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P. NEITTAANMAKI and D. TIBA

1. Introduetion
Consider the boundary control problem

T

W 1 | .
() }hmmlze{n(ur) = S [»{;!y — 0 + o |ulig(m)] dt}

4

0

over all w e LA(X) and ¥y = y(u) € £2(0, 15 HYQ))
subject to
Al

a‘i— o(t, ) — Ayll, @) = f(t, o) in Q
(1.1)
oft, %) € B(y(t, »)) in @,
(1.2) (—”—(!’—") = u(t, x) on X,
a2
(1.3) 2(0, x) = v,(2) on £,

In the above @ cR”, n 2 1, is a bounded domain with smooth boundary
and = 10, T'[ x Qis a cylinder with lateral face 2.

We assume that v, € L4Q), de I2(@) and that B is a strongly maxi-
mal monotone grapl in [R X R, hounded on bounded sets. When §
s given by

ro— Ty, >
(1.4) Blr) =41—3, 07, r=r,
r —ry) —3, r <7,

where &, >0, we obtain a two-phase Stefan problem (see [67, p. 196).

A similar control process is considered in [13] in connection with
some problems arising in metallurgy. In the paper [9] the case of differen-
tiable control is studied and in [7] necessary optimality conditions are
obtained for the problem (P) with distributed control.
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A finite element discretization of two-phase Stefan problems is
discussed in [13, 16 ] and the control problem is similarly treated in [8].
For further references in connection with Stefan problems see [3, 6,107,

In this paper we analyze a regularization of problem (P) which can
be mainly compared with the works [1, 2]. It consists of replacing (P)
by a family of smooth problems and afterwards tending to the limit with
the approximate control (see Proposition 2.3 and Theorem 2.4).

We shall also present an algorithm for finding a computer solution for
problem (P). Due to the lack of convexity the emphasis will be on the
descent property, not on the convergence properties of the algorithm.
To obtain the numerical solution of the state and the adjoint system finite
elements in the space and finite differences in time are used.

The plan of the paper is as follows. In section 2 we briefly discuss
the existence and the regularization of problem (P). Seetion 3 containts
the main results on the descent property of the gradient method. In the
last part a numerical example is discussed.

2. Existence and regularization

We will briefly outline the existence of an I*(X) optimal control for
problem (P). Next, the approximation properties of the regularized con-
trols are given. For more details, we quote [14 .

Denote V' = HYQ), H = L*Q) with scalar product (-,-) and norm
-1, V* is the dual of V. Equation (1.1) — (1.3) can be written in an
abstract form as

@.1) %‘ + Ay =f o)) aefo, T]

(2.2) 2(0) = v,
The function fe L2 (0, T'; V*) is given by

T i
(2.3) S(f(t), $(2))ds :Ssu $dTde, v e L2 (0, T; V)
0 or

Operator A : V—-V* ig defined by

(24) (dy,2) = Sgra,d y- gradzdx, Vy,ze V,

Q

and operator B: H—H is the realization of 8 in Lz (Q).

The existence of the solution for equation (2.1), (2.2) is studied, for
example in paper [3], where 4 and B may be both nonlinear.

THEOREM 2.1. Let u, — u weakly in LA(X). Then y, — y weakly in
LX0, T'; V), where y., ¥ are the solutions of (2.1), (2.2) corresponding to
Uny U
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From this result, one obtains at once

THEOREM 2.2 There is an optimal patr [w*, y*] in L¥Z) X L¥O,
T, V) for problem (P).

Consider the regularized problem

T

(P,) Minimize {-n:s(u) = S[% ly — al% -l-%* [ul?;] dt}
subject to
(2.5) UL _ sy 0) =fih ) n @,
(2.6) i—g/(t, x) = u(t, x) on I,

on
(2.7) %0, x) = yx) on Q;
where we define
(2.8) By =y + S Yoy — €0 p(6)d0

and v, is the Yosida approximation of the maximal monotone graph
1ty) = B(y) — v (we assume for convenience that k> 1 in (1.4)), and
i3 a Friedrichs mollifier, such that p € C°(R), supp p<=(—1, 1), p(—0)=

= p(0) and S p(0)d6=1. Obviously the problem (P,)has an optimal pair
[Ye us] € L¥Q) X LXZ).
PROPOSITION 2.3 The subsequences converge as follows
(2.9) U, — u* strongly in L3(X),
(2.10) Yo = y*  strongly in L¥Q),
The corresponding convergence result for the cost functional is

THEOREM 2.4. The sequence w(u,) — m(u*), the optimal value of
problem (P), when & — 0, and therefore {u,}, is a minimizing sequence

for (P).
3. The descent property

In order to obtain a suboptimal control for (P), by Theorem 2.4
one may solve problem (P,). Due to the good differentiability properties
in (P,), a gradient algorithm can beutilized to find w, efficiently.

