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Abstract

Generalized Linear Latent Variable Models (GLLVMs) are a powerful class of models
for understanding the relationships among multiple, correlated responses. Estimation how-
ever presents a major challenge, as the marginal likelihood does not possess a closed form for
non-normal responses. We propose a variational approximation (VA) method for estimating
GLLVMs. For the common cases of binary, ordinal, and overdispersed count data, we derive
fully closed form approximations to the marginal log-likelihood function in each case. Com-
pared to other methods such as the expectation-maximization algorithm, estimation using VA
is fast and straightforward to implement. Predictions of the latent variables and associated
uncertainty estimates are also obtained as part of the estimation process. Simulations show

that VA estimation performs similar to or better than some currently available methods, both at
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predicting the latent variables and estimating their correspondintjceats. They also show
that VA estimation ffers dramatic reductions in computation time particularly if the number of
correlated responses is large relative to the number of observational units. We apply the varia-
tional approach to two datasets, estimating GLLVMs to understanding the patterns of variation
in youth gratitude and for constructing ordination plots in bird abundance @&atade for
performing VA estimation of GLLVMs is available online.

Keywords: Factor analysis, Item response theory, Latent Trait, Multivariate analysis, Or-

dination, Variational approximation.

1 Introduction

In many areas of applied science, data on multiple, correlated responses are often collected, with
one of the primary aims being to understand the latent variables driving these correlations. For
instance, in psychometrics, subjects are given a series of questions that all relate to some latent
trait/s such as gratitude. Another example is in ecology, where the abundances of many, interacting
species are collected at each site, and ordination is commonly applied to visualize patterns between
sites on a latent species composition space (Hui et al., 2015; Warton et al., 2015). Generalized
linear latent variable models (GLLVMs, Moustaki and Knott, 200@e0a general framework
for analyzing multiple, correlated responses. This is done by extending the basic generalized
linear model to incorporate one or more latent variables. Specific cases of GLLVMs include factor
analysis where all the responses are normally distributed, and item response theory models where
the responses are binary or ordinal.

Estimating GLLVMs presents a major challenge since the marginal likelihood function, which
involves integrating over the latent variables, does not posses a closed form when the responses
are non-normal. In this paper, we focus on maximum likelihood estimation of GLLVMSs, for

which several methods have been proposed. These include Laplace’s approximation (Huber et al.,
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2004; Bianconcini and Cagnone, 2012), numerical integration methods such as adaptive quadrature
(Cagnone and Monari, 2013), and the expectation-maximization (EM) algorithm or some variant
of it (Sammel et al., 1997; Capmnd Moulines, 2009); see Skrondal and Rabe-Hesketh (2004) for
a thorough review of estimation methods for GLLVMs. Many of these methods however remain
computationally burdensome to use, especially the case when the number of correlated responses
is large and more than one latent variable is considered.

In this article, we propose a variational approximation (VA) approach for estimating GLLVMs.
A comprehensive summary of the VA approach can be found in Ormerod and Wand (2010), but
briefly, VA belongs to a rich class of approximations for convertingiadilt optimization problem
to a simpler one, whose roots begin in quantum mechanics (Sakurai, 1985) and were subsequently
taken up in computer science to fit graphical models (Jordan et al., 1999). With regards to statis-
tical estimation, one attractive way of thinking about variational approximations, as discussed in
Section 3, is as a means of obtaining a more tractable (potentially closed form) yet optimal ap-
proximation to an intractable likelihood (optimal in the sense of minimizing the Kullback-Leibler
divergence). Over the past decade, variational methods have become increasingly popular for ap-
proximating posterior distributions in Bayesian modeling (e.g. Bishop et al., 2006). By contrast,
their use in maximum likelihood estimation for dealing with intractable likelihoods has received
little attention. Ormerod and Wand (2012) proposed a Gaussian VA approach to maximum likeli-
hood estimation of generalized linear mixed models, while Hall et al. (2011) demonstrated attrac-
tive asymptotic properties of using a Gaussian VA method for Poisson mixed models. Variational
EM algorithms have also been proposed specifically for randéeats item response theory mod-
els (Rijmen and Jeon, 2013) and factor analysis (Khan et al., 2010), but none so far have considered
the broader GLLVM framework.

Motivated by examples in psychometrics and ecology we proposed a VA approach to estimating
GLLVMs, with a focus on common cases of binary, ordinal, and overdispersed count data. In each

case, we derive optimal forms for the variational distributions and a closed form for the VA log-

ACCEPTED MANUSCRIPT
3



Downloaded by [Jyvaskylan Yliopisto] at 00:57 31 March 2016

ACCEPTED MANUSCRIPT

likelihood. Estimation of GLLVMs is then straightforward, involving iterative updates of the model
and variational parameters which can be performed using standard optimization routines such as
iterative reweighted least squares. Predictions of the latent variables, their standard errors, as well
as uncertainty estimates are also obtained as part of the estimation process. Simulations show
that the VA approach performs similar to or better than some of the currently available methods,
both in predicting the latent variables and estimating the parameters of the model, with potentially
substantial reductions in computation time. We apply the proposed VA method to datasets in
psychometrics and ecology, demonstrating in both examples how GLL\ffds @ model-based
framework to understanding the major patterns of variation behind the correlated data on a latent

space.

