Abiotic and biotic controls on methane formation down to 2.5 km depth within the Precambrian Fennoscandian Shield

Kietäväinen, Riikka; Ahonen, Lasse; Niinikoski, Paula; Nykänen, Hannu; Kukkonen, Ilmo T.

All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Accepted Manuscript

Abiotic and biotic controls on methane formation down to 2.5 km depth within the Precambrian Fennoscandian Shield

Riikka Kietäväinen, Lasse Ahonen, Paula Niinikoski, Hannu Nykänen, Ilmo T. Kukkonen

PII: S0016-7037(16)30729-3
DOI: http://dx.doi.org/10.1016/j.gca.2016.12.020
Reference: GCA 10072

To appear in: Geochimica et Cosmochimica Acta

Received Date: 10 February 2016
Revised Date: 18 November 2016
Accepted Date: 13 December 2016

Please cite this article as: Kietäväinen, R., Ahonen, L., Niinikoski, P., Nykänen, H., Kukkonen, I.T., Abiotic and biotic controls on methane formation down to 2.5 km depth within the Precambrian Fennoscandian Shield, Geochimica et Cosmochimica Acta (2016), doi: http://dx.doi.org/10.1016/j.gca.2016.12.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Abiotic and biotic controls on methane formation down to 2.5 km depth within the
Precambrian Fennoscandian Shield

*Riikka Kietäväinena, Lasse Ahonena, Paula Niinikoskib, Hannu Nykänenc1 and Ilmo T. Kukkonena2

aGeological Survey of Finland (GTK), P.O. Box 96, FI-02151 Espoo, Finland
e-mail: riikka.kietavainen@gtk.fi; lasse.ahonen@gtk.fi

bUniversity of Helsinki, Department of Geosciences and Geography, P.O. Box 64, FI-00014 Helsinki, Finland
e-mail: paula.niinikoski@helsinki.fi

cUniversity of Jyväskylä, Department of Biological and Environmental Sciences, P.O. Box 35, FI-40014 University of Jyväskylä, Finland

1Present address: University of Eastern Finland, Department of Environmental Science, P.O.Box 1627, FI-70211 Kuopio, Finland
e-mail: hannu.nykanen@uef.fi

2Present address: University of Helsinki, Department of Physics, P.O.Box 64, FI-00014 Helsinki, Finland
e-mail: ilmo.kukkonen@helsinki.fi

*Corresponding author:
Telephone: +358 (0)50 348 8001
Abstract

Despite a geological history characterized by high temperature and pressure processes and organic carbon deprived crystalline bedrock, large amounts of hydrocarbons are found in deep groundwaters within Precambrian continental shields. In many sites, methane comprises more than 80% of the dissolved gas phase reaching concentrations of tens of mmol l⁻¹. In this study, we used isotopic methods to study the carbon isotope systematics and sources of crustal methane within the Fennoscandian Shield. The main study sites were the Outokumpu Deep Drill Hole and the Pyhäsalmi mine in Finland, both of which allow groundwater sampling down to 2.5 km depth and have been previously studied for their groundwater chemistry and microbiology. We show that the differences in the amount and isotopic composition of methane are related to the availability of carbon sources as well as processes behind the incorporation of hydrogen and carbon via abiotic and biotic pathways into hydrocarbon molecules. Supported by previously reported occurrences and isotopic data of deep groundwater methane in lithologically different locations in Finland and Sweden, we show that methane formation is controlled by microbial methanogenesis and abiotic reactions, as well as lithology with the metasedimentary environments being the most favourable for methane occurrence. Rather than a thermogenic relic, crustal methane within the Fennoscandian Shield is more likely the result of low temperature formation from ancient organic compounds or their inorganic intermediates such as graphite. Such crustal gases are characterized by the lack of major amounts of C₂⁺ hydrocarbons and ¹³C rich methane. Further, microbiological and isotopic geochemical evidence suggest that microbial methane is more common at depths shallower than 1.5 km.

Keywords: Methane, ethane, hydrogen, carbon isotopes, calcite, graphite, Fennoscandian Shield, Outokumpu, Pyhäsalmi
1. INTRODUCTION

Methane (CH$_4$) is a key component in the interface of geological and biological i.e. abiotic and biotic world. Deep saline groundwaters within Precambrian continental shields are among the most peculiar environments where CH$_4$ has been found, sometimes at vast amounts exceeding 80% of the gas phase (e.g. Sherwood et al., 1988; Ward et al., 2004; Pitkänen and Partamies, 2007; Stotler et al., 2010). The information on processes generating CH$_4$ and their relative abundance in crystalline bedrock environment is important in evaluating the energetic limitations of microbial life in deep dark biosphere as well as microbe-water-rock interactions. These processes are important in understanding the evolution of life on Earth as well as potential for life on other planets. More practical applications include assessment of groundwater quality, safety of geological disposal of nuclear waste, and deep mining as water-rock interaction and microbial attainment may have an impact on the environment by changing the concentrations or mobility of potentially hazardous or corrosive compounds.

In deep subsurface environments CH$_4$ is known to be formed via three main mechanisms: 1) thermogenically by breakdown of organic matter, 2) microbially, and 3) abiotically from reactions of inorganic compounds such as CO$_2$ and H$_2$ (Kotelnikova, 2002; Etiope and Sherwood Lollar, 2013; Sephton and Hazen, 2013; Kietäväinen and Purkamo, 2015). Microbial methanogenic processes are commonly divided into autotrophic and heterotrophic pathways which utilize inorganic and organic carbon sources, respectively (Kotelnikova, 2002; Kietäväinen and Purkamo, 2015). The most commonly examined abiotic formation mechanism is the Fischer-Tropsch type (FTT) synthesis, i.e. the catalytic formation of CH$_4$ from CO and H$_2$ at high temperature, and its proposed natural analogues (e.g. Anderson, 1984; Horita and Berndt, 1999; Sherwood Lollar et al., 2002; Taran et al., 2007; Jacquemin et al., 2010; Zhang et al., 2013). Other abiotic reactions possibly capable of producing hydrocarbons include thermal decomposition of carbonate minerals, abiotic synthesis from carbon-bearing fluids and sulphide minerals through organosulphur intermediates (e.g. thiols), and clay catalysed synthesis (McCollom, 2013). In deep drill holes, such as the 6.6 km deep Gravberg-1 (Siljan Ring) in Sweden and 9 km deep KTB (Kontinentales Tiefbohrprogramm) in Germany, artificial CH$_4$ formed in reactions promoted by high temperature at the drill bit - rock interface (bit-metamorphism) has also been observed (Jeffrey and Kaplan, 1988; Faber et al., 1999).
Despite the drastic differences in the formation mechanisms, the separation of different sources of CH$_4$ is not a trivial task. Traditional classification diagrams for CH$_4$ such as those by Schoell (1980, 1988) and Whiticar (1999) were mainly based on isotope data from sedimentary and surface environments where organic compounds are ubiquitous. However, deep groundwaters in crystalline bedrock differ greatly from these environments because inorganic and refractory carbon sources dominate and even dissolved inorganic carbon (DIC) is often scarce (e.g. Kietäväinen and Purkamo, 2015 and references therein). Based on the increasing amount of data from crystalline bedrock, modifications have been made to these classical diagrams (e.g. Etiope et al., 2013; Etiope and Schoell, 2014) that now also include abiotic CH$_4$ of different origins. In addition, approaches have been made to use other parameters such as the combination of isotopic and compositional data (Bernard et al., 1976), and the change of isotopic composition with carbon number, i.e. with the chain length of alkanes (e.g. Sherwood Lollar et al., 2008; Burruss and Laughrey, 2010). Still, the basis of these classifications has in many cases been insufficient to reliably separate between different sources of CH$_4$ but in a very broad sense.

On one hand this is because the isotopic composition of a product gas, whether abiotic or biotic, is heavily dependent on the isotopic composition of the reactants/substrates (e.g. Schoell, 1983; Kotelnikova, 2002). On the other hand, the isotopic compositions are dependent on such factors as openness of the system, equilibration, time scale, and substrate limitation or excess (Burke, 1993; Whiticar, 1999; Valentine et al., 2004; Kelley et al., 2012; Reeves et al., 2012; Suda et al., 2014). However, these conditions are often poorly known. Therefore it is important to study the relevant chemical components as well as their isotopic compositions in order to get a view of gas generating processes in a given system. In addition, the information on lithology, microbiology and hydrogeology is essential in judging between the different processes.

We selected two lithologically different sites within the Precambrian crystalline bedrock in Finland within the Fennoscandian Shield for a detailed study of hydrocarbons. In the Outokumpu Deep Drill Hole, characterized by metasediments and ophiolite-derived serpentinites, CH$_4$ typically comprises over 70 vol-% of the dissolved gas phase with concentrations as high as 32 mmol l$^{-1}$ (Kietäväinen et al., 2013). Methane producing as well as consuming microorganisms have been found from the drill hole and fracture waters (Itävaara et al., 2011; Purkamo et al., 2015a, 2015b). Residence times of
groundwater up to 58 Ma (Kietäväinen et al., 2014) make this one of the oldest known ecosystems on Earth. In addition to dissolved carbon and carbonates, possible sources of carbon in the bedrock include graphite-rich black schist. Serpentinites provide a potential source of H₂ needed in both abiotic CH₄ synthesis and microbial methanogenesis (Devirits et al., 1993; McCollom and Bach, 2009; Neubeck et al., 2011; Schrenk et al., 2013), and radiolytic H₂ (Vovk 1987; Lin et al., 2005a, 2005b) may be present. In the Pyhäsalmi mine, ca. 180 km northwest from Outokumpu, the dominant lithologies are felsic to mafic metavolcanic rocks and granite. At Pyhäsalmi, CH₄ is scarcer, with a maximum concentration no higher than 0.55 mmol l⁻¹, but H₂ is abundant (Miettinen et al., 2015). In contrast to Outokumpu, volcanic rocks of Pyhäsalmi lack evident carbon source minerals. Yet, there are indications of CH₄ producing archaea living in the formation fluids of Pyhäsalmi at least down to 2.4 km depth (Miettinen et al., 2015).

In this study we use the isotopic compositions of hydrogen, carbon and oxygen in CH₄, ethane (C₂H₆), propane (C₃H₈), DIC, calcite, graphite, molecular hydrogen (H₂) and water, together with information on gas compositions determined from the Outokumpu Deep Drill Hole and Pyhäsalmi mine fluid samples to determine CH₄ generating processes down to a depth of 2.5 km. To ascertain the representativeness of the samples, different sampling methods are also compared. A regional scale is brought up by comparing the results of this study to previously reported isotopic compositions of CH₄ in deep groundwaters in Finland (Heikkinen, 1972; Hyyppä, 1981; Sherwood Lollar et al., 1993a, 1993b; Haveman et al., 1999; Pitkänen and Partamies, 2007) and Sweden (Jeffrey and Kaplan, 1988). The aim is to reveal possible systematics of CH₄ occurrence and isotopic composition in relation to depth, as well as lithological, physicochemical and microbiological factors in order to gain better understanding on the deep carbon cycle.

2. STUDY SITES

The Outokumpu Deep Drill Hole is located in eastern Finland (62°43’02.63”N, 29°03’55.01”E) within the Fennoscandian Shield (Fig. 1). It reaches a maximum depth of 2516 m, which makes it the deepest scientific drill hole in Finland and one of the deepest within the whole Fennoscandian Shield. The 1.9 billion year old bedrock at the study site is mainly comprised of amphibolite facies (550 – 675°C at 3 – 5 kbar) metasediments, i.e. mica schist and biotite gneiss, which are interlayered with ophiolitic rocks.
of the Outokumpu assemblage and dissected by slightly younger granitoids (Fig. 1, Claesson et al., 1993; Säntti et al., 2006; Peltonen et al., 2008; Lahtinen et al., 2010; Västi, 2011).

Graphite is common as disseminated grains and black schist layers in mica schist. Occurrence of organic carbon (kerogen and traces of bitumoids) in the black schist has also been reported (Taran et al., 2011). The thickest black schist layers are found in relation with the Outokumpu assemblage between 1300 – 1600 m depth in the drill hole section and were suggested to be deposited under anoxic conditions at the margin of the Karelian Craton which was steadily sinking due to a collision with the Svecofennian (1.93 - 1.91 Ga) arc complex (Kontinen et al., 2006; Loukola-Ruskeeniemi, 1999). In addition to black schist, the Outokumpu assemblage rocks present in the Outokumpu deep drill core consist of ophiolite-derived serpentinites, calc-silicate rocks (skarn) and quartz rocks (Västi, 2011). For a long time the calc-silicate and quartz rocks at Outokumpu were interpreted as sedimentary in origin (e.g. Park, 1988; Karhu, 1993). However, their trace element composition, most notably high contents of chromium and nickel, resemble those of the serpentinites, pointing out their origin by metasomatic alteration of mantle material (Peltonen et al., 2008). Dolomitic carbonate rocks of the Outokumpu assemblage have δ¹³C values between +0‰ and -3‰ VPDB (Karhu, 1993; Kontinen et al., 2006). The highest values are interpreted to represent seawater-derived inorganic carbon, probably introduced in the form of carbonate clasts embodied in turbidites or directly from circulating seawater (Kontinen et al., 2006).