We denote by 6,: LXZ) —» IA§)) the mapping u -y given by
(2.8) — (2.7).

5 — c, 1608
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PROPOSITION 3.1. For all we L¥X) there exists a linear operator
V 0.(u) : L3(Z) — LAQ) defined by :

(3.1) V 0. (u) v = weak-lim ﬁs(u ) Rl )
A-0 A
Sfor all v € L2(Z). Moreover :
0%
3.2 V0 (u)p ==
(3.2) e(%) 7
where z s the solution of the problem
(3.3) ng(ea(u))z—j- tAz=h ae. [0, T]
(3.4) 2(0) = 0.
In equation (3.3) he WY¥2(0, T'; V*) satisfies
?
(3.5) ) =Sgl<a>az o,
4]
T T
(3.6) S (g.(t) $(1))dt =g Sv ¢ do dt for every ¢ e L20, T V).
d ¢ o0

Proof. Denote 53¢ as the realization in H of ge and
¥ = 0.(u -+ av), y = 0,(u). Then, by the definition of solution we get

(3.7) B (d;‘:) A =g+ ae [0, T,
(3.8) Bs(%’—) T Aw=g a.c. [0, T7»
(3.9) w,(0) = w(0) = 0. o

¢

Here g(t) zgf(i) d& +vy, f given by (2.3)

i

and w,(3) =S?/1(E az, w(t)—s y(E) dE

0 0

Subtract the two relations and multiply by d(;? %’? :
‘ :
dw, dw |? 1 APgL i
oty ] — (A(wr(2) — w(t)), wi(t) — w(t
S T 8 g A0 — 2, 0 — ()
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Then (2—? —?%ZB‘ and w, — w strongly in L0, T; H), C(0, T; H) res-
pectively.

We set 2, =22 that is

JAIAN CEd%

|3

t
I 3~ |2
S dz, ds +L(Az;.(t), (1) < S(h, SI-ZA—) ds.
dt H 2

dz; bounded

in =0, T; V), 120, T; H). Since B is Lipschitz, the Lebesque
theorem shows that

i ar ) dt \ ar dz,

Integrating by parts in the right hand side we obtain {z,},

z ' dw, dw. . at
d¢ di
. 3 dwy dz 5
is weakly convergent in IA0; T'; H) to v B* —u-)-d—, where # i3 such
3 d t : ‘

that 2, — 2 strongly in C(0, T'; H). We can pass to the limit and obtain
(3.2) — (3.4) to finish the proof. 7
Now, we can define the adjoint system for the control problem (P.):

(3.10) Aﬁa(yz)—d%i —dp, =y, —d a.e. in [0, T]

(3.11) p(T) =0

The gradient algorithm for solving problem (P.) is obvious (for brevity
we omit the subindex ¢): ,

Algorithm 3.2.

Step 1. Choose any u, and set n: =0 .

Step 2. Compute y. by solving (2.5) — (2.7).

Step 3. Test in the pair [y., w.] is satisfictory; if YES then

STOP ; otherwise GO TO step 4.

Step 4.  Compute p, by (3.10) — (3.11).

Step 6. Compute u,4, by equation

(3.12)  Unyy = Un — pu(wy — puz), where p i an appropriate

_ real parameter.
“Step 6. Set i =4+ 1 and GO TO step 7.

The convergence test involved in step 3 is the difference |, — Pz |
which is to be smaller than a given parameter. In step 5 the parameter o,
can for example be selected by utilizing a line search.

i Ty is known that without convexity assumptions, the above gradient
algorithm may be convergent only to a stationary poiut of the functional
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(see [4], [12]). Since the state equation is nonlinear, the cost functional
is no more convex and our result nnderlines the descent property of (3.12),

THEOREM 3.3

(1) Let € be fiwed. The sequence =, (uy) is convergent, when w — co,
(ii) Let %, be the approwimate value of . as computed by Algorithm 3.2.
The sequence w.(.) s bounded with respect to = and every cluster point %
satisfies
(313) Tt < n(u,)

where u, i8 the first iteration. '
Progf. (i) The sequence {m,(u,)! decreases and it is bounded by
m(uy) and m,(u,).
(ity %Ve have
(314) (%) < ne(ﬁ'e) < 71736“0)

and, by an easy consequence of Theorem 2.4, m(ug) -» m(u¥).
We will show that = (4,) — n(u,) too. This is equivalent to

Ye = 8,(uy) — y strongly in L%(Q),
where y is the solution of (1.1) — (1.3) corresponding to u,. Let w,(t) =
!

