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Highlights: 

An adaptive IVA algorithm was proposed for multi-subject complex-valued fMRI data. 

An MGGD-based nonlinear function was exploited to match varying SCV distributions. 

The MGGD shape parameter was estimated using maximum likelihood estimation. 

Subspace de-noising, post-IVA phase de-noising, and noncircularity were utilized. 

Our method detected more contiguous activations than magnitude-only methods. 

 

 



4 

 

Abstract 

Background 

Complex-valued fMRI data can provide additional insights beyond magnitude-only data. However, 

independent vector analysis (IVA), which has exhibited great potential for group analysis of magnitude-

only fMRI data, has rarely been applied to complex-valued fMRI data. The main challenges in this 

application include the extremely noisy nature and large variability of the source component vector (SCV) 

distribution. 

New Method 

To address these challenges, we propose an adaptive fixed-point IVA algorithm for analyzing multiple-

subject complex-valued fMRI data. We exploited a multivariate generalized Gaussian distribution 

(MGGD)- based nonlinear function to match varying SCV distributions in which the MGGD shape 

parameter was estimated using maximum likelihood estimation. To achieve our de-noising goal, we 

updated the MGGD-based nonlinearity in the dominant SCV subspace, and employed a post-IVA de-

noising strategy based on phase information in the IVA estimates. We also incorporated the pseudo-

covariance matrix of fMRI data into the algorithm to emphasize the noncircularity of complex-valued 

fMRI sources. 

Results 

Results from simulated and experimental fMRI data demonstrated the efficacy of our method. 

Comparison with Existing Method(s) 

Our approach exhibited significant improvements over typical complex-valued IVA algorithms, 

especially during higher noise levels and larger spatial and temporal changes. As expected, the proposed 

complex-valued IVA algorithm detected more contiguous and reasonable activations than the magnitude-

only method for task-related (393%) and default mode (301%) spatial maps. 

Conclusions 

The proposed approach is suitable for decomposing multi-subject complex-valued fMRI data, and has 

great potential for capturing additional subject variability. 

 

 

Keywords: Independent vector analysis (IVA); Complex-valued fMRI data; MGGD; Shape parameter; 

Subspace de-noising; Post-IVA phase de-noising; Noncircularity 



5 

 

1. Introduction 

Blind source separation (BSS) has been widely applied to multi-subject functional magnitude resonance 

imaging (fMRI) data analysis because of little requirement on prior information about the data. The 

resulting spatial maps (SMs) and time courses (TCs), being common components across all subjects or 

subject-specific, are vital for studying brain function. Among BSS techniques, tensor decomposition 

generates common SM and TC components across multiple subjects, but also demonstrates subject-

specific intensity. Andersen and Rayens (2004) utilized canonical polyadic decomposition (CPD), which 

is a general tensor model that separates multi-trial fMRI data. Beckmann and Smith (2005) extended CPD 

to multi-subject fMRI data by combining it with ICA to deal with inter-subject SM variability. Since 

different subjects may generate different responses due to variation in response time or in their 

hemodynamic delay, inter-subject TC variability naturally also exists for multi-subject fMRI data. Kuang 

et al. (2015) proposed a solution by combining shift-invariant CPD (Mørup et al., 2008) and ICA to 

simultaneously consider inter-subject SM and TC variability. Compared to tensor decomposition, ICA-

based analysis extracts subject-specific TCs and/or SMs for emphasizing inter-subject variability. Two 

such approaches are group ICA (Calhoun et al., 2001, 2008; Guo and Pagnonib, 2008; Erhardt et al., 2011; 

Calhoun and Adali, 2012b; Eloyan et al., 2013; Afshin-Pour et al., 2014) and independent vector analysis 

(IVA, a kind of joint ICA) (Lee et al., 2008a; Dea et al., 2011; Michael et al., 2014; Ma et al., 2014; 

Laney et al., 2015a, 2015b; Gopal et al., 2015, 2016; Adali et al., 2015). While group ICA provides 

individual TCs or SMs via ICA of temporally or spatially concatenated multi-subject fMRI datasets, IVA 

generates individual TCs and SMs via joint ICA of multi-subject fMRI datasets where similar SMs 

among different subjects were concatenated as source component vectors (SCVs). Multiple previous 

publications have shown that IVA outperforms group ICA for capturing inter-subject variability by 

exploiting both the dependence of similar SMs across multi-subject fMRI datasets and the independence 

of distinct SMs (Dea et al., 2011; Michael et al., 2014; Laney et al., 2015a, 2015b). Therefore, we focus 

on IVA methods in this study. 
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Real-valued IVA algorithms have been well developed and widely applied to magnitude-only multi-

subject fMRI datasets. The first IVA algorithm for analyzing real-valued fMRI data was presented by Lee 

et al. (2007a) using a multivariate Laplace distribution (Lee et al., 2007a, 2008a) called IVA-L. With the 

development of IVA-G using multivariate Gaussian distribution (Anderson et al., 2012a), an IVA 

algorithm called IVA-GL was implemented by utilizing IVA-G to initialize the de-mixing matrix and 

IVA-L to perform the subsequent separation. IVA-GL emphasizes both second-order and higher-order 

statistics (Anderson et al., 2012a), and thus tends to be more efficient than IVA-L and IVA-G for fMRI 

analysis. IVA-GL was first tested using simulated fMRI data (Dea et al., 2011; Michael et al., 2014), and 

then applied to real-valued fMRI data for diverse applications: e.g., producing discriminative features for 

quantifying motor recovery after stroke (Laney et al., 2015a, 2015b); finding dynamic changes in spatial 

functional network connectivity in healthy individuals and schizophrenic patients (Ma et al., 2014; 

Calhoun and Adali, 2016); showing the spatial variation in fMRI brain networks (Gopal et al., 2015, 

2016); fusing multimodal data (Adali et al., 2015); and removing the gradient artifact in concurrently 

collected electroencephalogram (EEG) and fMRI data (Acharjee et al., 2015). In addition to IVA-GL, 

there are also other real-valued IVA algorithms that are promising for analyzing magnitude-only fMRI 

data, such as IVA with the Kotz family of distribution (Anderson et al., 2013), and IVA using an adaptive 

multivariate generalized Gaussian distribution (MGGD) (Boukouvalas et al., 2015). 