2 Generalized Linear Latent Variable Models

Lety = (y1...yn)" denote amx mresponse matrix, where rows: 1, ..., nare the observational

units, and columng = 1,..., mare correlated responses. A vectopafovariatesg;, may also be
recorded for each observation. For a GLLVM, conditional on a vectdr<&f m underlying latent
variables,u; and parameter vectob (defined shortly), the responsgs are assumed to come

from the exponential family of distributiond,(y;j|ui, ¥) = exp[{yijeij —b(@)}/ o) + c(yi,-,qﬁ,-)],
whereb(-) andc(-) are known functionsg; are canonical parameters, apdis the dispersion
parameter. For simplicity, we assume all responses come from the same distribution, although the
developments below can be extended to handle mixed response types through column dependent
functionsb;(-) andc;(-). The mean response, denotedigsis regressed againat, along with the

p covariates if appropriate via,

g(ﬂ”):n” :T|+ﬁoj+w;r/8]+u|TAJ, (1)
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whereg(-) is a known link function’(6;;) = wij, Boj is a column-specific intercept, ardd and
Bj are codicients related to the latent variables and covariates respectively. The above model
allows for the case where all responses have the same regressibcieos,3; = ... = Bn = 3,
although we keep the developments more general. Also, a fi@eter;, may be included in (1),
e.g., to standardize for site total abundance with multivariate abundance data, ensuring that the
ordination is in terms of species composition. Det (A;...Aq)" andB = (B:1...0p)" denote
them x d andm x p matrices of regression cfiients corresponding to the latent variables and
covariates respectively. Finally, & = {r4,..., 7, Bos - - - »Boms P1, - - . » dm, VECA), vec(3)} denote
all the parameters in the model.

We assume that the latent variables are drawn from independent, standard normal distributions,
u; ~ Ng(0, I5) wherely denotes a x d identity matrix. The use of a zero mean and unit variance
act as identifiability constraints to avoid location and scale invariance. We also impose constraints
on the latent variable cdigcient matrix to avoid rotation invariance. Specifically, we set all the
upper triangular elements of to zero, and constrain its diagonal elements to be positive. Note
that the assumption of independent latent variables is commonly applied (e.g. Huber et al., 2004),
and is made without loss of generality, i.e., the independence assumption does not constrain the
capacity to model the correlations between the columng, @nd the model as formulated still

covers the set of all ran#-covariance matrices.

3 Variational Approximation for GLLVMs

Conditional on the latent variables, the responses for each observational unit are assumed to be

independent in a GLLVM f (yi|ui, ¥) = Hﬁ"zl f(yijlui, ¥). The marginal log-likelihood is then
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obtained by integrating over;,

o(®) = ;log{f@i,w» - ;log[ f U f (ij i, @) f (w) du |, @)

wheref (u;) is a multivariate, standard normal distribution, as discussed in Section 2. As reviewed
in Section 1, numerous methods have been proposed for performing the integration in (2), although
many are computationally burdensome to implement. To overcome this, we propose applying a
variational approximation to obtain a closed form approximatiof(#®). For a generic marginal
log-likelihood function/(¥) = Iogf f(y|u, ¥)f(u) du, acommonly applied VA approach utilizes

Jensen’s inequality to construct a lower bound,

f(ylu, ) f (u)q(ul€) f(ylu, U)f(u) _
'Og{f () }d > | 'Og{ q(ulé) }q(“'ﬁ)du—ﬁ(@,s), 3)

for some variational densitg(u|§) with parameterg. The VA log-likelihood (W, £) can thus

be interpreted as the Kullback-Leibler distance betwges¢) and the joint likelihoodf (y, u|¥).
Evidently, this is minimized by choosing the posterior distribution|) = f (u|y, ¥), butin order

to obtain a tractable form fa( W, &), we choose a parametric form fgfu|£). Specifically, we use
independent normal VA distributions for the latent variables, such that#od, ..., n, we have

d(ui) = Ng(ai, Aj) such thatt; = {a;, vech(4;)}, where A; is an unstructured covariance matrix
(although in our simulations in Section 5, we consider both unstructured and diagonal forms for
A)). In Appendix A, we show that, in the family of multivariate normal distributions, the choice of
independent VA distributions is indeed the optimal one.

With independent normal VA distributions fa#, we obtain the following result.

Lemma 1. For the GLLVM as defined in (1), the VA log-likelihood is given by

n

wwg=) Y B EOOD o, ol 2 logceria) - r(4) - ).

i=1 j=1 9; i=1

ACCEPTED MANUSCRIPT
6



Downloaded by [Jyvaskylan Yliopisto] at 00:57 31 March 2016

ACCEPTED MANUSCRIPT

wherefjij = i +Bo; + ] 8j + a Aj, and all quantities constant with respect to the parameters have

been omitted.

