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Abstract. In this paper, an interactive version of the ParEGO algo-
rithm is introduced for identifying most preferred solutions for compu-
tationally expensive multiobjective optimization problems. It enables a
decision maker to guide the search with her preferences and change them
in case new insight is gained about the feasibility of the preferences. At
each interaction, the decision maker is shown a subset of non-dominated
solutions and she is assumed to provide her preferences in the form of
preferred ranges for each objective. Internally, the algorithm samples ref-
erence points within the hyperbox defined by the preferred ranges in the
objective space and uses a DACE model to approximate an achievement
(scalarizing) function as a single objective to scalarize the problem. The
resulting solution is then evaluated with the real objective functions and
used to improve the DACE model in further iterations. The potential of
the proposed algorithm is illustrated via a four-objective optimization
problem related to water management with promising results.

Keywords: Surrogate-based optimization, interactive multiobjective op-
timization, preference information, computational cost, visualization

1 Introduction

Multiobjective optimization problems have several conflicting objective functions
to be optimized simultaneously. Due to the conflict, optimal solutions have in-
herent trade-offs between the objectives and are called Pareto optimal solutions
where none of the objectives can be improved without impairing some other one
[15]. Without any additional information, all the Pareto optimal solutions are
equally good. On a general level, one can see two approaches for solving multi-
objective optimization problems: 1) approximate the whole Pareto front, that is,
the set of all Pareto optimal solutions or 2) identify the most preferred Pareto op-
timal solution(s) utilizing preference information from a human decision maker.
In this paper, we concentrate on the latter approach.

Decision maker preferences are nowadays widely used to find most preferred
solutions in both multiple criteria decision making and evolutionary multiob-
jective optimization communities (see e.g. [2,4,15,21]). Preferences can be used
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before optimization, after optimization, or iteratively during the optimization
process [15]. The methods belonging to the latter approach are called interac-
tive multiobjective optimization methods where the decision maker is iteratively
involved in the solution process. The benefits of interactive methods include
learning about the interdependencies between the conflicting objectives and ones
preferences especially for problems with a high number of objectives. This new
knowledge gained during the interactive solution process may necessitate adjust-
ing decision maker’s preferences. Interactive methods indeed allow the decision
maker to change her preferences which is not possible if the preferences are asked
before optimization (see, e.g., [22]). Therefore, they have been found promising
for solving real-world problems [17,18].

In computationally expensive multiobjective optimization problems, a sin-
gle evaluation of the objective and/or constraint functions takes considerable
amount of time. To be able to tackle such problems, surrogate-based approaches
are commonly used where the idea is to approximate the problem with sim-
pler functions that are faster to evaluate [10,13,24,26]. There are different ways
of using surrogates in multiobjective optimization [24], for example, 1) to ap-
proximate each objective function separately and apply any suitable multiob-
jective optimization algorithm by using the approximated functions (the most
widely used approach, see e.g. [3,10,24]), 2) to approximate a scalarizing func-
tion that converts multiple objectives together with decision maker preferences
into a single objective optimization problem [7,12], or 3) to approximate directly
the Pareto front [6,9,19]. However from decision making point of view, providing
most preferred solutions to the decision maker for computationally expensive
multiobjective optimization problems was identified as a future research chal-
lenge in a recent survey [24].

The contribution of this paper is to introduce an interactive multiobjective
optimization method for computationally expensive multiobjective optimization
problems to partly answer the challenge mentioned above. It is based on the
ParEGO algorithm [12] developed for approximating the whole Pareto front
for computationally expensive multiobjective optimization problems. ParEGO
uses a weighted Tchebycheff function to convert multiple objectives into a single
objective optimization problem and randomly generates weights at each iteration
to be able to approximate the whole Pareto front. Since ParEGO uses a surrogate
to approximate a scalarization function, it is convenient to add also decision
maker preferences and, thus, try to approximate only preferred parts of the
Pareto front. This is done by replacing the weighted Tchebycheff function with
an achievement scalarizing function and using reference points instead of weights
to include decision maker preferences. The decision maker guides the search by
specifying preferred ranges for each objective function. By specifying ranges, the
decision maker deals directly with objective function values (as opposed to e.g.
weights that have no clear meaning) and it allows the decision maker to explore
more if she does not have exact values in mind. When compared to approaches
that use surrogates to approximate directly the whole Pareto front (e.g. [6,9,19]),
the benefit of interactive ParEGO is that it does not need any pre-computed
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Pareto optimal solutions as an input. On the other hand, when compared to
the approaches that use surrogates for each objective separately, the number of
surrogates used is always one independently of the number of objectives used.