Saline water with the concentration of total dissolved solids (TDS) as high as 70 g l⁻¹ enters the Outokumpu Deep Drill Hole along fracture zones which are separated from each other by tens to hundreds of meters of impermeable rock (Ahonen et al., 2011; Kietäväinen et al., 2013). A major divide in groundwater composition is seen at around 1300 m depth where the salinity suddenly increases, water and strontium becomes more enriched in the heavier isotopes and the concentration of CH₄ decreases while the proportion of H₂ begins to increase (Kietäväinen et al., 2013). Likewise there is a change in the microbial community structure which seems to closely mirror the change in groundwater chemistry, and lithology (Itävaara et al., 2011; Kietäväinen et al., 2013; Nyyssönen et al., 2014; Purkamo et al., 2013, 2015a, 2015b). The Outokumpu Deep Drill Hole groundwater is isolated from the modern meteoric water cycle and both water stable isotopes and noble gases indicate residence times of tens of millions of years (Kietäväinen et al., 2013, 2014). Any contribution of mantle
degassing in the Outokumpu fluids can be excluded based on the crustal 3He/4He ratios of 1-2 • 10^{-8} (Kietäväinen et al., 2014).

In addition to an extensive sampling campaign at Outokumpu, samples were also taken from the Pyhäsalmi mine located ca. 180 km northeast from Outokumpu (63°39'N, 26°03'E) along the boundary between the Proterozoic and Archaean parts of the Fennoscandian Shield (Fig. 1). The Pyhäsalmi mine is in a volcanogenic massive sulphide (VMS) type Cu-Zn deposit and among the deepest metal mines in Europe. The deepest hole (R-2247) drilled downwards from the 1430 m depth level of the mine reach the depth of 2400 m below the surface (Fig. 1). Dominant rock types are 1.92 Ga old mafic to felsic volcanites which have metamorphosed at amphibolite facies conditions similar to Outokumpu, with minor occurrence of slightly younger granite (Kousa et al., 1994; Miettinen et al., 2015). Salinity of groundwater increases with depth reaching the TDS concentration of 76 g l$^{-1}$ at 2400 m (Miettinen et al., 2015). Both acidic and basic waters in the shallow and deep parts of the mine, respectively, host liveable microbial communities (Kay et al., 2014; Miettinen et al., 2015).

3. MATERIAL AND METHODS

Sampling for geochemical analysis, including the stable isotopic composition of water, has been described in Kietäväinen et al. (2013), Purkamo et al. (2013), Rajala et al. (2015) and Miettinen et al. (2015). The overall geochemical characterisation of the Outokumpu Deep Drill Hole and the Pyhäsalmi mine groundwaters has been previously published in Kietäväinen et al. (2013) and Miettinen et al. (2015), respectively. Isotopic compositions of graphite from Outokumpu are provided by Taran et al. (2011). Here we focus on describing the sampling and isotopic analysis of gases and dissolved inorganic carbon (DIC) as well as fracture carbonates.

3.1 Fluid sampling

Gas samples from the Outokumpu Deep Drill Hole were taken between 2010 and 2012, and cover a depth range from 180 to 2480 m below the surface (bsl). In the Pyhäsalmi mine samples for isotopic analysis of gases were taken in 2014 from two drill holes (R-2247 and R-2227) starting from the mine level of 1430 m bsl and extending down to 2400 m depth. At Outokumpu, five different sampling
methods were used (Table 1): 1) tube sampling with 100 m sections (Nurmi and Kukkonen, 1986), 2) direct pumping, 3) pumping with packers (Ahonen et al., 2011), 4) “PAVE” pressurised sampling device (Haveman et al., 1999; Ahonen et al., 2011), and 5) Leutert positive displacement sampler (PDS; Regenspurg et al., 2010; Kietäväinen et al., 2013, 2014). Samples from the Pyhäsalmi mine were taken from free flowing fluid as described in detail by Miettinen et al. (2015).

From the tube sampler and pumped fluid the samples for gas analyses were taken either by injecting the spontaneously separated gas into head space bottles or diverting the gas into inverted glass bottles (Schott) under sample water (“a bucket method”). In both cases the bottles were flushed with argon and filled with sample water prior to gas collection in order to avoid contamination with air. In these samples some sample water was usually left in the bottles to prevent diffusion through the septa. From the “PAVE” samples (180 m depth) gas was directly released into analysis in the lab, whereas from the PDS, gas was collected into evacuated gas sampling bulbs in a vacuum line and gas separation assisted by heating in an ultrasonic bath in the field (Kietäväinen et al., 2013, 2014). The gas samples were not fixed, except one sample from Pyhäsalmi (PYS-1B) in which a few grains of solid HgCl₂ were added before the evacuation and gas injection. However, microbial activity can be considered minimal for the gas–only (dry) samples which include the PDS samples from Outokumpu and samples taken by the injection method in the Pyhäsalmi mine (method FFI in Table 2 and Table EA 1).

The samples for DIC isotope analyses were taken from the Outokumpu Deep Drill Hole in 2010 and 2011. In 2010 DIC isotope samples from pumped fluid from 500 and 2260 m depths were collected into LABCO Exetainer tubes (12 ml), which contained 0.15 ml of 85% phosphoric acid and were flushed and filled with He (purity > 99.996%). During sampling 5 ml of He was removed and 8 ml of sample water immediately injected into each tube. From the tube sampling in October 2011 the samples were collected in evacuated glass bottles (60 ml), specially manufactured to fit the caps from Vacutainer vials. The bottles were prepared by adding 3 ml of 85% phosphoric acid and a magnetic rod and evacuating them on a vacuum line specially designed for extracting DIC from water samples. The sample preparation was done at the Geological Survey of Finland (GTK) in Espoo. Samples for DIC isotope analysis were injected into evacuated glass bottles through a 0.8/0.2 μm supor membrane filter using a plastic syringe. Vials and tubes were stored upturned in dark and cool until analysed.
3.2 Sample selection and preparation for fracture mineral studies

In total, 58 rock samples along the Outokumpu deep drill core were selected between 100.90 and 2240.70 m depths below the surface. Samples represent both open and sealed fractures and thin veins. Ordinary 30 µm thick polished thin sections were prepared for microscopy and microanalysis studies. Loose fracture fillings were fixed with epoxy resin before cutting. In the case of extremely loose fillings, thin sections were not possible to make and, instead, minerals were mounted on a carbon tape. Calcites for isotopic analysis were carefully selected under a microscope and separated using a steel blade. Where different calcite generations occurred, they were sampled separately. Fractures dissected by the drill holes studied at Pyhäsalmi did not contain carbonate minerals (Miettinen et al., 2015).

3.3 Analysis

3.3.1 Dissolved gases

The gas composition was analysed by gas chromatography at Ramboll Analytics (Vantaa, Finland) or Isotech Laboratories (Illinois, USA) (Kietäväinen et al., 2013; Miettinen et al., 2015). Within the whole sample set (Table EA 1), relative uncertainties were generally better than 8% for hydrocarbons, 3% for H2, 4% for O2 and N2, 6% for CO2, and 10% for He and Ar.

The isotopic compositions of CH4, C2H6 and from few samples also C3H8 from Outokumpu were determined at the Environmental Isotope Laboratory at the University of Waterloo (Ontario, Canada). Samples from the Pyhäsalmi mine were analysed for their isotopic composition at Isotech Laboratories. Following the separation by Trace Ultra Gas Chromatograph (Thermo Finnigan) the different hydrocarbons were converted to CO2 at 940°C and to H2 at 1450°C and analysed with a Deltaplus XL isotope ratio mass spectrometer (Thermo Finnigan MAT). The isotopic compositions are reported using δ-notation per mill (‰) relative to VPDB (Vienna Pee Dee Belemnite) and VSMOW (Vienna Standard Mean Ocean Water) standards for C and H, respectively:

\[
\delta^{(‰)} = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000
\]

where R is either 13C/12C or 2H/1H.
Analytical error is estimated to be ±0.5‰ for δ^{13}C and ±7‰ for δ^{2}H. The isotopic composition of H_{2} gas was analysed from three Outokumpu samples in Hydroisotop GmbH (Schweitenkirchen, Germany) with the analytical uncertainty of ±10‰.

3.3.2 Isotopic composition of dissolved inorganic carbon

Isotopic analyses of DIC samples from 2011 were conducted at the Department of Geosciences and Geography at the University of Helsinki as follows. Before isotopic analysis the DIC samples in Vacutainer-fitted vials were heated to 50°C and attached to the vacuum line and CO_{2} extracted and collected into Exetainer vials as described by Atekwana and Krishnamurthy (1998). The extraction time was 2 x 10 minutes. The samples were injected with helium before analysing them on an isotope ratio mass spectrometer (Thermo Finnigan Delta Plus Advantage) using laboratory standards calibrated against an international standard (VPDB). The absolute uncertainty of the DIC isotope analysis with this method was ≤ 0.60‰ at 1σ level. DIC samples from the pumped fluid from 500 and 2260 m depths were analysed at the University of Jyväaskylä with a Gas-Bench II connected to a Thermo Finnigan XP Advantage, using international measurement standard NBS 19 calcite and an in-house carbon standard, CaCO_{3}. In this case the reproducibility of the standard measurements was 0.09‰ at 1σ level (n= 3). The results are reported using δ-notation (Eq. 1) relative to VPDB standard.

3.3.3 Characterisation of fracture minerals

Fracture mineralogy was studied using both optical and scanning electron microscopy (SEM/ JEOL JSM-5900LV) at the Geological Survey of Finland (GTK) in Espoo. High vacuum, energy dispersive (EDS) mode with voltage of 20 kV and spot size of 50 µm was used during the SEM analysis for carbon coated thin sections. Low vacuum mode was used for uncoated samples on carbon tape.

3.3.4 Stable isotopes of calcite

Approximately 150 µg of calcite sample was weighted into Exetainer vials and reacted with concentrated phosphoric acid for at least 1 h at 70°C. Carbon and oxygen stable isotopes were analysed from the released CO_{2} gas by Thermo Finnigan Delta Plus Advantage gas source mass spectrometer at the University of Helsinki, Department of Geosciences and Geography. To test reproducibility of the analysis, an in-house calcite reference was regularly analysed among the samples. The results are
reported using δ-notation (Eq. 1) relative to VPDB standard for both carbon ($R = \text{^{13}C/^{12}C}$) and oxygen ($R = \text{^{18}O/^{16}O}$). The reproducibility was ±0.07‰ for δ^{13}C and ±0.12‰ for δ^{18}O at 1σ level (n=20).

3.4 Computational methods

The speciation and concentrations of dissolved inorganic carbon (DIC) and saturation index (SI) of calcite was calculated using the PHREEQC software, “wateq4f” database (USGS, 2014). A saturation index is determined as follows:

$$SI = \log \frac{Q}{K}$$ \hspace{1cm} (2)

where Q is the ion activity product and K is the thermodynamic reaction constant (Clark and Fritz, 1997). In equilibrium SI equals 0 while positive and negative SI values indicate oversaturation and undersaturation (dissolution), respectively. In situ temperatures measured from the Outokumpu Deep Drill Hole (Kukkonen et al., 2011) and on site at the Pyhäsalmi mine (Miettinen et al., 2015) were used in all calculations. The hydrostatic pressure increase of about 100 bar km$^{-1}$ was not taken into account as 1 bar pressure is used by the PHREEQC by default. Increased pressure will increase the solubility of calcite especially at low temperatures (Duan and Li, 2008) and may lead to slight overestimation of the saturation indices presented here. Additionally, high ionic strength of saline waters causes uncertainty in defining thermodynamic activity product (Q) of dissolved species. The field or on-line measurements of pH and alkalinity were used when available, as the pH was observed to rapidly decrease in contact with air apparently due to the dissolution of atmospheric CO$_2$ into these low alkaline waters with poor buffering capacity.

Isotopic fractionation factors (α) between phases x and y were calculated according to Eq. 3:

$$\alpha_{x-y} = \frac{1000 + \delta_x}{1000 + \delta_y}$$ \hspace{1cm} (3)

where δ refers to the determined isotopic compositions in ‰ relative to standard (Eq. 1). The correlation between α and temperature (T, in Kelvin) is:
Isotopic separation (Δ) between phases x and y is simply the difference in their δ-values:

$$\Delta_{x-y} = \delta_x - \delta_y$$

4. RESULTS

4.1 Gas composition

A compilation of gas data, including sampling depths and methods, collected from the Outokumpu Deep Drill Hole and the Pyhäsalmi mine is given in the Electronic Annex (Table EA1). CH$_4$ and N$_2$ are by far the most abundant dissolved gases at Outokumpu, while H$_2$ becomes dominant in the deepest part of the drill hole. At Pyhäsalmi the gas phase is dominated by N$_2$ and He. The PDS samples from 500 and 2480 m depths and the sample PYS-2 from the Pyhäsalmi mine have suffered from severe air contamination (O$_2$ > 5 vol-%), but some O$_2$ is present in virtually all samples. The pressurised samples are relatively enriched in H$_2$ and He and depleted in CH$_4$ compared to samples obtained by pumping, the tube sampler or from free flowing fluid in the mine. At Outokumpu CH$_4$/(C_2H$_6$ + C_3H$_8$) ratio varies from 71 to 333 (Table EA1), such that a decrease is observed towards the surface. At Pyhäsalmi CH$_4$/C$_2$+ ratios are typically < 10, with only one drill hole (R-2250) having a significantly higher ratio of 164 (Table EA1). Ethene, propene and butene were below analytical detection (0.001 vol-%) in all samples.

