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A numerical method for solving the wave equation with nonhomogenuous,
nonsmooth Dirichlet boundary condition is proposed. Convergence of the
method is proved and some error estimates are derived [L-S-2]. The method is
based on the regularization technique [L-1], [L-S-1] of the wave equation with
Dirichlet boundary data. Several numerical results are provided in two
dimensional case.

1. Introduction

The paper is devoted to the approximation of the wave equation with
nonhomogeneuous Dirichlet boundary conditions. We recall several theoreti-
cal results presented in [L-S-1] and [L-S-2]. We present the numerical results
in the case of two-dimensional problem with respect to space variables
[L-S-N1].

Let @ be an open bounded domain in R" with a smooth boundary I
Consider the following second order scalar hyperbolic equation

(e, x)=Au(t, x)+f(t, x} (., x)e0, T}x2=7Q,
(1.1) u(0, x)=u(0, x)=0 in Q,
u(t, x)|r = g(t, x) on 0, )xI'= 2.

The following question may be asked: how to construct a numerical aigorithm



in order to compute effectively u from the boundary data g? It is well known
that the “best” numerical approximations of various p.d.e. problems are based
on a certain variational formulation of the original equation. The problem in
our case is, however, that due to the Dirichlet nature of the nonhomogeneous
boundary condition problem (1.1) does not admit a natural variational
formulation. (In contrast, a natural variational formulation is standard in the
case of Neumann or Robin boundary conditions.) In this context, the idea of
Lions {L-1] is to “approximate” the solution u(t) of (1.1) by a sequence of
functions u,(t) which are determined as solutions of the following problems

i, (t, x) = Au,(t, x)+f (¢, x) 1in O,

(1.2) u, (0, x) =1,(0,x)=0 in Q,
e%+ﬂuc=ﬁg on I,

where f is a selfadjoint second order elliptic operator defined on the
variety I'(').

The advantage of introducing (1.2) is — of course — that (1.2) admits
a natural variational formulation:

(i, B+ Vi, Pt + (B $p= - CBa, 63+, o VhECH(@),

(1.3) for a.e. te(0, T).
u,(0)=4,(0)=0

In [L-1] it was shown that u,(t) approximates u (t) in the following sense: [or
any geL,(2) and feL [0, T; L,($)]

(1.4) u,—u in L_[0, T; L,(€2)] weak star.

In view of the above, one can think of (1.1) as a limit problem for (1.2).
Therefore, in order to find an effective numerical approximation of (1.1), the
natural idea to pursue is to look for numerical algorithms (Ritz—Galerkin, {inite
element, etc.) of the variational equality (1.3). However, in order to establish the
convergence or even more — the rates of the convergence — of these
approximations, a necessary prerequisite is to know more about the regularity
properties of the solutions to (1.2) as well as their convergence to u(t). Thus, in
the paper [L-S-1] we study regularity (more precisely uniform differentiability)
properties of the solutions u,(t) along with the convergence of u,(f) to u(t). In
particular, we prove in [L-S-1] that the convergence in (1.4) is, in fact, the
strong. We also establish in [L-S-1] a number of regularity resuits for u,(t),
which are reminiscent of those valid for the limit solution u(t). These results,
besides being of interest in their own, are of fundamental importance in the

(') This, in particular, implies that f: H***(I')— H*(I) is an isomorphism.



study of numerical schemes approximating (1.2). In fact, they are used crucially
in [L-S-2] where finite element techniques are developed to approximate u, (z)
and hence u(t).

In the paper [L-S-2] under minimal regularity assumptions imposed on
the boundary term g, the finite element approximation of (1.1) is introduced
and the convergence and the rates of convergence of the algorithm in L, (£2)
norms is established. The motivation for studying approximations of second
order hyperbolic equations with nonsmooth boundary data comes from
problems arising in numerical considerations related to a variety of boundary
control problems where the solutions are definitely nonsmooth — for example:
optimization problems with boundary controls, time-optimal boundary control
problem, Riccati equations arising from boundary control problems. In order
to construct and to prove related convergence of numerical algorithms for
these problems, a preliminary step is to establish appropriate approximation of
problem (1.1) with nonsmooth boundary data g — say geL,(X) or
geH'[0, T; H'*(IN]. To the authors knowledge, the literature on finite
element methods for the second order hyperbolic equation with Dirichlet
boundary conditions deals only with homogenous boundary data i.e. g =0 in
(1.1). This is not surprising, also in view of the fact that the maximal regularity
of problem (1.1) with nonhomogenous boundary data has been established
only recently (see [L-T-1], [L-2], [L-L-T]). As we indicated the presence of the
nonhomogenous and nonsmooth Dirichlet boundary data is responsible for
two immediate difficulties

(i) Dirichlet problem (I.1) does not admit a natural variational formulation
which could then be taken as a basis for a numerical approximation,
furthermore,

(ii) low regularity of the boundary data g (hence of the solution) rules out the
usual technique [or proving stability and convergence of the numerical
scheme which is based on H'(Q)x L, (Q) energy estimates.

