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A numerical method for solving the wave equation with nonhomogenuous, 
nonsmooth Dirichlet boundary condition is proposed. Convergence of the 
method is proved and some error estimates are derived [L-S-2]. The method is 
based on the regularization technique [L-1], [L-S-1] of the wave equation with 
Dirichlet boundary data. Several numerical results are provided in two 
dimensional case. 

1. Introduction

The paper is devoted to the approximation of the wave equation with 
nonhomogeneuous Dirichlet boundary conditions. We recall several theoreti­
cal results presented in [L-S-1] and [L-S-2]. We present the numerical results 
in the case of two-dimensional problem with respect to space variables 
[L-S-N]. 

Let Q be an open bounded domain in R" with a smooth boundary I'. 
Consider the following second order scalar hyperbolic equation 

( l. t) 

ii(t, x) = Au(t, x)+f(t, x)
u(O, x) = u(O, x) = 0 

u(t, x)lr = g(t, x) 

(t, x)e(O, T] x Q = Q, 
in Q, 

on (0, T)xI' � :r.

The following question may be asked: how to construct a numerical algorithm 



in order to compute effectively u from the boundary data g? It is well known 
that the "best" numerical approximations of various p.d.e. problems are based 
on a certain variational formulation of the original equation. The problem in 
our case is, however, that due to the Dirichlet nature of the nonhomogeneous 
boundary condition problem (1.1) does not admit a natural variational 
formulation. (In contrast, a natural variational formulation is standard in the 
case of Neumann ·or Robin boundary conditions.) In this context, the idea of 
Lions [L-1] is to "approximate" the solution u(t) of (1.1) by a sequence of 
functions ul (t) which are determined as solutions of the following problems 

(1.2) 

ii,(t,x)=t1u,(t,x)+f(t,x) in Q,

u
,.

(O, x) = ti
6
(0, x) = 0 

au£ a p 
e-+ ,..u = g
a,, 

C 

in Q, 

on E, 

where p is a selfadjoint second order elliptic operator defined on the
variety r ( l ). 

The advantage of introducing (1.2) is - of course - that (1.2) admits 
a natural variational formulation: 

1 1 
(ii,i , 4>)a+Wue , f'<J,)n+-<Pui , <J>>r = -((Jg, 4>>r+U', <Ma V</>E C2 (Q), 

6 f. 

(1.3) for a.e. tE(O, T). 

u
£
(0) = u

£
(0) = O

In [L-1] it was shown that u
i
(t) approximates u(t) in the following-sense: for 

any geL
2

(.E) and feL
1 

[0, T; L
2

(Q)] 

(1.4) u
£
-+ u in L

(X) 
[O, T; L

2 
(.Q)] weak star. 

In view of the above, one can think of (1.1) as a limit problem for (1.2). 
Therefore, in order to find an effective numerical approximation of ( 1.1 ), the 
natural idea to pursue is to look for numerical algorithms (Ritz-Galerkin, finite 
element, etc.) of the variational equality (1.3). However, in order to establish the 
convergence or even more - the rates of the convergence - of these 
approximations, a necessary prerequisite is to know more about the regularity 
properties of the solutions to (1.2) as well as their convergence to u(t). Thus, in 
the paper [L-S-1] we study regularity (more precisely uniform differentiability) 
properties of the solutions ut (t) along with the convergence of u

£ 
(t) to u (t). In 

particular, we prove in [L-S-1] that the convergence in (1.4) is, in fact, the 
stro11g. We also establish in [L-S-1] a number of regularity results for u"(l), 
which are reminiscent of those valid for the limit solution u (c). These results, 
besides being of interest in their own, are of fundamental importance in the 

e) This, in particular, implies that P: w+ 2 (f)-+ H" (I') is an isomorphism.



study of numerical schemes approximating (1.2). In fact, they are used crucially 
in [L-S-2] where finite element techniques are developed to approximate ue (t) 
and hence u (t). 

In the paper [L-S-2] under minimal regularity assumptions imposed on 
Lhe boundary term g, the finite element approximation of (1.1) is introduced 
and the convergence and the rates of convergence of the algorithm in L

2 
(Q) 

norms is established. The motivation for studying approximations of second 
order hyperbolic equations with nonsmooth boundary data comes from 
problems arising in numerical considerations related to a variety of boundary 
control problems where the solutions are definitely nonsmooth- for example: 
optimization problems with boundary controls, time-optimal boundary control 
problem, Ricca ti equations arising from boundarx control problems. In order 
to construct and to prove related convergence of numerical algorithms for 
these problems, a preliminary step is to establish appropriate approximation of 
problem (1.1) with nonsmooth boundary data g - say g E L2 (Z) or 
g E H 1 [O, T; H- 1 12 (I')]. To the authors knowledge, the literature on finite 
element methods for the second order hyperbolic equation with Dirichlet 
boundary conditions deals only with homogenous boundary data i.e. g = 0 in 
(1.1). This is not surprising, also in view of the fact that the maximal regularity 
of problem (1.1) with nonhomogenous boundary data has been established 
only recently (see [L-T-1], [L-2], [L-L-T]). As we indicated the presence of the 
nonhomogenous and nonsmooth Dirichlet boundary data is responsible for 
two immediate difficulties 

(i) Dirichlet problem (1.1) does not admit a natural variational formulation
which could then be taken as a basis for a numerical approximation,
furthermore,

(ii) low regularity of the boundary data g (hence of the solution) rules out the
usual technique for proving stability and convergence of the numerical
scheme which is based on H

1 (Q) x L
2 

(Q) energy estimates.

