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Device-to-Device Underlay Cellular Networks

Using Matching Theory
Chen Xu, Member, IEEE, Caixia Gao, Zhenyu Zhou, Member, IEEE,

Zheng Chang, Member, IEEE, Yunjian Jia, Member, IEEE

Abstract—With the popularity of social network-based ser-
vices, the unprecedented growth of mobile date traffic has
brought a heavy burden on the traditional cellular networks.
Device-to-device (D2D) communication, as a promising solution
to overcome wireless spectrum crisis, can enable fast content
delivery based on user activities in social networks. In this paper,
we address the content delivery problem related to optimization
of peer discovery and resource allocation by combining both the
social and physical layer information in D2D underlay networks.
The social relationship, which is modeled as the probability of
selecting similar contents and estimated by using the Bayesian
nonparametric models, is used as a weight to characterize the
impact of social features on D2D pair formation and content
sharing. Next, we propose a three-dimensional iterative matching
algorithm to maximize the sum rate of D2D pairs weighted by
the intensity of social relationships while guaranteeing the quality
of service (QoS) requirements of both cellular and D2D links
simultaneously. Moreover, we prove that the proposed algorithm
converges to a stable matching and is weak Pareto optimal,
and also provide the theoretical complexity. Simulation results
show that the algorithm is able to achieve more than 90% of
the optimum performance with a computation complexity one
thousand times lower than the exhaustive matching algorithm.
It is also demonstrated that the satisfaction performance of D2D
receivers can be increased significantly by incorporating social
relationships into the resource allocation design.

Index Terms—social network, device-to-device communication,
content delivery, Bayesian nonparametric models, matching the-
ory.

I. INTRODUCTION

A. Background and Motivation

W ITH the popularity of high-performance intelligent ter-
minals and the emergence of new mobile multimedia
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services, the demand on wireless high data rate has been grow-
ing continuously [1]. The contradiction between the growing
service demands of users and the limited network bandwidth
has become increasingly prominent [2]. The existing wireless
network architecture needs to be upgraded [3].

Researchers in academia and industry therefore attempt to
explore new valuable communication technologies that can im-
prove the system capacity by spectrum reuse. Device-to-device
(D2D) communication, as one of the key solutions for future
5G system, allows mobile devices to transmit data signals
over local peer-to-peer links instead of through a traditional
infrastructure, i.e., the base station (BS) of cellular network.
By reusing cellular spectrum resources under the control of
the BS, D2D communication can dramatically increase the
spectrum efficiency and network capacity [4], [5]. Moreover,
because of the proximity effect of direct connections, D2D is
expected to enhance the data transmission rates and promote
new applications [6], [7].

According to the analytical data results [1], a large amount
of data traffic is generated from hotspots, where the distribu-
tion of mobile users is extremely dense, such as a subway
train, a concert hall, and other public places. From another
perspective, the users located in the hotspots may have “rela-
tionships” with other ones, which can be obtained from their
social data on the social platforms. The social relationship,
generally speaking, includes real friend relations and virtual
relations associated with interests in similar contents. In prac-
tice, multiple users may request for the same content, while
the BS has to transmit the content to these users by multiple
repeated transmissions in the traditional way. For this case,
it is reasonable to apply D2D technique to push or share the
same content from the content holder to users with tight social
relationships. It is worth noting that the appropriate cellular
spectrum resources need to be reused by the D2D links. As
a result, the heavy data traffic is offloaded from the cellular
infrastructure, and at the same time the spectrum efficiency is
increased.

There exist some works on cellular data offloading by
integrating D2D communications with social networks [8]–
[11]. In such a scenario, the BS pushes the content to a set
of seed users, who then transmit the content to other users
in proximity by D2D links. The relationships between the
seed and non-seed users are defined as “social ties”, which
reflect the similarity of users’ preferences on the content. The
core objective is to spread the popular content in as short a



IEEE ACCESS 2

time period as possible. However, in practice, there is another
situation that users in the hotspots may not be interested in
the same content. For instance, two passengers on a subway
train are using Facebook to browse pictures posted by their
mutual friend, while another passenger has just downloaded
a video that other passengers around him may be interested
in. Therefore, in order to implement effective content delivery
and achieve good user satisfactions, it is necessary to consider
the different preferences of users on the contents based on
historical data obtained from the social platforms.

The above consideration brings challenges to the system.
First, the social relationships that reflect the close degree of
users, i.e., the consistency degree of preferences on similar
contents, are required for determining the transmitter and
receiver of D2D communication, which can be regarded as a
process of peer discovery. Second, since the D2D transmitters
push contents to the receivers by reusing the cellular spectrum,
the co-channel interference cannot be ignored, which requires
an efficient resource management to optimize the system
performance and guarantee the quality of service (QoS) as
well. Combining these two aspects, the strategy of content
delivery should consider the system status information from
both social layer and physical layer. On the one side, the
content delivered to the user is expected to be what he just
wants; on the other side, the reused spectrum is hoped to be
the best choice for maximizing the system sum rate.

B. Contributions

In this paper, in order to implement effective content deliv-
ery, we study a joint peer discovery and resource allocation ap-
proach, with the objective of maximizing the system sum rate
weighted by the intensity of users’ social relationships, and at
the same time guaranteeing the QoS of both cellular and D2D
links. Due to the uncontrollability and uncertainty of users’
activities in social network [12], we utilize the probabilities of
selecting similar contents, which can be estimated by Bayesian
nonparametric models [13], to obtain the social relationships
among users. Considering the different preferences of users
on the contents and spectrum resources, we focus on solving
the joint optimization problem by matching theory [14], which
attempts to describe the formation of mutually beneficial rela-
tionships. Some works have already employed matching theory
to allocate limited resources to users that maximize resource
efficiency [15]–[18], and some works have proposed energy-
efficient resource management schemes based on matching
theory for D2D communications [19], [20]. Note that in
our problem, the matching between D2D transmitters and
receivers, and the matching between D2D pairs and resource
blocks (RBs), should be jointly considered. Thus, we propose a
three-dimensional matching process to achieve the coordinated
allocation of users, contents, and spectrum resources, based
on the social layer and phasical layer information. The main
contributions of this paper are summarized as follows:

• We propose a social network-based content delivery
approach to offload the cellular data traffic by D2D
links. Specifically, we define the intensity of two users’
social relationship as the normalized correlation of the

probabilities of selecting similar contents that estimated
by the Bayesian nonparametric models. Moreover, a joint
peer discovery and spectrum resource allocation problem,
which involves the matching between content providers
(transmitters) and content consumers (receivers), and the
matching between D2D links and spectrum resources,
respectively, is proposed and formulated as a three-
dimensional matching that maximizes the system sum
rate weighted by the intensity of social relationships.

