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Abstract

Generalized Linear Latent Variable Models (GLLVMs) are a powerful class of models

for understanding the relationships among multiple, correlated responses. Estimation how-

ever presents a major challenge, as the marginal likelihood does not possess a closed form for

non-normal responses. We propose a variational approximation (VA) method for estimating

GLLVMs. For the common cases of binary, ordinal, and overdispersed count data, we derive

fully closed form approximations to the marginal log-likelihood function in each case. Com-

pared to other methods such as the expectation-maximization algorithm, estimation using VA

is fast and straightforward to implement. Predictions of the latent variables and associated

uncertainty estimates are also obtained as part of the estimation process. Simulations show

that VA estimation performs similar to or better than some currently available methods, both at

∗Francis Hui, Mathematical Sciences Institute, The Australian National University, Canberra, ACT, 0200, Aus-
tralia. email: fhui28@gmail.com
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predicting the latent variables and estimating their corresponding coefficients. They also show

that VA estimation offers dramatic reductions in computation time particularly if the number of

correlated responses is large relative to the number of observational units. We apply the varia-

tional approach to two datasets, estimating GLLVMs to understanding the patterns of variation

in youth gratitude and for constructing ordination plots in bird abundance data.R code for

performing VA estimation of GLLVMs is available online.

Keywords: Factor analysis, Item response theory, Latent Trait, Multivariate analysis, Or-

dination, Variational approximation.

1 Introduction

In many areas of applied science, data on multiple, correlated responses are often collected, with

one of the primary aims being to understand the latent variables driving these correlations. For

instance, in psychometrics, subjects are given a series of questions that all relate to some latent

trait/s such as gratitude. Another example is in ecology, where the abundances of many, interacting

species are collected at each site, and ordination is commonly applied to visualize patterns between

sites on a latent species composition space (Hui et al., 2015; Warton et al., 2015). Generalized

linear latent variable models (GLLVMs, Moustaki and Knott, 2000) offer a general framework

for analyzing multiple, correlated responses. This is done by extending the basic generalized

linear model to incorporate one or more latent variables. Specific cases of GLLVMs include factor

analysis where all the responses are normally distributed, and item response theory models where

the responses are binary or ordinal.

Estimating GLLVMs presents a major challenge since the marginal likelihood function, which

involves integrating over the latent variables, does not posses a closed form when the responses

are non-normal. In this paper, we focus on maximum likelihood estimation of GLLVMs, for

which several methods have been proposed. These include Laplace’s approximation (Huber et al.,
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2004; Bianconcini and Cagnone, 2012), numerical integration methods such as adaptive quadrature

(Cagnone and Monari, 2013), and the expectation-maximization (EM) algorithm or some variant

of it (Sammel et al., 1997; Cappé and Moulines, 2009); see Skrondal and Rabe-Hesketh (2004) for

a thorough review of estimation methods for GLLVMs. Many of these methods however remain

computationally burdensome to use, especially the case when the number of correlated responses

is large and more than one latent variable is considered.

In this article, we propose a variational approximation (VA) approach for estimating GLLVMs.

A comprehensive summary of the VA approach can be found in Ormerod and Wand (2010), but

briefly, VA belongs to a rich class of approximations for converting a difficult optimization problem

to a simpler one, whose roots begin in quantum mechanics (Sakurai, 1985) and were subsequently

taken up in computer science to fit graphical models (Jordan et al., 1999). With regards to statis-

tical estimation, one attractive way of thinking about variational approximations, as discussed in

Section 3, is as a means of obtaining a more tractable (potentially closed form) yet optimal ap-

proximation to an intractable likelihood (optimal in the sense of minimizing the Kullback-Leibler

divergence). Over the past decade, variational methods have become increasingly popular for ap-

proximating posterior distributions in Bayesian modeling (e.g. Bishop et al., 2006). By contrast,

their use in maximum likelihood estimation for dealing with intractable likelihoods has received

little attention. Ormerod and Wand (2012) proposed a Gaussian VA approach to maximum likeli-

hood estimation of generalized linear mixed models, while Hall et al. (2011) demonstrated attrac-

tive asymptotic properties of using a Gaussian VA method for Poisson mixed models. Variational

EM algorithms have also been proposed specifically for random effects item response theory mod-

els (Rijmen and Jeon, 2013) and factor analysis (Khan et al., 2010), but none so far have considered

the broader GLLVM framework.

Motivated by examples in psychometrics and ecology we proposed a VA approach to estimating

GLLVMs, with a focus on common cases of binary, ordinal, and overdispersed count data. In each

case, we derive optimal forms for the variational distributions and a closed form for the VA log-

3
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

Jy
va

sk
yl

an
 Y

lio
pi

st
o]

 a
t 0

0:
57

 3
1 

M
ar

ch
 2

01
6 



ACCEPTED MANUSCRIPT

likelihood. Estimation of GLLVMs is then straightforward, involving iterative updates of the model

and variational parameters which can be performed using standard optimization routines such as

iterative reweighted least squares. Predictions of the latent variables, their standard errors, as well

as uncertainty estimates are also obtained as part of the estimation process. Simulations show

that the VA approach performs similar to or better than some of the currently available methods,

both in predicting the latent variables and estimating the parameters of the model, with potentially

substantial reductions in computation time. We apply the proposed VA method to datasets in

psychometrics and ecology, demonstrating in both examples how GLLVMs offer a model-based

framework to understanding the major patterns of variation behind the correlated data on a latent

space.