4.2 Isotopic composition of gases

The isotopic compositions of CH$_4$, C$_2$H$_6$, C$_3$H$_8$ and H$_2$ are given in Table 2. Variation in the isotopic composition of CH$_4$ is large from -404 to -136‰ VSMOW for δ^2H$_{CH_4}$ and from -39.9 to -13.2‰ VPDB for δ^{13}C$_{CH_4}$, although most samples have δ^2H$_{CH_4}$ around -280‰ VSMOW and δ^{13}C$_{CH_4}$ around -30‰ VPDB (Fig. 2). 13C depleted and 2H enriched CH$_4$ is unique for the depth of 1470 m at Outokumpu and 13C enriched and 2H depleted CH$_4$ is only found below 2260 m depth. The minimum and maximum values of δ^2H$_{CH_4}$ and δ^{13}C$_{CH_4}$ are generally those from the pressurised samples (PDS and
PAVE). However, the isotopic compositions are not systematically shifted compared to the tube
samples.

Similarly to CH\textsubscript{4}, the most 13C enriched C\textsubscript{2}H\textsubscript{6} is found from the 2480 m depth at Outokumpu and deep
samples from the Pyhäsalmi mine. A fracture zone at 180 m depth has distinctive \(\delta^2\text{H}_{\text{C}_2\text{H}_6}\) values as
heavy as -152‰ VSMOW, while the other samples have \(\delta^2\text{H}_{\text{C}_2\text{H}_6}\) around -250‰ VSMOW (Table 2).

Isotopic data of C\textsubscript{3}H\textsubscript{8} are only available for carbon from two depths from Outokumpu (500 and 2260 m) and only pumped fluids are represented. Nevertheless, the isotopic composition of carbon seems to
be systematically lighter from CH\textsubscript{4} to C\textsubscript{3}H\textsubscript{8} and C\textsubscript{2}H\textsubscript{6}, except samples from tube sampling in May 2011
which, with no apparent reason, show anomalously 13C rich values of C\textsubscript{2}H\textsubscript{6} (Table 2). This indicates a
\(\delta^{13}\text{C}\) vs. carbon number trend is V-shaped (Fig. 3) rather than normal (ascending) or inversed
(declining), i.e. neither of the two trends which have often been related to thermogenic and FTT type
abiotic hydrocarbons, respectively (e.g., Sherwood Lollar et al., 2002; Etiope and Sherwood Lollar,
2013; Zhang et al., 2013). Hydrocarbons at Pyhäsalmi seem to differ from this pattern as they show
enrichment of 13C in C\textsubscript{2}H\textsubscript{6} over CH\textsubscript{4} (Fig. 3).

Molecular hydrogen is extremely depleted in deuterium with the measured isotope range from -798 to
-727‰ VSMOW at Outokumpu and from -736 to -680‰ VSMOW at Pyhäsalmi. While the addition of
HgCl\textsubscript{2} into one of the gas samples from Pyhäsalmi (PYS-1B) did not affected the C or H isotopic
composition of CH\textsubscript{4}, the \(\delta^2\text{H}\) value of H\textsubscript{2} was 56‰ higher in the fixed sample compared to the
untreated sample taken at the same time (Table 2). This one control with eliminated biological activity
is clearly not enough for making generalised conclusions on the possible microbial processes during
sample storage. However, there was no difference in the concentration of H\textsubscript{2} between the comparative
samples which could indicate microbial production or consumption of H\textsubscript{2} (Table EA1).

\textbf{4.3 Dissolved inorganic carbon}

The modelled concentrations of DIC are very low (Table 2), with an average of 0.16 mmol l-1 at
Outokumpu and only 2 µmol l-1 at Pyhäsalmi. Governed by pH and Ca concentration, the main
constituent of DIC is HCO\textsubscript{3}- or CaCO\textsubscript{3(aq)} above and below 1500 m, respectively. The isotopic
composition of DIC varies from -18.1 to -0.8‰ VPDB with a general increase in 13C with depth (Table 2, Fig. 4).

4.4 Fracture mineralogy

At Outokumpu saturation indices (SIs) of calcites at the ambient temperature and 1 bar pressure typically vary from 0.5 to 1.5 and only the two PDS samples from 1470 m depth show slightly negative SI values (down to -0.12) which are indicative of possible dissolution of calcite. At Pyhäsalmi, however, SI values for calcites are mostly negative as is also demonstrated by the absence of calcites on the fracture surfaces. Except the few more coarse grained (mm sized) crystals found from around 500 m depth (Table 3), calcite occurs as fine, powdery layers, thin films or medium sized crystals on fracture surfaces and veins at Outokumpu, and is typically accompanied by zeolite minerals and chlorite. Pyrite and pyrrhotite are common accessory minerals. Eu- to subhedral, box shaped crystals of calcite were most common but elongated crystals were also found (Table 3). Even though the modelled values show oversaturation of calcite throughout the studied range of compositions and depth at Outokumpu no calcite was found below 1500 m depth. Instead, the most common fracture filling minerals below 1500 m are prehnite (Ca$_2$Al$_2$Si$_3$O$_{10}$(OH)$_2$) and Ca-zeolite (laumontite; CaAl$_2$Si$_4$O$_{12}$$•$4(H$_2$O)). Overall, fractures become scarce in the deeper part of the drill hole.

4.5 Isotopic composition of calcites

The isotope geochemistry of fracture filling and vein calcites from the Outokumpu Deep Drill Hole is presented in Table 3. The δ^{18}O values range from -18.7 to -9.7‰ VPDB and the δ^{13}C values from -19.64 to -3.43‰ VPDB. Calcites associated with the Outokumpu assemblage rocks have a narrow range of carbon compositions from -9 to -5‰ VPDB. The δ^{18}O values of these calcites are more variable, although all veins/fractures containing chalcopyrite plot between -16 and -14‰ VPDB.

5. DISCUSSION

In order to understand carbon cycling in general, and CH$_4$ formation processes in particular, we need to know 1) what are the potential sources of hydrogen and carbon needed to build a CH$_4$ molecule, 2) are
there some physicochemical conditions or microorganisms which could affect CH$_4$ formation and 3) is CH$_4$ further consumed, oxidized, polymerized or escaped? In this study we aimed to answer these questions by combining isotope geochemistry of carbon and hydrogen bearing phases with information on lithology and microbiology at Outokumpu and Pyhäsalmi and further extending the study to cover the Fennoscandian Shield based on previously published data. First we start by discussing the different sampling methods and representativeness of the data.

5.1 Comparison of different fluid sampling methods

In a previous study (Kietäväinen et al. 2013) good correlation was observed in the anion and cation contents and composition as well as the isotopic composition of groundwater between the tube sampling and PDS methods at Outokumpu. However, this study has demonstrated that in the case of gases the selection of the sampling method plays a more critical role. Most notably, differences in the isotopic composition of CH$_4$ were observed between the pressurised (PDS and PAVE) and non-pressurised (tube and pumping) methods. However, the shift in the isotopic compositions was not systematic with respect to sampling method. Therefore the difference cannot be explained by mass dependent isotopic fractionation. For the same reason it is not likely that the changes appeared due to sample storage in different kind of vials.

Based on geochemical and water stable isotope data (Kietäväinen et al. 2013), and supported by the compositional data of gases (Fig. 5), up to five different water types can be discerned at Outokumpu. Therefore, the tube sampling and pumping may give the average composition while the pressurised methods are able to more precisely capture a fluid from a particular depth. In particular, mixing of gases can be promoted by the pressure drop and release of gases during pumping and tube sampling before the fluid reach the surface. Thus, the most likely explanation of the observed differences in the isotopic composition of CH$_4$ between pressurised and non-pressurised methods is mixing of gases from different fracture systems and different depths either along the drill hole or within the tube. Likewise, the observed relative enrichment of H$_2$ and He in the pressurised samples can be explained by bubbling as these gases are among the least soluble and thus will be preferentially escaped during degassing. Indeed, during pumping gas compositions fluctuated in a non-linear manner which could be indicative of bubble formation (Table EA1, Fig. 5). Bubbling is also observed at the well head at Outokumpu.
However, the depth at which spontaneous degassing takes place in the drill hole without pumping is likely less than 150 m based on the concentrations and solubility of the main gaseous components (Kietäväinen et al., 2014; Heikkinen 2016).

In Fig. 5 we use the CH\textsubscript{4}/N\textsubscript{2} and N\textsubscript{2}/Ar ratios and δ^{13}C\textsubscript{CH\textsubscript{4}} values to compare the results obtained by the different sampling techniques and further investigate post-genetic and post-sampling processes capable of modifying the composition of the gas. The CH\textsubscript{4}/N\textsubscript{2} and N\textsubscript{2}/Ar ratios are likely governed by the organic carbon composition and content of the source (e.g. Jenden et al., 1988), and may change due to bubbling (solubility), mixing (e.g. Darrah et al., 2014) and, at very long time scales, also by the accumulation of radiogenic Ar. However, as long as only advection is considered, no isotopic fractionation should occur in these processes. Bubbling for example should change the gas composition only along the y-axis in Fig. 5c and d due to preferential partitioning of the less soluble N\textsubscript{2} in the gas phase, and consequential depletion in the remaining fluid. This means that samples taken during and after a bubble burst will differ in their relative gas composition but, if bubbles originate from sources with different isotope signature, may also express linear change in the isotope composition of CH\textsubscript{4}.

Diffusion will also preferentially remove N\textsubscript{2} but may also produce 13C (and 2H) depletion in the diffusing gas while the residual gas will become isotopically heavy (e.g. Prinzhofer and Huc, 1995; Schloemer and Krooss, 2004), although e.g. Fuex (1980) and Schoell (1983) have argued that diffusion related isotope effects will be negligible and may only pertain non-steady state processes, if any, on hydrocarbons. In any case, the overall isotope trend at Outokumpu which shows inverse correlation of δ^{2}H\textsubscript{CH\textsubscript{4}} with δ^{13}C\textsubscript{CH\textsubscript{4}}, does not support modification of isotope composition of CH\textsubscript{4} through diffusion.

When accompanied with decrease and increase of the δ^{13}C\textsubscript{CH\textsubscript{4}} value, respectively, the decrease and increase in the CH\textsubscript{4}/N\textsubscript{2} ratio can also be due to methanogenesis and oxidation of CH\textsubscript{4}, in which case no change in the N\textsubscript{2}/Ar ratio is expected. Oxidation seems to explain the difference between the results obtained by pumping and PDS at 1820 m depth and difference in the isotopic composition of CH\textsubscript{4} between the drill holes R-2247 and R-2227 at Pyhäsalmi (Fig 5.c,d). However, the most 13C rich CH\textsubscript{4} observed at Outokumpu (2480 m) cannot be explained by oxidation, most notably because of the high CH\textsubscript{4}/C\textsubscript{2+} value (Table EA1), and depletion in 2H (Fig. 2).

5.2 Hydrogen in the system H\textsubscript{2}O-H\textsubscript{2}-CH\textsubscript{4}
Incorporation of hydrogen into the CH\textsubscript{4} molecule can happen either from H\textsubscript{2}O, organic matter or H\textsubscript{2}. Due to their lower mass and position in a CH\textsubscript{4} molecule, equilibration of hydrogen isotopes occurs more easily than carbon isotopes (Lyon and Hulston, 1984; Ni et al., 2011; Reeves et al., 2012). This means that hydrogen may be a more sensitive tracer for CH\textsubscript{4} forming processes compared to carbon. However, information carried by hydrogen on its origin may be more easily lost at geological time scales.

H\textsubscript{2} is a common constituent of the gas phase at both Outokumpu and Pyhäsalmi (Table EA1). In Figure 6a-b, the isotopic fractionation of hydrogen in the system H\textsubscript{2}O-H\textsubscript{2}-CH\textsubscript{4} is used to examine possible equilibration of the Outokumpu and Pyhäsalmi samples with temperature. Fractionation factors (\(\alpha\)) given by Horibe and Craig (1995) for a temperature range 0-370ºC were used to calculate the isotopic concordance curves shown (Eq. 4). For low temperatures (< 200°C) the fractionation is best established between H\textsubscript{2}O and H\textsubscript{2} while higher uncertainties are related to the equilibration of hydrogen between CH\textsubscript{4} and H\textsubscript{2} or H\textsubscript{2}O (Horibe and Craig, 1995). Nevertheless, the results fit well with each other for this limited set of samples and indicate isotopic equilibrium at ambient, or slightly higher, temperatures (Fig. 6). Thus, CH\textsubscript{4} seems to have formed at equilibrium controlled reactions \textit{in situ} or to represent gas component which has later equilibrated with H\textsubscript{2} and H\textsubscript{2}O. However, when the whole sample set is considered, it is apparent that, especially in the samples obtained by the pressurised methods at Outokumpu, CH\textsubscript{4} is not in isotopic equilibrium with H\textsubscript{2}O at \textit{in situ} temperatures from 5 to 40°C (Fig. 7).

