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Light cone perturbation theory has become an essential tool to calculate cross sections for various
small-z dilute-dense processes such as deep inelastic scattering and forward proton-proton and
proton-nucleus collisions. Here we set out to do one loop calculations in an explicit helicity basis
in the four dimensional helicity scheme. As a first process we calculate light cone wave function for
one gluon emission to one-loop order in Hamiltonian perturbation theory on the light front. We
regulate ultraviolet divergences with transverse dimensional regularization and soft divergences with
using a cut-off on longitudinal momentum. We show that when all the renormalization constants
are combined, the ultraviolet divergences can be absorbed into the standard QCD running coupling
constant, and give an explicit expression for the remaining finite part.

PACS numbers: 24.85.4-p,25.75.-q,12.38.Mh

I. INTRODUCTION

Hamiltonian perturbation theory in the light cone (or light front) form [1-4] has become a standard tool in under-
standing hadronic scattering processes within a first-principles QCD approach. The calculational inconveniences of
light cone perturbation theory (LCPT) compared to standard covariant perturbation theory are balanced by several
features that make its physical interpretation more transparent. Light cone gauge LCPT only involves physical de-
grees of freedom, i.e. spin- or helicity states of partons, enabling an interpretation in terms of a constituent picture of
hadrons. The factorization between long distance hadronic physics both in the incoming and final state hadrons on
one hand, and hard perturbative QCD scattering on the other hand, is naturally implemented in LCPT. This allows
for a simultaneous description of inclusive and exclusive processes in a consistent framework.

More recently LCPT has found a new area of application in understanding the nonlinear QCD physics of gluon
saturation. Gluon saturation is most naturally understood in the “color glass condensate” (CGC) effective theory [5—
8], which describes the soft small-z degrees of freedom in the high energy hadron as a classical field, radiated by color
sources representing the large momentum partons. This classical color field can then be probed in various scattering
processes by different dilute probes, whose interactions with the target are described in the high energy limit by an
eikonal Wilson line on the light cone. The most natural way to describe the structure of the dilute probe (a real or
virtual photon, or a quark or gluon from a probe hadron) in terms of a Fock state decomposition of partonic states
is the light cone wave function of LCPT. This provides a formalism to factorize cross sections into light-cone wave
functions describing the structure of the probe developing on a long timescale before the interaction, and Wilson line
operators that describe the instantaneous scattering of the probe Fock state on the target.

Early loop calculations in LCPT [9-14] explored the stucture of divergences in the longitudinal and transverse
momentum integrals and recovered the one-loop renormalization constants known from covariant theory. Due to the
more complicated mathematical structure resulting from the breaking of explicit rotational symmetry, LCPT has
never been the formulation of choice for high order loop calculations. More recently, however, calculations of dilute-
dense scattering processes in the CGC picture have increasingly started advancing to the NLO level, for example for
the small-z evolution equations [15-24], inclusive DIS cross sections [25-27] and single [28-33] and double [34-36]
inclusive particle production in the hybrid formalism. Many of these calculations have been, or could be, performed
very naturally in LCPT. In particular, the concept of “light-cone wave function” appears frequently in calculations
that are factorized into the partonic structure of the probe, and its eikonal interaction with the target.

The primary purpose of this paper is to develop techniques for systematically performing loop calculations in light
cone perturbation theory. As a first step in this program we will calculate to one loop order the quark-to-quark-gluon
splitting light cone wave function, i.e. the probability amplitude for finding a quark and a gluon state component in
the quantum state of an interacting quark. Although the expressions for the diagrammatic rules for LCPT calculations
can be found in many references (see in particular [37, 38]), we find that they can be given in a particularly simple form
using an explicit spin/helicity basis for both quarks and gluons. This is natural to combine with the four dimensional
helicity (FDH) scheme for dimensional regularization, as will be discussed in more detail in Sec. ITE.

We start this paper by a brief exposition of the LCPT rules and the concept of the light cone wave function in
Sec. II. We then calculate the one-loop contributions, both divergent and finite parts, in Sec. III, assembling the



results in Sec. IV. We finally end with a discussion of applications and future extensions of this calculation in Sec. V.

II. LC CONVENTIONS AND LCPT RULES
A. LC coordinates
In light-cone coordinates a four-vector z* is given by the components
' = (" 27, x) with x=(z',2%). (1)
The component 2 is the light cone time along which the states are evolved, =~ is the longitudinal coordinate and x

the transverse position. We denote spatial three-vectors as & = (z 7, x). In this work, we use the Kogut-Soper (KS)
conventions [1] in which ¥ and 2~ are related to the usual Minkowski coordinates by

et = — (" +4%. (2)

N

The metric tensor is

01 0 O
9" =9 = (1)8_01 8 ; ®3)
00 0 -1
and thus the inner product of two four-vectors is
roy=z"y +2 yt—x-y, (4)
where 27 = z_ and 27 = & 4. The canonical conjugate of the longitudinal coordinate =~ is the longitudinal

momentum pt, and the evolution in light cone time z1 is generated by the light cone energy p~. In LCPT all
particles are on mass shell, with

,7p2+m2

P T (5)

B. Normalization of Fock states

In the LC gauge the QCD Hamiltonian (see e.g. [4, 38]) can be expressed entirely in terms of physical degrees
of freedom, i.e. each interaction vertices correspond to a real dynamical process. To quantize the Hamiltonian, we
expand the dynamical free quark field U and transverse gluon field A” at zt = 0 in terms of the creation and
annihilation operators

Uz, x) = /87‘3 > [bz(ﬁ)uh(/g)e_"’k'm + dﬁf(lg)vh(lz)eﬂk-m} (©)
h=t

and

Az x) = / kY {ai(E)ef;(E)e—i’” +a}! (E)e;“(k’)e“ﬂ, (7)
X A=+

where we denote the two fermion spin states £1/2 by h = % for notational simplicity. These field operators satisfy
the (anti)commutation relations

{bﬁ;u?), frmm} :{d;;(;;), dfﬁ@}= 2k ™+ (2m) 5 (R — ) 67 ®)
and

{a’i(lg), all (m} =2k (2m)%0®) (k — )8, 10", (9)



FIG. 1: Left: Gluon emission vertex from a quark, V;;’{L’a(q, z), where i, j are quark colors, h the quark helicity, a the gluon
color and A the gluon helicity, Eq. (15). Right: Gluon absorption vertex into quark, V;:Z;i(q, z) Eq. (16).

Here h and X are the quark and gluon helicities and 4, j,a,b SU(N) color indices. The momentum space integral

measure is as in [38]
—~ d*k s o [ dktd’k
/dk:/(m)4 @m)5(k? — m?) _‘/ o (10)

where kT > 0. We always work in LC gauge €' = 0 with transverse physical polarizations k - €, (k) = 0, thus the
gluon polarization vector simplifies to

k-
(k) = (0,65 (k),ey) with € (k) = ?EA (11)
and (note the notation e for a 4-dimensional and e for a 2-dimensional vector)
(k) - ey (k) = —ex -y (12)

The 2-dimensional physical gluon polarization vectors are

Ex=x = % ( iz > : (13)

Note that these do not depend on the momentum of the gluon. The polarization vectors satisfy

ey ey = S\
Ex=€_x (14)

* *
Ex-Ey =E\-Ey =0, -

C. Elementary vertices

Using the light-cone QCD Hamiltonian (e.g. [38]) one can construct the necessary elementary quark and gluon
vertices. In this paper we only deal with massless quarks, and therefore helicity is conserved at the gluon emission
vertex. The vertices can be very compactly expressed in the helicity basis. This enables a very efficient computation
of loop diagrams (compared to e.g. the calculations in Ref. [27]), with the help of computer algebra tools. The well
known downside of working with explicit polarizations is that all our particles have exactly two helicity states even
in 4 — 2e spatial dimensions, i.e. we are working in the FDH regularization scheme [39, 40]. This would become
problematic at higher orders in perturbation theory.

The simplest vertex is that for the emission of a gluon of momentum k and helicity A from a quark of momentum
7 and helicity h; it is most naturally expressed in terms of the longitudinal momentum fraction z = k¥ /p™ (note
0 < z < 1) and the center-of-mass transverse momentum q = k — zp. We denote this vertex, shown in Fig. 1 (left), as

_Z.Qt?i
V1l —z

The quark absorption vertex, Fig. 1 (right), is just the complex conjugate:

Vi (q,2) = —gt% [ah@'w:(k)uh(p)} _ (Gan +(1— 2)5\ 1) q- €5 (15)

—2gt;;

S (1= 200 ) as e -

VI%i(q, 2) = —gt? {; (0)¢ ()u (p/>] _



FIG. 2: Left: Gluon splitting vertex into quark-antiquark pair, Aii{;i(q, z) Eq. (17). Right: Quark-antiquark annihilation
vertex into gluon AY%%(q, z) Eq. (18).
P =7k Ab piha

FIG. 3: Left: Gluon splitting vertex FilbcAQAg (a,2) Eq. (20), where a,b, c are the gluon colors and A, Ay, Az gluon helicities.
Right: Gluon merging vertex Fﬁsf‘&;)\l (a,2) Eq. (21).

