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Highlights
• We study the effects of classification errors from 11 different classifiers on 14 biological

indices.

• We assess the reasons why certain indices are more sensitive to classification errors.

• We compare the classifiers based on their ultimate use in the biomonitoring of macroin-
vertebrates.
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Abstract

In benthic macroinvertebrate biomonitoring systems, the target is to determine the
status of ecosystems based on several biological indices. To increase cost-efficiency,
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computer-based taxa identification for image data has recently been developed. Taxa
identification errors can, however, have strong effects on the indices and thus on the
determination of the ecological status. In order to shift the biomonitoring process to-
wards automated expert systems, we need a clear understanding on the bias caused
by automation. In this paper, we examine eleven classification methods in the case of
macroinvertebrate image data and show how their classification errors propagate into
different biological indices. We evaluate 14 richness, diversity, dominance and similar-
ity indices commonly used in biomonitoring. Besides the error rate of the classification
method, we discuss the potential effect of different types of identification errors. Fi-
nally, we provide recommendations on indices that are least affected by the automatic
identification errors and could be used in automated biomonitoring.

Keywords: Biomonitoring; Classification error; Diversity: Error propagation; Identification;
Similarity.

1 Introduction
In biomonitoring, reliable taxa identification is an important prerequisite for subsequent
index calculation. Diversity, richness, dominance and similarity indices are often used in
aquatic biomonitoring to determine the status of waterbodies (e.g. Birk et al., 2012). In order
to calculate indices, samples of biological indicator groups such as benthic macroinvertebrates
are collected and the individuals in the samples are identified to taxa. However, when
taxa identification errors are made, these errors may affect the statistical properties of the
estimated indices. This can result in incorrect ecological status predictions that can further
propagate into unnecessary mitigation measures or even prevent needed mitigation measures
(Haase et al., 2010).

The ever decreasing research and monitoring funding calls for new and more efficient
ways of monitoring and sample processing. To improve the cost-efficiency of the monitoring
process, it needs to be automated. This can be achieved by building an expert system
that automatically identifies samples to taxa, calculates biological indices based on their
abundances and provides the user with an assessment of the ecological status of the sampled
waterbody. Before the process can be automated, we need a clear understanding on the
possible bias involved with automation. However, the common approach followed when
designing an expert system involves the selection of its building blocks based on an absolute
performance metric. For the case of the classification block, this metric is usually the absolute
classification rate on a pre-defined test set. While this approach, indeed, leads to a good
selection in the cases where a classifier is clearly superior compared to its competition, it
might lead to a bad selection without taking into account the bias introduced by the tested
data (Ali et al., 2017).

To address the high costs of the identification step in benthic macroinvertebrate biomon-
itoring, researchers have explored e.g. citizen-science monitoring (Dickinson et al., 2012)
and automated identification methods (e.g. Blaschko et al., 2005; Culverhouse et al., 2006;
Lytle et al., 2010; Kiranyaz et al., 2011; Ärje et al., 2013; Joutsijoki et al., 2014). However,
such approaches may introduce additional bias and variation into biological indices calcu-
lated from samples due to identification errors. Indeed, Gardiner et al. (2012) noted that
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misidentification in citizen-science monitoring results in overestimation of species richness
(Magurran, 2004) and Simpson’s diversity (Simpson, 1949).

The goal of this study is to empirically investigate the statistical properties of biological
indices when the automated identification of individuals contains misidentifications. Similar
studies have been done in remote sensing for landscape pattern indices (Chen et al., 2010;
Shao et al., 2001; Wickham et al., 1997), e.g. mean patch size, total edge and contagion
index. Shao et al. (2001) included Shannon’s and Simpson’s diversity indices in their study
but concentrated on variation caused by classification errors rather than bias. Scardi et al.
(2008) studied an expert system based on multimetric indices of fish assemblages but did not
take into account possible identification errors on the fish species. Understanding the bias
and extra variation caused by identification errors is a prerequisite step in shifting towards
automated biomonitoring and ecological status assessments. Recent studies in the field of
expert systems have highlighted the importance of measuring not only absolute accuracy
but also quality. Biswas and Biswas (2017); Piltan and Sowlati (2016) and Carayannis et al.
(2016) have developed multi-metric criteria to measure performance based on quality, while
Abdar et al. (2017) have used sensitivy, specificity and other statistics of the confusion
matrix to assess the quality of classifiers. In remote sensing, Chen et al. (2010) have used
the bias caused in index values due to classification errors as a measure of quality. However,
to our knowledge, there exist no comprehensive studies on the quality of classification as
performance measure in automated biomonitoring.