2 Generalized Linear Latent Variable Models

Let y = (y1 . . .yn)T denote ann×m response matrix, where rowsi = 1, . . . , n are the observational

units, and columnsj = 1, . . . ,mare correlated responses. A vector ofp covariates,xi, may also be

recorded for each observation. For a GLLVM, conditional on a vector ofd� m underlying latent

variables,ui and parameter vectorΨ (defined shortly), the responsesyi j are assumed to come

from the exponential family of distributions,f (yi j |ui ,Ψ) = exp
[
{yi jθi j − b(θi j )}/φ j + c(yi j , φ j)

]
,

whereb(∙) and c(∙) are known functions,θi j are canonical parameters, andφ j is the dispersion

parameter. For simplicity, we assume all responses come from the same distribution, although the

developments below can be extended to handle mixed response types through column dependent

functionsbj(∙) andcj(∙). The mean response, denoted asμi j , is regressed againstui, along with the

p covariates if appropriate via,

g(μi j ) = ηi j = τi + β0 j + xT
i β j + uT

i λ j , (1)
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whereg(∙) is a known link function,b′(θi j ) = μi j , β0 j is a column-specific intercept, andλ j and

β j are coefficients related to the latent variables and covariates respectively. The above model

allows for the case where all responses have the same regression coefficients,β1 = . . . = βm = β,

although we keep the developments more general. Also, a row effect,τi, may be included in (1),

e.g., to standardize for site total abundance with multivariate abundance data, ensuring that the

ordination is in terms of species composition. Letλ = (λ1 . . .λd)T andβ = (β1 . . .βp)T denote

them× d andm× p matrices of regression coefficients corresponding to the latent variables and

covariates respectively. Finally, letΨ = {τ1, . . . , τn, β01, . . . , β0m, φ1, . . . , φm, vec(λ), vec(β)} denote

all the parameters in the model.

We assume that the latent variables are drawn from independent, standard normal distributions,

ui ∼ Nd(0, Id) whereId denotes ad × d identity matrix. The use of a zero mean and unit variance

act as identifiability constraints to avoid location and scale invariance. We also impose constraints

on the latent variable coefficient matrix to avoid rotation invariance. Specifically, we set all the

upper triangular elements ofλ to zero, and constrain its diagonal elements to be positive. Note

that the assumption of independent latent variables is commonly applied (e.g. Huber et al., 2004),

and is made without loss of generality, i.e., the independence assumption does not constrain the

capacity to model the correlations between the columns ofy, and the model as formulated still

covers the set of all rank-d covariance matrices.

3 Variational Approximation for GLLVMs

Conditional on the latent variables, the responses for each observational unit are assumed to be

independent in a GLLVM,f (yi |ui ,Ψ) =
∏m

j=1 f (yi j |ui ,Ψ). The marginal log-likelihood is then
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obtained by integrating overui,

`(Ψ) =
n∑

i=1

log{ f (yi ,Ψ)} =
n∑

i=1

log




∫ m∏

j=1

f (yi j |ui ,Ψ) f (ui) dui


 , (2)

where f (ui) is a multivariate, standard normal distribution, as discussed in Section 2. As reviewed

in Section 1, numerous methods have been proposed for performing the integration in (2), although

many are computationally burdensome to implement. To overcome this, we propose applying a

variational approximation to obtain a closed form approximation to`(Ψ). For a generic marginal

log-likelihood functioǹ (Ψ) = log
∫

f (y|u,Ψ) f (u) du, a commonly applied VA approach utilizes

Jensen’s inequality to construct a lower bound,

log

{∫
f (y|u,Ψ) f (u)q(u|ξ)

q(u|ξ)

}

du ≥
∫

log

{
f (y|u,Ψ) f (u)

q(u|ξ)

}

q(u|ξ)du ≡ `(Ψ, ξ), (3)

for some variational densityq(u|ξ) with parametersξ. The VA log-likelihood`(Ψ, ξ) can thus

be interpreted as the Kullback-Leibler distance betweenq(u|ξ) and the joint likelihoodf (y,u|Ψ).

Evidently, this is minimized by choosing the posterior distributionq(u|ξ) ≡ f (u|y,Ψ), but in order

to obtain a tractable form for̀(Ψ, ξ), we choose a parametric form forq(u|ξ). Specifically, we use

independent normal VA distributions for the latent variables, such that fori = 1, . . . , n, we have

q(ui) ≡ Nd(ai ,Ai) such thatξi = {ai , vech(Ai)}, whereAi is an unstructured covariance matrix

(although in our simulations in Section 5, we consider both unstructured and diagonal forms for

Ai). In Appendix A, we show that, in the family of multivariate normal distributions, the choice of

independent VA distributions is indeed the optimal one.

With independent normal VA distributions forui, we obtain the following result.