Note that in Eqs. (15) and (16) §” is the quark momentum with the smaller plus-component, final state in the emission
and initial state in the absorption.
The vertex for a gluon (momentum ) splitting into a quark (momentum k and helicity k) and antiquark (5, for

massless particles the antiquark has helicity —h) is (see Fig. 2 left):
—2gt;
z2(1—2)

The natural momentum of the splitting (corresponding to that of the quark) is @ = k — zp. The quark-antiquark

annihilation vertex into a gluon (now with a minus sign for an incoming antiquark) is minus the complex conjugate
of Eq. (17),

AT (q,2) = —gt?, [wwp)v_h(p’)} - (260n — (1—2)6y_n) q- Ex. )

z(1—2)

see Fig. 2 right. The elementary vertex for 1 — 2 gluon splitting (Fig. 3 left) is given by"

Ai’f,;“(q, z) = —gtj; [*@h(]?,)f:\(p)uh(k)} = (2630 — (1= 2)6x 1) q- €3, (18)

05 (@, 2) = igf™ {(p+ k)-€x,(0")ex, (0)- €, (k) +(=p' —p) -3, (k)ex, (p)-€x, (1) + (—k+p)-ex, (p)ex, (k) -4, (1) |-
(19)
In the LC gauge this can be simplified to
a;b,c . pabc q&'; qE;
055 (. 2) = —2igf* |:?;6>\1a/\3 + S0, — 4 €/\15A3,—>\2} (20)

Similarly, the 2 — 1 gluon merging vertex shown in Fig. 3 (right) is the same, except incoming lines change into
outgoing ones, which changes the overall sign and € into €”, i.e. changing (20) to its complex conjugate:

bye; . cabe | A EX q- €,
i, 0.5) = +2i0f ™| G220, 4 T2

Orn, — 4 €f\15xg,—,\2} (21)

! Changing signs from [38] so that momenta flow from left to right.



FIG. 4: Instantaneous quark interaction, Eq. (24).

phi p=p-k-k hj pt=(0-2p"

FIG. 5: Instantaneous gluon interaction, Eq. (25)

Incidentally, note that the three interference terms in the squared vertex (20)x(21) give ~ 1/(2(1—2))—1/2—1/(1—
z) = 0, so that the three different polarization terms of the vertex do not interfere in a gluon propagator correction
diagram.

D. Instantaneous vertices

As we will discuss in more detail below, the instantaneous interaction terms do not contribute to the one-loop gluon
emission wave function. They are, however, needed for the 3-particle final states discussed in Sec. III E. We will not
present here the full set of instantaneous vertices (see [37]) but merely the ones needed for our calculation. There are
three of these.

First, the instantaneous quark diagram Fig. 4 is given by the following matrix element

P AULIRMNG) 0] o)
JLoli 2(p+ _ kT
The numerator in Eq. (22) simplifies to
NG NOESCECONMCEY (23)
and thus with the parametrization as shown in Fig. 4 | we get
* + *
26 0| (v Ex)Y (v Ex) } 2,6 aV1l—2
oty (p) 2L~ "2y, =2¢%t0t L6, 6y e 24
g it { n(0) 2(p+fk+) n(P) g tiit 1= 22 A=A A (24)
Secondly, the instantaneous gluon diagram Fig. 5 is given by the following matrix element
KT -kt VI—=z
2 pabc,c — * * . 2 pabc,c
! nm [Uh,(P/)W+Uh(P)] ex &y =—2ig"f tjiT(l - 22’,)5,\,_,\" (25)

Similarly, the instantaneous gluon with quark-antiquark pair creation diagram Fig. 6 simplifies to the following matrix
element

VIi—=2

z

2Z(1-2). (26)

%t B
!]2# {ﬁh(l’/)’fruh(?)} |:ﬁs(k)fy+v—s(k‘/):| = 492t?itké



FIG. 6: Instantaneous gluon interaction with quark-antiquark pair creation, Eq. (26).

E. LCPT rules

The diagrammatic LCPT rules for calculating initial-state light-cone wave functions are following: First, draw all
topologically distinct ™ -ordered diagrams for a given physical process at the desired order in the coupling g. Second,
calculate the perturbative contribution from each diagram according to the following rules:

1. Assign an on-shell four-momentum p" to each line such that the momentum is flowing from left to right (z*-
direction)

2. For each elementary vertex (or instantaneous diagram) include the relevant expression from sections IIC and
11D, and a factor of (27)36(3) (Panal — Pinitial), Such that in the vertex the total p= (p™, p) is conserved.

3. For each intermediate state include a LC energy denominator factor
1 1

- = N (27)
Zm Pim — En Ppn + 10,4 Aif +i0,

where the sum = runs over all incoming particles present in the initial state ¢ and the sum ) over all the
particles in the corresponding intermediate state f.

4. For each internal line, sum over helicities and integrate using | dk measure for quarks and gluons.

5. Include, if necessary, a standard symmetry factor 1/S which takes care of the possible permutations of fields, a
factor (—1) for quark loops and for quark lines beginning and ending at the initial state.

Three different kinds of divergences can appear in perturbative calculations: ultraviolet, collinear and soft. In order
to keep a maximally transparent physical interpretation of the nature of these divergences, we will regularize all three
of them separately. Ultraviolet (UV) divergences appear from loop (or final state phase space) integrals over transverse
momenta. These will be regulated by performing transverse momentum integrals in 2 — 2¢ transverse dimensions, see
Appendix A. Since QCD is a renormalizable theory, all UV divergences can be removed by a renormalization of the
parameters of the theory. For massless quarks there is only one such parameter: the coupling constant g. All UV
divergences must therefore disappear with coupling constant renormalization. Collinear divergences appear in the
limit of small transverse momentum. Depending on the physical process, these will either cancel between real and
virtual terms, or be absorbed into DGLAP-evolution of parton distributions or fragmentation functions (see e.g. [41]).
To keep these separate from the UV divergences we will here regulate them by inserting a mass regulator A, when
needed. The third kind of divergence is the soft one, appearing in the limit of zero longitudinal momentum. In the
physical context of high energy scattering these need to be absorbed into small-z renormalization group evolution
of scattering amplitudes, at one loop in terms of the BK equation [42, 43]. These will be regulated with a cutoff in
longitudinal momentum, where all longitudinal momenta are assumed to be greater than a cutoff parameter o times
pT; the longitudinal momentum of the incoming particle. A technical disadvantage of LCPT compared to covariant
perturbation theory with explicit rotational symmetry is that these divergences appear separately, and can mix in
unhysical ways in intermediate stages of the calculation. The benefit gained from the associated extra work, however,
is that the different physics (running coupling, DGLAP evolution and BK evolution) is explicit in the calculation.

Although transverse integrals are performed in 2 — 2¢ dimensions, we will work in an explicit helicity basis, where
quarks and gluons both have exactly 2 helicity states. Thus regularization scheme corresponds to the four dimen-
sional helicity (FDH) scheme [39, 40]. The elementary vertices depend on scalar products between 2-dimensional
polarization vectors and 2 — 2e-dimensional internal momenta, whose consistent treatment requires care. The precise



implementation of the FDH scheme requires that one first performs the momentum integrations, leaving a result that
only involves scalar products between polarization vectors. These can then be evaluated in 2 dimensions together
with the polarization sum. At higher loop orders than considered here, the FDH scheme would break the unitarity of
the theory (see [44, 45]). However, the FDH scheme is much simpler for calculations, in particular for LCPT where
one of the central features of the theory is that one is working with physical degrees of freedom, i.e. on-shell parti-
cles in explicit helicity eigenstates. For an example of a recent LCPT loop calculation in conventional dimensional
regularization see [27].

F. Fock state decomposition and light cone wave function

In this paper, our object of interest is not directly a scattering amplitude, but the light cone wave function. This
concept is particularly useful in the context of scattering off an external classical potential in the high energy limit [2];
this is precisely the situation in dilute-dense scattering processes in the CGC framework.

