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Abstract 

Development of a simple route for the catalytic conversion of starch-based industrial waste (potato peels) and 

potato starch into reducing sugars was investigated in two ionic liquids for comparison – 1-allyl-3-

methylimidazolium chloride [AMIM]Cl and 1-(4-sulfobutyl)-3-methylimidazolium chloride [SBMIM]Cl. Over a 

two hour period, a 20 wt % solution containing up to 43% and 98% of reducing sugars at low temperature in 

aqueous [SBMIM]Cl were achieved for the starch-based waste and the potato starch, respectively. In addition, 

the use of microwave and low frequency ultrasound to perform the depolymerisation of the raw starch-based 

material was explored and compared with conventional heating processes.  

 

1. Introduction 

A growing concern in environmental sustainability in our society has become an important aspect for both 

ecosystem health and economic development. The intensive consumption of fossil fuels that will eventually run 

out renders renewable resources as an attractive proposition. Some by-products can be considered as sustainable 

energy for the synthesis of chemicals [1]. Currently, a Finnish company, which produces pre-cooked vacuum 

potatoes, generates several tons of waste from potato peels daily. In our previous study [2], a weight percentage 

of sugars was performed on by a total hydrolysis of the by-product, which is mainly composed of glucose 



 

 

(80.2%), mannose (4.9%) and galactose (3.2%). More than 88% can be subsequently considered as the total 

sugar potential. This by-product is mainly composed of starch, the principal constituent of potatoes. Starch is 

basely composed of two macromolecules, amylose and amylopectin, trapped into granules. Its depolymerisation 

into reducing sugars is mainly performed under concentrated strong acidic conditions and/or high temperature, 

for long reaction time [3], [4]. However, starch molecules are not prone to accept water dissolution, notably due 

to the strong intra and intermolecular hydrogen bonds. These latters can be generally broken down under high 

temperature, shear and acidic conditions, yielding both free macromolecules [5]. The depolymerisation process 

in a water medium is therefore of a heterogeneous nature and suffers some inevitable limitations (existence of 

diffusion layers, limitation of the mass transfer, lack of efficient mixing, etc.) whereas homogeneous media will 

certainly bring a higher reactivity [6], [7]. One possibility for the dissolution of starch is to use ionic liquids [8]. 

Known as salt with a melting point below 100 °C, ionic liquids possess attracted properties as new generation of 

solvents, negligible vapour pressure, wide liquid ranges (up to 400 °C) and the ability to dissolve carbohydrate 

[9]. Dissolution of carbohydrates up to 20-wt % in ionic liquids has been reported previously [10]. In 2006, 

Remsing et al. investigated the solvation of cellulose in an imidazolium-based ionic liquid bearing a chloride 

counter-anion [11]. Due to their high nucleophilic capacity, chloride ions are enabled to interact with the 

hydroxyl protons of carbohydrates and to break down the hydrogen-bonding network to promote dissolution. In 

our experiments, the first selected ionic liquid was 1-allyl-3-methylimidazolium chloride [AMIM]Cl, which has 

an excellent ability to dissolve carbohydrates [12] and depolymerise them in the presence of solid catalysts [13] 

or acid [14]. Brønsted acidic ionic liquids (BAILs) possess simultaneously a proton acidity with the Brønsted 

function and properties of ionic liquids – non-volatile, recyclable [7], [15], [16]. A wide range of moieties can be 

classified in the Brønsted framework: mineral acids, sulfonates, phosphonates, and carboxylic acids. Johnson et 

al. [17] published a detailed review about fundamentals of BAILs and their use in various organic reactions with 

different location of the Brønsted acid function (anion or/and cation). The strength of the acidity depends on the 

position of the acidic function; -COOH or –SO3H function on cation possess strong intrinsic acidity [17]. SO3H-

functionalised ionic liquids are strong Brønsted acids [6], [15], [18] and possess great potential as dual 

catalyst/solvent system and non-volatile acidic materials [19]. 1-(4-sulfobutyl)-3-methylimidazolium chloride 

[SBMIM]Cl possesses Brønsted-acidic sulfonic group on the cation to play the role of both solvent and catalyst. 

The chloride anion was preserved to enable the primary target, i.e. the solubilisation of the solute [20]. 