The rest of the paper is organized as follows. Section 2 presents the problem
formulation along with brief introduction of the basics of the ParEGO algorithm.
In Section 3, ideas of incorporating decision maker preferences into ParEGO are
discussed and the interactive ParEGO algorithm is introduced. Section 4 illus-
trates the potential and ability of interactive ParEGO to utilize changing prefer-
ence information through a four-objective example related to water management.
Finally, the paper ends with conclusions and future research ideas presented in
Section 5.

2 Basics of ParEGO

We consider a multiobjective optimization problem

minimize {f1(x), . . . , fk(x)}

subject to x ∈ S,
(1)

where all k objective functions fi : Rn → R, i = 1, . . . , k, are to be minimized.
The feasible region S ⊂ Rn denotes the set of feasible decision variable values
x = (x1, . . . , xn)T . Here we assume that the function evaluations are costly in
the sense of taking a long time.

The ParEGO algorithm [12] was developed for computationally expensive
multiobjective optimization problems and it is based on the efficient global op-
timization (EGO) algorithm [11]. In ParEGO, the multiobjective problem (1) is
converted into a single objective optimization problem by using the augmented
Tchebycheff scalarizing function

minimize max
i=1,...,k

[wifi(x)] + ρ
k∑
i=1

wifi(x)

subject to x ∈ S,

(2)

where w = (w1, . . . , wk)T , wi ≥ 0 and
∑
i=1,...,k wi = 1. The term containing ρ >

0 is called an augmentation term and it is used to guarantee that the solutions
of problem (2) are Pareto optimal [15]. An important reason for choosing the
Tchebycheff scalarization was that it can find Pareto optimal solutions also in
the non-convex part of the Pareto front. The overall goal in ParEGO is to find
an approximation for the whole Pareto front. Next, the basic idea of ParEGO is
briefly described.

ParEGO starts by using the latin hypercube sampling to find 11n− 1 points
in the decision space which are then evaluated by the real functions. Those
points are then used to train a Kriging-based design and analysis of computer
experiments (DACE) model to approximate the objective function in problem
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(2). To train the DACE model, Nelder and Mead downhill simplex algorithm is
used to maximize the likelihood. Then at each iteration of ParEGO, a new point
to be evaluated with the real functions is determined by using a single objective
genetic algorithm to maximize the expected improvement. After finding the new
point, it is evaluated with the real functions and, then, the DACE model is re-
trained by considering also the new point. The updated DACE model is then
used to find the next point and this iteration continues until the budget for
function evaluations with the real functions is exhausted.

We can make some important observations of ParEGO. Note that at each
iteration, one new point is evaluated with the real functions. It is possible to use
all the points evaluated so far with the real functions to train the DACE model.
However, when the number of the points increases, the more time training takes.
It is also possible to use only some subset of the points in training in order to
reduce the training time while compromising the accuracy if needed [5]. Further,
for each iteration, the weight vector w used in problem (2) is randomly generated
in order to finally cover the whole Pareto front. In practice, ParEGO does not
set any limitations for the number of objective functions to be considered since
it only affects on the generation of the weight vectors. However, the current
implementation found in https://github.com/CristinaCristescu/ParEGO_

Eigen supports only problems up to four objective functions [5]. More details of
ParEGO can be found in [12].