We want to express the full physical incoming particle state (a quark, in the case of this paper) as a simultaneous
perturbative and Fock state decomposition in terms of the “bare” eigenstates of the noninteracting Hamiltonian. This
expansion has the usual form of the “old-fashioned” textbook quantum mechanical perturbation theory, which we
write as

1) (n | H|W) Ing)(na|H|ny) (ny [H|Y)

(W) = W) + ) 2= 4 Y e .. (28)
n1 Al\l' ny,Ngy AQ‘I/AI\II

It is convenient to separate [2] from this sum the terms where an intermediate state |n;) is proportional to the state

|¥) and absorb them into a (re)normalization of the LO term in the expansion

! |na) (na [ H|W) ! |ng) (no| Hny) (na | H|W)

[W)ine =/ Zy |[¥) + Y L+ Y — +.. (29)
71 AI‘I’ 9Ny AQ\I/AMI/

where 3" means that intermediate states proportional to |¥) are excluded from the sum. The incoming state renor-
malization Zy can be calculated either directly by calculating the incoming particle propagator correction diagrams
or from the normalization requirement

int(‘Ij|\I}>int — <\Ij‘\I}>7 (30)
which leads to
- 1 (| H|W)[?
Zol=1+ + ... 31
! W 2 (8 oy

Here note that the one particle state is normalized to 2p* (27)%6%(0), whereas the matrix element (n|H|¥) has a
factor (2m)%6%(0), so there is effectively a factor 1/(2p™) in the normalization compared to the calculation of the
propagator correction diagrams when using this formula to calculate Zy. Note also that in LCPT the wave function
renormalization constant can depend on the longitudinal momentum of the incoming particle [9-14].

Specifically for the case of one incoming quark, the decomposition is

0 = v/ 2406 ) + [ Qa2 5 5 = 000 a5 )o@)
+ =5 [ Wdadken’s' =5 =7 B) [0 @) ol o@a()) + 0D o a@ad))] + ] L (32

The expression (32) defines the light cone wave functions 7%, 97999 9797 etc, including the symmetry factor

1/4/2 for Fock states containing two identical particles. At leading order, their power counting in the QCD coupling is
YITY g 7999 9799 % We will in this paper compute the one-loop (i.e. ~ ¢°) contribution to one-gluon
emission wave function 9?7 %. For explicitness and reference, we will also write down the tree level ~ g2 light cone
wave functions for the wave functions with three particle final states 17999, o799,

The expansion (32) is the one that one would actually use in the calculation of scattering off an external potential.
The wave function 7% is, however, not straightforward to compare to a one-loop ¢ — ¢g vertex in covariant



FIG. 7: Gluon emission at leading order. Momentum is conserved p'=p’
momentum for the emitted gluon are z = ¢ / pTandn=q—zp.

+¢, and the momentum fraction and natural transverse

perturbation theory, e.g. to see that all the UV divergences can be absorbed into a renormalization of the coupling
constant. In particular, %7~ % does not include incoming propagator correction diagrams (they are absorbed into the

nornalization |/ Z, (p™), but does include the final state propagator correction diagrams (diagrams (a), (b) and (c) in
Figs. 8, 9 and 10). To make contact with covariant perturbation theory, one should define renormalized free particle

states |¢(9) g = v/ Z,(p)a(®), |9(k)) r = g(k+)\g( )). In terms of these we have

\/ Z,(0")

PTF, Q) a(3)9(D)) g (33)
Z,(0)Z,(q")

Z, ") (5, |97 9(D) =

where the denominator /Z, (p’+)Z g (q+) cancels half of the outgoing particle propagator correction diagrams included

n 7% and the numerator 1/ Z, (p+) introduces half of the incoming particle renormalizations that are absent from

97 The combination

)wq“‘” 0] (34)

corresponds to the covariant theory one-particle irreducible vertex multiplied by the wave function renormalization
constants. This is the quantity appearing in a cross section calculation in covariant theory and the whose UV-
divergences can be absorbed into a renormalization of the coupling constant. This will be explicitly checked in
Sec. IV.

III. DIAGRAM CALCULATIONS
A. Leading order gluon emission

Using the LCPT rules, the leading order (LO) gluon emission wave functionshown in Fig. 7 (without overall
momentum conservation) can be written in the form

Vi(n, 2)

2449 n,z) = , 35
g™z = 2 (35)

3Jha

where the vertex function VA (n, 2) is defined in Eq. (15) and the LC energy denominator Ay, = p~ —p'~ — k™

simplifies to

-1 n’
Ayp=—F———. 36
01 2p+ Z(l . Z) ( )
Thus the LO gluon emission wave function is given by
9—qg + .a n- 5; .
Yo, 2) =4p gty V1 — 2|0\ 5+ (1= 2)0\ _p | —5= (37)



B. Wave function renormalization and propagator corrections
1. Quark wave function renormalization Z, (p+) to order g2

As discussed in Sec. I1 F, the propagator corrections for initial state particles are not considered a part of the wave
function. We will therefore calculate the quark wave function renormalization coefficient using the normalization
condition for the one quark state, Eq. (31). At the order 92 for Zq(p+) we only need to consider the qg state, for
which the coefficient has just been calculated in Eq. (37). We get

/NN\ (a(@9(F) Hla(p)|

Z7 M) = , 38
« ) ﬁ)lq (®)) (A7)? (38)
where A" =p~ — k™ —p and
(a@a(@)) = 2p" (2m)*5)(0) (39)
and
k)| H
—M@Q(Z)'f D) _ (3255 - - Ry — 2p2 = k*/"). (40)
Thus Eq. (38) simplifies to
- 1 [ @) o | e 2
Z, pHy =1+ — o dqdk’(?w)sé(s)(p —q—k) ‘wﬁoqg(k —zp,z=kT/pT)| | (41)
where the phase-space measure is
+ P P
e - PUakt o od’k 1 Aol gy adtk
dqdk(2m)?6® (7 - G-k :/ &L — =K / / . 42
/ qdk(2m) (F—q ) 0 2kT (27r)3 2" smpt Jo z(1—2) (27r)dL (42)

Regulating the collinear IR-divergence with a mass parameter A,, > 0, which is chosen in such a way that the particle
carrying zp™ amount of longitudinal momentum is regulated (in this case the gluon with momentum k) we get

- -1 2 2
a (k= 2p)* + (1 - 2)X2] (43)

and substituting Eq. (37) into Eq. (41) leads to
d™k (k- 2p)-ei(k —2p) ey
(2m)™ [(k = 2p)* + (1 - 2)A7.)”

. g CF h 2—d, d™m mz/dl
R /0 z [H(l Z)]“ /(27T)d* m® + (1 - 2)AL]* (45)

2 o1 .
- a ,a dz _
Z, ") = 1+ itjitij / — [5A,h, +(1 - Z)Qék,fh] P / (44)

where we have changed the integration variable to m = k — zp with m'm’ equivalent to (m2 /d )6 under the
integral, and summed over the internal gluon helicity A and the colors j and a (but not ¢ since we are calculating the
norm of the state with a particle in the fixed color state i). Here we should note that while £ > 0 regularizes the
UV transverse momentum divergence; the longitudinal z (soft) divergence is an IR one, and would require € < 0 to
regularize it. However, we want to regularize these soft IR divergences by an explicit cutoff instead. This means that
all longitudinal momenta should be larger than ap+ with o > 0. Regulating the soft IR-divergence in z — 0 by a
cutoff with @ < z < 1 and applying Eq. (A5) with d; = 2 — 2¢, the quark wave function renormalization constant in
Eq. (44) becomes

2 =1+ 2% [ 10g 2 ) (23 gioga)) 24 T (46)
T TN 8’ NS g)‘?n 2 s 43
ie.
2 2 2
C 1 3 5 7
ZpH=1+LZE [ — 1 2 4ol 2_T 4
«(#) * 82 [<€MS+ g)\m> (2+ og(a)>+4 3] “7)

Note that if also the collinear IR divergence was also regulated in the FDH scheme scheme with € < 0 in stead of the
mass A, we would have Z, = 1.
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FIG. 8: Contribution to gluon emission from final state quark propagator correction, diagram (a), with energy denominator
intermediate states and kinematics. Momentum conservation: p= ' +Jand 5’ = k' + k. The momentum fraction and natural
momentum scale for the emitted gluon are z = q" /p+ and n = q — zp. The momentum fraction for the gluon in the loop is
2 =kT/p't, ie kT =2 (1 —2)p" and the natural momentum m =k — 2'p’.