Estimation of the GLLVM is performed by maximizing the VA log-likelihood simultaneously
over the variational parametegsand model parameted®. Note however that there remains an
expectation termE,{b(6;;)}, which is not guaranteed to have a closed form. In Ormerod and Wand
(2012), this was dealt with using adaptive Gauss-Hermite quadrature. By contrast, in the next
section, we show thdully explicit forms for{(¥, £) can be derived for some common cases of
GLLVMs through a reparameterization of the models. Three responses types are of particular
relevance to this article: 1) Bernoulli responses, 2) overdispersed counts, and 3) ordinal data, and
in each case we obtain a closed form VA log-likelihood.

Finally, we propose that the estimator®fbased on maximizing Lemma 1 is estimation con-
sistent (as in Ormerod and Wand, 2012). That is,detd) denote the maximizer @{¥, £). Then
asn — oo andm — oo, we havel LA ¥, whereW, denotes the true parameter point ahds the
VA estimator. A heuristic proof of this is provided in Appendix A. Logically, consistency of the
estimators depends critically on the accuracy of the VA log-likelihood approximation to the true
marginal likelihood (Jordan, 2004). In brief, a central limit theorem based argument shows that the
posterior distributionf (u|y, ¥) is asymptotically normally distributed as — oo, and therefore
with g(u|€) chosen as a normal distribution then the VA log-likelihood is expected to converge to

the true likelihood, i.e., the lower bound in (3) gets sharpenas .

3.1 Bernoulli Responses

When the responses are binary, we assume a Bernoulli distribution and use the probit link function.
Equivalently, we introduce an auxiliary variablg, which is normally distributed with mea;
and unit variance, and sgf = 1 if z; > 0 andy;; = O otherwise. We thus haviy;;|z;, ui, ¥) =

I(z; > O)il(z; < 0)*Y%i where z; ~ N(7ij, 1), where I() denotes the indicator function. Under

ACCEPTED MANUSCRIPT
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this parameterization, the marginal log-likelihood requires integrating overdyathdz;, that is,
() = Z{‘zllog(ffﬂj-“:l f(yijlzj,ui,\If)f(z,-)f(ui)dzjdui). However, the key advantage with
introducing the auxiliary variable is that it leads to a closed form¢éfdr; g). To show this, we
first choose a VA distribution(z;), which we assume to be independent@;). The following

guides this choice.

Lemma 2. The optimal choice of(@;), in the sense of maximizing the lower bouit®, £), is a
truncated normal distribution with location paramefgy = 7i+80;+/ Bj+a/ A;, scale parameter

1, and limits(—co, 0) if y;; = 0, and (0, o) if y;; = 1.

All proofs may be found in Appendix A. Combining the above result with our choiaf @)

as a normal distribution leads to the result below.

Theorem 1. The VA log-likelihood for the Bernoulli GLLVM with probit link is given by the fol-

lowing expression

=}

-

U, 8) = | Vi log{@ (i)} + (1 - vij) log(1 - @ ()} | - % |

i=1 j

- L
Il
L
1l
L

+ (Iog det(4;) — tr(4;) - aiTai) ,

i=1

NI =

wherefji; = 7 + Boj + & 3; + a A; and all other quantities that are constant with respect to the

parameters have been omitted.

Note the first summation in Theorem 1 is independenigfmeaning the estimates &f; are
the same for all observations. Maximizid@¥, £) in Theorem 1 is straightforward, since the VA
log-likelihood involves only separate summands avand j, and can be performed, for instance,

by iterating the following steps until convergence:

1. Forj =1,...,m, update go;, 3;) by fitting a probit Generalized Linear Model (GLM) with

xj as covariates and + a \j entered as anftset.

ACCEPTED MANUSCRIPT
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2. Forj = 1,...,m, update); by fitting a penalized probit GLM, whera; are treated as
n
covariatesz; + fo; + a3 is entered as anfiset, and the ridge penalty ) >, A] Ai\; is
i=1

used. The GLM fitting process must also account for constraings;on

3. Fori = 1,...,n, updater; anda; by fitting a penalized probit GLM, wher&; are treated
as covariatego; + x] 3 is entered as anfkset, and the ridge penalty a; is used. Then a

-1
m

closed form update can be used #r, specifically,A; = (Id + A,-AJT) .
j=1

Note that rather than updating the column or row specific parameters separately, we could
instead apply optimization routines to update all parameters at once, i.e. update all
{Bo1, - - - , Bom» VECA), vec(3)}, then update alk(, ..., mn, a4,...,ay), and thenA;.

Finally, we point out that had we used the logit link instead, then by Lemma 1 the resulting VA
log-likelihood would involve a ternq[log{1 + exp(;)}], and therefore would involve numerical
integration to calculate and optimize. By contrast, using a probit link and thus Lemitiarg a

fully closed form VA log-likelihood.