While the first difficulty can be handled by selecting an appropriate ap­
proximation of the elliptic operator which would take into account the 
nonhomogenous terms on the boundary (see, for example, [B-2], [B-7], [N-l], 
[S-1]), the second difficulty becomes crucial when it comes to the derivation of 
stability estimates for the sought after numerical algorithm. Let us elaborate 
more on this point. A standard finite element approximation approach in 
hyperbolic (as well as parabolic) case is to define a sernidiscrete algorithm by 
taking an appropriate space - approximation of the underlined elliptic 
operator. The estimates on the rate of convergence - which of course depend 
on the smoothness of the solutions - can be obtained by taking the differe.nce 
of the two solutions and by using results on elliptic approximations. It is 
known, however [R-1 ], that even if the elliptic approximations yield the 
optimal rates of convergence, nevertheless the rates for hyperbolic problems 



are nonoptimal as they require one extra time-derivative of the solution. Since 
we cannot obtain optimal convergence rates, one would at least like to obtain 
convergence of the numerical algorithm in the "right topologies", i.e. where the 
maximal regularity of the map g-> u takes place. To accomplish this one needs 
to establish stability estimates for numerical schemes in precisely the same 
topologies (in fact, for the homogenous boundary data, this can be done by 
using the mentioned earlier H 1 (Q) x L2 (Q) energy methods). This issue 
however raises another question. What is the maximal regularity of the map 
g .- u. As we have noted, this seemingly innocent question was answered in 
optimal way only recently (see [L-T-1], [L-2], [L-L-T]). In the above 
references it was shown in particular that the map g-+ u is bounded from 

(1.5) L2 (E)-+ C [O, T; L2 (Q)] 

or, more generally, 

(1.6) 

where in {1.6) we have to assume that g $atisfies, for s > 1, some appropriate 
compatability conditions at the origin. The results ( 1.5) and ( 1.6) improve by -! 
derivative the previous results on regularity of solutions to (1.1) given in 
[L-M]. Equipped with maximal regularity results [L-S-1] for the original 
problem, we devise in [L-S-2] the numerical algorithm which provides (i) the 
best possible rates of convergence (we are resigned in [L-S-2] to "loose" one 
derivative), (ii) stability estimates reconstructing as much as possible the 
regularity properties of the original solution. Since the prime interest is to 
consider nonsmooth boundary data, it is precisely the second point mentioned 
above which limits the choice of elliptic approximations in [L-S-2]. The reason 
for this is twofold; first the available elliptic estimates deal with more regular in 
space boundary data - typically g E HP (r), p > 3/2 (see [B-2], [B-7], [N-1], 
[S-1]). Second, standard techniques of proofs based on f/ 1 -coercitivity of the 
elliptic problems are not applicable as we consider boundary data which do 
not yield H 1 (Q) solutions. Thus the sought after elliptic approximation should 
allow for the treatment of nonsmooth boundary data g and moreover should 
be suitable to yield hyperbolic estimates in lower norms. 

On the other hand, let us notice that if one takes in ( 1.2) f3 ===, I then the 
projection of (1.2) onto finite dimensional subspaces of H 1 (Q) would be 
a hyperbolic counterpa.rt to the Penalty Method introduced by Babuska [B-2] 
for elliptic problems. However, with {J = I in ( 1.2), the solution u,: (t) is not
bountied in L2 (Q) (uniformly with respect to the parameter e > 0) by l?Jl,.21r1•

This shows that (1.2) with {J = I is not a good "approximation" of the original 
hyperbolic problem as it does not reconstruct the regularity properties of the 
original solutions. The presence of the Laplace's Beltrami operator on the 
boundary forces stronger convergence of the traces of u which in turn is 

f. 

necessary to obtain the appropriate stability of the solution (see [L-S-1 J [L-1 ]). 



The outline of the paper is as follows: In Section 2 we provide some 
material on the properties and regularity of the continuous solution u(t) as well 
as those of the regularized solution u

e 
(t). In Section 3 we discuss the regularity 

and convergence of the steady state solutions to ( 1.2). In Section 4, we define
semidiscrete approximating subspaces and approximations of (1.1) and we
recall some of results presented in [L-S-2]. Finally, in Section 5 the case of
domains Q c R2 is discussed in details. The proofs of the results presented here
are given in [L-S-1], [L-S-2], [L-S-N]. In Section 6 some numerical results are 
provided. The following notation will be used in the paper: ( ·, · ), (resp. II· II)
denote the usual L2 (Q) inner product (resp. the norm in L1 (Q)). < . , . ) (resp. I· I) 
denote L1 (f) inner product (resp. - the norm in L2 (f)), H2 (Q), Hr ,s (Q) for 
r, s > 0 are the usual Sobolev spaces defined as in [L-M], if r = s we shall use 
H' (Q) = Hr .r (Q). H-s = (Hsy s > 0 where X' stands for the dual space to X.

ff? (X -. Y) denotes the space of linear transformations from X to Y

L
r 

[O, T; X], 1 � p � oo denotes the space of u (t) EX such that L
P 

[O, T] norm 
of llu (t)ll

x 
is well defined; we denote u

( 
=ti= ou/ot.

2. Regularization of wave equation 

Let us begin by collecting regularity results available for the original
problem ( 1.1 ). 

THEOREM 2.1 ([L-T·l], [L-T-2], [L-L-T], [L-2], [S-1]). Let u be the
solution to ( 1.1) with g E L2 (E) and .f = 0. Then

(2.1) laul 
2 

II ti II C[O, T;L2(!))] + II Ur II , I , + -a � C lgiL 2 (X)' ( ) 
C[O, T;(ll 0(f.l)) l I/ H - 1. - 1 (X) 

If in additiun we assume that gEH 1
•

1 (E), g(O) = 0 and take fEL
1 

[O, T; L
i

(Q)], 

then 

(2.2) llullcro.T;H 1 (Q)] + llurllc[O,T:L2 (!:!)J + I aaul Y/ L,(l') 

� C [Jgln1, 1 <I> + llfllL t 10,T;L2 !f.!)]]. 
More generally, with g EH'·" (I:), s � I where g satisfies the appropriate

computability eonditions and with f = 0 we have 

(2.3) laul llullcro.r:H•(.a}]+ llu1 llcro.r:n•-1<.a1J+ �- � Clglfl•-•1r)· • 
or, 11• - l. s - 1 p;J 

Notice that the regularity of the solution on the boundary does not follow from
the interior regularity. In fact, the regularity of the normal derivative of the
solution on the boundary is higher than the Trace Theorem co1T1bined with
interior regularity would imply. 

(2) C will stand for a generic constant. 



Next, Jet u" stands for the solution to (1.2). The following results were 

proved in [L-1]. 

