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ON O(h*)-SUPERCONVERGENCE OF PIECEWISE BILINEAR
FE-APPROXIMATIONS

M. KRIZEK ! AND P. NEITTAANMAKI 2

Abstract. This paper is supplementary to authors’ survey paper [44] and to the paper
[43]. We shall update the recent literature concerning the superconvergence of the finite
element method. The second goal of this paper is to study the O(h*)-superconvergence
phenomenon obtained by combining the bilinear rectangular elements with the linear
triangular elements. The connection between superconvergence of the FEM and higher
order difference schemes is outlined. Results of numerical tests are presented.

1. INTRODUCTION

This paper is an extended version of our paper with the same title presented in
the Second International Symposium on Numerical Analysis, Prague, August 1987.

The superconvergence of the finite element method is a quickly and dynamically
developing field of research. Recently we have published a survey paper [44] on
superconvergence techniques with 200 references. The recent literature to this subject
is updated in this paper.

A big progress has been made especially in averaging techniques when recovering
the gradient of a FE-solution of the problem

—Au=Ff inQ (QcC R?bounded),

(1.1) u=0 ondQ},

see e.g. (2, 5, 19, 23, 25, 29, 33, 34, 43, 45, 46, 52, 66, 68]. Some gener-
alizations to the three-dimensional case can be found in [14, 15, 40]. For other
superconvergence techniques for elliptic problems (including degenerated problems,
nonlinear problems, etc.), we refer to [6, 16, 17, 18, 21, 22, 32, 35, 36, 38, 47,
48, 49, 56, 60, 69, 70]. For elliptic systems see [39, 62, 63, 67]. Superconvergence
phenomena of FEM for two-point boundary value problems are treated in [3, 7, 20,
28, 42, 55, 57, 58, 59|. Further, for the Stokes problem see [26], for parabolic or
hyperbolic equations see [1, 4, 24, 30, 53, 54, 61], and finally for integral equations
we quote [10, 11, 12, 13, 37, 65].

The second goal of this paper is to continue the analysis of a superconvergence
phenomenon which has been announced for the first time in [41], and which con-
sists in combining the bilinear rectangular elements with the linear triangular ele-
ments. In Section 2, we introduce a finite element scheme which exhibits the global
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O(h*)-superconvergence at nodes employing special continuous and piecewise bilin-
ear trial functions. We also present a post-processing which yields the local O(h*)-
superconvergence at nodes. In the both cases, a reduced integration is used. We
shall see a close connection between superconvergence of the FEM and convergence
of higher order difference schemes (see also [41, Rem. 1]). Section 3 is devoted to
numerical tests.

Throughout the paper, ||-|| will be the Euclidean norm. The notations ||-||; , o and
|| p.q are used for the standard norm and seminorm in the Sobolev space W} ({1},
respectively. The spaces L?(Q) and (L*(2))? are equipped with the scalar product
(¢, -)0’9. The symbol Pi(Q) stands for the space of polynomials of the degree k.

2. NODAL SUPERCONVERGENCE ARISING FROM A COMBINATION OF
THE LINEAR AND BILINEAR ELEMENTS

Let M be a square mesh in the (z;, z2)-plane and let  be a bounded domain with
a Lipschitz boundary Q2 C M. Consider square refinements of M with the mesh
size h and denote by Z, = {z'}2; (n = n(h)) the set of their nodes lying in 2.
Let {b'}7_, be the standard basis of piecewise bilinear functions over such a mesh
(see Fig. 1), and denote by {p'}", and {¢'}, the piecewise linear Courant basis
functions over the mesh of Fig. 2 and 3, respectively; i.e. we assume that

(2.1) b)) =pi (e =g () =65, 4,i=1,...,n.

Further, let us define

1. 1. 1.
2.2 P==b 4+ -p'+ -4 = . ..
( ) v 9 +4p +4q y ¢ 1, s T2y

Figure 1 Figure 2 Figure 3

and let Vj be the linear hull of {vi}*_,. We shall look for up € Vj, the values
wl = uy(27) of which satisfy

n

23 % G (T, Vb7), o +

j=1

. . 1 . : . :
(VPI’VPJ)O,Q SiF Z (Vql,VqJ)OIQ) ul = (f’ vz>0.Q

N

for 7 = 1,...,n. The corresponding matrix is thus a weighted average of stiffness
matrices for the bases {*}, {p'}, {¢'}. The width of the band of such a matrix will
be clearly the same as for the bilinear elements.

2




As (f,v%)o,0 in (2.3) cannot be computed exactly, in general, we employ the fol-
lowing integration formula which is exact (see [51, 71]) for all g € P5(K),

(2.4) /K gde ~ meas K (c1(9(4) +9(B)+9(C)) +c2(9(D) +9(B)+9(F)) +¢54(G)) .

