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Effective values of the axial-vector coupling constant gA have lately attracted much attention due to the
prominent role of gA in determining the half-lives of double β decays, in particular their neutrinoless mode.
The half-life method, i.e., comparing the calculated half-lives to the corresponding experimental ones, is the
most widely used method to access the effective values of gA. The present paper investigates the possibilities
offered by a complementary method: the spectrum-shape method (SSM). In the SSM, comparison of the shapes
of the calculated and measured β electron spectra of forbidden nonunique β decays yields information on the
magnitude of gA. In parallel, we investigate the impact of the next-to-leading-order terms of the β-decay shape
function and the radiative corrections on the half-life method and the SSM by analyzing the fourfold forbidden
decays of 113Cd and 115In by using three nuclear-structure theory frameworks; namely, the nuclear shell model,
the microscopic interacting boson-fermion model, and the microscopic quasiparticle-phonon model. The three
models yield a consistent result, gA ≈ 0.92, when the SSM is applied to the decay of 113Cd for which β-spectrum
data are available. At the same time the half-life method yields results which are in tension with each other and
the SSM result.

DOI: 10.1103/PhysRevC.95.024327

I. INTRODUCTION

The general features of the nuclear single β decay are well
established and fairly extensively tested throughout the nuclear
landscape [1,2]. The recent developments in the field of β
decay have led to the application of the theoretical formalism
to the more extreme types of β decay. Typically these are
transitions characterized by extensively long partial half-lives
and in many cases they are masked by the competing faster
decay channels. The retardation of these rare types of single β
decay typically results from the following conditions: (a) the
required angular-momentum change between the initial and
final nuclear state is large, and/or (b) the transition Q value
(energy available for the decay) is low (<100 keV). Examples
of such studies include up to sixfold forbidden β transitions,
and those of ultralow Q values (see, e.g., Refs. [3–9]).

Aside from the theoretical and experimental development
leading to the studies of the rare β decays, another point of
interest has been the problem concerning the effective values
of the weak coupling constants. Initially, the two coupling
constants, i.e., the vector coupling constant gV and the
axial-vector coupling constant gA, enter the β-decay theory as
means of renormalizing the hadronic current. The “bare” or
“canonical” values of gV = 1.0 and gA = 1.27 [10] stem from
the conserved vector current (CVC) hypothesis and partially
conserved axial-vector current (PCAC) hypothesis [11].
Corrections to these bare values can stem from, e.g., the
non-nucleonic degrees of freedom [12,13], but in the
context of practical nuclear-structure calculations additional
shortcomings of the many-body treatment can also be
absorbed into these constants. These shortcomings stem from
the nuclear many-body effects that include the truncations
in the model space and/or deficiencies in handling the
many-body quantum mechanics [14,15].

As mentioned earlier, the canonical free-nucleon values
of the weak constants are fixed by considerations of the
electroweak theory. Although both of the weak constants

might be subject to quenching (see, e.g., Refs. [16–19] for the
discussion on the effective values of gV), the particular interest
in the effective values of gA is explained by the studies made on
the neutrinoless double β decay. The decay rate of this mode is
proportional to g4

A [20,21], and thus any uncertainties related
to the values of the axial-vector coupling pose a substantial
difficulty when considering the experimental verification of
this decay branch (see, e.g., Refs. [22,23]).

Up until recently the usual analyses on the effective values
of weak coupling constants have been revolving around the
computation of the single-β-decay and double-β-decay (the
two-neutrino mode) partial half-lives. The effective values
of the axial-vector coupling constant are extracted when a
reasonable match with experiment is found by fine tuning
the value of gA. These studies have been performed in the
context of the proton-neutron quasiparticle random-phase
approximation (pnQRPA) [14,15,22–26], the nuclear shell
model (NSM) [27–29], and the interacting boson model
(IBM) [30–32]. The general trends seem to suggest a need
for a fairly strong quenching of gA. In most of these studies
effective values of less than unity appear.

To access a complementary way of getting insight into the
problem of the coupling constants, a new method, called the
spectrum-shape method (SSM) was introduced in Ref. [8].
Instead of drawing the conclusions solely from the partial half-
lives, the spectra of the emitted β particle, i.e., the β spectra,
can also be used to aid the search. The proposed method is
based on the observation that the many nuclear matrix elements
(NMEs) of the forbidden nonunique β−-decay branches can
make the shape of the β spectra strongly depend on the chosen
values of the weak coupling constants. Suitable values of
these constant can then be found by performing a comparison
between the theoretical and the experimental β spectra.

All (but one, Ref. [8]) of the previous studies on single
β decay restrict the inspection of the partial half-lives to
the leading-order terms of the β-decay shape factor (see,
e.g., Refs. [5–7]). Likewise, many of the other higher-order
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corrections are typically neglected. In the current article we
want to extend the presentation of Ref. [8] by gathering the
theoretical formalism compactly under one heading. More
notably we want to concentrate on the extension of the β-decay
theory to the next-to-leading order following the discussion in
Refs. [1,2]. Although the major part of the theory is well
contained in the lowest-order NMEs, some finer quantitative
and qualitative details are still present in the second-order
terms. These corrections include contributions to both the
partial half-lives and the β spectra.

Previously, the β decay of 113Cd and 115In were examined in
Ref. [8] in the context of the microscopic quasiparticle-phonon
model (MQPM) [33] and the NSM [34]. An even earlier study
was conducted in Ref. [35]. The considered decay branches
are both fourth-forbidden nonunique ground-state-to-ground-
state transitions with partial half-lives t

β
1/2 = (8.04 ± 0.05) ×

1015 yr and t
β
1/2 = (4.41 ± 0.25) × 1014 yr, respectively [36].

The MQPM is an extension of the QRPA towards the NSM
by adding the quasiparticle-phonon coupling to the QRPA to
be able to describe the wave functions of odd-mass nuclei. As
a result, the features of the QRPA and the NSM propagate to
the MQPM, which makes also the MQPM susceptible to the
problem of the effective gA.

The additional goal of the current work is to further
extend the analysis of the mentioned decay branches. This is
achieved by expanding the previous MQPM calculations [8] to
a larger model space and by performing the nuclear-structure
calculations with the microscopic interacting boson-fermion
model (IBFM-2) [37,38]. In what follows we denote it as IBM
for brevity. The quality of the resulting one-body transition
densities (OBTDs) is assessed by examining the spectroscopic
properties of the nuclear-structure calculations. After finding a
reasonable match with the data, a detailed comparison between
the results of the three nuclear models is performed.

The current article is organized as follows. In Sec. II
we discuss the theoretical formalism for nuclear β decay
in a streamlined manner without resorting to the rigorous
derivations of the various mathematical expressions. Special
emphasis is placed on the presentation of the second-order
terms of the β-decay shape factor in a way to be suitable
for practical calculations. In Sec. III we revisit the β decays
of 113Cd and 115In by performing an additional study with
the IBM wave functions and the presently computed wave
functions of MQPM. We compare these results to the ones
obtained previously with the NSM. Lastly, in Sec. IV, we
draw the conclusions.

II. THEORETICAL FORMALISM

In this section we present the theoretical formalism for
nuclear β decay. Although the current presentation follows
closely the prescription found in Ref. [1] (see also Ref. [2]), we
do not discuss the theory in full detail. Instead of the rigorous
derivation of the relevant mathematical expressions, we aim
to present the formalism in a compact and ready-to-use way
that allows its application to practical calculations. Special
care is taken when including the next-to-leading-order terms
(or second-order terms) of the β-decay shape function into the

equations of the transition half-lives. This refinement of the
theory is usually omitted (see, e.g., Ref. [39]).