THEOREM 2.2 [L-1]. Let u (resp. uJ be the solution to (1.1) (resp. (1.2)) with
g = 0 and f E L

1 
[O, T; L2 (.Q)]. Then

(2.4) 

(2.5) 

(2.6) 

. 

ou,1 
1 · I JJuellqo,T;H'U2ll + llu,llcco.T;L2(m1+ ---;-- + u, L2(1:) 

U/J L2(l") 

� C ll/llii10.T;L2(QJ],(") 

Juelcro,T;ffl(I')]::::; C J;.11JIIL,[O,T;L2(J1)], 

(i) u, � u in L00 [O, T; H 1 (.Q)] weak star,

(ii) 1.i: � ti 
' 

in L00 [O, T; L2 (.Q)J weak star,

(iii) ue � 0 in C [O, T; H 1 (I')]' 

cu, OU 
(iv) - _,, - in 13 (I') weakly.

D17 011 

With geL2(J.:) in (1.1) (resp. (1.2)) and fEL
1

[0, T;L2(Q)J we have

(2.7) 

(2.8) 

II ue Ileen. T;L2(.r.?l] ::::; C [JglL2(.rJ + 11/ II L,[O, T;L2(Ql]]' 

u
0 

- u in Lro [O, T; L2 (.Q)] weak star,

where C stands for a generic constant independent on e > 0. 

In the paper [L-S-1 J we prove the uniform (with respect to e) differen­

tiability of the solutions u, with nonhomogeneous, smooth boundary data 

g and we improve the convergence results of (2.6) and (2.8). 

The results are: 

THEOREM 2.3 ( differentiability) [L-S-1]. ( i) Let u ( resp. u,,) be the solution to
1.1 (resp. 1.2) with gEH 1

•

1 (J.:); g(O)=O and f=O. Then

(2.9) 

(2.10) 

llu,llcco.-r:rfl(.QJJ+ lliicllcro.T;L2(.QJJ � C IYlu1. 1 p;i, 

eu. 

I -a + lu,IL2(E) + Jur.lL2[0,T;J/l(I')] < C lYln1,,(l'), 
IJ L2(l') 

(2.11) luc -?Jlr.2co,1':H•(nl::::; Cs Jglrr1,,(l'J· 

(ii) If in addition we assume that {IE Hs,s CE), s � 1 and g satisfies the
appropriate compatabilit y conditions then 

(2.12) 11 Uc Jlqo, 'J';J/S(.Q}J + II iiF. llcco.1·;Jl• - 1(!2)] � C IYIII·•·•(l'), 

(2.13) l oau£1 + Jlur.ll11•-1,•-1p:1+lueiL2[0,1';fJ2(f")] � CJgiH•·•(l:), 
1'f JI• - I ,s - I(.!') 

(3 ) From now on the constant C will stand for a generic constant independent of c > 0. 



THEOREM 2.4 (convergence) [L-S-1]. (i) Let u (resp. ue) be the solution to 
(1.1) (resp. (1.2)) with .f E L 1 [O, T; L2 (Q)] and g = 0. Then 

(2.15) 

(2.16) 

(2.17) 

(i) luelL2[0,T;H 2 (r)) � Ce IIJIIL 1 [0,T;L2 (.0JJ•

(ii) llue-uliL"' [O,T;L2(f.l)J � Ce IIJIIL 1 [0,T;L 2(.r.J)J•

(i) u,, --+ u in C [O, T; H 1 (Q)], 
(ii) uE --+ u in C [O, T; L1 (Q)], 

(i) tt8 ir --+ 0 in L2 (I'), 

(1'1') 
auP, au . 

( ) - --+ - m L
2 I' . 

ar, aY/ 

(ii) Let u (resp. u,) be the solution to (1.1) (resp. (1.2)) with f = 0. Then

(2.18) 

(2.19) u
e

--+u inC[O,T;L
2

(Q)] foranygEL
2

(L).• 

Notice that the regularity results of'u
e 

stated in Theorem 2.3 are reminiscent of 
those in Theorem 2.1. In fact, (2.9), (2.10) reconstruct the regularity of the 
original solution u (t) given by (2. t) and (2.2). 

3. Convergence of the steady state solutions

In order to prove our regularity and convergence results for the problem (1.2) 
we establish in [L-S-1] the similar results for the corresponding elliptic 
problem which we recall here. 

(3.1) 

and 

(3.2) 

Consider the following elliptic problems 

Liv= f in Q, 

vlr = 0 in r,

Ave = f 
ave fl 
�+1,Ve = 0 
(,1J 

in Q, 

in r.

If we define the operator A: L2 (.Q) -i- L2 (.Q) by 

Av= Llv, 'v've�(A) = H2 (Q)nHb(Q), 

then (3.1) is equivalent to 

(3.1 ') Av= f. 

Similarly with A c : L2 (.Q)-+ L
2 

(Q) defined as 

A e Ve = L1v, 'v'vE E� (A e) 



where 

(3.2) can be rewritten as 
(3.2') Av=f 

' t. 

Below we state a number of regularity and convergence results established in[L-S-1] for the problems (3.1) and (3.2). The proofs of these results are given in[L-S-1]. 

(3.3) 

(3.4) 
(3.5) 

LEMMA 3.1 [L-S-1]. 
II A,- 'fllu,,m +Je IA,-

1 
fln,,n � C 11/llw 'cm,

1II A.- 1 f ii ff2(f.l) + - IA,- 1 f1Ff2(J') � C II! II,
13 

Notice that (3.5) implies that a posteriori 
A,-1f-A-1f in H 1 (Q) for any jEH-1(Q).

Next, let us define the so-called Dirichlet map D: L
2 
(I')-+ L

2 
(Q) 

(3.6) L1Dg = 0 m Q, 
Dglr = g in I'. 

It is well known [L-Ml that 
(3.7) DE !£1 (Hs (I')--+ Hs+ 112 {Q)) for all real s > 0. 
Similarly we define the map N c: L2 (I')--+ L2 (Q) by 
(3.8) LJN

r.
g = 0

cN, e OYJ g + /3N,g = {Jg 
m Q, 

in r.