However, there is a shortage of complex-valued IVA algorithms suitable for analyzing complex-valued 

fMRI data. Although magnitude-only fMRI data are extensively studied, fMRI data are initially acquired 

as complex-valued image pairs including magnitude and phase information (Adali and Calhoun, 2007; 

Calhoun and Adali, 2012a, 2012b). Phase fMRI data contain useful and unique information such as blood 

oxygenation levels during functional activation (Hoogenraad et al., 1998; Arja et al., 2010), the effects of 

macro- and micro-vessels (Menon, 2002; Tomasi and Caparelli, 2007), and the orientation of large blood 

vessels (Klassen and Menon, 2005). Analysis of complex-valued fMRI data provides additional insights 

beyond magnitude-only fMRI data (Rowe, 2005; Adali and Calhoun, 2007; Calhoun and Adali, 2012a, 
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2012b; Rodriguez et al., 2011, 2012; Li et al., 2010, 2011; Yu et al., 2015). The complex-valued method 

with pre-ICA de-noising (using observed phase images to identify and remove noisy voxels in original 

fMRI data) achieved higher sensitivity and specificity than the magnitude-only method (Rodriguez et al., 

2011, 2012; Li et al., 2011). By using post-ICA de-noising (using SM phase information to identify and 

remove noisy voxels in ICA estimates), the complex-valued method extracts more contiguous and 

reasonable activations than the magnitude-only method (Yu et al., 2015). This supports the potential of 

identifying useful brain information from complex-valued fMRI data beyond magnitude-only fMRI data. 

Although some complex-valued IVA algorithms exist, they are unsuitable for the analysis of complex-

valued fMRI data for the following two reasons. 

First, a good IVA application requires an appropriate multivariate probability density function to match 

SCVs distribution. Most existing algorithms were originally proposed and tuned to separate frequency-

domain speech (Kim et al., 2006, 2007; Lee et al., 2007b, 2008b; Liang et al., 2014). Typical algorithms 

include the following: fast fixed-point IVA (FIVA) employing a spherically symmetric, exponential norm 

distribution (SEND), or spherically symmetric Laplace (SSL) distribution (Lee et al., 2007b); IVA 

assuming MGGD with a fixed shape parameter (Liang et al., 2014); and an adaptive IVA algorithm using 

a multivariate Gaussian mixture model for separating mixed speech and music signals (Lee et al., 2008b). 

These complex-valued IVA algorithms exhibited obvious degradation when applied to fMRI analysis due 

to different distributions between frequency-domain speech and fMRI data. 

Secondly, there is large distribution variability for such a large number of fMRI SCVs (usually more than 

40 SCVs). This study focuses on the analysis of full complex-valued fMRI data (without pre-ICA de-

noising). In this case, many complicated noise components may be involved (e.g., head movement, 

respiration, cardiac pulsation) in addition to brain function-related components such as task-related 

components, transiently task-related components, and the default mode network (DMN). These brain 

function-related components generally exhibit a super-Gaussian distribution, while some noise 

components tend to have a sub-Gaussian distribution. Therefore, IVA using a fixed source distribution 
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may not perform well due to mismatching distributions. The noncircular FIVA (non-FIVA) (Zhang et al., 

2012) and complex-valued IVA-G (Anderson et al., 2012b) algorithms, which were proposed for 

noncircular sources by utilizing the information of a pseudo-covariance matrix, are candidates for 

extracting complex-valued fMRI sources with noncircular characteristics (Schreier et al., 2009; Schreier 

and Scharf, 2010; Lin et al., 2011). 

This study proposes an adaptive IVA algorithm for group analysis of full complex-valued fMRI data. 

Preliminary results can be found in Kuang et al. (2016). We utilized MGGD, which contains multivariate 

super-Gaussian and sub-Gaussian distributions, and adaptively learned the MGGD shape parameter to 

match changing SCV distributions. Specifically, we derived a nonlinearity from an MGGD-based SCV 

distribution and estimated the shape parameter using maximum likelihood estimation (MLE). 

Furthermore, to decrease the noise effect, we adopted a subspace de-noising strategy (Na et al., 2013), 

and updated the MGGD-based nonlinearity in the dominant SCV subspace. Furthermore, we utilized a 

post-IVA phase de-noising strategy to remove noisy voxels from the SM estimates. Finally, we explicitly 

employed the noncircular characteristics of fMRI source signals (i.e., complex-valued SMs) by 

incorporating the fMRI data pseudo-covariance matrix into the IVA algorithm. Simulated and 

experimental fMRI data were then utilized to evaluate the proposed algorithm. 

2. Method 

2.1. IVA Model and Cost Function 

Given K subjects of complex-valued fMRI data  ̃( )( )            K, where J is the number of time 

points,        , and   is the total number of in-brain voxels obtained by flattening the volume 

image data. We first perform PCA and whitening preprocessing on  ̃( )( ) for each subject to eliminate 

noise effects and to reduce dimensionality. Assume that  ( )      (   ) is the matrix for reducing 

and whitening, we obtain a PCA-reduced and whitened mixture vector as  ( )( )   ( ) ̃( )( )    , 

and  ( )( )  ,  
( )( )     

( )( )- , where the superscript “ ” denotes transpose. 
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The IVA model is as follows: 

  ( )( )   ( ) ( )( )      ,  (1) 

where  ( )       is a mixing matrix used to recover TCs;  ( )( )  ,  
( )( )     

( )( )-     is a 

zero-mean and unit-variance source vector, including N independent SM components. Since the source 

vector  ( )( ) of fMRI data is noncircular,  ( )( ) is noncircular under the linear mixing model given 

in Eq. (1), i.e., a pseudo-covariance matrix  * ( )( )( ( )( )) +   . With the definitions given above, 

  ( )  ,  
( )( )     

( )( )-     is an SCV collecting the nth SMs similar across K subjects, 

       . Hereafter, we omit m for simplicity. 

By learning a de-mixing matrix  ( ),        , IVA obtains an estimate for the nth SM component of 

subject k (i.e.,    
( )

) as 

   
( )
 (  

( )
)  ( ), (2) 

where   
( )

 is the  th column of  ( ), and the superscript “ ” denotes conjugate transpose. 