Both ionic liquids (see Fig. 1 for structures and abbreviations) are already well known in literature as they have 

been previously employed mainly for the dissolution and hydrolysis of cellulose into reducing sugars [7], [21], 
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flask flushed with argon (10 min), allylchloride (50 mL, 610 mmol) was added dropwise over 1-methylimidazole 

placed into a water/ice bath (due to exothermic reaction) to achieve 1:1.25 proportions. Afterwards, the solution 

was stirred for 18 hours at 55 °C. The ionic liquid was washed several times with ethyl acetate (3 x 40 mL) and 

cyclohexane (3 x 40 mL). In order to obtain a clean ionic liquid, activated charcoal and methanol (Gradient 

Grade – 50 mL) were stirred with the ionic liquid for 90 min and then filtered on Celite® [28]. The ionic liquid 

was then dried under a vacuum line and a water-content of 0.1 wt % was measured by Karl Fisher coulometric 

titration (Metrohm 831KF coulometer) using Hydranal 34843 Coulomat AG-H (Fluka) as titrant. The synthesis 

of the [SBMIM]Cl was also based on literature [29] with minor modifications; the detailed protocol was as 

follow: 1,4-butane sultone (200 mmol) was added dropwise to 1-methylimidazole whilst being stirred in a 250 

mL round-bottom flask, flushed with argon for 10 min beforehand. The solution was then heated to 70 °C for 1 

hour and the resulting solid was then cooled down, crushed and washed several times with toluene and 

cyclohexane. The zwitterion obtained was dried in a vacuum oven for 12 hours (yield > 98 %) followed by 

adding droplets of hydrochloric acid 37 % to the zwitterion in stoichiometric proportions. The solution was 

stirred and heated at 70 °C for 2 hours. The resulting mixture was washed with toluene (3 x 20 mL) and 

cyclohexane (3 x 20 mL) before being cleaned with activated charcoal in methanol (Gradient Grade – 30 mL) to 

obtain a clear solution. Ionic liquids are clear compounds, and a more or less yellowish result from traces of 

compounds originating from the reagents [30]. The solvents were then evaporated with a rotary evaporator and a 

yellowish ionic liquid was formed in the inner layer of the pear-bottom flask. The ionic liquid was dried again in 

a vacuum oven for 12 hours at 70 °C. NMR and FTIR were performed on both ionic liquids (see section 2.3) 

whilst a low frequency (24 kHz) ultrasound bath (Kerry Pulsatron) and a Prolabo Synthewave S402 (electric 

power 600W) microwave were employed for depolymerisation.  

 

2.2. Dissolution and depolymerisation methods   

A 10 or 20 wt % solution of starch in an ionic liquid medium was stirred or irradiated for 120 min at several 

temperatures (60 to 90 °C). The three previously stated materials were then added to the heated solution to ease 

dissolution. A conical vial of 5 mL with a dedicated triangle magnet was employed for the mechanical stirring 

reactions. A 10 mL round-bottom flask and a 20 mL tube flask were used for the ultrasound and microwave 

irradiations respectively. For the former, the indirect mode of irradiation, i.e use of an ultrasonic bath, is justified 

by the acidity of the selected TSIL whereas, the direct mode of irradiation would suggest the use of an ultrasonic 
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Fig. 2. FTIR spectra of [AMIM]Cl and [SBMIM]Cl after synthesis.  

 

The spectroscopy of the ionic liquids were performed with a PerkinElmer Spectrum One Fourier Transform 

Infrared (FTIR) Spectrometer combined with a PerkinElmer Universal Attenuated Total Reflectance (ATR) 

Sampling Accessory, a sampling technique which offers a direct analysis of solid and liquid samples without any 

required preparation. The assignments of the bands and the corresponding wavelength of the ionic liquids are 

summarised in Table 1 and spectra in Fig. 2. First of all, the water-content in the ionic liquids can be 

characterised by the presence of two peaks at 3385 and 1644 cm-1, O−H stretching and bending respectively. The 

intensity of these peaks depends on the quantity of water entrapped in the matrix of ionic liquids. [AMIM]Cl 

contained more water than [SBMIM]Cl probably because of its high hygroscopic character. The FTIR spectra of 

[AMIM]Cl and that of the zwitterion utilised for the synthesis of [SBMIM]Cl corroborated with previous 

literature in [32] and [33] respectively.  