It should be noted that we focus on the β− decay, since
these are the types of decay examined in the current work. A
detailed description on how the presented formalism has to
be modified to analyze the β+ decay branches is reviewed in
Sec. II B. An additional discussion on the radiative corrections
is briefly made in Sec. II C.

A. Theory of β− decays

The starting point of the low-energy β−-decay theory is
to describe the nuclear β− decay process with a point-like
interaction vertex. The resulting effective coupling constant is
then called the Fermi coupling constant GF and the probability
for the electron to be emitted in an energy interval We to
W + dWe is given by

P (We)dWe

= G2
F

(h̄c)6

1

2π3h̄
C(We)pecWe(W0 − We)2F0(Z,We)dWe. (1)

The quantity pe in Eq. (1) is the electron momentum and
W0 is the endpoint energy of the β spectrum. The endpoint
energy corresponds to the maximum electron energy in a given
transition. The function F0(Z,We) is the Fermi function, and it
approximately takes into account the effects of the Coulombic
attraction between the electron and the nucleus. Aside from
electron energy, the Fermi function is dependent on the proton
number Z of the daughter nucleus.

The decay rate associated with a β− transition is found
by integrating Eq. (1) over the accessible energy range of the
electron, i.e., from the electron rest mass mec

2 to the endpoint
energy W0. To treat the integration of this function in a more
convenient manner we introduce the dimensionless quantities
w0 = W0/(mec

2), we = We/(mec
2), and p = pec/(mec

2) =
(w2

e − 1)1/2. These are the corresponding kinematical quanti-
ties divided by the electron rest mass mec

2. By introducing
also a constant κ written as

κ = 2π2h̄ln(2)

(mec2)5(GF cos θC)2/(h̄c)6
, (2)

where θC is the Cabibbo angle, the partial half-life can then
be expressed as t1/2 = κ/C̃. The quantity C̃ is called the
dimensionless integrated shape function and is given by

C̃ =
∫ w0

1
C(we)pwe(w0 − we)2F0(Z,we)dwe. (3)

Apart from the universal kinematical factors the shape of the
β spectrum is determined by the shape factor C(we). This is
the part that characterizes a given transition by carrying the
actual nuclear-structure information in a form of the nuclear
matrix elements (NMEs).

The general form of the shape factor of Eq. (3) is a sum:

C(we) =
∑

ke,kν ,K

λke

[
MK (ke,kν)2 + mK (ke,kν)2

− 2γke

kewe

MK (ke,kν)mK (ke,kν)

]
, (4)
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where the indices ke and kν (both k = 1,2,3,...) are related
to the partial-wave expansion of the electron (e) and neutrino
(ν) wave functions, and K is the order of forbiddeness of the
transition. The Coulomb function λke

is given by

λke
= Fke−1(Z,We)

F0(Z,We)
, (5)

where Fk−1(Z,We) is the generalized Fermi function which
takes the form

Fke−1(Z,We) = 4ke−1(2ke)
(
ke + γke

)
[(2ke − 1)!!]2eπy

×
(

2peR

h̄

)2(γke −ke)
(∣∣	(

γke
+ iy

)∣∣
	

(
1 + 2γke

) )2

. (6)

The auxiliary quantities are defined as γke
= [k2

e − (αZ)2]1/2

and y = (αZwe)/(pec).
The general expressions for the quantities MK (ke,kν) and

mK (ke,kν) are complicated collections of nuclear form factors
FKLS(q2) = FKLS(|pe + pν |2) and other kinematical factors.
Since the most important contributions stem from the form
factors that are related to the minimal transfer of angular
momentum, Eq. (4) can be restricted to two distinct sums
that satisfy ke + kν = K + 1 and ke + kν = K + 2 for a given
order of forbiddeness K . These two cases correspond to
the angular-momentum transfers �J and �J + 1, where
�J = |Jf − Ji |.

The form factors appearing in Eq. (4) can be expanded as a
power series of the quantity qR/h̄, where q = |pe + pν | and
R is the nuclear radius:

FKLS(q2) =
∑
N

(−1)N (2L + 1)!!

(2N )!!(2L + 2N + 1)!!
(qR/h̄)2NF (N)

KLS.

(7)

In typical nuclear β decays the momenta of the participating
leptons are small, i.e.,

(peR/h̄) � 1, (p
ν
R/h̄) � 1, (8)

where it follows that likewise (qR/h̄) � 1. Thus, leading-
order contributions come from the lowest-order form-factor
coefficients F (N)

KLS of Eq. (7) [1]. In practice the form-factor
coefficients are suppressed by a set of small quantities
ηi=1,2,3,4,5 = {αZ, peR/h̄, pνR/h̄, mecR/h̄, WeR/h̄c}. When
the prefactors dependent on the integers ke, kν , and K are

excluded, the functions MK (ke,kν) and mK (ke,kν), appearing
in Eq. (4), consist of terms of the form

∏
i η

αi

i F (N)
KLS with

αi = 0,1,2,.... Careful and thorough order-of-magnitude con-
siderations are needed to separate the most essential content
from the less significant contributions.

To be able to express the nuclear-structure content in a
form of NMEs, the decaying nucleus is treated by assuming
impulse approximation [1]. The purpose of it is to treat the
decaying nucleon independently of the rest of the nucleons.
Therefore other nucleons act only as spectators, and the meson-
exchange and other many-body effects are neglected. After the
impulse approximation is introduced, the nuclear form-factor
coefficients can be replaced by

RLV F
(N)
KLS(ke,m,n,ρ) → (−1)K−L VM(N)

KLS(ke,m,n,ρ), (9)

and

RLAF
(N)
KLS(ke,m,n,ρ) → (−1)K−L+1 AM(N)

KLS(ke,m,n,ρ).

(10)

It should be noted that all NMEs carry a prefactor of either gA

or gV. These are the vector (V ) and axial-vector (A) coupling
constants that were used to renormalize the hadronic current.
The appearance of these constants in Eq. (4) alters the relative
weight of NMEs. When the value of gA is increased, the impact
of the axial-vector-type NMEs increases. The exact opposite
happens when the value is decreased.

Most applications of the β-decay theory (see, e.g., Refs. [5–
7,39]) are performed considering only the first-order terms in
Eq. (4). The introduction of the next-to-leading-order terms
of the shape factor leads to a drastic increase of the number
of NMEs involved in the calculations. In the case of fourth-
forbidden nonunique decays of the current study, the number of
NMEs increases from 12 to 45. In general, second-order terms
involve matrix elements that are obtained from the first-order
NMEs by adding an extra factor of (r/R)2N to the integrands
of the first-order single-particle matrix elements [2]. However,
for several terms, the higher-degree Coulombic factors are also
taken into account.