While the first difficulty can be handled by selecting an appropriate ap-
proximation of the elliptic operator which would take into account the
nonhomogenous terms on the boundary (see, for example, [B-2], [B-7], [N-1],
[S-1]), the second difficulty becomes crucial when it comes to the derivation of
stability estimates for the sought after numerical algorithm. Let us elaborate
more on this point. A standard finite element approximation approach in
hyperbolic (as well as parabolic) case is to define a semidiscrete algorithm by
taking an appropriate space — approximation of the underlined elliptic
operator. The estimates on the rate of convergence — which of course depend
on the smoothness of the solutions — can be obtained by taking the difference
of the two solutions and by using results on elliptic approximations. It is
known, however [R-1], that even if the elliptic approximations yield the
optimal rates of convergence, nevertheless the rates for hyperbolic problems



are nonoptimal as they require one extra time-derivative of the solution. Since
we cannot obtain optimal convergence rates, one would at least like to obtain
convergence of the numerical algorithm in the “right topologies”, i.e. where the
maximal regularity of the map g — u takes place. To accomplish this one needs
to establish stability estimates for numerical schemes in precisely the same
topologies (in fact, for the homogenous boundary data, this can be done by
using the mentioned earlier H'(Q)x L,(€2) energy methods). This issue
however raises another question. What is the maximal regularity of the map
g — u. As we have noted, this seemingly innocent question was answered in
optimal way only recently (see [L-T-1], [L-2], [L-L-T]). In the above
references it was shown in particular that the map g —» u is bounded from

(L.5) L,(X)—C[0, T; L,(Q)]
or, more generally,
(1.6) H**(Z) > H*(Q)nC[0, T; H*(Q)], 520,

where in (1.6) we have to assume that g satisfies, for s > 3, some appropriate
compatability conditions at the origin. The results (1.5) and (1.6) improve by 3
derivative the previous results on regularity of solutions to (l.1) given in
[L-M]. Equipped with maximal regularity results [L-S-1] for the original
problem, we ‘devise in [L-S-2] the numerical algorithm which provides (i) the
best possible rates of convergence (we are resigned in [L-S-2] to “loose™ one
derivative), (ii) stability estimates reconstructing as much as possible the
regularity properties of the original solution. Since the prime interest is to
consider nonsmooth boundary data, it is precisely the second point mentioned
above which limits the choice of elliptic approximations in [L-S-2]. The reason
for this is twofold: first the available elliptic estimates deal with more regular in
space boundary data - typically ge H?(I'), p > 3/2 (see [B-2], [B-7], [N-1],
[S-17). Second, standard techniques of proofs based on H'-coercitivity of the
elliptic problems are not applicable as we consider boundary data which do
not yield H' (Q) solutions. Thus the sought after elliptic approximation should
allow for the treatment of nonsmooth boundary data g and moreover should
be suitable to yield hyperbolic estimates in lower norms.

On the other hand, let us notice that if one takes in (1.2) f = I then the
projection of (1.2) onto finite dimensional subspaces of H'(£2) would be
a hyperbolic counterpart to the Penalty Method introduced by Babuska [B-2]
for elliptic problems. However, with f =1 in (1.2), the solution u, (1) is not
bounded in L,(£2) (uniformly with respect to the parameter & > 0) by |g|,,)-
This shows that (1.2) with = I is not a good “approximation” of the original
hyperbolic problem as it does not reconstruct the regularity properties of the
original solutions. The presence of the Laplace’s Beltrami operator on the
boundary forces stronger convergence of the traces of u, which in turn is
necessary to obtain the appropriate stability of the solution (see [L-S-1] [L-1]).



The outline of the paper is as follows: In Section 2 we provide some
material on the properties and regularity of the continuous solution u(t) as well
as those of the regularized solution u,(t). In Section 3 we discuss the regularity
and convergence of the steady state solutions to (1.2). In Section 4, we define
semidiscrete approximating subspaces and approximations of (1.1) and we
recall some of results presented in [L-S-2]. Finally, in Section 5 the case of
domains Q < R? is discussed in details. The proofs of the results presented here
are given in [L-S-17], [L-S-2], [L-S-N7]. In Section 6 some numerical results are
provided. The following notation will be used in the paper: (-,), (resp. || - |I)
denote the usual L, () inner product (resp. the norm in L, (£2)). (.,.) (resp. |- |)
denote L, (I') inner product (resp. — the norm in L, (), H*(22), H"*(Q) for
r, s > 0 are the usual Sobolev spaces defined as in [L-M], if r = s we shall use
H (Q)=H"(Q). H® = (H*) s >0 where X' stands for the dual space to X.
PL(X —»Y) denotes the space of linear transformations from X to Y.
L,[0, T; X1, 1 € p < oo denotes the space of u(t) e X such that L,[0, T] norm
of lu(e)ll, is well defined; we denote u, = it = du/ot.

2. Regularization of wave equation

Let us begin by collecting regularity results available for the original
problem (1.1).

THEOREM 2.1 ([L-T-1], [L-T-2], [L-L-T], [L-2], [S-1]). Let u be the
solution to (1.1) with ge L,(2) and f =0. Then

ou
<C IglL;(}:)-(z)

8*’7 H-t.-1(3)
If in addition we assume that ge H"' (Z), g (0) = 0 and take feL, [0, T; L,(Q)],
then

(2.1) Il cro.r:Loc0n + Il

CLO, T3y (M)

du

on

22)  ullcro.rimron+ el cro. 7s000n +
La(2)

< Cliglaray + 1L 0,100

| where g satisfies the appropriate
0 we have

ou
on
Notice that the regularity of the solution on the boundary does not follow from
the interior regularity. In fact, the regularity of the normal derivative of the
solution on the boundary is higher than the Trace Theorem combined with

interior regularity would imply.