2. Final state quark wave function correction

‘We now look at quark wave function in a different way, by an explicit calculation of the final state quark propagator
correction diagram. The renormalizability of the theory requires that the UV-divergent part of the final state quark
propagator correction matches the wave function renormalization (47), but as we will see this is not the case for the
UV-finite parts.

The contribution to final state quark wave function correction in Fig. 8 is given by

ViR (m, 2) V5 (m, z')fozl;/j(m, 2"

- -

v = [ TS - F - F)en)s - F e E) Ry @)
Ap1Ag2Ap3
where the LC energy denominators are
_ _ -1 n’
Agy = Agz = Py 21— 2) (49)
-1 n’ 1 m?
Ay = — + , 50
02 2p* L(l—z) l—zz/(l—z')] (50)
and the phase space simplifies to
[R5 5 F- (e - F - ) - / o s
2k+ 27r) 2p +2k +
(51)
dz’ 4’
= 2 / 7 7 2 / d, -
167r(p Y Jo 2(1—2)(1-2) (2m)“+
The product of vertices at the end of the loop (summing over internal polarization \') give
ilb I ALb / A6t / / y
Vo (m, 2V, (m, =) = m Spn +(L=2)0, x| |0+ (1 =26, v m-eym-ey
(52)

492CF5jk m’ [ / 2}
=—F—— — |1+ (1 - .
(Z/)2(1 _ Z/) dL ( z )

Recalling that our FDH scheme requires us to first compute the momentum integral, we have here in a slight abuse of
notation anticipated this by replacing m' m with m?6% /d |, which is true under the integration over m. This leaves
the polarization vectors in the structure €}/ -,/ = 1 (no sum over X'). This has already been used on the second line,
although strictly speaking the polarization sum is performed only after the m-integral. Putting things together and
performing the m-integral we have

Y =5, 2) (iﬁ) (— i j)((jw)—g) {gé} ) / 1 ((ff))l [1 . z/)Q]. (53)
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FIG. 9: Gluon polarization diagram (b) with intermediate states for the energy denominators and kinematics. Momentum
conservation dictates: = p’ +Jand ¢’ = k+%’. The momentum fraction and natural momentum scale for the emitted gluon
are z = q+/p+ and n = q — zp. The momentum fraction for the gluon in the loop is 2z’ = Ier/qu7 ie. kT = z2'pt, and the
natural momentum m =k — 2'q.

Regulating the IR-divergence 2z’ — 0 by a cutoff 2’ > a/(1 — z) we get the contribution
2 2
q—qg9 _ ,14—q9 g Cp 1 [z 3 1—2z
W = 65, 2) ( G ) {| e <n2 )} (5-20s(*"
2 ? 1- 1-
+—7—7r——210g(—z>—10g2( z)}
6 3 o o

Note that the UV-divergent parts are the same as for the quark wave function renormalization constant (47), but the
finite parts are different.

3. Gluon propagator corrections

Next we calculate the contributions to the gluon emission wave function 1?9 from the final state gluon propagator
correction diagrams, the gluon loop (b) shown in Fig. 9 and the quark loop (¢) in Fig. 10.

Gluon polarization diagram (b)

The contribution from diagram (b), including the symmetry factor 1/2 for two interchangeable gluon lines, is

1;7,b
a—qg _ 1 didd di' 353 _ k' T 8§35 B I VA’,h (n, 2) pedia npbied / .
w(b) = 5 etsj (27’(’) (q -k — ]{])(277') (q -k - k)m )\/:ao'/(m7 z ) W,;A(m, z ) (50)
01-=02-03 '

with the vertices given in Egs. (15), (20) and (21). The phase space measure simplifies to

N
e L S, - a agt o d%k 1

dkdg'dk' (2m)38% (7" — k' — k)(2m)383(7— k' — k =/ = . —
[ R 2n)''q G F D= [ G5 [ G

B /ﬁ_di /.1 4z / ddLm (56)
167(p*)* Jo 221 -2 (2m)t’
and the LC energy denominators are given by
-1 n?
Ay = Apgp= ——— 57
01 03 2p+ Z(l _ Z) ( )
-1 n’ 1 m?
Ngy = — + - . 58
02 opt |z(1—2)  z2(1- z/)} (58)
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FIG. 10: Gluon polarization diagram (c) with the same energy denominators and kinematics as in Fig. 9.

The product of two gluon vertices (summed over internal polarizations ¢ and o) in Eq. (55) simplifies to

a : . 1 1 .
e (m, 2T (m,2') = dg” o ! {m%w (7(1 —p + ?) +2(m-e,)(m-e})
(59)
1 12
= 46°C, 6" m’s ,[7+7+7]7
g “a A 1- Z/)z 22 d

where, in the first line, the factor 2 comes from summing over two polarization states for the gluon in the loop.
Putting everything together gives

2 1 . d 2
Cg—ac . g C 1—=2 1 1 2 _d d“+m m
Uiy " =i (n,2) 27rA ( ? )/ dz,[ et R W d o
n 0 1-2) =z 1 (2m)*+ {mz 4 Fa=s )nz}
1—-z

and performing the m-integration we obtain

= et57e9 (59) (o) [0 %] [ ool + ) @

Regulating the soft 2" — 0 and 2’ — 1 divergences by a cutoff a/z < 2z’ < 1 — a/z, the above integral becomes
2 2 2
a—ag _ ,a—ag g Ca 1 (I=2)p 11 z 32 N
d](b) - YLO (n7 Z) ( 87‘[’2 ) { |:5m + 10g <1’12 F — 210g (E) + 3 - ? — IOg (a) . (62)

Gluon polarization diagram (c)

The contribution from diagram (c) is

R L L, Vi, 2)
599 = (=1)Ng / dkdg'dk' (2m)36% (7" — k' — k)(2n)*63% (7 — k' — k)ﬁfx‘;ﬁg"(m, Z)AV T (m, 2"), (63)
0102403

where Ny is the number of quark flavours, the factor (—1) reflects the presence of a quark loop, and the gluon splitting
Aiﬂ";’n(m, #') and quark-antiquark annihilation A} (m, 2") vertices are given in Egs. (17) and (18).

The LC energy denominators and phase space are same as in diagram (b). The product of gluon quark-antiquark
vertices in Eq. (63), summed over internal polarization o, simplifies to

Ah;m,n( 1 gmnia no_ _492 Tr (tutb) 's ne 's 1 nes *
.o m,z) o (l’l’l,Z) —W ¥4 /\/Yof(lfz) No—o z )\/,ai( 72) N—o m:-gy/m: ey
64
*492TF5(lb m2 L ( )
S N R
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where Ty = 1/2. Substituting Eq. (64) into Eq. (63) and following the same steps as in diagram (b), we obtain an
IR-safe expression for the diagram (c)

e () () o8] [ gl

which simplifies to
2
N N g Ty V; 1 1—2)p 2 19
1/}«1 99— I 99(p ) <_ 8F2 F) {[78 <( 2) )}3 + 9 } (66)
Y S n

Adding the contributions from Egs. (62) and (66) together, the final state gluon propagator corrections in the FDH
scheme take the form:

2
- - . 1 (1- z)u 11Cy 2Ty N, z
pI09 | =209 )0 a9 g _AEE ad
Uiy " (n 72){1+87T2{|:5+ < - . 3 20A10g<a)

MS
32 n? 92 19T Ny
+CA<9 5 loe <a>>9 - (67)

From this we know that the UV-divergent parts of the gluon wave function renormalization constant are

2
1 11C 217w N «
7Pty =14+ 2 A_ZEE Lo, log (=) ). 68
g @) +87T e \ 6 ~g Aog(z> (68)

The full gluon wave function renormalization constant in the FDH scheme can be calculated in a straightforward
manner similarly to the calculation for quarks done in Sec. III B 1. We will not repeat the details here but just quote
the result:

2
Zy(pt) =1+ L5 {
87r

1 11 2Tw IV,
-HHMQ}( CA F F+QCAlog< ))

EMS )‘m 6 3
5 2 13T Np
<36+6+21n ln ) Cp— —— 18 . (69)

Comparing Egs. (67) and (69) one sees that indeed the UV-divergent parts are the same as in the propagator correction
diagrams, but the finite parts are different, as was the case for the quarks.

C. One loop vertex corrections to gluon emission

Next, we calculate the one loop vertex correction diagrams (d), (e), (f) and (g) shown in Figs. 11-14.

