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SVAZEK 29 (1984) APLIKACE MATEMATIKY &isLo 4

FINITE ELEMENT APPROXIMATION FOR A DIV-ROT SYSTEM
WITH MIXED BOUNDARY CONDITIONS
IN NON-SMOOTH PLANE DOMAINS

MicHAL KRiZEK, PEKKA NEITTAANMAKI

(Received October 11, 1983)

1. INTRODUCTION

In this paper we are concerned with the mixed boundary value problem for the
following div-rot system:

(1.1) {divu =f in Q,

rotu=g in Q,

(1.2) n.u=0 on I,
nAu=0 on I,.

where Q is a bounded domain in R? with a Lipschitz boundary 0Q = I'y u I';y U I,
I'y is a finite set of points where one type of boundary conditions changes into another
and I'y, I', are disjoint and open in dQ. Functions f and g are given; for a differentiable
vector field u = (uy, u,), divu = dyu; + Oyu,, rot U = dyu, — d,uy; n = (ny, ny)
is the outward unit normal to 092, which exists almost everywhere, n.u = nu; +
+ NyUy, N A U = ngu, — nyuy If I = @ of I', = 0 the usual compatibility condi-
tion is assumed.

Many physically interesting phenomena can be described by a system like (1.1) to
(1.2) (e.g. the steady state Maxwell equations, the ideal fluid flow and mechanics
problems, see [2, 3, 5, 8, 11, 13, 14, 15, 16, 19, 217). Such a problem is also obtained
when the gradient of a second order elliptic problem with mixed Dirichlet and
Neumann boundary conditions is looked for. For an extensive collection of examples
we refer to [5, 15,19, 21] and references therein.

A finite element approximation of the system (1.1)—(1.2) in smooth domains for
Iy =0 (orI', = 0)is investigated in [3, 14, 18]. The aim of this paper is to generalize
these results to non-smooth domains and also to cover combined boundary conditions.
Because of non-smoothness, a technique quite different from that in [14, 18] is used
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to prove the V-ellipticity or uniform V, — ellipticity (see Theorems 3.1 and 4.3).
We utilize the concept of a stream function ([ 6]). The paper is organized as follows:

In Chapter 2 we introduce some special function spaces. A variational formulation
of the problem (1.1)—(1.2) is given in Chapter 3 and its solvability is proved for
I'y and I', connected. Chapter 4 contains a finite element approximation of the
corresponding variational continuous problem. Finally, in Chapter 5 some numerical
examples are presented.

2. PRELIMINARIES

Let Q < R* be a bounded domain with a Lipschitz boundary. The notation HY(Q),
k > 0, is used for the Sobo'ev space, see [12]; especially I*(Q) = H°(Q) with the
scalar product (-, *)o. The usual norm in H¥(Q) or in (H*())* will be denoted by
[ ], and the subscript Q will often be omitted. We shall also denote by | +[|.r
the norm in I*(I') for a measurable part I' of Q. The notation H'/(I') is used
for the space of traces ‘Plr for p € H'(Q).

Let C*(Q) be the space of functions, the (classical) derivatives of which up to order
k are continuous in Q. We write ; = d/dx; and put C(Q) = C°(Q).

We note (see [6], p. 16) that the functional vi— n , vlm defined on (C*(R))* can
be extended by continuity to a linear continuous mapping from the space

H(div; Q) = {ve (X(Q))* | div v e X(Q)}

into H™'/%(9Q), which is the dual space to the space H'/?(0Q). In this case, the Green
formula is of the form

(2.1)  (divv,@)o + (v, grad )y = <n.v, 9>, Vve H(div; Q) Voe H'(Q).

Here <, *);o denotes the duality pairing between H™'?*(0Q) and H'/*(0Q), and
n . v is called the normal component of v. In particular, if n . v|,q € I?(0Q) then

(2.2) dn .V, @) = f (n.v)pds VoeH Q).