The goal of IVA is to minimize the mutual information among estimated SCVs, and thus its cost function 

is defined as follows (Lee et al., 2007a, 2008a): 

       ∑  [    ( 
 
)] 

    ∑    |    ( )| 
     (          ),  (3) 

where  (  ) is a multivariate probability density distribution for matching SCVs    for        , “   ” 

and “| |” denote the determinant and modulus operation, respectively. We employed fixed-point learning 

in the IVA algorithm (Bingham et al., 2000; Lee et al., 2007b), in which the de-mixing matrices 

 ( )(         ) are constrained to be orthonormal in each iteration, and thus the second term of Eq. 

(3) is zero. Ignoring the constant term  (          ), the objective function of IVA becomes 

       ∑  [    ( 
 
)] 

   .  (4) 
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Notice that   ,    (  )- is the entropy of   , and   ,    (  )-   ∑  0    (  
( )
)1   (  ) . Eq. 

(4) clearly exhibits the function of IVA that simultaneously minimizes the entropy of all N components 

and maximizes the mutual information within each SCV (i.e.,   (  )) (Anderson et al., 2012b). 

For convenience, we directly related the SCV distribution  (  ) to a real-valued nonlinear function  ( ) 

as follows: 

            ∑  [    ( 
 
)] 

    ∑  0 (| 
 
|
 
)1 

   . (5) 

As mentioned earlier, we selected MGGD for matching the various SCV distributions in our complex-

valued fMRI data analysis. Next, we derived an MGGD-based nonlinearity  ( ). 

2.2. MGGD-based Nonlinear Function 

The MGGD-based SCV distribution is defined as follows (Gómez et al., 1998; Pascal et al., 2013): 

  (  )    |  |
 
 

     2 
 

 
(|  |

   
  |  |)

  3, (6) 

where    
  (  ⁄ )

   ⁄  (   (   )⁄ )    (   )⁄ ,  ( ) is gamma function;    is the shape parameter,     1 is the 

multivariate Gaussian distribution,     0.5 corresponds to the multivariate Laplace distribution, and    

is the symmetric positive definite matrix. From Eq. (6), we have 

           
     (  )      {  |  |

 
 
    [ 

 

 
.|  |

 
  
  
|  |/

  
]}

                            
 

 
   |  | 

 

 
.|  |

 
  
  
|  |/

  
  

     (7) 

Omitting the first 2 terms of Eq. (7), we define a nonlinear function as: 

  .|  |
 
/  .|  |

 
  
  
|  |/

  
        . (8) 

2.3. Subspace De-noising 

For each SCV   , the covariance matrix of magnitude    is denoted as 

    
 

 
∑ |  ( )|
 
   |  

 ( )|. (9) 
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The first eigenvalue of the covariance matrix    is much larger than the other eigenvalues. As such, the 

nonlinearity  (|  |
 ) can be learned within the 1-dimensional subspace spanned by the dominant    

eigenvector (Na et al., 2013), resulting in a de-noised nonlinear function. Denoting the dominant 

eigenvalue as    and the eigenvector    ,         -
 , |  |

  in the dominant subspace is expressed as 

  (  
 |  |)

 . From this we have the following MGGD-based nonlinear function  ( ): 

  (  (  
 |  |)

 )  *  (  
 |  |)

 +  . (10) 

Connecting Eqs. (10) and (8) produces 

 (|  |
   
  |  |)

   *  (  
 |  |)

 +  . (11) 

From Eq. (11), we can determine a new   
   for incorporating subspace characteristics into the MGGD-

based SCV distribution as follows: 

   
     

[
 
 
 
   
               

           
             

 
      

 
      

 
 

 
   
 ]

 
 
 

. (12) 

The derivation of   
   is provided in Appendix A. 

2.4. Shape Parameter Updating 

We updated the shape parameter    to match the SCV distribution. More precisely, we estimated the    

using the MLE method with Newton-Raphson optimization (Pascal et al., 2013) at each iteration as 

follows: 

       
    (     ( )     ( ))

     (     ( )     ( ))    ⁄
, (13) 

where the log-likelihood function of    is given by 

 

    .     ( )     ( )/                                                           

         
 

 
      

 

 
∑ 0|  ( )|

 
  
  |  ( )|1

   
   

. (14) 
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2.5. Incorporating Noncircularity in Estimating Demixing Matrix 

We used the deflation-based method to update  ( ), i.e., we separately updated each column   
( )

 of the 

demixing matrix  ( ),        . Motivated by explicitly utilizing the noncircularity of source signals 

in a learning rule for the demixing matrix (Zhang et al., 2012), we incorporated the pseudo-covariance 

matrix  { ( )( ( )) } into a fixed-point learning rule: 

 

  
( )
   2  

( ) 
  (  (  

 |  |)
 ) ( )3                                                     

  {  (  (  
 |  |)

 )  |  
( )
|
 
   (  (  

 |  |)
 )}  

( )

  { ( )( ( )) } 2(  
( ) 
)    (  (  

 |  |)
 )3  

( ) 
      

, (15) 

where the superscript “  ” denotes complex conjugation,   ( )  and    ( )  are the first and second 

derivatives of the nonlinear function  ( ): 

   (  (  
 |  |)

 )    (  (  
 |  |)

 )    , and (16) 

    (  (  
 |  |)

 )    (    )(  (  
 |  |)

 )    . (17) 

A decorrelation step is employed following  ( ) updating: 

  ( )  . ( )( ( ))
 
/
   ⁄

 ( ). (18) 

2.6. Proposed Algorithm 

For the IVA-generated SMs and TCs, we employed post-IVA de-noising based on SM phase information 

to remove noisy voxels introduced by phase fMRI data (Yu et al., 2015). More precisely, we first used the 

phase de-ambiguity approach based on TC estimates to eliminate the phase ambiguity of subject-specific 

SMs and TCs, and then retained only voxels with phase values within    ⁄ . The final SMs were z-

scored and thresholded at |Z| ≥ 0.5 for both simulated and experimental fMRI data. 

We have presented the main idea and learning rules of our approach. A detailed procedure for the 

proposed algorithm is included below in Algorithm 1. Note the convergence condition of Algorithm 1 is 

reaching either the maximum iteration         or the minimum relative error of cost function ϵ. Here, 
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         1000 and  =10-6. 

