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Abstract An iterative method to construct Lusternik-Schnirelmann
critical values is presented. Examples of its use to obtain numerical so-
lutions to nonlinear eigenvalue problems and their bifurcation branches
are given.
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1. Introduction

Existence theorems for nonlinear eigenvalue problems of the form
(11) gl(z)=#11

where ¢ is a functional on a Hilbert space H and ¢'(z) the corresponding
gradient, are considered in many papers. The existence theorems are based

on t hic existence of a critical vector with respect to the manifold S ={z € H:



||l = 1}. Very general results on nonlinear eigenvalue problems in Banach
spaces can be found in H. Amann!, and in E. Zeidler!!, which also contains
an extensive bibliography on critical point theories.

Iterative methods for the construction of all Lusternik-Schnirelmann
critical values and critical vectors have been presented by J. Netas” and by
A. Kratochvil and J. Necas*~®.

In this paper we shall give an extension of the method used in® to study
the eigenvalue problem (1.1). Also, we give examples of problems that have

been tested numerically.

2. Iterative construction of the first

Lusternik-Schnirelmann critical value

Let H be a real Hilbert space with inner product (-|-) and norm ||-||. Further-
more, we set S = {z € H : ||z|| = 1}. Let g be a continuously differentiable
functional on H such that the derivative ¢’ is strongly continuous, i.e. for
each sequence (z,)%%.; C H converging weakly to zo € H, the sequence
(¢'(z4))2%; converges to g'(xy).

Assume that the following conditions are fulfilled:

(21) 9(0) =0, 4'(0) =0
(2.2) if g(z) # 0 and ||z|| < 1 then ¢'(z) # 0;

there exists a constant ¢ > 0 such that

(23) (¢'(2) = ¢'(¥)lz = y) 2 —cllz — yl|?
holds for all z,y € H, ||zl <1, [lyll £ 1.

For a given z € S we divide ¢'(z) into tangential and normal compo-
nents, i.e. ¢'(z) = T¢'(z) + Ng'(z), where

") = o'(z) — (g'(:c)|:::)z

Theorem 2.1. Let the above hypothesis be satisfied. Assume that x, € S
and g(z,) > 0. Let 0 < § < 1/c. Define a sequence (z,)3%; by

Ta + 091(311)
2.5 — Znt0g(za)
(25) = = T hg el



Then there ezists a subsequence of (z,)5%; converging to a solution of (1.1).

Hence, there exists a point zo € S and a number u € R such that

(2.6) 9'(z0) = nxo.

Proof. First, note that 1L Tg¢'(z) for all z € S. Put g, = (¢'(zn)|zs) and
rn = l2a +8¢'(za)ll. Then r2 = |1 + Bun)zn + 8T (2n)II? = (1 + Bun)? +
81T (2.

From (2.3) we get ptp, > —c. Since 0 < § < 1/c we have r, > 1—6c > 0.
Furthermore, from (2.5) we obtain the following identity

1
(g'(:t")|:cn+1 —Zn) = g(rﬂzn+l - znlzn+l —Zn)
1
(2.7) = g(rn — (ZalTn41) = ra(Tns1]za) + 1)
= o5+ ra)llzas = zall

Next, we shall show that the sequence (g(z,))3%, is increasing. For

this we note that using (2.3) we obtain
1
o) = 9(2) = [(¢'a+ tly = 2)ly o)
0

1
- / (¢'(z + ty — 2)) — ¢'(@)ly — 2) dt + (¢'(2)ly — 2)
1]

c
2 =5 v —l* +(g'(2)ly - =).
Using this and (2.7) we get
(28) 9(@n41) = 9(zn) 2 (1/6 = )| 241 — znl|*.

Hence the sequence (g(zn))32; is increasing. Because of the strong
continuity of g’ the functional g is bounded on S. Therefore, the limit

lim,, .00 9(z,) exists and

lim ||znt1 —2a]| =0.
n—oo



Since the sequence (2,)%, is bounded, it has a subsequence (we use

the same notation for each subsequence) converging weakly to some z¢ € H.
The strong continuity of ¢’ yields r2 = 1 + 26(g'(zn)|zn) + 6%||g'(zn)||* —
1+ 26(g'(zo)lzo) + 6%[lg' (zo)lI? =: ro.

Since Zpt1 = 1/rn(zn + 09'(zn)) we get (ro — 1)xg = 6g'(zo). Fur-
thermore, as g(z¢) > g(z,) > 0, we obtain from (2.1) and (2.2), ¢'(zo) # 0.
Therefore 79 # 1. To show that the sequence (2,)%; converges to zo we
write (2.5) as

(2.9) (1 =7n)Tn = p(Tat1 — Tn) — 09'(z0).

