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1. Introduction

An optimization problem for the system described by an elliptic
equation defined in a domain @ c R2 with unilateral boundary condi-
tions on a part r(v) of the boundary is considered in this paper. We
arrive at a nonsmooth shape optimization problem, i.e., in our optimiza-
tion problem cost functional J(v) fails to be continuously differenti-
able at any admissible designs v € uad s uad is a set of admissible
designs. However, J(v) is Lipschitz continuous on the set U g -

We shall show the existence of an optimal solution for the optimi-
zation problem. Furthermore, we derive the form of directional deriva-
tive of the cost functional J(v) for any v € uad . Fina]]y, a numeri-
cal method of optimization of gradient type combined with the finite
element method is used in order to solve numerically the optimization
problem in question.

The method of sensitivity analysis of variational inequalities
proposed by Mignot [12] combined with the results of Sokolowski [15, 16,
18] is used in this paper for the sensitivity analysis of unilateral
problem. The related results on the shape sensitivity analysis of uni-
lateral problems are presented in Sokolowski, Zolesio [19, 20, 21] and
Zolesio [23]. The material derivative method applied in the shape sen-
sitivity analysis of the classical boundary value problems is described in
Zolesio [22]. We refer to Bendsge, Olhoff, Sokolowski [1] for the sensi-
tivity analysis of continuous as well as discrete problems of elasticity
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Wifh unilateral constraints. See [7, 10] for the case with friction.

A similar state problem but with other criterion functionals have
been considered by several authors with various (variational inequality,
method of penalization, dual method) methods: see Hlivatek, Netas (111,
Haslinger-Lovi%ek [6], Haslinger-Neittaanmaki [8,9]. For the shape
optimization problems for contact problems in plane elasticity we refer
to Benedic, Sokolowski, Zolesio [2], Haslinger, Hordk, Neittaanmiki [7]

Haslinger, Neittaanmaki, Kaarna, Tiihonen [10].

2. Notation

We introduce some notations needed in sequel.

The set of admissible functions (controls) is

(2.1) Uy =veH (10,10 ]0<a<v(s) <8, |a‘3xv—2(s)| < c,
1
for a.e. s in 10,10, [ v(s)ds = P
0

where o, B, C1 and C2 are given positive constants. Let us consider
domains @ = Q(V)C:F? with the following geometrical structure:

2
(2.2) a(v) = {(x1,x2) € RT| 0K Xy < v(x2) » 0<xy <11,
V€ uad ;o an(v) = F1(v)LJF(v) the boundary of q(v) with
(2.3) r1(v) = an(v) ~1(v),
2
(2.4) r(v) = {(x1,x2) € R™| Xy = v(xz) » 0 <x, <13
By Hk(Q) (k > 0, integer) we denote the classical Sobolev space of

functions the generalized derivatives of which up to order k are square
integrable in ¢ (LZ(Q) = HO(Q)) ; the norm and scalar product is
denoted by ”'IIk,Q and by ("°)k,n respectively. HE(Q) is closure
of space CE(Q) in the norm of space Hk(ﬂ).

Moreover, let

(2.5) K(v) = {¢ € H1(Q(v))| ¢ =0 on P1(v) » ¢ >0 on r(v)}




and

(2.4) M= {6 € H(10,20x10,10) | ¢ 3 0 on 10,2[ x J0,1[ ,

ol , <1},
Hg(10,20 x 10,11)

2.1. Variational inequality

For given element v € U,y we denote by y(v) € H1(Q(v)) the
unique solution to the variational inequality:

([ find an element y(v) € K(v) such that

(2.5) < [ vy(v) - v(e-y(v))dx
a(v)
> [ fle-y(v))dx Vo € K(v) ,

3 2,52
(2.6) 5;; f € L°(R%) .

It can be verified that for any f € L2(R2) there exists a unique solu-

tion of (3.1). For the study of variational inequalities we refer to
textbooks [5, 12].

2.2. Cost functional

l
|
|
|
|
|
|

. a(v

where f € L2(R2) is a given element such that

Let ¢ € M be given element. Denote

3
(2.7) I¢(v) = F{V) = Y(vix) ¢(x) dx
and
' (2.8) J(v) = sup {I¢(v)| ¢ € M)}.

Observe that é%—y(s) >0, ¢ >0 on r(v). Hence I¢(v) >0 forall

$ €M
(v) and v e Uy

Denote by M*(v) < Hé(]O,Z[x 10,1[) a set of the form:

(2.9)

M*(v) = {4 € M| I,(v) = 3(v)) .




3, Shape optimization problems

We consider the following shape optimization problems for varia-

tional inequality (3.1):

(p¢) Minimize the cost functional I¢(v) over the set U_,
and
(P) Minimize the cost functional J(v) over the set U g -

3.1. Existence of an optimal solution

We have the following two Temmas:

Lemma 3.1 For every element ¢ € M there exists an optimal solu-
tion Y € uad to the Problem (P¢).