1H NMR spectra of ILs were recorded with a Bruker DPX 200 instrument (200.13 MHz). Spectroscopic data of 

[AMIM]Cl was identical to the previous literature [14], [34], [35]: 1H NMR (200 MHz, CDCl3) : 4.13 (3H, s), 

5.04 (2H, d, JHH = 6.3 Hz), 5.40 – 5.51 (2H, m), 5.97 – 6.10 (1H, m), 7.58 (1H, t, JHH = 1.8 Hz), 7.81 (1H, t, JHH 

= 1.8 Hz), 10.39 (1H, s). However, a singlet at 3.38 ppm, corresponds to methanol residues from the cleaning 

steps. No peak was observed around 1.56 ppm, corresponding the H2O peak in CDCl3 [36]. The spectroscopic 

data of [SBMIM]Cl followed the literature [37]: 1H NMR (200 MHz, D2O) : 1.72 (2H, m), 1.98 (2H, m), 2.91 

(2H, t JHH = 7.6 Hz), 3.86 (3H, s), 4.22 (2H, t, JHH = 7.0 Hz) 7.41 (1H, t, JHH = 1.8 Hz), 7.47 (1H, t, JHH = 1.8 

Hz), 8.72 (1H, s). 

 

 

 

 

 

 

 

 



 

 

Ionic 
Liquid
s 

Band assignments Wavelength (cm-1) 

[SBMIM]Cl Alkyl C-H stretching 2965, 2942 & 2878 

Imidazole ring stretching 1566 

Sulfone symmetric stretching R-SO2-OH 1175 

Imidazole H-C-C & H-C-N bending 1157 

Sulfone asymmetric stretching R-SO2-OH 1035 

In-plane imidazole ring bending 850 

Out-of-plane imidazole ring C-H bending 786 

[AMIM]Cl O-H stretching - water content 3385 

Broad peak contains alkyl C-H stretching 3040-2870 

O-H bending - water content 1644 

Imidazole ring stretching 1561 

Imidazole H-C-C & H-C-N bending 1165 

Out-of-plane imidazole ring C-H bending 767 

 

Table 1 Band assignments of the ionic liquids [SBMIM]Cl and [AMIM]Cl 

 

3. Results and discussion 

3.1. Comparison of the ionic liquids for the dissolution and depolymerisation of starch 

At 80 °C, a 15 wt % solution of starch in [AMIM]Cl can be totally dissolved within 40 min [34] whilst 

[SBMIM]Cl can also be dissolved up to 10 wt % of cellulose at room temperature in a shorter time period [21]. 

At first, the maximal weight percentage of dissolution of our starch materials in both ionic liquids was 

determined. The simplest matrix, i.e. potato starch, was added in 0.1 g increments to [AMIM]Cl at 80 °C until 

the dissolution was complete up to 20 wt %. The observed instantaneous dissolution renders this ionic liquid as 

an attractive prospect and certainly offers a promising future in the field of biomass valorisation. However, in 

parallel, 1.0 g of potato starch was added at once to a [AMIM]Cl solution at 80 °C. In this case, 15 min of 

stirring was also needed to reach a clear 20 wt % mixture. Xu et al [34] showed that corn starch could be 

dissolved up to 15 wt % in [AMIM]Cl within 40 min at 80 °C and up to 20 wt % within 15 min at 100 °C under 

an argon atmosphere. Although our results differ to some extent from the studies mentioned above, they can be 

explained by the water-content of the ionic liquid, not defined in their study. It is highly probable that our ionic 



 

 

liquid contained a higher amount of water than Wu et al., diminishing subsequently the dissolution efficiency. It 

is indeed well known that water-content can disrupt the carbohydrate dissolution in an ionic liquid and lead to a 

heterogeneous medium [38]. The dissolution of potato starch in [SBMIM]Cl required a longer time period than 

in [AMIM]Cl; in fact, 20 wt % potato starch in [SBMIM]Cl did not even stir after several minutes at 80 °C with 

an increased viscosity. Potato starch is mainly composed of amylose and amylopectin compared to wet potato 

sludge and dry potato sludge which contain some proteins, minerals and vitamins. Therefore, the previous 

protocol was not applied to these raw materials. Their total dissolution in ionic liquids was not observed 

probably due of the presence of these natural compounds. Wet and dry potato sludge were added to their 

respective ionic liquids at once. Both ionic liquids are attractive for the dissolution of potato starch, however the 

results about the depolymerisation were radically different. The TRS yield of pure starch reached 54 % with the 