Lemma 1. For the GLLVM as defined in (1), the VA log-likelihood is given by

`(Ψ, ξ) =
n∑

i=1

m∑

j=1

{
yi j η̃i j − Eq{b(θi j )}

φ j
+ c(yi j , φ j)

}

+
1
2

n∑

i=1

(
log det(Ai) − tr(Ai) − aT

i ai

)
,

6
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whereη̃i j = τi +β0 j +xT
i β j +aT

i λ j , and all quantities constant with respect to the parameters have

been omitted.

Estimation of the GLLVM is performed by maximizing the VA log-likelihood simultaneously

over the variational parametersξ and model parametersΨ. Note however that there remains an

expectation term,Eq{b(θi j )}, which is not guaranteed to have a closed form. In Ormerod and Wand

(2012), this was dealt with using adaptive Gauss-Hermite quadrature. By contrast, in the next

section, we show thatfully explicit forms for`(Ψ, ξ) can be derived for some common cases of

GLLVMs through a reparameterization of the models. Three responses types are of particular

relevance to this article: 1) Bernoulli responses, 2) overdispersed counts, and 3) ordinal data, and

in each case we obtain a closed form VA log-likelihood.

Finally, we propose that the estimator ofΨ based on maximizing Lemma 1 is estimation con-

sistent (as in Ormerod and Wand, 2012). That is, let (Ψ̂, ξ̂) denote the maximizer of̀(Ψ, ξ). Then

asn→ ∞ andm→ ∞, we haveΨ̂
p
−→ Ψ0 whereΨ0 denotes the true parameter point andΨ̂ is the

VA estimator. A heuristic proof of this is provided in Appendix A. Logically, consistency of the

estimators depends critically on the accuracy of the VA log-likelihood approximation to the true

marginal likelihood (Jordan, 2004). In brief, a central limit theorem based argument shows that the

posterior distributionf (u|y,Ψ) is asymptotically normally distributed asm→ ∞, and therefore

with q(u|ξ) chosen as a normal distribution then the VA log-likelihood is expected to converge to

the true likelihood, i.e., the lower bound in (3) gets sharper asm→ ∞.

3.1 Bernoulli Responses

When the responses are binary, we assume a Bernoulli distribution and use the probit link function.

Equivalently, we introduce an auxiliary variable,zi j , which is normally distributed with meanηi j

and unit variance, and setyi j = 1 if zi j ≥ 0 andyi j = 0 otherwise. We thus havef (yi j |zi j ,ui ,Ψ) =

I(zi j ≥ 0)yi j I(zi j < 0)1−yi j where zi j ∼ N(ηi j ,1), where I(∙) denotes the indicator function. Under
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this parameterization, the marginal log-likelihood requires integrating over bothui andzi j , that is,

`(Ψ) =
∑n

i=1 log
(∫ ∫ ∏m

j=1 f (yi j |zi j ,ui ,Ψ) f (zi j ) f (ui) dzi j dui

)
. However, the key advantage with

introducing the auxiliary variable is that it leads to a closed form for`(Ψ; q). To show this, we

first choose a VA distributionq(zi j ), which we assume to be independent ofq(ui). The following

guides this choice.

Lemma 2. The optimal choice of q(zi j ), in the sense of maximizing the lower bound`(Ψ, ξ), is a

truncated normal distribution with location parameterη̃i j = τi+β0 j+xT
i β j+aT

i λ j , scale parameter

1, and limits(−∞,0) if yi j = 0, and(0,∞) if yi j = 1.

All proofs may be found in Appendix A. Combining the above result with our choice ofq(ui)

as a normal distribution leads to the result below.

Theorem 1. The VA log-likelihood for the Bernoulli GLLVM with probit link is given by the fol-

lowing expression

`(Ψ, ξ) =
n∑

i=1

m∑

j=1

[
yi j log{Φ(η̃i j )} + (1− yi j ) log{1− Φ(η̃i j )}

]
−

1
2

n∑

i=1

m∑

j=1

λT
j Aiλ j

+
1
2

n∑

i=1

(
log det(Ai) − tr(Ai) − aT

i ai

)
,

whereη̃i j = τi + β0 j + xT
i β j + aT

i λ j and all other quantities that are constant with respect to the

parameters have been omitted.

Note the first summation in Theorem 1 is independent ofAi, meaning the estimates ofAi are

the same for all observations. Maximizing`(Ψ, ξ) in Theorem 1 is straightforward, since the VA

log-likelihood involves only separate summands overi and j, and can be performed, for instance,

by iterating the following steps until convergence:

1. For j = 1, . . . ,m, update (β0 j ,β j) by fitting a probit Generalized Linear Model (GLM) with

xi as covariates andτi + aT
i λ j entered as an offset.
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2. For j = 1, . . . ,m, updateλ j by fitting a penalized probit GLM, whereai are treated as

covariates,τi + β0 j + xT
i β j is entered as an offset, and the ridge penalty (1/2)

n∑

i=1
λT

j Aiλ j is

used. The GLM fitting process must also account for constraints onλ j.

3. For i = 1, . . . , n, updateτi andai by fitting a penalized probit GLM, whereλ j are treated

as covariates,β0 j + xT
i β j is entered as an offset, and the ridge penaltyaT

i ai is used. Then a

closed form update can be used forAi, specifically,Ai =

(

Id +
m∑

j=1
λ jλ

T
j

)−1

.