Abiding by the dimensionless notation of Eq. (3), the
explicit expressions that include both the first- and second-
order terms of the shape factor can be constructed as follows:
In the case of the summation ke + kν = K + 1 the function
MK (ke,kν) is given by

MK (ke,kν) = KKξke+kν−2(√w2
e − 1

)ke−1
(w0 − we)kν−1

[√
2K + 1

K
R−(K−1)gV

VM(0)
K K−1 1

−
(

we

2ke + 1
+ w0 − we

2kν + 1

)
ξR−KgV

VM(0)
K K 0

− αZ

2ke + 1
R−KgV

VM(0)
K K 0(ke,1,1,1) +

√
K + 1

K

(
we

2ke + 1
− w0 − we

2kν + 1

)
ξR−KgA

AM(0)
K K 1

+
√

K + 1

K

αZ

2ke + 1
R−KgA

AM(0)
K K 1(ke,1,1,1) − 2

√
K + 1

2K + 1

we

2ke + 1

w0 − we

2kν + 1
ξ 2R−(K+1)gV

VM(0)
K K+1 1

− 2

√
K + 1

2K + 1

αZ

2ke + 1

w0 − we

2kν + 1
ξR−(K+1)gV

VM(0)
K K+1 1(ke,1,1,1)
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+ 1√
K(2K + 1)

we

2ke + 1

w0 − we

2kν + 1
ξ 2R−(K−1)gV

VM(1)
K K−1 1

+ 1

2

√
2K + 1

K

(
1

2ke + 1
− w2

e

2ke + 1
− (w0 − we)2

2kν + 1

)
ξ 2R−(K−1)gV

VM(1)
K K−1 1

+ 1√
K(2K + 1)

αZ

2ke + 1

w0 − we

2kν + 1
ξR−(K−1)gV

VM(1)
K K−1 1(ke,1,1,1)

−
√

2K + 1

K

αZwe

2ke + 1
ξR−(K−1)gV

VM(1)
K K−1 1(ke,2,2,1)

− 1

2

√
2K + 1

K

(αZ)2

2ke + 1
R−(K−1)gV

VM(1)
K K−1 1(ke,2,2,2)

]
, (11)

and the function mK (ke,kν) is given by

mK (ke,kν) = KKξke+kν−1
(√

w2
e − 1

)ke−1
(w0 − we)kν−1 1

2ke + 1

[
−R−KgV

VM(0)
K K 0 +

√
K + 1

K
R−KgA

AM(0)
K K 1

− 2

√
K + 1

2K + 1

w0 − we

2kν + 1
ξR−(K+1)gV

VM(0)
K K+1 1 + 1√

K(2K + 1)

w0 − we

2kν + 1
ξR−(K−1)gV

VM(1)
K K−1 1

− 1

2

√
2K + 1

K
αZR−(K−1)gV

VM(1)
K K−1 1(ke,2,1,1)

]
. (12)

The auxiliary quantity ξ = mec
2R/(h̄c) and the common prefactor KK of both Eqs. (11) and (12) is

KK =
√

1

2

√
(2K)!!

(2K + 1)!!

√
1

(2ke − 1)!(2kν − 1)!
. (13)

The corresponding expressions in the case of the more extensive sum, i.e., ke + kν = K + 2, are given by

MK (ke,kν) = K̃Kξke+kν−2(√w2
e − 1

)ke−1
(w0 − we)kν−1

√
K + 1

(2ke − 1)(2kν − 1)

[
R−KgV

VM(0)
K K 0 + ke − kν√

K(K + 1)
R−KgA

AM(0)
K K 1

+
√

1

(K + 1)(2K + 1)

(
2ke − 1

2ke + 1
we + 2kν − 1

2kν + 1
(w0 − we)

)
ξR−(K+1)gV

VM(0)
K K+1 1

+
√

1

(K + 1)(2K + 1)

2ke − 1

2ke + 1
αZR−(K+1)gV

VM(0)
K K+1 1(ke,1,1,1)

+
√

1

K(2K + 1)

(
2(kν − 1)

2ke + 1
we + 2(ke − 1)

2kν + 1
(w0 − we)

)
ξR−(K−1)gV

VM(1)
K K−1 1

+
√

1

K(2K + 1)

2(kν − 1)

2ke + 1
αZR−(K−1)gV

VM(1)
K K−1 1(ke,1,1,1)

]
, (14)

and

mK (ke,kν) = K̃Kξke+kν−1
(√

w2
e − 1

)ke−1
(w0 − we)kν−1

√
K + 1

(2ke + 1)(2kν + 1)

1

2ke + 1

×
[√

1

(K + 1)(2K + 1)
(2ke − 1)R−(K+1)gV

VM(0)
K K+1 1 + 2

√
1

K(2K + 1)
(kν − 1)R−KgA

AM(1)
K K 1

]
. (15)

It should be noted that, in this case, there are no first-order terms for mK (ke,kν). The prefactor K̃K in now expressed as

K̃K =
√

(2K)!!

(2K + 1)!!

√
1

(2ke − 1)!(2kν − 1)!
. (16)
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In addition to the terms (14) and (15) the more extensive sum also includes additional terms:

MK+1(ke,kν) = K̃Kξke+kν−2(√w2
e − 1

)ke−1
(w0 − we)kν−1

[
− R−KgA

AM(0)
K+1 K 1

+
√

K + 1

2K + 3

(
we

2ke + 1
+ w0 − we

2kν + 1

)
ξR−(K+1)gA

AM(0)
K+1 K+1 0

+
√

K + 1

2K + 3

αZ

2ke + 1
R−(K+1)gA

AM(0)
K+1 K+1 0(ke,1,1,1)

−
√

K + 2

2K + 3

(
we

2ke + 1
− w0 − we

2kν + 1

)
ξR−(K+1)gV

VM(0)
K+1 K+1 1

−
√

K + 2

2K + 3

αZ

2ke + 1
R−(K+1)gV

VM(0)
K+1 K+1 1(ke,1,1,1)

]
. (17)

The NMEs carry the nuclear-structure information, and for the above equations they are given by the general form

V/AM(N)
KLS(pn)(ke,m,n,ρ) =

√
4π

Ĵi

V/A∑
pn

m
(N)
KLS(pn)(ke,m,n,ρ)(�f ||[c†pc̃n]K ||�i). (18)

The quantity V/Am
(N)
KLS(pn)(ke,m,n,ρ) is the single-particle matrix element and the summation of Eq. (18) runs over the proton

(p) and neutron (n) single-particle states. The quantity (�f ||[c†pc̃n]K ||�i) is the one-body transition density (OBTD) between
the initial (i) and final (f ) nuclear state, and they must be evaluated by using a given nuclear model. Equation (18) introduces
the “hat notation,” ĵ = √

2j + 1, which is used throughout Sec. II.
The single-particle matrix elements of Eq. (18) come from sandwiching the β-decay transition operator between the initial

(neutron) and final (proton) single particle wave functions, i.e.,

V m
(N)
KLS(pn)(ke,m,n,ρ) = 1

K̂

(
p

∣∣∣∣∣
∣∣∣∣∣TKLS

(
r

R

)2N

I(ke,m,n,ρ; r)

∣∣∣∣∣
∣∣∣∣∣n

)
, (19a)

Am
(N)
KLS(pn)(ke,m,n,ρ) = 1

K̂

(
p

∣∣∣∣∣
∣∣∣∣∣γ5TKLS

(
r

R

)2N

I(ke,m,n,ρ; r)

∣∣∣∣∣
∣∣∣∣∣n

)
, (19b)

where

TKLS =
{
iLrLYLMδLK, S = 0

iL(−1)L+1−KrL[YLσ ]KM, S = 1,
(20)

and γ5 is the fifth 4 × 4 gamma matrix with the two off-diagonal 2 × 2 identity matrices. Functions YLM are spherical harmonics
and σ is the Pauli matrix.