02

The tangential component n A ve H™'/%(0Q) can be defined (see also [6], p. 20)
for v from the space

H(rot; Q) = {v e (I*(Q))* | rot v e I*(Q)} .
The Green formula now reads
(23)  (rot v, p)o — (v,curl @) = (n A v, 9D,y Vve H(rot; Q) Voe H'(Q),

where curl ¢ = (9,9, —0,¢). More details about the spaces H(div; ) and H(rot; Q)
can be found in [6, 10, 11, 20]. Further, we define some subspaces of these spaces
in the following way:
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H(div; Q,Iy) = {ve (I¥(Q))*| e Q) : (v, grad )y = (—F, ¥)o
Ve HY(Q, I,)},

H(rot; Q,T,) = {ve (I}Q))* |35 € IX(Q) : (v, curl 9), =

=(g,0)0 VoeH(Q,T,)},
where
H'(Q,I')={pecH'(Q)|¢p=0o0nT}, i=1,2.
The functions f and g are the divergence and rotation of v, respectively. Note that
if ve H(div; Q, I'y) n (H'(Q))?, then n.v = 0 on I';, and analogously n A v = 0
on I', for ve H(rot; 2, I',)) n (H'(2))>.
The symbols C, Cy, C,, ... are reserved for the so-called generic constants which

may vary with context. Let us still emphasize that all statements will always hold
only for a sufficiently small triangulation parameter h.

3. ON THE CONTINUOUS PROBLEM

We shall now give a variational formulation of the problem (1.1)—(1.2). We
equip the space
" = H(div; Q) n H(rot; Q)
with the norm
1= (115 + Ndiv -3 + [rot - [5)2.
For f, g € I*(Q) we define the linear form

(3.1) b(v) = (f,divv)y + (g9, r0tv)y, ve¥,

and the bilinear form

(3.2) a(v,v') = (divv,divv'), + (rotv,rotv'),, v,v'€¥ .
Further, let us introduce the space of trial functions

V = H(div; Q,I';) n H(rot; Q, I',)
with the norm [||+]||.
By a (weak) variational formulation of the problem (1.1)—(1.2) we understand
the problem of finding u € V which satisfies

(3.3) a(u,v) = b(v) forall veV.

We shall call u the weak solution of the problem (1.1)—(1.2), since evidently
any sufficiently smooth u satisfies also (3.3). Conversely, any sufficiently smooth
solution ue ¥ of (3.3) satisfies (1.1)—(1.2), too (see the proof of Theorem 4.6).
Before we consider the unique solvability of (3.3) we have to prove two theorems.
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Theorem 3.1. Let Q = R? be a bounded domain with a Lipschitz boundary. Then
(3.4) [vlo = C(|div v|o + [rotv[o) forall veV,
if and only if I'y and ', are connected.

Proof. ““="": 1° Suppose that I'; is not connected and let I'| be one of its compo-
nents. Let

(3.5) v =curl z,
where z € H'(Q) is a weak solution of the following problem:

(3.6) Az =0 in Q,

’

z=1 on I,
’

z=0 on I'y—-1T7,

0,z=0 on I,,

(0, = 0on). We show that in this case v does not satisfy (3.4) by verifying first that
veV.

For the unit tangent t = (n,, —n,) to 0Q we write 3, = 9/ot. Let Y € H'(Q, I',) n
N C”(Q) be arbitrary. Since y = 0 on I',, we have by (3.5), (3.6) and by the Green
formula (2.3) that
(3.7) (v, grad y), = (curl z, grad /), = —J z(n A grad ) ds =

2

=J z@,tﬁds=f 0.\ ds .
2 ryr

But the last integral is zero, since either I'{ is a closed curve or y = 0 at the end
points of I';. According to [4], p. 618, H'(Q, I';,) n C*(®Q) is dense in H'(Q, I',)
with respect to the |[+]|; — norm. Consequently, the relation (3.7) yields
(3.8) (v,grad y), =0 Vye H(Q,T,),
ie. ve H(div; Q,T).

Further, using (3.5) and the fact that z is a weak solution of (3.6), we get
(3.9) (v, curl @), = (curl z, curl ¢), = (grad z, grad @), = 0
for all g e H'(Q, I'y), i.e. v e H(rot; 2, I',).

Now, from (3.8), (3.9) and (3.6) we find that div v = rot v = 0in @, but ||v|, # 0,
i.e. (3.4) does not hold.

2° Secondly, we suppose that I', is not connected and that I'; is one of its compo-

nents. Then by an analogous argument as in past 1°, it can be shown that (3.4)
does not hold for v = grad z, where z € H'(Q) is the weak solution of the problem

Az =0 in Q,
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0,z=0 on Iy,
z=1 on TIY,

z=0 on I,—1T}.

“<=": Conversely, let I'; and I', be connected. Both the cases I'y = @ and I', = §
are proved in [10]. Solet I'y & @, I', + 0, and let v € V be arbitrary. Let p e HY(Q, I',)
be a weak solution of the problem
(3.10) Ap =divv in Q,

' op=0 on I,
p=0on I,.