LEMMA 3.2 [L-S-1]. 
(3.9) 
(3.10) 
(3.11) 

IINtgll11 3 12cni+J:Y/Ntg � CJgJIJ•(I'), 
JINegll11 1 121m+J: NEgl � Cigl, uYJ u- •en 

IINEgl11J21m � C 1Bln312 1r,, 



(3.12) 

(3.13) If Ne g-DgliJJ5/2(Q) � Ce IYln1rn· • 
Notice that the regularity properties (3.3}-(3.4), and (3.9)--(3.11), reconst­

ruct (uniformly in the parameter e > 0) the well-known regularity properties of 
the elliptic Dirichlet problems. 

As it is pointed out in [L-S-1], the results of Lemma 3.2 can be easily 
generalized to obtain 

N
r. 

E Y (Hs (I')� Hs+ 1 12 (Q)) for all real s > 0.
Using the above definitions of elliptic operators, we are in a pos1t10n to 
represent the solution u (t) in the semigroup form as in [L-T-1]: 

(3.14) u (t) = A f S (t-z) Dg (z) dz = (Lg)(t). 

Theorem 2.1 gives 

(3.15) 
Similarily we represent the solution u

e 
(t) of (1.2) via the semigroup formula. 

First, Jet us recall that the following identities are simple consequences of 
Green formula (see [L-S-1]): 

(3.16) 

a 
Nt A

e
u = 

8
u, VuE�(AJ,

11 • 

1 
NtA,u = -Pu, v'uEC00 (Q). 

. e 

Since A e 
is selfadjoint and the spectrum of A, is on the real negative axis, A

c 

generates cosine C
e 
(t) and sine s. (t) operators on L

2 
(Q). Therefore, following 

the same arguments as in [L-T-1], one can show that the solution u
c
(t) of (1.2) 

can be written as 

(3.17) u, (t) = A, f S, (t -z) N, y (z) dz = (Lf. g)(t).

From Theorem 2.2 it follows that 

(3.18) L" E 2.' (L2 (l') __,, C [O, T; L2 (Q)J) with the norm independent of e > 0. 
Considering L

i 
as acting from L

2 (E) into L2 (Q), we compute its adjoint 
L�: L2 (Q) � L2 (E) 

by (3.16) 

(3.19) 

22 - Dilnach Center t. 24 

·r
(L�f)(t) = Nt A J S,(z-t)f(z)dz, 

I 

(7 T 

(L�f)(t) =-;- J S1:(z-t)f(z)dz. 
(J'f/ t 



As a consequence of (3.18) we have 

(3.20) L�Eff'(L 1 [O, T; L2 (Q)] --i, L2(I')) 
with the norm independent of £ > 0. 

The solution uc (t) given by (3.17) ( or equivalently by ( 1.2)) can also be 
represented as the solution of the following abstract ODE problem 

(3.21) 
iie (t) = A,u,(t)-A,Ne g(t), on 9i'(A,)', 

U6 (0) = u,. (0) = 0, 

(3.21) together with (3.16) and (3.18) lead to the variational formulation (1.3) of 
the problem (1.2) (see also [L-1]) 

I 1 

(u�(t), cp)+a(u"(t), </J)+-(/3u,(t), r./>) = -({3g, ¢) 
C e 

Let us poi11t out that the semidiscrete scheme (4.1) introduced in next section 
can be obtained from (3.22) by restricting the test functions ¢ to lie in the finite 
dimensional subspace V,1 • 

4. Finite clement approximation

In order to define a semidiscrete approximation of the original problem (1.1) 
a natural idea is to "project" the variational form of ( 1.3) onto the finite 
dimensional subspaces. To this end, let h be the parameter of discretization 
tending to zero and let V,1 stand for the approximating space of H 1 (Q) with the 
usual approximation properties (to be specified later) and such that V,1 = Virir 
c H 

1 (I'). As an approximation of U
8 
(t) (solution to (1.3)) we take u11 ,e (t) E V,1

such that 

(4.1) 

uh., (0) = uh,, (0) = o, 

where a (u, v) is the bilinear form associated with the second order elliptic 
operator A (x, 8), i.e. in general 

II ( au {JV) II OU (]V 
a(u, v) = L aiJ(x)

ry
,-: = L J ll;j{.x:)�;=,-dx;

I j-= I ( Xi Xi H i .j = 1 O ( X j l· X j 

in particular, aii = <'>ij for A (x, c]) = -A, and P,. is the orthogonal projection 



from L2 (I') onto Vii- Later we shall use (4.1) withe= e(h) = h1 for some y > 0. 
The corresponding solution will be denoted by uh . Notice that the procedure 
described above: 

(i) is well defined directly on g E L
2 

(17),
(ii) Vii are subspaces of H 1 (Q) which are not required to satisfy boundary

conditions. 
In the paper [L-S-2] the stability and the rates of convergence of the 

approximation u,
1 
(t) to the original solution u (t) are established. In fact, the 

main results in the case when V,, consists of piecewise hnear functions (see 
Corollary 4.2 and 4.1) establish in particular that with e = e (h) = h in (4.1) 
we have 

( 4.2) (convergence) 
(i) II u- U1i II qo. T;L2(nlJ :s; Ch [19ltti(IJ + l9IL2 [0, T;H 1 criiJ,

(ii) II u - uh II cco. T;If 112 - Q(f.!JJ � Ch [1£ilH3tz(rJ + IYIL2[o. r:H�12cniJ,

where Q > 0 is arbitrary small; 

(4.3) (stability) 

(i) lltt-u11llcco,r;L2(n)J :S; C [lglHiro,r;H-112 +ccnJ + lglL2mJ,

(ii) llu-u,1 llcro.T;H112- Q(Q)J � C [lglH1[0.T;H11(nJ + 19ltt112 - erriJ,

where C stands for a generic constant which is independent on h > 0 and g. 
For boundary data which display more regularity properties and satisfy the 
appropriate compatability conditions, higher order rates of convergence are 
given in Corollary 4.2. 