3 Preferences with ParEGO

Next we discuss how to include decision maker preferences into ParEGO. A
natural way for this would be to apply the ideas of the interactive weighted
Tchebycheff procedure introduced in [23] where the idea is to reduce the space
of feasible weight vectors based on preferences from the decision maker. At each
iteration, the decision maker sees some Pareto optimal solutions and is asked to
select the most preferred one. Based on the selection, the weight vector space is
reduced and the new Pareto optimal solutions are generated by using the reduced
space of weight vectors. The limitations of the interactive weighted Tchebycheff
approach include that one can not go back to the part of the space that has
been eliminated (i.e. change preferences). It means that an important property
of interactive approaches, a possibility to change one’s mind, is not available.
For that reason, we do not go towards that path but take another approach
utilizing achievement (scalarizing) funtion (ACH) [25] and preferred ranges for
the objective function values as a form of preference information that will enable
the decision maker to change her mind during the interactive decision making
process. Next, our approach is discussed in more details.

3.1 A priori preferences

We start by discussing how to include a priori preferences to ParEGO, that is,
how to handle fixed preferences expressed before optimization. That will also
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Fig. 1. Examples of different types of hyperboxes. The solutions in the Pareto Front
(black curve) that can be reached from each hyperbox by using ACH are marked with
Xs. The dotted lines denote the projection direction determined by the weights in ACH.

serve as a building block for interactive ParEGO described later. As mentioned
above, we chose to use preferred ranges for objectives as decision maker prefer-
ences since dealing directly with objective function values is found cognitively
easy way of expressing preferences for the decision maker [14]. Preferred ranges
will result in a k-dimensional hyperbox H = {z ∈ Rk|ai ≤ zi ≤ bi} in the objec-
tive space. In practice, this hyperbox can be considered as either 1) optimistic
which means that it does not contain any feasible solutions, 2) pessimistic where
all the solutions are dominated or 3) neither optimistic nor pessimistic which
means that it intersects with the Pareto front [7]. Different types of hyperboxes
are illustrated in Figure 1.

Further, multiple objectives are scalarized by using ACH instead of the
weighted Tchebycheff scalarizing function used in original ParEGO. The math-
ematical formulation of the augmented ACH used here is

minimize max
i=1,...,k

wi(fi(x)− z̄i) + ρ
k∑
i=1

wifi(x)

subject to x ∈ S.

(3)

The weights typically used with ACH are w = (znad−zideal)−1 where zideal and
znad denote vectors containing the best and the worst values for the objectives
in the Pareto front, respectively. Note that the weights used in the weighted
Tchebycheff scalarizing function (2) are used as a preference information to get
different Pareto optimal solutions as opposed to the weights in ACH (3) that



6

are used to normalize the scales of the objective function values. In the case of
ParEGO, the objective functions are normalized based on the set of evaluated
solutions and, therefore, weights wi = 1, i = 1, . . . , k are used. For the augmen-
tation term, we here set ρ = 0.05 as has been done in original ParEGO. The
solution of problem (3) is Pareto optimal [15] and different Pareto optimal solu-
tions can be obtained by varying the reference point z̄ ∈ Rk. Thus, the reference
point z̄ is the way to include preference information to ACH and, in our ap-
proach, to ParEGO. These reference points will be sampled from the hyperbox
H determined based on the decision maker preferences in analogy of sampling
the weights for the augmented weighted Tchebycheff function in the original
ParEGO.

The basic idea here is that decision maker fixes the preferred ranges for the
objectives resulting into a hyperbox H in the objective space. Then, ParEGO
with ACH is run by using reference points sampled within H. Note that it is
not needed to sample reference points from the whole H since it is known that
all the reference points along the direction specified by the weight vector w give
the same Pareto optimal solution. Therefore, it is enough to sample reference
points in H such that they lie in the plane orthogonal to w.

