)€K(0),
one can write (3.3), (3.4) in the following form:

(3.3)"  (Ale) x(@) ,2-R(a)) + ¢ I wla)lizs | = 1% (a)l)
1

31611 i

> (y(a) s z-x(a)) vz € K(0) ,

(3.4) (A(a) x(a) s z-%(a)) +g ) wia)(lzy | - x5 ()1
1

J,iEI1 i

> (y(a), z-x(a)) v z € K(0) .
Substituting z = X(a) , X(a) into (3.3)', (3.4)', respectively
and then summing them up, we arrive at (3.2). o

Now we give the interpretation of x(a) (cf (2.1)-(2.6)).

Lemma 3.2. A vector x(a) € K(a) 1is a solution of (3.1) if and
only if
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aij(a) Xj(a) = yi(a) viteg I1U 12 s

(3.6) in(a) 2 -ai s Nji 20, (in(a) + ai) Nji(a) =0,

ijel,

where Ni(a) = aij(u)'xj(a) = yi(a)

| (3.7) ITji(a)l <Cguyla), §; € Iy Tila) = a55(a) x5(a) -y;(a) ,
(3.8) 'Tji(“)l <guila) = in(a) =0
(3.9) |Tj1_(a)| = guila) = 321; 20: xji(a) = =Xy Tji(a)

Proof. Let x(a) € K(a) be a solution of (3.1), i.e.

(3.10) (Ala) x(a) s z-x(a)) +9 ) wi(a)(lzj_l -Ixj_(a)l)
. i

Ji€I1 i

> (y(a) , z-x(a)) vV z € K(a)

and set z = x(a) +t, t € R". We shall show that (3.5)-(3.9)
will be derived by a suitable choice of t.
If

t= (t1 ,t2 s oue ,tn) with

1 .
.. { a€R , i€ I1l112
0 , 1€ I1 v I2

we obtain (3.5).
Let
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Then for any 1 € I2 one has

aij(a) Xj(o:) - y]-(a) = N,i(oz),> 0

as follows from (3.10). If x (a) > -0 for some j € 12,

one can set t. =6 € R1. 8 suff1c1ent1y sma]] and tk =0 for

5

k#3J; so that N (a) =0. As (a) 2 =0y is automatically
satisfied by the def1n1t1on of K(a) we see that (3.6) holds.
Now set ti =0 for i¢ I1 . Then

(3.11) YooT. (e)z; -xy (@) +g ¥ wila)(lzy V- Ix; (a)l) 20
j.€l, i Ji 94 i€, i Y
i i
As (3.11) holds for any z; € R',i¢€ Iy (3.11) is equivalent

with

(3-12) TJ](OL)(ZJ_I—XJ](G)) + gw](a)(lz ]l'lx 1(0'-)”) 0

J; € I1 . Setting Zji =0 , 2X;.

(3-13) TJI(G) XJ1(°’-) + 9w1(a)|XJ1(a)| =

This together with (3.12) yield

(3.14) Tji(a) zji + gwi(a)lzjil >0 Vi € R'.
Relation (3.7) is now a direct consequence of (3.14). Finally,
(3.7) and (3.13) lead to (3.8), (3.9).

The second part of the proof, namely if x € R" satisfies
(3.5)-(3.9), then x is a solution of (3.1) is left as an easy
exercise. o
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Remark 3.1. System (3.5) - (3.9) is a discrete version of (2.1) -
(2.6).

Before we prove that x'(a ,d) exists, we give an equivalent
formulation of (3.1), based on the saddle-point approach of (3.1).
To this end we introduce two sets of Lagrange multipliers:

A= € R gl <1 Vi)

p = card(I1) = card(Iz) and L: R"«x Ay % Ag the Lagrangian de-
fined by

L0 g up) = 5 (X, M) X) = (y(a) 4 X)

+4d 2 u)-i(O‘) U} Xj- = 2 U?(XJ +ai) s
Ji€I1 i Jielz

1 1 2 2
U1‘(U.is---sup)€A1s 112"(}11,-~_"Up)€A2-

Let (X, Ay Az) pe a saddle-point of L on R" x A% Ay s

(X5 2y ,AZ) € R"x py x hy is such that

(3.15)
- ey n
L(X31113112)SL(X5>\13>\2)SL(23>\13)\2) vzeR

Lemma 3.3. (i’,x1 ,xz) is a saddle-point of L on Rn)<A1xA2
if and only if

%= x(a)ymg usla) 2] = Ty (@)s 25 = Ny (a),
1 1

where x(a) € K(a) solves (3.1).