Notice that in view of the optimal results of convergence for the wave 
equation with homogeneous boundary conditions, where an extra derivative in 
the solution is necessary (see [R-1] and also [B-1], [D-1], [B-3]) and optimal 
regularity of the solutions to Dirichlet problems (see 1.5), the estimates (4.2) are 
optimal. .Although the stability results in (4.3) improve "almost" by 1/2 
derivative the stability estimates implied by the convergence result in (4.2), they 
are, however, still nonoptimal with respect to the sharp regularity of the 
solution u. In fact, g E L2 CE) will produce the solution u EC [O, T; L2 (Q)] (see 
[L-1], [L-T-2], [L-L-T]), thus we would expect that the stability estimate (4.3) 
(i) should hold for any g E L2 (E) (instead of g E L2 [O, T; H- 112(I')]).

In the analysis of the error of the approximation. a crucial role is played
by the very special behavior of the traces of hyperbolic solutions. In fact, the 
solutions to wave equations are shown [L-L-TJ to have better regularity on the 
boundary than interior regularity and the trace theorem would imply. This fact 
is used an essential way in [L-S-2] in the process of proving (4.2) and (4.3). 

4.1. Approximating subspaces. Let Vii be a family of N (h) finite dimen­
sional subspaces of H 1 (.Q), of the order r � 2 satisfying the local and inverse 



assumption (see [B-1 ], p. 98) in addition to the following properties:

(4.4) (a) Viir c H 1 (I'); 
(b) 'vuEH"(Q):

inf [II u-</>,1 11 + h II u-</.l1i llH'(f.!) + h112 lu- ¢,,I+ h312 lu-¢,,IHicnJ

::S; Ch' llullH•(m; 

(c) llu-P,, ull 11r(m c'( Ch'--+ 1 llullHs(m, 2 � s ::S; r, 0 � s � r, 0 � l < 3/2,

where P1r stands for the orthogonal projection in L2 (Q) (with respect to L
2 (Q) 

inner product) onto Vi. 

(d) for any (p
h 

c v;, = �lr(4), there exists <p,,E V,, such that

¢,, Ir = <$11 and II</>,, II us(.QJ � C II </>1r 11 ff•- ,o(n, 0 < s � 1 .

It is well known that the properties (3.1) a, b, c are standard and they are 
satisfied by piecewise polynomials defined on the uniform mesh. The property 
(3.1.(d}) with s = 1 was shown to be true in [B-4] for polynomials defined on 
triangles. Similar arguments to those tn [B-4] were used in [L-S-NJ to prove 
that the inequality in (4.4.d) can be extended to negative norms (i.e. 0 < s < 1 ). 

4.2. Semidiscrete approximation. Below we recall the results on stability 
and the rate of convergence of the solution Ll1r,i (t) to u

e 
(t) in Hs (Q) topology 

0 < s < !. 

THEOREM 4.1 (stability) [L-S-2]. Let u� be the weak solution of the problem 
(1.2) and let u;, ,, be the approximate solution of the problem (1.3) defined hy (4.1). 
Then with Q > 0 arbitrary small, we have 

(i) llt11r.ellcro,T;Hl/2-o(.f.l)) � C lglHl[O,T;l/U(f)];

(ii) II u, ,, llc10, r,L,(QII '> C [ I + h�: '] lgl H, r o ;r,n- , , "'lni

where a� 1 and r � l +(a-1)/2Q. 

(iii) if in addition we assume that V,,0 c V,, (')

then 

II U11,t: II qo, 'J':L2({J)J � C lolu • [O, 1';11 - I /2 + U(J')J •

Here C is independent on h, B, and fJ. 

THEOREM 4) (convergence) [L-S-2]. Let u, (resp. u,
1
.,J be the solution <d' 

( L3) (resp. (4.1 )). Assume that ?I satisfies the approf}riate comf}atibilit y conditions 

(4) ll is well known that iih c H 1 (I') is an approximating subspace of L 2 (I') of the same or<lcr 
t as V,, (sec [B-2] Theorem 4.22). 

( 5 ) l',,0 stands for the subspace of Hc1i(Q) n i,;, with approximating properties (3.1.b). 



at the origin, in order to guarantee that the U
8 
EC [O, T; JP (Q)]. Then for any 

f2 > 0 arbitrary small, 8 � 1, s � 1 there exists a constant C independent of h, 
e and g such that 

( i) II u, - u,., II cro. r,L,1m1 ,s; Ch' - ' [ I + h:,, 
1 J (191»•1 ,, + lgl L,ro, ,,w,nrl

where r � l +(s- l)(cr-1)/Q (
6
);

(ii) II Ue - U1,,e II qo, J';I/ 112 - "(f.!)] � Ch'- 112 
-

20 f (h) [lgiH•(E) + l9IL2[0,T;Hs(I')J]

{
h(} ifs< 3/2, 

wheref(h)= 
( 

h"12-1) . (s-l)(cr-1) 1 + --- 1( ,. � 1 + ; 
..fi 

· 

2o 

if in addition we assume that V,,0 c �. then for 1 � s � r, we have 

(iii) II ue -u,1,ellcro, T,L2 (f.!l] � cr,,s [l!7IH5(!) + l9IL2[0, T;H·•(f)]], 

(iv) lluf. - u,,.,:11 C[O,T;Hl/2- "(Q)] � c1zs - 112 [191tJs(.l') + l9IL2 [0, T;H'(f)JJ.
Let us set in (1.5) e = E (h) = hY for some y > 1 and denote the correspon­

ding solution u,, ,,(h) by u
11

• After combining the results of Theorems 1.1, 3.1 and 
3.2 of [L-S-2] we obtain 

COROLLARY 4. 1 (stability) [L-S-2]. 

(i) llu,,-ullcroJ:JI112-qf.llJ � C[lglH1[0,T;H"<I'lJ+lglH112-�(IJ],
(ii) II u,, - u II qo, T;Li<H)J < C [lglH•[o. T;H•12 • £.>(r>l + iglL2(I)],

where r � 1 + (1 + y)/2e; 

(iii) if V,,° c V,1 then

llu,. -ull qo, T;L2(QJJ � C [19IH110. T;H112 
+ O(T)J + l9IL2 (r)J. 