Hence

(3.11) (grad p, grad ¥), = (—divv,¥), Ve H'(Q,TI,)
and

(3.12) Ip]: = Cfdiv vl .

Utilizing (3.11) and the definition of H(div; Q, I',), we get for w = v — grad p that
(3.13) (w,grad y), =0 Vye H(Q,I,),

i.e. the vector function w is divergence-free.
Further, let ¢ € H'(Q, I';) n C*(Q) be arbitrary. Then the Green formula (2.1)
and (2.2) yields

(grad p, curl @), = f

[3l9}

p(n . curl p)ds = —f Popds =0,

o0
as p=0onTI, and ¢ =0 on I';. Due to the density of H'(Q,I'{) n C*(2) in
H'(Q, I'y) we get

(3.14) (grad p,curl @) =0 Voe HY(Q,I).

Next, from the connectivity of I'; and I', we see that Q is either simply connected
or doubly connected. When @ is doubly connected, then I'; is just one of the two
components of 0Q and we have

(3.15) n.w=0 in H YT,

(H~'*(T,) is the dual space to H'/*(I';), see [6, 9]). As w is divergence-free we find
by the Green formula (2.1) that <{n.w, 1>,;, = 0. Consequently, by (3.15) it also
holds that {n.w, 1>, = 0, where (-, >, denotes the duality pairling between
H~Y*(I,)and HY*(T,).

By [6], p. 22, there exists a stream function g € H'(Q) (unique apart from an
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additive constant, which will be chosen later) such that
(3.16) curl ¢ = w(=v — grad p).
The relations (3.13), (3.16) and (2.3) imply that for any y € H'(Q,T',) n C*(9),

0 = (curl g, grad ¥), = —(curl ¥, grad q), = f Y o.qds,
Iy

asy = 0on I',. Thus g € H'(Q, I';) is constant on (connected) I'; and we can choose
g tobezeroonI'y,ie qge H'(Q,T).
By (3.16), (3.14) and by the definition of H(rot; 2, I';) we obtain

(erad g, grad @), = (curl ¢, curl ) = (w, curl p), =

= (v — grad p, curl @), = (v, curl ¢), = (rotv, ¢),
forall p € H(Q, I'y), i.e. g € H'(Q, I'y) is a weak solution of the problem
(3.17) —Aq =rotv in Q,

=0 on I,

0,q =0 on I',,
and

(3.18) la]s < Cyfrotv],.
Finally, (3.16), (3.12) and (3.18) imply
vl = Jerad plo + eurt afo < C(ldiv v, + Jrot v]). 0
Convention. 3.2. For simplicity we suppose from now on that I'j and I', are
connected.
Remark. 3.3. By Theorem 3.2 the bilinear form (3.2) is a scalar product in ¥ and

Ja(v, v) is equivalent to the norm [||v]]/, i.e.

(3.19) Cvi|* £ a(v,v) = ||Vl veV.

Theorem 3.4. The space V equipped with the scalar product a(-, ) is a Hilbert
space.

Proof. Let {v,} = ¥ be a Cauchy sequence. One sees by Theorem 3.1 that v,
converges to a function v e (I*(Q))* in the | +||o-norm. Evidently also div v, converges
to some f e I*(Q). Hence,

(diV Yis ‘p)o - (fa lp)o Yy e Hl(ga Tz) s
(vi, grad ¥), — (v, grad ), V¢ e HY(Q, I',) .
By the definition of H(div; 2, I';) we see that v e H(div; Q, I';) with div v = f.
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Analogously, it can be verified that v e H(rot; Q, I';). O

Due to the Riesz theorem, the foregoing theorem and (3.19), we come to the
following assertion.

Corollary 3.4. The problem (3.3) has a unique solution.

Remark. 3.5. Assuming the H?-regularity for the problems (3.10) and (3.17) we
can derive from (3.16) the so-called Friedrichs inequality:

(3:20) Ivl: = ¢(|divv|o + |rotv]o) forall veV.

Sufficient conditions for the H?-regularity of the mixed problem (3.10) in polygonal
domains can be found e.g. in [7], p. 210. In [10] necessary and sufficient conditions
for the validity of (3.20) are given in the case I'; = @ or I', = 0.