Algorithm 1: Adaptive complex-valued IVA algorithm 

step 1:  Input K subjects of complex-valued fMRI data  ̃( )(         )  and the number of 

components N. 

step 2:  Perform PCA and whitening procedure on the fMRI data of each subject, and obtain the 

reducing and whitening matrix  ( ) and  ( )   ( ) ̃( ),          . 

step 3:  Randomly initialize  ( )  (         ) and orthonormalize  ( )  using Eq. (18). Set 

shape parameter      ,          , and use       . 

step 4:  Compute the SM estimate    using Eq. (2) and the covariance matrix    with Eq. (9) for 

all N SCVs. 

step 5:  Perform PCA on    to obtain the dominant eigenvalue    and its eigenvector   , then, 

using Eq. (10), calculate the MGGD-based nonlinear function  ( ) for each SCV. 

step 6:  Update each column   
( )

 of the demixing matrix  ( ) (         ,          ) using 

Eq. (15) and Eq. (18). 

step 7:  Compute   
   using Eq. (12), and update the shape parameter    according to Eq. (13).  

step 8:  If convergence, go to step 9; otherwise, go to step 4. 

step 9:  Compute the SM estimate    using Eq. (2) and the TC estimate  ( )  ( ( ))
  
( ( ))

  
 

for each subject. 

step 10:  Perform phase de-ambiguity on SM and TC estimates and post-IVA phase de-noising on 

SM estimates (retaining voxels within    ⁄ ). De-noised SM estimates were finally z-

scored and thresholded at |Z| ≥ 0.5. 

step 11:  Output the de-noised SM estimates and the phase-corrected TC estimates. 
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3. Experimental Methods 

We compared our proposed algorithm with 5 IVA algorithms: (1) IVA-GL (motivated by the good 

performance of real-valued IVA-GL, we generated complex-valued IVA-GL by using complex-valued 

IVA-G (Anderson et al., 2012b) for initialization of the de-mixing matrix, and IVA-L (Lee et al., 2007a, 

2008a) for separation); (2) FIVA (Lee et al., 2007b); (3) non-FIVA (Zhang et al., 2012); (4) FIVA with 

subspace de-noising (FIVAs); and (5) non-FIVA with subspace de-noising (non-FIVAs). The nonlinearity 

based on an SSL distribution was utilized for FIVA, non-FIVA, FIVAs, and non-FIVAs. We performed 

all IVA algorithms for 20 runs for both simulated and experimental fMRI data. 

3.1. Experimental FMRI Data 

The experimental fMRI datasets were obtained from 16 subjects performing a finger-tapping motor task 

while receiving auditory instructions. IRB-approved informed consent at the University of New Mexico 

was obtained from all participants. The paradigm included a block design with alternating periods of 30 

seconds on (finger tapping) and 30 seconds off (rest). Each participant’s data were collected with 165 

whole-head fMRI images. Experiments were performed with a 3T Siemens TIM Trio system with a 12-

channel radio frequency (RF) coil. The fMRI experiment used a standard Siemens gradient-echo echo-

planar imaging (EPI) sequence modified to store real and imaginary data separately. We collected data 

from the 12-channel RF coil and combined them (internally by Siemens) in an optimal manner based on 

coil sensitivity profiles (Feng et al., 2009). The following parameters were used: field-of-view = 24 cm, 

slice thickness = 3.5 mm, slice gap = 1 mm, number of slices = 32, matrix size = 64 × 64, TE = 29 ms, TR 

= 2 s, and flip angle = 70 degrees. Data preprocessing was performed using the Statistical Parametric 

Mapping (SPM) software package. Magnitude data were coregistered to compensate for movement in 

fMRI time series images. Images were then spatially normalized into standard Montreal Neurological 

Institute space. Following spatial normalization, the data (real and imaginary) were slightly sub-sampled, 

resulting in 53 × 63 × 46 voxels. Motion correction and spatial normalization parameters were calculated 
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from the magnitude data and applied to the phase data. Both the real and imaginary images were then 

spatially smoothed with a 10 × 10 × 10 mm
3
 full-width-at-half-maximum (FWHM) Gaussian kernel. The 

3-way experimental fMRI data (59610 × 165 × 16) were formed after removing the non-brain voxels and 

flattening the volume image data.  

3.2. Simulated FMRI Data 

Ten subjects of simulated complex-valued fMRI datasets were generated based on the extracted 

components by the proposed method from the experimental fMRI data. We selected 12 components 

which had higher mean correlations with their magnitude SM references (Yu et al., 2015; Smith et al., 

2009) for the ten subjects. These components included the task-related component, DMN, supplementary 

motor area, medial and occipital pole visual areas, auditory cortex, cerebellum, left and right 

frontoparietal areas, posterior cingulate cortex, inferior parietal lobule (IPL), and a noise component with 

a higher shape parameter than the other 11 components. Among the 12 components, the SCV shape 

parameters ranged from 0.368 to 0.533 (see Fig. 3); the mean correlations between SM components 

within an SCV varied from 0.468~0.589 (see Fig. 1(1)), and those between their corresponding TCs 

ranged from 0.088 to 0.320 (see Fig. 1(2)). The smaller the mean correlations between SM components 

within an SCV or between their corresponding TCs, the larger the inter-subject spatial or temporal 

variability. Component 4 (cerebellum), Component 6 (left frontoparietal area), Component 8 

(supplementary motor area), and Component 10 (IPL) exhibited smaller mean correlations within their 

corresponding SCVs than the other components, indicating their larger inter-subject spatial variability. In 

addition, Components 4, 6, and 8 with lower mean correlations for TCs possessed larger inter-subject 

temporal variability. 

Each component consisted of an SM and a corresponding TC; each SM contained 53 × 63 × 46 voxels 

while non-brain voxels were all zeroes; and each TC included 165 time points with TR = 2 seconds. In 

the brain, these selected SMs and TCs were all phase corrected using the phase de-ambiguity approach 

based on TC estimates (Yu et al., 2015), thus the blood oxygenation-level dependent related voxels had 
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phase values within [-π/4, π/4]. We computed the mean magnitude and phase images across all subjects of 

complex-valued fMRI data to generate baseline images, and then generated no-noise simulated fMRI 

datasets by adding the product of SMs and TCs to the baseline images for each subject. Subsequently, we 

spatially smoothed both the real and imaginary images of simulated fMRI datasets with a 10 × 10 × 10 

mm3 FWHM Gaussian kernel. 

After removing the non-brain voxels and flattening the volume image data, we obtained 59510× 165 × 10 

simulated fMRI data. Rician noise (Gudbjartsson and Patz, 1995) was then added to investigate the noise 

effect. We generated simulated fMRI data with 9 noise levels of contrast to noise ratio (CNR), from -10 

dB to 10 dB (with 2.5 dB interval). Since we have ground truth sources for all components, we evaluated 

all components based on the simulated fMRI data. 