• Due to its combinatorial nature, the joint allocation prob-
lem is intractable and belongs to the class of NP-hard
problems. We simplify the problem based on pricing strat-
egy and give a sub-optimal solution, which can approach
the performance of the exhaustive optimal algorithm
with a much lower complexity. First, we transform the
three-dimensional matching into a two-sided matching, in
which the preference lists of transmitters from one side
over the combinations of receivers and resources from
the other side are established based on the achievable
weighted rates. Then we introduce a pricing strategy
to decide the winner when more than one transmitter
propose towards the same combination. In the algorithm,
we also consider the power control for D2D transmissions
to avoid excessive interference to cellular users.

• The properties of the proposed three-dimensional match-
ing algorithm including convergence, stability, optimality
and complexity are analyzed theoretically. In the simula-
tion, we compare the proposed matching algorithm with
the exhaustive optimal and random matching algorithm
in terms of the achieved weighted sum rate for D2D
communications under different scenarios. Numerical re-
sults show that our proposed scheme can achieve a
considerable performance gain, and the satisfactions of
users on the shared contents are substantially improved
with the consideration of social relationships.

The rest of this paper is organized as follows. In Section II,
we provide a brief review of the related works. The system
model consisting of physical layer and social layer is given
in Section III, and the formulation of the social network-
based content delivery problem is introduced in Section IV.
Section V describes the three-dimensional matching algorithm
with relevant theoretical concepts and analysis. The simulation
results and discussions are presented in Section VI. Finally, we
conclude the paper in Section VII.

II. RELATED WORKS

Our previous works mainly focused on the resource al-
location problem and provided a theoretical analysis on the
tradeoff between energy efficiency and spectrum efficiency
[21], [22]. However, the peer discovery problem has not
been taken into consideration. In comparison, this paper aims
to solve the joint peer discovery and resource allocation
problem with power control in D2D communications under-
laying cellular networks by exploring both social and physical
layer information. Utilizing the location information of users,
a centralized D2D discovery scheme, which can adaptive-
ly allocate resource blocks for the discovery to avoid the
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underutilization of spectrum resources based on the random
access procedure in LTE-A system, was proposed in [23].
In [24], the authors proposed a social-aware peer discovery
scheme for D2D communications based on an established
paradigm, in which mobile users are divided into groups by
utilizing the social domain information including location,
interest and background. A code-based discovery protocol
that studied in [25] utilizes the discovery code containing
the compressed information of mobile applications to find the
nearby devices that have interests on the mobile applications,
and thus to realize proximity-based services. The above works
mainly solve the peer discovery issue of D2D communications
considering physical location information, social information
or interests on mobile applications, etc.

In addition, social information in social network is utilized
to enhance various performance metrics of D2D communi-
cations. For instance, clustering schemes with an admission
policy were proposed to increase system rate in [26] with
consideration of social interaction. While in [27], it was
proposed to improve the system throughput and energy effi-
ciency based on the Chinese Restaurant Process (CRP). Mode
selection of content downloading for D2D users and relay
selection for social-trust-based and social-reciprocity-based
cooperative D2D communications were studied in [8] and [28],
respectively. Sharing strategies utilizing social relationship
were proposed in [9] and [10] with consideration of minimum
delay and formation of a practical network, respectively.

Besides, resource allocation issue for D2D pairs with con-
sideration of the social relationship were studied in different s-
cenarios, such as a single community in [29]–[31], cooperative
communities in [32] and a slotted system in [33]. In a single
community, D2D pairs can simply reuse the RBs occupied by
the cellular users that are in the same community. While in the
scenario of cooperative communities, D2D pairs can reuse the
RBs of the cellular users that are in the community coalition,
namely the aggregation of the cooperative communities. Due
to the human mobility in a slotted system, a D2D link can
be considered for resource allocation only when the two users
encounter and the contact time is long enough to complete
a meaningful transmission. Focus on different methods, the
allocation of RBs to D2D pairs was solved using the matching
game in [29], two-step coalitional game in [32] and other
maximization games in [30]–[33] with different objective
functions. Resource allocation problem can be modeled as a
two-sided matching problem using matching theory. Such that
the problem is formulated as a matching game in which D2D
pairs and RBs rank one another based on the utility functions
that consider both physical and social metrics in [29]. Also,
matching theory has been utilized to solve resource allocation
problems considering two-dimensional matching with mutual
preferences in D2D communications [20], [34], heterogeneous
cellular networks [15], [17], cognitive radios [16], and etc.

However, the previous works have not employed social
information to solve the joint peer discovery and resource al-
location problem, which actually involves a three-dimensional
matching among D2D transmitters, D2D receivers and RBs in
the content delivery process.

Fig. 1. System model of social network-based content delivery in D2D
underlay cellular networks.

III. SYSTEM MODEL

We consider a cellular network with one BS and multiple
users involving traditional cellular user equipments (CUEs)
and potential D2D pairs. Each user can receive data from either
the BS, or another user through potential D2D links. In this
paper, the mode selection problem is left out of consideration,
and thus we assume that there exist some users satisfying
the physical requirement of D2D, such as the constraint of
transmission distance. Once it is found that two users can
be matched to form a D2D pair, the content holder transmits
signals to the requester. Here, we focus on two key problems:
1) How to match the content transmitter (TX) with the receiver
(RX) so that the RX would be satisfied with the received
content; 2) How to design an efficient resource allocation
scheme for D2D pairs to maximize the system performance.

An illustration of social-aware D2D underlay network is
shown in Fig. 1. The architecture can be divided into two
layers consisting of social layer and physical layer. In the
social layer, users’ behaviors in social network reflect their
real social connections, which can be obtained from social
platforms, such as Microblog, Facebook, Twitter, etc. Thus,
we can derive the real close degree of user relationships by
exploring their behaviors in such platforms. In the physical
layer, the establishment of D2D links are mainly determined
by transmission distance between two mobile nodes, namely
smart terminals, such as smartphones and tablets. For each
user in the social layer, there exists a corresponding terminal
in the physical layer. To achieve successful message pushing
or content sharing through D2D links, both the social relations
and the physical locations need to be taken into account.