4. ON THE DISCRETE PROBLEM

We suppose that 0Q is piecewise twice differentiable and has a finite number
of corners. By {9’,,} we denote a strongly regular family or triangulations of @ : Q@ =
= UK, i.e. {7} satisfies the inverse assumption (see [2], p. 140). Here h is the usual

KeJpn
discretization parameter. Further, we assume that the common sides of neighbouring
triangles of 7, are always straight segments, while the other sides are in general
curved (i.e. they coincide with the corresponding parts of the boundary 082). More-
over, let the interior of any side of K € 77, be disjoint with I'; n I, (the so-called
consistence condition).

Let Z; be the set of all nodal points of 77, lying on I'; (i = 1,2). Let Z be the
union of I'y and all corner points dQ and let Z = Z\{x eI, | the tangents to I,
and to I', are perpendicular at x}.

We define finite element subspaces 77, V, = (H'(2))?, by

(4.1) V= {ve(C(Q)) |v|c e (Py(K))* VK e T},
Vi={ve?,|v(x)=0VxeZ (n.v)(x)=0
VxeZ,\NZ, (nAv)(x)=0VYxeZ;\Z}.

Here P,(K) denotes the space of polynomials on K of degree at most one. Thus, ¥,
consists of piecewise linear continuous vector fields satisfying only pointwise the
boundary conditions. Consequently, we get the inclusion V;, < Vif and only if Q is
polygonal, i.e. the following finite element approximation of the problem (3.3) will
be conforming just for polygonal domains.

Find u, € ¥, such that

(4.2) a(uy, v4) = b(v,) Vv, eV,

where a and b are defined by (3.2) and (3.1), respectively.
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A Dbasis of V, can be constructed as follows. Let Py, ..., P, be the interior nodal

points of I, let Py, 4, ..., P4, be the nodal points of I'y \Z, and let P,y q, ...

.., P, 14w be the nodal points of I', \ Z. Further, let ¢; be the usual Courant
tetrafunctions such that

oP)=290;, L,Li=1,..,k+1+m.
Then obviously
{((pi: 0)}?:1 Y {(0, (Pi)},ic=1 Y {t(Pi) O Y {n(Pi) QT
form a basis in ¥}, and this is just the basis used in Chap. 5.

Concerning the unique solvability of the problem (4.2), we first prove an auxiliary
lemma.

Lemma 4.1. Let v, €77, and let div v, = rotv, = 0. Then v, is from (P{(Q))
and has the form

(4.3) vi(x) = (ax; + Bxy + p, Bxy — ax, + 8), x = (x1. x,) € 2,
where a, f, 7y, 6 € RL.

Proof. Let the assumptions of the lemma be satisfied and let K, K' € 7, be two
neighbouring triangles. Then evidently v, is on K and K’ of the form

(4.4) vh\K(x) = (axy + Bxy + v, Bxy — ax, + 9),

Vilk(X) = ('x; + B'xy + ¥, fxy — o'xy + 8).

We distinguish the following two cases:
1) Let the common side S of the triangles K and K’ coincide with the line x, =

= kx; + q. From (4.4) and from the continuity of v, on S, one gets

axy + Pkxy + pg +y =o&'xy + fkxy + g+,

px, — akx, —aq + 0 = f'x; — d'kxy + o'q + 6",
which implies

«—o =k(f —p) and p— f = k(e — o),

ie.a=o and f = .

2) Let S = K n K’ coincide with the line x; = const., then by (4.4) we see that
o =o and f = f'.
Further, from (4.4) and the continuity of v, we get also y = " and 6 = ¢'. O

Theorem 4.2. If card (Z) > 1, then the discrete problem (4.2) always has a unique
solution.
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Proof. We prove that a(-, +)is a scalar product on ¥,. Then the unique solvability
of the problem (4.2) will follow from the Riesz theorem.

So let a(v,, v;) = 0 for some v, € V,. Thus, (4.3) and (4.1) yield

vl = (Z _ﬁ) @) + @ —0 Vx=(x,x)eZ.

Since card (Z) > 1, the matrix of this system is singular and, therefore, & = = 0
and consequently also y = 6 = 0. Hence, v, = 0. O

In the case card (Z) < 1, itis easy to give an example when (4.2) has more solutions.
Fortunately, it results from the following theorem that (4.2) has a unique solution
at least for sufficiently small h.

Theorem 4.3. For sufficiently small h, the bilinear form a(+,*) is uniformly
V,-elliptic (with respect to h), i.e. there exist constants C > 0 and hy, > 0 such that
for any T, with h e (0, hy),

(4.5) a(v, vi) = Cl[v||*? Vv, eV,.

The proof is based on the following two lemmas.

Lemma 4.4, There exists a constant C > 0 such that

(4.6) M < alvv) + v

EN N LA
for all v e (H'(Q)).