Proof. After differentiation of L with respect to X's By Hp




R

we obtain the following relations for x, R (equivalent with
(3.159)):

a.ij(d) Xj(Ol) = yi(“) ig I1U12

(3.16) 4 aj yla) x(e) = ¥ () =90 (e) N dg el
- 2 :

ajik(a) xk(a) = yji(a) + 5 i; €1,
(3.17) g 2 m.(a)(u! -)\1-) x; (a) €0 Vou, €A

. i "1 i’ 7). 1 1

2 .2
(3.18) ] (ui-ajx; () +ay) 20 Vi, €Ay .
i€l i

From (3.17), (3.18) we easily deduce that X € K(a) 1is a solution
of (3.1). Hence X = x(a) because of the uniqueness. Taking into
account the definition of Ni(“) ’Ti(“) and (3.16) we finish the
proof. o

Consequence 3.1. From Lemma 3.1 and (3.16) we see that A1(a),A2(a)
are continuous functions of a.

Remark 3.2. Replacing Tj. by 'g(ni(a) x} in (3.13) we obtain
i

(3.19) 1% ()l = A} x; (a) .

Let x(a) € K(a) be the solution of (3.1). With any x(a)
we decompose sets I,,I, as follows:

—
n

1) u 190a) U 1](a)

I;(a) U Ig(a) u Ié(a)

where
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i; € 17(a) e Xj,(a) # 0

i; € 3(a) o i () =0 8 la)l =1

Ji €)= x5 () =0 8 THO TR
Analogously

i; € 13(a) e xj, (@) > -a;

§; € 1) = in(a) = -y & A5 =0

[ =]
m
n
!

Q

i € 1) = xg(a) = oy & {(a) > 0

Now we are able to prove

Theorem 3.1. The directional derivate x'(a,a) exists for any
a €U, o€ RY . Moreover x'(a,a) is an element of K(a,d)

K(u,a)={zemf‘|zi=0 vi € 13(a)
z. <0 vi. € 1%, M) =1
j. S i € qlads Ay ,
1
. 0 17"
Zj'i >0 VJ1- € 11((1) 5 A_i(a) =<1,
25 = -&1. vji € Iz(a) .

Z. O -a. Vji € Ig(a)}

characterized through the relation )3

[ L(x'(a,a)) < L(2) vz € K(a ,a) , where

(3.20) )
L(z) =} (2, M) 2) = (¥'(a) = A'(a) X(a) »2)
+ '.(a, T.
L ’ j1£11 vite) Ty, (o)

)3 If for a given o the set K(a,d) is empty, then o » x(a)
is continuously differentiable at a .
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Proof. We shall show that | x(“.*t:) - x(a) }o t-+0+ hasa

unique cluster point, belonging to K(a,a) and satisfying (3.20).
Let t, > 0+ and let us denote

X:(a) = lim J £
J tn->0+ n

and similarly i;. , i§ . As Afa) , y(a) s w5{a) are one time con-

tinuously differentiable,

def. a..(a+ta) -a..(a)
al.(a) = lim —1 1
1 t->0+
a..(a+t.a)=-a..(a)
= lim = i, W - v a;.(a)-d
tn+0+ n J

(analogously y'(a) ,w%(u)).
Writing the systen (3.16) for the design parameters o and
a-+tn& s subtracting them and tending by t, > 0+ we obtain

. aij(u’) )'(J.(a) = y;(a) - a%j(a) Xj(u) » 1 ¢ 11U12
v ] 1 [} 1
(3.21) _{ ajik(g) xk(a) e yji(u) - ajik(a) xk(a) - gwi(a)ki

v 1 1 :2
aJ_‘k(a) xk(a) . .YJ1(U-) = a,]1k(°‘) xk(a) + l.i(a)

\ Vji €1,

I

I

|
Now we shall discuss the behaviour of each component xi(a) ac- ;
cording to which of the sets I;(a) > 5 ,Ié(u) belongs. ; .
Let ji € I;(a). Then ji c I;(a-+t&) and -

)\}(a) = A}(a+t&) £ 0

for t sufficiently small so that
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(3.22) i}(a) - 0.

Let j; € I-(a) . Then J €1l (a-+ta) as follows from the con-
t1nu1ty of the Lagrange mu1t1p11er A P (a)l <1 implies

IA (a+ta)] <1 for t>0 suff1c1ent1y small From (3.19) one
has

x. {(a+ta) =
I

and therefore
(3.23) ij'(a) =0

Finally, Tet J, € I (a) and let A (a) =1. As for t >0
sufficiently sma]] 0 < A (a-+tu) < A (a) , necessarily i}(a)'go
and at the same time

(0L+t0t) < X (u) e
1

from which follows that

(3.24)  x; (a) 0.
Ji

Let us show that

(3.25) ¥ (a) x (a) =

1f il(a) = 0, (3.25) holds. On the other hand, if i) <0
then x1(a-+ta) <1 for t >0 sufficiently small. Hence

. (a+ta) = implies x (a) =0 and (3.25) is true. One can
3 .
proceed 1n the same way, 1f J €1 (a) and A (a) . In such
a case A, (u) >0, xJ (a) > 0 and A (a) x (a) =
i I

Now, let j, € 12(“) . Then ji € Iz(a-+t&) for t>0
sufficiently small and as
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A%(a) - ﬁ(wta) = 0

we obtain i%(a) =0.
Let J; € Ié(a) . Then due to the continuity of 1% also

A%(a-+t&) >0 for t >0 sufficiently small. Hence xj_(a-+t&)

i
- -y~ ta;, which inplies iji(u) = -a;. Finally, let j,€ Ig(a).