COROLLARY 4.2 (convergence) [L-S-2]. Let u (resp. uh) be the solution �l
problem (1.1) (resp. (4. l) with e(h) = h1 for some ,' > 0). Then for any (} > 0 
arbitrary small, s � I we have 

(i) II u - u,, 11 qo:r:L2 ([.>JJ � C [h' -a+ h 1'J [IYIH"!Il + IYIL2 [0, T:H•<n1J
where r � 1 +(s-1)(1 +y)/e; 

(ii) II u - u,, 11 qo.T;II 112 - "<Dll � C [Ir� - 112 - "+ h1'J [lfilIJscxi + IYl1.2ro. T;II•<n1J
where ,. � 1 +(s-1)(1 +y)/e ifs� 3/2; 

(iii) If in addition we assume that V,,0 c V,1 then (i) and (ii} holds for any 1 � s � r
an.d e = 0. •

(6 ) If s = I then we can take e = 0, <r > I arbitrary and r � 1.



Notice that the rates of convergence established in part (iii) (resp. (i), (ii)) 
are optimal (resp. quasioptimal) in the following sense � they reconstruct the 
optimal regularity of the solution (compare Theorem 2.1 in [L-S-2]), (modulo 
the usual loss of one derivative). The estimates of the error given in part (iii) 
under the additional assumption that V,.0 c V,, reconstruct also the best 
approximation properties of the underlined approximating subspaces. If 
condition v,.0 c V,

1 
fails, then for s > 1 one needs to use higher order 

polynomials to obtain the quasioptimal error reflecting the optimal regularity 
of the solutions. 

Stability estimates provided by Corollary 4.1 improve by t derivative the 
stability results implied by the convergence results. Nevertheless, the stability 
estimates are still nonoptimal as we are loosing t derivative with respect to the 
optimal regularity of the solutions (see Theorem 2.1 in [L-S-2]). 

One can, of course, interpolate between the results of Corollary 4.1 and 
4.2. For example; interpolation between the L2 (Q)-estimates of Corollary 4.1 
and 4.2 applied with s = y = I yields 

llu- u11 llcro.T;L2(f.l)J � Ch(l 
-Q) [/gla1 - 3120 + Q,,,, - Q(;<;> + 191Li [O.T;Hl - J/2Q + u12<niJ

where e > 0 is arbitrary small and O � Q � 1. 

5. Finite element approximation in R
2

Let Q c R2 be given domain. Let us consider the special case when the 
approximating subspaces Vi. are the spaces of piecewise polynomials defined on 
two-dimensional domain Q. Let V,

1 
c H 1 (Q) be a family of N (h) dimensional 

subspaces of algebraic polynomials of degree p > 1 defined on each triangle of 
the uniform triangulation of Q. We show in [L-S-NJ using the method 
proposed in [B-S] that we can extend the inequality (4.4d) to negative norms. 
Actually we proved in [L-S-NJ that the following assumption holds true. 

For any ,Ph Ev;, = Vi1r, there exists an element <fJ,. Ev;, such that <t>h1r = <P"
and 

(5.1) 

(5.2) 
11<1\II � Cl<P1il-1;2+e,r, 

IJ<Phll1.o � CJ&',.1112.r, 

where i; > 0 is arbitrary small. 
Therefore we can extend the inequality (4.4d) to negative norms. 

Remark. Notice that (5.1) and (5.2) represent the surjectivity of the tra�e 
operator, but restricted to the finite dimensional subspaces Vi and �. 

To prove {5.1), (5.2), it is enough [L-S-NJ to establish these inequalities for 
a single triangle (generalization to curvilinear element is straightforward). To 
accomplish this let T be an equilateral triangle (see Fig. 1) 



y 

A 

100) ,,·'(l )1 2 0 

c(.l Yl)2 · 2 

P, 

.. ,B 
J� 

Fig. I. Triangle T 

B 

11 o I X 

T = {(x, y)ER2 IO� X � 1, 0 � y � .}3x, y � fi-.J3x} 
with the boundary BT= y 1 u Yi u y3 where 

}'
1 

= yf U yf = {(x, Q) 10 � X � 1}, 

Y2 = y1u11� = {(x, y)ly = J3x, 0 � x � !},

y 3 = yf u )'� = { (x, y) I y = - ./'3x + fl, ! � x � l } . 

We denote by V (T) (resp. V (y)) the space of polynomials of order p on T (resp. 
y = iJT).

The estimates (5.1) and (5.2) will follow from the foJlowing theorem: 

THEOREM 5.1 [L-S-NJ. Let there be given an element <PE V (y). There exists

an element rJ>e V(T) such that '1>1
1 

= <P and

(5.3) II rJ> II 0, T � C II <PII - 1/2 +t,y,

(5.4) IIPll1.r::::;:c11&11112.y, 

where C does not depend on ¢. 

Th5 inequality (5.4) has been proved in [B-SJ in the case of h-p version of 
the finite elements. Thus in particular it is valid in our case. 

To prove (5.3) we shall follow the conceptual framework of the proof of 
(5.4) given in [B-S]. However, because of the presence of "negative" norms in 
(5.3) (rather unnatural for the trace theorem), there will be a number of 
technical differences with respect to the ideas presented in [B-SJ. 

Following [B-S] we define the linear mapping F
1
: V(y

1
)-+ V(T) where 

fix+y/,/3 Ff/l(x, y) = - J f(t)dt. 
ly x-y;..;3 

The mappings F;: V(yi)-+ V(T), i = 2, 3 are defined in the similar way. 



