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(Receivedfiir P11h/icalio11 24 February 1987) 

1. Introduction

Existence theorems for nonlinear eigenvalue problems of the form 

(1.1) g'(x) = µx, 

where g is a functional on a Hilbert space H and g'(x) the corresponding 

gradient, are considered in many papers. The existence theorems are based 
on t be existence of a critical vector with respect to the manifold S = { x E H : 

 



llxll = l}. Very general results on nonlinear eigenvalue problems in Banach 
spaces can be found in H. Amann1, and in E. Zeidler11 , which also contains 
an extensive bibliography on critical point theories. 

Iterative methods for the construction of all Lusternik-Schnirelmann 
critical valu�s and critical vectors have been presented by J. Necas7 and by 
A. Kratochvi1 and J. Necas4 -5• 

In this paper we shall give an extension of the method used in5 to study 
the eigenvalue problem (1.1). Also, we give examples of problems that have 
been tested numerically. 

2. Iterative construction of the first 
Lusternik-Schnirelmann critical value 

Let H be a real Hilbert space with inner product C-1 ·) and norm II· II, Further­
more, we set S = {x E H: llxll = 1}. Let g be a continuously differentiable 
functional on H such that the derivative g' is strongly continuous, i.e. for 

each sequence ( x n )�=I C H converging weakly to x0 E H, the sequence 

(g'(xn ))�=I converges to g'(xo). 

(2.1) 

(2.2) 

Assume that the following conditions are fulfilled: 

g(O) = 0, g'(O) = O; 

if g(x)-/- 0 and llxll � 1 then g'(x)-/- O; 

there exists a constant c > 0 such that 

(2.3) (g'(x) - g'(y)lx - Y) � -cllx - Yll
2 

holds for all x, y EH, llxll � 1, IIYII � l. 

For a given x E S we divide g' ( x) into tangential and normal compo­

nents, i.e. g'(x) = Tg'(x) + N g'(x), where 

, , (g'(x)lx) 
(2.4) Tg (x) = g (x) 

- llxll 2 
x

. 
Theorem 2,1, Let the above hypothe.,i., be .,ati.,fied. A.,.,ume that x1 E S 
and g(x1) > 0. Let O < 8 < 1/c. Define a .,equence (xn )�=I 

by 

(2.5) Xn+I = 
Xn + 8g'(xn) 

.
11:rn + 8g'(xn)II 



Then there exists a subsequence of ( xn)':'=1 converging to a solution of (1.1 ). 
Hence, there exists a point Xo ES and a numberµ ER such that 
(2.6) g'(xo) = µxo. 
Proof. First, note that x.lTg'(x) for all x E S. Put µn = (g'(xn )lxn ) and 
rn = Jlxn + 9 g'(xn )II- Then r! = 11(1 + 9µn )Xn + 9Tg'(x n )ll2 

= (1 + 9µn )2 
+

92 IITg'(xn)ll2 • 
From (2.3) we get µn � -c. Since O < 9 < 1/c we have rn � 1-9c > 0. 

Furthermore, from (2.5) we obtain the following identity 

(2.7) 
(g'(xn)lxn+l -Xn ) = 

�(rnXn+l - XnlXn +l -Xn ) 
1 

= eCrn -(xnlXn+1) -rn(Xn+1lxn) + 1) 
= 2

1/1 + rn)llxn+l - Xn ll2 •
Next, we shall show that the sequence (g(xn))':'=1 is increasing. For 

this we note that using (2.3) we obtain 

g(y)-g(x)= j(g'(x+t(y-x))ly-x)dt 

= j(g'(x + t(y -x))-g'(x)ly-x)dt + (g'(x)ly-x) 

� -i IIY - xll2 
+ (g'(x)IY -x). 

Using this and (2.7) we get 
(2.8) 

Hence the sequence (g(xn))':'=1 is increasing. Because of the strong 
continuity of g' the functional g is bounded on S. Therefore, the limit 
limn-oo g(xn ) exists and 

lim llxn+l -Xnll = 0. 
n-oo 



Since the sequence (x n )7."=i is bounded, it has a subsequence (we use 
the same notation for each subsequence) converging weakly to some x 0 EH. 

The strong continuity of g' yields r� = 1 + 2B(g'(x n )lx n ) + B2 llg'(xn)ll2 ---+

1 + 2B(g'(xo)lxo) + B2 lig'(xo)ll2 =: ro. 