More generally, with ge H**(X), s =
compatability conditions and with [ =

< Cldlps.sz). =
Hs— b~ 1(‘\_')

(2.3) lullcro.r:ascan + M llcro. 7.0 - van +

(3) C will stand for a generic constant.



Next, let u, stands for the solution to (1.2). The following results were
proved in [L-1].

THeOREM 2.2 [L-1]. Let u (resp. u,) be the solution to (1.1) (resp. (1.2)) with
g=0and feL,[0, T; L,(R)]). Then

24) Nl ramrcan + ellcro, rizaen + |5 + [t p0)
6’7 L2a(2)
< C ”f"l:][O.T;Lz(Q)]:(a)

(2.5) [uelero, ropr o < C\/; Il Lyco.7:Lac»

(1) u, —u in L°[0, T; H' ()] weak star,
26) (ii) U, —>u in L*[0, T; L, ()] weak star,

' (iii) u,—0 in C[0, T; H' (],
du. Ju

i E—~  in I2(2) weakly.

(iv) 0’740’7 in 2(2) weakly
With geL,(2) in (1.1) (resp. (1.2)) and feL,[0, T; L,(R2)] we have
(2.7) | Ul cro, Tiaen < Clglen+ ”f”z,l[o.T;L;(m]],
(2.8) u,—»u in L*[0, T; L, (2)] weak star,

where C stands for a generic constant independent on € > 0.

In the paper [L-S-1] we prove the uniform (with respect to ¢) differen-
tiability of the solutions u, with nonhomogeneous, smooth boundary data
g and we improve the convergence results of (2.6) and (2.8).

The results are:

THEOREM 2.3 (differentiability) [L-S-17. (i) Ler u (resp. u,) be the solution to
1.1 (resp. 1.2) with ge H**(Z); g(0)=0 and f =0. Then

(2.9) ||u¢||cm,'r;m(m]+ I ag”C[O.T;L;(Q)] <C |£Ilnl-lma
ou, .
(2.10) P - + Iucle(}.‘)+'ulez[O.T;Hl(l‘)] < C|9|ul-1(z),
n La(2)
(2.11) |ue—9|Lz[o.T;H2(r)1 < Celglprag).

(i) If in addition we assume that ge H**(X), s =1 and g satisfies the
appropriate compaltability conditions then

(2.12) flu, llcto, rHse) T (DA cro, -1 < C |£ilns-s(x) >
ou,

(2.13) .

+ ”ur " Hs—1.s-1(%) + |“5IL2[0,'I';HZH‘)] < C |g|l-]-*-s(£),
Hs - l,s—l(z‘)

(2.14) |us_g[l,z[0.'l':f13' wry S Celglysse)-

(*) From now on the constant C will stand for a generic constant indcpendent of ¢ > 0.



THEOREM 2.4 (convergence) [L-S-1]. (i) Let u (resp. u,) be the solution to
(1.1) (resp. (1.2)) with feL,[0, T; L,(2)] and g =0. Then

(2.15) (1) el Lago, mim2r € Ce Nl S NLito,miLacoms

. (ii) ltt,— 1l Lo, TL201 < Ce I/ N 2t0. 75200
(2.16) (i) u.—»u in C[0, T, H (Q)],

' (i1) u,—»u in C[0, T, '(Q)],
(2.17) (1) uyr =0 in Ly(2),

' ou, ou

(11) %—)% in L,(%).
(i) Let u (resp. u,) be the solution to (1.1) (resp. (1.2)) with [ = 0. Then

(2.18) lue—ullcro,riLan < Celgla s
(2.19) u,—u in C[0, T;L,(R)] for any geL,(Z). =

Notice that the regularity results of u, stated in Theorem 2.3 are reminiscent of
those in Theorem 2.1. In fact, (2.9), (2.10) reconstruct the regularity of the
original solution u(t) given by (2.1) and (2.2).

3. Convergence of the steady state solutions

In order to prove our regularity and convergence results for the problem (1.2)
we establish in [L-S-1] the similar results for the corresponding elliptic
problem which we recall here.

Consider the following elliptic problems

Av = in
6.1) v=/ inf
vlp=0 in I,
and
o #of wm
—+fv,=0 in I
on

If we define the operator A: L,(Q2) - L,(Q) by
Av = dv, Yve2(A)= H*(Q)n H}(Q),
then (3.1) is equivalent to
(3.1 Av = f.
Similarly with A,: L,(2) - L,(Q) defined as
A,v, = dv, VYv,e2(A,)



where
, Ju
D(A,) = {ueL2 (Q); duelL,(£); 8—(3;_1_[;” = 0},

(3.2) can be rewritten as
(3.2) A, = f.

Below we state a number of regularity and convergence results established in
[L-S-1] for the problems (3.1) and (3.2). The proofs of these results are given in
[L-S-1].

Lemma 3.1 [L-S-1].