Note that rather than updating the column or row specific parameters separately, we could

instead apply optimization routines to update all parameters at once, i.e. update all

{β01, . . . , β0m, vec(λ), vec(β)}, then update all (τ1, . . . , τn,a1, . . . ,an), and thenAi.

Finally, we point out that had we used the logit link instead, then by Lemma 1 the resulting VA

log-likelihood would involve a termEq[log{1+ exp(ηi j )}], and therefore would involve numerical

integration to calculate and optimize. By contrast, using a probit link and thus Lemma 2 offers a

fully closed form VA log-likelihood.

3.2 Overdispersed Counts

For count data, a standard option is to assume a Poisson distribution with log link function. In such

a case, the VA log-likelihood for a Poisson GLLVM is given by the following

`(Ψ, ξ) =
n∑

i=1

m∑

j=1

{

yi j η̃i j − exp

(

η̃i j +
1
2
λT

j Aiλ j

)}

+
1
2

n∑

i=1

(
log det(Ai) − tr(Ai) − aT

i ai

)
,

whereη̃i j = τi + β0 j + xT
i β j + aT

i λ j, and all quantities constant with respect to the parameters

are omitted. The proof of the above is similar to the derivation of the VA log-likelihood for the

Poisson mixed model in Ormerod and Wand (2010), and is omitted here. In many settings however,

count data are overdispersed. A prime example of this is multivariate abundance data in ecology,

where many species tend to be found in large numbers or not at all. To handle this, one could
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assume a negative binomial distribution with quadratic mean-variance relationship, Var(yi j ) = μi j +

μ2
i j/φ j, whereφ j is the response-specific overdispersion parameter. From Lemma 1 however, it can

be shown this results in the expectation termEq[log{1 + φ j exp(ηi j )}], which requires numerical

methods to deal with. To overcome this, we propose using a Poisson-Gamma random effects

model instead,f (yi j |νi j ,ui ,Ψ) = exp(−νi j )(νi j )yi j /yi j !, where νi j ∼ Gamma(φ j , φ j/μi j ), and

log(μi j ) = ηi j . The parameterization produces the same quadratic mean-variance relationship as the

negative binomial distribution. However, it can be shown that the optimal VA distribution forνi j is

a Gamma distribution with shape (yi j+φ j) and rate{1+φ j exp(−τi−β0 j−xT
i β j−aT

i λ j+λT
j Aiλ j/2)}.

Combining this result with choice ofq(ui) leads to the following fully closed form.

Theorem 2. The VA log-likelihood for Poisson-Gamma GLLVM with log link is given by the fol-

lowing expression

`(Ψ, ξ) =
n∑

i=1

m∑

j=1

(

yi j

(

η̃i j −
1
2
λT

j Aiλ j

)

− (yi j + φ j) log

{

φ j + exp

(

η̃i j −
1
2
λT

j Aiλ j

)}

+ logΓ(yi j + φ j) −
φ j

2
λT

j Aiλ j

)

+ n{φ j log(φ j) − logΓ(φ j)}

+
1
2

n∑

i=1

(
log det(Ai) − tr(Ai) − aT

i ai

)
,

whereη̃i j = τi + β0 j + xT
i β j + aT

i λ j , Γ(∙) is the Gamma function, and all other quantities that are

constant with respect to the parameters have been omitted.

To update the VA log-likelihood above, we can iterate the following steps until convergence:

1. For j = 1, . . . ,m, update (β0 j ,β j , φ j) by fitting a negative binomial GLM, withxi as covari-

ates andτi + aT
i λ j − (1/2)λT

j Aiλ j entered as an offset.

2. For j = 1, . . . ,m, updateλ j using a optimization routine such as the Quasi-Newton method.

3. Fori = 1, . . . , n, updateτi andai by fitting a penalized negative binomial GLM, whereλ j are

treated as covariates,β0 j +xT
i β j − (1/2)λT

j Aiλ j is entered as an offset, and the ridge penalty
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aT
i ai is used. Then a fixed–point algorithm can be used to updateAi, specifically, using the

formulaAi =

(

Id +
m∑

j=1
λ jλ

T
j Wi j

)−1

, whereWi j = φ j(yi j + φ j)/(φ j + exp
(
η̃i j − (1/2)λT

j Aiλ j

)
.

3.3 Ordinal Data

Ordinal responses can be handled by extending the Bernoulli GLLVM in Section 3.1 to use cumu-

lative probit regression. Supposeyi j can take one ofKj possible levels,{1,2, . . . ,Kj}. Then for each

i = 1, . . . , n; j = 1, . . . , p, we define the vector (y∗i j1, . . . , y
∗
i jK j

) wherey∗i jk = 1 if yi j = k and zero oth-

erwise. Next, we introduce an auxiliary variablezi j that is normally distributed with meanηi j and

unit variance, and define a vector of cutoffs ζ j0 < ζ j1 < . . . < ζ jK j for each response column, with

ζ j0 = −∞ andζ jK j = +∞, such thaty∗i jk = 1 (equivalently,yi j = l) if ζ j(k−1) < zi j < ζ jk. Under this

parameterization, the conditional likelihood of the responses follows a multinomial distribution,

f (yi j |zi j ,ui ,Ψ) =
Kj∏

k=1
I(ζ j(k−1) < zi j < ζ jk)

y∗i jk where zi j ∼ N(ηi j ,1).

