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Abstract The optimal shape design of a two-dimensional elastic
perfectly plastic body (a punch) on a rigid frictionless foundation
is analyzed. The problem is to find the boundary part of the body
where the unilateral boundary condition are assumed in such a way that
certain energy integral of the system in the equilibrium will be mini-
mized. It is assumed that the material of the body is elastic per-
fectly plastic, obeying the Hencky's law. The variational formula-
tion in terms of stresses is utilized. The existence of optimal
shapes is proved.

1. Introduction

It is the aim of this paper to continue the analysis of [L-T7], where
the optimal shape design of two dimensional elastic bodies on a

rigid foundation was analyzed. In [4] the case of frictionless




foundation and in [5] the model with given friction is analyzed.

The variational inequality approach in terms displacement is utilized.
The works [6,7] contain numerical realization with numerical examples.
of the problems presented in [4,5].

If the material of the bodies is elastic perfectly plastic,
obeying the Hencky's law, the formulation in terms of stresses is
more suitable than that in displacements. Thus, we first present
the well known Haar-K&rmdn principle in the case of a unilateral con-
tact on the boundary, [3], [8]. The present paper is concerned with
the existence of a solution to the contour design problem for a
planar punch, material of which is elastic-plastic. In our optimum
design problem the contact boundary of the punch with unilateral
boundary conditions must be redesigned in such a way that certain
energy integral will be minimized (see chapter 2 problem (PP)).

Approximation of the problem in question can be done by finite
element method. For example, in the simplest approach,piecewise
constant external approximation of the set of statically admissible
stress field can be applied. When the state problem together with
the set of admissible controls are discretized we are led to a non-
linear programming problem where the evaluation of the objective
function involves the solving of the nonlinear. state problem. The
details will be discussed in a fortcoming paper.

Throughout this paper we shall use the Cartesian coordinate

system x= (x1,x ) . The summation is implied over the range 1,2

2
if an index is repeated. HJ(Q) will denote the usual Sobolev space
WJ’2(Q) of functions with square integrable derivatives up to the

order j 1in the sense of distributicns. Especially we write L2(9)=

WO’E(Q) , With the scalar product (+,+)

Q




2. The problem t

Let us assume a punch,material of which is elastic - perfectly
plastic, obeying the Hencky's law ([1], [2]). The punch occupies
a bounded plane domain Q(a) < R® ;

SZ(OL):{(X1,X2)€]RE| X1€]a,b[ , ol(x )<x2<y} s

1
where o>0 1is a function such that the boundary 3Q(a) is Lipschitz
continuous (other conditions on a will be specified later).

Q(a) 1is subjected to a body force F= (F F2) and surface tractions

1’
P==(P1,P ) on a top of Q(a). Moreover, Q(a) is unilaterally

2
supported by a rigid frictionless foundation - here by the set

{(x1,x2)EZR2 | x, <0} (see Fig. 2.1). This means that the punch

is pushed onto a rigid frictionless matrix.
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We start with some notations:

2 e (P tei=t.. a.e.in ala)},

T1j71,4=1 i 4]



<T’E>Q(a) = Q{a)rij Ei dx Vt,e € S(Q(a)) ,

e eeasll2
1llg(a) = <) -

S(9(e)) can be equipped with an equivalent, energy norm [T]Q(a) =
1/2

(T,‘L‘)Q(a) , where

<A Ve

1

1,6 €8(Q(a)) .

(TsE)Q( Q(a) 2

o)

A"' is the inverse of A: s((a))>s((a)), which is the iso-

morphism on S(Q(a)), given by the generalized Hooke's law:

o(x)=A(x) e(x) = 'oij(x) = cijkl(x) ekl(x) a.e. in (a) .
cijkle L) satisfy the usual symmetry conditions:

Ci,jkl= Cjikl= Cklij a.e. 1n §
and

Jo = const. >0 : <Ae,s>§2a||ellé ve€38(Q) ,

where Q= (a,b) x (0,y) .
Let R’ be the space of all symmetric 2 x2 matrices,

i IE{O—HIR1 a continuous and convex vield function. The set

B={r€R’ | £(r)<1}

is called the set of plastically admissible stresses. The set of

plastically admissible stress fields is now given by

P(Q(a))={r€8(0(a)) | T(x)€EB a.e. in Q(a)} . (2.1)




Let TTB(X): R°+>B  Dbe the projection on the closed, convex set B

with respect to the scalar product (A“1 (x) o) m. induces

i3%35 B

the projection W of 8(Q(a)) on P(Q(a)) with respect to the

Qla)
scalar product (T,E)Q(a) , hamely

(nﬂ(a)T)(X) = TI‘B(X)T(X) a.e. in Q(o)