Diagram (d)
For diagram (d), with kinematical variables as in Fig. 11, the LC wave function is

o L L VERY () Ve (=) VR (1, £
‘(’;qgf/dkdk’dk”(27r)363(ﬁ—k—k’)(27r)353(ﬁ'—k"—k) Ak ’ _< _175) Ak ( . ) (70)
A01A02A03

where the phase space measure is

[ R )8 - F - K208~ R - F) = e / — / Tm
16r(pH)* Jo A1 -2)1-2-2)
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FIG. 11: One loop vertex correction diagram (d) with LC energy denominators and kinematics. Momentum conservation:
p= E+ E', B =k"+ Jand p’ = k" + kK. The momentum fraction in first gluon emission is 2/, defined as kT = z’p" and the
natural momentum is m = k— z’p. In the absorption of the same gluon the momentum fraction is k* /p'" = 2’ /(1—z) and the
natural momentum 1 = k— (z'/(1—z))p’. For the emission of the final state gluon the momentum fraction is ¢* /k'" = z/(1—2)
and the natural momentum h = q — (z/(1 — 2’))k’. The natural momentum for the whole diagram is n = q — zp. In order to
use m as the integration variable we need to know that 1 =m + (2'/(1 — z))n and h = n + (z/(1 — 2'))m.

and the LC energy denominators are

-1 m?
AT — 72
ot 2pt (1 -2 (72)
-1 n’ 1’
N —— + : 73
02 ot |2(1—2) (1_ 1:2) (73)
-1 n®
Apg = —————. 74
03 2p+ Z(l _ Z) ( )
Putting everything together and using
a C a
it = <CF - 7A> Lj; (75)
we get
3,a — > 2 ’
oy _ 200 (0 -) i / 1 o / dhm HA-Hl-15) 1
— ! / /
(d) A 2 ™ o 2(1-2)Y1-2-2%") (27r)dL m2 {12_’_ z’(1(—12—.§;)n2] ZV1—7
zZ(l—z
1-=2 1—7 2 z * *
; S ; ( )Z |:6/\',h + (1 - E) (1- Z/)é,\’,—h} {5>\,h + (1 k. z’) 5>\,—h} (m-ey)(h-e3)(1-€y)
Z\/l_ lz_zz\/lil—iz’
(76)
which is simplified to
. i j L E 1-2 k
I 28, <C CA) e /172 gy V1-—2 atim m' (' + 2500 ) (m* 4+ 2570t
d T T A= \YFT 5 T d, ) 2 , /
Apy T Jo Z(1—z—2)J (2n) mz[(m+ ﬁn> n ziél—jz—)i )nz}

1—z—2 1—z—2 wi_j
|:5)\/7h + <71 — ) (1 — ZI)(S)\”fh:| |:5/\,h + 71 7 (5)\,7h:| EAZIE';rE)\IC. (77)

Applying the loop integral (A7) from Appendix A the UV-divergent part of the m-integral becomes

1 1 2 A L 91— )1 =2 =2
Ié)(glf) (p,q, k) = — [7 + log (%)} {—71 Z pisik + L pistk + ( 2)( ik ancsl'}} (78)
4 n — .

~ 167 NS 1-=2 z2(1=2z)
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with
z 12 s Z(l—z2-2) 4
—k=—— n, — n M°=""—"_"’n° 79
P o d . ) (79)

and performing the polarization sums (part in {}) we get

—24%1%; eyl 1 2 1=z 1— 1—z—2
st = i (- LR L ()] [ e A )
d),pole Ay 2 8 €3S n 0 z (1 —z—Z ) Z(l — Z) (80)

{(1 —2) {1 +(1- /)2} Sxn + {1 + (-2 —222—2— z')] 5;,%}'

The finite part of the m-integral in Eq. (77) can be performed by using Eq. (A14) which gives the following expression

—26°t, Ca\n-ey (177 Vi—z
a—ag Ji _ YA A d/ ! ‘A h 1
w(d%ﬁmte Aoy (CF 2 > T /0 Z Z’(l _ . A Z’) x H(d)(z )25 A )’ (8 )
where the function H ;) summed over the internal polarization N s
Hay (2, 250 h) = Ay (2,2))05 1, + By (2,2))05 1, (82)
and the coefficients A4y and B, corresponding to different polarization states are given by
1
A (z,2) = ——— {4(1 —2)?—4@2-2)1-2)7 + {6 — 2(10 — 3z)}z/2 —(2-32)7"
167z(1 — 2)
(1-2)(1-2) 2(1—2)° (83)
21 -2)(1—2— z'){(l —2')?log <7) —(1+(1=2))log [ ——— H
l—z—=2 z2(1—2z-2")
and
Bup(e,s) = — U2 2) 10 =22 - 42— 94 {224 ) [ - 249"
167m2(1 — 2)°(1 — 2)

. z’){(1 ~2)’log <%) (142 222 2 - ) o (Z(Zl(l__zz_)i)) }]

(84)
Diagram (e)
Then we turn to diagram (e), whose kinematics is presented in Fig. 12. The LC wave function is
o o «Q / oL yikib (m, z') A&k,‘;" h, IEEAWA 1,152
i = /dk:dk:’dk"(?w)363(ﬁ— k—k)@en)s G-k - k") 2L : 7( E— ) Ak ( : ) ., (89)
) Ap1DpaAgs

where the phase space measure simplifies to

Aol B (27263 (5 — i — BNV (2r) 363G — B! — k" et as’ 4% }
@2r)*6* (7 -k — k" @2n)* s G-k — k") 1 0

= 167T(p+)2 . 21(1 _ 2/)(z/ +2— 1) (271_)dL
and the LC energy denominators are
Aj = Lom (87)
o opt 2 (1-2")
-1 n’ h?
Ngy = — + S :| (88)
2t le=2) -y (1- 1)
" N (89)
03 = ot 2(1—2)

Following the same steps as in diagram (d) we find
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(e)

FIG. 12: One loop vertex correction diagram (e) with LC energy denominators and kinematics. Momentum conservation:
P = k+ El, E+Ek" = ¢ and E=k"+ #'. The momentum fraction in first gluon emission is z’, defined as kT = 2p"
and the natural momentum is m = k — z'p. In the absorption of the same gluon the momentum fraction (of the quark) is
p't/kY = (1—2)/7" and the natural momentum 1 = p’ — ((1—z)/2")k. For the emission of the final state gluon the momentum
fraction (of the quark) is k" /¢" = (1 — 2)/2 and the natural momentum h = k' — ((1 = z)/z)q. The natural momentum for
the whole diagram is n = q — 2p. In order to use m as the integration variable we need to know that 1 = —n — ((1 — 2)/z")m
and h = —m — ((1 — 2')/2)n.

_ i (i L ko o1-2  k
e (0 QY [ e S [t () ()
1

(e) — 2 ) _ d , / ’

1—2z Z+z-1 1—2 Z4z-1 i i ok
|: Z/ 5)\/,}1 — (72/ > (1 - Z/)(S/\/,fh:| [— > (5/\’},( + 7Z 5)\,7h:| E/\l/SJ)\rE)\k. (90)

The UV-divergent part of the m-integral above is given by

1 ,u2 1-2 o 224242 -1 ;50 1-2 4
rete ky=—-|—+log| — - L7 T§ + —=n"§Y 91
3.(c) (P, K) Tom 5W+ gl 2 NF° T S1=2) n’o" + ——n (91)
with
Z i A=Y z+2-1)
p= — n, q= k = n, ]\{2 = 2—n2_ (92)
1-2 z 2°(1—2)
Performing the internal polarization sums we get
3,a * 2 —
,(/}q—u]g = 729 tji (CF - %> 2o |:L + log I/L :| /1 dzlil —z
(e).pole A&; 2 871'2 5Ws n2 1—z Z/(Z, + 2z - 1) (93)

{(2227:)1)} {<(1 - z')2) Ian+(1=2) 5*~—h} '

Again, the finite m-integral in Eq. (90) can be performed by using Eq. (A14), and thus we obtain

= —24%4% e [ 1—
ot =t (= YRS [ R () (o1)
1

(e) finite Ao 2 ™ s A +z-1)
with
Hiey (2, 20 h) = Aoy (2,2))0y 1 + Bey(2,2)0x _p (95)
and
_ -1 _ N2 2 201 _ (o9 _ NG o (ka9
Aoy 77167722(1—2)2/ [(1 z) (1+(1 z') )-i—z (1-2)(2-31-2)) -z z){4 2 (7T—(8 3,2)2)}

+222 (7 + 2 — 1){ (1 +(1- Z’)Q) log <Z,+Z%> —(1-2)"log (%) H
(96)
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and

(2 +z2-1)
1672°(1 — 2)%2

- 2zz’{ (1+ 0= =2:2 -2~ 2))log <Z,+Z%) —(1—2)*log (%) H .