Proof. Observe that

(3.1) I¢(v)= [ [oy(v) - v¢ - foldx .
Q(v)

to Problem (P,)

Hence the existence of an optimal solution v, € uad s

follows by classical argument ([3,11]). o

We show the existence of an optimal solution of shape optimization
problem (P).

Lemma 3.2 There exists an optimal solution v € ua to the

Problem (P).

d

Proof. Let {v } be a minimizing sequence for the problem (P)
then there exists an element v € uad such that for a subsequence, still
denoted {vn} we have

(3.2) v, ~ v weakly in H'(10,1[)

and by the result of Hlavatek, NeZas [11] it follows that convergence
(3.2) implies the convergence of the sequence of solutions {y(vn)} in

Sobolev spaces H1(Q'), Q' « Q(Vn) of variational inequalities of the
form (2.5) defined in domains Q(Vn)-




p = 10,20 x 10,10 ¢, € M*(vn) , n=1,2,..., and an element ¢ € M*(v)

on the other hand there exists a sequence {¢n} c H1(P),
such that
. 1
(3.3) ¢n * ¢ 1In HO(P).
Therefore
(3.4) inf {3(v) v e} =1Tim J(v,)
N
= lim [ [Vy(vn)- ve, - o 1dx
oo Q(vn)
= [ [vy(v)-vé-feldx = J(v)
a(v)
what completes the proof. o

4, Necessary optimality condition

4.1. Directional differentiability of the cost functionals

We denote

I.(v+1k)-1 (v)
(4.1) dI (vik) = 1im -2 ¢,
¢ 10 k

for all v € U,y and k€ C0’1([0,1])-

d
We derive the form of directional derivative d1¢(v;k) using the

results of [15, 16, 18].

Lemma 4.1 The directional derivative (4.1) of cost functional

I¢ (defined by (2.7)) takes the form

(4.2) dI¢(v;k) = [ {<Avy(v),v¢> o+ <YW,
Q(v) R R

k of
'V (f+X1 3—)q)¢}dx.

Here w ¢ H1(Q(v)) is a unique solution of the variational inequality:
find an element w ¢ S(e(v)) such that




b

6
(4.3) ] vwev(o-w)dx
a(v)
> % f+x, alf)(cp-w)dx
a(v) X1
- j <AVy(v) , v(q)-w)>Rz dx for all o € S(a(v)),
where
(4.4) S(v) = {p € H1(9(v)) o =0 on ry(v),
I an y(V) odr = 0, @ >0 a.e. on Z(y(v))}
Z(y(v))
(4.5) Z(y(v)) = {x € r(v) | y(vix) =

and A = A(k) 1s a matrix [aij]2x2 with components

(4.6) 811 = -k ;2-

x1v' . X4
(4.7) 312 = 321 = k _\,—2—- - k '—v—

x1v' 2 ZX?V'
(4.8) agp = k 1= (=) + k' —— ,
where

. _ d

(4.9) A (X2) = a; V(XZ) . X2 € ]0,1[ .

Proof. For t >0, t small enough we define the mapping

(4.10) Ty a(v) 3 (x1,X2) +~(n1,n2) € (v + tk)

of the form

(4.11) np = X (1 tk(x,)/v(x,))

(4-12) n2 = X2.
We denote
(4.13) Ve =V o+ tk
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. -1 -t
(4.14) A, = det (DT) *DT(' DT .

Je transport the cost functional defined on the domain 2(v,)

(4.15) I,(vy) = Q{Vt)K WYV npamp) s Velngng)>

- f(n1 9“2) tD(n1 ,nz)} dn1 dnz
to the fixed domain @(v) using the mapping (4.10) and we obtain

(4.16) I¢(vt) = Q{v)<At(x1,x2) Vy(vt;n1(x1,x2),x2) ,

VtD(n1(X1 ax2)9X2)>R2 dX1 dX2

- f(n1(x1,x2),x2) no(n1(x1,x2),x2) v(x,) dxy dx, .

alv)

Let us note that we can also transport the variational inequality defined

in the domain Q(vt)

J 'yt € K(Vt)
(4.17)
l Q{Vt) vy, - V(o-y.)dn 2 Q{vt) flo-y)dx, v €K(v)

to the fixed domain q(v), here we denote yt =Yg © Tt and we obtain

yt € K(v)

(4.18) ¢ ¢

[ <A vy ve-yT)> pdx )
R

o(v) o(v)

It can be shown using the results of the papers [15, 16] that for t>0,
t small enough

(4.19) yE = y(v) +em(k) + 0(e)  in H'(a(v)) ,

where [10(e)ll 1( ( ))/e—>0 with e+0, the element w(k) € H1(Q))
alv
is given, for any k € C0’1([0,1]) , by a unique solution of the

following variational inequality

—

{ Vf((p—yt) dx, Vo€ K(v).