Since X n+i = l/r n(Xn + Bg'(x n )) we get (ro - l)xo = Bg'(xo). Fur­
thermore, as g(xo) ? g(x n ) > 0, we obtain from (2.1) and (2.2), g'(xo) f= 0. 
Therefore ro f= 1. To show that the sequence (xn)�=l converges to x0 we 
write (2.5) as 

(2.9) 

Here the right hand side converges in norm to -Bg'(x 0) and the left hand 
side to 1 - ro. Since 1 - r 0 f= 0, we obtain the desired convergence from 

(2.9). I 

Corollary 2.2. Assume that instead of (2.9) the inequality 

(2.10) (g'(x )- g'(y)lx - y) :S cl!x -yll2 

holds for some c > 0 and for all x, y EH, llx ll :S 1, IIYII :S 1, and that xi ES 

is such that g(xi) < O. Let -1/c < B < 0. Define the sequence (xn)�=i by 
(2.5). Then there exists a s1ibsequence of (x n )�=i converging to a solution 
of (2.6). 

Proof. We can apply Theorem 2.1 to -g and -B. The sequence (g(xn))�=i 
is now decreasing. I 

3. Higher order critical points

To study higher order critical points we recall some definitions concerning 

the Lusternik-Schnirelmann theory in an infinite dimensional Hilbert space. 

We use the notion of the order of a set rather than the category or 

genus2 . Let K be a symmetric closed set in H. We say that ord K = 0 if J{ 
is empty; that ord K = l if K = Ki U K2, where the Ki are closed subsets of 

J{ and neither Ki nor K2 contains antipodal points. In general, ord K = n if 



K = U;'!/ K;, where the K; are closed subsets of J{ not containing antipodal points and n is the least possible number. Finally, ord J{ = = if no such n exists. Let V/ denote the set of all symmetric compact subsets K of S such that ord K :::: k and ±g( x) > 0 on J{. Denote 
(3.1) { SUp mi� ±g( X ), if v/ 'I- 0, 

± ± _ Kev± zEI<. 
''fk - • 

o, if v/ = 0. 
The fundamental theorem of the Lusternik-Schnirelmann theory states that there exists a sequence of critical points x'; of g such that g( x';) = ,yt, 

±,,t "' 0 and x '; --> 0 weakly. For a proof see1 or11 
, Ch. 44. In case g( x) > 0 on H, a proof has been given in 7• There the critical points are found as limitslimt-->oo x(t), where x(t) is the solution of the differential equation on S 

x = Tg'(x), x(O) = xo ES.

Our method using a discrete iteration seems to be more stable with respect to variations in x0 than this one. Let the assumptions of Theorem 2.1 hold for a functional g. Further­more, assume that g is even on S, i.e. g(-x) = g(x) when llxll = 1. We assume that g has positive critical values. Let 'Yi and 'Yi be the first and second Lusternik-Schnirelmann critical values of gls, 'Yi > 'Yi- Let there exist a positive constant c such that there are no critical values in the inter­val ] ,i - £, 'Yi [. Let J{ 1 be a compact symmetric subset of S such that ord K1 2 2, g(x) > 0 on /{1 and 
(3.2) 

(3.3) 

'Yi - £ < min g(x) < 'Yi-
zEK, 

We denote by <p the function used to define the iteration in (2.5), i.e. 
X + 8g'(x)<p(x) 

= llx + 8g'(x)II"Then <p is a well-defined, odd continuous map S --> S. Choose X1 E J{I , and put Xn+I = <p(xn ) = <pn(x1), where <pn denotes then-fold composition <pO···O<p. 



(3.4) 

 Let x!.°) be a vector from K1 such that 

for any integer n.

Theorem 3.1. Let the above assumptions be fulfilled. Then the following 

assertions hold: 

(i) limn_00 g(<.pn(x�0))) 
= r'!i

(ii) there exist., x<0) E K1 such that

(iii) there exist., a subsequence of (x�0))�=l converging to x <0> 

(iv) for each x<0> satisfying condition {ii} there exists a subsequence of

(,pn(x<0l))�=l converging to some xo such that

g'(xo) = µxo 

Proof. From the proof of Theorem 2.1 (see (2.8)) we have 

(3.5) 

for each x E K1 . Since <.pis an odd continuous operator from S to S we have 

From this, the definition of 'Yi and (3.5) we get 

(3.6) Jim mil). g(<.pn(x)) :=:; 'Yi,
n-oo xEl\1 

Let us denote 

(3.7) 



By compactness there exists a subsequence of (x�0))�=l converging to
x<0> E K1 . 