(see [1], [2]).
Let e(u)=1{e..(u)l:
ij

Jdu. ou.
e..(u) = 1/2(—l + —i>

be the linearized strain field corresponding to the displacement

field u= (u1 ,u,) € (H1(Q(01.)))2 .  Then the Hencky's law of plasticity

2
can be stated in the form:

olu)=m

Q((}L)(Ae(u)) 6 (2.2)

Set Bn(u)=I‘uUFPUI‘C(a) , Where

I‘u={(a,x2) | a(a)<x2<y}u{(b,x2) | a(p) <x2<y} R
1"P={(x1 ,¥) | X, € la,ol} ,

r (OL)={(X1 ,x2)€]R2 | x

. =0L(x1) : x1€]a,b[} 5

2
i.e. I‘G(a) is given by a graph of a.

Let us assume there exists a displacement field us= (u1 ,u2)
sufficiently smooth and satisfying:

the displacement condition on I‘u:

(u)n.=0, on T (2.3)




reglizes tractions on T

11=(n1,n2) is the unit outward normal with respect to 3Q(a) ;

the unilateral conditions on Fc(a):

u2(x1,u(x1))2—a(x1) VxTE]a,b[
T,(0) = 0, (u)n; 20, T,(0)(u,y +a) =0 (2.5)
T.(o)=0

The stress field ~o(u), related to u Dby means of (2.2) satisfies

the eguilibrium equations:

90, .

a—;:i‘l(u)+Fi=O i=1,2 in @(a) (2.6)

The displacement field u, satisfying (2.2)- (2.6) (if any) is

called the classical solution of the punch problem for an elasto-

perfectly plastic material, occupying (o).

Next we derive the variational principle, satisfied by the stress

field o(u). Let

Je (B (2(a))? [ v, =0 on I},

V(Q(a))={v=(v1,v 1

2

K(Q(a)) ={vevi(aa)) | v ))>=a(x,) in la,bl} ,

x1,a(x 1

2( 1

KO(Q(a))= {vev(a(a)) | v2(x1,a(x ))>0 in Ja,b(} .

1

By K (2(a)) we denote the closed, convex subset of S(Q(a))
o

given by:



K o(0(a)) = {res(a(a)) | <STe(v)>g 4y 2 <Ly

2

Vv € Ko(sz(a))} R

L0 (q) = [ Foviax+ | P, v, ds
Q(a) Tp

with Fe (12(8))2, pe (L2(1"P))2 .

Let uo(a)E (H1(Q(a))2 be such that

u..(a) =0 in Q(a)
. L (2.7)
uog(x1,a(x1)) =—a(x1) a.e. in Ja,b[ J
Theorem 2.1 Let u,0 be related by means of (2.2)- (2.6). Then
c€K; (2(a))NP(R(a)) and
(G,T—G)Q(a) > <e(u0(a)), 00 (a) (2.8)

holds for any TEK;PUNaHﬂPGNaH.

Proof (see [3]). We first note that (2.2) implies o€P(Q(a)).
Multiplying (2.6) by v(EKO(Q(a)) and using the Green's formula we
are led to

= <Lvp gy * [ T v, ds > TV ()

22

making the use of (2.3)-(2.5).
Let us write u=uo(cx)+w. Then WEKO(Q(OL)) and (2.2)

implies

(c(u),r—c(u))g(a):><s(u),r—c>9(a) = <e(uo(a)),1—o>9(a)

+ <e(w),r—o>g(a) . (2.9)



But

<elW) 0% () = <LsWq(q) *
= <Lw>g )t
=<Lwg ) -
Hence
(W), T=0>0 () = <€)y ) = <elw) 0>y
2 <lw(a) T Dag(q) 20 VTEK p(a(a) .

From this and (2.9), the relation (2.8) follows. o

Consequence 2.1 Set

S (T)=1/2[r]§(

» (X)),T>

d)-<e(uo( ala)

Then ce:K; o(8(@))nP(ala)) satisfies (2.8) if and only if

(P(a)) S (a)<S (1) VTEK.; o(2(a)) ne(ala)) .

P(e) can be taken as the definition of the variastional formu-

lation in terms of stresses of a punch problem for an elastic - per-

fectly plastic material. Using the well-known results, one can prove

Theorem 2.2 Let K; P(Q(u))f\P(Q(a)) # @ . Then there exists sa

unique solution o of (P(a)).

Remark 2.1 Let us mention that even (P(a)) has a unique solution

0, the existence of the displacement field u€ (H1(Q(u)))2 , related




to o Dby means of (2.2) is not guaranteed, in general.