3.3. Performance Index 

We used the following performance indices to evaluate the proposed IVA algorithm. 

3.3.1. Error Rate 

The error rate   is defined as the ratio of the number of wrong components within an SCV to the number 

of subjects (i.e., K). Taking a specific SCV consisting of component N* as an example, a wrong 

component (corresponding to a subject) is determined if its index for the maximal Pearson correlation 

with its ground truth component is inconsistent with index N*. Assuming the error rate for the nth SCV is 

  ,          , we define an average error rate across all N SCVs as  ̅ (       )  ⁄ . The lower 

error rate, the better the SCV quality. 

3.3.2. Joint Pearson Correlation Coefficient 

We first computed K Pearson correlation coefficients between each component within an estimated SCV 

and the reference, and then obtained an averaged correlation coefficient across K subjects, which was 

called a joint Pearson correlation coefficient (JPCC) for an SCV estimate. For simulated fMRI data, 

references were considered to be ground truth sources. Therefore, we calculated JPCC for SM magnitude, 
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SM phase, TC magnitude, and TC phase. Since we create differences between 2 phase value cases, i.e., 

within or outside a specific range (e.g.,    ⁄ ), we set the phase values within    ⁄  as 1, and the others 

as 0 for both the estimated SM phase and the ground truth. We denoted JPCC for SM magnitude, SM 

phase, TC magnitude, and TC phase as      ( ),      ( ),      ( ), and      ( ), respectively. We 

also averaged JPCC across N SCVs for simulated fMRI data, denoting as  ̅    ,  ̅    ,  ̅    , and  ̅    , 

accordingly. 

Regarding the task-related and DMN components for experimental fMRI data, we used the prior GLM 

and Smith DMN masks (Smith et al., 2009; Yu et al., 2015) as SM magnitude references, and constructed 

their phase masks by setting 1 for the activated voxels in the SM reference and 0 for the others.      ( ) 

and      ( )  were then computed. Additionally, we computed       and       for task-related TC 

estimates using the model TC (obtained by convolving stimuli with canonical SPM hemodynamic 

response functions) as the reference because the phase of task-related TC estimates also had high 

correlation with the model TC (Li et al., 2011). 

3.3.3. Significance via Paired t-Test 

We conducted paired t-tests between the above performance indices for our method and those for non-

FIVAs, FIVAs, IVA-GL, non-FIVA, and FIVA, respectively, to show the significant difference between 

our method and these other 5 algorithms. 

4. Results 

4.1. Simulated FMRI Data 

4.1.1. Effects of Noise 

Fig. 2 shows the noise influence (CNR = -10 dB to 10 dB) on the proposed algorithm, non-FIVAs, FIVAs, 

IVA-GL, non-FIVA, and FIVA. We computed  ,̅  ̅    ,  ̅    ,  ̅    ,  ̅     and their standard deviations 

for the simulated fMRI data. The true number of components N = 12 was used. Our proposed method 
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achieved the lowest  ,̅ the highest  ̅    ,  ̅    ,  ̅    ,  ̅    , and the smallest standard deviations for all 

cases, followed generally by non-FIVAs, FIVAs, non-FIVA, FIVA, and IVA-GL. We performed paired t-

test to access the difference between our method and the other 5 IVA algorithms, as shown in Table 1. 

The minimal absolute t-value was 7.87 (p < 5 × 10-5), and the maximum was t = 27.71 (p < 4 × 10-9), 

confirming the significance of our improved algorithm over the other 5 IVA algorithms. 

We also found that non-FIVA was better than FIVA by virtue of using noncircular characteristics, while 

non-FIVAs and FIVAs were better than non-FIVA and FIVA due to using subspace de-noising (Fig. 2). 

Among all indices,  ̅     and  ̅     for SM magnitudes and phases were more sensitive to noise than the 

other indices for all 6 algorithms. Furthermore, SM phases illustrated the highest noise sensitivity. As 

CNR increased,  ̅     showed a nearly linear increase. This conforms to existing findings about fMRI 

phase characteristics (Menon, 2002; Zhao et al., 2007; Tomasi and Caparelli, 2007; Hagberg et al., 2008; 

Yu et al., 2015). 

4.1.2. Shape Parameters Estimation 

Fig. 3 illustrates average shape parameters estimated by our proposed approach (over 20 runs) from 

simulated fMRI data with CNR = -5 dB, 0 dB, and 5 dB. The true number of components N = 12 of the 

simulated fMRI data was utilized. The varying shape parameters were well learned and followed (e.g., see 

shape parameters for components 8, 9 and 12 in Fig. 3) for different noise levels of simulated fMRI data. 

However, the estimated shape parameters were more accurate for higher CNR data (i.e., 5 dB and 0 dB) 

than for lower CNR data (-5 dB). 

We next utilized 2 example cases, one with higher CNR level (CNR = 5dB), and the other with lower 

CNR level (CNR = -5dB), to compare our proposed method with the other 5 algorithms in terms of  , 

     ,      ,      , and       for estimating all 12 components (Fig. 4). We observed that the proposed 

approach generated better estimates than the other 5 methods, especially for higher noise levels and larger 

spatial and temporal changes (Components 4, 6, 8, and 10). In addition, Components 6, 8 and 10 
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exhibited larger deviations from the fixed shape parameter 0.5 (0.5 was the shape parameter used by non-

FIVAs, FIVAs, non-FIVA, FIVA, and IVA-GL), which was another cause for the obvious degradation of 

these 5 algorithms for estimating the three components. As a result, the proposed method yielded the most 

stable and lowest error rate when estimating all 12 components. Furthermore, the proposed method had 

the smallest standard deviation   for the 2 cases (maximums: 0.000, 0.084), as compared to non-FIVAs 

(0.178, 0.223), FIVAs (0.197, 0.154), non-FIVA (0.177, 0.182), FIVA (0.168, 0.204), and IVA-GL 

(0.232, 0.220). This suggests the robustness of our proposed method to noise and larger spatial and 

temporal changes. 

4.1.3. Effects of the Number of Components 

The true number of components N (here N = 12) is unknown in real situations. We investigated its impact 

on these IVA algorithms. More precisely, we changed N from 10 to 15 for different CNRs. Fig. 5 displays 

the 2 aforementioned example cases: higher noise level CNR = 5dB and lower noise level CNR = -5dB. 