According to Theorem 2.1, 

is a critical value of g. Since there are no critical values in the interval 
hi - t:, 'Yi[, we obtain

Take T/ > 0. Then by the definition of x�o) and the convergence x�o) --+ x<0) 

there exist numbe:s n0 and n1 such that 

(3.8) 

for any integer n 2'. n1. 
According to (3.5) and (3.8) 

for any n 2'. max{n0 ,n i
} large enough. Therefore 

and thus (i) follows. 
The rest of the proof follows as in Theorem 2.1. I 
In a similar way we obtain the following result 

Corollary 3.2. Let the aJJum.ptionJ of Theorem S.1 be fulfilled. Let

be the poJitive LuJternik-Schnirelmann value3 of gls-

Let there exiJt a conJtant t: > 0 such that there are no critical values 

in the interval hi+ t - t:, 'Yi+l 



Let K1 be a compact 3ymmetric 3Ub3et of S 3uch that 

ord K1 2: k + 1

-rt+i - e < mil} g(x) < -rt+i·
,:Ek, 

For x E K1 let the 3equence (x�0));:"=1 be defined by {S.4). 
Then 

and there exi3t3 a point x<0> E K1 mch that 

Moreover, the a33ertion3 (iii) and (iv) of Theorem S.1 hold. I 

Remark S.S. Assume that instead of (2.3) the condition (2.10) holds and 

that (} is chosen as in Corollary 2.2. Then, with obvious modifications in 

Theorem 3.1 and Corollary 3.2 we can also construct negative critical values 

and corresponding critical points. 

4. Bifurcation of solutions

We will use the previous results to find bifurcation branches for the equation 

(1.1). Let g: H -+ R be a given function and for r > 0 define gr : H -+ 

R,gr(x) = g(r1·). Then g�(x) = µx if and only if g'(xr) = µrxr , where Xr =
rx and µr = µr-2• It is immediately verified that if the second derivative

g"(O) exists and (µo, 0) is a bifurcation point of (1.1), then µ0 is an eigenvalue 

of g"(O). 

To calculate solutions for the equation (1.1) in Section 6 we will use 

the following method: Let µo =/, 0 be an eigenvalue and x1 an eigenvector 

of g"(O). Using Theorems 2.1 and 3.1 and Corollary 2.2 solve the equation 

g�(x) = µx,x ES. Then (µr,xr) gives a bifurcation branch of (1.1). 

In order to verify that this method can be applied we need the following 

result due to Krasnoselskii: 



Theorem 4.1. Let B: H --+ H be a linear, continuous and symmetric op­

erator with R(B) closed and O < dimN(B) < oo. Let N be a continuously 

differentiable potential operator on a neighbourhood of the origin such that IIN(x)ll/llxlJ --+ 0 a,, x --+ 0. Then the point (0, 0) is a bifurcation point of 

the equation 

( 4.1) Bx+ N(.r) = t:x. 

A proof of this result can be found in 11
, Ch. 45; see also2

, App. 1. Now we can prove 
Theorem 4.2. Let g: H --+ R be a twice continuously differentiable function 

on a neighbourhood of the origin. Assume that g' is strongly continuous and 

that g"(O) has an eigenvalue µ0 -/- 0. Then the point (µo, 0) is a bifurcation 

point of {1.1). 

Proof. We can write the equation (1.1) in the form 
µox - g"(O)x - (g'(x) - g"(O)x) = (µo - µ)x. 

Denote t: = fto -µ, B = po 1-g"(O) and N(x) = -g'(x )+g''(O)x. From the strong continuity of g' it follows that g"(O) is compact. Therefore 7?..(B ) is closed and O < dim N( B) < oo, cf.10, Ch. X.5. Since g" is continuou�, we 
have \IN(x)ll/llxll --+ 0 as x --+ 0. Hence the conditions of Theorem 4.1 arc 
fulfilled and the result follows. I 
5. Application to differential equations

We' will apply the previous results to the following two point boundary value 
problem 
( 5.1) { -u" = >.G'(u)

u(a)=u(b)=O
on a bounded interval ]a, b[ C R, where G: R --+ R is a given continuously differentiable function and G' ( u) denotes the function t >-+ G' ( u( t) ). For par­tial differential equations the situation is analogous and will not be handled in this connection. 



We use the inner product ( ulv) = ( u'lv')i•(a,b) in the Sobolev spn,;e
H = HJ(a,b). Problem (5.1) is then equivalent to finding u EH such that 
(5.2) (G'(u)lv)L2(a,b) = µ(ulv) for all v EH, 
where µ = 1/ .X. We define g: H-> R by 

g(u) = J G(u(t))dt.
a 

Then the derivative of g is given by 
b 

(g'(u)lv) = J G'(u(t))v(t)dt
a 

for all v E H. 