In general, if two users have a stronger social relationship,
the probability of establishing direct link between them would
be higher, which is because their content preferences are
more similar than that of users with weak social connections.
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Meanwhile, a better channel quality between users promotes
an establishment of D2D link. In this section, we introduce
the system model of social-aware D2D underlay network. The
physical transmission model is first described, and then, the
social relationship between users is quantified.

A. Physical Layer Model

In the system, we assume that D2D links share up-
link (UL) resource blocks (RBs) occupied by cellular user-
s, and for simplicity, one RB is allocated to one CUE
and can be reused by at most one D2D pair. Further-
more, we assume that there are N D2D TXs (content
providers) and N D2D RXs, which are denoted by the
set NT ={1, · · · , i, · · · , N} and NR={1, · · · , j, · · · , N}, re-
spectively. K RBs and the corresponding cellular users
are denoted by the set NK={N1, · · · , Nk, · · · , NK} and
K={1, 2, · · · , k, · · · ,K}, respectively. For the channel model,
we use the Rayleigh fading to model the small-scale fading,
and employ the free space propagation path-loss to model the
large-scale fading. The received power of D2D link between
transmitter i ∈ NT and receiver j ∈ NR, and the received
power of cellular link between CUE k ∈ K and the BS, can
be expressed as

Pr,j = PD
i h2

ij = PD
i d−α

ij h2
0,ij , (1)

Pr,k = PC
k h2

k = PC
k d−α

k h2
0,k, (2)

where PD
i and PC

k are the transmit power of D2D TX i
and CUE k, respectively. hij and hk denote the channel
response of the D2D link and the cellular link. dij is the
transmission distance between TX i and RX j while dk
represents the transmission distance between CUE k and the
BS. α is the path-loss exponent corresponding to the large-
scale fading of the transmission channel, and h0,ij , h0,k are
the Rayleigh channel coefficient, which obeys the complex
Gaussian distribution CN (0, 1).

As a result of uplink spectrum reusing, both D2D receivers
and the BS suffer from co-channel interference. When D2D
pair Dij that composed of TX i ∈ NT and RX j ∈ NR

reuses the uplink RB Nk ∈ NK , RX j receives interference
from CUE k ∈ K, and the BS is exposed to interference from
D2D TX i. The signal to interference plus noise ratio (SINR)
of user j on RB Nk and the SINR of BS are

γDij ,k =
PD
i h2

ij

PC
k h2

kj +N0
=

PD
i d−α

ij h2
0,ij

PC
k d−α

kj h2
0,kj +N0

, (3)

γk,i =
PC
k h2

k

PD
i h2

iB +N0
=

PC
k d−α

k h2
0,k

PD
i d−α

iB h2
0,iB +N0

. (4)

Here, hkj and hiB are the channel responses of the interference
links between CUE k and D2D RX j, between D2D TX i
and the BS, respectively. N0 is the one-sided power spectral
density of the additive white Gaussian noise (AWGN) at the
receivers. Based on the above expressions, the channel rate

of D2D pair Dij reusing RB Nk and the rate of cellular link
between k and the BS are obtained by

rDij ,k = log2

(
1 +

PD
i h2

ij

PC
k h2

kj +N0

)
, (5)

rk,i = log2

(
1 +

PC
k h2

k

PD
i h2

iB +N0

)
. (6)

B. Social Layer Model

In social network, users’ behaviors reflect the close degree
of their relationships. Therefore, it is extremely important to
analyze users’ social behaviors during the process of social
layer modeling. However, it is hard to find an appropriate
model to describe the properties of social behaviors due
to their uncontrollability and uncertainty. Thus, we utilize
the probability of selecting similar contents to represent the
similarity of users’ behaviors, which determines the intensity
of their social relationships. Bayesian model is an efficient
model that apply Probability and Statistics into complex area
to handle the uncertainty reasoning. Integrating the prior
information and sample information, it is easy to obtain the
posterior probability distribution. It means that the system can
obtain the probability distributions of users’ content selections
by integrating the history records collected from different
social network platforms using the Bayesian technique [35]–
[37]. After that, the intensity of social relationship, i.e., the
consistency degree of preferences on similar contents, can be
quantified.

Statistical modeling is a useful tool which models the
process as a stochastic variable with a correlative probability
density function (pdf) in a feature space. A particular statistical
distribution, which is supposed to approximate the practical
distribution with the parameters estimated from the sample,
is used to represent the pdf parametrically. In this process,
we have to find an appropriate model that approximates
the actual distribution to estimate the associated parameters.
However, Bayesian nonparametric models can estimate the pdf
directly from the samples without making any assumptions
for the underlaying distribution so as to avoid the parameter
estimation process and the accuracy of the estimation would
be improved as more data are observed. Dirichlet processes
[38], [39], which are a family of stochastic processes, are often
used in Bayesian nonparametric statistics since the prior and
posterior distributions in Bayesian nonparametric models are
stochastic processes rather than parametric distributions. In the
following paragraph, We will introduce the theoretical basis
and the process to build the social relationship among users
in details.

1) Theoretical Basis: Dirichlet distribution, the infinite-
dimensional generalization of which is Dirichlet process, is
a multivariate generalization of the beta distribution. Based
on the theoretical meaning of the beta distribution, we assume
that Yf has been observed ςf − 1 times, f = 1, 2, · · · , F . yf
can be viewed as the probability of Yf . Then the Dirichlet
distribution of order F ≥ 2 with parameters ς1, · · · , ςF > 0
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has a pdf with respect to Lebesgue measure on the Euclidean
space RF−1 that obtained by

Dir(ς1, · · · , ςF )

= f(y1, · · · , yF−1; ς1, · · · , ςF ) =
1

B(ς)

F∏
f=1

y
ςf−1
f . (7)

For all y1, · · · , yF−1 > 0, they satisfy y1+y2+· · ·+yF−1 < 1
while yF is an abbreviation for 1 − y1 − · · · − yF−1. The
density is zero outside this open (F −1) dimensional simplex.
The normalizing constant B(ς) can be expressed according to
the gamma function as it is the multivariate beta function:

B(ς) =

∏F
f=1 Γ(ςf )

Γ(ΣF
f=1ςf )

, ς = (ς1, · · · , ςF ). (8)

We define ς0 = ΣF
f=1ςf . The beta distributions, which are the

marginal distributions of the Dirichlet distribution, are given
by

yf ∼ Beta(ςf , ς0 − ςf ). (9)

Then, for the Dirichlet process (DP) over a set Θ, we intro-
duce a base distribution H and a concentration parameter α,
which is a positive real number. We denote that the random
distribution X is Dirichlet process distributed with H and α,
denoted as X ∼ DP (α,H), if for every finite measurable
partition G1, · · · , GU of Θ, we have

(X(G1), · · · , X(GU )) ∼ Dir(αH(G1), · · · , αH(GU )).
(10)

The base distribution H is basically the mean of the DP and
the parameter α can be viewed as an inverse variance, which
means that for any measurable partition G ⊂ Θ, E[X(G)] =
H(G), V [X(G)] = H(G)(1−H(G))/(α+ 1). We regard α
as the strength parameter corresponding to the strength of the
prior when utilizing the DP as a prior information in Bayesian
nonparametric models. The variance would decrease with α
growing, and thus, the DP would concentrate more on the
mean.