=Sye(z) df. Then

0

(3.15) B (

with g,(?) =Sfo(2) dg + v, and
0

T

T
S (o) ¢<mdt=s §u . gar ds
0 0
for every ¢ e L2(0, T; V).
Multiply (3.15) by d;i’f . Then we obtain {w,}, {ﬂd‘%—} bounded in
L#2(0, Ty V), L¥0,T; V) respectively

441
Since B is supposed be bounded on hounded sets we get

{B‘ (gd%)} bounded in 0, 7'; H). Next, subtract two equations (3.15)
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. 14 s
and multiply by £l 80
dt dt

t
(e ﬁ%avs) ___...o(dwo_) f‘lﬂzs_%)
H (( (dt lde )T dy
o Q

IV = w0 = 0.

« By (2.8) we get:

(3.16) S

0

|dw,  dw,
f dit dt

. . : 1
Here *(y) = p*(y) — y, i.e. the second term in (2.8) and {«f ((;ia)}
C
bounded in L%*Q).
Taking into account the propertiex of the Yosida approximation :
Y1) €Y + e)Hy)),  evely) =y — (L + ey)My) and the above

! ! w.] .
boundedness, one can infer from (3.16) that !ew,}, {f} are Cauchy
dt

sequences in L0, T; V) and L) respectively. Now, it iz possible to
pass to the limit in (3.15) and to finish the proof.

Remark 3.4. The practical meaning of Theorem 3.3 is that in a given
problem one should take the first iteration as the control «, already used
in practice. Next the algorithm improves the performance given by it.

4. A numerical example

The regularized state problem (2.5) — (2.8) and the adjoint state
problem are discretized by applying the finite difference method in time
and the finite element method in space. Concerning the convergence and
stability of such a discretization method we refer to {10, 16].

To illustrate the efficiency of Algorithm 3.2 the following numerical
example is considered :

Q=10,1[ x 10,17

T =1.
Let
Y y << 0,
(4.1) Bly) = 110,2] y =0,
4y +2 y >0,
. 8(2e7% — 1 a? + ri>e
(4.2) Jlty wyyiny) = ( -2t : 1z i ~at
2(0 S 2), i "}’“ Ty < e
(4.3) vy = BY,)
and
2 — 2ol = =2
' 2(0f + a2 — 1), bR A |
For the boundary control
if o, ==0, or &, =0
(4.6) u(t, &y (132) = J i £ ’ OI. -1.2 s
4 on the remaining ol ¢
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The exact solution g, of (1.1) — (1.3) with given data (41) — (4.4) is -
2(a} + af — e™%) 2} 4 af>et
?/(t,ml,mz):{gl 22 ~ )21 22 4 F
xf -y — e af a3 < e
Counsider the cost funetional
1

TL',\(/U/) = }2“8 I:: Yy + E)\' ]uiliz(aﬂ)] dt with » = 0.1 :
0

We shall now test the efficiency of different variants of Algorithm 3.2,
The nonlinear programming methods tested are

— steepest descent Algorithm 3.2

— a conjugate gradient method with an automatic restart (1117,

ZXOGR of IMSL Subroutine Library) '

— a bundle algorithm due to C. Lemarechal (BCG), [5].
We have chosen At = 1/16 (lime s‘ep) and 64 triangular linear elements
in discretization of state and adjoint problem. For more details about
FE-method and algorithms see [8,10, 167]. For simplicity, we have replac-
ed §° by a piecewise linear function such as

Y y Y <0
Bely) ={ 2T Te, o, o

[
dy +2, y>«¢

for e = 1/16 (with appropriate smoothing for y = 0 andy = ¢). Tn Table
4.1 we see the diminution of =, per iteration when three different gradient
algorithms have been applied.

Table 4.1. Comparision of different gradient algorithms

Value of m;(u?) for dillerent gradient
Number of algorithms
iteration s

stecpesl descent ZXCGR BCG

0 2.166 2.166 2.166

1 426 .418 .935

2 203 148 .681

3 124 .116 .252

4 110 - .208

5 .101 — 144

6 .091 — 142

7 .090 - .102

CPU(seconds) 840 181 488

The optimal control found by different gradient algorithms is roughly
speaking the same. : :

In Figures 4.2 — 4.4 we can see the boundary controls and corres-
ponding temperature distributions obtained by Algorithm 3.2 at time
levels t = .325, ¢ = .625 and for ¢{ = .935.
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