L. +
Remark 2.2 Necessary condition for K., P(Q(a)) to be non-empty
—_ == 1y
is that

[ Foax+ [P ds<0.
ala) 2 Iy 2

Up to now, a function o, describing Fc(u) has been given.
Let us suppose now that Qﬁa) may vary, l.e. o is a variable, be-

longing to an admissible set uad » given by:

1)|5C2 a.e. in Ja,b[, meas Q(a)=C_}

CO’C1’ 02,03 are positive constants, chosen in such a way that

Uad?Qﬁ. Let Uadgzuad be such that
~ +
o¢€Uad=>KF’P(Q(oc))ﬂP(Q(OL))#95 .
Next we suppose that

(4.1) u 0

ad’
~ ~ +
. ( .
(A.2) 3r>0 VaEUad J1(a)€ K_F’P\Q(a))ﬂP(Q(oc)).
IIT(a)IIQ(a)gr .
For any aEﬁUad » the state problem (P(a)) has a unique solution

o=0(a) (to emphasize the dependence of ¢ on o, we shall write

o as the argument).

Our aim will be to find a¥*€ uad in such a way that

(P) E(a*) <E(a) VaED;d



10

B(a) =S, (o(a)) = 1/2[0(a)]g ) - <eluy(a)) ,0(a)>

and o(a) solves (P(a)) on Q(a).

3. Existence result

The main result of this section is

Theorem 3.1 Under (A.1), (A.2) there exists at least one solution
* ~J
a Euad of (P).

Before we prove this theorem, we present some auxiliary results,

which will be useful in what follows.

Lemma 3.1 Let a >o in CO([a,b]) . an,uEZUad and let
Qe KO(Q(OL)) . Then there exist (DJ. € (H1(E‘2))2 and a subsequence

{e. }={a_} such that
n, n

wj|Q(unj)€K0(n(anj)) 5 (3.1)
- e.d  in (E'(@E)N?, (3.2)

~

where 6 denotes the Calderon extension of ¢ from Q(a) on 9.

Proof See {[L]. o

Let a function uO(a)= Cuo1(a),u02(a)) , appearing in the linear

term of Sa(r) be chosen as follows:




2(ﬁ))g, provided aEUad and

It is easy to see that wu.(a)€ (H

0

Hu (a)ll, & < Cllall 5 (3.3)

0 1,0

c(la,p])

where C>0 doesn't depend on o€ uad .

Proof of Th. 3.1 Let

q= inf E(a) = lim E(an) ,
acl n-e
ad

i.e. {oun} R anEUad is a minimizing sequence of (IP). Following

the definition of U there exists a subsequence of {an} s

ad ?
(denoted by {an} again) and an element a*€ uad such that

un+0t* , n>® in C1([a,b]) . (3.4)

Denote by nn=§2(an) gnd cn=c(0tn) the solution of (P(an)) on

Q
n

(0,51=0,)g 2 <elugla))yt=o > Vo€ (@)nr(a ). (3.5)

n n

f

Using (A.2), (3.3), (3.4) and (3.5) we see that {on} is bounded

in the following sense:

>0 !Ionllgngc (

where C>0 doesn't depend on n. Let

G (oz"‘)={(x1 ,x2)€]32| X, € (a,b), o*(x

N )+1/m<x2<y} .

1

Let m be fixed. Then there exists no(m) such that

*®
8 >G (a¥*) vn >n (m)



12 |

and

ch“G (a*)sc (3-7)
m

due to (3.6)
(m

. Thus there is a subsequence {cn1}c{cn} and an
element o )ES(Gm(a*)) such that

o, —\c(m)

(weakly) in S(G (a¥*)).
: m

Analogously, there exists no(m+1) such that

9 26 ,,(a*)2G (a¥) vo>n_ (m+1)

n m+1 0

and

Ho I # SC.
4 Gm+1(u )

One can extract a subsequence {°n2}C{°n1} such that

g -‘c(mﬂ) in s(¢
n2 m+1

(a®*)) .