[ w(k) € S(v)

of
Q{V) vw(k) - v(p-w(k)) dx zg{v){((k/v) f+x1—ax—1)(w-w(k))

- <A(k) vy(v) , v(p- w(k))>RZ dx v € S(v) .

Here we denote by A(k) the limit

(4.21) A(k) = Tim (A, -1)/t ,
t+0

where the matrix A(k) is given by (4.6) to (4.8). From (4.16) in view
of (4.19), (4.21) we obtain the limit (4.1) in the form (4.2). o

Lemma 4.2 The directional derivative dJd(v;k), v € uad ,

ke ¢®>1([0,11) of the cost functional J (defined by (4.2)) takes
the form
(4.22) dJd(v; k) = sup {dI¢(v;k) | ¢ € M*(v)}.

Proof. We can apply Theorem presented in [14], since the assump-

tions of this theorem, in view of Lemma 4.1, are verified, and we obtain
(4.22). o

Lemma 4.3 The cost functional I¢ is differentiable on a dense
subset of the set U g+ The gradient VI¢(V) » whenever it exists,
can be calculated in the following way:

(4.23) dI¢('\7; k) = <VI¢('\7);k>

af

k
\—/(f+x1 W)(dw p¢)}dx i

= {<A ( )3 ( - )> =
Q,(fv) wv),vis-p, ¥

where the element p, € H1(Q(v)) satisfies the variational equation:
Py € S(a(v))

(4.24) [ Vp, -vedx = [ v¢-vedx
a(v)

-
e}

for all o € S(a(v)) ,

425 sta(v)-to e H'(av)) | 0=0 on r,(v) U Z(y(v))} .
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Remark 4.1  The cost functional I¢ is not in general differ-

entiable. dI¢ fails to exist when

up (O € n(v) [y(M(x) =01 n{xeT(v) [ 2 y(v)(x)=0}) > 0,

where u, denotes the Lebesque measure on T(v). 1In order to assure
differentiability we should have -2y >0 on Z(y(v)).

5. Numerical method and results of computations

5.1. An algorithm

Problem (P¢) must in practice be solved iteratively. In order

to outline the method we give a naive algorithm (a steepest descent
method) for solving Problem (P¢):

Algorithm 5.1 (For solving (P¢).)

Step 1 Given an element v € uad , calculate the solution
y(v) € K(r(v)) of variational inequality (2.9) and define the set
Z(y(v)) .

Step 2 Calculate "gradient" VvI¢ of the cost functional I

¢
(for a given ¢ € M) given by formula (4.23).

Step 3 Use a gradient (or a subgradient) method for calculation

of next element v € uad such that

I¢(V) < I¢(v).

If not possible then STOP, ELSE GO TO Step 1.




5.2. Discretization

In numerical realization the state problem (2.5) and the adjoint
state problem (4.23) are solved by the finite element method.

approximation. Let 0 = 2y < a1< ..o < an(h) = 1 be a partition of [0,137,
ht:ai—ai-1 and let

|

|

|

The unknown boundary r(v) is replaced by a piecewise linear
!

|

h I
|

|

Ujg = Ug Ny € C([0’1])lvh|[ai-1’a13 cp,(fa,_,»2;3)},
where P1 denotes a set of Tinear functions. For any Vi € u:d we define ‘
. 2 |
Q(Vh) = {x€ R"] 0K X, < vh(xz) » %o €10,1L}, |
i
. 2 _ -
F(vh) := {x € R |x1 = Vh(XZ) s X, € 10,1C}, i

F1(Vh) = BQ(Vh) S r(vhi.

As usual we suppose that the triangulation Th(vh) of Q(vh) is

uniformly regular with respect to h, v h

\

I

|
h € uad . We assume that the ‘
nodes of r(vh) are allowed to move only in X4 -direction. Taking into |
account this parametrization, we find that the shape of r(vh) (and hence ‘
also of Q(Vh)) is uniquely determined by the Xy - coordinates of the |
nodes Ai = (vh(ai),ai) defined on r(vh). Consequently, the design ‘
variables (control) variables are o = Vh(ai) , i =0,...,n(h). We |
define the "design vector" o = (ao,...,an(h)) .

In the following numerical examples, the state problem and the ‘
state problem have been discretized by FEM with linear elements. Our |
control problem (Py) leads to a nonlinear programming problem for |
finding a € RrRn(h)+1 The function. evaluation means the solving of non- !
linear algebraic equation and the computation of the gradient the '

solving of linear system of equations . For technical details we refer
to 9,101, ‘




5.3. MNumerical examples

In this chapter we study the performance of a gradient algorithm
when it is used for solving optimal design problem (P¢). In minimization
we will utilize, instead of a naive Algorithm 5.1, the NPSOL routine
of SOL (System Optimization Laboratory). It is based on sequential
quadrative programming together with linearization of contraints. The
nonlinear state problem is solved by S.0.R. with projection.