Here the right hand side converges in norm to —6¢'(z¢) and the left hand

side to 1 — rg. Since 1 — 7y # 0, we obtain the desired convergence from

(2.9). 1
Corollary 2.2. Assume that instead of (2.3) the inequality
(2.10) (¢'(z) = g'(¥)le = y) < cllz — y?

kolds for some ¢ > 0 and for all x,y € H, ||z|| <1, ||y|| £ 1, and that z, € S
i3 such thet g(z,) < 0. Let —1/c < 8 < 0. Define the sequence (zn)5%; by

(2.5). Then there exists a subsequence of (x,)3%, converging to a solution

of (2.6).

Proof. We can apply Theorem 2.1 to —g and —6. The sequence (g(zn))52,

is now decreasing. |

3. Higher order critical points

To study higher order critical points we recall some definitions concerning
the Lusternik-Schnirelmann theory in an infinite dimensional Hilbert space.

We use the notion of the order of a set rather than the category or
genus?. Let K be a symmetric closed set in H. We say that ord K =0 if K
is empty; that ord K = 1if K = K, U K3, where the K; are closed subsets of
K and neither K, nor K, contains antipodal points. In general, ord K = n if



K = UM} K;, where the K; are closed subsets of K’ not containing antipodal
points and n is the lcast possible number. Finally, ord ' = oo if no such n
exists.

Let Vk:t denote the set of all symmetric compact subsets K of S such
that ord K > k and £g(z) > 0 on K. Denote

sup min +g(2), if Vki #0,
+ KEVi z€K
(3.1) v = x
0, if VE=0.

The fundamental theorem of the Lusternik-Schnirelmann theory states
that there exists a sequence of critical points :ck* of g such that g(zf) = '7;&,
:I:‘yf \, 0 and a:ki — 0 weakly. For a proof see! or!!, Ch. 44. In case g(z) > 0
on H, a proof has been given in”. There the critical points are found as limits

lim¢_, o z(t), where x(t) is the solution of the differential equation on S
z=Tg'(z), z(0) =29 € S.

Our method using a discrete iteration seems to be more stable with
respect to variations in x¢ than this one.

Let the assumptions of Theorem 2.1 hold for a functional g. Further-
more, assume that g is even on S, i.e. g(—z) = g(x) when |z|| = 1. We
assume that g has positive critical values. Let 7;" and 75 be the first and
second Lusternik-Schnirelmann critical values of g|g, 71+ > 7;* . Let there
exist a positive constant € such that there are no critical values in the inter-
val ]'y;' - &,7F [ Let IV; be a compact symmetric subset of S such that ord
K1 22, g(x) >0on i} and

3.2 e i ne
(3.2) 72 E<xrg;glg(w)<72

We denote by ¢ the function used to define the iteration in (2.5), i.e.

x + 0g'(x)
3.3 p(r) = T—m——.
(33 @)= v ag@

Then ¢ is a well-defined, odd continuous map S — S. Choose z; € L7,
and put T,4+; = ¢(z,) = ¢"(z,), where ¢" denotes the n-fold composition

‘po...oLp.



Let ms.o) be a vector from K such that

(34) min g(¢"(2)) = 9" (21"))
for any integer n.

Theorem 3.1. Let the above assumptions be fulfilled. Then the following

assertions hold:

(i) lima_co g(e" (%)) =7 s
(ii) there ezists z(© € K, such that

: n((0))) = ~F.
Jim_g(e"(2'™)) = 75’3

(iii) there ezists a subsequence of (a:s.o));,";l converging to z(0)
(iv) for each z(® satisfying condition (ii) there ezists a subsequence of

(¢™(2(9))2, converging to some zo such that

91(930) = HKZTo

Proof. From the proof of Theorem 2.1 (see (2.8)) we have

(3.5) 9(¢"(2)) < g(¢"*(2)),

for each = € K. Since ¢ is an odd continuous operator from S to S we have
ord ¢"(K;) > ord K; > 2.

From this, the definition of 45" and (3.5) we get

(3.6) Jim_ min g(p"(z)) <7,

Let us denote

(3.7) k= lim min g(¢"(2)) = lim g(¢"(a)).