Let X ∼ DP (α,H). Since X is a random distribution over
Θ, we can draw the independent samples in turn from X ,
which are written as a sequence χ1, · · · , χn and we note that
the values of χs are in Θ. Let nu = #{s : χs ∈ Gu} be
the number of the observed values in Gu, u = 1, · · · , U .
Based on the conjugacy between the Dirichlet and multinomial
distributions, we have:

(X(G1), · · · , X(GU )) | χ1, · · · , χn

∼ Dir(αH(G1) + n1, · · · , αH(GU ) + nU ). (11)

The above is true for all finite measurable partitions, thus
the posterior distribution over X must be a DP and can be
expressed as

X | χ1, · · · , χn ∼ DP (α+ n,
α

α+ n
H +

n

α+ n

Σn
s=1ωχs

n
).

(12)

ωs is the point mass located at χs and nu = Σn
s=1ωs(Gu). We

can see that the posterior DP update α as α+n and update H

as αH+Σn
s=1ωχs

α+n . The posterior base distribution is a weighted
average between the prior base distribution H , whose weight
is proportional to α, and the empirical distribution Σn

s=1ωχs

n ,
whose weight is proportional to the number of observations
n. Thus, we can utilize α as the strength associated with the
prior base distribution. When α → 0, the prior distribution
H becomes meaningless such that the posterior distribution
is just obtained from the empirical distribution. Namely that
with the number of observations increasing, the posterior is
mainly determined by the empirical distribution, which closely
approximates the real underlying distribution.

We consider the predictive distribution of χn+1 when given
the sequence χ1, · · · , χn. Since χn+1 | X,χ1, · · · , χn ∼ X ,
for a measurable G ⊂ Θ, we have

P (χn+1 ∈ G | χ1, · · · , χn) = E[X(G) | χ1, · · · , χn]

=
1

α+ n
(αH(G) + Σn

s=1ωχs(G)), (13)

in which the last step follows from X’s posterior base distribu-
tion when given the prior n observations. With X marginalized
out,

χn+1 | χ1, · · · , χn ∼ 1

α+ n
(αH +Σn

s=1ωχs). (14)

Hence, the posterior base distribution is also the predictive
distribution of χn+1 when given χ1, · · · , χn. However, the
distribution drawn form the DP is discrete, thus we use kernel
[40]–[42] to smooth out the distribution to obtain its density
distribution. That is, when X ∼ DP (α,H) and f(x | ϕ)
indexed by ϕ is used as a family of densities (kernels), we
can smooth out the distribution drawn from the DP and get
the nonparametric density of x as follows:

p(x) =

∫
f(x | ϕ)X(ϕ)dϕ. (15)

2) Estimation of Probability Distribution: We assume that
the users in our system are denoted by the set C. For a certain
user c ∈ C, q observation sets which involve the probabilities
of selecting the similar contents can be obtained from social
network platforms in several time periods. And we denote
the q observation sets as the set Q. At a certain time, for
observation set Q ∈ Q, user c selects the similar contents with
the probability pQc. Hence, the value of pQc is a random vari-
able with a pdf PQc(pQc) over the state space Θ = [0, 1]. In
each observation set Q ∈ Q, ZQc observations are performed,
which are denoted by ZQc={p1Qc, p

2
Qc, · · · , p

ZQc

Qc }, ∀c ∈ C,
Q ∈ Q. Employing the DP, the predictive pdf of the next
observation p

ZQc+1
Qc can be obtained by using the following

formula based on the observation set ZQc:

PQc(p
ZQc+1
Qc ∈ E | p1Qc, p

2
Qc, · · · , p

ZQc

Qc )

=
1

ϖ + ZQc
(ϖG(E) + Σ

ZQc

z=1ωpz
Qc
(E)), (16)

where E is a measurable partition of Θ. G is the base
distribution as the prior and ϖ is viewed as the strength
associated with the prior base distribution for the estimation
of the posterior. With the DP marginalized out, the predictive
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distribution of the next observation p
ZQc+1
Qc conditioned on the

observation set ZQc can be expressed as:

p
ZQc+1
Qc |p1Qc, p

2
Qc, · · · , p

ZQc

Qc ∼ 1

ϖ + ZQc
(ϖG+Σ

ZQc

z=1ωpz
Qc
).

(17)

When the base distribution G and the concentration parameter
ϖ of the DP are unknown, we express the predictive pdf of
the next observation p

ZQc+1
Qc as follows based on (16),

PQc(p
ZQc+1
Qc ∈ E | p1Qc, p

2
Qc, · · · , p

ZQc

Qc ) =
Σ

ZQc

z=1ωpz
Qc
(E)

ZQc
.

(18)

ωpz
Qc

is the point mass located at pzQc and ωpz
Qc
(E) = 1 when

pzQc ∈ E ; ωpz
Qc
(E) = 0 otherwise. Then we use kernel to

smooth out the distribution drawn from the DP to get the
continuous estimate P̃Qc of PQc. However, as the number of
the available observations ZQc is small, we consider another
approach to improve the estimates.