With both the cutoffs and the interceptβ0 j included, the model is unidentifiable due to location

invariance. We thus setζ j1 = 0, and freely estimate the remaining cutoffs ζ j2 < . . . < ζ j(Kj−1).

Settingζ j1 = 0 and keeping the intercept in the model ensures that in the case ofKj = 2, the

parameterizations of the ordinal and Bernoulli GLLVMs are equivalent. The following guides the

choice ofq(zi j ).

Lemma 3. The optimal choice of q(zi j ), in the sense of maximizing the lower bound`(Ψ, ξ), is

a truncated normal distribution with meañηi j = τi + β0 j + xT
i β j + aT

i λ j , variance 1, and limits

(ζ j(k−1), ζ jk) if y∗i jk = 1.

The above is a straightforward extension of Lemma 2. We therefore have the following result.

Theorem 3. The VA log-likelihood for ordinal GLLVM using cumulative probit regression is given
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by the following expression

`(Ψ, ξ) =
n∑

i=1

m∑

j=1

Kj∑

k=1

y∗i jl
[
log

{
Φ(ζ jk − η̃i j ) − Φ(ζ j(k−1) − η̃i j )

}]
−

1
2

n∑

i=1

m∑

j=1

λT
j Aiλ j

+
1
2

n∑

i=1

(
log det(Ai) − tr(Ai) − aT

i ai

)
,

whereη̃i j = τi + β0 j +xT
i β j +aT

i λ j , ζ j0 = −∞ andζ jK j = +∞, ζ j1 = 0, and all other quantities that

are constant with respect to the parameters have been omitted.

Maximizing the VA log-likelihood in Theorem 3 follows the same approach as the iterative

steps provided for the binary response case at the end of Section 3.1, with the only difference

between that instead of probit GLMs, we fit cumulative probit regression models in steps one

and two instead. Note that cumulative probit regression models will also provide estimates of the

cutoffs ζ jk, or alternatively, a Quasi-Newton optimization routine can be used to update the cutoffs

as an additional step.

4 Inference and Prediction

After fitting the GLLVM, we are often interested in interpretation and analysis of the model param-

etersΨ, as well prediction and ordination of the latent variablesui. For the former, we can treat

`(Ψ, ξ) as a log-likelihood function, with (̂Ψ, ξ̂) as the maximum likelihood estimates (MLEs), and

base inference around this. For instance, approximate asymptotic standard errors may be obtained

based on the observed information matrix evaluated at the MLEs, given by

I(Ψ̂, ξ̂) = −

{
∂2`(Ψ, ξ)

∂(Ψ, ξ)∂(Ψ, ξ)T

}

Ψ̂, ˆξ

.

NoteI(Ψ̂, ξ̂) consists of three blocks corresponding to the negative Hessian matrices with respect

to Ψ̂, ξ̂, as well as their cross derivatives. The Hessian matrix with respect toξ̂ exhibits a block di-
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agonal structure due to the independence ofui with respect to the VA distribution. If row effectsτi

are not included, then the Hessian matrix with respect toΨ̂ also exhibits a block diagonal structure.

In summary, the three blocks can be calculated inO(max(m,n)) operations, after which blockwise

inversion can be used to obtain the covariance matrix. Confidence intervals and approximate Wald

tests for the model parametersΨ̂ can then be implemented.

For ordination, the two most common methods of constructing predictions for the latent vari-

ables are empirical Bayes and maximum a-posteriori, which correspond respectively to the mean

and mode of the posterior distributionf (u|y,Ψ). For estimation methods such as numerical inte-

gration, constructing these predictions and estimates of their uncertainty require additional com-

putation after the GLLVM is fitted. In the Gaussian VA framework however, maximizing with re-

spect toξ is equivalent to minimizing the Kullback-Leibler distance betweenq(u|ξ) and f (u|y,Ψ).

Therefore with the normality assumption onq(u|ξ), it follows that for the clusteri, the vector ˆai is

both the variational versions of the empirical Bayes and maximum a-posteriori predictors of the la-

tent variables and̂Ai provides an estimate of the posterior covariance matrix. Importantly, both ˆai

andÂi are obtained directly from the estimation algorithm, as was seen in Section 3. In summary,

the Gaussian VA approach quite naturally lends itself to the problem of predicting latent variables

and constructing ordination plots, with ˆai can be used as the point predictions andÂi can be used

to construct prediction regions around these points.

5 Simulation Study

We performed a simulation study to compare our proposed VA approach to several currently avail-

able methods for fitting GLLVMs. Two settings were considered: the first simulated binary re-

sponse datasets resembling those in item response theory, while the second setting simulated

datasets resembling overdispersed species counts in ecology. In both settings, we assessed per-

formance based on computation time, and the difference between the true and estimated param-
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eter values/latent variables as calculated using the symmetric Procrustes error (see Chapter 8.4,

Bartholomew et al., 2011). The Procrustes error is commonly used as a method of comparing

different methods of ordination, and can be thought of as the mean squared error of two matrices

after accounting for differences in rotation and scale. It is an appropriate method of evaluating per-

formance in this simulation, given we are interested in an overall measure of how well the latent

variables and parameters from the fitted model matched those of the true model, while accounting

for potential differences in scaling and rotation that have no bearing on a model’s performance

given their arbitrariness. We calculated the Procrustes error via theprocrustes function in theR

packagevegan (Oksanen et al., 2015).