In the current work the initial and final states of Eq. (19) are described by the relativistic single-particle spinor wave functions

φnljm =
[
Gnljm(r)
Fnljm(r)

]
, (21)

where the large component Gnljm is a solution of the nonrelativistic Schrödinger equation for a harmonic oscillator:

Gnljm(r) = iLgnl(r)[Ylχ1/2]jm. (22)

The small component Fnljm is

Fnljm(r) = σ · p
2MNc

Gnljm(r) = il+1h̄

2MNcb
(−1)l+j− 1

2

[
r

b
gnl(r) − 2

√
n + j + 1gnl±1(r)

]
[Yl±1χ1/2]jm. (23)

The latter line of Eq. (23) is the analytic form of the smaller component when gnl(r) in taken to be a harmonic-oscillator wave
function. The quantity MN = 940 MeV/c is the nuclear mass, which is taken to be the same for both protons and neutrons, and
b is the harmonic-oscillator size parameter.

All the necessary NMEs required in Eqs. (11)–(17) can be generated from only four types of single-particle matrix element.
Depending on the vector or axial-vector character, these types are either V/Am

(N)
KK0(pn)(ke,m,n,ρ) or V/Am

(N)
KL1(pn)(ke,m,n,ρ).
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The explicit expressions for these elements are

V m
(N)
KK0(pn)(k,m,n,ρ) = ilp+ln+K (−1)jp+jn+1 1 + (−1)lp+ln+K

2

ĵpĵn√
4πK̂

(
jp

1

2
jn − 1

2

∣∣∣∣K0

)
× 1

R2N

[
(−1)jn+ln− 1

2 〈r2N+KI(k,m,n,ρ; r)〉pn�(lplnK)

+ (−1)jp+lp− 1
2 〈r2N+KI(k,m,n,ρ; r)〉p̃ñ�(l̃p l̃nK)

]
, (24)

Am
(N)
KK0(pn)(k,m,n,ρ) = ilp+ln+K+1(−1)jp+jn

1 + (−1)lp+ln+K+1

2

ĵpĵn√
4πK̂

(
jp

1

2
jn − 1

2

∣∣∣∣K0

)
× 1

R2N
[{r2N+KI(k,m,n,ρ; r)}pñ�(lpl̃nL) + (−1)jp+jnlp+ln{r2N+KI(k,m,n,ρ; r)}p̃n�(l̃plnL)],

(25)

V m
(N)
KL1(pn)(k,m,n,ρ) = ilp+ln+L+1 1 + (−1)lp+ln+L+1

2

L̂ĵpĵn√
4πK̂

(
jp

1

2
jn − 1

2

∣∣∣∣K0

)
× 1

R2N

[
(−1)ln+jn+ 1

2 +K [AKL(pn) + BKL(pn)]{r2N+KI(k,m,n,ρ; r)}pñ�(lpl̃nL)

+(−1)lp+jp+ 1
2 +K [AKL(pn) − BKL(pn)]{r2N+KI(k,m,n,ρ; r)}p̃n�(l̃plnL)

]
, (26)

and

Am
(N)
KL1(pn)(k,m,n,ρ) = ilp+ln+L(−1)K+1 1 + (−1)lp+ln+L

2

L̂ĵpĵn√
4πK̂

(
jp

1

2
jn − 1

2

∣∣∣∣K0

)
× 1

R2N
[AKL(pn) + BKL(pn)]〈r2N+KI(k,m,n,ρ; r)〉pn�(lplnL)

+ (−1)lp+ln+jp+jn [AKL(pn) − BKL(pn)]{r2N+KI(k,m,n,ρ; r)}p̃ñ�(l̃p l̃nL)]. (27)

In all the above expression �(l1l2L) denotes the triangular condition |l1 − l2| � L � l1 + l2 that the angular-momentum quantum
numbers l have to satisfy. If this condition is not met the term vanishes. The auxiliary quantum number l̃, related to the orbital
angular-momentum quantum number l, is defined as

l̃ =
{

l + 1, j = l + 1
2

l − 1, j = l − 1
2 .

(28)

In additional to this, the factors AKL(pn) and BKL(pn) of Eqs. (26) and (27) are given by

AKL(pn) = ĵ 2
p + (−1)jp+jn+Kĵ 2

n√
2K(K + 1)(2L + 1)

(−1)K+1(K 1 1 − 1|L 0)(1 − δK0), (29)

and

BKL(pn) = (−1)lp+jp− 1
2 +K 1

L̂
(K 0 1 0|L 0). (30)

The quantities (j1 m1 j2 m2|J M) appearing in Eqs. (24)–(27), (29), and (30), are the usual Clebsch–Gordan coefficients related
to the coupling of two angular momenta.

The factors {r2N+KI(k,m,n,ρ; r)}pn of Eqs. (25)–(27), dependent on the radial coordinate r , are called the radial factors, and
with the auxiliary notations p̃ = (np,l̃p,jp) and ñ = (nn,l̃n,jn) they are expressed as

{r2N+KI(k,m,n,ρ; r)pñ} = k(b)

(
1

b
〈r2N+K+1I(k,m,n,ρ; r)〉pn − 2

√
nn + jn + 1〈r2N+KI(k,m,n,ρ; r)〉pñ

)
, (31)

{r2N+KI(k,m,n,ρ; r)p̃n} = k(b)

(
1

b
〈r2N+K+1I(k,m,n,ρ; r)〉pn − 2

√
np + jp + 1〈r2N+KI(k,m,n,ρ; r)〉p̃n

)
, (32)

024327-6



SPECTRUM-SHAPE METHOD AND THE NEXT-TO- . . . PHYSICAL REVIEW C 95, 024327 (2017)

and

{r2N+KI(k,m,n,ρ; r)p̃ñ} = k(b)2

(
1

b2
〈r2N+K+2I(k,m,n,ρ; r)〉pn − 2

b

√
np + jp + 1〈r2N+K+1I(k,m,n,ρ; r)〉p̃n

− 2

b

√
nn + jn + 1〈r2N+K+1I(k,m,n,ρ; r)〉pñ

+ 4
√

(np + jp + 1)(nn + jn + 1)〈r2N+KI(k,m,n,ρ; r)〉p̃ñ

)
, (33)

where k(b) = h̄/(2MNcb). The radial integral itself is defined as

〈r2N+LI(k,m,n,ρ; r)〉pn =
∫ ∞

0
gnplp (r)r2N+LI(k,m,n,ρ; r)gnnln (r)r2dr, (34)

and inside of it are the Coulomb factors I(k,m,n,ρ; r). These factors take into account the finite size of the nucleus, and they are
tabulated by using the integers m, n, and ρ. These are related to the content of the small quantities ηi as follows: m is equal to the
total power of (meR/h̄), (WeR/h̄) and αZ, n to the total power of (WeR/h̄) and αZ, and finally ρ is the power of αZ. If ρ = 0
then it always holds that I(k,m,n,0; r) = 1. Thus, the Coulomb factor is explicitly indicated only when it deviates from unity.
When the second-order terms are included there is a total of four Coulomb factors involved in the calculations. These are given by

I(k,1,1,1; r) =
⎧⎨⎩

3
2 − 2k+1

2(2k+3)

(
r
R

)2
0 � r � R

2k+1
2k

R
r

− 3

2k(2k+3)( R
r )2k+1 r > R,

(35a)

I(k,2,1,1; r) =
⎧⎨⎩− 1

2(2k+3)

(
r
R

)2
0 � r � R

− 1
k

R
r

+ 3

2(2k−1)( R
r )2− 3

k(2k+3)(2k−1) ( R
r )2k+1 r > R,

(35b)

I(k,2,2,1; r) =
⎧⎨⎩

3
2 − k+1

2(2k+3)

(
r
R

)2
0 � r � R

4k+1
2k

R
r

− 3k
2(2k−1)

(
R
r

)2 + 3
2k(2k+3)−1)

(
R
r

)2k+1
r > R,

(35c)

I(k,2,2,2; r) =
⎧⎨⎩

9
4 − 3(k+1)

2(2k+3)

(
r
R

)2 + 2k+1
12(2k+3)

(
r
R

)4
0 � r � R

2k+1
k

(R
r

)2 ln
(

r
R

) + [
19
12 + 7

12(2k+3) − 3
2k2(2k+3)

](
R
r

)2 + 3

2k2(2k+3)( R
r )2k+2 r > R,

(35d)

when uniform charge density is assumed. It should be noted that only the first factor of Eq. (35d) is needed if the shape factor is
built from the lowest-order terms.