B = {(1 —2)(1—2) (1 +(1— z/)2> +221-2)(2-23B+7)) 201~ z){4 - <7 - z'2> z’}

(97)

Sum of diagrams (d) and (¢)

The diagrams (d) and (e) have the same color structure, in fact they are reprebented by the same dlagram in
covariant perturbation theory. Adding (d) and (e) and regulatmg the IR-divergence 2’ — 0in (d) by a < 2’ < 1— 2,
we obtain for the UV divergent part

2 2
- - g 1 I Ca 3
wf’d);ilc ?p ,;Z,ilc =YY (n, )78 5 [75— + log (rﬁ)} <C’F — 7) {75 +In(l—2)—2In a} . (98)

™ MS

Similarly, the remaining finite z’-integrals in (81) and (94) simplifies to

2
—q - - g Ca
qd) ﬁilte + wqe) ?i?ute = wq qg( )487'('2 (CF - 7) H(d)(r) (Z7 CM)

(99)
+ —=(C ————= (24 (2+ 2)log(1 — 2)) 0y p, + zlog(2)d, _
Ao, P ) ise z\/li ( ( ) log( ) Oxn 2(2)0x —n
with
Haye) (2, ) = 72 — 15+ 3log®(1 — z) — 9log(z) + R log(1 —z) — 6log(1 — z) + 121og(1 — z) log <i>
z a (100)
— 12log(z) log(a) — 12log(a) + 61og?(a) 4 6Lis (1 — 2) .
Here Liy(z) is the standard dilogarithm function, defined as
= log(1 —
L) =— [ a0 oo, (101)
0 )
and in particular, for 0 < z < 1 we have
2
Liy (2) + Liy (1 — 2) = 1 — log(z)log(1 — 2). (102)

The UV-finite parts of the expression (99) depend on the renormalization scheme. In the FDH scheme the NLO part
of the wave function has a part that is not proportional to the 0, , + (1 — 2)dy _, helicity structure of the leading
order part.

Diagram (f)
Diagram (f), shown in Fig. 13, is

o B . . . Vi;k,b m, Z/ Vk,c;j l,
Yl = /dkdk'dp"(%r)sé?’(i' —F =kt G-k —k) i (12 )V i (16)

bic,a /
; h,z/z 103
A1 Ag2Ao3 N 2/7) (103)

where the phase space measure is

o ., L 2-d, 1 S d,
/dkdk/dp"(%r) ( -k )(27T)3 3(q K k)= 1€l;7r(p+)2 / 2 (1 - 2?25(1 -§) / (;17r);{L

o /1 dz’ d™m
167(p7)? ). (-1 -2) ) @nt

(104)
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FIG. 13: One loop vertex correction diagram (f) with LC energy denominators and kinematics. Momentum conservation:
g =p-qp =p- Kand k' =k — ¢. Momentum fractions are defined by k™ = 2'p", ¥'" = &'t and ¢" = 2p™. The
momentum fraction of the 3 gluon splitting is ¢ / kT =2 /Z'. The natural momenta for the three vertices are m = k — z'p,
1=k —¢p and h = q — (z/2')k, and the natural momentum scale for the whole diagram is n = q — zp. Note that
2 =2+ &(1 — 2) so that p"T = (1 —€)(1 — 2)p™. To choose m as the integration variable we need 1 = m — (1 — £)n and
h=n-(z/z)m.

the LC energy denominators are

A — -1 m?
01 — 2p.{. Z/(]. _ Z,)
-1 | n’ 1 1§
Agp = —— + 105
°= ot -2 T 1-281-9 (105)
A — -1 n’
0 opT 2(1-2)°
and the variable £ is defined in Fig. 13. Putting everything together and using
ittt e = A, (106)

the expression in Eq. (103) simplifies to

i _ 2978 <g ) e / VT2 [ dim (m? = (1= o) (m" = (2/2)n")
() A 2 T s 2 —2) ) (2m)® m? [(m —(1-0n)’+ 5(1;5)112}

*k *k ¢
N0 ex o .
’ PYLDIIPY A XA k *i
{5%;1 +(1-z )5%—11} |:5)\2,h +(1 - 5)5&,—4 L = z}z' + z/zl' 2 — 5,\15,\2,—A] ex, 8, (107)

The UV divergent part of the m-integral becomes

2
595 (pa k) = % L{ +log (f‘lzﬂ [(1 —on'dt — (1 - e+ (1-¢ - 2z’/z)n"’5"’}, (108)
MS
where
p=k=(1-6n, q= Z;n, M2 = 5(17;5)112. (109)

Performing the helicity sums and index contractions then gives for the pole part
a—ag +293t?i Ca\n-erf 1 +1 ;1,72 ! Q! 21—z ,z(l—z/)2—;:'(1-{-(1—,2/)2)(S
Y(f),pole = — 2 2 | T8 3 Z e, z 2 Ak
Ags 87 Lems n 2 (z)(z' = 2) (1-2)z

21— 2)% 4 22/(2 - 2) - 2z/(l +(1-2)%
(1-2)"2

+z 5)\,_}1}. (110)
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FIG. 14: One loop vertex correction diagram (g) with energy denominators and kinematics. Momentum conservation: 7’ = 5—q,
7" =p- kand k' = =p"—p =q- k. Momentum fractions are defined by kT = z'er, K= §p”Jr and q+ = zp+. The momentum
fraction of the 3 gluon merging is k™ /q = 2'/2. The natural momenta for the three vertices are m = k — z'p, 1 = k' — ¢p”
and h = k — (2'/2)q, and the natural momentum scale for the whole diagram is n = q — zp. Note that z = 2’ + &(1 — 2') so

that p”"* = (1 — 2/)p". To choose m as the integration variable we need I =n — (1 — £)m and h = m — (z'/z)n.

For the finite m-integral we obtain

20°1%. et ol Vs
poas P20 (Caymeey [0, 2VI—z g (', 2\ h), (111)
LY o

(f),finite Aa3 9 T Z/ Q(Z/ y_ Z)

where
H(/) (Z,, zZ; )\, h) = A(f) (Z, Z/)(S)\’h + B(f) (Z, Z/)(S)\’_h (112)
with the coefficients

1
167 (1 — 2)°2°

=27 (2-2(11 - (13- 62)) +2(1 - 2) (2 — Z,)Zl{ (Z,(l )2 —22-4(2- z/)> log ((1,2_72)Z>

(20— =2+ (-2 ) log ((12(;)(;)2@) /)

A7) =

- [2(2’)3 (14 =2)) +22 (2= #(5-32 - 2)2)) - (=) (6 - #'(2+3(1 - 2)2")

(113)

and

By (z,2) = {2(1 —2)2° — (1= 2)22(2+32)2 — 2(2)2 (6 — 2(11 — (9 — 2)2))

16m(1 — 2)%2%(z — &)

(P A+ 22+32) — (D) @A+52)+ ()P +2) - 22’{(1 — )2 (222 ~ 322 + (<) ) log (M>

—(z=2) (20— 2 + 222 = 2) = 2(1+ (1= £)%)) log <<1—>> H

(1-2)(z —=2)

(114)
Diagram (g)
The LC wave function for the diagram (g) with the kinematics shown in Fig. 14 is
y A o ) . V'i;k,b m, Z/ Vk;j.c i A
i = / dkdk' dp” (27)36° (B — 5" +§)(2m)6° (5" — p+ &) 2w 2 Vi b ’g)Fii’f‘il-A(h, 7/z),  (115)
Ap1Ag2Ap3 o
where the phase space measure is
—, R - 2-dy z dz’ d“'m

dkdk'dp" (2m)* % (B — 5" + 5')(2m)0° (5" — i+ k) = —- / 116
JBEE 0P E 5 om0 R = s [ e O e
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and the LC energy denominators are

2

_ -1 m
Ay = 2175(17—2") (117)
_ -1 n’ 1 h?
B = o [z(l—z) +z(z'/z)(l—(z/z))} s
Apgz = #m (119)

Adding everything together yields

i N Kk
I — +25]3t?i (%) w2 ,VI—z / d%m ™ <7er - <1_z>”]> (m —Zp )
T 0

((]) Aa3 2 Z(Z -z ) (277')0!i m2 |:<1’I’l _ iln>2 + z;(zfz/)n2:|

k k
/ 1—=2 W VP U W W VS i %
{5,\1@ +(1-= )5/\1,—}1} {%m + <ﬁ Ory—h 1 y e + ;//z 2 —eX 0xn,—ns 8/\18/\2 (120)