For user c ∈ C, given the subset W ⊆ Q and the
observation set Q ∈ Q, we denote that the rest observation sets
in subset W except Q as WQc = W \ {Q}, which represents
the priors. Then, we can integrate the observation set Q with
the set of validated priors WQc to derive the pdf of any new
observation p

ZQc+1
Qc using the following expression:

PW
Qc = φQP̃Qc(E) +

∑
L∈WQc

φLP̃Lc(E). (19)

The contribution of the observation set Q for the generation
of the pdf PW

Qc is quantified by φQ while that of L ∈ WQc is
quantified by φL. In practice, we set the weights φQ and φL

to be proportional to the number of observations, which are
expressed as:

φQ =
ZQc∑

V ∈W ZV c
, φL =

ZLc∑
V ∈W ZV c

, ∀L ∈ WQc. (20)

With the consideration of the equal availability of observation
sets, we define that Pc = PW

Qc.
3) Intensity of Social Relationship: Due to the fact that the

social relationship close degree of any two users is measured
by the similarity of their selection on contents, the probability
corresponding to the selection of similar contents is utilized to
derive the normalized correlation that indicates the intensity of
the social relationship. For D2D TX i ∈ NT and RX j ∈ NR,
the intensity of their social relationship can be expressed as:

ρij = (corr(pi, pj) + 1)/2, (21)

where pi ∼ Pi(p) and pj ∼ Pj(p). Pi and Pj represent the
estimated correlative pdfs. And ρij varies from 0 to 1, namely
ρij ∈ [0, 1].

IV. PROBLEM FORMULATION

The purpose of our work is to achieve content delivery
with high satisfactions of users by employing social-aware
D2D techniques, while at the same time, maximizing the
transmission sum rate of D2D links. Hence, we need to
consider an optimization problem involving both the social

layer and the physical layer. Furthermore, we formulate the
objective function as a weighted channel rate, i.e., the rate
weighted by the intensity of social relationship. The weighted
rate of the link between D2D TX i and RX j when reusing
RB Nk can be obtained by

RDij ,k = I(ρij)ρijrDij ,k. (22)

In practice, TX i is approved to share contents with RX j only
when the intensity of social relationship between them is no
less than a threshold δ, that is to say, it is potential for i and
j to form a D2D link when ρij ≥ δ. Hence, we define I(ρij)
as an indicator function of ρij that I(ρij) = 1 when ρij ≥ δ;
I(ρij) = 0 otherwise.

To maximize the weighted sum rate of all the D2D pairs, we
need to design an efficient mechanism for pairing the content
provider (TX) with the content consumer (RX) and allocating
the spectrum resource to the transmission link. In other word,
it is an issue of joint peer discovery and resource allocation
for D2D communication. To avoid excessive interference to
cellular links, power control for D2D TX should be also taken
into account. We use a set of binary variables X = {xi,j,k} to
formulate the user pairing and resource allocation. xi,j,k = 1
denotes that a D2D link is established between TX i and RX
j reusing RB Nk. Accordingly, we jointly design the binary
decision variables {xi,j,k} and the continuous power variables
PD
i to optimize the system performance. A mixed integer

programming problem is formulated as

max
{X,PD

i }

K∑
k=1

N∑
j=1

N∑
i=1

xi,j,kRDij ,k

s.t. C1 : 0 ≤ PD
i ≤ Pmax,

C2 : xi,j,k ∈ {0, 1}, ∀i ∈ NT , j ∈ NR, Nk ∈ NK ,

C3 :
∑

j∈NR,Nk∈NK

xi,j,k ≤ 1, ∀i ∈ NT ,∑
i∈NT ,Nk∈NK

xi,j,k ≤ 1,∀j ∈ NR,∑
i∈NT ,j∈NR

xi,j,k ≤ 1,∀k ∈ NK ,

C4 : rDij ,k ≥ rdmin, ∀i ∈ NT , j ∈ NR, Nk ∈ NK ,

C5 : rk,i ≥ rcmin,∀i ∈ NT , j ∈ NR, Nk ∈ NK .
(23)

Here, constraint C1 gives the transmit power range of D2D
TXs, which ensures the power would not exceed the maximum
Pmax. The three inequalities in C3 ensures that each TX can
only be paired with at most one RX and vice versa, while each
RB can only be assigned to at most one D2D pair and vice
versa. C4 and C5 guarantee the QoS requirements of D2D
links and cellular links, respectively.

V. SOCIAL NETWORK-BASED CONTENT DELIVERY
MATCHING ALGORITHM FOR D2D UNDERLAY NETWORKS

In this section, we investigate a three-dimensional matching
approach to solve the mixed integer programming problem
(23). First, we introduce some concepts of matching theory
which are the basis of our algorithm. Then, we give the
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establishment process of the preference list, which is the
critical component of matching model. The preference list
is mainly based on maximizing the weighted channel rate,
which is coupled with a power control problem. Afterwards we
introduce a pricing strategy to simplify the three-dimensional
matching problem, and propose an iterative algorithm to derive
a stable matching among D2D TXs, D2D RXs and RBs.
Finally, the properties of the proposed matching approach,
including convergence, stability, optimality and complexity,
are analyzed in details.

A. Matching Concepts

In a formal matching model, there are two finite and
disjoint sets denoted by M={m1,m2, · · · ,mi, · · · ,mn} and
W={w1, w2, · · · , wj , · · · , wp}, respectively. Each mi ∈ M
has its own preferences over the set W and the same as
wj ∈ W over M . The individual preferences represent the
priorities of its selection among different alternatives. If mi

prefers w1 to w2, we express it as w1 >mi w2. w1 ≥mi w2

represents that w1 is liked at least as well as w2 by mi.
It is rational for the preferences of each individual to have
properties involving complete ordering and transitive. Com-
plete ordering means that each individual will never confront
with an indeterminable choice, i.e., any two alternatives can
be compared for an individual to get a preferred one. The
property of transitive represents that if w1 is liked at least as
well as w2 and w2 is liked at least as well as w3 for mi, thus
w1 is liked at least as well as w3 for mi. Given the preferences
of the individuals involved, we define that:

Definition 1: A matching µ is a one-to-one correspondence
from the set M ∪ W onto itself, denoted by µ: M ∪ W →
M ∪W , such that µ(m) = w means that m and w are paired
and µ(m) = m means that m is not matched. We refer to
µ(m) as the mate of m.

We consider a matching µ where individuals m and w are
not matched with each other but prefer each other to their
mates at µ, namely w >m µ(m) and m >w µ(w). Thus,
m and w form a blocking pair for matching µ, namely that
(m,w) blocks the matching. We say that matching µ is not
stable because m and w would prefer to disrupt the matching
in order to pair with each other.

Definition 2: A matching µ is stable if there is not any
blocking pair.