The numerical tests presented in what follows have been carried
using single precision arithmetic . The authors are indebted to A. Kaarna
and T. Tiihonen for their help in carrying out the tests.

In Examples 5.1 -5.4 the initial quess has been chosen to be os = 1
for i = 0,...,n(h), i.e. Q(vg)= (0,1)x((0,1). The discretization parameter
h is 1/8 or 1/16 . Corresponding triangulation containts 128 or 512
elements. The dimension of the optimization problem is 9 or 17.

The state problem and adjoint state problem contain 56 or 224
unknowns . We assume in Examples 5.1-5.4 that the constraint parameters
in the set of admissible controls Ugd are o = 0.5, B = 1.5, C1 = C2 = 1.
The function ¢ € Hl (10,2C x ]0,1C) used in all examples can be seen in

0
Fig 5.1 (¢ = 1 for x, € [0.5,1.5] and X, € £0.25,0.751).

1

Fig 5.1 ¢ utilized in numerical tests.

Examples 5.1-5.4 differ only due to the right hand side in state,

'-€. we consider the same problem for different f. In [9,10] similar

1"




examples have been analyzed but the costfunctional differs here. In [10]
the costfunctionals considered have been

') = 3§ (y(v) - u)? dx , u, ¢ L%(a) given,
Qv

() =3 0 () - 2)% dx | 2y € LA(r() given,
T(v

) -

30 (vy(v)? dx ,
a(v)

and

1) =1 02 ynn?
-1/2,1(v)

Our results can be compared with the last costfunctional. Here the

results are somewhat better and the theoretical background differs from
that of [6,10].

Table 5.2 contains the data for Examples 5.1-5.4 as well as value
of I¢ for initial and final design. The number of iterations needed can
be seen in Figures 5.4-5.7.

Example] force Value of I, for| Value of I
initial ¢ for final ¢
desian design

5.1 | 4 sin 2mx, 0.618-10" " 0.216-10" "
5.2 4 sin (20(x;-x,*1)) 0.884.10" 0.366-10"
5.3 | -8 sin 2mx,sin 2nx, 0.629.10" ! 0.148-1077
5.4 | 8 sin 4mx,sin 4mx, 0.179.107 1 0.158-10"7

' Table 5.2 Data and results for Examples 5.1-5.4.

In Figures 5.3 a-d we see the initial triangulation of Q(VO) as

well as spline-smoothed FE - solution of state problem of Examples
5.1-5.4,
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Figure 5.3 Solutions of state problems for initial design Q(VE)

In Figures 5.4-5.7 we see the numerical results for Examples
5.1-5.4: the diminution of I¢ versus iteration as well as spline-
smoothed FE-solution of the state problem and the triangulation of
"optimal”sth) for Tast iteration. In Figures the value of I is
scaled by the factor 100.
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Fig

(/ g 0_. A Av
00, Av /
0% ORI
0,000 10%
ot NG
, ‘ d ] \J
_ &ﬁsﬁﬁ%fzwhv Ar
RNV
AR /NN
QSO LK)
XK a.._.....q 0@&.00
AN -? ..ﬁ&“.. [

1
5

ITERATION

1
4

]

o4

Fig 5.5 Numerical results for Ex. 5.2; f = sin (2n(x1-x2+1)).
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Fig 5.7 Numerical results for Ex.

Only 1-3

From above given numerical results we find that the gradient algor-

ithm could improve the design essentially in all cases.

iterations are needed to find a stationary point of I¢.

In Examples 5.2-5.4 we could find for r(v) such a design that

.5-5.7 y(v) > 0 (no contact) on

~ 0 is then natural (in frame of numerical

As we can see from Figures 5

I¢ =~ 0

.1 it is not possible

¢
Because of the nature of f in Example 5

to find such r(v) that I

I'(v) and the result I

accuracy)

We could only enlarge the part of r(v)

= 0.

¢



v'l < 1.0 has become active.
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where y(v) > 0. We note that in many cases the Lipschitz-constraint

As a conclusion of above considerations we find that the nonsmooth
optima] shape control problems can be solved efficiently by using stan-

dard nonlinear programming packages. Before applying a gradient algorithm

the nature and the source of the nonsmoothness must be analysed. As we

have seen we were able to determine the gradient formula in spite of the

fact that the mapping from the control to the state was
continuous. As the function v - I¢(v) is not convex the
guaranteed an achievement of a local minimum. However,

problems it suffices to improve the performance of the

only Lipschitz
algorithm used
in many practical
system.
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