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Drops moving in flow
with chernical reaction

P. Neittaanmäkit and V. Rivkind2

Abstract. We propose a free boundary model described
by coupled Navier-Stokes and chemical reaction equations
with discontinuous coefRcients to simulate the chemical re-
¿ctions in viscous drops moving in a viscous incompressible
ûuid. Approximation of the solution by a special ñnite
element method (FEM) with a method of mapping is dis-
cussed. Several numerical resulùs åre presented.

Keywords: Navier-Stokes, chemical reactions, free bound-
ary problems, finite element method.

Subject classification: 35F30, 35Q10, 35R05, 35R35,65M60,

65N30, 76DO5.

1. Introduction

This paper is devoted to the problems of chemical
reactions in viscous incompressible drops moving
in a viscous incompressible fluid. These types of
problems arise from many practical applications.
The mathematical models governing the phenom-
ena are free boundary problems for the coupled
Navier-Stokes and chemical reaction equations with
discontinuous coefficients and with two mediums
(inside of the drop and outside of the drop which
is an infinite domain). It is assumed that the pro-
cess is isothermic and that the density of the sub-
stances, the diffusion coefficients and the viscosi-
ties are constant.

In the case of the first order chemical reaction
we present a model under the assumption that the
normal component of the velocity on the boundary
of drops is proportional to the flow of chemical
component across this boundary. We also consider
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the case of a second order chemical reactions inside
and outside of drops.

For both of these models it is possible to prove
the existence and uniqueness of the solution and
the convergence of an approximate solution to the
exact one with some assumptions about the data
of the problem. The methods for proving these re-
sults are similar to those used for coupled Navier-
Stokes and Stefan equations in [4].

Several numerical tests have been performed for
these models. Based on these tests we can draw
conclusions on the feasibility to model the flow of
drops in chemical reactors by approximate mod-
els like diffusion boundary layer and Kronig-Brink
model inside of drops and boundary layer model
outside of drops.

The case of movement of drops was considered
in [f], [7]. The theorems of existence, unique-
ness and smoothness of solution with certain as-

sumptions on initial data were discussed in [1], [7].
For coupled Navier-Stokes and Stefan equations
(in bounded domain, one phase problem) we refer
to [2], [a], and for two phase problems including
drops to [4].

2. Mathematical model of
the first order reaction

We consider the fluid with the density pt and the
viscosity z1 which occupies a closed domain O1

(inside of drop). The volume / of O1 is fixed and
has an unknown free boundary l. Another flu-
id (stream) with the density p2 anð, the viscosity
¡/z occupies the domain Q2 = R3\Or (outside of
drop), see Fig. 1.

The mathematical model for the first order chem-
ical reaction of viscous incompressible drops con-
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Figure 1

sists of the determination of the unknown (free)
boundary f , the velocity vector u-, the concentra-
tions Or, Oz as well as the pressure p, which satisfy
in O¡ (i=1,2) the following system of equations

-Uf aa* (t.v)t+ fvp = o,

V,u-=0, inO1,O2,

' ñt" = þ#] 1",

[i. s(r) . ñ] lr = 0,

Re¡ = 
-þk, 

ld-l = const,

Re¡=¡-rRe2, p=const,

I dr=v,
Jn,

I

-rnoo+üvo+klo=¡,,
Ol" = Oo, Ol¡"¡*- - 0,

Pr1 = ¡r1Pr2, Fl = const,

in Q1, O2,

Pr2 = P¡, e)

t,, f;dx = g, i -- 1,2.

Here Re¡ > 0, i = 1,2 denote Reynolds numbers
and Pr¡ > 0, i = 1,2 Prandtl numbers. ñ is the
outward unit normal vector to f , S(ri) is matrix

with elements S¡¡(u-) = ,(Y+ þ), and z;,- 
\ôt; ' Art)'

p¡, \¡ are positive constants, rz¡ is a viscosity in
Q;, p; is a density in O¡ and k! are velocities of
chemical reactions.

Function z determining I satisfies the equation

Ll , - a(o\z= _1- l-1, * ;.srr1 .'l I-lr" - u\v,,¿ - ;lO) l- Oo 
* n .5(u) ."1 

1",
(3)

where Al" is the Laplace-Beltrami operator, [ü]1"
denotes a jump of the function u- on l. Further,
o is the surface tension coefficient and, usually,
it is considered that ø(O) depends linearly on the
concentration: o(0) = oo- a1d. For the coefficient
a(O) we assume that c(O) - CØz - pt), where g

is the acceleration of the weight force.
We remark that without the term (ri . V)u- and

the term u-VO in (2), and moreover, if f - 0,
Oo = 0, then the liquid in O1 occupies a ball of
radius a.