The time span needed for hydrogen isotopes to equilibrate in the system H\textsubscript{2}O-H\textsubscript{2}-CH\textsubscript{4} is not well constrained but some experimental data and approximations do exist. Using the equations for optimum 99% equilibration of \(^{13}\)C between CO\textsubscript{2} and CH\textsubscript{4} from Giggenbach (1982) and rate constants for H\textsubscript{2}-H\textsubscript{2}O and H\textsubscript{2}-CH\textsubscript{4} isotope exchange determined by Lécluse and Robert (1994), Suda et al. (2014) calculated that at 50°C the isotopic equilibrium between H\textsubscript{2} and H\textsubscript{2}O can be attained within 100 years while the equilibration between H\textsubscript{2} and CH\textsubscript{4} would take 3000 years. The isotopic equilibration of hydrogen between H\textsubscript{2}O and CH\textsubscript{4} is likely to be in the same order or slower (Lyon and Hulston, 1984; Suda et al., 2014), and has been reported for natural gas accumulations in a deep sedimentary basin (Burruss and Laughrey, 2010). Lin et al. (2005b) suggested that in natural bedrock environments, residence time of
around 1 Ma should be sufficient to equilibrate the hydrogen isotopic compositions in the system H_2O-H$_2$ to reflect \emph{in situ} temperatures; the time span of which is still clearly less than the estimated residence times of groundwaters at Outokumpu between 4 and 58 Ma (Kietäväinen et al., 2014).

However, in the presence of H$_2$ utilizing microorganisms, the equilibration of hydrogen isotopes may take place remarkably fast. In particular, sulphate reducers and methanogens, also found at Outokumpu and Pyhäsjärvi (Itävaara et al., 2011; Nyyssönen et al., 2014; Purkamo et al., 2013, 2015a, 2015b; Miettinen et al., 2015), have been observed to equilibrate hydrogen isotopes between H$_2$O and H$_2$ within seconds in their metabolic processes (Romanek et al., 2003; Valentine et al., 2004).

Compared to CH$_4$, hydrogen isotopes of C$_3$H$_8$ can be even more readily exchanged with water and, at long time scales, the isotopic exchange may be significant also for C$_2$H$_6$ (Reeves et al., 2012). Based on the equilibrium fractionation determined by Wang et al. (2009) for H isotope exchange between H$_2$O and C$_2$H$_6$, which is much less temperature dependent than fractionation between H$_2$O and CH$_4$, and not as likely to be affected by microbial activity, $\delta^{2}\text{H}$ values below -990‰ VSMOW would be expected for C$_2$H$_6$ in equilibrium with H$_2$O at Outokumpu. Instead the $\delta^{2}\text{H}_{\text{C}_2\text{H}_6}$ values are between -277‰ and -153‰ VSMOW (Table 2). This suggest that, when observed, the isotopic equilibration of H in the system H$_2$O-H$_2$-CH$_4$ is likely controlled by other factors than the long residence time, such as microbial activity. Difference between the pressurised and non-pressurised methods may arise from technical reasons, most notably the immediate separation of gas from water, which should prevent post-sampling changes in the PDS samples.

Beyond the equilibration processes, hydrogen isotope fractionation between CH$_4$ and H$_2$O is also dependent on the relative proportion of H derived from H$_2$O and other sources, and therefore should differ between CO$_2$ reduction (H from H$_2$O) and acetate fermentation (H from organic matter and H$_2$O) pathways (Fig. 7, Sugimoto and Wada 1995; Whiticar 1999). In the case of CH$_4$ formation from graphite (e.g. 2C + 2H$_2$ = CH$_4$ + CO$_2$, or C + 2H$_2$O + 4Fe$_3$O$_4$ = 3Fe$_2$O$_3$ + CH$_4$; Burruss and Laughrey, 2010), the fractionation would likely be similar to CO$_2$ reduction as in both cases H$_2$O provides the only hydrogen source. While most of the variation among the samples from Outokumpu and Pyhäsjärvi may be explained by the change in the relative proportion of CO$_2$ reduction and acetate fermentation, values exceeding the suggested limits do occur.
Isotopic composition of CH$_4$ is also subject to change after the formation. Such secondary fractionation typically leads to either enrichment or depletion of both C and H isotopes in the same direction (Schoell, 1988). When accompanied with enrichment in 13C (Whiticar, 1999; Etiope et al., 2011), the shift towards the less negative δ^2H$_{CH_4}$ values in Fig. 7 could be due to oxidation of CH$_4$. In Pyhäsalmi the more 2H and 13C enriched CH$_4$ from the shallower and more recently made drill hole R-2227, which contains significantly less CH$_4$ than the drill hole R-2247, might represent oxidised gas, possibly affected by the drilling. However, at Outokumpu the isotopic composition of CH$_4$ at 1470 m depth does not indicate such post-formational changes as the depletion of 2H is coupled with enrichment of 13C (Fig. 2). Instead, distinct rock types surrounding the 1470 m depth, which include serpentinite and thick layers of black schist, may provide an explanation for the different isotopic composition of CH$_4$. In the case of deep sourced samples, the larger isotope offset towards the more negative δ^2H$_{CH_4}$ values may be caused by the high partial pressure of H$_2$ (Burke 1993, Sugimoto and Wada 1995). The high $\alpha_{H_2O-CH_4}$ of up to 1.56 below 2300 m depth could also be indicative of abiotic CH$_4$ (Sherwood Lollar et al., 2008), although high $\alpha_{H_2O-CH_4}$ values have also been reported for microbial CH$_4$ produced by the hydrogenotrophic methanogen *Methanobacterium formicicum* (Balabane et al., 1987).

5.3 Carbon in the system CH$_4$-DIC-calcite-graphite

First of all, the carbon isotopic composition of CH$_4$ depends on the carbon source. At Outokumpu isotopic data on all phases in the system CH$_4$-DIC-calcite-graphite, together with additional isotopic and geochemical information such as noble gas isotopes (Kietäväinen et al., 2014) is available which allows us to study the carbon sources and sinks in detail. At Pyhäsalmi, however, the possible carbon sources are more limited and the information on the carbon isotope composition, other than that of hydrocarbons, was not studied and thus will not be discussed here.

Previously the heaviest isotopic compositions of CH$_4$ have been related to gases with more than 5% mantle helium (Etiope and Sherwood Lollar, 2013). However, at Outokumpu the extremely 13C-rich CH$_4$ values found below 2300 m are associated with He which has an entirely radiogenic isotope signature (Kietäväinen et al., 2014) and thus a mantle source for the more soluble CH$_4$ can be excluded. Hence, the main sources of carbon include dissolved and crystalline carbonate carbon as well as refractory organic carbon, mainly graphite, within the crust.
Carbon isotopic compositions from the fracture and vein calcites in this study fall between -3 and -20‰ VPDB (Fig. 8a). Even though the modelled positive SI values of calcites suggest calcite precipitation throughout the drill hole section, observations of calcite fillings were limited to the uppermost 1.5 km. The discrepancy is likely related to the increase in the solubility of calcite with pressure which was not taken into account in the model. In addition, the preservation of the latest, and probably the loosest, fracture fillings may be poor because of the rotary drilling technique used. Only few of the more 13C depleted calcites have isotopic composition in equilibrium with the present DIC (Fig. 8a), while the oxygen isotopes of calcites and present groundwater seem to be more interconnected (Fig. 8b). In part the variations are likely due to different calcite generations, some of which can be remarkably old. These include hydrothermal calcites which are characterised by heavy δ13C values, typically above -10‰ VPDB, due to preferential fractionation of 12C into vapour phase (steam) during boiling in open system conditions, as well as 18O depleted values (Clark and Fritz, 1997; Wallin and Peterman, 1999; Blyth et al., 2009). In this group belong calcites associated with the Outokumpu assemblage rocks between 1300 and 1500 m depth (Fig. 8).

Several studies have also shown that carbon isotopic composition of calcites reflect changes emanating from microbial activity (e.g. Pedersen et al. 1997; Blyth et al., 2009; Drake et al., 2015; Sahlstedt et al., 2016). In connection with the modest δ18O_cal value indicative of precipitation from meteoric water at varying degrees of water-rock interaction, the 13C enriched values may originate from microbial methanogenesis because microbes prefer 12C in their metabolic reactions therefore leaving the remaining DIC enriched in 13C (Claypool et al., 1985; Clark and Fritz, 1997; Blyth et al., 2009). In the other end, carbon input from the oxidation of CH4 is characterised by extremely 13C poor values in calcites, the most 13C depleted values below -15‰ VPDB thus indicating that some CH4 derived carbon was probably encountered. These occur close to the presently hydraulically active fracture zones at 500 and 1000 m depths as well as in the upper 250 m (Fig. 8).

While carbon originating from the microbial oxidation of CH4 seems to be recorded in some of the calcites at active fracture zones, the source of carbon for the build-up of hydrocarbons is less evident. At Outokumpu the isotopic separation (Eq. 5) between DIC and CH4, ranges from 11 to 25‰, or between ~8 and 23 ‰ if the δ13C_CH4 values of only the PDS samples are considered (Fig. 4). Although
the enrichment of DIC with 13C can occur due to microbial methanogenesis (Claypool et al. 1985), the observed simultaneous increase in δ^{13}C$_{\text{CH}_4}$ as most clearly observed at 500 and 2260 m depths (Fig. 4, does not support such isotopic evolution. Furthermore, the values of $\alpha_{\text{DIC-CH}_4}$ (< 1.025) are not consistent with microbial methanogenesis through the CO$_2$ reduction pathway (Valentine et al., 2004; Sherwood Lollar et al., 2008). However, where aceticlastic methanogens dominate the $\Delta_{\text{DIC-CH}_4}$ is expected to be lower, because the use of organic compounds would not directly affect the isotopic composition of DIC, or abiotic reaction mechanisms may dominate. Unlike hydrogen isotopes in the system H$_2$O-H$_2$-CH$_4$, equilibration of carbon is more unlikely due to sluggish kinetics (Sherwood Lollar et al., 2008), and thus, even though DIC and CH$_4$ are far from isotopic equilibrium

$$(1000\ln \alpha_{\text{CHCO}_3-\text{CH}_4} = 76.1\% \text{e} \text{ at } 25^\circ\text{C}; \text{ Clark and Fritz, 1997 after Bottinga, 1969 and Mook et al., 1974})$$

at Outokumpu, abiotic CH$_4$ formation from CO$_2$ is possible in the light of DIC isotopes.

Graphite rich black schist form another potential carbon source at Outokumpu. Compared to DIC, isotopic fractionation of carbon between graphite and CH$_4$ is likely to be lower, as the reaction does not take place through a dissolved phase. In Outokumpu, within the depth range where graphitic rocks are abundant, the isotopic composition of CH$_4$ (Fig. 4) is very close to or only slightly depleted in 13C compared to graphite (δ^{13}C -27.4...-18.4‰ VPDB; Taran et al., 2011). It has been experimentally shown that fractionation is lower if the starting material is graphite compared to CH$_4$ formation from for example gaseous components (Zhang et al., 2013). This is because CH$_4$ formation takes place only at the mineral surface where carbon isotopes are randomly dispersed (Zhang et al., 2013). Thus, notable fractionation of carbon isotopes between graphite and CH$_4$ is not expected.

The isotopic composition of CH$_4$ can also depend on the amount of substrates available. The closeness of the system tends significantly decrease fractionation as in the case of near-complete conversion of substrates into CH$_4$ the isotopic fractionation could follow the Rayleigh distillation trend eventually leading to minimal fractionation (Bradley et al., 2009; Kelley et al., 2012; Tazaz et al., 2013; Suda et al., 2014). Isotope fractionation may also decrease under unlimited supply of substrates. For example, Valentine et al. (2004) observed that the high partial pressure of H$_2$ decreased fractionation between CO$_2$ and CH$_4$. They suggest that this could be due to limited reversibility of methanogenesis at excess H$_2$. High partial pressure of H$_2$ may also inhibit some methanogenic species (Thauer et al., 2008), thus changing the reaction pathway or even limiting it to abiotic. A combination of limited carbon supply
with excess H$_2$ could explain the high $\delta^{13}C_{\text{CH}_4}$ values especially below 2300 m depth at Outokumpu and at Pyhäsalmi.