(a) 

(b) 

(c) 

(d 1) 

(d2) 

(d3) 

(d4) 

The proof of (5.3) is based on the following three Lemmas: 

LEMMA 5.1 [L-S-N]. Let f E V(y i ). Then

F[(I (x, y) EV (T), 

p[(1(x, 0) = J(x), 

II F1(1 II o. r � C I.fl - 112. y 1' 

!Fl/\r: � C lflk,y�1,

IFl/\.y� � C lflk,y�'
[j'] IF1 10,yi � Cl.fl-112.yp

IF[(llo ye :,:;; CI.fl-1/2,Yt'
• J 

f+e � k � 0, 

-i+e�k�O,

LEMMA 5.2 [L-S-N]. Let T be the triangle as in Fig. l and let f he
a continuous ftmction on ar, such that J; = f'!Yi EV (y i), i = 1, 2, 3. Then there
exists <PiE V(y j), i = I, 2, such that

(a) 

(b) 

(c) 

U = p�ctii1+p�<P21 E V(T),

V = _{; on '}Ip i = 1, 2, 

IIUllo,T � C(lf1l-1;2.1'1 + lf�l-112.n), 

(d 1 ) l<l\lk,Yr �CL lf)k,YJ' -f+e:,:;; k � 0, i = 1, 2, 
j= 1 

(d2) l<P11k ,yf:,:;;C[IJ1'k,rf+
1
�

1
!.(Jl-112.nJ, -f+e�k�O,

(d3) l<l>2lk,Yi � C[IJ�l k,y'.;-'+ .L Jfjl-112.YJJ, -t+c: � k � 0.
J "' 1 

LEMMA 5.3 [L-S-N]. Let T be the triangle as before, f be a continuous
function on i!T, f2 = /

3 
= 0 and J1 E V(y 1 ). Then there exists a polynomial

VE V (T) such that

llvllo,T � C IJ�lo,r1• 
v = j� on '}' 1,

v=O on y 2 uy3,

where C is a constant independent off and of the order p of polynomials in V(T). 

Lemmas 5.1, 5.2 and 5.3 are the "negative norm" counterparts of the 
results given by Lemmas 7.1, 7.2 and 7.3 in [B-S]. The proof of Lemma 5.3 
follows via straightforward modification of the arguments given in [B-3]. More 
technical proofs of Lemma 1 and 2 are given in [L-S-N]. 



To continue with the proof of (5.3), following [B-S] we denote (see Fig. 1) 

Y2 = yj u Y� 

YJ = Y� u Y5

where Y1 = AP 1 , yf = P 1 B,

where Y1 = AP2 , y� = P2 C, 

where y� = BP3 , yfi = P3 C, 

P 1, P 2, P 3 are the mid points of line segments AB, BC and CA, respectively. 
Without loss of generality we may assume that 

(5.5) 

(5.6) 

(5.7) 

<Pl11 = <P 1 =I= 0, 

<$In = <P2 = o,

<$11'3 = <PJ = 0. 
We apply Lemma 5.2 to f1 = <fa

1
, .f

2 
= 0. Thus there exist elements <1\ E V(y 1 ), 

<P2 E V(y
2

) such that 

(5.8) 

(5.9) 
(5.10) 

and 

(5.11) 

U = F\<l1il+F�a,2le V(T), 

Ul11 = ¢1, UIY2 = <P2 = 0, 

Uln = g3 

II u II O,T � C 1¢1 II -1/2,Y1.

We estimate the norm lg 3
1 112 ,n as follows 

193 1- 1f2,y3 � C 1 lg 3 lk,}'3 � C 1 (IF[1<J)1 1k.)'J + IF�m1 1k.y3), 
by Lemma 5.1 (d2), (d3) 

(5.12) -!+e � k � 0, since <;6
2 
= 0. 

Now we extend g 3 to T, using again Lemma 5.2 for f1 = O,J3 = g3. By Lemma 
5.2 there exist elements 

(5.13) 
such that 

(5.14) 

(5.15) II u I llo,T � cl IYJl-112.n � C IYJlk,y3, -t+ ll � k � o.

(5.16) U 1 lr 1 = 0, U 1 l u = 92, U1ln = g3, 
Finally we extend an element J of the form 

(5.17) f1 = 0, J� = Y2, /3 = 0 



to the triangle T using Lemma 5.3. By Lemma 5.3 there exists an element 
V

2 
E V(T) such that 

(5.18) U2 l11
=0, U21n=92, V2ln=O

and 

( 5. 19) 

We estimate the norm jg
2
lo.n in terms of the norm l<P1 l-112,y1• Since g2 = U 1 In,

it follows that 

19210.n = I u l lo,,i � (IF�lf>�]lo,yt + IF�lf>�JIO ,y� + IF�<1> 't]1 0 ,yt + 1F1?'11l�,Yi,)

� C 1 ( <fl'.31- 1;2 ,y3 + l<P'.31
0 •1i + l<P'il

0 ,Y: + l<I>'i l- 1;2.r 1)

by Lemma 5.2 (d
i
), (d3 ) 

(5.20) � C2 (1931-112,13 + IYJl0 ,1�l 

On the other hand, 

by Lemma 5.1 

� c1 (1<1>11-112.11 +1<1>210 ,d � 
,1i 

by Lemma 5.2 {d 1 ), (d
3
), since f2 = Ul

12 
= 0

� C 1¢ 11'-112.1·1
Finally Jet 
(5.21) </J=V-U

1
+U

2

then in view of (5.11), (5.12), (5.13), (5.16), (5.19) 

11¢ llo.T � C l¢ 1 1k.y 1, -}+ E � k � 0, 
and 

r/>11·1 = <Pi, <t>l12 = o, ¢In= o, 
which completes the proof of Theorem 5.1, hence of (5.3). • 

6. Numerical tests

Let in (4. t) A (x, 8) = -LI, {3 = -o:
1 

LI r +ct2 I, where ct 1, o:2 > 0. We denote by 
U (t) = (U 1 (t), ... , U,.01>), n (h) = dim V,

1 
the vector of nodal points values of u1,,t.

We write (4.1) in the matrix setting: 

(6.1) 
Mn U +( Kn+;(o:1 Kr+rx2 Mr)) U = ;(a

1 
K

r
+a2 Mr

) G, 

U(O) = 0 1 , 
U(O) = 0° , 



where we have used the following notations: 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

Kn = (J v' </\ · v' </>j dx)i,jEin

{ a a 
J ;i </Ji -a </Jj 

dr
K _ r ur r r r r-

stiffness matrix, where cf> i are linear 
shape functions, 

mass matrix, 

i,)Efr, 

otherwise, 

otherwise, 

i EI r the vector of bound·ary data, 
otherwise, 

I.a= indices of nodal points P;, 

Ir = indices of nodal points lying on f. 