Then for t > 0 sufficiently small:

P(a+td) 2 25(a) = 0 = A5(a) 20
and

xji(a+t&) 2 “ay - t&'i = in(a) = tai .
This implies that
).(ji(a) 2 -a_i .

One can easy prove that
(3.26) . 32(a)tk; (a) + ;) = 0.
i i
From the proof it immediately follows that x(a) = (i1(a) see ,in(a))

€ K(a , &) and from (3.25), (3.26) we see that x(a) minimizes the

functional L (given by (3.20)) over the convex set K(a s a) .
|
|

NMoreover, any cluster point of the sequence |{ x(“'+t“% = (o) s

t >0 has this property. As the minimizer of L over K(a s Q)
is determined in a unique way, Xx'(a,a) exists and is defened by

(3.20). o]
Let us denote by J'(x{a)) the directional derivative of J,

i.e.

J'(X(a)) = lim J(x(a+t&)) . J(X(Cﬂ))
>0+ t




The main result of this section is

Theorem 3.2. J 1is one time continuously differentiable and

(x(a) 3 A'(a) x(a)) = (¥'(a) s x(a)) )

N 1=

(3.27) J'(x(a)) =

E a. N. (a) + g E wila) Ix; (a)] .
AR =1 ! I
Ji€l, Ji€lq

Proof. As Xj'(a) » J; €I, exists and xj.(a-+t&) is monotone
i i
with aspect to t € (0,8),8 sufficiently small (see the proof of

Theorem 3.1), there exists |xj (e)1' as well. One can write
i

(3.28)  J'(x(a)) = (x'(a) 4 Ala) X(a) - ¥(a)) * 3 (x(a), A(0) x(a))

= (') s x(e)) + g ] (wila) 1x5 (o)1)’

(x'(a) s Ala) x(a) = ¥(a)) + 3 (x(a) , A" (o) X(a))

- (@) x(@)) - § (T (a) x5 ()
JiEI1 1 i

Let us arrange the term (x'(a), A(a) x(a) - y(a)) . From (3.16)
it follows that

(3.29) (x'(a) » Ala) x(a) - y(a)) =} Xj_(a) Nj_(a)
J1-€I2 i i

+ ' (o) T. (o) .
3'1-211 %35 Iy

But

(3.29)" x! (a) N; () = - a: N (a)
El,

)4 By A'(a) we mean a matrix, components of which are given by
a%j(a) (analogously y'(a)) .
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as either Nji(a) =0 or xji(a) = -a; .

(3.28), (3.29) and (3.29)"' lead to

(3.30)  J'(x(a)) = § (x(a) s A'(a) x(a)) = (¥'(a) , X(a))
- Y &y N; (o) - T (a) X (a) .
i§1 ‘ Ji( ) jigh Ji( )xJi( )
J;€l,

Finally, let us arrange the last term of (3.30)

- 1 Ti(a) Xj.(a)

) : 1
b, g .E wi(a) A;(a) in(a)

i i _1=1
Ji€I1

/ .1
+ g 121 wi(a) Ai(a) in(a)
J;€l,

g 121 w;(a) Ixji(d)l

Ji€ly
because of (3.19) and the fact that or X5 () =0 or i}(a) =0, O
i
Remark 3.3. Formula (3.27) can be received also by another way.

Using Lagrange multipliers Wy o Mo s problem (3.1) can be stated
as follows

E(a) inf  J (x) = inf sup L(a,x > My ’PZ)

xe€K(a) R" Aqxhy

inf sup {(x,A(a)x) - (y(a),x)

\ 1 ' 2
+ g ) Z (L)_i(d) }:l_i xj- - . z u_i(Xj + a_i)} .
J;€l4 LI F1S PR i

Then it is known by [3], that
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def. ~ .
= ".im E(u"’ta%‘i’.(ﬂ)

t>0+

(3.31) E'(a)

inf sup L'(o s X5 uyq s u,)
a 1272
XEUO (U13U2)€V0

= sup inf L'(U«sxsu s U )
o 1 VA

where L& denotes the directional derivative of L with respect
to o and Uy = {x(a)},Vq = {A} ,Aﬁ} s X(a) € K(a) is a solution
of (3.1) and {A} ,A%} are defined by Lemma 3.3. A direct calcu-
lation shows that (3.27) and (3.31) are equivalent.

The results of numerical tests where the gradient information

(3.27) is applied be reported in a forthgoing paper.
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