Here K is an arbitrary triangle, ¢; = (155 — /15)/1200, ¢, = (1585 + +/15)/1200,
c3 = 9/40, the triangle coordinates of 4,B,C,D,E, F,G are (a1,bi,b1), (b1, a1,b1),
(bla blsal): (Gg,bg,bg), (b2sa2ab2)7 (b27b2302)’ (%a%,%)a respectively, and a1 = (9 i
2V15)/21, az = (9 - 2V/15)/21, by = (6 — v/15)/21, by = (6 + /15)/21 (see Fig. 4).

Figure 4

Applying (2.4) to each triangle of supp v* where v! is bilinear, we define the ap-
proximation (f,v");,',Q of (f,v*)o,0. Further, let us € V; (4 = un(27)) be defined by
(2.3), where the right-hand side is replaced by (f, v )5 o

Before we prove that [u — u| = O(h%) at nodal points, we introduce two auxiliary
lemmas.

LEMMA 2.1. For any f € W2,(Q) and sufficiently small h it is

N . 4 .
(£,0) g0 = BAGH) = T (ARED| < CH 1 fly o

where S* = suppvt, i € {1,...,n}.

PROOF: Let § = [—1,1] x [~1,1] be the reference square. For f € W2 (3) we define
the linear functional

(2) L(F) = (£, 9)o,5 = F(0) ~ 5(AF)(0) ,

where © is a continuous piecewise bilinear function (6(0) = 1, d|,5 = 0) defined as
in (2.2), i.e.

[~$%
]

(2.6)

N =
O
+

]
3>
+

| =
=3




We derive now that

(27) L(f)y=0 VfeP($),
showing that (2.7) holds for any basis function {1, #,,#2,42,...,43} C P3($8). From
(2.6),
= (1,9 ST S S
L(]')—(l’v)o,g“ —§+Z F7 =0

since (1,5)0,3 = (1,8)9,6 = (1,d)p,5 = 1. Analogously, as 9(21,22) = 9(&2,21) we
obtain by (2.6) that

. : 1, .55 1, ., . il s . 2
L(81) = L(#2) = 5(22,0)0,5+ 7 (32:8) 05+ 7 (32:0)0 s — 15

,&3%o,%13%,33} it is obviously
f0)=(Af)0)=0,
and (f, 1“))0,5. = 0, since © is an even function and f is an odd one with respect to the

axis 1 = 0 or &2 = 0. Hence, (2.7) is valid.
Moreover,

. . . C..: ,
(28) LNl = 1I5llo,,8l1%ll0,2,5 + Cll Fllo,00,5 + 518 Nl0,00,5 < €Nl fllay00,5 -

i.e. the functional L is continuous. Therefore, from (2.7), (2.8) and the Bramble-
Hilbert lemma (see [27, Th. 4.1.3]) we come to

(2.9) LS C" £y o5 -
Further, let z* € Z be a given node and let us consider the one-to-one mapping
(2.10) FY(3) = h& + 2*
between S and S*. Then by [27, Th. 3.1.2] we get
(2.11) Fl4,00,5 S CR*|fls 00,50 -

Now the combination of (2.5), (2.10), (2.9) and (2.11) yields

. Y )
o (0o 50 = S = (AN < OF st -




LEMMA 2.2. For any f € W4 () and for h sufficiently small it is
I(f,v)o0 — (f,vi)s,nl < Ch®|fla,00,5% -
PROOF: The support S can be decomposed into 16 triangles K = K7, j =1,..., 16,

where the reference basis function (2.6) is bilinear. For a fixed j and f € W2 (K) we
define a linear functional

Uf)=(F,9)ox —(F,0)5 4 -

We see that £ is continuous and that £(f) = 0 for all f € P3(K), since 9 is a quintic
polynomial. Therefore, by the Bramble-Hilbert lemma we again get (cf. (2.9))

(A < C"|Fly 0.5 -

Summing this over all K C § and using (2.10) and (2.11), we find that

1 . 1 -
(£ v )00 = 5(F,0 )50 £ CrYflico,si -
h h2

0O
Let us recall the well-known 9-point finite difference scheme [31, 50] for the prob-

lem (1.1)

20U° ~4(U2+ U+ U +UB) - U —U% —U" - U°
(2.12) o 6

= h*f(2') + oY),

where U',U?,...,U5,...,U? correspond to the points (2} — h, 24 + &), (23,24 + h),
ooy (28,23), ..., (2§ +h, z4 — h); if the k-th point lies on 8Q we set U* = 0. Denoting
by Un(z') the unknown at the nodal point z* € Z, and using the Gerschgorin trick
for the above scheme (2.12), Bramble and Hubbard [8, 9] have proved that

(2.13) ]u—U;.|hEné%x lu(z) — Un(2)] < Ch* ||ulls o o ash—0.
2z ’I » I

This result and the foregoing lemmas are used to prove the O(h*)-superconvergence
at the nodes of the finite element scheme (2.3) using the numerical integration (2.4).

Note that the optimal rate of convergence of the norm ||u— up |lo,00,@ cannot be better

. * . « . eqe
than O(h?), since uy, is piecewise bilinear.