Proof. We can proceed in the way analogous to that adopted in the proof of
Theorem 3.1. Let v e (H'())* be given. Instead of (3.10) and (3.17) we have

Adp =divv in Q, —A4q =rotv in Q,
p=20 on I',, and q=0 on Iy,
d,p=n.v on I, 0,g=nAvon I,,

respectively. Hence,

Ip]1.0 = Ci(|divv]oe + [n.v]or,),
la]l1,0 £ Caof|rot vifo,o + [0 A v]or,)

Finally, the assertion follows from the representation v = grad p + curl q as in the
proof of Theorem 3.1. O

According to the pointwise boundary conditions of v, € ¥V}, on piecewise smooth
Iy and I',, the last two terms in (4.6) vanish for h — 0. This can be proved in a way
similar to [17].
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Lemma 4.5. There exists a constant C > 0 such that

[n.v,

oy F [0 A vilSir, < Chlv,3 0
for all vy e Vy and for all sufficiently small h > 0,

Proof. Let v, eV, be given, let P, and P;,, be two neighbouring nodes of I',
and let I'; be an arc (of the class ¥¥) between them. As (n A v,)(P;) = 0 and
(n A v,)(Pis1) = 0, we have (see [17], p. 23)

(4.7) |(n A v,) (x)| = Ch*(|vi(x)| + |Vviu(x)|)

for all x € I'}, where the constant C; > 0 depends only on 4R, and Vv, denotes

the matrix of the first partial derivatives of v,, and I | is the Euclidean norm.
Similarly, on every arc I'{ between two neighbouring nodal points of T, we have

9 (0. ) (] = Cal ()] + [V
for all x e I'L.
Now by (4.7), (4.8) and by the trace theorem

(49) [nvillo.r, + lIm A vilr, =

= C3h4f (IVh|2 + IVVII‘Z) ds = C4h4|[Vth,9 + C5h3”VVh“(2J,Qh0 )
a0

where Q) = U{K € 7,|K n 9Q =+ 0}. For estimating the term [, |Vv,|? ds in (4.9),
the linearity of v,|x, K€ 7, and the fact that meas (K n 0Q)/meas K = O(h™?)
was utilized.

The inverse property (see [2], p. 142) for the finite elements says

(4.10) Vill1,0 £ Ch™Y||vi]lo,e forall v,eV,.
Finally, a combination of (4.9) and (4.10) gives the assertion of the lemma. |

Now, the proof of Theorem 4.3 immediately follows from Lemmas 4.4 and 4.5.
Finally, we shall consider the rate of convergence of the discrete solutions.

Theorem 4.6, For ue(H'**(Q))*, 0 < ¢ =< 1, the difference u — u, fulfils the
inequality
llu — ull| = Chfluly4, .

Proof. Let & e I>(Q) ((®, 1), = 0 in the case I', = §) be arbitrary and let e
€ H'(Q, T',) be a weak solution of the problem:

divgradyy = @ in Q,
oWw=0 on I,
l// = 0 on Fz .
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Putting v = grad i, we get by (3.3) that (note that rot grad = 0)
(div u, @), = (div u, div v), = a(u, v) = b(v) = (f, divv), = (f, D), ,
ie. divu = fin I*(Q). Analogously, we find that (3.3) implies rot u = g in I*(Q).
Consequently, we have a(u, v) = b(v) for all v e (H'(2))? and in particular,
a(u,v,) = b(v,) Vv, e¥V,.
Applying the second Strang lemma ([2], p. 210), we obtain

[lu —wu)| £ C, 1an|u —vllgc in£ [u = v < Cob°||uys,,

where C,, C, do not depend on I and where the last estimate follows from the
well-known results for finite elements by the interpolation properties of Sobolev

spaces (see e.g. [1], p. 10). d

Remark 4.7. If V  (C™(@))* is dense in V with respect to the |||+|||-norm, using
a standard technique we get

(4.11) lu— )| >0 for h—0.

In [8] it is proved that V n (H'(Q))* contains a dense subset (in the H 1-’copology)
of infinitely differentiable functions for I'; = . Thus in this case, (4.11) holds for
ue (H'(Q))*. Let us still note that under some regularity assumptions it can be
proved (see [8]) for I'y = @ that |u — u,|, = O(h?).

5. NUMERICAL TESTS

The method given above was tested in different geometries. In the following,
three test examples are presented. The authors are indebted to Mr. M. Kénkkola
fot his help in carrying out the computions connected with these examples.