We consider several commonly derived biological indices i) describing richness, i.e. species
richness (Magurran, 2004), Margalef’s diversity (Clifford and Stephenson, 1975) and Chao’s
estimator of the absolute number of species in an assemblage (Chao, 1984), ii) describing
diversity, i.e. Shannon index (Shannon and Weaver, 1963) and Simpson’s index (Simpson,
1949), iii) describing evenness and dominance, i.e. Shannon evenness (Pielou, 1969, 1975),
Simpson’s evenness (Smith and Wilson, 1996) and Berger-Parker index (Berger and Parker,
1970), and iv) describing similarity of two assemblages, i.e. Sørensen index (Sørensen, 1948),
percent model affinity index (Renkonen, 1938; Novak and Bode, 1992), Canberra metric
(Lance and Williams, 1967), Euclidian similarity (Clifford and Stephenson, 1975), Morisita-
Horn index (Horn, 1966) and Jaccard similarity (Jaccard, 1901). The similarity indices
compare the similarity of species distributions in two conditions, e.g. reference and monitored
conditions in aquatic systems. Richness, diversity and dominance indices are calculated for
a single species distribution, i.e. for a monitored sample.

In the current work, we are especially interested in estimating the error propagation of
indices that use computer-based taxa identification from image data. In automated identi-
fication, the task is to classify n images of individuals belonging to c classes using features
extracted from the images (e.g. width, height, mean grey value, etc). Various classification
methods can be used in automated identification (see e.g. Hastie et al., 2009; Duda et al.,
2001). However in all approaches, the classifiers are trained with a training data of known
identity (i.e. the gold standard). Subsequently, optimal parameter values are selected based
on classification error of a validation data and the final error rate is evaluated with an inde-
pendent test data set. Often, the best classifier is the one having lowest error rate. Besides
error rate, we can also estimate a confusion matrix which provides the probabilities of differ-
ent correct and incorrect classifications. When considering the estimation of the indices, the
confusion matrix is of great interest as its properties affect the amount of bias and variation
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propagated. We perform a simulation study to showcase the effects of different types of
confusion matrices on error propagation. We acknowledge that there are other sources of
bias but in this paper we focus on bias due to classification errors.

Using a benthic macroinvertebrate image data, we illustrate the effect of classification
errors on biological indices. We use eleven classifiers: Random Bayes Array (RBA, Ärje
et al., 2013), Support Vector Machines (SVM, KSVM, Cortes and Vapnik, 1995), Random
Forest (RF, Breiman, 2001), Linear Discriminant Analysis (LDA, Hastie et al., 2009), Radial
Basis Function Network (RBFN, Haykin, 2009; Kiranyaz et al., 2011), Multilayer Perceptron
(MLP, Haykin, 2009; Kiranyaz et al., 2009), Reference Discriminant analysis + nearest neigh-
bor (KRDA, Iosifidis et al., 2014a), Graph Embedded Extreme Learning Machine (GEELM,
Iosifidis et al., 2015), Graph Embedded Kernel Extreme Learning Machine (GEKELM, Iosi-
fidis et al., 2014b) and Naïve Bayes (NB, Hastie et al., 2009). Some of these methods have
been evaluated with the same image data in Ärje et al. (2013) with small changes. However,
the target of the current work is to compare the statistical properties of estimated indices
using the results of these eleven classifiers. In the comparisons, we use simulation-based
results. Finally, we provide some recommendations on which of the indices are least biased
by classification errors and could thus be used in automated biomonitoring.