To demonstrate how the modified ParEGO can handle a priori preferences
and how our basic building block for the interactive ParEGO works, Figures 2
and 3 show two example runs for the three-objective DTLZ2 problem used in
[12], which has the following formulation:

minimize f1 = (1 + g) cos(xα1 π/2) cos(xα2 π/2),
minimize f2 = (1 + g) cos(xα1 π/2) sin(xα2 π/2),
minimize f3 = (1 + g) sin(xα1 π/2),

subject to g =
∑

i∈{3,...,8}
(xi − 0.5)2,

xi ∈ [0, 1], i ∈ {1, . . . , 8},

(4)

where α = 1. Figure 2 illustrates a case where ParEGO was run for 100 real
function evaluations by using the preferred ranges 0.4 ≤ f1 ≤ 0.5, 0.5 ≤ f2 ≤
0.6, and 0.4 ≤ f3 ≤ 0.5. Parallel coordinate plot of the non-dominated points
obtained after the initial sampling together with the preferred ranges are shown
in Figure 2 by using blue and red color (together with symbol X ), respectively.
Similarly, Figure 3 shows a case where the preferred ranges 0.1 ≤ f1 ≤ 0.3,
0.7 ≤ f2 ≤ 0.9, and 0.0 ≤ f3 ≤ 0.2 were used. In both the figures, one can observe
that the obtained solutions follow the given preferences quite well, although not
perfectly since the given ranges are not feasible.

3.2 Interactive ParEGO

In this paper, we are not satisfied with fixed preferences since our overall goal is
to develop an interactive version of ParEGO where the decision maker is able to
change her mind if needed to better steer the solution process towards preferred
solutions. Therefore, we will use progressive preference articulation that is used
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Fig. 2. Non-dominated solutions (in blue) obtained for the DTLZ2 problem by using
100 real function evaluations and the preferred ranges (in red and with symbol X )
0.4 ≤ f1 ≤ 0.5, 0.5 ≤ f2 ≤ 0.6, and 0.4 ≤ f3 ≤ 0.5.

Fig. 3. Non-dominated solutions (in blue) obtained for the DTLZ2 problem by using
100 real function evaluations and the preferred ranges (in red and with symbol X )
0.1 ≤ f1 ≤ 0.3, 0.7 ≤ f2 ≤ 0.9, and 0.0 ≤ f3 ≤ 0.2.

in interactive multiobjective optimization approaches [15,17,18]. Algorithm 1
shows the steps of the interactive ParEGO algorithm which has three input
parameters. The first is the budget of function evaluations FEmax available
for the decision making process. The second parameter fixes the frequency of
interaction, that is, how many iterations to run ParEGO with given preferences
before the next interaction. The last parameter determines how many solutions
the decision maker wants to see at each interaction. The output of the algorithm
will be the solution most preferred by the DM.

After initialization step 1, 11n−1 points are sampled in the decision space by
using latin hypercube sampling in the same way than in the original ParEGO al-
gorithm in step 2. The resulting points are evaluated by using the real functions
and added to an archive A that will contain all the points evaluated with the real
functions. In step 3, non-dominated solutions of A are determined and shown
to the decision maker. If there are more than NS non-dominated solutions in A,
the number will be reduced to NS . This can be done e.g. by using clustering.
Otherwise, all the non-dominated solutions are shown to decision maker. The
solutions can be visualized to the decision maker with parallel coordinate plots
or some other suitable visualization technique depending on the number of ob-
jectives [16]. Step 4 is the termination step of the algorithm and it involves two
different criteria: stopping if decision maker so desires or if the budget of function
evaluations is about to be exceeded. Thus in order to have any interactions, the
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Algorithm 1 Interactive ParEGO

Input: FEmax = budget for function evaluations; FIA = frequency of interactions;
NS = a number of solutions to be shown to decision maker at each interaction
Output: The solution most preferred by decision maker

1: Initialize the archive of solutions evaluated with real functions A = ∅, interaction
counter it = 0, and function evaluation counter fe = 0.