3.2 Overdispersed Counts

For count data, a standard option is to assume a Poisson distribution with log link function. In such

a case, the VA log-likelihood for a Poisson GLLVM is given by the following

n m n
~ . 1 1
£(‘I’,£) = Z Z {yijnij - exp(nij + EA-JI—AI)\J)} + E Z (|Og det(Ai) — tr(Ai) - aiTai) ,

i=1 j=1 i=1
whererni; = 7 + Boj + & B; + a A}, and all quantities constant with respect to the parameters
are omitted. The proof of the above is similar to the derivation of the VA log-likelihood for the
Poisson mixed model in Ormerod and Wand (2010), and is omitted here. In many settings however,
count data are overdispersed. A prime example of this is multivariate abundance data in ecology,

where many species tend to be found in large numbers or not at all. To handle this, one could

ACCEPTED MANUSCRIPT
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assume a negative binomial distribution with quadratic mean-variance relationshi,)Vay(; +

,uﬁ /¢;, whereg; is the response-specific overdispersion parameter. From Lemma 1 however, it can
be shown this results in the expectation tefEgflog{1 + ¢; exp(zij)}], which requires numerical
methods to deal with. To overcome this, we propose using a Poisson-Gamma raffielcin e
model instead f(yij|vij, wi, ¥) = expEvi;))(vij)/yi!, where v;; ~ Gammad;, ¢;/uij), and

log(ij) = mij. The parameterization produces the same quadratic mean-variance relationship as the
negative binomial distribution. However, it can be shown that the optimal VA distribution; fsr

a Gamma distribution with shapg;(+¢;) and rate{1+¢; exp7i—Boj— x| Bj—a Aj+A] Ai\j/2)).

Combining this result with choice a@f(u;) leads to the following fully closed form.

Theorem 2. The VA log-likelihood for Poisson-Gamma GLLVM with log link is given by the fol-

lowing expression

n m 1 1
ouw, ) = Z Z (yij (ﬁij - E)\}—AiAj) - (Yij + ¢;) log {¢j + eXp(ﬁij - EAJ-TAM])}

i=1 j=1

+1ogT(y;j + ¢;) — %A,TAiAj) +n{¢; log(¢;) — logI'(¢))}

+ % Z (Iog det(A;) — tr(Ai) - aiTa‘)’

wherefji; = 7i + Boj + = 3j + al Aj, () is the Gamma function, and all other quantities that are

constant with respect to the parameters have been omitted.
To update the VA log-likelihood above, we can iterate the following steps until convergence:

1. Forj =1,...,m, update £o;, 3;, ¢;) by fitting a negative binomial GLM, witk; as covari-
ates and + a \j - (1/2)>\jTAi)\ ; entered as anftset.

2. Forj=1,...,m, update\; using a optimization routine such as the Quasi-Newton method.

3. Fori = 1,...,n, updater; anda; by fitting a penalized negative binomial GLM, whexeare

treated as covariateSy; + = 3; - (1/2))\J.TAi>\ j Is entered as anfiset, and the ridge penalty

ACCEPTED MANUSCRIPT
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a! a; is used. Then a fixed—point algorithm can be used to updatspecifically, using the

-1
m

formula A; = (Id + ZlAJA}—VVIJ) ,WhereV\/ij = ¢J(y” + ¢J)/(¢J + exp(ﬁij - (1/2)A-JI—A|)\J)
J:

3.3 Ordinal Data

Ordinal responses can be handled by extending the Bernoulli GLLVM in Section 3.1 to use cumu-
lative probit regression. Suppoggcan take one of; possible levels(1, 2, . .., K;}. Then for each
i=1....n;j=1,...,p, we define the vectoylgl,...,yi*jKJ_)Whereyi“jk = 1ify;; = kand zero oth-
erwise. Next, we introduce an auxiliary varialaglethat is normally distributed with meap;, and

unit variance, and define a vector of cfita’jo < {j1 < ... < {jk, for each response column, with

{jo = —oo @nd{jk; = +oo, such thalyi*jk = 1 (equivalentlyyi; = 1) if {jx-1) < zj < k. Under this
parameterization, the conditional likelihood of the responses follows a multinomial distribution,
f(yijlzj, wi, ®) = kli'((j(k—l) <zj <)% where zj ~ N(ij, 1).

With both the cuts and the intercegly; included, the model is unidentifiable due to location
invariance. We thus s&f; = 0, and freely estimate the remaining dii$q/j> < ... < {jk;-1)-
SettingZj; = 0 and keeping the intercept in the model ensures that in the case of 2, the
parameterizations of the ordinal and Bernoulli GLLVMs are equivalent. The following guides the

choice ofq(z;).