By conipactness there exists a subsequence of (xi.“’):‘;l converging to
9 e K.
According to Theorem 2.1,

. n/..(0)
Jim g(p"(2™))

is a critical value of g. Since there are no critical values in the interval

] Y2 — €72 [, we obtain
lim g(<p"(a;(°))) > 72+‘
n—00

Take n > 0. Then by the definition of « and the convergence PYRAC)

there exist numbers ny and n; such that

(3.8) g(em (@) > +f —n,

for any integer n > n;.
According to (3.5) and (3.8)

g(e" (@) 2 g(e™ (=) 2 7 —,
for any n > max{ng,n;} large enough. Therefore
k= lim g(p"(eP)) 295 1,
n—oo

and thus (i) follows.
The rest of the proof follows as in Theorem 2.1. §

In a similar way we obtain the following result
Corollary 3.2. Let the assumptions of Theorem 3.1 be fulfilled. Let
+ + + + +
T 200 20k 2 Vel T = TepoD Vi

be the positive Lusternik-Schnirelmann values of g|s.
Let there ezist a constant € > 0 such that there are no critical valucs

in the interval ]'yk++, — E,‘yk++,[.



Let K be a compact symmetric subset of S such that
ord Ky 2 k+1
+ : +
— &< < 3
Vegr —€ < TR 9(z) < Vg

For z € K, let the sequence (a:slo))‘,‘,‘_’__l be defined by (9.4).
Then

Jim_ g(o"(2)) = 7y
and there exists a point z(®) € K| such that
i n(2(0Y)) = A+
Jim g(¢"(2™)) = iy
Moreover, the assertions (1ii) and (iv) of Theorem 3.1 hold. I

Remark 3.3. Assume that instead of (2.3) the condition (2.10) holds and
that 6 is chosen as in Corollary 2.2. Then, with obvious modifications in
Theorem 3.1 and Corollary 3.2 we can also construct negative critical values

and corresponding critical points.

4. Bifurcation of solutions

We will use the previous results to find bifurcation branches for the equation
(1.1). Let g: H — R be a given function and for r > 0 define g,: H —
R,g.(z) = g(rx). Then g.(z) = pz if and only if ¢'(z,) = p,z,, where z, =
rz and p, = pr~%. It is immediately verified that if the second derivative
9"(0) exists and (0, 0) is a bifurcation point of (1.1), then g is an eigenvalue
of ¢"(0).

To calculate solutions for the equation (1.1) in Section 6 we will use
the following method: Let po # 0 be an eigenvalue and z; an eigenvector
of ¢"(0). Using Theorems 2.1 and 3.1 and Corollary 2.2 solve the equation
gi(z) = pz,z € S. Then (g, z,) gives a bifurcation branch of (1.1).

In order to verify that this method can be applied we need the following

result due to Krasnoselskii:



Theorem 4.1. Let B: H — H be a linear, continuous and symmetric op-
erator with R(B) closed and 0 < dim N (B) < co. Let N be a continuonsly
differentiable potential operator on a neighbourhood of the origin such that

[IN@)|/llz]l = 0 as = — 0. Then the point (0,0) is a bifurcation point of
the equation

(4.1) Bz + N(x) = ex.

A proof of this result can be found in'!, Ch. 45; see also?, App. 1.

Now we can prove

Theorem 4.2. Letg: H — R be a twice continuously differentiable function
on a neighbourhood of the origin. Assume that g' is strongly continuous and
that ¢ (0) has an eigenvalue py # 0. Then the point (19,0) is a bifurcation
point of (1.1).

Proof. We can write the equation (1.1) in the form
oz = g"(0)z — (g'(x) — ¢"(0)z) = (1o — pt)a.

Denote € = g —p, B = p19 1—¢"(0) and N(z) = —¢'(x)+¢"(0)z. From
the strong continuity of ¢’ it follows that ¢"(0) is compact. Therefore R(DB)
is closed and 0 < dim N(B) < oo, cf.!%, Ch. X.5. Since g" is continuous, we

have ||N(z)||/||z]| — 0 as ¢ — 0. Hence the conditions of Theorem 4.1 are
fulfilled and the result follows. [

5. Application to differential equations

We'will apply the previous results to the following two point boundary value

problem

{ —u" = AG'(u)
(5.1)
w(e) =u(b)=0

on a bounded interval |a,b[ C R, where G: R — R is a given continuously
differentiable function and G'(u) denotes the function ¢t — G'(u(t)). For par-

tial differential equations the situation is analogous and will not be handled

in this connection.



We use the inner product (u|v) = (u'|[v')12(¢a,5) in the Sobolev space
H = H}(a,b). Problem (5.1) is then equivalent to finding « € H such that

(5.2) (G'(u)|v) L2(a ) = pt (u|v) for all v € H,

where p = 1/,
We define g: H — R by

b
ow) = [ Glu(e) .