2: Create initial population A0 by latin hypercube sampling of 11n − 1 points in the
decision space, evaluate them by using the original functions, and update A = A∪A0

fe = 11n− 1.
3: Find non-dominated solutions of A and show NS of them to decision maker.
4: If decision maker wants to stop or fe + FIA > FEmax, go to step 8.
5: Ask decision maker to indicate preferred ranges for the objectives.
6: Run FIA iterations of ParEGO with given preferences to obtain a set Ait of FIA

solutions evaluated with real functions.
7: Update A = A ∪Ait, fe = fe + FIA, it = it + 1 and go to step 3
8: Ask decision maker to indicate the most preferred solution as the final solution

budget for function evaluations FEmax should be more than 11n−1+FIA. If the
decision maker wants to continue and there is budget for function evaluations
remaining, then the decision maker is asked to provide preferred ranges for all
the objective functions in step 5. The given ranges are then treated as preference
information in a way described in Section 3.1. Next in step 6, FIA iterations of
ParEGO are run with the given preference information resulting into the same
amount of new points evaluated with the real functions. Then in step 7, those
points are added to the archive A, the function evaluations used and the number
of interactions are updated, and the algorithm continues from step 3.

4 Numerical example

To illustrate the performance and potential of the interactive ParEGO algorithm,
we here describe an interactive solution process for the four-objective optimiza-
tion problem related to water management. We chose this problem because the
objective functions in that have some real meaning unlike the objectives in the
synthetic test problems often used to evaluate the performance of multiobjective
optimization methods. In this way, the interactive solution process becomes more
meaningful and easier to follow. In addition, although the example problem is
not computationally expensive, it enables faster testing and the limited budget
of available function evaluations reflects the challenge with computationally ex-
pensive problems. Before describing the water management problem along with
the interactive solution process, we illustrate how the interactive ParEGO reacts
to changing preferences through the three-objective DTLZ4 problem.

4.1 DTLZ4

Here, we consider the three-objective DTLZ4 problem which is a modification
of the DTLZ2 problem described in Equation (4) by using α = 100. The Pareto
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Table 1. Preferred ranges used with DTLZ4.

f1 f2 f3
1 [0.0, 0.2] [0.8, 1.0] [0.4, 0.6]
2 [0.4, 0.6] [0.0, 0.2] [0.8, 1.0]
3 [0.8, 1.0] [0.4, 0.6] [0.0, 0.2]
4 [0.4, 0.6] [0.4, 0.6] [0.4, 0.6]

0
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1.5

0

0.5

1

1.5

0

0.5

1
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f 3

Interaction 1
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Fig. 4. Illustration of changing preferences for the DTLZ4 problem.

front for both DTLZ2 and DTLZ4 is one eighth of a sphere of radius 1, centred
on (0, 0, 0) but using α = 100 severely biases the density distribution of solutions.
To demonstrate the effect of changing preferences, four different preferred ranges
(shown in Table 1) were consequently used after initialization.

Parameter values used were FEmax = 200 and FIA = 30. The resulting non-
dominated solutions of a single run are shown as a scatter plot in Figure 4 where
different colors/symbols denote solutions obtained after different interactions,
i.e., with different ranges. As can be seen, the solutions obtained follow the
ranges given despite the limited number of function evaluations used.
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4.2 Water management problem

The problem deals with water management in the (hypothetical) Fast Water
Valley on a stretch of 100 river miles presented in [20]. There is a Fresh Fishery
situated near the head of the valley causing polution to the river. The city
of Fortuna having population of 300 000 produces municipal waste polution
and is located 50 miles downstream from the fishery. The measure for water
quality is expressed in terms of dissolved oxygen (DO) concentration and both
the polutants are described in pounds of biochemical oxygen demanding material
(BOD). There exist primary treatment facilities that reduce the BOD in the gross
discharge of the fishery and the city by 30 percent. Additional treatment facilities
would increase the tax rate in Fortuna and decrease the return on investment
(ROI) from the Fresh Fishery. The decision maker is interested in four objective
functions: f1 = water quality in the fishery, f2 = water quality in the city, f3 =
ROI from the fishery, and f4 = addition to the city tax rate resulting in to the
following optimization problem

maximize f1 = 4.07 + 2.27x1,
maximize f2 = 2.6 + 0.03x1 + 0.02x2 + 0.01

1.39−x2
1

+ 0.3
1.39−x2

2
,

maximize f3 = 8.21− 0.71
1.09−x2

1
,

minimize f4 = −0.96 + 0.96
1.09−x2

2
,

subject to x1 := Proportionate amount of removed BOD at fishery,
x2 := Proportionate amount of removed BOD at city,
0.3 ≤ x1, x2 ≤ 1.