Lemma 3. The optimal choice of (@;), in the sense of maximizing the lower bout(@, £), is
a truncated normal distribution with medfy = 7 + Bo; + «] 8; + a/ A}, variance 1, and limits

ity Ci) 1 Y5 = L.
The above is a straightforward extension of Lemma 2. We therefore have the following result.

Theorem 3. The VA log-likelihood for ordinal GLLVM using cumulative probit regression is given

ACCEPTED MANUSCRIPT
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by the following expression

Kj

(w.§) = ZZ y'kﬂ log (D(fjk—ﬂu) O({jk-1) — 77|j)}]—%

i=1 =1 k=1 = =
n

log det(4;) — tr(A;) — a ai),
( fa)

i=1

—+

I\)Il—\

wherefjij = 7+ Boj + @ Bj + a A}, {jo = —o0 @nd{jx, = +0, {j1 = 0, and all other quantities that

are constant with respect to the parameters have been omitted.

Maximizing the VA log-likelihood in Theorem 3 follows the same approach as the iterative
steps provided for the binary response case at the end of Section 3.1, with the figigndie
between that instead of probit GLMs, we fit cumulative probit regression models in steps one
and two instead. Note that cumulative probit regression models will also provide estimates of the
cutafs g, or alternatively, a Quasi-Newton optimization routine can be used to update tiis cuto

as an additional step.

4 Inference and Prediction

After fitting the GLLVM, we are often interested in interpretation and analysis of the model param-
etersW¥, as well prediction and ordination of the latent variahlgesFor the former, we can treat

(P, £) as a log-likelihood function, with®, é) as the maximum likelihood estimates (MLES), and

base inference around this. For instance, approximate asymptotic standard errors may be obtained

based on the observed information matrix evaluated at the MLES, given by

A 0*((P,
18,8 = {5 ence e
w.g

(¥, £)o(¥, &)

Note I(, é) consists of three blocks corresponding to the negative Hessian matrices with respect

to ¥, £, as well as their cross derivatives. The Hessian matrix with respéasthibits a block di-
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agonal structure due to the independence;afith respect to the VA distribution. If rowfectsr;

are not included, then the Hessian matrix with respeﬁt #dso exhibits a block diagonal structure.

In summary, the three blocks can be calculate@(max(m, n)) operations, after which blockwise
inversion can be used to obtain the covariance matrix. Confidence intervals and approximate Wald
tests for the model parameteirscan then be implemented.

For ordination, the two most common methods of constructing predictions for the latent vari-
ables are empirical Bayes and maximum a-posteriori, which correspond respectively to the mean
and mode of the posterior distributidifu|y, ¥). For estimation methods such as numerical inte-
gration, constructing these predictions and estimates of their uncertainty require additional com-
putation after the GLLVM is fitted. In the Gaussian VA framework however, maximizing with re-
spect tc€ is equivalent to minimizing the Kullback-Leibler distance betwag@ri&) andf (uly, ¥).
Therefore with the normality assumption gfu|€), it follows that for the cluster, the vectora; is
both the variational versions of the empirical Bayes and maximum a-posteriori predictors of the la-
tent variables andi; provides an estimate of the posterior covariance matrix. Importantly,caoth
and A; are obtained directly from the estimation algorithm, as was seen in Section 3. In summary,
the Gaussian VA approach quite naturally lends itself to the problem of predicting latent variables
and constructing ordination plots, with ¢an be used as the point predictions ahctan be used

to construct prediction regions around these points.

5 Simulation Study

We performed a simulation study to compare our proposed VA approach to several currently avail-
able methods for fitting GLLVMs. Two settings were considered: the first simulated binary re-
sponse datasets resembling those in item response theory, while the second setting simulated
datasets resembling overdispersed species counts in ecology. In both settings, we assessed per-

formance based on computation time, and thiftedence between the true and estimated param-
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eter valuegatent variables as calculated using the symmetric Procrustes error (see Chapter 8.4,
Bartholomew et al., 2011). The Procrustes error is commonly used as a method of comparing
different methods of ordination, and can be thought of as the mean squared error of two matrices
after accounting for dierences in rotation and scale. It is an appropriate method of evaluating per-
formance in this simulation, given we are interested in an overall measure of how well the latent
variables and parameters from the fitted model matched those of the true model, while accounting
for potential diterences in scaling and rotation that have no bearing on a model’s performance
given their arbitrariness. We calculated the Procrustes error vigrthrerustes function in theR

packageregan (Oksanen et al., 2015).

5.1 Setting 1

Binary datasets were simulated from GLLVMs widh= 2 latent variables and assuming the probit
link, considering diferent combinations af = {50, 100, 200} andm = {10, 40}. Each true model
was constructed by first simulatingna2 matrix of true latent variables, such that 50% of the values
were generated from a bivariate normal distribution with me&h2), 30% from a bivariate normal
distribution with mean (6;1), and the remaining 20% from a bivariate normal distribution with
mean (1,1). In all three normal distributions, the covariance matrix was set to the identity matrix.
This leads to a three-cluster pattern, although overall the groups are not easily distinguished (see
Figure 1 in Appendix B). Next, an x 2 matrix of latent variable cd&cients was generated, with
the first column consisting of an evenly spaced ascending sequence Zéo2, and the second
column consisting of an evenly spaced descending sequence from1l teinally, an intercept
for each item was simulated from a uniform distributiof—1,1]. For each true GLLVM, we
simulated 1000 datasets.