THEOREM 2.3. Let the solution u of (1.1) belong to W8 (Q). Then for sufficiently
small h

(2.14) lu—upln < ChY ulle o002 -

)



PROOF: Making use of (2.1), we easily find that

(VO, Vb)), o = g- Vi,

(V¥, V), = —1 if h<|z' -2 <2h,
(Vpi Vpt )o,n = (Vq V¢ ) =4 Vi,

(VP VP ) = (Ve Ve), g =-1 if |28 =2 =h,

and the other scalar products are zero. Hence, the matrices corresponding to the
schemes (2.3) and (2.12) are the same, and we denote them by A,. The difference

between the right-hand sides of (2.3) and (2.12) has been established by Lemma 2.1.
Moreover, by [8, 9]

(2.15) 147 14 = max Sl <con?,
J

where the matrix || - ||n-norm is assosiated with the £%°-vector norm in (2.13). Thus
according to (2.13), Lemmas 2.1, 2.2, (2.15), and (1.1), it is

lu — tnlp < Ju—Uslp + [up — Unln + up — Un
< Ch*||ulls 00,2 + C'RE AT IR [ fll4,00,0
< C"hH|ulls, 00,0 -

REMARK 2.4. Employing the post-processing
(2.16)

(Vun(2)h =
1

12h uh(zl + 2h 22) + 8uh(z1 -+ h 22) - 8uh(21 —h 22) + uh(zl — 2k 22))

——

(the second component (Via(z)); is defined similarly) we can obtain by Theorem
2.3 even the interior O(h*)-superconvergence of the gradient at nodes, i.e.

@11 ez g [Vu(e) ~ Vel < Ch(lully g, + fullg )

where Qo C Q) C @1 C Q. The proof of (2.17) is the same as in [43, Th. 4.1]. Note
that mostly only the O(h?)-superconvergence of the gradient has been obtained when
applying the linear or bilinear elements (see the survey paper [44]).

3. NUMERICAL TESTS WITH SUPERCONVERGENCE

In the following simple examples we present numerical results for the technique
described in Section 2.




ExXAMPLE 3.1. Let Q =(0,1) x (0,1) and let f in (1.1) be chosen so that
u(zy,z2) = (23 — z1)sin Tz,
is the exact solution. The next table shows the global maximum errors at nodes for

the standard Ritz-Galerkin method using bases {p‘} and {#'}, and for the scheme
(2.3) with the basis {v'} and the numerical integration (2.4). It also illustrates the

behaviour of the local error e) given by (2.17) for 24 = (é, %) X (i, % .
R {p'} {b'} {v'} eh
4 1.810E-2 1.944E—-2 2.525E—4 —
8 4.988E—3 5.089E-3 1.658E—5 6.953E—4
16 1.262E-3 1.263E-3 1.031E—6 4.437E-5
32 3.170E—4 3.153E—-4 6.437E—8 2.784E—6

EXAMPLE 3.2. Let @ =(0,1) x (0,1) and let f in (1.1) be chosen so that

u(a:l 5 1:2) = (.’23%5

3.5

)sin rzo

is the exact solution. Analogously to the previous example we get:

h—l

{r'} {t'} {v'} €h
4 | 7456E—3 | 8.490E-3 | 1.255E—4 -
8 | 2130E-3 | 2.016E—-3 | 9.075E—6 | 8.184E—4
16 | 5.392E—4 | 4.980E—4 | 7.210E-7 | 4.134E-5
32 | 1352E~4 | 1.241E—4 | 6.077E—8 | 2.544E—6

In the last but one column we roughly have only the O(h3-3)-superconvergence, since
u € WZ(Q)\W2(Q). However, this is still much more better than the O(h?)-
convergence from the two previous columns.

ExXAMPLE 3.3. In this example we compare the superconvergence result of the pre-
vious section with superconvergence phenomena for quadratic elements. Let again

Q=(0,1) x (0,1),

u(zy,z2) = z2(z2 — 1)sinmzy

and let us denote by u* the standard Ritz-Galerkin approximation of u based on
the triangular quadratic elements over the mesh of Fig. 2 (including the numerical
integration (2.4)). Note that

lu = @*{lo,c0,0 = O(R?)

is the best global rate. However, it is known (see e.g. the survey [44]) that the use
of the quadratic elements yields the O(h*)-superconvergence at vertices on uniform
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triangulations (i.e. when any two adjacent triangles form a parallelogram). The same
phenomenon can be observed at the midpoints of sides as follows from the next table:

A7 | maxfu(z) = Ga(2)] | maxfu(z) —4R(2)| | max fu(z) - uh(z)
4 1.683E—4 6.530E—4 5.263E—4
8 1.031E—5 4.206E—5 3.593E—5

16 6.410E—7 2.646E—6 2.325E—6

32 4.001E—8 1.658E~7 1.468E—7

Here Z) and M}, are the sets of vertices and midpoints, respectively.

10.

11.

12.

13.

14.

15.

16.

17.

18.
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