1 i
(3.3) | As 1f|l!1‘(ﬂ)+7;|/4-e Yy € C IS a- 1)
_ |
(3.4) 1A, 1flluzanEIAe Yl < CIUSI,
(3.5) ”At—lf_A_l.[”Hl(Q) < Celfln- -

Notice that (3.5) implies that a posteriori
A-f =AY in HY(Q) for any fe H 1(Q).
Next, let us define the so-called Dirichlet map D: L, (I') - L,(£)

4Dg =0 in Q,
Dgly=9g in[T.

It is well known [L-M] that

(3.6)

(3.7) DeZ(H*(N - H*'*(Q)) for all real s> 0.
Similarly we define the map N L,(I') > L,(Q) by
=0 i
(3.8) Ag\l[\;g in Q,
ON, )
3 an‘g+/3ng=ﬂg in I,

Lemma 3.2 [L-S-1].

0

(3.9) IN gl 32 *‘5’; N.g| < Clgluyr).
%

(310) “[\[eg”H'/z(.QJ-*_l_~ Ncg < Clgla
on -4

(3.11) "Ngg“Hz(.Q) <C |.¢J|H3/2(r),



(3.12) N, g—Dgll gsryqy < Celgl,
(3.13) ”Neg—DQ”umm) < Celglyyry. m

Notice that the regularity properties (3.3(3.4), and (3.9)-(3.11), reconst-
ruct (uniformly in the parameter ¢ > 0) the well-known regularity properties of
the elliptic Dirichlet problems.

As it 1s pointed out in [L-S-1], the results of Lemma 3.2 can be easily
generalized to obtain

N.e ¥ (H*(I - H**Y2(Q)) for all real s> 0.

Using the above definitions of elliptic operators, we are in a position to
represent the solution u(t) in the semigroup form as in [L-T-17:

(3.14) u(t) = Aj'S(t—z) Dg(z)dz = (Lg) (¢)
0

Theorem 2.1 gives
(3.15) Le#Z(L,(2)- C[0, T; L, (2)]).

Similarily we represent the solution u,(t) of (1.2) via the semigroup formula.
First, let us recall that the following identities are simple consequences of
Green formula (see [L-S-1]):

0
N¥Au= 5 o Yue2(4,),
(3.16) ]" '
N¥A.u= E,Bu, Yue C* ().
Since A, is selfadjoint and the spectrum of A4, is on the real negative axis, 4,
generates cosine C,(t) and sine §,(t) operators on L, (€2). Therefore, following

the same arguments as in [L-T-1], one can show that the solution u, (t) of (1.2)
can be written as

(3.17) u,(0) = 4, S,(t—2)N,g (2 dz = (L, 9) (1),
0

From Theorem 2.2 it follows that
(3.18) L,e#(L,(2)—C[0, T; L,(®)]) with the norm independent of & > 0.

Considering L, as acting from L,(Z) into L,(Q), we compute its adjoint
Ly Ly (Q)— Ly (2)

.
(BN = NFA[S,(z—1) ] (2)dz,
by (3.16)

? T
(3.19) LN = 515,60 @dz.

22 - DBanach Center 1. 24



As a consequence of (3.18) we have
(3.20) Ixe2(L,[0, T; L,(Q] - L,(2)
with the norm independent of & > 0.

The solution u,(r) given by (3.17) (or equivalently by (1.2)) can also be
represented as the solution of the following abstract ODE problem

i, (t) = A,u,(t)—A,N,g(t), on 2(A4,),
u, (0) = 1,(0) = 0,

(3.21) together with (3.16) and (3.18) lead to the variational formulation (1.3) of
the problem (1.2) (see also [L-1])

(3.21)

(1.0, B)+a(u. ), B)+ (Bu, 0, 6> =~ Pa, )

for all gD (4* = {peH'(Q), ol e H ().

Let us point out that the semidiscrete scheme (4.1) introduced in next section
can be obtained from (3.22) by restricting the test functions ¢ to lie in the finite
dimensional subspace V.

4. Finite element approximation

In order to define a semidiscrete approximation of the original problem (1.1)
a natural idea is to “project” the variational form of (1.3) onto the finite
dimensional subspaces. To this end, let h be the parameter of discretization
tending to zero and let ¥, stand for the approximating space of H! (Q2) with the
usual approximation properties (to be specified later) and such that 7, = Var
< HY(I'). As an approximation of u,(t) (solution to (1.3)) we take u,,(t)eV,
such that

1
(iih,e (t)s th)ﬂ + a (uh.e (t)’ ¢’h) + E </3uh.s (t)a q5h>['

1
= ;<Pl|g9 ﬁ¢h>l" ¢he Vh’

Up, (0) = dh,[ (O) = 01

where «a(u, v) is the bilinear form associated with the second order elliptic
operator A4(x, 0), i.e. in general

" du v " du v
alu, = g\ X)z—, — ) = i\ X)) T———dXx;
(u, v) Z (a’(t)ﬁx x),, L ja’(t)ﬁxjé'xjdx

ij=1 Xi X =10

in particular, a;; = §;; for A(x, J) = —4, and P, is thc orthogonal projection



from L,(I') onto V,. Later we shall use (4.1) with ¢ = £(h) = h" for some y > O.
The corresponding solution will be denoted by u,. Notice that the procedure
described above:

(i) is well defined directly on geL, (%),

(ii) ¥, are subspaces of H!(£2) which are not required to satisfy boundary
conditions.