Six methods for fitting item response models were compared: 1) the VA method in Theorem 1

and assuming a diagonal form fak;, 2) the VA method in Theorem 1 and assuming an unstruc-
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tured form for A;, 3) the Laplace approximation (Huber et al., 2004), where we wrote our own
code to compute the estimates (see supplementary material), YntHenction in theR package
1tm (Rizopoulos, 2006), which uses a hybrid algorithm combining EM and quasi-Newton opti-
mization, with the integration performed using Gauss-Hermite quadrature and the default of 15
quadrature points, 5) the EM algorithm of Bock and Aitkin (1981) with the integration performed
using fixed point quadrature with 21 quadrature points, and 6) The Metropolis-Hastings Robbins-
Monro algorithm (MHRM, Cai, 2010). Both methods 5 and 6 are available imilr@ function in
theR packagenirt (Chalmers, 2012), with their respective default settings used.

Overall, the two VA methods and the Laplace approximation performed best in estimation and
prediction (Table 1A). The most telling fiierence was atn = 40 andn = 50,100, where the
large number of items relative to the number of observations caused the hybrid, standard EM, and
MHRM algorithms to stfer from instability in estimating the céiecientsA. By contrast, assuming
a normal posterior distribution for the’s as VA does led to significantly lower mean Procrustes
error for the’s in these settings. The VA method assuming an unstructured forrdfqrer-
formed slightly better than the VA method assuming a diagonal form, although we emphasize that
the diferences in mean Procrustes error between these two versions were minor. Finally, while its
performance was similar to the two VA approaches, the Laplace approximation tendeteto su
from convergence problems, with updates between successive iterations not always producing an
increase in the log-likelihood and there being a strong sensitivity to starting points. Similar con-
vergence problems were also encountered in Bianconcini and Cagnone (2012), who compared the
Laplace approximation to several extensions they proposed for estimating GLLVMs, and may be a
result of the joint likelihood, i.e. the integrand in equation (2), being far from normally distributed
for when the responses are binary.

With the usual caveats regarding implementation in mind, our implementation of the VA method
assuming a diagonal matrix fod; was slightly faster than the Laplace approximation, with both

methods not surprisingly being substantially quicker than the VA method assuming an unstructured
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A; (Table 1B). The standard EM algorithm framirt was the fastest methodrmat= 10, but by far
the slowest method am = 40. The hybrid EM algorithm also performed strongly in computation
time, although it was the worst performer in terms of estimafin@able 1A). Finally, both VA
methods and the Laplace approximation scaled worse than the other methods with inareasing
result which is not surprising given that these methods introduce an additional set of parameters
for each new observation: VA explicitly introduces;(A;) for eachi = 1,...,n, while for the
Laplace approximation the posterior mode is estimated for each observation.

In addition to the simulation above, we also assessed VA estimation for a larger number of la-
tent variables. Specifically we simulated binary datasets from GLLVMsavitb latent variables,
with a three-cluster pattern in the latent variables andfments generated in a similar manner to
the design above. Details are presented in Appendix B, and again demonstrate the strong perfor-
mance of the two VA methods in terms of estimation offéoeents, prediction of latent variables,

and computation time.

5.2 Setting 2

We simulated overdispersed count data by modifying one of the models fitted to the birds species
dataset (see Appendix D for the details of the example) and treating it as a true model. Specifically,
we considered a GLLVM which assumed a Poisson-Gamma mddel,2 latent variables, no
covariates and included sit&ects. We then modified it to include two covariates, by generating
an x 2 matrix of covariates with elements simulated from the standard normal distribution, and
a correspondingn x 2 matrix of regression cdicients with elements simulated from a uniform
distributionU[-2, 2]. This modified GLLVM was then treated as the true model. Datasets were
simulated with the same number of sites as in the original dataseB{) and with a varying the
numbers of speciesy = {30,50, 100}. Since the original dataset consisted of 96 species, then for

the cases ain = 30 and 50 we took a random sample from the 96 set of specidsoerts, while
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for the case om = 100 we randomly sampled four additional speciesfibcents for inclusion.

Note this simulation setting focused on datasets \wiflm close to or exceeding 1 — such wide
response matrices are a common attribute of multivariate abundance data in ecology. For each true
GLLVM, we simulated 200 datasets.