5.1 Setting 1

Binary datasets were simulated from GLLVMs withd = 2 latent variables and assuming the probit

link, considering different combinations ofn = {50,100,200} andm = {10,40}. Each true model

was constructed by first simulating an×2 matrix of true latent variables, such that 50% of the values

were generated from a bivariate normal distribution with mean (−2,2), 30% from a bivariate normal

distribution with mean (0,−1), and the remaining 20% from a bivariate normal distribution with

mean (1,1). In all three normal distributions, the covariance matrix was set to the identity matrix.

This leads to a three-cluster pattern, although overall the groups are not easily distinguished (see

Figure 1 in Appendix B). Next, am× 2 matrix of latent variable coefficients was generated, with

the first column consisting of an evenly spaced ascending sequence from−2 to 2, and the second

column consisting of an evenly spaced descending sequence from 1 to−1. Finally, an intercept

for each item was simulated from a uniform distributionU[−1,1]. For each true GLLVM, we

simulated 1000 datasets.

Six methods for fitting item response models were compared: 1) the VA method in Theorem 1

and assuming a diagonal form forAi, 2) the VA method in Theorem 1 and assuming an unstruc-
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tured form forAi, 3) the Laplace approximation (Huber et al., 2004), where we wrote our own

code to compute the estimates (see supplementary material), 4) theltm function in theR package

ltm (Rizopoulos, 2006), which uses a hybrid algorithm combining EM and quasi-Newton opti-

mization, with the integration performed using Gauss-Hermite quadrature and the default of 15

quadrature points, 5) the EM algorithm of Bock and Aitkin (1981) with the integration performed

using fixed point quadrature with 21 quadrature points, and 6) The Metropolis-Hastings Robbins-

Monro algorithm (MHRM, Cai, 2010). Both methods 5 and 6 are available in themirt function in

theR packagemirt (Chalmers, 2012), with their respective default settings used.

Overall, the two VA methods and the Laplace approximation performed best in estimation and

prediction (Table 1A). The most telling difference was atm = 40 andn = 50,100, where the

large number of items relative to the number of observations caused the hybrid, standard EM, and

MHRM algorithms to suffer from instability in estimating the coefficientsλ. By contrast, assuming

a normal posterior distribution for theui ’s as VA does led to significantly lower mean Procrustes

error for theλ’s in these settings. The VA method assuming an unstructured form forAi per-

formed slightly better than the VA method assuming a diagonal form, although we emphasize that

the differences in mean Procrustes error between these two versions were minor. Finally, while its

performance was similar to the two VA approaches, the Laplace approximation tended to suffer

from convergence problems, with updates between successive iterations not always producing an

increase in the log-likelihood and there being a strong sensitivity to starting points. Similar con-

vergence problems were also encountered in Bianconcini and Cagnone (2012), who compared the

Laplace approximation to several extensions they proposed for estimating GLLVMs, and may be a

result of the joint likelihood, i.e. the integrand in equation (2), being far from normally distributed

for when the responses are binary.

With the usual caveats regarding implementation in mind, our implementation of the VA method

assuming a diagonal matrix forAi was slightly faster than the Laplace approximation, with both

methods not surprisingly being substantially quicker than the VA method assuming an unstructured
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Ai (Table 1B). The standard EM algorithm frommirt was the fastest method atm= 10, but by far

the slowest method atm = 40. The hybrid EM algorithm also performed strongly in computation

time, although it was the worst performer in terms of estimatingλ (Table 1A). Finally, both VA

methods and the Laplace approximation scaled worse than the other methods with increasingn, a

result which is not surprising given that these methods introduce an additional set of parameters

for each new observation: VA explicitly introduces (ai ,Ai) for eachi = 1, . . . , n, while for the

Laplace approximation the posterior mode is estimated for each observation.

In addition to the simulation above, we also assessed VA estimation for a larger number of la-

tent variables. Specifically we simulated binary datasets from GLLVMs withd = 5 latent variables,

with a three-cluster pattern in the latent variables and coefficients generated in a similar manner to

the design above. Details are presented in Appendix B, and again demonstrate the strong perfor-

mance of the two VA methods in terms of estimation of coefficients, prediction of latent variables,

and computation time.

5.2 Setting 2

We simulated overdispersed count data by modifying one of the models fitted to the birds species

dataset (see Appendix D for the details of the example) and treating it as a true model. Specifically,

we considered a GLLVM which assumed a Poisson-Gamma model,d = 2 latent variables, no

covariates and included site effects. We then modified it to include two covariates, by generating

a n × 2 matrix of covariates with elements simulated from the standard normal distribution, and

a correspondingm× 2 matrix of regression coefficients with elements simulated from a uniform

distributionU[−2,2]. This modified GLLVM was then treated as the true model. Datasets were

simulated with the same number of sites as in the original dataset (n = 37) and with a varying the

numbers of species,m = {30,50,100}. Since the original dataset consisted of 96 species, then for

the cases ofm= 30 and 50 we took a random sample from the 96 set of species coefficients, while
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for the case ofm = 100 we randomly sampled four additional species coefficients for inclusion.