In the paper [L-S-2] the stability and the rates of convergence of the
approximation u,(t) to the original solution u(t) are established. In fact, the
main results in the case when ¥, consists of piecewise linear functions (see
Corollary 4.2 and 4.1) establish in particular that with ¢ =¢(h) = h in (4.1)
we have

4.2) (convergence)
(i) [u _uh”C[O.T;Lz(Q)] < Ch [|g|m(n + |QIL2[0.T;H’(I‘)]] s

()  lu—ullco.rsm2-eon < Chlldlasris +19lLa0. rimvaaml,
where ¢ > 0 is arbitrary small;
4.3) (stability)
W) Nu—uyllcorieaon < CUdlao. 70172+ ey + 9Lam]s
(1)  |u—uyllcro,m;m1r2-ey < CUdlmo rarean +19la12- ey,

where C stands for a generic constant which is independent on A > 0 and g.
For boundary data which display more regularity properties and satisfy the
appropriate compatability conditions, higher order rates of convergence are
given in Corollary 4.2.

Notice that in view of the optimal results of convergence for the wave
equation with homogeneous boundary conditions, where an extra derivative in
the solution is necessary (see [R-1] and also [B-1], [D-1], [B-3]) and optimal
regularity of the solutions to Dirichlet problems (see 1.5), the estimates (4.2) are
optimal. Although the stability results in (4.3) improve “almost” by 1/2
derivative the stability estimates implied by the convergence result in (4.2), they
are, however, still nonoptimal with respect to the sharp regularity of the
solution u. In fact, ge L, (Z) will produce the solution ue C [0, T; L, (£2)] (see
[L-1], [L-T-2], [L-L-T]), thus we would expect that the stability estimate (4.3)
(i) should hold for any gelL,(Z) (instead of ge L, [0, T, H™Y(I)]).

In the analysis of the error of the approximation, a crucial role is played
by the very special behavior of the traces of hyperbolic solutions. In fact, the
solutions to wave equations are shown [L-L-T] to have better regularity on the
boundary than interior regularity and the trace theorem would imply. This fact
is used an essential way in [L-S-2] in the process of proving (4.2) and (4.3).

4.1. Approximating subspaces. Let V, be a family of N(h) finite dimen-
sional subspaces of H! (2), of the order r > 2 satisfying the local and inverse



assumption (see [B-1], p. 98) in addition to the following properties:

4.4) (a) Vyr < H'(I);
(b) Vue H*(Q):
inf [lu—d,li+hlu— (/):."m(m'*'hI/Z [u— byl + W32 Iu—d)h]mu')]
eV

< Ch |jull H5(0)»
<

© llu—Pyullygy < CH ™ ullgay, 2<s<r 0<s<r, 0<1<3)/2,

where P, stands for the orthogonal projection in L, (£2) (with respect to L, (Q)
inner product) onto V.

(d) for any &, c V, = V,|-(*), there exists ¢,€V, such that

Gulr =, and  lPylns) < Clldpllus-12gy, 0 <s< 1.

It is well known that the properties (3.1) a, b, ¢ are standard and they are
satisfied by piecewise polynomials defined on the uniform mesh. The property
(3.1.(d)) with s = 1 was shown to be true in [B-4] for polynomials defined on
triangles. Similar arguments to those th [B-4] were used in [L-S-N] to prove
that the inequality in (4.4.d) can be extended to negative norms (ie. 0 < s < 1).

4.2. Semidiscrete approximation. Below we recall the results on stability
and the rate of convergence of the solution u, () to u,(t) in H*($2) topology
0<s<i.

THEOREM 4.1 (stability) [L-S-2]. Let u, be the weak solution of the problem
(1.2) and let u,, be the approximate solution of the problem (1.3) defined by (4.1).
Then with ¢ > 0 arbitrary small, we have

(1) ”uh.e”C[O.T;H’/z'E(Q)] < C].f]|l»rl[o.r;m(r)];
al2 -1

1) Mupellco,rsLaon C[l + \/ :l‘glm[o.'r;ﬂ- 172 +er))s
£

where ¢ =1 and r = 1+ (c—1)/20.
(i) i in addition we assume that V> < V, (%)
then
| uh.r:”(_‘[O.’l‘;L;(Q)J < C|£I|Hl[o,1‘;1r 12+ ey
Here C is independent on h, ¢, and g.

THEOREM 4.2 (convergence) [L-S-2]. Let u, (resp. uy,) be the solution of
(1.3) (resp. (4.1)). Assume that g satisfies the appropriate compatibility conditions

(*) Itis well known that ¥, ¢ H' (I') is an approximating subspace of L, (I') of the same order
r as V, (sec [B-2] Thcorem 4.22).
(®) ¥ stands for the subspace of H{(Q) NV, with approximating properties (3.1.b).



at the origin, in order to guarantee that the u,e C [0, T, H*(Q)]. Then for any
o > 0 arbitrary small, d > 1, s > 1 there exists a constant C independent of h,
g and g such that

() v, —unelcro,rinaon < CH°™° |:1 + :/’2/{; 1]2 (191 mssy + 191 La0,7:150r1)
where r = 1 +(s—1)(c—1)/o (°);
(1) lu, = vy el cro, 730072 - egon < < Chm 12 Zof( )[lglys(z)+|9|L2[0.T;H5(r)]]
Wi s< 32
where_/(h)5{<l+l_1j\/.;_;_l> ifr= 1+(S—1;(£)0—1);

if in addition we assume that V> c V, then for 1 < s<r, we have
(iii) . —upellcro L0 < CH Udlases) + 9Ly, 7ims00 ]
(iv) 4, — wncllcro, a2 -e@n < CH° 12 [ldlasisy + 19l Lo, omrsern ] -