We compared the following four methods of estimation: 1) the VA method in Theorem 2 and
assuming a diagonal form fod;, 2) the VA method in Theorem 2 and assuming an unstructured
form for A;, 3) the Laplace approximation (Huber et al., 2004) assuming negative binomial counts,
and 2) the Monte Carlo EM (MCEM, Wei and Tanner, 1990) algorithm used in Hui et al. (2015)
assuming negative binomial counts, where 2000 Monte Carlo samples were used to perform the
integration involved in the E-step. Due to its long computation time (see results Table 2), we limited
the maximum number of iterations for the MCEM algorithm to 100 iterations. We also considered
the three estimation methods assuming Poisson counts, but not surprisingly their performances
were considerably worse than assuming overdispersed data, and so their results have been omitted.
More generally, we are unaware of any non-proprietary software available for fitting GLLVMs to
overdispersed count data.

Overall, the VA method assuming a diagonal form farperformed best both in terms of mean
Procrustes errors and computation time, followed by the VA method assuming an unstructured
form for A; and the Laplace approximation (Table 2). It should be noted though that, similar to
Setting 1, the dferences in mean Procrustes error between the two versions of VA were minor.
The MCEM algorithm performed worst, having the highest mean Procrustes errors for both the
latent variables: and for the covariate cdiécients3, while also taking significantly longer to fit
the model than the approximation methods. This dramafiiergince in computation time could be
attributed to the fact that the M-step in MCEM estimatiofigetively) involves fitting models to a
dataset ohmBobservations, compared to both the VA methods and the Laplace approximation that
involve fitting models to a dataset witthmobservations. Finally, we note that unlike setting 1, the

Laplace approximation did not far from any convergence problems here with count response
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datasets. This was most likely due to the joint likelihood being relatively normally distributed

compared to the more discrete, binary response setting.

6 Application: Gratitude in Youths

We illustrate the application of the proposed VA method a cross-sectional dataset on several grat-
itude scales for youths. The dataset is available fronRtpackagepsychotools (Zeileis et al.,

2014), and consists of ratings (ordinal responsesjnos 25 gratitude scales from = 1327
youths. We also note that the scales havtedng numbers of levels, with maximum number of
levels ranging from five to nine. The age of each youth (to the nearest integer year) was also avail-
able. Details on the psychometric background of the dataset may be found in Froh et al. (2011).

We fitted a GLLVM assuming ordinal responsdss 2 latent variables, and no covariates. We
chose to usel = 2 latent variables in both examples for the purposes of ordination, to visualize
the main patterns between youths of various ages. For the VA method, estimation was performed
assuming an unstructured form for the covariance matfixwe also considered a diagonal form
for A;, and similar results were obtained.

A scatterplot of the predicted latent gratitude scores for each yaisiiowed a separation
between children (10-13 years old) and adolescents (14-19 years old), as seen in Figure 1A. The
elements of the estimated dheient matrix A were all greater than zero except for the second
codficient in five of the gratitude scales, which were significantly less than zero (LOSD 2 to
6; see estimates and standard errors in Table 2 of Appendix C). This was not surprising, given
these five scales were reverse scored, i lwar score reflected a higher sense of gratitude. More
importantly though, itindicated that LOSD 2 to 6 were the md&ative at diferentiating between
the levels of gratitude in children versus adolescents.

Given the above results, we therefore constructed a “residual ordination” plot by fitting a

GLLVM with the setup as above, except a categorical predictor was now included to indicate
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whether the youth was a child or adolescent (10-13 versus 14-19 years old). From the resulting
fit, the codficients3 for this covariate showed adolescents scored significantly higher for LOSD

2 to 6 as well as significantly lower for three other gratitude scales (GAC 1 to 3) compared to
children (see Table 3 in Appendix C). Moreover, the residual ordination plot no longer presented
any substantial pattern for age (Figure 1B), although the lack of any other covariates available in
the dataset meant that we could verify whether the residual pattern was perhaps driven by other
covariates.

Finally, to assess the goodness of fit for the: 2 model, we performed Monte-Carlo cross-
validation, where for each of iteration we randomly sampled 10% of the rows (youths) out to act
as a test observations, with the remaining 90% constituting the training dataset. GLLVMs (with no
covariates included) ranging froth= 1 to 5 were then fitted to each training dataset, using the VA
approach, and then the predictive marginal log-likelihood of the test observations was calculated.
This procedure was repeated 50 times. Results definitively showed thal latent variables
was instficient, while the predictive performance improved marginally as we transitioned from
d = 2to 5 (see Figure 2 in Appendix C). This suggedied 2 latent variables was successful in
capturing most of the correlation between the responses.

Aside from the above example, we also considered a second dataset comprising counts of bird
species collected at sites across Indonesia. Results for this application are found in Appendix D.

In particular, the design of simulation setting 2 in Section 5.2 was ba$¢ai®example.