Note this simulation setting focused on datasets withm/n close to or exceeding 1 – such wide

response matrices are a common attribute of multivariate abundance data in ecology. For each true

GLLVM, we simulated 200 datasets.

We compared the following four methods of estimation: 1) the VA method in Theorem 2 and

assuming a diagonal form forAi, 2) the VA method in Theorem 2 and assuming an unstructured

form for Ai, 3) the Laplace approximation (Huber et al., 2004) assuming negative binomial counts,

and 2) the Monte Carlo EM (MCEM, Wei and Tanner, 1990) algorithm used in Hui et al. (2015)

assuming negative binomial counts, where 2000 Monte Carlo samples were used to perform the

integration involved in the E-step. Due to its long computation time (see results Table 2), we limited

the maximum number of iterations for the MCEM algorithm to 100 iterations. We also considered

the three estimation methods assuming Poisson counts, but not surprisingly their performances

were considerably worse than assuming overdispersed data, and so their results have been omitted.

More generally, we are unaware of any non-proprietary software available for fitting GLLVMs to

overdispersed count data.

Overall, the VA method assuming a diagonal form forAi performed best both in terms of mean

Procrustes errors and computation time, followed by the VA method assuming an unstructured

form for Ai and the Laplace approximation (Table 2). It should be noted though that, similar to

Setting 1, the differences in mean Procrustes error between the two versions of VA were minor.

The MCEM algorithm performed worst, having the highest mean Procrustes errors for both the

latent variablesu and for the covariate coefficientsβ, while also taking significantly longer to fit

the model than the approximation methods. This dramatic difference in computation time could be

attributed to the fact that the M-step in MCEM estimation (effectively) involves fitting models to a

dataset ofnmBobservations, compared to both the VA methods and the Laplace approximation that

involve fitting models to a dataset withnmobservations. Finally, we note that unlike setting 1, the

Laplace approximation did not suffer from any convergence problems here with count response
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datasets. This was most likely due to the joint likelihood being relatively normally distributed

compared to the more discrete, binary response setting.

6 Application: Gratitude in Youths

We illustrate the application of the proposed VA method a cross-sectional dataset on several grat-

itude scales for youths. The dataset is available from theR packagepsychotools (Zeileis et al.,

2014), and consists of ratings (ordinal responses) onm = 25 gratitude scales fromn = 1327

youths. We also note that the scales have differing numbers of levels, with maximum number of

levels ranging from five to nine. The age of each youth (to the nearest integer year) was also avail-

able. Details on the psychometric background of the dataset may be found in Froh et al. (2011).

We fitted a GLLVM assuming ordinal responses,d = 2 latent variables, and no covariates. We

chose to used = 2 latent variables in both examples for the purposes of ordination, to visualize

the main patterns between youths of various ages. For the VA method, estimation was performed

assuming an unstructured form for the covariance matrixAi; we also considered a diagonal form

for Ai, and similar results were obtained.

A scatterplot of the predicted latent gratitude scores for each youth (ai) showed a separation

between children (10–13 years old) and adolescents (14–19 years old), as seen in Figure 1A. The

elements of the estimated coefficient matrixλ were all greater than zero except for the second

coefficient in five of the gratitude scales, which were significantly less than zero (LOSD 2 to

6; see estimates and standard errors in Table 2 of Appendix C). This was not surprising, given

these five scales were reverse scored, i.e., alower score reflected a higher sense of gratitude. More

importantly though, it indicated that LOSD 2 to 6 were the most effective at differentiating between

the levels of gratitude in children versus adolescents.

Given the above results, we therefore constructed a “residual ordination” plot by fitting a

GLLVM with the setup as above, except a categorical predictor was now included to indicate
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whether the youth was a child or adolescent (10–13 versus 14–19 years old). From the resulting

fit, the coefficientsβ for this covariate showed adolescents scored significantly higher for LOSD

2 to 6 as well as significantly lower for three other gratitude scales (GAC 1 to 3) compared to

children (see Table 3 in Appendix C). Moreover, the residual ordination plot no longer presented

any substantial pattern for age (Figure 1B), although the lack of any other covariates available in

the dataset meant that we could verify whether the residual pattern was perhaps driven by other

covariates.

Finally, to assess the goodness of fit for thed = 2 model, we performed Monte-Carlo cross-

validation, where for each of iteration we randomly sampled 10% of the rows (youths) out to act

as a test observations, with the remaining 90% constituting the training dataset. GLLVMs (with no

covariates included) ranging fromd = 1 to 5 were then fitted to each training dataset, using the VA

approach, and then the predictive marginal log-likelihood of the test observations was calculated.

This procedure was repeated 50 times. Results definitively showed thatd = 1 latent variables

was insufficient, while the predictive performance improved marginally as we transitioned from

d = 2 to 5 (see Figure 2 in Appendix C). This suggestedd = 2 latent variables was successful in

capturing most of the correlation between the responses.

Aside from the above example, we also considered a second dataset comprising counts of bird

species collected at sites across Indonesia. Results for this application are found in Appendix D.

In particular, the design of simulation setting 2 in Section 5.2 was based off this example.