Brønsted-acidic ionic liquid at 80 °C (table 2, entry 3) and only 6 % in the [AMIM]Cl (table 2, entry 17). The 

absence of intrinsic acidity and additional acidic catalyst in [AMIM]Cl is certainly the main reason of a low TRS 

value. However, the existence of this small amount of TRS can be explained. Indeed, it is known that some first 

and second generations imidazolium-based ionic liquids possess a weak acidity often tied to the nature of 

counter-anion, making it reasonable to reach a low 6% of depolymerisation [39], [40]. The first generation of 

ionic liquids possess a halide anion (i.e. 1-allyl-3-methylimidazolium chloride – [AMIM]Cl), whereas the second 

generation undergo a metathesis of the halide anion into a more water stable one (i.e. 1-allyl-3-

methylimidazolium acetate – [AMIM]OAc [41].  TSIL are considered as part of the ‘third generation’ of ionic 

liquids due to their functionalised moieties (i.e. 1-(4-sulfobutyl)-3-methylimidazolium chloride – [SBMIM]Cl) 

[42], [43]. The TSIL selected possesses a Brønsted-acid and can play the role of both the solvent and the 

catalyst. [SBMIM]Cl has an acidic function for the hydrolysis, while [AMIM]Cl is a neutral ionic liquid.  

 

3.2. Effect of temperature on the depolymerisation of potato starch 

Temperature also plays an important role in the efficiency of depolymerisation of starch. In order to compare the 

results with our previous study performed in an aqueous acidic medium [2], the depolymerisation of the three 

starch-based starting materials was performed in an ionic liquid medium ranging between 60-90 °C. 

Temperature has an effect on the viscosity of the ionic liquids by decreasing it [44]. The use of an ionic liquid 

allows work to be conducted at higher operating temperatures than those used in aqueous sulphuric acid. Indeed, 

in the latter, the starch easily undergoes gelatinisation at around 65 °C, making any further transformation 



 

 

difficult. Reactions were performed in 20 % (w/w) of water on a 10 wt % solution of all three starch-based 

materials in [SBMIM]Cl. Temperature effect on the depolymerisation is shown in Fig. 3. It has been previously 

shown that [SBMIM]Cl possess a higher ability to dissolve cellulose than neutral ionic liquids at 100 °C [21]. 

Whatever the nature and composition of the starch-based material, the highest TRS yield was obtained at 80 °C. 

54 % of potato starch was converted into reducing sugars at 80 °C (table 2, entry 3), which corroborates well 

with the results obtained by Amarasekara and Owereh [21] on the hydrolysis of cellulose with an identical ionic 

liquid.  

Fig.3. Effect of dissolution temperature on the depolymerisation of the three starting materials in 10 wt% [SBMIM]Cl for 120 min under 
mechanical stirring.  

 

 

 

 

 

 

 

 

 

 

 



 

 

Experiment Raw materials Techniques Wt%e Temperature (°C) YieldTRS (%) 

1 [SBMIM]Cl – PS Mech. Stir.a 10 60 6 

2 [SBMIM]Cl – PS Mech. Stir.a 10 70 10 

3 [SBMIM]Cl – PS Mech. Stir.a 10 80 54 

4 [SBMIM]Cl – PS Mech. Stir.a 10 90 22 

5 [SBMIM]Cl – WPS Mech. Stir.a 10 80 32 

6 [SBMIM]Cl – DPS Mech. Stir.a 10 80 78 

7 [SBMIM]Cl – PS Microwaveb 10 60 61 

8 [SBMIM]Cl – WPS Microwaveb 10 60 19 

9 [SBMIM]Cl – DPS Microwaveb 10 60 67 

10 [SBMIM]Cl – PS US – LFc 10 60 9 

11 [SBMIM]Cl – WPS US – LFc 10 60 5 

12 [SBMIM]Cl – DPS US – LFc 10 60 15 

13 [SBMIM]Cl – PS Mech. Stir.a 20 80 6 

14 [SBMIM]Cl – WPS Mech. Stir.a 20 80 4 

15 [SBMIM]Cl – DPS Mech. Stir.a 20 80 11 

16 [AMIM]Cl – PS Mech. Stir.a 10 60 12 

17 [AMIM]Cl – PS Mech. Stir.a 10 80 6 

18 [AMIM]Cl – PS Mech. Stir.a 20 80 6 

19d H2SO4 3M – PS  Mech. Stir.a 3 60 36 

20d H2SO4 3M – WPS Mech. Stir.a 3 60 9 

21d H2SO4 3M – DPS Mech. Stir.a 3 60 29 

 