Let us set in (1.5) e = g(h) = h? for some y > 1 and denote the correspon-
ding solution u, . by u,. After combining the results of Theorems 1.1, 3.1 and
3.2 of [L-S-2] we obtain

CorOLLARY 4.1 (stability) [L-S-2].
(1) ey — vl cpo, 02 - ey < C Udlaro.emearn + 191112 - en)],
(ii) iy —ull o, 7L < C Liglmiio.m2 + orn + 19lL20]s
where r = 1+ (1 +y)/20;
(i) if VP <V, then
luy—ull cro, 7:L200n < CUGlargo, vz + oy + 19,5

COROLLARY 4.2 (convergence) [L-S-2]. Let u (resp. u,) be the solution of
problem (1.1) (resp. (4.1) with e(h) = h” for some y > 0). Then for any @ >0
arbitrary small, s = 1 we have

(1) =yl cro. 701 < C IR0+ RT (gl + 191 Lato, 7:mrserm]
where r = 1+(s—1)(1+7)/o;
(i) lu—uyllero, 75012 -0y < C LA V27e g pr] Clgla=czy + 19l aro. msmscrn]
where r = 1+(s=1)(1+y)o if s = 3/2;
(i) Ifin addition we assume that V¥ < V, then (i) and (ii) holds for any 1 < s <r
and p=0. =

(® Il s=1 then we can take g =0, ¢> 1 arbitrary and r> 1



Notice that the rates of convergence established in part (iii) (resp. (i), (ii))
are optimal (resp. quasioptimal) in the following sense — they reconstruct the
optimal regularity of the solution (compare Theorem 2.1 in [L-S-2]), (modulo
the usual loss of one derivative). The estimates of the error given in part (iii)
under the additional assumption that ¥° = V, reconstruct also the best
approximation properties of the underlined approximating subspaces. If
condition V? c ¥, fails, then for s> 1 one needs to use higher order
polynomials to obtain the quasioptimal error reflecting the optimal regularity
of the solutions.

Stability estimates provided by Corollary 4.1 improve by % derivative the
stability results implied by the convergence results. Nevertheless, the stability
estimates are still nonoptimal as we are loosing % derivative with respect to the
optimal regularity of the solutions (see Theorem 2.1 in [L-S-2]).

One can, of course, interpolate between the results of Corollary 4.1 and
4.2. For example; interpolation between the L, (Q2)-estimates of Corollary 4.1
and 4.2 applied with s =y =1 yields

=ty [l cro. 7:L0n < CHY "D [glgr - 320+ @01 - o(zy 19| L,10. 7381 - 3120 + 2e(ry)]

where ¢ > 0 is arbitrary small and 0 < Q < 1.

5. Finite element approximation in R?

Let Q = R? be given domain. Let us consider the special case when the
approximating subspaces ¥, are the spaces of piecewise polynomials defined on
two-dimensional domain Q. Let ¥, = H' () be a family of N (h) dimensional
subspaces of algebraic polynomials of degree p > 1 defined on each triangle of
the uniform triangulation of Q. We show in [L-S-N] using the method
proposed in [B-S] that we can extend the inequality (4.4d) to negative norms.
Actually we proved in [L-S-N] that the following assumption holds true.

For any 8, V, = Vijr, there exists an element &, €V, such that @, = @,
and

(5.1) |9l < CIByl-1724ers
(5.2) 1Byl 1.0 < ClByl 2.
where ¢ > O is arbitrary small.
Therefore we can extend the inequality (4.4d) to negative norms.

Remark. Notice that (5.1) and (5.2) represent the surjectivity of the trace
operator, but restricted to the finite dimensional subspaces V, and V,.

To prove (5.1), (5.2), it is enough [L-S-N] to establish these inequalities for
a single triangle (generalization to curvilinear element is straightforward). To
accomplish this let T be an equilateral triangle (see Fig. 1)
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Fig. 1. Triangle T

T ={(x, Y)eR*|0 < x <1, Ogys\/jx, ysﬁ—ﬁx}
with the boundary 0T =y, Uy, Uy; where
Y =ruyl ={(x, 00 <x <1},
v2=v8urs = {(x, M)y =/3x, 0<x < 4},
vy =308 = {(x. My = =/3x+./3, f<x <1}

We denote by V(T) (resp. V (y)) the space of polynomials of order p on T (resp.
y = aT).
The estimates (5.1) and (5.2) will follow from the [ollowing theorem:

TueOREM 5.1 [L-S-N7]. Let there be given an element ® € V (y). There exists
an element ®eV(T) such that ¢|,= & and

(5.3) [Plo,r < CIPH - 1724670
(54) 18]1,r < ClIl1/2s
where C does not depend on ¢.

The inequality (5.4) has been proved in [B-S] in the case of h-p version of
the finite elements. Thus in particular it is valid in our case.

To prove (5.3) we shall follow the conceptual framework of the proof of
(5.4) given in [B-S]. However, because of the presence of “negative” norms in
(5.3) (rather unnatural for the trace theorem), there will be a number of
technical differences with respect to the ideas presented in [B-S].