5.4 Carbon in the system CH$_4$-C$_2$H$_6$-C$_3$H$_8$

Even though some subsurface microorganisms may be capable of producing longer chained hydrocarbons (e.g. Taylor et al., 2000; Hinrichs et al., 2006), the vast majority of microbially generated hydrocarbon gas is CH$_4$, and the high CH$_4$/C$_2$+ ratio (>1000) is commonly used to separate microbial from thermogenic CH$_4$, even though lower ratios may also be observed due to preferential consumption (oxidation) or escape (diffusive or advective migration) of CH$_4$ (Bernard et al., 1976; Printzhofer and Huc, 1995; Whiticar, 1999). Figure 9 shows the classification of CH$_4$ into microbial and thermogenic based on the CH$_4$/C$_2$+ ratio in combination with the isotopic composition of CH$_4$, i.e. the classical Bernard diagram for the samples from the Fennoscandian Shield (Table EA2). In addition, potential limits are suggested for abiotic CH$_4$ in Fig. 9 which are based on data from the Zambales ophiolite (ZO) and mid-ocean ridges (MOR) (Horita and Berndt, 1999 and references therein), and artificial CH$_4$ from bit-metamorphism (Faber et al., 1999). If, instead, previous data from the Precambrian Shields with $\delta^{13}C_{\text{CH}_4}$ values down to -50‰ VPDB are considered abiotic (cf. Fig. 2 and Sherwood Lollar et al. 1993b), the abiotic field would essentially include the whole thermogenic field.

The CH$_4$/C$_2$+ ratio is not capable of distinguishing abiotic hydrocarbons from microbial and thermogenic very well because the former can have both high and low ratios (Faber et al., 1999; Horita and Berndt, 1999; Tassi et al., 2012). For example, hydrocarbons produced by clay catalysed reactions differ from those of FTT synthesis, as they contain more aromatic compounds, instead of the dominance of linear alkanes typical for FTT, while the organosulphur pathway lacks alkane and alkene products (McCollom, 2013). Longer chained alkanes are also more probably produced in gaseous than aqueous systems (Lewan and Roy, 2011). When associated with extremely H-poor and ^{13}C-rich CH$_4$, high concentrations of both H$_2$ and unsaturated hydrocarbons, the high CH$_4$/C$_2$+ ratio may indicate artificial CH$_4$ formed (from organic compounds often added in the drilling fluid) by bit-metamorphism (Faber et al., 1999). In this light, different formation processes can explain the different CH$_4$/C$_2$+ ratios of similarly ^{13}C enriched CH$_4$ at Outokumpu and Pyhäsalmi.
A further indication of different formation mechanisms comes from the comparison of δ^{13}C compositions of the alkanes (Fig. 3). The typical V-shaped pattern at Outokumpu is similar to that reported by Sherwood Lollar et al. (2008) from the Kidd Creek mine and four other sites in Precambrian shields in Canada and South Africa which they explained by abiotic polymerisation of hydrocarbons. In their model, the first step (CH$_4$ → C$_2$H$_6$) is associated with isotope depletion but the fractionation then diminishes due to rapid polymerisation and is thereafter only controlled by isotope mass balance which leads to slight enrichment of 13C from C$_2$H$_6$ onwards (Sherwood Lollar et al., 2008). The initial step of hydrocarbon generation by this mechanism could not be experimentally reproduced (McCollom et al., 2010) and the actual mechanism still remains elusive. Low (or decreasing) temperature might be a prerequisite for the preservation of such pattern as the polymerised hydrocarbons cannot split, and may explain why this trend is more common in nature than in experiments which have usually been performed at increasing temperatures (Zhang et al., 2013). Reversal of the carbon isotope trend may also be formed at the latest stages of thermogenic gas formation after the formation of longer chained hydrocarbons has ceased, allowing Rayleigh-type fractionation of carbon isotope composition of C$_2$H$_6$ and C$_3$H$_8$ to occur (Burruss and Laughrey 2010), thus it may indicate shift from thermogenic to abiotic processes at environments where refractory organic carbon sources are present.

At Pyhäsalmi C$_2$H$_6$ is depleted in 12C compared to CH$_4$ (Fig. 3), a trend that has been commonly associated with thermogenic hydrocarbons in which it forms as the result of break-up of organic molecules with increasing temperature (e.g. Sherwood Lollar et al., 2002; Zhang et al., 2013). The isotopic compositions are, however, much more 13C enriched than in conventional thermogenic hydrocarbon occurrences and it is also difficult to find a plausible source for such gas in metavolcanic rocks.

5.5 Evidence for microbial methane

Methanogenic microorganisms have been found from both Outokumpu and Pyhäsalmi (e.g. Itävaara et al., 2011; Purkamo et al. 2015a, 2015b; Miettinen et al., 2015). Among the other sites within the Fennoscandian Shield, where isotopic data of CH$_4$ are available (Fig. 1), methanogens have been found also from Olkiluoto (Pedersen et al., 2008; Nyssönen et al., 2012; Bomberg et al., 2014), but not from
Gravberg (Szewzyk et al. 1994), Hästholmen, Kivetty or Romuvaara (Haveman et al., 1999). To our knowledge, the other sites depicted in Fig. 1 have not been studied for their microbiology.

Methanotrophs, which oxidize CH$_4$ for living, also commonly accompany methanogens in deep crystalline rock environments (Nyyssönen et al., 2012; Purkamo et al., 2015a; Bomberg et al., 2015). However, methanogens and methanotrophs typically form only a marginal group of the microbial communities studied (e.g. Miettinen et al., 2015; Purkamo et al. 2015a, 2015b; Simkus et al., 2016). In contrast to previous views which suggest that the deep biosphere is dominated by autotrophs, Purkamo et al. (2015a) hypothesised that the biological deep carbon cycling in Outokumpu is mainly evoked by heterotrophic bacteria. The role of methanogens and methanotrophs in providing carbon for the whole community may however be more important than suggested by their relative proportion (Simkus et al., 2016).

In the Outokumpu Deep Drill Hole groundwater, methanogenic activity is both more common and more versatile at shallower depths above 1 km compared to the deeper levels (Purkamo et al., 2015a, 2015b). Purkamo et al. (2015b) retrieved methanogen communities from the DNA extracted from the fracture fluids of 180, 500, 2260 and 2300 m depths but only the samples from 500 and 967 m contained methanogen RNA. As RNA is used as a proxy for metabolically active species, this may indicate that the active microbial methanogenesis is restricted to the upper 1 km of the drill hole, or the deep dwelling methanogenic species cannot be detected with the methods used. Likewise, methanotrophy is more common at shallower depths not only at Outokumpu where methanotrophic communities have been found at 600, 900 and 1500 m depths but not from deeper levels (Purkamo et al. 2015a) but also in other sites within the Fennoscandian Shield (Kietäväinen and Purkamo, 2015).

Methanogenic species also vary with depth. At Outokumpu, aceticlastic (heterotrophic) Methanosarcinales prevail in the upper part of the drill hole and hydrogenotrophic (autotrophic) Methanobacteriales below 1300 m (Nyyssönen et al., 2014; Purkamo et al., 2015a). At Pyhäälmi Methanobacteriales was the most common archaeal order found by DNA and RNA sequencing methods, although in the drill hole R-2247 Thermoplasmata, some of which also belong to methanogens, were dominating the archaeal RNA fraction (Miettinen et al., 2015). Indeed a general trend can be detected worldwide within the Precambrian shields that methanogens are more...
metabolically diverse at shallower depths (Kietäväinen and Purkamo, 2015). Isotopic compositions of CH$_4$ among the Fennoscandian Shield sites also show that δ^{13}C$_{CH_4}$ values below -40‰ are exclusively found in the upper 1 km depth while values heavier than -20‰ appear to be more common at depths greater than 1.5 km (Fig. 10). At some extent this can be due to biased data as samples below 1.5 km are from only three sites (Outokumpu Deep Drill Hole, Pyhäsalmi and Gravberg) and from depths which mainly represent volcanic and igneous rocks. However, similar results have been recently obtained in the Witwatersrand basin in South Africa (Simkus et al., 2016).

5.6 Evidence for lithological control on the amount and isotopic composition of methane

Within the Fennoscandian Shield sites the depth dependence of CH$_4$/C$_2$+ ratio (Fig. 11) is poor. Instead the variation in CH$_4$/C$_2$+ seems to vary from site to site, which may indicate lithological control on the production of hydrocarbons. Previous observations from around the world suggest that in general hydrocarbons in igneous rocks have low CH$_4$/C$_2$+ ratios (<100), such as those at Pyhäsalmi, while higher ratios, similar to those at Outokumpu, have been found in the Zambales ophiolite and sediment covered ridges and even higher values (>1000) in the sediment free mid-ocean ridges (Fig. 9; Horita and Berndt, 1999; Tassi et al., 2012 and references therein). The differences may be related to availability of organic carbon sources or microbial activity, but may also arise from the differences in the abiotic formation mechanism and temperature/or pressure (see also discussion in 5.4).

Within the occurrences of crustal CH$_4$ in the Fennoscandian Shield (Fig. 1), the most 13C depleted values are from Enonkoski (Sherwood Lollar et al., 1993a), Muhos and Tynrävä (Heikkinen, 1972) (Fig. 10). The last two sites also drastically differ in their lithology from the other sites. They are located within glacial sediments on top of a 1300 Ma, non-metamorphosed sedimentary rocks (shale). These represent typical microbial CH$_4$ formed at low temperatures from abundant organic rich matter. Shallow (< 300 m) groundwater within non-metamorphosed sandstone of Pori also contains low amounts of relatively 12C-rich CH$_4$ (Sherwood Lollar et al., 1993a).

The other sites have suffered from high temperature, meaning that preferable escape of lighter isotope has likely taken place leaving the remaining refractory organic remains depleted in 12C (in the case of organic rich metasediments) or 12C rich carbon perhaps never existed (in the case of magmatic rocks).
At Olkiluoto a hydraulically dynamic upper layer of around 200 m thick occurs (e.g. Pitkänen and Partamies, 2007) which could provide microbes with abundant carbon and explain the sporadic discoveries of 12C rich CH$_4$. However the 12C-rich CH$_4$ at Enonkoski, interpreted by Sherwood Lollar et al. (1993a) to represent microbial CH$_4$, is more enigmatic and the other sites with confirmed methanogenic activity do not generally show similar isotopic compositions together with C$_2$+ enriched composition of the gas (Fig. 9).

Deep levels of the Pyhäsalmi mine are an example of magmatic rock environment where most of the CH$_4$ has likely formed at high temperature, and possible artificial, abiotic synthesis. In addition to CH$_4$ such synthesis has also produced higher amounts of C$_2$+ compounds (Fig. 9), but resulted in overall low potential of hydrocarbon generation, and thus low concentrations of hydrocarbons and, opposed to abiotic low temperature hydrocarbons, may be characterised by 13C enrichment with the increasing chain length. In this same group belong Hästholmen (Haveman et al., 1999) and Gravberg (Jeffrey and Kaplan, 1988) sites which are both located in granitic rocks and Romuvaara where the bedrock consists of tonalite gneiss (Haveman et al., 1999). Slightly more 12C-rich CH$_4$ is found from groundwater within granitic surroundings of Kivetty (Haveman et al., 1999) and serpentinite and gabbro of Ylivieska (Sherwood Lollar et al., 1993a). Except Ylivieska, with the maximum of 8.5 mmol l$^{-1}$ CH$_4$ (Sherwood Lollar et al., 1993a), the concentrations of CH$_4$ remain well below 1 mmol l$^{-1}$ at these sites (Table EA2).

In contrast to volcanic and granitic rocks, sites within metasedimentary rocks including the Outokumpu Deep Drill Hole, Juuka, Olkiluoto, Vammala, Kotalahti and Sukkulansalo typically contain abundant CH$_4$ (Fig. 1, Table EA2) and have CH$_4$/C$_2$+ ratios generally > 100. The close relatedness of metasedimentary rocks, graphite rich black schists in particular, and the highest concentrations of CH$_4$ and high CH$_4$/C$_2$+ ratios together with δ^{13}C$_{CH4}$ usually between -40 and -20 ‰ VPDB strongly support the hypothesis that within the Fennoscandian Shield CH$_4$ is more commonly produced at low temperatures by microbial methanogenesis and/or abiotic reactions from ancient organic compounds (possibly through inorganic intermediates such as graphite) rather than at high temperature abiotic or thermogenic processes.

6. CONCLUSIONS
Our observations suggest that there is a lithological and microbiological control on the abundance and isotopic composition of CH$_4$ in deep bedrock environments. Differences are related to the availability of carbon and hydrogen sources as well as processes behind the incorporation of hydrogen and carbon via abiotic and biotic pathways into hydrocarbon molecules. Supported by the whole data set available from the Fennoscandian Shield, which shows that CH$_4$ is much more abundant in metasedimentary rocks than in magmatic rocks and exceptionally high if graphitic rocks are around, the carbon source for CH$_4$ formation is suggested to be mainly organic in origin. Rather than being thermogenic relic, crustal CH$_4$ within the Fennoscandian Shield is more likely produced at low temperatures from ancient organic compounds by microbial methanogenesis or abiotically through inorganic intermediates such as graphite. These crustal gases are characterized by the lack of major amounts of C$_2$+ hydrocarbons and 13C rich CH$_4$. Microbiological together with isotope geochemical evidence suggest that microbial methanogenesis and thus microbial CH$_4$ is more common at depths shallower than 1.5 km. Minor amounts of CH$_4$, especially in magmatic rock settings and greater depths, has likely formed at high temperature abiotic synthesis which has also produced higher proportions of C$_2$+ compounds, but resulted in overall lower potential of hydrocarbon generation, and thus lower concentrations of hydrocarbons.