Example 5.1. Let Q = (0, 1) x (0,1) and Ty = {xeR*|0 < x, < 1,x, = 0},
I', = 0Q\T;. For f(x) = —2n?sin nx, cos (7 x,/2), g(x) = 1 the weak solution
of the system (1.1)—(1.2) is u(x) = n(cos mx; cos (m X,(2) + 1 — x5, —%sinmx, .
. sin (@ x,/2)). The values of the error u — u,, in various norms are shown in Table 5.1.

Table 5.1 Errors in Example 5.1.

h H"" “hHo [l — "h||| ||”‘ "1:”1
1/2 7982582 5-2197511 7-1782787
1/4 1616543 27678407 3-7882521
1/8 -0386592 1-4152033 1-9233271
1/16 -0096729 +7070499 9618257
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From Table 5.1 it can be seen that in the | +|/o-norm the convergence is quadratic
whereas in the ||| +||[-norm or ||+||,-norm it is linear.

Example 5.2. Let Q = {xeﬁ”zlxi" +x3<1, x>0}, I'y = {xelR’Zl -1 <
<xy <1, x, =0}, I'y = 0Q\T,. For f(x) = 8x,, g(x) = 0, the weak solution
of the system (1.1)—(1.2) is

u(x) = (3x7 + x3 — 1, 2x,x,).

Table 5.2, Errors in Example 5.2.

h lu—ufo  [lu— ] lu—wl,
172 3116610 27396820 37690384
1/4 0897454 15784481 2-0048463
1/8 0232356 8303512 10189380
116 0058458 4234565 5121525

In Table 5.2 we find that the results are analogous to the first test example. Due
to (3.20), the norms [|+||| and ||+||, are equivalent in both the test examples.
Example 5.3. Consider the problem
(5.1) Adp=f in Q,
p=0 on 0Q,
where Q = {xe R* | x} + x; < N{xeR*|x, 2 0,x, < 0},
(5.2) J(x1, x2) = f(r, ) = 5(77r — 32)sin 3¢ € I}(Q),

and where (r, @) are the usual polar coordinates. The weak solution pe H'(Q)
of (5.1) is of the form

p(x1,x5) = p(r, ) = (r* — r?)sin ¢ .
It is easy to verify that u = grad pe V,

u(xy, x;) = u(r; @) = (3(r — r?)sin 39 + g (7r — 4)sin 3¢ cos ¢ ,

3(r* = r) cos g + g (7r — 4)sin 3¢ sin @),

is the solution of the system (1.1)—(1.2) for I', = 08, g = 0 and for f given by (5.2).

In the calculation of the approximation for solution u of (1.1)—(1.2), the initial
triangulation of Q with h = | [2 containing 12 elements was chosen. Refinements
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were carried out three times. The finite element mesh of Q for h = 1/8 and the
corresponding solution u, can be seen in Figure 5.3.
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Fig. 5.3. Finite element mesh of 2 and the corresponding solution wuy, for i = 1/8.
The values of errors in different norms are listed in Table 5.4.

Table 5.4. Errors in Example 5.3.

h lu—wlo  Mu—wlll o=
12 1472717 1961004 3-054758
1/4 0319256 11142105 1775036
1/8 0097791 622665 962657
116 -0036453 330447 510507

The above results confirm the theoretical accuracy.
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Souhrn

APROXIMACE KONECNYMI PRVKY DIV-ROT SYSTEMU
S KOMBINOVANYMI OKRAJOVYMI PODMINKAMI
NA NEHLADKYCH OBLASTECH

MicHAL KikiZEK, PEKKA NEITTAANMAKI

Na rovinnych omezenych oblastech s po ¢astech hladkou hranici je vySetfovana
metoda koneénych prvkid pro feSeni div-rot systému (1.1) s kombinovanymi okrajo-
vymi podminkami (1.2). Je dokdzéna jednoznagn feitelnost variacni Glohy (1.1) az
(1.2) i jeji diskrétni aproximace opirajici se o linedrni prvky. Déle jsou odvozeny
aproxima&ni vlastnosti této metody, které jsou ilustrovany tfemi testovacimi pfiklady.

Author’s addresses: RNDr. Michal Kiizek, CSc., Matematicky tstav CSAV, Zitn4 25, 115 67
Praha 1, Czechoslovakia, Assoc. Prof. Pekka Neittaanmdki, Department of Physics and Mathe-
matics, Lappeenranta University of Technology, Box 20, 538 51 Lappeenranta 85, Finland.

285