In our system, we attempt to solve the problem (23) by em-
ploying the three-dimensional matching that pairs D2D TXs,
D2D RXs and RBs with each other. For its high complexity,
we transform it to a two-sided matching. First, we define a
RX-RB unit which is composed of one RX and one RB. Due
to the assumption that there is one CUE on each RB, we
then rewrite the RX-RB unit as RX-CUE (RC) unit. Owing
to the existence of N RXs and K CUEs, there are N × K
different RC units, denoted by RC = {RCj,k}j=N,k=K

j=1,k=1 . Thus,
the three-dimensional matching problem can be simplified to
a two-sided matching with N TXs on one side and N × K
RC units on the other side. We have the definition as below:

Definition 3: A matching Φ is a one-to-one correspondence
NT ∪ RC → NT ∪ RC ∪ {∅} and such that Φ(i) = RCj,k

means that TX i is matched with the unit RCj,k consisting of
RX j and CUE k.

Because of the constraint that the matching among TXs,
RXs and RBs is a three-dimensional one-to-one correspon-
dence, when Φ(i) = RCj,k, for ∀i′ ∈ NT \ {i}, Φ(i

′
) =

{RC\{RCj,k}}∪{∅}. The matching Φ is stable when there is
not any blocking pair, that is to say, there is no pair consisting
of TX i and RC unit RCj,k that is not matched with each
other but prefer each other to be their mates under matching
Φ.

B. Preference Establishment

In a matching process, individuals on one side propose to
establish pairs with ones on the other side based on their
own preference lists. Since the three-dimensional matching
problem is transformed to a two-sided matching problem with
N TXs on one side and NK RC units on the other side,
the essential issue is to find the preference lists of TXs on
RC units. For TX i, when paired with different RC units,
it can achieve different channel rates and different content
satisfactions of RX, due to the different physical and social
layer information. Therefore, the preference of TX on RC units
can be formulated as the weighted channel rate (22) with the
optimization of power variables PD

i . In the process of prefer-
ence lists establishment, we need to temporarily pair each TX
(∀i ∈ NT ) with each RC units ({RCj,k}j=N,k=K

j=1,k=1 ), and thus to
obtain the weighted channel rate corresponding to each three-
dimensional combination TX-RX-CUE with the transmit pow-
er of TX being restricted to meet the QoS of CUE. Let Ti =
{t1, t2, · · · , tN×K} denote the achieved maximum weighted
rate of TX i paired with each RC units in descending order, and
Oi = {o1, o2, · · · , oN×K} denote the corresponding RC units,
which can be defined as the preference list of TX i. Then, we
define T ={T1, T2, · · · , Ti, · · · , TN} as the weighted rate set
of all the TX-RC pairs, O={O1, O2, · · · , Oi, · · · , ON} as the
preference list set of TX i,∀i ∈ NT on RC corresponding
to T . To obtain the maximum weighted channel rate for each
TX-RC pair, we formulate the following problem:

max
{PD

i }
RDij ,k

s.t. C1 : 0 ≤ PD
i ≤ Pmax

C2 : rDij ,k ≥ rdmin,

C3 : rk,i ≥ rcmin. (24)

Thus, the preference list of D2D TX i on RC units RCj,k can
be derived by solving problem (24), and a detailed preference
establishment algorithm is summarized in Algorithm 1, which
constitutes the basis of the matching algorithm. An illustration
of the preference lists establishment and a stable matching that
we expected is shown in Fig. 2.

C. Three-dimensional Matching Algorithm

Based on the established preference lists, TXs could propose
towards the RC units in their own first order. However, there
exists a situation that more than one TX propose towards the
same RC unit. Here, we propose a pricing strategy to decide
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Algorithm 1 Preference Establishment Algorithm
1: Input: NT , NR, NK , K, ρij , rmin.
2: Output: {PD

i }, O, T .
3: for i ∈ NT do
4: for j ∈ NR do
5: for k ∈ K do
6: Calculate the maximum weighted rate RDij ,k by

using (24) with the optimization of transmit power
PD
i .

7: end for
8: end for
9: end for

10: for i ∈ NT do
11: Obtain Ti by sorting the achieved maximum weighted

rates RDij ,k, ∀j ∈ NR, k ∈ K in descending order.
Establish the preference list Oi of TX i on RC units by
sorting each RC unit RCj,k in descending order based
on Ti.

12: end for

Fig. 2. Graphical expressions of preference establishment and a stable three-
dimensional matching.

the winner. The proposed matching algorithm is described
briefly as follows.

• First of all, we introduce the concept of price for each
RC unit which represents the matching cost for each TX.
These prices are set to be zero at the beginning and
they are virtual money without any physical significance.
Let CR={CR1, · · · , CRj , · · · , CRN}, ∀j ∈ NR and
CK={CK1, · · · , CKk, · · · , CKK}, ∀k ∈ K denote the
price sets of RXs and CUEs, respectively. The prices of
RC units are denoted by C={Cj,k}j=N,k=K

j=1,k=1 where the
price Cj,k of RCj,k is the sum of RX j’s price CRj and
CUE k’s price CKk.

• The proposed algorithm proceeds iteratively. In each
iteration, any TX i that has not been matched with any
RC unit would propose to its most preferred RC unit in
Oi based on its payoff, which is equal to the achieved
maximum weighted rate minus the matching cost, i.e., the
current price of the RC unit. If any RX or CUE receives
request from only one TX, the requested RC units would
be directly matched with the TXs that initiate requests,
and thus to form a stable matching.

• Otherwise, the conflicting elements set consisting of RXs
and CUEs that have received requests from more than one
TX is denoted by Ω. Then, the elements in Ω would raise

Algorithm 2 The Three-Dimensional Matching Algorithm
1: Input: NT , NR, K, O, T , CR, CK, C, Ω, s.
2: Output: Φ, {xi,j,k}.
3: Initialization:
4: Every TX i ∈ NT builds its preference list on RC by

using Algorithm 1.
5: Set Φ=∅, Ω=∅, s=0.1.
6: while ∃Φ(i) = ∅ do
7: if Oi ̸= ∅ then
8: for i ∈ NT do
9: TX i which has not been matched proposes to its

most preferred RC unit in updated Oi.
10: end for
11: Count the amount of RXs and CUEs that have

received requests and put the conflicting elements
that have received more than one request into Ω.

12: if Ω = ∅ then
13: Match the RC unit with its requestor TX directly.
14: end if
15: if Ω ̸= ∅ then
16: for RCj,k ∈ RC do
17: if RX j and CUE k receive requests from more

than one TX then
18: RX j and CUE k in Ω increase their prices

CRj and CKk with the price step s, and then
TXs would update their preference lists and
change their choices on RC units according
to the price Cj,k. After this process, RX j
and CUE k would be matched with the last
remaining TX i that proposes to them, which
is denoted by Φ(i) = RCj,k.