The 5 performance indices  ,̅  ̅    ,  ̅    ,  ̅    , and  ̅     were then computed. Non-FIVAs, FIVAs, 

non-FIVA, FIVA, and IVA-GL showed slightly higher sensitivity to the number of components than the 

proposed method. When examining  ,̅  ̅    ,  ̅    ,  ̅    , and  ̅     for the 6 approaches, we observed 

that these algorithms achieved better performance for N = 12, which is the true number of components. 

The proposed algorithm yielded the lowest standard deviations of all performance indices for the 2 cases. 

4.2. Experimental FMRI Data 

4.2.1. Impact of the Number of Components 

Since the true number of components was unknown for experimental fMRI data, we first tested the effects 

of the number of components on the IVA algorithms. We changed the number of components N from 30 

to 60 (reasonable ranges for extracting larger networks), and took the task-related component and DMN 

as 2 example components. Fig. 6 shows the results of  ,      , and       for the SM estimates of the 

task-related component (Fig. 6A) and the DMN (Fig. 6B) component, and Fig. 7 illustrates       and 
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      for the task-related TCs.   and       for the task-related and DMN components, and       for the 

task-related TC, changed with the number of components. The minimal   and maximal       and       

were mostly reached at N = 50 for all IVA algorithms. In contrast, the phase components represented by 

      and       illustrated stability with a changing number of components. As such, we used N = 50 for 

the following analyses. Overall, the proposed method was least influenced by the number of components 

for estimating the task-related and DMN components, and achieved much better performance than non-

FIVAs, FIVAs, IVA-GL, non-FIVA, and FIVA in terms of  ,      ,      , and their standard deviations. 

We also performed paired t-test for the performance indices displayed in Fig. 6 and Fig. 7, to evaluate the 

difference between the proposed approach and the other algorithms. For the task-related component (Fig. 

6A and Fig. 7), the smallest difference was t ≥ 4.24, p < 0.006 while the largest difference was t ≥ 55.08, 

p < 3 × 10-9. For the DMN component (Fig. 6B), the smallest difference was t ≥ 4.83, p < 0.003 while the 

largest difference was t ≥ 17.40, p < 3 × 10-6. As expected, the proposed method showed significant 

improvements over non-FIVAs, FIVAs, non-FIVA, and FIVA for estimating both task-related and DMN 

components. 

4.2.2. Spatial Map Results 

We performed one-sample t tests on each SCV estimate by the 6 IVA algorithms to find significant and 

consistent SM activation across 16 subjects. Fig. 8 displays means and standard deviations of       and 

      (over 20 runs) for the task-related and DMN t-maps, and example magnitudes and phases t-maps 

(close to the average result) for each algorithm. The t-maps were thresholded at p < 0.001 (t = 4.073; df = 

15). The proposed approach showed the best performance, including the highest       and      , and 

the lowest standard deviations for both task-related and DMN t-maps. By virtue of subspace de-noising, 

non-FIVAs and FIVAs yielded better performance than non-FIVA and FIVA, while noncircular 

algorithms were better than circular ones (non-FIVAs vs. FIVAs, non-FIVA vs. FIVA). In contrast, IVA-

GL obtained the lowest       and      , and the largest standard deviations for the task-related and 
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DMN t-maps. When examining the example t-maps for the 2 components, as shown in Fig. 8C and 8D, 

we observed that the proposed approach not only extracted more contiguous and reasonable activation, 

but also had higher activation intensity than the other algorithms. 

4.2.3. Shape Parameters Estimation 

Fig. 9 shows a single run of estimated shape parameters   for all 50 SCVs by the proposed approach from 

experimental fMRI data. Note for the   estimates of the task-related component and DMN, the standard 

deviations were 0.034 and 0.007, and the t-values (p-values) were 53.54 (3.42 × 10-22) and 267.09 (1.98 × 

10-35). The maximum, minimum, and mean for the   estimates of all 50 SCVs were 0.465, 0.266, and 

0.323, respectively, and the largest SCV shape parameter change was 0.2. This confirms that SCV 

distributions vary for experimental fMRI data. The change is so large that a fixed shape parameter is hard 

to represent all SCV distributions. Therefore, it is essential for an IVA algorithm to learn shape 

parameters for matching each SCV distribution. 

4.2.4. Comparison with Magnitude-only IVA-GL 

To investigate whether complex-valued fMRI data can provide additional brain information beyond 

magnitude-only fMRI data, we compared the proposed method with the widely used real-valued IVA-GL 

algorithm for analyzing magnitude-only fMRI data from the same 16 subjects. We tested the performance 

of the real-valued IVA-GL with different numbers of components (from 20 to 60), and obtained the best 

results for N = 40. Hence, we selected N = 40 for magnitude-only fMRI data. The resulting SMs were z-

scored and thresholded at 2.5 (a typical threshold for reliably removing noisy voxels in SMs for 

magnitude-only methods). For our proposed method, we used |Z| ≥ 0.5 as we rely on the SM phase for 

removing noisy voxels in SM estimates. Fig. 10 shows the SM results for task-related and DMN 

components. Specifically, with       values, we both showed magnitudes of averaged SM estimates over 

16 subjects (i.e., averaging within an SCV) for our proposed method and averaged SM estimates across 

16 subjects for magnitude-only IVA-GL. Subfigures (a), (b), and (c), display the total number of voxels, 
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the number of voxels within and outside the GLM mask, and the number of voxels within and outside the 

DMN mask, respectively. 

For the task-related component (Fig. 10A), our proposed approach obtained higher       than 

magnitude-only IVA-GL (0.585 vs. 0.498), and generated many more activated voxels, not only within 

the GLM mask (2499 vs. 934), but also outside the mask (2888 vs. 159). Furthermore, the detected voxels 

outside the GLM mask by the proposed method fell still within the expected motor cortical regions, 

including the left and right primary motor areas, and supplementary motor areas (Fig. 10A1(c)). In 

contrast, the magnitude-only IVA-GL detected only a very small number of voxels outside the mask. 