(5)

The units for f1 and f2 are [mg/L of DO] while the unit for f3 is [%]. The
unit for the addition to the city tax rate f4 is [1/1000 of $], i.e., f4 = δ results
in the tax rate of about $δ per $1000 assessed value at Fortuna. The decision
variables x1 and x2 describe the proportionate amount of BOD removed from
water discharge at the fishery and at the city, respectively.

4.3 Interactive solution process

Parameter values used in this study were FEmax = 100, FIA = 20, and NS = 5.
These values were chosen just to illustrate the performance and a study on their
effect in the performance of the method is left as a topic for future study. In addi-
tion, k-means clustering with squared Euclidean distance was used to reduce the
number of produced solutions if it was more than NS and, from each NS cluster
identified, the solution closest to cluster centroid was chosen. An alternative for
k-means would be to use multiobjective clustering techniques where the number
of clusters is not fixed but determined by the clustering algorithm [8]. Exploring
this option is left for future research.

An important aspect related to interactive multiobjective optimization meth-
ods is the graphical user interface that implements the interaction between the
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Fig. 5. Non-dominated solutions shown to the decision maker after the initial sampling.

Fig. 6. Non-dominated solutions (in blue) shown to the decision maker after the first
interaction. The preferred ranges from the first interaction are shown in red with symbol
X.

decision maker and the method. In this example, we have used the parallel coor-
dinate plot tool developed in Prof. Patrick Reed’s group in Cornell [1] to visualize
the non-dominated solutions to the decision maker and for her/him to analyze
them in order to adjust the preferred ranges if necessary. It is important to note
that the figures of parallel coordinate plots used to illustrate the solutions in
this paper do not really provide the same possibilities to analyze them as the
tool itself. In other words, by using the tool the decision maker can interact with
the visualizations and get a better understanding by e.g. filtering the solutions
or changing the positions of different objectives to have better understanding of
the trade-offs. Developing a more enhanced user interface is one of the future
research topics.

To start with, latin hypercube sampling for this problem corresponded to
21 points in the two dimensional decision space and a set of five representative
non-dominated solutions among those is shown in Figure 5. From the figure, the
decision maker could also observe the initial ranges for the objectives that help
in determining preferred ranges.

Our aim here was to show how changes in preferences during the solution
process can be taken into account with the interactive ParEGO and we illustrate
this by considering preferences from different stakeholders’ points of view. We
start from a citizen’s perspective who is living in the city of Fortuna. The first
goal is to try to maximize the water quality in the city and, thus, the preferred
ranges 5.5 ≤ f1 ≤ 6.2, 3.3 ≤ f2 ≤ 4.0, 4.0 ≤ f3 ≤ 6.0, and 3.0 ≤ f4 ≤ 5.0 were
used.

The resulting non-dominated solutions after clustering are shown in Figure 6
which also shows the preferred ranges from the first interaction (in red and
with symbol X ). One can observe that it was not possible to improve water
quality in the city for more than around 3.45 which resulted in the city tax rate
increase of over 9. This was not found satisfactory and, therefore, the aim was
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Fig. 7. Non-dominated solutions (in blue) shown to the decision maker after the second
interaction. The preferred ranges from the second interaction are shown in red with
symbol X.

Fig. 8. Non-dominated solutions (in blue) shown to the decision maker after the third
interaction. The preferred ranges from the third interaction are shown in red with
symbol X.

to find satisfactory water quality levels in the city without too large tax rate
increase. To continue with, the decision maker gave new ranges 5.5 ≤ f1 ≤ 6.2,
3.0 ≤ f2 ≤ 3.5, 2.0 ≤ f3 ≤ 6.0, and 5.0 ≤ f4 ≤ 7.0.