19: end if
20: end for
21: end if
22: Update: Update O and T by deleting the RC units

involving the matched RX j or CUE k and the
corresponding achieved weighted rate respectively.
Set CR = {0}, CK = {0}, C = {0}.

23: else
24: break
25: end if
26: end while

their prices with the price step s, which is determined by
the minimum of the differences between any two adjacent
values in the ordered weighted rate set. Accordingly,
each TX that has proposed updates its preference list and
renews its request. The process of rising prices continues
until there is only one request received for the RC units.

• The algorithm would end if there exists no new request
from TXs, i.e., all the TXs are matched when K ≥ N or
all the CUEs are matched when N ≥ K.

The above steps can lead to a stable matching that is
proved in subsection V-D. We summarize the proposed three-
dimensional matching algorithm in Algorithm 2.

In D2D underlay cellular network, the BS is the controller
of resource management and link establishment, and thus the
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global channel state information (CSI) should be available at
the BS for the matching approach. However, it is unnecessary
for D2D users to obtain the global CSI but just to feedback
detected CSI by receiving detection signals at each terminal
to the BS.

D. Properties of the Three-dimensional Matching Algorithm

In this subsection, the properties involving convergence,
stability, optimality, and complexity of the proposed three-
dimensional matching algorithm are analyzed in details.

1) Convergence: We define the achieved maximum weight-
ed rate RDij ,k as valuation vi,j,k of RCj,k for TX i, and
the price Cj,k of RCj,k as the matching cost for TXs. Then
the payoff of TX i being matched with RCj,k can be written
as vi,j,k − Cj,k. In addition, it is denoted that there exists
contention among TXs when any RX or CUE receives requests
from more than one TX. At the start of each contention, the
prices of RXs and CUEs are set to be zero and they would
gradually increase by the step size s in the process of the
contention. Any i ∈ NT that has proposed to the conflicting
elements would change its choice with the increase of the
prices, which is based on its current maximum payoff:

(j, k) = arg max
j∈NR,k∈K

(vi,j,k − Cj,k) (25)

The matching rules from Algorithm 2 show that the conflicting
elements would be assigned to the TX that is the last one
remaining in the request queue with the increase of the
conflicting elements’ prices. Assuming that TX i is matched
with the conflicting RC unit RCj,k, the contention must come
to an end within vi,j,k/s steps. Hence, we can conclude the
matching process within finite iterations.

2) Stability: Theorem 1: The proposed Algorithm 2 can
converge to a two-sided stable matching Φ in finite iterations.

Proof: According to Definition 2, the matching Φ is
said to be stable if there exists no blocking pair. In order
to prove the stability of the proposed matching algorithm, we
first assume that there exists i ∈ NT , j ∈ NR, k ∈ NK that
TX i and RC unit RCj,k are not matched with each other
under matching Φ but prefer to be mutually matched, i.e.,
Φ(i) ̸= RCj,k, and RCj,k >i Φ(i), i >RCj,k

Φ(RCj,k).
In the matching, since each TX attempts to maximize its

own payoff, the maximization problem for each TX can be
written as maxj∈NR,k∈K(vi,j,k −Cj,k), ∀i ∈ NT . On account
of the assumption that RCj,k >i Φ(i), TX i must have
proposed to RC unit RCj,k based on the matching rules.
However, considering the pricing strategy in Algorithm 2, the
inexistence of Φ(i) = RCj,k in the matching result represents
that the final payoff for TX i matched with RCj,k is zero,
and it has given up the request to RCj,k during the process of
rising prices. Moreover, the winner in the contention for RCj,k

is Φ(RCj,k), i.e., Φ(RCj,k) >RCj,k
i. Therefore, the condition

i >RCj,k
Φ(RCj,k) cannot hold when RCj,k >i Φ(i), which

means TX i and RCj,k cannot form a blocking pair. The
analysis result contradicts the assumption. Thus, the matching
Φ obtained from Algorithm 2 is stable.

3) Optimality: Theorem 2: The content delivery one-to-one
matching Φ is weak Pareto optimal for D2D transmitters on
combinations of D2D receivers and spectrum resources.

Proof: Before the proof, we give the concept of Pareto
improvement: if a change of assignment can improve one’s
payoff and the change can be approved by others, then it
is a Pareto improvement. Moreover, if there exists no Pareto
improvement, the current assignment is said to be weak Pareto
optimal.

First, we assume that there exists a Pareto improvement for
matching Φ. We define the improvement for TX i as RCj,k

, thus we have RCj,k >i Φ(i). One case is that RCj,k has
not been matched under Φ, i.e., Φ(RCj,k) = ∅. It is obvious
that i >RCj,k

Φ(RCj,k). That is, TX i and RCj,k prefer to
be matched with each other and form a blocking pair. This
contradicts with Theorem 1 that Φ is stable. The other case is
that RCj,k has already been matched with TX i′, which does
not approve i to be matched with RCj,k. Then, the contention
between i and i′ lead to a process of rising prices. The payoff
of i would reduce, and RCj,k >i Φ(i) would not hold any
more.

Based on the above cases, we can conclude that there exists
no Pareto improvement, and the matching Φ is weak Pareto
optimal for D2D transmitters.

4) Complexity: In the process of preference establishment,
the computational complexity for any TX i ∈ NT to obtain
the preferences is O(NK) since that each TX has to find its
preference value for each RC unit, which is corresponding to
the achieved weighted rate. The computational complexity to
derive the preference list by sorting the preference values for
each TX is O(NK log(NK)). In Algorithm 2, the complexity
of each process, in which TXs that have not been matched
propose to their most preferred RC units, is O(N loop) [43].
N loop is the required number of iterations in the process
of rising prices based on the step size s, i.e., during N loop

iterations, the assignment of the conflicting elements are
finished when Ω ̸= ∅. We have N loop = 1 when Ω = ∅.
Then, the computational complexity of the matching process
is O(NN loop) (N ≥ K) or O(KN loop) (K ≥ N ).

For the centralized exhaustive search, the total number of
possible matching results is N ! ×K!. The complexity of the
algorithm can be written as O(N ! × K!). It is obvious that
the proposed matching algorithm results in a much lower
complexity for sufficient large values of N and K.