Clearly c(m) = 0(m+1 )

a.e. in Gm(a*) . Repeating the same proce-
dure for any m integer, one can take a diagonal sequence {cgk}
determined by {onk} , Which satisfies:

D

o. ~0 in S(G (a*)) for any m, (3.8)
n, m

(m)

stead of ng . For the moment let us suppose that we have already
+ ~
proven that ¢€Kj P(Q(a*)) NP(Q(a*)) . Now we show that a¥*€ ua.d
1
solves (P) and o=o(a¥) is a solution of (P(a*)). Indeed,

let m be fixed. Then

where o=o0 a.e. in Gm(a*) . Next, we shall simply write O, in-



2

=1/2l0_] +1/2[0 12

- <z-:(uo(ocn)),cxn>Q <G (a*)
nm

(an))9c >

n Gm(oc*)

2
> 1/2[°n]Gm(a*) - <s(uO

- <€(u0(an))’°n>9 <G (%) *
n m

From (3.3), (3.4) and (3.7) one gets:

q = lim inf S (cn)z 1/2[0]?} (a*)—<e(uo(a*)),c>G (o*)
n->o n m m

- lim sup <e(u
n->e

On the other hand,

lim sup <e{u.{a_)),0 >
s 0''n n Qn\Gm(oc*)

< lim sup <e(u0(an))- e(u.(a*)),0

( > *
[se0 0 n Qn\Gm (o)

' * *

*lim sup <e(u,(a )),on>Q <G (a*) <Clle(ug(e ))IIQ(
n-=o n om

where C>0 doesn't depend on m. Thus

a > 1/2lel} (a#) = <Elugla), 050 ey
m m

2
- C”s(uO(a*))"Q(a*)\Gm(“*)

holds for any m integer.

Letting m->» in (3.9) we finally get

G (a®*) n'Q NG (a*)” “=\Yo'\%, n
m n m

13

a*)NG (a¥) ,




q > 1/2[0]2(()‘*)—<E(uo(u*)),o>g(a*)=Sa*(0) i

((a*))NP(Q(a*)) be a solution of (P(a%*)). Then

Let o(a¥)€ K_rt

a>8 4(0) >8 ,(ala*)) >a,
i.e. a*Eﬂad is a solution of (IP) and o=o(a*) solves (Pla). o
It remains to verify that O€K.; P‘(Q(oc*)) NP(Q(a*)) . This
2

follows from

Lemma 3.2 Let a >a in (la,b1) , a ,0€U .. Let
+
°n€KF,P(Q(°‘n))”P(Q(°‘n)) be such that

o, =0 in S(Gm(a)) for any m integer, (3.10)

G (a)={(x1,x2)€IR2| x, € Ja,b[ , a(x

- )+1/m<x2<y}.

1

Then GEIK;,P(Q(a))f1P(Q(a)).

Proof It is readily seen that o€ P(Q(a)) if and only if

GIGm(a) EP(Gm(OL)) for any m integer. But this is true because

of (3.10) and the fact that P(Gm(a)) is the closed, convex subset
+ i

of S(Gm(a)) . Let us prove that C€KF,P(Q(OL)) , i.e.

<o,e(v)>9(a) > <L,v> ) VVEKO(Q(a)) i

Qa

et vE KO(Q(OL)) be fixed. According to Lemma 3.1 there exists a

sequence v, € (H1($?z'))2 and a subsequence {ocnj}c{an} with prop-

erties given by (3.1), (3.2). Let {o,.}={o,} be a subsequence
J

+
such that GHJEZKF’P(an). Then




> <L,v.>. .
J n. J Qn.
J J

Let m be fixed. Then

<cn.’€(vj)>ﬂ =<c7n.,e(vJ.)>G (oz)+<cn.’€(vj)>ﬂ 2(a)
3 n, B m n,

+ <o ,e(v.)>

n. j'(ala)Na (a))nnn : (3.11)

From (3.10) and (3.2) it follows that

<a, ,e:(vj)>G (a)-><c,e(v)>G (

s N.>x (3.12)
J m m J

<Gn.’e(vj)>9 \Q(a)=<0n.’€(vj-v)>s‘2 <a(a)
J n. J .
J dJ
+ <cxn',s:(v)>Q < )->O F nj->°° . (3.13)
J n.
J
Finally,
lim sup <o ,e(v.)>
0.0 n, 3 (Q(a)\Gm(a))nQn.
dJ J
<
$ Clvligtaye (a) (3.14)
where C>0 doesn't depend on m.
Analogously,
<L,v.> =<L,v.> + <L,v.>
e i"G (a) "a, G (a)
J B
=<L,v.> +<L,v.-v> +<L,v>
J Gm(a) J Qn.\Gm( ) Qn.\Gm(a)
dJ dJ
so that
lim inf <L,v.> > <L,v> -Clivii i (3.15)
n J an G (a) 2(a)~g (a)



From (3.11) - (3.15) we obtain

se(v + , >< . =0 A S
@72 (0) Mgt (0) 2 T (@) TN g ()G (a)
m m m m
Letting m—+« we arrive at the assertion of Lemma 3.2. u]
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