Following [B-S] we define the linear mapping F,: V(y,) = V(T) where

x+y/v'§
Fif(x, y) = # [ r@ar.

x~y/y3

The mappings F;: V(y)— V(T), i=2, 3 are defined in the similar way.



The proof of (5.3) is based on the following three Lemmas:

LEMMA 5.1 [L-S-N1. Let feV(y,). Then

(a) F{l(x, y)eV(T),

(b) Fifl(x, 0) = f (x),

(©) IFYMo.r < Clf1=1/2.000

(d) ), S Clfl 0 —3HE<k<O,
(d,) F, o <Clfl, o0 —2te<k<O,
(d3) IFP, e < CUl-1200

(da) FY, e < ClA =120

LEMMA 5.2 [L-S-N]. Let T be the triangle as in Fig. 1 and let f be
a continuous function on 8T, such that f; = f|,.eV(y), i=1, 2, 3. Then there
exists ¢, eV (y), i =1, 2, such that

(@) U = FiP+ FPde V(T),
(b) U=/f, ony, i=1,2,
(c) 1UNo,r < CUSl-1/2.9: + 12l = 1/2,72)
2
(dy) 1Pl S C Y iy, —3+e<k<0,i=1,2,
ji=1
) 2
(d,) "p1|,m,a < ClI7, 2T 2 = 12035 —i+e<k<0,
1 T =
) 2
(dy) 1B, < CLAN e+ ¥ -1p0),  —+e<k <0,
2 RET=]

LEMMA 5.3 [L-S-N]. Let T be the triangle as before, { be a continuous
function on AT, f, = fy,=0 and f,eV(y,). Then there exists a polynomial
ve V(T) such that

lollo,r < C |f1|0.y.s
v=f, ony,,
v=0 on y,uy,,
where C is a constant independent of f and of the order p of polynomials in V(T).

Lemmas 5.1, 52 and 5.3 are the “negative norm” counterparts of the
results given by Lemmas 7.1, 7.2 and 7.3 in [B-S]. The proof of Lemma 5.3
follows via straightforward modification of the arguments given in [B-3]. More
technical proofs of Lemma 1 and 2 are given in [L-S-N].



To continue with the proof of (5.3), following [B-S] we denote (see Fig. 1)

v, =780y where y4 = AP,, y* =P, B,

Y, =y uUyS  where y4 = AP,, 5 =P, C,

Y3 =73V where y§ = BP,, y§ =P, C,

P,, P,, P, are the midpoints of line segments AB, BC and CA, respectively.
Without loss of generality we may assume that

(55) d‘;l)‘l = (Z;l $ O:
(56) (5'” = ‘52 = 01
(5.7) Bl =G, =0.

We apply Lemma 5.2 to f; = ¢,, f, = 0. Thus there exist elements ®, € V (y,),
@, € V(y,) such that

(5.8) U = FPI 4 Fi®de V(T),
(5.9) U, =d, Ul,=6,=0,
(5.10) Ul,, = ¢,

and

(5.11) 1Ullo.r < Clyll - 1/2.9:-

We estimate the norm |g4]-,,,,, as follows
|g3|—J/2.y3 s Cl |g3lk.y3 g Cl (lFlld.“llk.yg'FlF&m]lk,r;)a
by Lemma 5.1 (d,), (d,)
(512) < Cy(1®yliy, +1Poliss) € Clfiliy,  —3+e<k <0, since §, =0.

Now we extend g, to T, using again Lemma 5.2 for f; =0, f; = g;. By Lemma
5.2 there exist elements

(5.13) PeVy,), 1€V (ya)

such that

(5.14) U, = Figily Fi$le V(T),

(5.15) U llo.r € Cilgal-112.vs < Cldslayas ~3+e<k<0,
(5.16) Uily,=0, Ul,=9. Uil =9;.

Finally we extend an element j of the form

(5.17) L=0, f=g, f3=0



to the triangle T using Lemma 5.3. By Lemma 5.3 there cxists an element
U,eV(T) such that

(518) UZIYI = 0) Uzlyz = gZ’ UZ'TJ = 0
and
(5.19) 1U,llo.r < Clg3lo.y.-

We estimate the norm |g,)o,,, in terms of the norm |$1]_1,2‘y1. Since g, = U,|,,,
it follows that

192l0.2 = 1Usloys <A, at IFSS, o+ IFI, Lot IFEHE )
S Ci(P3l-129, |‘bl3|0’},§' + |¢’1|0|?IA + P4 - 1/2,50)

by Lemma 5.2 (d,), (d,)
(5.20) < Co(1931- 17295+ 195l -

On the other hand,
lg3|0-?§ < lF[Pl]lo.yf-HF[zwﬂ[o,yf <

by Lemma 5.1
<C, (|¢1|_-1/2.v1+|¢2|0.7§:) <

by Lemma 5.2 (d,), (d,), since f, = Ul|,, =0

< CloyI- 12,
Finally let
(5.21) o=U-U,+U,
then in view of (5.11), (5.12), (5.13), (5.16), (5.19)
||¢||0.T<C|$1lk.yn —3+e<k<0,

and

(bl‘n =¢~;1’ ¢lyz=0v (/)'y; =0,

which completes the proof of Theorem 5.1, hence of (5.3). =

6. Numerical tests
Let in (4.1) A(x, 8) = —A4, B = —a, A +a, I, where a,, @, > 0. We denote by

Ut)y=(U, (1), ..., Uyp) n(h) = dim V, the vector of nodal points values of u,,, .
We write (4.1) in the matrix setting:

1 1

1
1 U0 = U},

U(©0)=0°,



where we have used the [ollowing notations:

(6.2) Kﬂ = (I V¢i' V(f)jdx)i,jeln
9]

(6-3) MQ = (!j; ¢i (t{)jdx)i,jeln

0
§~¢,.}
64) Kp=<r%"Ir
0

| §
65 Mp=<T
0

66) G= {g (Pi).

stiffness matrix, where ¢, are linear
shape functions,

mass matrix,

i,jelp,
otherwise,
i, jel,

otherwise,

ie I, the vector of boundary data,
otherwise,

In = indices of nodal points P;,

I = indices of nodal points lying on I

One can use a class of single step methods for discretizing the semidiscrete
system (6.1) (see [B-2]). We have applied the scheme proposed in [D-2]. It is of
order O (h*)+0((4t)*). We first shortly summarize the method. Let N be
a positive number and let A4z = T/N. We denote by u* any function u at the
time levels t =t, = kAt, k=0, ..., N. Furthermore we use the notations

U = Ukt (1 —20)uk 4 0u 1,

WL ok k-t

o2t =

such that

(41)?

We define the fully discrete approximation for (1.3) to be a sequence (U¥)Y_,

1
6.7) Mgo? U+ (KQ -l Kt M,-)) Uk14

1
=E(al Kr+a, M) G"Y"*  for k=1,..., N—1.

To start the scheme (6.7) we need the solution vector at two levels, say t =0,

t = At. By (6.1)

U°=0°.

We shall present a numerical example. There the data is differentiable.

Other cases will be considered in other connections.



EXAMPLE 6.1. Let @ = (0, 1)x(0, 1) and T = 1. Consider the problem

(6.8) {

in 2x(0, 1),
sin(n(x+y+
u(x, y, 0) = son(n(x+y)),

= Adu
u(x, y, t)

on I'x(0, 1),

2t))

= ﬁﬂ cos (T (x + y)).

(x, 5,0

u

2t)) (see Fig, 2.).

n(n(x+y+

S1

The exact solution of (6.8) is u(x, y, t)
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Fig. 2. The exact solution of (6.8) for ¢ =1/4, 12, 3/4 and !
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B,
—

ABSOLUTE ERROR
o
o
©

0.021

0.014

0.00"

0.02 4

0.014

TIME ¢==3/4

Table |

f' 1/32 1/64 1/128
18 002531 003027 003145
/16 0003230 0006714  0.007717
1732 0.005869 00008219  0.001572

DX =1/8 DY =1/8 DT = 1/32

2

0.034

ABSOLUTE ERROR

0.02

°
o
'y

0.034

ABSOLUTE ERROR

0.021

0011

TIME t=1

Fig. 3. lu()=vepa(O), h =178, 41 = 1/32




DT = 116 DY = 1/16 DT = 1/64
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Fig. 4. [u(t)— g (O, b = 1/16, 4t = 1/64
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In Fig. 6 a-c we see the evolution of u—u,,, difference in L*-norm for
h=1/8, At =1/32, h=1/16, At = 1/64 and h = 1/32, At = 1/128 (piecewise
linear interpolation is applied for u(t)—ug4 (t) for ( # kAt).

(@) (b) (c)
o o
o . o s g o3
£8 g3 g3
1 L 1
> P »x @
o~ o~
3 ar E
5 5f 8
g (Pl R S S S 8 /—;/1 § —
Cj0.0 02 04 06 08 10 D0.0 02 04 06 08 10 00 02 04 06 08 10
TIME TIME TIME
Dx=1/8 Dy=\/8 0T=1/32 Dx=1/16 DY=1/16 DT=1/64 Dx=1/32 Dy=1/32 DT=1/128
Fig. 6. {u(l) — ugs ()l oy 1[0, 1]
Table 2 presents [ (I?) errors.
Table 2
h At 132 1/64 1/128
1/8 0.00946 0.01147 00119
1/16 0.00087 9.00245 0.00289
1/32 0.00267 0.00040 0.00058

We find that O (h*)+ O ((4r)?) for L* (I*) norm (see the diagonals of Table 2). In
Fig. 7 a-c we see the evolution of u—u,, in [*-norm for h = 1/8. At = 1/32,
h=1/16, 4t=1/64 and h=1/32, At =1/128 (as above piecewise linear
interpolation for error at time t # kAt is applied).

(a) (b) (c)
[Te] . wn o v
x 5 =3 oSl
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x o st w
w w i
~ (<] f\ll o ﬁ o
~ 5 ~ 8 ol
o o o
tg w w
S} S 3|
o a (e
(=] o
00 02 04 OB 08 10 00 02 04 06 08 10 00 02 04 06 08 10
TIME TIME TIME
ox=1/8 0Y=1/8 DT=1/32 Ox=1/16 Dy=1/16 DT=1/64 DX=1/32 DY=1/32 0T=1/128

Fig. 7. lJu(t) = tenar (M 2.2, t€[0, 1]
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