7 Discussion

In this article, we have proposed a variational approximation method for estimating GLLVMs,
deriving fully closed form approximations to the log-likelihood for the common cases of binary,
ordinal, and overdispersed count data. Estimation is straightforward to implement compared to

other methods such as numerical quadrature. The VA approach also returns predictions of the

ACCEPTED MANUSCRIPT
19



Downloaded by [Jyvaskylan Yliopisto] at 00:57 31 March 2016

ACCEPTED MANUSCRIPT

latent variables and uncertainty estimates as part of the estimation procedure. Simulations showed
that the VA approach performs similar to or better than some of popular methods used for fitting
GLLVMs, with potentially significant reductions in computation time. Theode for performing

VA estimation of GLLVMs is available in the supplementary material of this article, and in future
work we plan to integrate (even faster versions of) these functions intorttieind package (Wang

etal., 2012).

In this simulations, the VA method performed especially well in settings whgreis non-
negligible. Such data are common in ecology, and thus the VA approach shows a lot of promise for
fast fitting of community-level models (such of those of Letten et al., 2015; Warton et al., 2015)
that also account for inter-species correlation. Since species tend to respond to the environment in
rather complex ways however, the VA approach considered in this paper would need to be extended
to handle flexible methods of modeling the linear response, e.g. replagifigandw A; in (1)
with smoothing terms.

Many applications of item response theory models assume a discrete instead of continuous
distribution for the latent variables, and extending the VA approach to such cases would prove
useful not only for psychometrics data, but may also have strong potential in collaborative filtering
and latent class models where the datasets are often very high-dimensional (e.g., Hofmann, 2004;
Embretson and Yang, 2013). Finally, we onlffezed a heuristic argument for the estimation
consistency of the VA estimators for GLLVMs, and substantial research remains to be done to
broaden the results of Ormerod and Wand (2012) and Hall et al. (2011) to show that variational
approximations in general produces estimators that are consistent and asymptotically normal, and

what these rates of convergence are.
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Supplementary Material

Appendices: Appendix A contains proofs for all theorems and lemmas. Appendix B contains
additional simulation results. Appendix C contains additional results for the applications.

Appendix D contains the additional application to the birds species count dataset.

R code: TheR code for estimating GLLVMs using the VA method and the Laplace approximation,
performing simulation Setting 1 and Example 2, and a “readme” file describing each of the

files, are contained in a zip file (ms-VAGLLVM.zip).
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Table 1. Results for (A) mean Procrustes error (latent variadllegent variable co@cients),

and (B) computation time in seconds for simulation Setting 1. Methods compared included the two
VA methods assuming either diagonal or unstructured formsAfoithe Laplace approximation,

and methods in thétm andmirt packages. Computation time includes prediction for the latent
variables and calculation of standard errors for the mpdeameters.
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m n VA-diag  VA-unstruct Laplace 1ltm-hybrid mirt-EM mirt-MHRM
A: Mean Procrustes error
50 0.3200.136 0.32(0.136 0.30%.143 0.323.394 0.31/0.375 0.31/40.278
10 100 0.31/0.090 0.31%.089 0.3734.080 0.328.299 0.31M0.184 0.308.196
200 0.27%.074 0.27/0.076 0.34®.075 0.3110.172 0.283.093 0.28%.114
50 0.14%0.131 0.14M.116 0.150.119 0.2180.472 0.13/.400 0.14/0.242
40 100 0.168€.077 0.1610.069 0.17@M.072 0.15/.313 0.16@0.215 0.1610.197
200 0.1600.053 0.15M.046 0.158.053 0.1520.186 0.1520.102 0.153.088
B: Mean computation time
50 6.56 9.88 8.57 6.69 6.59 19.52
10 100 11.65 19.15 13.27 8.66 7.90 25.08
200 21.80 33.61 26.71 15.30 9.02 32.07
50 17.57 41.19 27.84 10.10 82.04 42.98
40 100 27.65 63.30 35.84 17.90 126.79 69.01
200 61.46 126.90 72.94 29.20 188.42 83.48
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Table 2: Results for (A) mean Procrustes error (latent variabjéstent variable co@icients
A/covariate cofficients3) and (B) computation time in seconds for simulation Setting 2. Methods
compared included the two VA methods assuming either diagonal or unstructured forags for
the Laplace approximation, and the MCEM algorithm. Computation time includes prediction for
the latent variables and calculation of standard errors for the npadaimeters.

m VA-diag VA-unstruct Laplace MCEM

A: Mean Procrustes error
30 0.5570.8020.066 0.564.7970.066 0.5800.8070.071 0.58/0.8070.080
50 0.3940.8150.070 0.408.8200.070 0.403.8230.073 0.45({.8280.074
100 0.2740.8190.068 0.298.8190.068 0.2910.8180.071 0.33A.8280.071

B: Mean computation time (secs.)

30 26.53 74.35 75.56 8413.53
50 28.62 63.19 145.07 13905.12
100 53.10 102.18 362.19 26605.92
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Figure 1: Results for the gratitude in youths dataset: (A), unconstrained ordination using a GLLVM
with d = 2 LVs and no covariates, (B) residual ordination using the same model but with an binary
predictor included to dierentiate between child versus adolescent. The coordinates for each youth
are represented byftierent symbols, as based on their age classification to child or adolescents.
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