The theorem of existence and uniqueness of the
solution for (1)-(3) can be proved in a similar way
as in [4] for coupled the Navie¡-Stokes and Stefan
equations (see [5]).

3. Mathematical model of the chemical
reaction of the second order

Let us consider a mathematical model for a chem-
(1) ical reaction of the second order. In this case

the systems are also governed by hydrodynamical
equations (1)-(2). However, the boundary condi-
tion for the normal component of the velocity is
changed to r,, .nl" = 0 and the coupled equations,

n
z

9z

<_

2

i=I,2
Re2 - Re,

* *p",(r,* +YlgLör '\ ôr r Ôp

* * y", (u,& + llUz
ör '\ ôr r Ôç

which describe the concentrations of mediums in-
side O1 and outside O2 of the drop, have been

added. Here r is the Fourier criterion, , = ), D
is a diffusion coefficient, ú is a time, rp the dimen-
sionless polar angle, r - !! the radius, and ,t2 is

the velocity of the chemicil reaction.
The boundary conditions for (a)-(5) depend on

the limiting resistance of the dispersed phase or

)

)

- Lît - kz9tîz
(4)

- nA,02 - þi,ri,"
rn (5)
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fluid flow. In the case of dispersed phase the con-
centralions of the medium inside of the drop sat-
isfy the boundary conditions

o,l" = l, *1. = t, (6)

and initial conditions

Orlr=o = 0, Orlr=o = 1. (7)

If the process of the outside flow has a limiting re-
sistance we have the exterior boundary value prob-
lem. Boundary and initial conditions used in this
case read as follows

ô82

Step 3. Here we determine a new apptoximation of
the free surface l¡ from the boundary conditions
(3) which relates the mean curvature of surface
and the jump of normal projection of stress ten-
sor. This problem will be solved using the n-th
iteration of the stress tensor by the solution of the
problem for the special parabolic equation:

f, = tl", - a(a)z- 

"r- 
| )r+ 

ns(u<"))n].

(i 1)

We solve the above first and second steps by
mapping of flowfield onto a standard domain and
applying the finite element method in curvilinear
coordinates, connected with this mapping. After
the determination of new shape of free surface we
generate a new mapping and a new grid for finite
element approximation on the next main iteration.
This can be done by solving an equation similar
to (11), and substituting on the stress place pa-
rameter, which governs the process of collapsing
the grid to the center of the drop (for inside grid)
or the value ofsteps to infinity (for outside grid).
Typical grids used are given in Fig. 2.

Figure 2

o'l
o'l
o'l

1 -0, (8)

(e)

( 10)

r ðn I

lcl-6 = o, orll'l-- * I'

r=o = 0, Orlr=o = 1'

4. The finite element method for the
equations with chemical reactions

We propose the following scheme for finding the
numerical solution to the problem (1)-(3):
Step 1. If we know the (n-1)-fh approximation of
,f-t), pf -t), Of-t), ff-t), we solve by FEM
with discretization parameter å t,he Navier-Stokes
problem (1) with fixed boundary conditions on the
fixed surface l¡. As a result we get of;), pf ). fnit
main step has an iterative structure based on the
following procedure: i) apply the domain decom-
position method for problems with discontinuous
parameters on the l, and ii) solve the nonlinear
Navier-Stokes equation iteratively, using the so-
lution of the linearised Navier-Stokes equation at
the start of each step.
Step 2. Once we hrue ,["), we can obtain Of;)
from the boundary value problem (2) with fixed
boundary. Since the chemical reaction equations
also have discontinuous parameters, we use a do"
main decomposition method and follow an itera-
tive procedure analogous to the previous step to
solve (2).

We shall outline FEM in general curvilinear co-
ordinates. Let {yi}f=, denote the Euclidian coor-
dinates and yi = yi (r' , x2 , s3) a smooth function
of cu¡vilinear coordinater {ri}. Then the metrics

ó



g;¡ are defined bY the formula:

(12)

The inverse of matrix 9i¡ will be called g;i , gii g j r =
0[. fhe strain tensor e in curvilinear coordinates
is defined by

"ik = rl2(gk'ui" + oi, ul,), (13)

ðu
u;, = 6'

The variational formulation of our N avier-Stokes
boundary value problem (1) in general curvilinear
coordinates is given by

pn € P, that satisfy (14) for arbilrary smooth text
function qf belong to lhe same class as u¡.

Like in [3], [4], [6], [8] it is possible to prove that
our approximate solution rl¡, O¡ converge to the
exact one and the rate of convergence is of order
O(ã) in the space flt(Ot)fl flt(Or) for velocities

and of order O(ã2) for concentrations (O1, O2 in
the case of chemical reactions) where À is an aver-
age step of a FÞgrid. For details see [5] .