Further considerations must be taken in the case of the first-forbidden transitions with zero angular-momentum change, i.e.,
K = 1 and �J = 0. In this case the shape factor of Eq. (4) is extended by two more nuclear matrix elements to be written in a form

C01(we) = ξ 2g2
A

[(
1

ξ 2
AM(0)

000 + w0

3
AM(0)

011 − α̃Z

3
AM(0)

011(ke,1,1,1)

)2

+
(

AM(0)
011

3

)2

− 2γ1

we

(
1

ξ 2
AM(0)

000 + w0

3
AM(0)

011 − α̃Z

3
AM(0)

011(ke,1,1,1)

)(
AM(0)

011

3

)]
. (36)

Here α̃Z = αh̄
Rmec

Z and γ1 = [1 − (αZ)2]1/2. The auxiliary quantity ξ is the same as in Eqs. (11)–(17). Finally, the new NMEs
of the above equation are now expressed as

AM(0)
000 =

√
4π

Ĵi

A∑
pn

m
(0)
000(pn)(�f ||[c†pc̃n]0||�i), (37a)

AM(0)
011 =

√
4π

Ĵi

A∑
pn

m
(0)
011(pn)(�f ||[c†pc̃n]0||�i). (37b)

The explicit forms of the corresponding single-particle
matrix elements can be easily derived from Eqs. (25) and (27).

It is worth emphasizing that the omission of the second-
order terms leads to a considerable simplification when dealing
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with unique transitions, i.e., those with �J = K + 1. In this
case only the first term of MK+1(ke,kν) is nonvanishing in
Eq. (4). Therefore, the decay probability is determined solely
by a single matrix element AM(0)

K+1 K 1. Furthermore, it follows
that the inverse half-life is then proportional to g2

A, and
thus only one positive value of gA can correspond to the
experimentally measured half-life. In contrast to this simplified
scheme the inverse half-life for a nonunique decay branch
bears the proportionality 1/t1/2 ∝ c1g

2
A + c2gA + c3, where it

generally holds that c2 
= 0. Due to this nonzero first-power
term it follows that a total of two values of gA can reproduce
the experimental half-life.

B. β+ decays

The β+ decays differ from the β− decays by the sign of
the electric charge of the emitted β particle. Instead of mutual
attraction, resulting from the negatively charged electron, the
repulsive Coulombic force between the positively charged
positron and the daughter nucleus helps to drive the two
decay remnants apart. On average, the positrons are emitted at
slightly larger energies, and thus the bulk of the β spectrum
is shifted to higher energies. Another important difference
between the two decay modes comes from the competing
electron capture (EC) channel that dominates at low decay
energies. The β channel itself is, in fact, available only for
energies which are two electron rest masses above the EC
threshold.

When the above-derived theoretical formalism of β− decay
is applied to β+ decays, the signs of some of the parameters are
changed. In all equations of Sec. II A one must apply the sign
changes Z → −Z and gA → −gA. In addition, the proton and
neutron indices of Eqs. (18) must be exchanged, i.e., p ↔ n.
By this conversion the proton single-particle state is on the
right side of the transition operator.

C. Radiative corrections

Radiative corrections are a set of higher-order corrections
that stem from the finer details of the Coulomb interaction.
When only the so-called outer radiative corrections are
considered, the treatment is independent of the details of the
weak and strong interactions [1]. Since these corrections alter
the way the observables depend on electron energy, both the
β-decay half-lives and electron spectra are affected.

In practice the radiative corrections are applied by replacing
the shape factor C(we) of Eq. (4) by

CR(we) = C(we)[1 + δR(we,Z)]. (38)

The correction term δR(we,Z), generally dependent on both the
electron energy we and the proton number Z of the daughter
nucleus, contains the radiative corrections. The correction
factor used in the current article contains the first-order factors
taken from Ref. [1]. In this case they are written as

δR(we) = α

2π
g(we,w0), (39)

where

g(we,w0) = 3 ln

(
mp

me

)
− 3

4
+ 4

(
arctanhβ

β
− 1

)
w0 − we

3we

− 3

2
+ ln[2(w0 − we)] + 4

β
L

(
2β

1 + β

)
+ arctanhβ

β

[
2(1 + β2)

+ (w0 − we)2

6w2
e

− 4arctanhβ

]
. (40)

The quantity β = pe/we and mp is the proton mass. The
function L(x) appearing in Eq. (40) is the Spence function,
defined by the integral

L(x) =
∫ x

0

dt

t
ln(1 − t). (41)

It should be noted that the inner radiative corrections,
related to the details of the weak and strong interactions, do
not change the actual mathematical expressions of the outlined
theory. This is because their influence can be absorbed into the
renormalization of the weak coupling constants.

III. NUMERICAL APPLICATION AND RESULTS

The application of the theoretical formalism of Sec. II to
the highly forbidden β decays is discussed, e.g., in Refs. [3,5–
8,35,39]. Previously, the fourth-forbidden nonunique ground-
state-to-ground-state decay branches of 113Cd and 115In were
examined in Ref. [8]. In that article we introduced a new
method for the extraction of the effective values of the weak
coupling constants from the β spectra. This method, called the
spectrum-shape method (SSM), utilizes the dependence of the
shape of the β spectra on the values of the coupling constants.
It complements the usual method of extracting the effective
values of the weak constants through the inspection of the
partial half-lives.

A. Nuclear-structure calculations and β-decay
nuclear matrix elements

To further analyze the 113Cd and 115In beta decays, the
NSM one-body transition densities of the previous study [8]
were adopted. The shell-model OBTDs, as stated in Ref. [8],
were computed by using the shell-model code NUSHELLX [40]
together with a recently constructed effective jj45pna inter-
action [42,43]. This interaction is based on the CD-Bonn
potential and renormalized by using a perturbative G-matrix

TABLE I. Boson-fermion interaction parameters of the IBFM-2
(in MeV).

Nucleus 	ρ �ρ Aρ

113Cd 0.1 1.15 0.2
113In 0.33
115In 0.29 0.6 −0.11
115Sn 0.6 0.27
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TABLE II. Leading-order and next-to-leading-order nuclear matrix elements (NMEs) of the fourth-forbidden ground-state-to-ground-state
decay branches of 113Cd and 115In. The Coulomb-corrected elements [indicated by (ke,m,n,ρ)] are given when such elements exist.