ACKNOWLEDGEMENTS

We want to thank Satu Vuoriainen for cutting the fracture mineral samples, Arja Henttinen for the preparation of vials for DIC sampling and Arto Pullinen for assisting in the field. Bo Johanson helped with the SEM analyses. Elina Sahlstedt advised in the isotopic analyses of calcites. The Pyhäsalmi Mine (First Quantum Minerals) is thanked for the possibility to take samples in the mine; especially the help of Mikko Numminen and Toni Leskinen was indispensable. Lotta Purkamo provided valuable comments on the manuscript. Taru Toppi and Juha Karhu also contributed to this study. Randy Stotler, Tom Darrah and an anonymous Reviewer are thanked for their helpful comments on the manuscript. This study was funded by the Academy of Finland (Deep Life: Grant 133348/2009), the Finnish Research Program on Nuclear Waste Management (KYT2014 and KYT2018 grants to projects SALAMI and RENGAS, respectively) and Geological Survey of Finland. HN was supported by the Academy of Finland awarded Academy Fellow post (project 136455).
REFERENCES

Figure captions

Fig. 1. A simplified lithological map of the Fennoscandian Shield in Sweden and Finland showing the sites investigated for their isotopic composition of CH₄ in this study and Heikkinen (1972), Hyypää (1981), Jeffrey and Kaplan (1988), Sherwood Lollar et al. (1993a, 1993b), Haveman et al. (1999) and Pitkänen and Partamies (2007). Detailed lithologies are given for the Pyhäsalmi mine and Outokumpu Deep Drill Hole sites: MV = mafic volcanite, T = tonalite, FV = felsic volcanite, MS = mica schist, BS = black schist, O = ophiolitic rocks, GR = granodiorite. Basemap redrawn after Koistinen et al. (2001).

Fig. 2. Genetic classification of the Outokumpu Deep Drill Hole and Pyhäsalmi mine CH₄ based on the H and C isotopic composition. Fields are according to Etiope et al. (2013), and are based on traditional classification of microbial and thermogenic gas (e.g. Schoell 1988) and additional data from various geological environments. The abiotic field is based on data from volcanic-hydrothermal environments (V), serpentinized systems (S) and previous data from Precambrian shields (P) (Etiope et al. 2013 and references therein). Within the thermogenic field “O” refers to CH₄ occurring with oil and “D” refers to dry gas. Isotopic composition of CH₄ in the atmosphere (Mischler et al., 2009) is marked with X. For Outokumpu the samples are coded according the sampling technique: small circles = pumped, large circles = PDS and PAVE, and + = tube sampling. Pyhäsalmi samples = diamonds.

Fig. 3. Plot of carbon isotope compositions of methane, ethane and propane versus carbon number. Most of the samples from Outokumpu show relative depletion of ¹³C in C₂H₆ compared to CH₄ and few samples where isotopic composition of C₃H₈ was determined further reveal a V-shaped pattern. In contrast, two samples from Pyhäsalmi (R-2247) display increase in ¹³C with increasing chain length.

Fig. 4. Carbon isotope compositions of different carbon containing phases along the Outokumpu Deep Drill Hole. Major zones of groundwater flow are shown with white and gray arrows which indicate flow into the bedrock and into the drill hole, respectively (Ahonen et al., 2011; Kietäväinen et al., 2013). Isotopic composition of graphite is from Taran et al. (2011).
Fig. 5. a) CH₄/N₂ ratio and b) N₂/Ar ratio versus depth at Outokumpu and δ₁³C(CH₄) versus c) CH₄/N₂ and d) N₂/Ar at Outokumpu and Pyhäsalmi. All ratios have been corrected for air-contamination by assuming that the concentration of oxygen in indigenous fracture fluids is zero (Kietäväinen et al. 2014). Symbols as in Fig. 2. In a) and b) different water types described by Kietäväinen et al. (2013) on the basis of water stable isotopes and dissolved solids, are indicated with roman numerals and appear to correspond with different gas types. Fluctuation in the relative gas compositions during pumping likely reflects bubble formation (differences in solubility) and/or heterogeneous gas source. In c) and d) changes in the x-y space may occur due to oxidation (increase in δ₁³C(CH₄) and decrease in CH₄/N₂ ratio), methanogenesis (decrease in δ₁³C(CH₄) and increase in CH₄/N₂ ratio), diffusion (decrease in δ₁³C(CH₄), decrease in CH₄/N₂ and increase in the N₂/Ar ratio in the diffused gas), and mixing (linear change in the case of two component mixing). Although few samples (1820 m pumped, Pyhäsalmi R-2227) may have been affected by oxidation, most of the variation can be explained by mixing between gases emanating from different fracture zones.

Fig. 6. Hydrogen isotope concordance diagrams for the system CH₄-H₂O-H₂, based on equations for a) CH₄-H₂ and H₂O-H₂ and b) CH₄-H₂O and H₂-H₂O isotope equilibrium from Horibe and Craig (1995). Samples from the Outokumpu Deep Drill Hole (circles) and Pyhäsalmi mine drill hole R-2247 (diamonds) show equilibration temperatures below 50°C and 100°C, respectively.

Fig. 7. Isotopic fractionation of hydrogen between H₂O and CH₄. Equilibrium fractionation (Horibe and Craig 1995) is shown as broken lines for three different temperatures relevant for in situ conditions at the Outokumpu Deep Drill Hole and Pyhäsalmi mine. Characteristic fractionation related to microbial CO₂ reduction (C) and acetate fermentation (A) were calculated according to Whiticar (1999) with a maximum isotope offset for the acetate fermentation of -370‰ (lines) and Sugimoto and Wada (1995) (dotted lines). Symbols as in Fig. 2.

Fig. 8. a) Carbon and b) oxygen isotope compositions of calcites along the Outokumpu Deep Drill Hole. Isotopic equilibrium at ambient temperatures, indicated with a thick line and gray shading, was calculated according to isotope fractionation equations given by Salomons and Mook (1986) (according to Clark and Fritz, 1997) for the calcite-HCO₃⁻-¹³C exchange reaction and by O’Neil et al. (1969) for
the 18O exchange between calcite and water. No DIC isotope data is available between 1000 and 1600 m depth. Error bars are smaller than the size of the symbols.

Fig. 9. The CH$_4$/C$_2$+ ratio vs. carbon isotope composition of CH$_4$ for the Fennoscandian Shield samples. Pressurised samples from the Outokumpu Deep Drill Hole (DDH) are highlighted with thicker rims. SCR refers to sediment covered ridges (Tassi et al., 2012 and references therein) and within the thermogenic field “II” and “III” refer to type II (oil-prone/marine-sapropelic) and type III (gas-prone/terrestrial) kerogen, respectively. The suggested field for abiotic CH$_4$ (shaded) includes gases from the Zambales ophiolite (ZO) and mid-ocean ridges (MOR) (Horita and Berndt, 1999 and references therein), and artificial CH$_4$ from bit-metamorphism (Faber et al., 1999). However, CH$_4$ as light as -50‰ VPDB from Precambrian Shields has in previous studies been classified abiotic (cf. Fig. 2 and Sherwood Lollar et al., 1993b). Mixing may explain the scatter of data points between the different blocks, and the isotopic compositions are also subject to fractionation due to oxidation and isolation/substrate limitation. Data from this study, Jeffrey and Kaplan (1988), Sherwood Lollar et al. (1993a, 1993b), Haveman et al. (1999) and Pitkänen and Partamies (2007). Diagram modified after Whiticar (1999).

Fig. 10. Carbon isotopic systematics of CH$_4$ with depth in the Fennoscandian Shield. Data from this study, Heikkinen (1972), Hyyppä (1981), Jeffrey and Kaplan (1988), Sherwood Lollar et al. (1993a, 1993b), Haveman et al. (1999), and Pitkänen and Partamies (2007). Pressurised samples from the Outokumpu Deep Drill Hole (DDH) are highlighted with thicker rims. Isotopic composition of CH$_4$ in air is from Mischler et al. (2009). The $^\delta^{13}$C$_{CH4}$ values below -40‰ VPDB are exclusively found in the upper 1 km depth while values heavier than -20‰ appear to be more common at depths greater than 1.5 km.

Fig. 11. CH$_4$/C$_2$+ with depth in the Fennoscandian Shield. Data from this study, Jeffrey and Kaplan (1988), Sherwood Lollar et al. (1993a, 1993b), Haveman et al. (1999) and Pitkänen and Partamies (2007). Pressurised samples from the Outokumpu Deep Drill Hole (DDH) are highlighted with thicker rims. The ratio varies more from site to site than showing shield scale dependence on depth.
Fig. 2
Fig. 3
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Table 1.
Fluid sampling campaigns in the Outokumpu Deep Drill Hole in 2010-2012.