VI. NUMERICAL RESULTS

In this section, the performance of the proposed iterative
matching algorithm and impacts of the social relationships on
D2D receivers’ satisfactions are validated through simulations.
The simulation parameters are summarized in Table I [10],
[20]–[22]. We consider a single cellular network with a radius
of R = 200 m, in which K CUEs are randomly distributed.
N D2D transmitters and N receivers are randomly deployed
in a circular hot spot area with the radius of r = 30 m. Fig.
3 shows a snapshot of UEs’ locations with K = N = 6. In
the circular hot spot area represented by the blue dotted circle,
D2D TXs and RXs that satisfy both the physical and social
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TABLE I
SIMULATION PARAMETERS.

Simulation Parameter Value
Cell radius R 200 m
Radius of the hot zone r 30 m
Max D2D transmission distance dmax 50 m
Pathloss exponent α 4
Max transmission power of D2D TXs Pmax 23 dBm
Transmission power of cellular users PC

k 23 dBm
Noise power N0 -114 dBm
Number of D2D transmitters and receivers N 1 ∼ 6
Number of resource blocks and cellular users K 1 ∼ 6
QoS requirement rmin 0.5 bit/s/Hz
Step size s 0.1
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Fig. 3. A snapshot of user locations for a single cellular network with K
CUEs, N D2D TXs and N D2D RXs (K = 6, N = 6, dmax=50 m, the
cell radius is 200 m and the size of the spot hot is 30 m, respectively).

requirements of D2D communication can form a D2D pair to
directly exchange contents.

A. Convergence

The proposed algorithm is compared with two heuristic
algorithms, i.e., the exhaustive and random matching algo-
rithms. In particular, the exhaustive matching algorithm which
examines every possible solution to find the optimum one
is used to serve as an upper performance benchmark, while
the random matching algorithm is used to serve as a lower
performance benchmark. The convergence of the proposed
matching algorithm is shown in Fig. 4, which represents the
weighted sum rate of D2D pairs versus the matching iterations.
In Algorithm 2, we denote that at least one TX-RX-CUE pair
would be formed in each iteration, thus we can derive that the
number of the iterations required for the proposed algorithm
to converge is related with the number of the TXs, RXs and
CUEs. Given K = 6, we can see that it only takes 4 and
6 matching iterations for the proposed algorithm to converge
when N = 4 and N = 6, respectively. Moreover, it can be
seen that the performance of matching is quite close to that
of the exhaustive algorithm after the convergence.
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Fig. 4. Weighted sum rate of D2D pairs vs. number of matching iterations
(N=6).
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Fig. 5. Weighted sum rate of D2D pairs vs. number of TXs (K=6).

B. Weighted Sum Rate

Fig. 5 shows the weighted sum rate of all D2D pairs versus
the number of TXs, while Fig. 6 shows the weighted sum
rate of all D2D pairs versus the number of CUEs. It is
observed that the performance gaps between the proposed
algorithm and the optimum exhaustive matching algorithm
in Fig. 5 and Fig. 6 are small. For instance, in Fig. 5, the
proposed algorithm is able to achieve 94.92% of the optimum
performance, and outperforms the random matching algorithm
by as much as 74.89% when N = 5 and K = 6. In Fig.
6, the corresponding values of the performance compared
with the optimum performance and the random performance
are 93.33% and 74.61%, respectively, when N = 6 and
K = 5. On the other hand, the computational complexity
of the proposed matching algorithm is an order of magnitude
lower than that of the exhaustive algorithm. For example, when
N = K = 6, it takes 5.184× 105 iterations for the exhaustive
matching algorithm to find the optimum solution, while the
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Fig. 6. Weighted sum rate of D2D pairs vs. number of CUEs (N=6).
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Fig. 7. Distribution of content satisfactions for D2D receivers.

proposed algorithm only requires 600 iterations, which reduces
the complexity by nearly a thousand times. Compared with the
exhaustive matching, the proposed algorithm does not need
to achieve every possible matching result, which significantly
reduces the computational complexity.

From another perspective, we can find that the weighted
sum rate raises up with both the number of D2D TXs and
the number of CUEs (RBs) increasing. On one hand, when
the amount of RBs is fixed, more D2D pairs contribute to
a higher sum rate of D2D links. On the other hand, as the
amount of RBs increases, the system supports to establish
more D2D links. In Fig. 6, it is obvious that the increment of
weighted sum rate decreases continuously as the number of
RBs increases. The reason is that the probability of accessing
to the most preferred RB for a D2D pair becomes lower as
more D2D pairs access to the network.

C. User Satisfaction
Fig. 7 shows the cumulative distribution functions (CDFs) of

the satisfactions for D2D RXs, namely the similarity of users’
preferences on the content which is reflected by the intensity of
social relationships between the mutually matched D2D TXs
and RXs. To evaluate the impacts of the social relationships
on D2D RXs’ satisfactions, both the social-aware and social-
unaware matching algorithms are compared by varying the
threshold of social relationships. Simulation results show that
for the social-unaware algorithm, the proportion of D2D RXs
whose satisfaction is greater than 0.8 is 15%, while the
corresponding proportions achieved by the proposed algorithm
are much higher, i.e., 41%, 47% and 65% for δ = 0.5, δ = 0.6
and δ = 0.7, respectively. It is noted that when the threshold
δ decreases, the satisfaction performance also becomes worse.
The reason is that it is much easier for D2D TXs and RXs with
weak intensity of social relationship to from a D2D pair when
the threshold is lower, which in turn degrades the satisfaction
performance.

VII. CONCLUSIONS

In this paper, we studied the content delivery problem
in social network-based D2D communications with uplink
spectrum reusing. Both the social layer and the physical
layer information were exploited in the optimization of the
matching among users, contents, and spectrum resources. First,
we modeled the social relationship between two users as the
probability of selecting similar contents, which was estimated
by using Bayesian nonparametric models. Then, we proposed
a three-dimensional iterative matching algorithm to maximize
the sum rate of D2D pairs weighted by the intensity of social
relationships while guaranteeing the quality of service (QoS)
requirements of both cellular and D2D links simultaneously.
Finally, the proposed algorithm was validated through sim-
ulations and compared with exhaustive optimal and random
matching algorithms. Simulation results demonstrated that the
performance of the proposed iterative matching algorithm is
much better than that of the random matching algorithm, and
is very close to that of the optimum exhaustive matching but
with a much lower computational complexity. Furthermore,
the content satisfactions of D2D receivers are dramatically
improved if social layer information is considered during the
matching process. In future works, we will focus on the
design of social-aware resource allocation algorithms for D2D
communication by incorporating distributed caching schemes.
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