Then the derivative of g is given by
b
(¢'(w)lv) = /G'(u(t))v(t)dt for all v € H.
a

Since H embeds compactly into the space of continuous functions on the
interval [a, b], the derivative ¢’ is strongly continuous.

We assume that G(0) = G'(0) = 0. In order to fulfil the condition (2.2)
we assume that G'(r) does not vanish on any interval. If we assume that G

admits a continuous second derivative, then g" exists and is given by

b
g"(u)(h,k) = /G"(u(t))h(t)k(t)dt~

It is easily verified that the condition (2.3) holds for the constant ¢ =
((b—a)/2)%inf{G"(r) : |r| < /(b —a)/2},if ¢ < 0, and ¢ = 0 else.
Therefore, the linear eigenvalue problem ¢”(0)u = pou is equivalent to

the boundary value problem

{ —#ou" = G"(O)u

5.3
e u(a) = u(8) = 0.

If G"(0) # 0 then the problem (5.3) has nonzero eigenvalues and we can apply
Theorem 4.2 to prove that they give bifurcation branches for the problem
(5.1).



6. Numerical examples

We shall consider three examples where the method presented above is ap-
plied in connection with the finite element method. The problem (5.1) is
solved by FEM with piecewise linear elements. We divide the interval [a, b]
into n(h) subintervals [a;,ai4+1], b = ai41 — ai. Let (Ql,...,Q,,(,,)_l)T be
the vector of the nodal values of the finite element solution. Then the finite

element analogue of the problem (5.1) reads

AQ = \G'(Q),
where A is the stiffness matrix

2 -1 0 0 0
-1 2 -1 0 0

Ao :

= :
0 0 0 2 -1
0 0 0 -1 2

and G'(Q) = h(G"(Q1), -, G"(Qnwy-1))T-

The norms appeared above are computed here in the discrete form
Il = V(QI4Q).

The authors are indebted to Mr. T. Mannikko for his assistance in the
following numerical tests.

Example 6.1. Consider the nonlinear eigenvalue problem

{ —u'"(t) = Asinu(t), te€]0,1],

6.
(6.1) u(0) = u(1) =0.

The simple eigenvalues of the linearized problem for (6.1) are \; = 1272
and the corresponding eigensolutions are ¢;(¢) = sinwit. Consequently, the
symmetric bifurcation points are (A;,0). In Figures 1-3 we see the numerical
results obtained with discretization parameter h = 1/32 for the first, second
and third bifurcation branches. On the left, max, |u(t,))| is plotted as a

function of A, and on the right u as a function of (¢, \).
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FIGURE 2

Second bifurcation branch for —u" = X sinu.
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FIGURE 3 Third bifurcation branch for —u"” = X sinu.

Example 6.2. Consider the nonlinear eigenvalue problem

(6.2) { —u"(t) = Mu(t)(1 - sinu(t)) + (u(t))*), t€)o,1,

u(0) = u(1) = 0.

In Figure 4 we see the behaviour of max,e)o(|u(t,A)| for A € ]0, 15[,
h =1/32. At the point A & 12.7 a turning point occurs.

Example 6.3. Consider the nonlinear eigenvalue problem

(6.3) { ~u"(t) = exp(u(t)/(1 + Du(t)), tel-1,1,

u(~1) = u(1) =0,

where D > 0.

Figures 5-6 show the numerical results with h = 1/32 for various pa-
rameters D. In Figure 5 the illustration of max,e)_y 1 [u(t, A)| for A € ]0,2]
with D = 0 and D = 0.1. Figure 6 shows the result with D = 0.2 and
D =03.



FIGURE 4 First bifurcation branch for
—u" = A(u (1 —sinu) + u?).
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FIGURE 5 Bifurcation of —u" = exp(u/(1 + Du)),
D =0 (left), D = 0.1 (right).
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FIGURE 6  Bifurcation of —u" = exp(u/(1+ Du)),
D = 0.2 (left), D = 0.3 (right).

As a summary of the above results we can say that by the method
presented here we were able to find the bifurcation point or turning point
with a relatively good accuracy even with a rough discretization parameter.
Those examples are often used in the literature to test numerical methods for
nonlinear problems. Our results agree well with those given in the literature,
cf 3:6:8,

The method, of course, works for nonlinear eigenvalue problems for

PDE’s. These applications will be reported in a forthcoming paper.
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