Transition 113Cd → 113In 115In → 115Sn

NME MQPM NSM IBM MQPM NSM IBM

VM(0)
K K−1 1 0.37093 0 0 0.339021 0 0

VM(0)
K K 0 827.136 719.314 316.75 885.423 518.902 218.471
(1,1,1,1) 942.644 824.127 361.636 1014.09 595.72 249.85
(2,1,1,1) 887.642 777.042 340.685 956.052 561.948 235.464
(3,1,1,1) 857.779 751.456 329.307 924.507 543.585 227.646
(4,1,1,1) 839.173 735.502 322.216 904.835 532.129 222.771

AM(0)
K K 1 739.05 685.728 274.59 818.152 528.614 194.925
(1,1,1,1) 843.818 787.593 314.226 938.796 609.195 223.324
(2,1,1,1) 794.925 743.029 296.184 885.449 575.183 210.554
(3,1,1,1) 768.365 718.799 286.38 856.439 556.676 203.612
(4,1,1,1) 751.81 703.682 280.268 838.338 545.123 199.281

AM(0)
K+1 K 1 1231.05 727.205 1345.87 −1449.11 −653.096 975.538

VM(1)
K K−1 1 −5.16903 −4.85728 −2.0881 −5.43713 −3.59752 −1.44848
(1,1,1,1) −4.4566 −4.31234 −1.85226 −4.71801 −3.20201 −1.28761
(2,1,1,1) −3.88073 −3.79097 −1.6279 −4.11607 −2.8166 −1.1322
(3,1,1,1) −3.5801 −3.51804 −1.51048 −3.80132 −2.6146 −1.05077
(4,1,1,1) −3.39941 −3.35355 −1.43972 −3.61185 −2.49273 −1.00165
(1,2,1,1) −14.2135 −12.6232 −5.43569 −14.904 −9.37363 −3.7838
(2,2,1,1) −6.89847 −6.12272 −2.63658 −7.23407 −4.5471 −1.83557
(3,2,1,1) −4.52774 −4.01697 −1.72983 −4.74802 −2.98336 −1.20435
(4,2,1,1) −3.36423 −2.98388 −1.28497 −3.52783 −2.21612 −0.894638
(1,2,2,1) −5.51056 −5.26465 −2.26211 −5.8183 −3.90537 −1.57128
(2,2,2,1) −5.3512 −5.121 −2.20028 −5.65218 −3.79939 −1.52853
(3,2,2,1) −5.26428 −5.04258 −2.16653 −5.56152 −3.74151 −1.50518
(4,2,2,1) −5.20989 −4.99348 −2.14539 −5.50477 −3.70526 −1.49056
(1,2,2,2) −5.87122 −5.72475 −2.45846 −6.22539 −4.25306 −1.70978
(2,2,2,2) −5.57189 −5.4524 −2.34128 −5.91227 −4.05168 −1.6286
(3,2,2,2) −5.4081 −5.30326 −2.27712 −5.74085 −3.94136 −1.58414
(4,2,2,2) −5.30532 −5.2096 −2.23683 −5.63323 −3.87207 −1.55621

VM(0)
K K+1 1 1023.51 900.797 387.245 1075.64 675.02 271.785
(1,1,1,1) 1151.5 1016.48 436.79 1212.01 762.778 306.924
(2,1,1,1) 1081.42 955.311 410.461 1138.62 717.089 288.496
(3,1,1,1) 1043.64 922.311 396.259 1099.03 692.427 278.549
(4,1,1,1) 1020.24 901.865 387.46 1074.5 677.138 272.384

AM(1)
K K 1 900.171 818.701 331.958 979.65 623.673 234.616

AM(0)
K+1 K+1 0 −25.2447 −19.9225 0.661943 128.691 −15.6578 1.43613
(1,1,1,1) −28.1439 −35.2859 0.794223 142.33 −26.7169 2.56177
(2,1,1,1) −26.3787 −36.0267 0.758084 133.12 −27.1412 2.61864
(3,1,1,1) −25.4307 −36.3335 0.738638 128.172 −27.3072 2.64266
(4,1,1,1) −24.8456 −36.4722 0.726605 125.119 −27.3751 2.65384

VM(0)
K+1 K+1 1 1043.55 736.521 1017.05 −1197.83 −526.737 757.894
(1,1,1,1) 1128.05 802.404 1084.12 −1305.41 −572.825 812.971
(2,1,1,1) 1049.1 747.668 1004.7 −1216.45 −533.488 754.563
(3,1,1,1) 1006.87 718.34 962.338 −1168.78 −512.41 723.351
(4,1,1,1) 980.901 700.279 936.353 −1139.43 −499.429 704.178

approach. The nucleus 78Ni was taken as an inert core, and
the orbitals 1p3/2, 0f5/2, 1p1/2, 0g9/2 and 0g7/2, 1d5/2, 1d3/2,
2s1/2, 0h11/2 served as valence spaces for protons and neutrons,
respectively. Neutron configurations of these calculations were
truncated by allowing no excitations to the 0h11/2 orbital.
For A = 113 the orbital 0g7/2 was forced to be completely
filled.

In the case of the MQPM, the OBTDs of Ref. [8] were
likewise chosen for the 115In decay. However, a new calculation
was performed for 113Cd with an extended neutron valence
space [44]. By taking 112Cd as the reference nucleus for
113Cd, the proton valence space was constructed from the
orbitals 0f -1p-0g-1d-2s-0h, in accordance with Ref. [8].
The new neutron valence space, on the other hand, was built

024327-9



M. HAARANEN, J. KOTILA, AND J. SUHONEN PHYSICAL REVIEW C 95, 024327 (2017)

above the N = 28 core including also the 1f -2p and 0i13/2

orbitals. By applying the same expanded valence space to
the 115In decay the results did not deviate from those of
Ref. [8] and thus we adopted the OBTDs of that reference. For
each set of calculations, a realistic Bonn one-meson exchange
potential was adopted for the nucleon-nucleon interaction.
Slight adjustments of the Wood–Saxon single-particle energies
were needed to bring the lowest quasi-particle states close
to their experimental counterparts. A 3 MeV cutoff energy
was introduced to limit the number of QRPA states when
coupling the one-quasiparticle states to the two-quasiparticle
QRPA phonons.

The IBFM-2 OBTDs of the present work are calculated by
using the even-even 112Cd nucleus as core for both 113Cd and
113In, and 114Cd and 114Sn nuclei as cores for 115In and 115Sn,
respectively. The parameters for the core Cd nuclei are taken
from Ref. [45], and for 114Sn the only needed parameters are
ε = 1.3 MeV, c(ν)

0 = −0.6 MeV, and c
(ν)
4 = −0.312 MeV. The

valence space is chosen to span the 1p3/2, 0f5/2, 1p1/2, 0g9/2

proton orbitals and the 0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2

neutron orbitals with unperturbed single-particle energies
taken from a Woods–Saxon calculation. The boson-fermion
interaction parameters are listed in Table I.

When the next-to-leading-order corrections of the shape
factor are taken into account there is a total of 45 nuclear matrix
elements involved in the computation of a non-unique fourth-
forbidden β decay. In the current work we calculated these
elements by using the OBTDs from all three nuclear models.
The tabulation of these NMEs in Table II shows that, among
the nuclear-structure frameworks considered, IBM generally
yields the smallest elements (in terms of the absolute value).
The only exception is found for the 113Cd decay for which
the IBM matrix element AM(0)

K+1 K 1 is actually the largest.
Also quite striking is the similarity between the MQPM and
NSM NMEs, despite the conceptual difference between the
two models in constructing the wave functions. An interesting
observation is made when looking at the values of the NME
VM(0)

K K−1 1: In current calculations this NME is nonvanishing
only for the MQPM, indicating that the adopted single-particle

model space is much larger for the MQPM than for the other
two nuclear models.