The results for the DMN component were similar to those of the task-related component. The proposed 

approach achieved much higher       than the magnitude-only IVA-GL (0.882 vs. 0.682), and extracted 

many more activated voxels within (3999 vs. 1358) and outside (1678 vs. 58) the DMN mask but still 

within DMN-related regions (Fig. 10B1). In addition to the posterior cingulate cortex (PCC) (Li et al., 

2013), which was detected by both methods, our proposed method extracted activation from the 

dorsal/ventral medial prefrontal cortex and left/right inferior parietal lobule (Li et al., 2013). Details are 

displayed in Fig. 10B1(b) and (c). 

5. Discussion 

Our experimental results show that SCV shape parameters frequently changed with large amplitude for 

experimental fMRI data. These changes can be caused by the intrinsic differences between different 

SCVs, by noise, or by inter-subject spatial variability for a single SCV. As such, the proposed approach 

was more robust to the inter-subject variability and noise effect than non-FIVAs, FIVAs, non-FIVA, 

FIVA, and IVA-GL. Among these 5 IVA algorithm, non-FIVAs utilized   = 0.5 and achieved the best 

separation performance by using subspace de-noising and noncircularity. One may question whether a 

fixed parameter set closer to ground truth than   = 0.5 could improve these results. To answer this 

question, we fixed the shape parameter for our algorithm to   = 0.4, since the shape parameters for the 2 
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components of interest, i.e., the task-related component and DMN, were 0.419 and 0.426, respectively, 

and compared this to non-FIVAs (Fig. 11). The proposed method with   = 0.4 performed slightly better 

than non-FIVAs (β = 0.5) in terms of  ,      ,      ,       and      , while the proposed algorithm with 

adaptive shape parameters yielded much lower   and higher      ,      ,       and      , compared to 

that using the fixed shape parameter   = 0.4. Collectively, these results suggest that the closer to ground 

truth the shape parameters, the better the IVA performance. A smaller change of shape parameter (0.4 vs. 

0.419 and 0.426) could cause significantly degraded estimates (e.g.,      ) for some subjects, resulting 

in greatly enlarged error rates. Therefore, it is necessary to learn SCV shape parameters to obtain efficient 

analyses for experimental complex-valued fMRI data. 

Ideally, an SCV consists of identical components from each subject, e.g., the same task-related 

components for 16 subjects without any inter-subject spatial variability. In this case, there is only 1 non-

zero eigenvalue for the covariance matrix    given in Eq. (9). Along this line, subspace de-noising 

actually removes the negative effect of inter-subject spatial variability, which can also be regarded as a 

kind of noise, on the nonlinear function. For experimental fMRI data, there is natural spatial variability 

among multiple subjects, and a dominant eigenvalue (much larger than other eigenvalues) exists for the 

correlation matrix of each SCV. Therefore, updating the nonlinearity in the dominant subspace not only 

represents SCV characteristics, but is also robust to large inter-subject variability. 

The noncircular characteristics of source signals for complex-valued fMRI data have been documented in 

multiple previous publications (Schreier et al., 2009; Schreier and Scharf, 2010; Lin et al., 2011), with 

consistency between ICA performance and the degree of noncircularity for fMRI sources (Lin et al., 

2011), i.e., the better the ICA estimates, the higher their degrees of noncircularity. This suggests that IVA 

algorithms that incorporate noncircularity for complex-valued fMRI sources could improve IVA 

performance. Our results for experimental fMRI data also verified the advantages of incorporating 

noncircularity into IVA: IVA algorithms using noncircularity were better than those considering only 

circularity (e.g., non-FIVAs vs. FIVAs, non-FIVA vs. FIVA). Since noisy voxels degrade the 



24 

 

noncircularity of an SM component, the proposed method promises to extract SM components with the 

least noise.  

Due to using adaptive shape parameters, a subspace de-noising strategy, and the noncircularity of fMRI 

sources, the proposed complex-valued IVA algorithm detected more contiguous and reasonable 

activations than the magnitude-only method for task-related (393%) and default mode (301%) SMs at |Z| 

≥ 2.5. This confirms the fact that phase fMRI data also include useful and unique brain information (Adali 

and Calhoun, 2007; Calhoun and Adali, 2012a, 2012b; Rodriguez et al., 2011, 2012; Li et al., 2010, 2011; 

Yu et al., 2015), and that complex-valued fMRI data can provide additional insights beyond magnitude-

only data. Furthermore, phase fMRI data have higher noise levels than magnitude-only fMRI data, and 

thus a de-noising stage is required for IVA of complex-valued fMRI data. We connected the phase de-

noising method (Yu et al., 2015) with our method to remove noisy voxels in SM estimates post IVA. 

Other candidates to accomplish this are pre-ICA de-noising methods such as quality map phase de-

noising (QMPD) (Rodriguez et al., 2011, 2012) or fast Fourier transform (FFT) filtering (Cong et al., 

2014; Kuang et al., 2016). When omitting the post-IVA phase de-noising, all       values of the IVA 

algorithms decreased, while the proposed method still provided the best performance for both simulated 

and experimental fMRI data. Therefore, the proposed method achieved superior separation performance 

compared to the other 5 IVA methods, regardless of whether or not they employed de-noising (pre- or 

post IVA).  

We applied magnitude computed motion correction and spatial normalization to the phase images for 

experimental fMRI data. An alternative approach is applying magnitude computed motion correction and 

spatial normalization to the real and imaginary images followed by recalculation of the magnitude and 

phase images. It should be noticed that, for echo planar imaging utilized in fMRI experiments, some 

physically principled techniques (Dymerska et al., 2016, Hahn et al., 2009) have been developed to 

address inhomogeneity in the static magnetic field, and to improve the quality of complex-valued fMRI 

data by reducing the noise effects from such as motion and respiration. These techniques deserve future 
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works to connect with our method for further improvements. In addition, we focused on task fMRI data in 

this study. Recently, IVA has found promising applications for resting-state fMRI data due to superior 

performance in capturing subject variability over group ICA (Ma et al., 2014; Laney et al., 2015a, 2015b; 

Gopal et al., 2015, 2016; Calhoun and Adali, 2016). In the future, we will extend the proposed method to 

analyze resting-state complex-valued fMRI data. Based on the capability of extracting additional brain 

information as compared to the magnitude-only approach, we believe that the proposed complex-valued 

IVA method could be better than real-valued IVA in capturing subject variability. 