Table 2 Yields of reducing sugars of the depolymerisation of the three starting materials (PS for Potato starch, WPS for Wet 
potato sludge and DPS for Dry potato sludge) 

a mechanical stirring with hot plate stirrer 
b 60 min of irradiation  
c ultrasound low frequency (24kHz ultrasonic bath) 
d previous research [4] 
e weight percentage of starting material/ionic liquid 
 

3.3. Comparison of mechanical stirring with microwave and low frequency ultrasound 

irradiations 

Microwave and ultrasound irradiations may enhance the hydrolysis of carbohydrates into sugars due to their own 

specific effects. With microwave irradiation, a reaction media is heated from the inner to the outer layer and can 



 

 

reduce the reaction time from hours to minutes [2]. Low frequency ultrasound irradiation generates shock waves, 

which allow an efficient stirring of the reaction medium and increase the total reducing sugar content [2].  

Fig. 4. Yields of the total reducing sugars obtained by the depolymerisation tech- niques of the three starting materials in 10/12 wt% 
[SBMIM]Cl at 60 ◦ C for 120 min (60 min for microwave).  

 

Unfortunately, due to the utilisation of the ultrasound bath, the hydrolysis could not be performed at the 

optimum temperature (80 °C) determined in the previous section with the Brønsted-acidic ionic liquid. Filled 

with distilled water, maintaining such a high and constant temperature without changing some key parameters of 

the ultrasound is particularly difficult. At 80 °C, a parasite phenomenon called ‘vaporous cavitation’ can appear 

and dramatically decreases the efficiency of acoustic cavitation. Natural bubbles of vaporous water appear, 

displaying a much higher diameter than cavitation bubbles. The latter can undergo coalescence with the former, 

leading to a dramatic decrease or even the suppression of the necessary mechanical effects brought up by the 

collapse of cavitation bubbles, expected to contribute to depolymerisation. The raw materials were thus 

irradiated for 120 min at 60 °C with a synthesis microwave and a low frequency ultrasonic bath for comparison 

with conventional stirring; results are shown in Fig. 4. Even if the temperature has been decreased, a high loss of 

efficiency can be observed with this indirect mode irradiation; the energy being dissipated in the water bath and 

only 9, 5 and 15 % of reducing sugars of potato starch, wet potato sludge and dry potato sludge, respectively, 

were reached. An ultrasonic bath may not be powerful enough to allow the mixing of a highly heterogeneous and 

viscous system that would require the use of an ultrasonic probe, directly immersed in the solution for a direct 

irradiative mode. Our previous research performed using a sulphuric acid medium provided similar results [2].  

The depolymerisation under microwave irradiation offered the highest TRS content within 60 min regardless of 

the starting material. Due to their strong polar character, ionic liquids are a very suitable medium for microwave 



 

 

irradiation. This is confirmed by the fact that for potato starch, a temperature of 60 °C was high enough to 

generate engaging amounts of reducing sugars. However, the brown aspect of the solution after microwave 

irradiation of the two other starting materials could be explained by the caramelisation reaction. Caramelisation 

of short-chain or monomeric sugars is known as the Maillard reaction. This was also observed by Lajunen et al. 

[45] for the depolymerisation of barley starch in imidazolium-based ionic liquids under microwave irradiation. 

An appropriate Plexiglas helix-ended rod was introduced into the microwave reactor to limit the effect of 

thermal gradient and local hot spots, but this remained inefficient and could not attenuate caramelisation. 