Since H embeds compactly into the space of continuous functions on the interval [a, b], the derivative g' is strongly continuous. We assume that G(O) = G'(O) = 0. In order to fulfil the condition (2.2) 
we assume that G' ( r) does not vanish on any interval. If we assume that G 
admits a continuous second derivative, then g" exists and is given by 

g"(u)(h,k) = j G"(u(t))h(t)k(t)dt.
a 

It is easily verified that the condition (2.3) holds for the constant c =
((b- a)/2)2 inf{G"(r): lrl S ,J(b- a)/2}, if c < 0, and c = 0 else. Therefore, the linear eigenvalue problem g"(O)u = µ0u is equivalent to the boundary value problem 
(5.3) {-µou" = G"(O)u

u(a) = u(b) = 0.
If G"(O) ,f= 0 then the problem (5.3) has nonzero eigenvalues and we can apply Theorem 4.2 to prove that they give bifurcation branches for the problem ( 5.1). 



6. Numerical examples

We shall consider three examples where the method presented above is ap­
plied in connection with the finite element method. The problem (5.1) is 
solved by FEM with piecewise linear elements. We divide the interval [a, b] 
into n(h) subintervals [a; ,a;+1J, h = a;+1 - a;. Let (Qi, ... ,Qn(h)-dT be 
the vector of the nodal values of the finite element solution. Then the finite 
element analogue of the problem (5.1) reads 

AQ = .\G'(Q), 

where A is the stiffness matrix

2 -1 0 0 0 

-1 2 -1 0 0 

A= _!_ 
h 

0 0 0 2 -1

0 0 0 -1 2 

and G'(Q) = h (G'(Qi ), ... , G'(Qn(h)-d)T.
The norms appeared above are computed here in the discrete form 

IIQII = JCQIAQ). 

The authors are indebted to Mr. T. Mannikko for his assistance in the 
following numerical tests. 

Example 6.1. Consider the nonlinear eigenvalue problem 

(6.1) { 
-u"(t) = >.sinu(t), 

u(O) = u(l) = 0. 

t E JO, 1[, 

The simple eigenvalues of the linearized problem for (6 .1) are>.;= i2 1r2 

and the corresponding eigensolutions are </!;( t) = sin 1rit. Consequently, the 
symmetric bifurcation points are ( >.;, 0). In Figures 1-3 we see the numerical 
results obtained with discretization parameter h = 1/32 for the first, second 
and third bifurcation branches. On the left, maxi lu(t, >.)I is plotted as a 
function of>., and on the right u as a function of (t, >.). 



11 
"' 
0 

FIGURE 1 First bifurcation branch for -u" = >. sin u. 

FIGURE 2 Second bifurcation branch for -u" = >. sin u. 



FIGURE 3 Third bifurcation branch for -u" = .X sin u. 
Example 6.2. Consider the nonlinear eigenvalue problem 
(6.2) { -u"(t) = .X(u(t)(l - sinu(t)) + (u(t))3 ),

u(O) = u(l) = 0.
t E JO, 1[, 

In Figure 4 we see the behaviour of max1e]o,t( lu(t, .X)I for .X E JO, 15(, 
h = 1/32. At the point .X � 12. 7 a turning point occurs. 
Example 6.3. Consider the nonlinear eigenvalue problem 
(6.3) 
where D � 0. 

{
-u"(t) = exp(u(t)/( 1  + Du(t))), 
u(-1) = u(l) = 0, 

t E J-1, 1[,

Figures 5-6 show the numerical results with h = 1/32 for various pa­
rameters D. In Figure 5 the illustration of max1e]-t,t( lu(t, .X)I for .X E JO, 2[ 
with D = 0 and D = 0.1. Figure 6 shows the result with D = 0.2 and 
D = 0.3. 
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FIGURE 4 First bifurcation branch for 

-u" = A(u(l - sinu) + u3).

QcQ,O 

0 

0 

0=0.1 

15 

O+-�������������� 0+-�������������� 

o.o 0.5 1.0 '.5 2.0 o.o 0.5 '.o 

FIGURE 5 Bifurcation of -u" = exp(u/(1 + Du)), 

D = 0 (left), D = 0.1 (right). 
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FIGURE 6 Bifurcation of -u" == exp(u/(1 + Du)), 
D = 0.2 (left), D = 0.3 (right). 

0-0.5 

1.5 2.0 

As a summary of the above results we can say that by the method 

presented here we were able to find the bifurcation point or turning point 
with a relatively good accuracy even with a rough discretization parameter. 
Those examples are often used in the literature to test numerical methods for 
nonlinear problems. Our results agree well with those given in the literature, 
cf.3,6,8 . 

The method, of course, works for nonlinear eigenvalue problems for 
PD E's. These applications will be reported in a forthcoming paper. 
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