The set of five non-dominated solutions together with the preferred ranges are
shown in Figure 7. Of the solutions shown to the decision maker, there were two
within the preferred ranges for the city tax increase: (5.00, 3.32, 7.44, 5.70) and
(6.09, 3.34, 5.82, 5.70). Both the solutions have similar values for f2 and f4 while
the values differed for the other objectives. Thus, with these levels for the water
quality in the city and the city tax increase, there exists a clear trade-off between
the water quality in the fishery and the fishery ROI. For the next interaction,
we looked at the problem from the fishery shareholder perspective and the aim
was to maximize the ROI from the fishery and see what happens to the other
objectives. Thus, the new ranges given were 4.0 ≤ f1 ≤ 6.5, 2.5 ≤ f2 ≤ 3.5,
6.0 ≤ f3 ≤ 8.0, and 0.0 ≤ f4 ≤ 10.0

The resulting solutions are shown in Figure 8. One can observe, that in the
solution with the best ROI, (5.34, 2.86, 7.30, 0.00), the tax rate in the city does
not increase since no additional water treatment is used. On the other hand, the
water quality in both the city and the fishery is degraded. Thus, in order to keep
the ROI from the fishery at a relatively high level and, simultaneously, not to
compromise the water quality too much, the city tax rate should be increased.

Finally, we looked at the problem from perspective of the mayor of Fortuna.
From her point of view, all the objectives are important since the quality of the
water in the city directly affects to the living conditions, the fishery brings jobs
and food to people in the city, and the tax rate should be kept at a relatively
low level in order to keep the citizens happy. Therefore, she aims at a balanced
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Fig. 9. Non-dominated solutions (in blue) shown to the decision maker after the fourth
interaction. The preferred ranges from the fourth interaction are shown in red with
symbol X.

Fig. 10. All the non-dominated solutions found during the interactive solution process.

solution between all the objectives and the preferred ranges 4.0 ≤ f1 ≤ 6.5,
2.5 ≤ f2 ≤ 3.5, 6.0 ≤ f3 ≤ 8.0, and 0.0 ≤ f4 ≤ 10.0 were taken around the
middle of the ranges of each objective obtained among all solutions evaluated so
far.

The resulting set of five representative non-dominated solutions along with
the preferred ranges are shown in Figure 9. The first observation is that there
is not a single solution that satisfies all the preferred ranges and it might be
the case that such a solution does not exist. The closest one has the values
(5.95, 3.27, 6.45, 4.11) which seems to balance all the objectives quite nicely al-
though it has quite high ROI from the fishery. However, if one looks at all the
non-dominated solutions found during the solution process shown in Figure 10,
there are not many solutions having ROI from the fishery below 5.0. At this
point, the interactive solution process ends.

5 Conclusions

In this paper, an interactive ParEGO algorithm utilizing decision maker prefer-
ences in an iterative manner is proposed. As opposed to the original ParEGO
algorithm, the aim is not to approximate the whole Pareto front but to help
the decision maker to find her most preferred solution. The key modifications
to the existing ParEGO algorithm are 1) incorporating decision maker prefer-
ences to focus the search, 2) interacting with the decision maker by showing
her/him intermediate non-dominated solutions and asking for preferred ranges
for the objective functions, and 3) replacing the Tchebycheff scalarization with
the achievement scalarizing function enabling the usage of reference points in-
side the algorithm. The potential of the proposed algorithm was demonstrated
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through the four objective optimization problem in water management and its
ability to consider preference information that changes during the solution pro-
cess seems promising. The topics for future research include a study on the
influence of the three parameters of the algorithm, that is, the budget for real
function evaluations, the frequency of interaction, and the number of solutions
shown to the decision maker, building a more enhanced graphical user inter-
face for implementing the interaction, using multiobjective clustering to reduce
the number of solutions shown to the decision maker, and finally, applying the
method to computationally expensive real-world problems.
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