The UV divergent part of the transverse integral is

Ipole ( k) _ 1 1 +1 //’2 Z/ 115]'1‘7 z - Z/ + Z(l — Z/) ]67k 2 kézj (121)
8.(9)\P D= T E8S o8 n’ 2" 2(1—2) " P ’
where
1 _ / ! ! _ /
= ( & ) n, q=k= (Z—) n, M?= an. (122)
1-2 z (1 —2)

Using mathematica for the polarization sums the pole part of the diagram becomes

g—ag _ +2g3t;i Cy\n-ex[ 1 ;L ; V1 F1-2)Y —z(1+1-2)?)
(9) = 2 + log 7 Oxh
Ag3 2 ) 8 lews n’ 0 Z(Z -z ) Z(1-2) (123)
—2
n 2 z(SA h}
7
Like before the remaining finite part can be cast in the following form
N +26°1% Cha\ n- EA '
tte = o () 28 [ 4 S e (), (124
03
where
H(_{/)('Z/v Z A, h) = A(@(Z, zl)dz\,h + B(_{/)('Z7 Zl)d)\,fh (125)

and the coefficients are given by

1
16m(1 — 2)(1 — =

+ 22 (6—2"(17—2(8 —32")2)) +22(1 — 2") (2 — z/){ (z(l —Y (- z/)2)> log (M)

+ (z’(1 )2 214+ (1- z’)2)> log (M) H

Ay (2,2 ) =

Sy —— [ () (1 +(1— /)2) +2(2')? <2+3(1 -2 2,2/) —2A1-2)(4-2(4-32))

(126)
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FIG. 15: Loop diagrams with an instantaneous interaction, vanishing in dimensional regularization.

and

1
B 167(1 — 2)%(1 — 2')22/(z' — 2)
—2(1-2) ()2 -2 +4(F) = (2)*) =31 = 2)2% (2= 2B +2)) — (1 —2)2" (4 — (4 + 2))
(1—2)2* ) (127)

Z(z—2")

Big)(7)

[(1 —2)(@)PA+ 1 -2 +201 - 2)* 242 —5()?)

+22(1 — z'){(l —2)2(22% — 322" + (2)?) log (

— (-7 (z(l 42— - (1 (1 /)2)) log (%) H .

Sum of diagrams (f) and (g)

Again, diagrams (f) and (g) have the same color structure and correspond to the same covariant theory diagram.
The sum of (f) and (g), with the soft divergence regulated by z +a < 2’ < 1 in (f) and o < 2’ < z — v in (g) has the
UV-divergent part

2 2
a—qg a—ag  _ =g 9 (Cay| 1 log | - 3 41 In(1— 21 128
w(f),Poleer}(g),pole Yo’ (m,2) 82 ( 2 ) [ - +log 2 2 na+In(l—z)+2nz|. (128)

And the finite ones

2
— — o g CA
Ezf),(fzignitc + wzlg),(f]izlitc = —io"(n,z) p) < 2 > Hipyg)(2:a)

481
20°15; (g) 3(n-3)
Agy \ 2 ) 48n2yT—2

(129)

{((1 +22)log(1 —2) — 1)y p +22(2 — 2) log(z)é)\’,h} ,

where

12(1 — 1322 1 2
Higy) (20 0) =12 = da” + : a = 3 ( z : ) log(1 —2) —3 <+1z+zz> log(z) + 24log(a) ~ 181og’(2)

—36log (&) log(a) — 301log(1 — ) log(z) — 9log*(1 — z) — 121log?(z) — 6Lis (2).
(130)
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(s)

FIG. 16: Two-gluon emission diagram (s) with LC energy denominators and kinematics. Energy conservation: = 5" + E’
o~

and p”’ = p' + k. The momentum fraction and natural momentum scale for the emitted gluon k' are 2(1—2") = k/+/p+

and h = K — z(1 — 2')p, respectively. Similarly, for the emitted gluon k we have zz'/(1 — z(1 — 2')) = I<:+/p”+ and 1 =

k—2z2'/(1—2(1-2")p".

D. One loop vertex corrections to gluon emission with an instantaneous diagram

In addition to the one loop vertex corrections computed in section IIIC there are several one loop diagrams
containing either quark or gluon instantaneous vertex, see Fig. 15. It is, however, straightforward to show that at one
loop all of these corrections are only linearly proportional to the transverse momentum in the loop, and hence the
possible d; dimensional transverse integral gives zero in dimensional regularization framework.

E. Three-particle final states

Finally, we write down for reference the wave functions for possible three-particle final states shown in Figs. 16, 17
and 18. The wave function for the two-gluon emission diagram (s), with kinematical variables shown in Fig. 16, is

i0,b ’ YAy NS 2z
A (h,2(1—2") Vi3, (l’ m)

PI 999 = ap" (2r)%6@ (- 5" — k') S , (131)
) . Ag1Aps
where the LC energy denominators are given by
~1 h’
Ay = — 132
T ot 2(1=2)(1 - 2(1-2) (132)
- -1 (1—2(1-2 "(1-
A = j( /Z( Z)) [} /Z( 2) : 2h2}7 (133)
2p"7 22 (1—2) (1-2"1-2(1-2")
and the phase space measure simplifies to
r 3 - 1
v (2r 36(3) -5 k= — - 134
WG R = (134
Putting everything together we get
— b 1-2
’Ll)?s) 99 _ 8p+g2t?kt;”\/ 1—=2 |:6)\I,h + (1 — Z(l — Z/))5A/,7}L:| |:5/\,h =+ (m) 5/\,7h:|
1-e))(h-e}
L e)mee) 135)

2|42 2 (1-2) 2]
h [l + (172’)(1%(1%’))2}1 }

Note that in the full Fock state decomposition, the wave function ¥~ % also needs to include a second copy of
diagram (s) with the final state gluon momentum labels interchanged.

For diagram (t), with kinematical variables as in Fig. 17, the LC wave function is given by

Vo (o 2)res (m, )

q9—q99 _ d~2 35(3) S ol o A 7 136
vty = [ a5 - 9 Y (136)
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FIG. 17:  Two-gluon splitting diagram (t) with intermediate states for LC energy denominators and kinematics. Energy
conservation: p =" + §and § = k' + E. The momentum fraction and natural momentum scale for the emitted gluon ¢ are
z = q+/p+ and n = q — zp, respectively. The momentum fraction of the 3 gluon splitting is k+/q+ = 7' and the natural
momentum m = k — z'q.

Py hyia n ! ! ﬁ/7h7j

k,s,m

FIG. 18: Quark-antiquark splitting diagram (u) with intermediate states and kinematics. Momentum conservation dictates
F=p +qand 7= k' + k. The momentum fraction and natural momentum scale for the emitted gluon 7 are z = ¢ /p+
and n = q — zp, respectively. The momentum fraction of the gluon to quark pair splitting is k™ /q+ = 7' and the natural
momentum m = k — 2/q.

and the LC energy denominators are

—1 n?

Agy = -2 1
01 2p+ z(l—z) ( 37)
_ -1 1 2 (1-2) o

Ap = — , 138
2T A1) [” Tra=a" ()

where the second LC energy difference (138) is naturally the same as for the other emission diagram to the same final
state in (133), although expressed in terms of different variables. The phase space integration gives

~ 1

/dq(27r)35(3) F-7 -0 =— (139)
2zp

Putting everything together we obtain
— - c pca - m - E* - m - E*/
wgt) 99 _ 82p+g2tﬂf b(l =~ 2)3/2 |:6o.h + (1 - Z)OC,_’,;L:| |:1_72),\()U’)\/ + T)‘(sm)\ —m - 606)\’_/\’:|
x (n-e) (140)
2| 2 (1—z2) 2
n [n +Z,(1iz,)m }

The wave function for quark-antiquark splitting diagram (u) shown in Fig. 18 can be written as
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—qqq 1 3)/ > = Vai;jtc(nv Z)A?Z’m(m, Z,)
uig = [agonp s - g - ot e
A01 AOZ

, (141)

where the integration over the phase space simplifies to Eq. (139), and the LC energy denominators are the same as
for the three gluon final state, Eqs. (137) and (138). Adding everything together, the wave function for diagram (u)
can be cast in the following form

—qqq c 4c 1—2 8/2
"/}gt) 9= 8p+92tjitnm% |:6cr,h + (1 - z/)6a,fh:| |:Z,60,s - (1 - Zl)60,75:|
z(1-2)

(n-e5)(m-e,)

2.2 (1—2) 9]
n [n +Z,(1_Z,)m}

(142)

In addition to these, there are three contributions from the instantaneous diagrams in Figs. 4, 5 and 6. Since these
diagrams do not have an intermediate state, there is no phase space integral. The contribution to the wave function
is given directly by the instantaneous vertex (Egs. (24), (25) and (26)) divided by the light cone energy denominator
between the initial and final states (which is equal to Agy in (133) or (138)).