B. Effective value of gA and the next-to-leading-order
contributions to the shape factor

The comparison between the computed partial half-lives
is presented in Fig. 1. Here the half-life is plotted as a
function of gA to illustrate its dependence on the axial-vector
coupling. It should be noted that all the nuclear models
yield a similar general behavior due to the features of the
shape factor itself. As already explained in Ref. [8] (and
in Sec. II A) the shape factor for the forbidden nonunique
decays is a second-order polynomial in terms of gA. The
consequences of this dependence are the parabola-shaped
curves of Fig. 1. If the nuclear model were to completely
undershoot the experimental half-life (in that case the theoret-
ical curve would be under the experimental line), no matching
results could be found by any adjustment of the value of gA

(and/or gV).
While the general behavior of the half-life curve is linked

to the functional form of Eq. (4), the specific features of it
are, however, determined by the actual NMEs. As seen in
Fig. 1, the IBM yields in both cases the most wide-spread curve
that pushes the crossing points with the experimental half-life
band far away from the canonical choice of gA = 1.27. The
extracted values of gA that actually allow the IBM theory to
match the experiment are found to be 0.14 and 1.89 for the
113Cd decay and 0.11 and 1.84 for 115In. Effective values such
as these would suggest the need for an extreme quenching of
the coupling constant. In contrast to the previous study [8],
the revised MQPM OBTDs of the 113Cd decay seem to now
follow more closely the results of the NSM. The experimental
half-life can be reproduced with the values gA = 0.63 and
gA = 1.29 which agree well with gA = 0.60 and gA = 1.32
extracted from the NSM curve of Fig. 1.

The contributions coming from the second-order terms of
the shape factor were already examined in Ref. [8] in the
cases of the MQPM and NSM nuclear models. In general,
the contributions to the IBM-based calculations are similar
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FIG. 1. Partial half-lives of the (a) 113Cd and (b) 115In decay branches as a function of the axial-vector coupling constant gA. Vector coupling
constant is set to gV = 1, and the partial half-lives are calculated up to second order. Experimental half-lives are given as gray horizontal lines.
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FIG. 2. Dependence of the next-to-leading-order contributions on the axial-vector coupling constant gA. Graphs represent the relative
correction to the partial half-life stemming from the second-order terms of the shape factor.

to contributions to MQPM and NSM. Figure 2 shows that
at closer inspection the relative corrections coming from the
second-order terms are dependent on the value of gA. At most
these corrections lead to a 20% effect on the partial half-lives
in the studied cases. In each case the relative correction
changes its sign at gA close to unity. Thus at low values of
the axial-vector coupling the second-order terms push the
partial half-life up, while at higher values they reduce the
half-life.

A relatively small adjustment of the axial-vector coupling
was found to have a strong effect on the spectrum shape in
Ref. [8]. This dependence was especially strong in the regions
were the half-life curves of Fig. 1 peak. To visually summarize
the dependence of the spectrum shape on the value of the
axial-vector coupling in the context of IBM-based calculations,
we plotted a set of β spectra in Fig. 3. These figures present
the integrand of Eq. (3) as a function of the electron energy
for different values of gA. The comparison between the three
nuclear models shows that the general behavior is similar
for both decays. However, taking a closer look, the IBM
spectra are much less sensitive to the changes in gA than those
of MQPM and NSM. Spectra calculated by using the IBM
OBTDs preserve the form of a broad central maximum for a
much wider range of gA values.

The corrections stemming from the second-order terms of
the shape factor also affect the β spectra. The regions of gA

most sensitive to these contributions are easily anticipated
by Fig. 2. Further insight in these contributions is obtained
when the values of gA, for which the second-order terms
affect the half-life most strongly, are extracted from Fig. 2
and, subsequently, the corresponding β spectra are plotted in
Fig. 4. The effects of the next-to-leading-order terms are most
significant at low electron energies. When compared to the
leading-order contributions they can introduce a correction
of up to 30%. Effects of similar size are also seen in 115In
decay. Although these contributions are under control in the
theoretical framework, there are important implications to
the use of SSM coming from the experimental side. The

accurate measurement of the low-energy part of the β spectra
is difficult due to the low statistics and high background
levels. Thus the spectrum-shape alterations stemming from the
next-to-leading-order terms are not easily accessible through
the experimental data.

FIG. 3. β spectra of the decays of (a)–(e) 113Cd and (f)–(j) 115In
for gV = 1.0. Selected values of the axial-vector coupling are used to
illustrate the dependence of the shape of the spectra on the value of
gA. To perform a comparison between the three nuclear models, the
areas under each curve are normalized to unity.

024327-11



M. HAARANEN, J. KOTILA, AND J. SUHONEN PHYSICAL REVIEW C 95, 024327 (2017)

0
1
2
3
4
5
6
7
8

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

MQPM spectrum

gA = 0.89

(a)

2nd

1st

0
1
2
3
4
5
6

 0  50
 100

 150
 200

 250
 300

 350

gA = 0.89

(a)

gA = 1.04

(b)

2nd

1st

0

1

2

3
NSM spectrum

gA = 0.89

(a)

gA = 1.04

(b)

gA = 0.91

(c)

2nd

1st

0

1

2

3

 0  50
 100

 150
 200

 250
 300

 350

Electron kinetic energy (keV)

gA = 0.89

(a)

gA = 1.04

(b)

gA = 0.91

(c)

gA = 1.02

(d)

2nd

1st

0

1

2

3

4

5
IBM spectrum

gA = 0.89

(a)

gA = 1.04

(b)

gA = 0.91

(c)

gA = 1.02

(d)

gA = 0.86

(e)

2nd

1st

0
1
2
3
4
5
6

 0  50
 100

 150
 200

 250
 300

 350

gA = 0.89

(a)

gA = 1.04

(b)

gA = 0.91

(c)

gA = 1.02

(d)

gA = 0.86

(e)

gA = 1.26

(f)

2nd

1st

FIG. 4. The extreme effects of the next-to-leading-order terms of the shape factor on the shapes of the β spectra of 113Cd. The adopted
values of gA (indicated in each figure) are extracted from Fig. 2.

Inspection of the effects of the radiative corrections of
Eq. (40) shows that these contributions are small. Since there
is no explicit dependence of these corrections on the vector
or axial-vector coupling, these corrections are fairly constant
throughout the range of possible gA values. The effects on the
partial half-lives are less than 2%. The effects on the β spectra
are likewise small and of the same order of magnitude. The
same conclusion applies also to the β spectra of the 115In decay.

As already pointed out in Ref. [8], the shape factor can
be decomposed as C = g2

VCV + g2
ACA + gVgACVA. Here the

shape factor is regrouped into vector (V), axial-vector (A),

and mixed (VA) terms. This decomposition is applied to the β
spectra of 113Cd and 115In in Figs. 5 and 6. The decomposed
parts of the upper panels are summed in the lower panels by
adopting the values gV = gA = 1.0 to eliminate the scaling
effects caused by the weak-interaction constants. Figures 5
and 6 reveal an interesting feature of the studied β decays. The
separate components CV, CA, and CVA of the integrand (3)
are far larger than the total sum, i.e., the actual β spectrum.
The destructive interference caused by the negative sign of the
mixed term CVA almost perfectly cancels out the contributions
that come from CV and CA.
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FIG. 5. Decomposed β spectra of the 113Cd decay. In the upper panels the vector (CV), axial-vector (CA) and mixed terms (CVA) of the
shape factor are presented including the second-order corrections. The lower panels represent the summed β spectra by setting the values of
the weak coupling constants to unity. Abbreviation 2nd corresponds to calculations up to second order, and 1st up to first order. The scales on
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FIG. 6. Decomposed β spectra of the 115In decay (see caption of Fig. 5).