<table>
<thead>
<tr>
<th>Date</th>
<th>Method</th>
<th>Depth (m)</th>
<th>Total water volume retrieved (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.5.-20.9. 2010</td>
<td>Pumping, one packer at 1190 m depth</td>
<td>2260</td>
<td>6.9</td>
</tr>
<tr>
<td>21.9.-9.11. 2010</td>
<td>Pumping between packers at 478 m and 502 m depths</td>
<td>500</td>
<td>9.8</td>
</tr>
<tr>
<td>15.-19.5. 2011</td>
<td>Tube sampling</td>
<td>0-2450</td>
<td>0.154</td>
</tr>
<tr>
<td>8.-17.6. & 14.7.-2.8. 2011</td>
<td>Direct pumping</td>
<td>2300</td>
<td>3.2</td>
</tr>
<tr>
<td>3.-18.8. 2011</td>
<td>Direct pumping</td>
<td>1820</td>
<td>1.0</td>
</tr>
<tr>
<td>14.-19.8. 2011</td>
<td>Positive displacement sampler (PDS)</td>
<td>500, 970, 1470, 1820, 2350, 2480</td>
<td>0.0048</td>
</tr>
<tr>
<td>5.9.-6.10. 2011</td>
<td>Direct pumping</td>
<td>970</td>
<td>3.8</td>
</tr>
<tr>
<td>10.-13.10. 2011</td>
<td>Tube sampling</td>
<td>0-1050</td>
<td>0.066</td>
</tr>
<tr>
<td>5.5.-18.6. 2012</td>
<td>Pumping between packers at 170 m and 190 m depths & PAVE</td>
<td>180</td>
<td>22.5</td>
</tr>
</tbody>
</table>
Table 2. Isotopic compositions of methane, ethane, propane, hydrogen, water and dissolved inorganic carbon (DIC) in the Outokumpu Deep Drill Hole and Pyhäsalmi mine, Finland.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sampling date</th>
<th>Method</th>
<th>Depth m</th>
<th>(\delta \text{CH}_4)</th>
<th>(\delta \text{C}_2\text{H}_6)</th>
<th>(\delta \text{C}_3\text{H}_8)</th>
<th>(\delta \text{H}_2)</th>
<th>(\delta \text{H}_2\text{O}^\text{d})</th>
<th>(\delta \text{H}_2\text{O}^\text{e})</th>
<th>DIC</th>
<th>DIC(^{\text{ext}}) mmol l(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outokumpu:</td>
<td></td>
</tr>
<tr>
<td>7(^{\text{a}})</td>
<td>8/2008</td>
<td>TSI</td>
<td>700</td>
<td>-31.2</td>
<td>-283</td>
<td>-82.0</td>
<td>-82.0</td>
<td>-78.0</td>
<td>-68.2</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>9(^{\text{a}})</td>
<td>8/2008</td>
<td>TSI</td>
<td>900</td>
<td>-29.9</td>
<td>-283</td>
<td>-80.9</td>
<td>-80.9</td>
<td>-78.0</td>
<td>-68.2</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>12(^{\text{a}})</td>
<td>8/2008</td>
<td>TSI</td>
<td>1200</td>
<td>-26.4</td>
<td>-276</td>
<td>-78.0</td>
<td>-78.0</td>
<td>-76.0</td>
<td>-68.2</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>14(^{\text{a}})</td>
<td>8/2008</td>
<td>TSI</td>
<td>1400</td>
<td>-24.3</td>
<td>-279</td>
<td>-68.2</td>
<td>-68.2</td>
<td>-66.0</td>
<td>-56.4</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>16(^{\text{a}})</td>
<td>8/2008</td>
<td>TSI</td>
<td>1600</td>
<td>-24.4</td>
<td>-288</td>
<td>-65.4</td>
<td>-65.4</td>
<td>-63.0</td>
<td>-53.6</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>18(^{\text{a}})</td>
<td>8/2008</td>
<td>TSI</td>
<td>1800</td>
<td>-24.7</td>
<td>-287</td>
<td>-69.3</td>
<td>-69.3</td>
<td>-67.0</td>
<td>-57.6</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>20(^{\text{a}})</td>
<td>8/2008</td>
<td>TSI</td>
<td>2000</td>
<td>-24.5</td>
<td>-281</td>
<td>-75.5</td>
<td>-75.5</td>
<td>-73.0</td>
<td>-63.6</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Oku Pump 970A(^{\text{a}})</td>
<td>08-09-2009</td>
<td>PI</td>
<td>970</td>
<td>-34.3</td>
<td>-277</td>
<td>-48.2</td>
<td>-240</td>
<td>BAL</td>
<td>-87.5</td>
<td>-24.8</td>
<td></td>
</tr>
<tr>
<td>Oku Pump 970B(^{\text{a}})</td>
<td>08-09-2009</td>
<td>PI</td>
<td>970</td>
<td>-34.0</td>
<td>-277</td>
<td>-48.3</td>
<td>-241</td>
<td>BAL</td>
<td>-87.5</td>
<td>-24.1</td>
<td></td>
</tr>
<tr>
<td>OKU2260-G1</td>
<td>20-06-2010</td>
<td>PI</td>
<td>2260</td>
<td>-27.6</td>
<td>-297</td>
<td>-45.3</td>
<td>BAL</td>
<td>-36.2</td>
<td>-727</td>
<td>-10.91</td>
<td>0.21</td>
</tr>
<tr>
<td>OKU2260-G3</td>
<td>28-07-2010</td>
<td>PI</td>
<td>2260</td>
<td>-28.7</td>
<td>-297</td>
<td>-45.1</td>
<td>BAL</td>
<td>-39.5</td>
<td>-771</td>
<td>-10.91</td>
<td>0.21</td>
</tr>
<tr>
<td>OKU2260-G7</td>
<td>28-07-2010</td>
<td>PI</td>
<td>2260</td>
<td>-25.6</td>
<td>-295</td>
<td>-49.6</td>
<td>-239</td>
<td>-69.2</td>
<td>-10.95</td>
<td>-0.8</td>
<td>0.26</td>
</tr>
<tr>
<td>OKU2260-G10</td>
<td>30-09-2010</td>
<td>PI</td>
<td>2260</td>
<td>-25.3</td>
<td>-297</td>
<td>-48.6</td>
<td>-235</td>
<td>-69.2</td>
<td>-10.95</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>OKU500-G3</td>
<td>30-09-2010</td>
<td>PI</td>
<td>500</td>
<td>-34.0</td>
<td>-292</td>
<td>-43.4</td>
<td>BAL</td>
<td>-35.2</td>
<td>BAL</td>
<td>-13.06</td>
<td>0.18</td>
</tr>
<tr>
<td>OKU500-G4</td>
<td>01-10-2010</td>
<td>PI</td>
<td>500</td>
<td>-32.8</td>
<td>-291</td>
<td>-49.2</td>
<td>-249</td>
<td>-82.8</td>
<td>-13.06</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>OKU500-G8</td>
<td>13-10-2010</td>
<td>PB</td>
<td>500</td>
<td>-34.6</td>
<td>-294</td>
<td>-43.8</td>
<td>BAL</td>
<td>-35.8</td>
<td>-798</td>
<td>-13.09</td>
<td>0.08</td>
</tr>
<tr>
<td>OKU500-G12</td>
<td>16-05-2011</td>
<td>TSI</td>
<td>400</td>
<td>-31.0</td>
<td>-273</td>
<td>-31.2</td>
<td>-227</td>
<td>-83.1</td>
<td>-12.85</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>OK-5</td>
<td>16-05-2011</td>
<td>TSI</td>
<td>500</td>
<td>-34.1</td>
<td>-279</td>
<td>-27.9</td>
<td>-235</td>
<td>-83.0</td>
<td>-12.89</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>OK-6</td>
<td>16-05-2011</td>
<td>TSI</td>
<td>600</td>
<td>-34.8</td>
<td>-280</td>
<td>-27.7</td>
<td>-228</td>
<td>-82.7</td>
<td>-12.93</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>OK-7</td>
<td>16-05-2011</td>
<td>TSI</td>
<td>700</td>
<td>-30.6</td>
<td>-282</td>
<td>-27.1</td>
<td>-232</td>
<td>-82.6</td>
<td>-12.96</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>OK-8</td>
<td>16-05-2011</td>
<td>TSI</td>
<td>800</td>
<td>-32.9</td>
<td>-287</td>
<td>-28.1</td>
<td>-244</td>
<td>-82.5</td>
<td>-12.97</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>OK-9</td>
<td>17-05-2011</td>
<td>TSI</td>
<td>900</td>
<td>-33.6</td>
<td>-283</td>
<td>-29.5</td>
<td>-238</td>
<td>-82.8</td>
<td>-12.92</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>OK-11</td>
<td>17-05-2011</td>
<td>TSI</td>
<td>1100</td>
<td>-32.0</td>
<td>-290</td>
<td>-28.3</td>
<td>-246</td>
<td>-82.8</td>
<td>-12.93</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>OK-12</td>
<td>17-05-2011</td>
<td>TSI</td>
<td>1200</td>
<td>-33.4</td>
<td>-286</td>
<td>-29.3</td>
<td>-253</td>
<td>-82.9</td>
<td>-12.79</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>Sampling date</td>
<td>Method (\text{m}^{d})</td>
<td>Depth (\text{m}^{d})</td>
<td>(\delta_{13}^{\text{C}}) CH(_4)</td>
<td>(\delta_{13}^{\text{C}}) CH(_4)</td>
<td>(\delta_{2}^{\text{H}}) CH(_3) (\text{CH}_3)</td>
<td>(\delta_{2}^{\text{H}}) CH(_3) (\text{CH}_3)</td>
<td>(\delta^{13}^{\text{C}}) H(_2)</td>
<td>(\delta_{2}^{\text{H}}) H(_2)</td>
<td>(\delta^{18}^{\text{O}}) H(_2\text{O})</td>
<td>DIC (\text{mmol} \cdot l^{-1})</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>OKU2300-G1</td>
<td>19-07-2011</td>
<td>PB</td>
<td>2300</td>
<td>-19.2</td>
<td>-293</td>
<td>-35.4</td>
<td>-265</td>
<td>-65.4</td>
<td>-10.56</td>
<td>-10.56</td>
<td>0.18</td>
</tr>
<tr>
<td>OKU1820-G1</td>
<td>17-08-2011</td>
<td>PB</td>
<td>1820</td>
<td>-18.7</td>
<td>-286</td>
<td>-33.3</td>
<td>-254</td>
<td>-56.0</td>
<td>-10.47</td>
<td>-10.47</td>
<td>0.20</td>
</tr>
<tr>
<td>OUTO-500 (6)</td>
<td>29-08-2011</td>
<td>PDS</td>
<td>500</td>
<td>-25.1</td>
<td>-237</td>
<td>-40.7</td>
<td>-265</td>
<td>-82.9</td>
<td>-13.11</td>
<td>-13.11</td>
<td>0.13</td>
</tr>
<tr>
<td>OUTO-970 (2)</td>
<td>29-08-2011</td>
<td>PDS</td>
<td>970</td>
<td>-38.1</td>
<td>-230</td>
<td>-41.8</td>
<td>-277</td>
<td>-82.8</td>
<td>-12.94</td>
<td>-12.94</td>
<td>0.17</td>
</tr>
<tr>
<td>OUTO-1470 (8)</td>
<td>29-08-2011</td>
<td>PDS</td>
<td>1470</td>
<td>-36.4</td>
<td>-136</td>
<td>-45.8</td>
<td>-215</td>
<td>-70.8</td>
<td>-10.84</td>
<td>-10.84</td>
<td>0.15</td>
</tr>
<tr>
<td>OUTO-1820 (4)</td>
<td>29-08-2011</td>
<td>PDS</td>
<td>1820</td>
<td>-34.1</td>
<td>-269</td>
<td>-38.3</td>
<td>-268</td>
<td>-56.6</td>
<td>-10.59</td>
<td>-10.59</td>
<td>0.20</td>
</tr>
<tr>
<td>OUTO-2350 (7)</td>
<td>27-08-2011</td>
<td>PDS</td>
<td>2350</td>
<td>-15.9</td>
<td>-404</td>
<td>-42.4</td>
<td>BAL</td>
<td>-69.9</td>
<td>-11.06</td>
<td>-11.06</td>
<td>0.21</td>
</tr>
<tr>
<td>OUTO-2480 (5)</td>
<td>27-08-2011</td>
<td>PDS</td>
<td>2480</td>
<td>-13.2</td>
<td>-369</td>
<td>-22.7</td>
<td>BAL</td>
<td>-66.0</td>
<td>-11.30</td>
<td>-11.30</td>
<td>0.17</td>
</tr>
<tr>
<td>OU-1</td>
<td>11-10-2011</td>
<td>TSI</td>
<td>25</td>
<td>-84.8</td>
<td>-12.00</td>
<td>-14.3</td>
<td>BAL</td>
<td>-84.8</td>
<td>-12.00</td>
<td>-12.00</td>
<td>0.26</td>
</tr>
<tr>
<td>OU-3A</td>
<td>12-10-2011</td>
<td>TSI</td>
<td>200</td>
<td>-31.8</td>
<td>-269</td>
<td>-43.4</td>
<td>-242</td>
<td>-86.5</td>
<td>-12.38</td>
<td>-12.38</td>
<td>0.20</td>
</tr>
<tr>
<td>OU-4A</td>
<td>12-10-2011</td>
<td>TSI</td>
<td>300</td>
<td>-29.5</td>
<td>-281</td>
<td>-43.4</td>
<td>-234</td>
<td>-85.4</td>
<td>-12.69</td>
<td>-12.69</td>
<td>0.15</td>
</tr>
<tr>
<td>OU-5A</td>
<td>12-10-2011</td>
<td>TSI</td>
<td>400</td>
<td>-29.2</td>
<td>-237</td>
<td>-44.5</td>
<td>-249</td>
<td>-83.5</td>
<td>-12.95</td>
<td>-12.95</td>
<td>0.17</td>
</tr>
<tr>
<td>Sample Code</td>
<td>Date</td>
<td>Method</td>
<td>Temp</td>
<td>Salinity</td>
<td>pH</td>
<td>Conductivity</td>
<td>DO</td>
<td>TDS</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>------</td>
<td>----------</td>
<td>----</td>
<td>--------------</td>
<td>----</td>
<td>-----</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OU-6A</td>
<td>12-10-2011</td>
<td>TSI</td>
<td>500</td>
<td>-31.7</td>
<td>-291</td>
<td>-45.8</td>
<td>-218</td>
<td>-82.8</td>
<td>-13.05, -16.7, 0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OU-7A</td>
<td>12-10-2011</td>
<td>TSI</td>
<td>600</td>
<td>-33.1</td>
<td>-242</td>
<td>-31.6</td>
<td>-221</td>
<td>-82.6</td>
<td>-12.98, -18.1, 0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OU-8A</td>
<td>13-10-2011</td>
<td>TSI</td>
<td>700</td>
<td>-36.9</td>
<td>-266</td>
<td>-43.6</td>
<td>-223</td>
<td>-83.0</td>
<td>-13.11, -16.2, 0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OU-9A</td>
<td>13-10-2011</td>
<td>TSI</td>
<td>800</td>
<td>-27.9</td>
<td>-289</td>
<td>-44.9</td>
<td>-238</td>
<td>-83.1</td>
<td>-13.06, -16.2, 0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OU-10A</td>
<td>13-10-2011</td>
<td>TSI</td>
<td>900</td>
<td>-29.4</td>
<td>-277</td>
<td>-46.0</td>
<td>-230</td>
<td>-82.8</td>
<td>-13.01, -15.7, 0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OU-11A</td>
<td>13-10-2011</td>
<td>TSI</td>
<td>1000</td>
<td>-34.0</td>
<td>-247</td>
<td>-45.4</td>
<td>-234</td>
<td>-82.6</td>
<td>-13.11, -14.7, 0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKU180-G1</td>
<td>05-05-2012</td>
<td>PB</td>
<td>180</td>
<td>-37.3</td>
<td>-276</td>
<td>-45.8</td>
<td>-182</td>
<td>-87.2</td>
<td>-12.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKU180-G2</td>
<td>08-05-2012</td>
<td>PB</td>
<td>180</td>
<td>-36.1</td>
<td>-280</td>
<td>-45.4</td>
<td>-163</td>
<td>-87.0</td>
<td>-12.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKU180-G3</td>
<td>14-05-2012</td>
<td>PB</td>
<td>180</td>
<td>-36.5</td>
<td>-284</td>
<td>-45.1</td>
<td>-194</td>
<td>-85.7</td>
<td>-12.79, 0.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKU180-G6</td>
<td>13-06-2012</td>
<td>PB</td>
<td>180</td>
<td>-36.5</td>
<td>-263</td>
<td>-45.1</td>
<td>-161</td>
<td>-88.6</td>
<td>-12.57, 0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKU180-G7</td>
<td>18-06-2012</td>
<td>PB</td>
<td>180</td>
<td>-39.9</td>
<td>-281</td>
<td>-45.5</td>
<td>-170</td>
<td>-88.4</td>
<td>-12.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKU180/25</td>
<td>18-06-2012</td>
<td>PAVE</td>
<td>180</td>
<td>-27.5</td>
<td>-263</td>
<td>-43.1</td>
<td>-157</td>
<td>-88.8</td>
<td>-12.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKU180/27</td>
<td>11-06-2014</td>
<td>FFI</td>
<td>2400</td>
<td>-33.2</td>
<td>-259</td>
<td>-23.2</td>
<td>BAL</td>
<td>-680</td>
<td>-70.2, -12.27, 0.003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pyhäsalmi:

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Date</th>
<th>Method</th>
<th>Temp</th>
<th>Salinity</th>
<th>pH</th>
<th>Conductivity</th>
<th>DO</th>
<th>TDS</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYS-1B/R2247</td>
<td>11-06-2014</td>
<td>FFI</td>
<td>2400</td>
<td>-33.3</td>
<td>-256</td>
<td>-23.2</td>
<td>BAL</td>
<td>-736</td>
<td>-70.2, -12.27</td>
</tr>
<tr>
<td>PYS-2B/R2227</td>
<td>11-06-2014</td>
<td>FFI</td>
<td>1910</td>
<td>-27.5</td>
<td>-186</td>
<td>-91.2</td>
<td>BAL</td>
<td>-91.2</td>
<td>-13.70, 0.0005</td>
</tr>
</tbody>
</table>

\(^a\) Data from Nyyssönen et al. 2014
\(^b\) Data from Toppi 2010
\(^c\) Sampling methods: TSI = tube sampling/injection, PI = Pumping/injection, PB = pumping/bucket, PDS = positive displacement sampler, PAVE = pressurised sampling device, FFI= from free flowing fluid/injection.
\(^d\) Data from Nyyssönen et al. 2014, Toppi 2010, Kietäväinen et al. 2013, Miettinen et al. 2015 and this study.
\(^e\) The concentration of dissolved inorganic carbon was modelled based on geochemical data with PHREEQC software (USGS, 2014)
Table 3. Carbon and oxygen isotopic compositions of fracture/vein calcites from the Outokumpu Deep Drill Hole.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Depth (m)</th>
<th>Calcite type and position</th>
<th>Orientation*</th>
<th>δ^{13}C ‰ VPDB</th>
<th>δ^{18}O ‰ VPDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>100.90</td>
<td>Platy, open fracture</td>
<td>V</td>
<td>-16.10</td>
<td>-9.7</td>
</tr>
<tr>
<td>48</td>
<td>124.80</td>
<td>Massive</td>
<td>?</td>
<td>-8.71</td>
<td>-12.9</td>
</tr>
<tr>
<td>50</td>
<td>143.51</td>
<td>Platy, blocky</td>
<td>H</td>
<td>-11.82</td>
<td>-12.8</td>
</tr>
<tr>
<td>1</td>
<td>160.80</td>
<td>Blocky, euhedral</td>
<td>V</td>
<td>-10.85</td>
<td>-12.7</td>
</tr>
<tr>
<td>2</td>
<td>160.80*</td>
<td>Blocky, euhedral</td>
<td>V</td>
<td>-11.42</td>
<td>-12.4</td>
</tr>
<tr>
<td>3</td>
<td>231.80</td>
<td>Platy, flaky, surface 1</td>
<td>V</td>
<td>-10.40</td>
<td>-13.4</td>
</tr>
<tr>
<td>4</td>
<td>231.80</td>
<td>Platy, flaky, surface 2</td>
<td>V</td>
<td>-4.10</td>
<td>-13.0</td>
</tr>
<tr>
<td>52</td>
<td>263.95</td>
<td>Blocky, open fracture</td>
<td>H</td>
<td>-15.00</td>
<td>-18.4</td>
</tr>
<tr>
<td>5</td>
<td>490.70</td>
<td>Thin film</td>
<td>V</td>
<td>-3.63</td>
<td>-13.4</td>
</tr>
<tr>
<td>6</td>
<td>490.70*</td>
<td>Thin film</td>
<td>V</td>
<td>-3.43</td>
<td>-13.2</td>
</tr>
<tr>
<td>7</td>
<td>510.00</td>
<td>Platy, blocky, coarse</td>
<td>H</td>
<td>-12.35</td>
<td>-18.7</td>
</tr>
<tr>
<td>8</td>
<td>510.00*</td>
<td>Platy, blocky, coarse</td>
<td>H</td>
<td>-11.56</td>
<td>-17.3</td>
</tr>
<tr>
<td>9</td>
<td>510.00</td>
<td>Flaky, film</td>
<td>V</td>
<td>-5.88</td>
<td>-9.9</td>
</tr>
<tr>
<td>54</td>
<td>523.15</td>
<td>Platy, coarse</td>
<td>O</td>
<td>-19.64</td>
<td>-18.2</td>
</tr>
<tr>
<td>10</td>
<td>604.85</td>
<td>Powdery</td>
<td>V</td>
<td>-11.97</td>
<td>-9.7</td>
</tr>
<tr>
<td>55</td>
<td>716.35</td>
<td>Thin film</td>
<td>V</td>
<td>-13.68</td>
<td>-11.1</td>
</tr>
<tr>
<td>56</td>
<td>751.80</td>
<td>Thin film</td>
<td>O</td>
<td>-10.71</td>
<td>-13.0</td>
</tr>
<tr>
<td>57</td>
<td>751.80</td>
<td>Massive, upper</td>
<td>O</td>
<td>-9.77</td>
<td>-13.0</td>
</tr>
<tr>
<td>58</td>
<td>858.50</td>
<td>Blocky</td>
<td>V</td>
<td>-11.56</td>
<td>-14.2</td>
</tr>
<tr>
<td>59</td>
<td>858.50</td>
<td>Massive</td>
<td>V</td>
<td>-9.98</td>
<td>-18.1</td>
</tr>
<tr>
<td>11</td>
<td>883.60</td>
<td>Box shaped, subhedral</td>
<td>O</td>
<td>-10.70</td>
<td>-15.4</td>
</tr>
<tr>
<td>11B</td>
<td>883.60</td>
<td>Box shaped, euhedral</td>
<td>O</td>
<td>-10.58</td>
<td>-15.7</td>
</tr>
<tr>
<td>12</td>
<td>883.60</td>
<td>Platy, blocky, vein</td>
<td>O</td>
<td>-10.38</td>
<td>-17.3</td>
</tr>
<tr>
<td>13</td>
<td>885.75</td>
<td>Platy, bent, lower</td>
<td>V</td>
<td>-13.93</td>
<td>-18.5</td>
</tr>
<tr>
<td>14</td>
<td>885.75</td>
<td>Massive, upper</td>
<td>V</td>
<td>-10.84</td>
<td>-17.1</td>
</tr>
<tr>
<td>15</td>
<td>961.25</td>
<td>Massive, very hard, upper</td>
<td>V</td>
<td>-9.36</td>
<td>-13.2</td>
</tr>
<tr>
<td>16</td>
<td>961.25</td>
<td>Massive, very hard, central</td>
<td>V</td>
<td>-10.81</td>
<td>-14.4</td>
</tr>
<tr>
<td>17</td>
<td>961.25</td>
<td>Massive, lower</td>
<td>V</td>
<td>-10.65</td>
<td>-13.1</td>
</tr>
<tr>
<td>18</td>
<td>961.25</td>
<td>Massive, soft</td>
<td>H</td>
<td>-8.24</td>
<td>-14.4</td>
</tr>
<tr>
<td>60</td>
<td>996.20</td>
<td>Massive*</td>
<td>O</td>
<td>-14.78</td>
<td>-14.8</td>
</tr>
<tr>
<td>19</td>
<td>1001.90</td>
<td>Platy, open fracture</td>
<td>V</td>
<td>-12.73</td>
<td>-14.7</td>
</tr>
<tr>
<td>20</td>
<td>1001.90*</td>
<td>Platy</td>
<td>V</td>
<td>-8.70</td>
<td>-13.0</td>
</tr>
<tr>
<td>21</td>
<td>1018.60</td>
<td>Powdery</td>
<td>V</td>
<td>-15.49</td>
<td>-15.5</td>
</tr>
<tr>
<td>22</td>
<td>1195.70</td>
<td>Powdery</td>
<td>V</td>
<td>-13.40</td>
<td>-14.1</td>
</tr>
<tr>
<td>23</td>
<td>1227.20*</td>
<td>Box shaped, subhedral</td>
<td>V</td>
<td>-13.14</td>
<td>-15.5</td>
</tr>
<tr>
<td>24</td>
<td>1227.20</td>
<td>Box shaped, subhedral</td>
<td>V</td>
<td>-14.98</td>
<td>-17.4</td>
</tr>
<tr>
<td>25</td>
<td>1361.25</td>
<td>Box shaped, vein, central</td>
<td>H</td>
<td>-7.36</td>
<td>-15.2</td>
</tr>
<tr>
<td>26</td>
<td>1361.25*</td>
<td>Box shaped, vein, central</td>
<td>H</td>
<td>-7.36</td>
<td>-14.9</td>
</tr>
<tr>
<td>27</td>
<td>1361.25</td>
<td>Box shaped, vein, lower</td>
<td>H</td>
<td>-7.41</td>
<td>-14.3</td>
</tr>
<tr>
<td>28</td>
<td>1393.67</td>
<td>Needles, upper</td>
<td>O</td>
<td>-8.12</td>
<td>-16.8</td>
</tr>
<tr>
<td>29</td>
<td>1393.67</td>
<td>Powdery, lower</td>
<td>O</td>
<td>-8.08</td>
<td>-16.2</td>
</tr>
<tr>
<td>30</td>
<td>1393.67</td>
<td>Elongated, upper</td>
<td>O</td>
<td>-8.03</td>
<td>-16.3</td>
</tr>
<tr>
<td>31</td>
<td>1393.67</td>
<td>Elongated, upper-central</td>
<td>O</td>
<td>-8.08</td>
<td>-16.7</td>
</tr>
<tr>
<td>32</td>
<td>1393.67</td>
<td>Elongated, lower-central</td>
<td>O</td>
<td>-8.02</td>
<td>-16.5</td>
</tr>
<tr>
<td>33</td>
<td>1393.67</td>
<td>Elongated, lower-central</td>
<td>O</td>
<td>-8.14</td>
<td>-17.0</td>
</tr>
<tr>
<td>34</td>
<td>1396.48</td>
<td>Massive, soft, vein 1, upper</td>
<td>O</td>
<td>-5.83</td>
<td>-12.9</td>
</tr>
<tr>
<td>36</td>
<td>1396.48</td>
<td>Massive, vein 2, upper</td>
<td>O</td>
<td>-5.36</td>
<td>-12.7</td>
</tr>
<tr>
<td>37</td>
<td>1396.48</td>
<td>Massive, vein 2, lower</td>
<td>O</td>
<td>-5.54</td>
<td>-13.1</td>
</tr>
<tr>
<td>38</td>
<td>1442.95</td>
<td>Massive, thin vein</td>
<td>V</td>
<td>-8.78</td>
<td>-13.1</td>
</tr>
<tr>
<td>39</td>
<td>1442.95</td>
<td>Box shaped, vein, upper</td>
<td>V</td>
<td>-8.78</td>
<td>-14.0</td>
</tr>
<tr>
<td>No.</td>
<td>Depth</td>
<td>Shape/Texture</td>
<td>Orientation</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>------------------------------</td>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>40</td>
<td>1442.95</td>
<td>Box shaped, blocky, vein, central</td>
<td>V</td>
<td>-8.50</td>
<td>-16.3</td>
</tr>
<tr>
<td>41</td>
<td>1442.95</td>
<td>Box shaped, vein, lower</td>
<td>V</td>
<td>-8.50</td>
<td>-14.3</td>
</tr>
<tr>
<td>42</td>
<td>1450.75</td>
<td>Massive, vein</td>
<td>V</td>
<td>-7.81</td>
<td>-16.0</td>
</tr>
<tr>
<td>43</td>
<td>1450.75</td>
<td>Massive, vein, lower</td>
<td>V</td>
<td>-8.69</td>
<td>-15.9</td>
</tr>
<tr>
<td>44</td>
<td>1450.75</td>
<td>Massive, vein, central</td>
<td>V</td>
<td>-8.82</td>
<td>-15.9</td>
</tr>
<tr>
<td>45</td>
<td>1499.35</td>
<td>Powdery</td>
<td>V</td>
<td>-6.09</td>
<td>-14.6</td>
</tr>
<tr>
<td>46</td>
<td>1499.85</td>
<td>Blocky, vein</td>
<td>H</td>
<td>-5.68</td>
<td>-13.3</td>
</tr>
</tbody>
</table>

a = V: vertical, H: horizontal, O: oblique
b = duplicate sample