7 Discussion

In this article, we have proposed a variational approximation method for estimating GLLVMs,

deriving fully closed form approximations to the log-likelihood for the common cases of binary,

ordinal, and overdispersed count data. Estimation is straightforward to implement compared to

other methods such as numerical quadrature. The VA approach also returns predictions of the
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latent variables and uncertainty estimates as part of the estimation procedure. Simulations showed

that the VA approach performs similar to or better than some of popular methods used for fitting

GLLVMs, with potentially significant reductions in computation time. TheR code for performing

VA estimation of GLLVMs is available in the supplementary material of this article, and in future

work we plan to integrate (even faster versions of) these functions into themvabund package (Wang

et al., 2012).

In this simulations, the VA method performed especially well in settings wherem/n is non-

negligible. Such data are common in ecology, and thus the VA approach shows a lot of promise for

fast fitting of community-level models (such of those of Letten et al., 2015; Warton et al., 2015)

that also account for inter-species correlation. Since species tend to respond to the environment in

rather complex ways however, the VA approach considered in this paper would need to be extended

to handle flexible methods of modeling the linear response, e.g. replacingxT
i β j anduT

i λ j in (1)

with smoothing terms.

Many applications of item response theory models assume a discrete instead of continuous

distribution for the latent variables, and extending the VA approach to such cases would prove

useful not only for psychometrics data, but may also have strong potential in collaborative filtering

and latent class models where the datasets are often very high-dimensional (e.g., Hofmann, 2004;

Embretson and Yang, 2013). Finally, we only offered a heuristic argument for the estimation

consistency of the VA estimators for GLLVMs, and substantial research remains to be done to

broaden the results of Ormerod and Wand (2012) and Hall et al. (2011) to show that variational

approximations in general produces estimators that are consistent and asymptotically normal, and

what these rates of convergence are.
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Supplementary Material

Appendices: Appendix A contains proofs for all theorems and lemmas. Appendix B contains

additional simulation results. Appendix C contains additional results for the applications.

Appendix D contains the additional application to the birds species count dataset.

R code: TheR code for estimating GLLVMs using the VA method and the Laplace approximation,

performing simulation Setting 1 and Example 2, and a “readme” file describing each of the

files, are contained in a zip file (ms-VAGLLVM.zip).
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Table 1: Results for (A) mean Procrustes error (latent variablesu/latent variable coefficientsλ),
and (B) computation time in seconds for simulation Setting 1. Methods compared included the two
VA methods assuming either diagonal or unstructured forms forAi, the Laplace approximation,
and methods in theltm andmirt packages. Computation time includes prediction for the latent
variables and calculation of standard errors for the modelparameters.

m n VA-diag VA-unstruct Laplace ltm-hybrid mirt-EM mirt-MHRM

A: Mean Procrustes error
50 0.320/0.136 0.320/0.136 0.305/0.143 0.323/0.394 0.317/0.375 0.314/0.278

10 100 0.317/0.090 0.315/0.089 0.373/0.080 0.328/0.299 0.310/0.184 0.306/0.196
200 0.278/0.074 0.277/0.076 0.346/0.075 0.311/0.172 0.288/0.093 0.289/0.114

50 0.145/0.131 0.140/0.116 0.153/0.119 0.213/0.472 0.136/0.400 0.144/0.242
40 100 0.168/0.077 0.161/0.069 0.170/0.072 0.156/0.313 0.160/0.215 0.161/0.197

200 0.160/0.053 0.150/0.046 0.155/0.053 0.152/0.186 0.152/0.102 0.153/0.088

B: Mean computation time
50 6.56 9.88 8.57 6.69 6.59 19.52

10 100 11.65 19.15 13.27 8.66 7.90 25.08
200 21.80 33.61 26.71 15.30 9.02 32.07

50 17.57 41.19 27.84 10.10 82.04 42.98
40 100 27.65 63.30 35.84 17.90 126.79 69.01

200 61.46 126.90 72.94 29.20 188.42 83.48
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Table 2: Results for (A) mean Procrustes error (latent variablesu/latent variable coefficients
λ/covariate coefficientsβ) and (B) computation time in seconds for simulation Setting 2. Methods
compared included the two VA methods assuming either diagonal or unstructured forms forAi,
the Laplace approximation, and the MCEM algorithm. Computation time includes prediction for
the latent variables and calculation of standard errors for the modelparameters.

m VA-diag VA-unstruct Laplace MCEM

A: Mean Procrustes error
30 0.551/0.802/0.066 0.562/0.797/0.066 0.580/0.807/0.071 0.587/0.807/0.080
50 0.394/0.815/0.070 0.408/0.820/0.070 0.403/0.823/0.073 0.450/0.828/0.074
100 0.274/0.819/0.068 0.295/0.819/0.068 0.291/0.818/0.071 0.335/0.828/0.071

B: Mean computation time (secs.)
30 26.53 74.35 75.56 8413.53
50 28.62 63.19 145.07 13905.12
100 53.10 102.18 362.19 26605.92
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Figure 1: Results for the gratitude in youths dataset: (A), unconstrained ordination using a GLLVM
with d = 2 LVs and no covariates, (B) residual ordination using the same model but with an binary
predictor included to differentiate between child versus adolescent. The coordinates for each youth
are represented by different symbols, as based on their age classification to child or adolescents.
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B: Residual ordination of youths
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