However, the combination of rapid heating in an ionic liquid medium increased the yield of reducing sugars 

whilst reducing the reaction time. A set temperature can be reached in a really short time through consecutive 

rotation of the ionic molecules. This renders the combination of microwave heating/ionic liquid as very 

attractive. For all raw materials, the total reducing sugars reached 3 to 10 fold under microwave irradiation than 

with conventional heating in similar conditions. Microwave technology has previously been employed for the 

conversion of cellulose into reducing sugars or 5-HMF in ionic liquids [46], [47], [48], [49] or for the production 

of furfural from sugars with Brønsted-acidic ionic liquids [50]; no reports exist for starch in ionic liquids 

conditions. The conversion of cellulose into reducing sugars reached 48% in only 8 min of irradiation with a HY 

zeolite catalyst at 180 °C [46]. In this study, 61 % of potato starch was converted into reducing sugars under 

microwave irradiation with the Brønsted-acidic ionic liquid, and only 4 % using conventional heating. 

 

3.4. Effect of water-content for the depolymerisation of starch in [SBMIM]Cl 

Ionic liquids display natural high viscosities (i.e. the viscosity of 1-butyl-3-methylimidazolium iodine [BMIM]I, 

1-butyl-3-methylimidazolium tetrafluoroborate [BMIM]BF4, and 1-butyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide [BMIM]NTf2 are 400, 280 and 50 mPa.s, respectively [51], [52]); the addition 

of a certain weight percentage of starch-based material renders the solution even more viscous, making it 

difficult to stir reacting solution. As a typical example, a 20 wt % of raw material/ionic liquid series was 

performed with 10 % (w/w) of water added at 80 °C for 120 min. The low TRS yield of 6, 4 and 11 % for potato 

starch, wet potato sludge and dry potato sludge respectively, are observed due to the mass transfer limitations 

with high weight percentage. In addition, the presence of water is required to dissociate the sulfonic acid group 

to enable the acidic depolymerisation of the starch molecules. We subsequently studied the impact of the added 

water on the depolymerisation rate of 2 of the 3 starch materials used in this study, the native potato starch and 



 

 

the wet potato sludge. The increase of weight percentage of the ratio between raw material/ionic liquid and the 

water content are important factors for scaling up. As shown in Fig. 5, the optimum weight percentage of H2O 

was 33 % for wet potato sludge to reach 43 % of reducing sugars whilst 45 % (w/w) of H2O was necessary for a 

total hydrolysis of potato starch. One molecule of water is consumed for every broken glycosidic bond of starch; 

therefore water is required for the hydrolysis. The results confirm that water can improve the hydrolysis reaction 

of starch into sugars in a Brønsted-acidic ionic liquid, which corroborates with previous reports [53]. The authors 

suggested that aqueous Brønsted-acidic ionic liquids promoted the attack of the glycosidic bonds of cellulose for 

its conversion into α-glucose. A total hydrolysis of potato starch was achieved probably because α-glycosidic 

bonds are easily cleaved compare to β-glycosidic bonds (cellulose). The aqueous ionic liquid was able to 

dissolve potato starch, whilst the key to the hydrolysis of the Brønsted-acidic function is in the form of a 

superacid and may be considered as a simple hydrolysis.  

Fig. 5. Yields of total reducing sugars produced during the depolymerisation of potato starch and wet potato sludge in aqueous [SBMIM]Cl 
(20-wt% solution–0.50 g of ionic liquid, 0.10 g of dry raw materials). Solutions were stirred for 120 min at 80◦C.  

 

 

4. Conclusion 

In this study, we optimised the parameters to dissolve and depolymerise a starch-based industrial waste in ionic 

liquids. [AMIM]Cl appeared to be more suitable for the dissolution of potato starch due to the imidazolium ring 

and the chloride anion. However, [SBMIM]Cl dissolved potato starch and depolymerised the starting materials 

into reducing sugars in one step in an aqueous Brønsted-acidic medium. [SBMIM]Cl played the role of dual 

solvent/catalyst and followed the requirements of the sustainable chemistry. Temperature acted as a relevant 

factor for the depolymerisation of starch in conventional heating. The yield of reducing sugars under the 

optimum conditions (conventional heating in aqueous [SBMIM]Cl – 33 % (w/w) of H2O, a solution of 20 wt %, 



 

 

120 min of stirring at 80 °C), reached 43 % for a complex wet matrix – wet potato sludge. Overall, water 

disrupts the dissolution process of carbohydrate in ionic liquids, but the method described herein generated the 

greatest yield of reducing sugars. The addition of water overcame the high viscosity of a 20 wt % solution. 

Finally, microwaves only appear to reduce the reaction time by reaching the required temperature in a short time 

period.   
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