IV. RESULTS

Let us first collect the UV-divergent pieces of our results and show that they can be absorbed into a renormalization
of the QCD coupling constant. The pole part of the quark wave function renormalization constant (47) is

’c
Ut =N =1+ g87r2F <% +h’lﬂ2) {(g + 210g(a/§)>] +... (143)

Note the presence of the longitudinal soft cutoff « from the integration over the momentum fractions in the UV-
divergent term. This mixing of divergences is a well known annoying aspect of light cone perturbation theory. The
UV-pole part of the gluon wave function renormalization is (68)

R 11 2T N,
ZPCk =ty =1+ 897 (% + 1np?) KF + 210g(a/§)> Ca— %] +0(g") (144)

The UV-divergent part of the splitting wave function, with UV-divergent parts from the final state propagator
correction diagrams (a), (b), (¢) (Egs. (54) and (67)) and the vertex correction diagrams (e), (d), (f) and (g) (Egs. (93),
(128)) is

PI99 = ga 99 1+L2 L—i—ln;ﬁ OF_% —§+1n(1—z)—21no¢
pole LO 87‘(‘2 NS 2 2

+ % {—g —4lna+In(1-2) +21nz} } + [Zgole(z) - 1] + [Zgole(]_ —2) - 1] } (145)

From these the combination

Z,(1)
Z,(1—=2)\/Z,(2)

4709 049
2
167 3 €8IS

2
14 g (%CA _ %) (% + ln,u2) + 0(94):| (146)

is independent of the soft regulator o and can be absorbed into a replacement of the coupling g in ¥{5?% by a

renormalized running coupling:
g (11 2T, N, 1 ’a
14+ -1 (—CA— r F> — +mE . (147)
167% \ 6 3 NS Q

We will not repeat the expressions for the UV finite parts here. The finite parts of the quark and gluon wavefunction
renormalization constants can be found in Egs. (47) and (69). The light cone wave function is obtained by summing
the contributions in Eqgs. (54), (67), (99) and (129). The finite terms contain single logarithmic, double logarithmic,

gr(Q*) =g
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and power like soft divergences in terms of the longitudinal cut-off parameter a.. In the context of low-x QCD, the
single logarithmic divergences can be dealt by an appropriate low-z evolution equation at the cross-section level (see
e.g. [15, 41-43, 46]). As could have been expected, the double logarithmic terms cancel each other in Eqs. (54),
(67), (99) and (129). What remains, however, is a power law infrared divergence ~ 1/a. The appearence of such
divergences is a well known troublesome feature of calculations in light cone gauge. Without performing a full cross
section calculation it is not fully possible to say whether this term would cancel in the final result. It would also
be interesting to study further whether the appearence of such a term is related to our implementation of the FDH
scheme for regulating the UV divergences. This could be done e.g. by calculating the same loop diagram in the
conventional dimensional regularization scheme.

V. DISCUSSION

Let us now briefly return to the question of applications for the results obtained here. As stated earlier, the primary
motivation for the light cone wave function formulation is for calculations off an (potentially nonperturbatively strong)
classical field target in the high energy limit. We have here obtained the gg final state wave function to order ¢°,
and the ggg, gqq one to order g2. These are sufficient to calculate to order g47 i.e. to NLO, cross sections for gluon
emission from a quark probe. A simple example would be the gluon brehmsstrahlung process ¢yv* — qg, e.g. the
conventional DIS process. Another example, where the only increase in complexity would be on the target side, would
be the process qg" — qg, i.e. a dihadron production in forward proton.-nucleus collisions [47, 48] to NLO.

There are other calculations where the results obtained here would be useful, but that would require also the quark
and gluon wave function renormalization to order g4. This would be the case e.g. for the NLO DGLAP splitting
functions [49] (or the quark anomalous dimension to 2 loops). A rederivation of the NLO BK equation would also
require a similar expression for a quark-antiquark dipole, but only in the soft gluon limit z — 0. The wave function
renormalization constant can be obtained from the state normalization constraint, i.e. from the square of the 3-particle
final state wave functions obtained in this paper, and an interference term between the LO and NLO 1-gluon emission
wave functions also written down here. There is no shortage of interesting things to calculate.

An important goal of this paper has been to formulate the LCPT rules in helicity space, independently of spinor
representation, and demonstrate their use. We have found that this is often not done in the literature, but presents
a major technological improvement for loop calculations, replacing the Dirac algebra by simple helicity sums. We
believe that this will make many calculations such as the one recently performed in [27] technically simpler. As a
part of our work we rederived the QCD beta function in LCPT [11]. More importantly we also extracted the finite
parts of the one loop wave function correction diagrams which, to our knowledge, have not appeared in the previous
literature.
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Appendix A: Loop integrals

We work in the four dimensional helicity (FDH) scheme, where all polarization vectors, the momenta of the observed
particles, as well as the helicity sums (or Dirac matrix algebra in the numerator) are kept in four dimensions. Although
we keep all the spins in 4 spacetime dimensions, we regularize UV divergences by integrating over the momenta of all
particles ub d dimensions. Consequently the integral measure appearing in Eq. (10) is replaced by

N 2-d, + dy o ij
/dk Ny /%/ d :‘ with  kik! — 2 k2 (A1)
27 2%k (2m) % d,

where the transverse integral is dimensionaly regularized near two dimensions d; = 2 — 2¢, and an arbitrary scale p
is introduced so that the transverse integrals preserve their natural dimensions.
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At one loop order, we need the following set of transverse integrals in d | dimensions:

2 / e 1 T (22 (&2)
@2n) * K+ M? (4m)' T\ M2
Qs/ a* "k 1 _ 1 eT(e) LQ : (A3)
Pl e e T P am) A
2—2¢ 2 2\ ¢
o [ ATk K 2 Te) [ m
S V/ & L A4
: / (27)> " F K* + M? (4m)t = \ M2 (A4)
e [ 7Tk 12 -9 () A
H 9m)2 2 (12 222 T—e 2 (A5)
(2m) (k" +M"7) (4m) M
2-2¢ ig ij 2\ ¢
e [ e I = DO () (A0
J @n)?7% (&* + M?) 24m)— \ M

For the computation of one loop vertex corrections with 3 external legs we need the generic integral
d®**m m'(m —p)’(m — )"
(2> = :

I3(p7q7 k? ]‘/[) = /L2E/
m? {(m —k)? + MQ}

This can be Feynman parametrized as

| _ 1 i 2 %m MZs mz(m _p)j(m _ q)k
e, ok, M) /0 ¢ / (2m)* 7% [(1 —2)m® +z ((m -k’ + Mz)]2 v

and with a variable change r = m — zk, the integral I3 becomes

2y (rtxk) (r+ 2k — p) (r 4+ xk — q)k

1
d
13(p7 q, k7 ]\1) :/ dx:uze/ 2 2—2¢ 2 (Ag)
b ) o [ 21— o0 + o]

At this point what survives is a UV finite part
finite 51—‘(5)”’28 ! xkl (Ik - p)J (Ik B Q)k
3" = 7(471_)1—5 ! dx ’ RIS (A10)
[:U(l —2)k* + CL‘]V[Z:|

and a UV divergent one

€
I'(e) y i ik j sik k sij I
pole = 20 / dz (zk'&" + (zk — p)? 6" + (vk — )"0V ) | ———— | - All

? 2(4m)' ¢ Jo ( ( P) ( 2 ) (1 — 2)k?* + zM? (A11)
Expanding the integrands in (A10) and (A11) in powers of €, and performing the final elementary integrals we obtain
13(p7 q, k7 ]\/[) = Igv(pa q, k) + Ilgmitc(p7 q, k7 M) (A12)

where the UV pole part is

uv 1 1 ,LLQ icik j cik k sij
I3 (pa k) = | — +log | =5 || |K'0"" + (k—2p)"0" + (k — 2¢)"0" |, (A13)
167 NS n

and we have defined, 1/s555 = 1/€ — g + log(47), which correspond the standard modified minimal subtraction (MS)
scheme choice. Here n? is an arbitrary scale at which one divides the logarithm between the pole and finite terms.
The finite part simplifies to

157 (p,q,k, M) = I + I3, (A14)
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where
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