It is worth emphasizing that the observed behavior of
both the partial half-lives and β spectra, in terms of gA,
results from the same source. This is the competition between
the vector and axial-vector components. At the point where
the partial half-life is at its largest, and at the same time the
central maxima of the β spectra most prominent, the relative
magnitudes of the terms g2

VCV and g2
ACA are reversed. For

the low values of gA, the vector components dominate over
the axial-vector components. For larger values of gA the
axial-vector contribution dominates over the vector one.

To summarize the results of our study on the effective
values of the axial-vector coupling, we have collected the
extracted values of gA in Table III. This includes the results
obtained by the use of SSM in the case of 113Cd (see Fig. 7,
where the experimental data are taken from Ref. [41]). From

Table III one sees that the comparison with the experimental
half-lives yields two values of gA, which are widely spaced,
in particular for the IBM. The results of the SSM are always
between these two values in the case of 113Cd decay. The SSM
comparison performed in Fig. 7 shows that accurate match
with the experiment is found when gA = 0.93 for the IBM and
gA = 0.90 for the NSM. For MQPM an accurate match is not
possible to obtain even with the current set of OBTDs, but
the best choice would be around gA = 0.92. In comparison
to Ref. [8], the new value of gA has increased by 0.09, and
it now agrees well with the rest of the SSM results. It is
thus remarkable that the SSM yields highly consistent results
for gA, around 0.90–0.93, for all the three nuclear models.
However, as already seen in the previous study [8], there is
a conflict between the half-life method and the SSM. The

 0

 0.001

 0.002

 0.003

0.004

0.005

0  50
 100

 150
 200

 250
 300

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

MPQM spectrum

gA = 0.92

(a) (c)

MQPM
Exp.

0  50
 100

 150
 200

 250
 300

Electron kinetic energy (keV)

NSM spectrum

gA = 0.92

(a)

gA = 0.90

(b)

NSM
Exp.

0  50
 100

 150
 200

 250
 300

 350

IBM spectrum

gA = 0.92

(a)

gA = 0.90

(b)

gA = 0.93

(c)

IBM
Exp.

FIG. 7. Comparison of the computed β spectra of 113Cd with the experiment. Computations are done including the second-order corrections,
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β-spectrum calculations are done with a Q value of 343.1 ± 0.6 keV to enable comparison with the experimental data of Ref. [41]. The areas
under the curves are normalized to unity.
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TABLE III. Effective values of gA extracted by using the partial-
half-life method (Half-life) and the spectrum-shape method (SSM).
In absence of experimental data, SSM is applied only to the 113Cd
decay.

Nuclear model Effective gA

113Cd 115In

Half-life SSM Half-life

MQPM 0.63 1.29 0.92 0.75 1.15
NSM 0.60 1.32 0.90 0.57 1.23
IBM 0.14 1.89 0.93 0.11 1.84

discrepancy seems to be strongly dependent on the available
NMEs. This is especially apparent in the case of the IBM-based
calculations, where the considered partial half-lives fail to
provide any reasonable results for the quenching of gA. In
contrast to this, the half-life results produced by the MQPM
and SSM are fairly consistent with each other.

As can be seen, the extracted effective gA values vary
from one theory to the other. Each model used in the present
work has its strengths and weaknesses and they propagate to
the values extracted for gA. There is no possibility to trace
this propagation quantitatively but, instead, one can list the
strengths and weaknesses of the adopted models: The NSM
takes into account all the configurations formed from a given
single-particle model space, whereas the MQPM and IBM
select only the most relevant ones for nuclear low-energy
(collective) motion. Both the NSM and IBM suffer from a
very restricted size of the single-particle model space, covering
essentially one full major shell and leaving out the spin-orbit
partners of the model-space orbitals, known to be important for
calculation of β-decay and ββ-decay properties of nuclei [46].
Contrary to this, the MQPM can handle larger model spaces,
including all the spin-orbit partners as in the present work.
All these different features reflect in the determination of gA

and could explain the deviations in the results of Table III, in
particular concerning the notable deviation of the IBM results
from those of the NSM and MQPM.

IV. CONCLUSIONS

In this article we have investigated the fourth-forbidden
ground-state-to-ground-state decay branches of 113Cd and
115In and extended the previous analysis of Ref. [8] by
displaying the exact expressions of the next-to-leading-order
and radiative corrections, as well as including the results
obtained by the use of the interacting boson model (IBM)
(IBFM-2, to be exact). We have performed a comparison
between the results of the three nuclear models and have
taken a closer look at the contributions that rise from the
next-to-leading-order terms of the β-decay shape function.
This additional study was mostly motivated by the introduction
of the spectrum shape method (SSM) in Ref. [8]. The beginning
of the current article was dedicated to presentation of the
theoretical formalism used to handle the nuclear β decay.
This was done in a compact and ready-to-use way to allow

its application to practical computation of nuclear β-decay
half-lives and β spectra.

The results of the current study strengthen the conclusions
made in Ref. [8] about the significance of the next-to-leading-
order terms of the shape factor. However, while the effects
stemming from the second-order terms are generally small,
a strong dependence on the value of gA can be found in
closer scrutiny. At best the second-order terms contribute
more than 20% to the partial half-life. The effects on the
β spectrum shape are harder to quantify, but generally the
contributions are most significant at low electron energies.
In the region of gA where the partial half-lives are most
affected, the effects on the β spectra can amount to as much as
30%.

The comparison between the results of the three adopted
nuclear models, the nuclear shell model (NSM), the IBM,
and the microscopic quasiparticle-phonon model (MQPM),
points to a tension between the decay-half-life method and
the SSM. In the case of the IBM calculations the decay-half-life
method seems to fail in providing any reasonable effective
values of gA. While the results obtained by the use of the
decay-half-life method vary much from one nuclear model
to the other, the results obtained by the use of the SSM are
quite consistent, around 0.90–0.93. The IBM-derived value,
gA = 0.93, is surprisingly close to both the MQPM and NSM
values, gA = 0.92 and gA = 0.90, respectively, considering
the very different results obtained in the half-life calculations.
It is reasonable to expect that the SSM and the half-life method
should produce consistent results when accurate NMEs are
used. Thus, the apparent conflict between the SSM and the
partial-half-life method seems to point to the direction of
defective nuclear matrix elements. To investigate this aspect
of the calculations, and to further test the power of the
SSM, more studies in different nuclear-structure frameworks
and more experimental data on electron β spectra are called
for.

As a last point we want to mention the potential application
of the present beta-decay formalism to solve, at least partly,
the “spectral anomaly” of reactor antineutrino spectra [47].
The antineutrino spectra in the nuclear reactors result from
the (long) α and β− decay chains of the uranium and
plutonium nuclei used as fuel of the power plants. The spectral
anomaly refers to the deviation of the measured antineutrino
spectra, obtained in the large on-going neutrino experiments,
from the reference spectra [48] deduced from nuclear data
with some approximations. The involved beta decays contain
forbidden transitions that cannot be accessed by the present
nuclear data, but instead could be calculated by the formalism
of the present work. Such considerations we leave for the
future.
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