6. Conclusions 

This study proposed a new adaptive complex-valued IVA algorithm to analyze multi-subject complex-

valued fMRI data. We proposed to use an MGGD-based nonlinear function with adaptively learned shape 

parameters to match varying SCV distributions, update the nonlinearity in the dominant SCV subspace to 

remove the effect of inter-subject spatial variability, and incorporate the pseudo-covariance matrix of 

fMRI data into the learning rule to emphasize the noncircularity of complex-valued fMRI sources. By 

utilizing a post-IVA phase de-noising method, we demonstrated, through experimental results of both 

simulated and experimental fMRI data, that the proposed approach was significantly better than typical 

complex-valued IVA algorithms (non-FIVAs, FIVAs, IVA-GL, non-FIVA, and FIVA). Our proposed 

method also extracted more contiguous and reasonable activations than the magnitude-only method IVA-

GL for task-related (393%) and default mode (301%) SMs. 
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Appendix A 

Derivation of   
   

Let (  
  )      ,1  ,   . We have        , because   

   is also a positive definite symmetric 

matrix. The left side of Eq. (11) in detail is as follows: 
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Meanwhile, we derive the right side of Eq. (11) as follows: 
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Connecting Eqs. (A.1) and (A.2), we have 
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and   
   given in Eq. (12) is thereby obtained. 
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Tables 

Table 1. T-values and p-values of paired t-test for evaluating the difference between the proposed 

approach and non-FIVAs, FIVAs, IVA-GL, non-FIVA, and FIVA, with noise influence (CNR = -10 dB 

to 10 dB) in terms of  ̅,  ̅    ,  ̅    ,  ̅    , and  ̅    , as displayed in Fig. 2. The minimal and maximal 

t-values and p-values were showed in boldface. 

    ̅  ̅      ̅      ̅      ̅     

Proposed vs. 

non-FIVAs 

t-values -17.29 9.74 7.87 12.28 8.86 

p-values 1.28e-7 1.03e-5 4.91e
-5

 1.79e-6 2.08e-5 

Proposed vs. 

FIVAs 

t-values -8.04 27.71 12.33 22.82 8.86 

p-values 4.22e-5 3.10e
-9

 1.75e-6 1.44e-8 2.08e-5 

Proposed vs. 

IVA-GL 

t-values -9.44 23.86 12.99 20.51 11.92 

p-values 1.30e-5 1.01e-8 1.17e-6 3.34e-8 2.25e-6 

Proposed vs. 

non-FIVA 

t-values -15.19 13.40 9.29 16.74 16.53 

p-values 3.49e-7 9.23e-7 1.47e-5 1.64e-7 1.81e-7 

Proposed vs. 

FIVA 

t-values -21.36 15.20 9.63 24.07 21.18 

p-values 2.43e-8 3.48e-7 1.12e-5 9.45e-9 2.59e-8 
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Figure Captions 

Figure 1. The mean correlations between SM components within an SCV (1) and between their 

corresponding TCs (2) for all 12 components. 

Figure 2. Comparison of noise influence (CNR = -10 dB to 10 dB) on the proposed approach, non-FIVAs, 

FIVAs, IVA-GL, non-FIVA, and FIVA, in terms of  ̅,  ̅    ,  ̅    ,  ̅    , and  ̅    , for simulated 

fMRI data. The means and standard deviations are shown. The true number of components N = 12 was 

utilized. 

Figure 3. Average shape parameters estimated by our proposed approach (over 20 runs) for simulated 

fMRI data with CNR = -5 dB, 0 dB, and 5 dB. The ground truth shape parameters are shown for 

comparison. 

Figure 4. Comparison of the proposed approach, non-FIVAs, FIVAs, IVA-GL, non-FIVA, and FIVA, for 

estimating all 12 components from 2 cases of simulated fMRI data: (A) CNR = 5dB; and (B) CNR = -5dB. 

(1)  . (2)      . (3)      . (4)      . (5)      . These results were averaged over 20 runs. The true 

number of components N = 12 for the simulated fMRI data was utilized. 

Figure 5. Comparison of the proposed approach, non-FIVAs, FIVAs, IVA-GL, non-FIVA, and FIVA, 

with different numbers of components N (from 10 to 15) for 2 cases: (A) CNR = 5dB; and (B) CNR = -

5dB. (1)   .̅ (2)  ̅    . (3)  ̅    . (4)  ̅    . (5)  ̅    . The means and standard deviations are shown. 

Figure 6. Effects of the number of components N (from 30 to 60) on the proposed approach, non-FIVAs, 

FIVAs, IVA-GL, non-FIVA, and FIVA for experimental fMRI data. (A) Results of the task-related 

component; (B) Results of the DMN component. (1)  . (2)      . (3)      . The means and standard 

deviations are shown. 

Figure 7. Effects of the number of components N (from 30 to 60) on the proposed approach, non-FIVAs, 

FIVAs, IVA-GL, non-FIVA, and FIVA, for the task-related TC estimates from experimental fMRI data. 

(1)      . (2)      . The means and standard deviations are shown. 
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Figure 8. Means and standard deviations of       and        (over 20 runs) for the task-related and 

DMN t-maps estimated by the proposed approach, non-FIVAs, FIVAs, IVA-GL, non-FIVA, and FIVA 

from experimental fMRI data and example t-maps. (A)      ; (B)      ; (C) The t-maps of task-related 

magnitudes and phases; (D) The t-maps of DMN magnitudes and phases. The t-maps were thresholded at 

p < 0.001 (t = 4.073; df = 15), and N = 50 was used. 

Figure 9. An example of estimated shape parameters for all 50 SCVs by the proposed approach from 

experimental fMRI data. 

Figure 10. Comparison of estimated magnitude SMs averaged across 16 subjects by the proposed 

approach (|Z| ≥ 0.5, N = 50) and magnitude-only IVA-GL (|Z| ≥ 2.5, N = 40) for experimental fMRI data. 

(A) Task-related component; (B) DMN component; (1) The proposed approach with      values; (2) 

Magnitude-only IVA-GL with       values. Subfigures (a), (b), and (c), display the total number of 

voxels, the number of voxels within and outside the GLM mask, and the number of voxels within and 

outside the DMN mask, respectively. 

Figure 11. Comparison of the proposed approach with adaptive shape parameters, the proposed approach 

with a fixed shape parameter     0.4, non-FIVAs (    0.5) in terms of  ,      , and       for task-

related and DMN components, and       and        for the task-related TCs. These results were 

averaged over 20 runs. The number of components N = 50 was utilized. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 

C. t-maps of task-related component
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Figure 9 
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Figure 10 
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Figure 11 
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