In a similar way we can proceed in numerical
solving the model of chemical reaction of the sec-

ond order.

5. Numerical examples

In the numerical tests, we have applied the method
of mapping with special finite element grid (see

Fig. 2). The FÞapproximation used the finite el-
ements P2 for approximations u-¡ and O¡ and P1

for the pressure p¡¡.

Fig. 3 illustrates the evolution ofa concentration
of medium in the case of the first order nonstation-
ary chemical reaction with parameters: Re = 50,
We = 3, þ =2, Pe1 = ps, = 500. In this case the
equations (2) are nonstationary:

áo
î + Pe¡(;.VO) + È2O = AO, (16)
Or
Ol,-, + oo. (17)lltl+æ

All other conditions are the same as in stationary
model (1)-(3)

From Fig. 3 it is clea¡ that changing of the shape
of drop is more slowly than the evolution of the
diffusion process. It is possible to use these results
for the simplification of practical calculations.

Fig. 4 presents the evolution of concentrations
of both mediums in time for the case of chemical
reaction of the second order inside of a drop. The
main attention of the computations was focused
on the relationship of the criteria of chemical re-
action (the Sherwood number, average concentra-
tions, degree of extraction of substance, and oth-
ers) to the speed of motion of the drop (Re¡), the
Peclet criterion, and the numbers p = vtlv2, The

,.- âyÈ ðyo _ âyr ôyo
s,i = | a; ôã: ari N

det(e3) dxr dxz dxs

=-I (ufai);* t;¡r/¡t/aet1sù dxl dxz dx3

I
+ I po I po nh| Jd"L(sù dxt dxz dxs

Jn

* I uneik 
(a¡)g;¡do g t ût,,Æ ds: ds2

ftrt- Juro'r 
vn/ Pn 9;¡r/¡!*nt t/æt(ù ¿sL d's2 ,

( 14)
where det(ga) is the Jacobian of metrics 9;¡ on
volume and det(92) is Jacobian of metrics on the
boundary ôQ.

The equation div u- = 0 is satisfied in the mean
sense:

t_
I pnqo,tt/det(e3)dø1 dx2 dx3 =0 (15)

Ju

on some submanifolds ø of domain O.
In the axially symmetric case which we are in-

terested, ôO is a coordinate surface ø2 = const
and 13 is polar angle. Therefore some elements in
tensor convolutions became equal to zero.

The variational form of chemical equations in
curvilinear coordinates can be written in a similar
manner. As usual we find the functions u-n € P2;

ln"'l @)o',okrcrht (íh)
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curve 4 is lor Re = 50, Pe - 160 (Pe = 272);
curve 5 is for Re - 10, Pe = 400; curve 6 is
for Re = 50, Pe = 400. Curve 3 of Pig. 4 il-
lustrates the concentration Or and Oz for values
Rer - Rez - 50, p - 1,2 and Pe = 160, while
curve 4 are quantities for Re1 - Rez = 0, Pe = 320
and ¡l - 1,2, and has a similar Pe"6 as that of
curve 3. Thus, in Fig. 4 the curve 3 and 4 practi-
cally coincide. Such regularities are also observed
for other values of the parameters Re¡, ¡t, nt, l,
and ,t, and also for the degree of extraction of sub-
stance, the Sherwood number, and others.

Allthis indicates the possibility of extending the
results and conclusions, based on the Hadamard-
Rybczynski hydrodynamics of the drop, to a wide
range of numbers Re; and ¡i with replacement of
the number Pe used by the numbers Pe"6. We
remark that the same conclusions apply in the case
of chemical reactions of first order.
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Figure 3

evolution ol the average concentralions on time ú

(r = Dt/a2) can be see in Fig. 4 for m - ¡ - 1,

We = 3, p = I,2 and k = 100 serve as an ex-
ample of such dependences. We note the mono-
tone character of the dependence of the quanti-
ties on Re1 = Re2, Pe, and ¡r. Just as in the
case of the mass transfer without chemical reac-
tion, the effect of the parameters Re1, Re2 and ¡r
can be accounted with satisfactory accuracy by in-
troducing Pe"R - Pe. lu-.*1. In graphical illustra-
tion of numerical tests of Fig. 4 following param-
eters are chosen: all graphs correspond the case

ol tt - Y -- 1.2; Rer - Rez = Re; t - 100;
Ut D1

I = ¡n = 1; to We = 0.2; curve I is for Re = 0,
Pe = 160; curve 2 is for Re = 10, Pe = 160
(P."n - 184); curve 3 is for Re = g, Pe = 320;
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