One can use a class of single step methods for discretizing the semidiscrete 
system (6.1) (see [B-2]). We have applied the scheme proposed in [D-2]. It is of 
order O (h2) + 0 ((L1t)2). We first shortly summarize the method. Let N be 
a positive number and let L1t = T/N. We denote by i/ any function u at the 
time levels t = t

k 
= kL1t, k = 0, ... , N. Furthermore we use the notations 

u"·0 = Oi/ +1 +(1-28)uk +Ou"- 1,

U
k+ 1 _ 2uk + Uk - 1 

az u
k 

t = (L1t)2 

We define the fully discrete approximation for (1.3) to be a sequence (U"W=o 

such that 

(6.7) Mn of Uk +(KQ +i(a: 1 Kr+a:2 Mr)) Uk . 1 14 

l 
=-(a 1 K1 +oc 2 Mr)Gk . t /4 for k=l, ... ,N-1. 

e 
To start the scheme (6.7) we need the solution vector at two levels, say t = o;

t = Lit. By (6.1) 

uo = oo.

We shall present a numerical example. There the data is differentiable. 
Other cases will be considered in other connections. 



EXAMPLE 6.1. Let Q = (0, 1) x (0, 1) and T = 1. Consider the problem

(6.8) 

ii= Au in Q x (0, 1), 
u(x, y, t) = sin(1t(x+y+.j2t)) on I'x(O, 1), 
u(x, y, O) = son(x(x+ y)), 
u(x, y, 0) = fincos(n(x+ y)). 

The exact solution of (6.8) is u(x, y, t) = sin(n(x+ y+j2t)) (see Fig. 2.). 

�11.0 
.: 
::,, 

BjO.S.

t;lo.o. 

�-
-0.6: 

�11.0 
§ 
510.s:

jio.o 

-0.5 

1.0 

� 1.0 

� 
510.5 

ti10.o 

� 
-0.5 

0.8 �'o -1.0 
0.8 ,t. t- o.o 

0.'1 0.2 
�2 OA 

o.o 0.8 
.,t 0.8 

• ""'-t1,r 1.0

0.4 
0.1 

TIME t=3/4 TIME t=1

Fig. 2. The exact solution of (6.8) for t = 1/4, 1/2, 3/4 and I 

1.0 
0.8 _;.\":J 

0.8 'i ..... 

In numerical tests we have chosen o: 1 = o:2 
= 1, e = 10- 5

, h = 1/18, 1/16, 1/32, 
.dt = 1/32, 1/64, 1/128. In Table 1 we see the e· (L00) errors. We see
that the method gives O (h 2 ) + 0 ((L1t)2) in L00 (L00}-norm (see the diagonal of
Table 1). 

In Figures 3-5 we see u (t)- u,h.di (t) for different time levels t = 1/4, t = l /2, 
t = 3/4, t = I; F. = 2-so and with h = 1/8, 1/16, l/32, At= 1/32, ·1/64, 1/128. 
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a: 0.04 
0 
a: 
ILJ 

uJ 

S 0.03 
-' 
0 
VJ 
a:i < 

0.02 

0.01 

0.00 

TIME t= 1/4 

a: 0.04 
D a:a:
uJ 

w 
5 0.03 
_J 
D 
(/) 
al 
<( 

0.02 

0.01 

TIME t==-3/4

111 

h 

J/8 
l/16 
1/32 

Table J 

l/32 1/64 l/128 

0.02531 0.03027 0.03145 
0.003239 0.006714 0.007717 
0.005869 0.0008219 0.001572 

DX= 1/8 DY = 1/8 DT = 1/;iZ 

1.0 
08 

O.fl .i\S

�0.04 
ccccw

50.oJ
-' 

D 
(/) 
al < 

0.02 

0.01 

0.00 

0.4 o..� 
0.8 0.2 � · r· 

.J- 1.0 0.0 

• -'1-r;,5' 
TIME t=1/2 

i5 0.04 

cccc
LU 

u.J 

!:; 0.03 
-' 
0 
V) 
'° 
<( 

0.02 

001 

000 

TIME t=1 

Fig. 3. 111(1)-u,h,1,(t)i, Ii= 1/8, ,11 = 1/32 







In Fig. 6 a-c we see the evolution of u- U81t;1 1 difference in l.:X'-norm for 
h = 1/8, .dt = 1/32, h = 1/16, At= 1/64 and h = 1/32, L1t = I/128 (piecewise 
linear interpolation 1s applied for u (t)-u,.,..1 1 (t) for l -=I- le At). 

(a) 

0 . ..,. er: 0 
ES u 

I X r, 
<( 0 ::;:o 

('/ 
0 
D 

g ....-::;..--L..-_..,__...:..__..,.....____. 
0.0 0.2 0.4 0.6 0.8 1.0 

TIME 
DX=1/B DY=1/8 DT=1/32 

(b) 

n: �r oo­ci:: d 
' X r, <! q �o 

N qa 

o.·a 
0 
q 0o'-_O.-Oc:::..2 ---'0J-, __J_06_0...1....8---'1.0

TIIVIE 
OX=1/16 OY=1/16 OT= 1/6� 

(c) 

is ·-t n: q 0: D 
w

I X<'l 
<:( q 
20 

,-q0

0 
gL-....i,,,,,........=�:::::::::::::::i 0.0 0.2 01. 0.6 0.8 1.0 

TIME 
DX=1/32 0Y;1/32 OT:1/12B 

Fig. 6. 1111(1) lle1,t1,Ulll1.�1ni, IE[O, !] 

Table 2 presents La:, (I3) errors. 

Table 2 

h .d r 1/32 1/64 l/128 

1/8 0.00946 0.01147 0.0119 

1/16 0.00087 0.00245 0.00289 

1/32 0.00267 0.00040 0.00058 

We find that O (h2) + 0 ((L1t)2) for L't'J (I3) norm (see the diagonals of Table 2). In 
Fig. 7 a-c we see the evolution of u-ue,,dr in I3-norm for h = 1/8. L1t = 1/32, 
h = 1/16, LJt = 1/64 and h = 1/32, ,,Jt = 1/128 (as above piecewise linear 
interpolation for error at time t =I- kA t is applied). 
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