2 On biological indices and their properties
In this section, we first describe the set-up for data collection, second, the considered indices
with respect to the given set-up and third, the modified set-up in the case of misclassification
is outlined.

2.1 The set-up

Mathematically, let {ω1, . . . , ωc} be the finite set of c classes such that ph is the probability
of class ωh in a monitored situation and qh is the probability of class ωh in a reference
situation. For simplicity, we assume that a random sample of counts X = (X1, . . . , Xc) is
drawn from a multinomial distribution M(n,p), where n is sample size and p = (p1, . . . , pc)
the probabilities of interest. Then, the natural estimator of ph is p̂h = Xh/n, a maximum
likelihood estimator for h = 1, . . . , c. Similarly, the random sample Y = (Y1, . . . , Yc) of size
m is drawn from a multinomial distribution M(m,q), where a natural estimator for the
values of q = (q1, . . . , qc) is q̂h = Yh/m.

Below, we present the indices (Table 1), give the references for the statistical properties,
if known, and further outline some practical details. The ranges of the indices are used in
the comparison of index behavior in Section 4.

We tested three richness indices: 1) species richness (S, Magurran, 2004), 2) Chao’s esti-
mator of the absolute number of species in an assemblage (SChao, Chao, 1984) and 3) Mar-
galef’s diversity (DMg, Margalef, 1958; Clifford and Stephenson, 1975). Smith and Grassel
(1977) studied the theoretical mean and variance of S. Using those results, the same prop-
erties of DMg could easily be derived. Chao (1987) derived variance for SChao = S+F 2

1 /2F2.
Due to cases F2 = 0, we use instead the formula in Table 1 by Magurran and McGill (2010).
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We also study the effect of classification errors on two diversity indices: 4) Shannon’s
index (H ′, Shannon and Weaver, 1963) and 5) Simpson’s index (Dx, Simpson, 1949). Tong
(1983) presents some distributional properties for H ′ assuming multinomial distribution.
Paninski (2003) studies nonparametric estimation of H ′ and gives an overview on its bias
and variance.

Further, we study three evenness/dominance indices in our analyses: 6) Shannon evenness
(J ′, Pielou, 1969, 1975), 7) Simpson’s evenness (E1/D, Smith and Wilson, 1996) and 8)
Berger-Parker index (d, Berger and Parker, 1970). J ′ is a scaled version of H ′ that measures
evenness instead of diversity.

We study the effect of classification errors on six similarity indices: 9) Sørensen similarity
(QS, Sørensen, 1948), 10) percent model affinity index (PMA, Renkonen, 1938; Novak and
Bode, 1992), 11) Canberra metric (1 − CM , Lance and Williams, 1967), 12) Euclidian
similarity (1 − D2

Eucl, Clifford and Stephenson, 1975), 13) Morisita-Horn index (Cλ, Horn,
1966) and 14) Jaccard similarity coefficient (J , Jaccard, 1901). Theoretical properties of the
PMA in the case of multinomial distribution are presented in Ärje et al. (2016) and the
references therein. For the calculation of 1 − CM , classes with zero abundancies in both
samples are left out. Janson and Vegelius (1981) studied the asymptotical standard error
of J . Further, Albatineh and Niewiadomska-Bugaj (2011) discovered the expectation for
corrected form of the index. Cλ has a maximum value not equal to one but ’about one’
(Horn, 1966).

To our knowlegde, the properties of the other diversity, evenness, dominance and similar-
ity indices have only been studied with simulation experiments (e.g. Magurran, 2004; Smith,
2002).

2.2 The effect of classification errors on indices

The classification of objects performed by either human or machine may include errors which
affect the values of indices calculated from classified samples. Let us formulate the set-up as
proposed by Healy (1981) and Fortier (1992). The confusion matrix A of a specified classi-
fication procedure is assumed to be known. Its element ahh′ is the probability of classifying
an object into the class h when originating from the class h′. Further,

∑
h ahh′ = 1 and

ahh′ ≥ 0, h, h′ = 1, . . . , c. Then, the probability of an object to be classified to the class h is

p̃h =
c∑

h′=1

ahh′ ∗ p′h.

The interesting consequence is that the allocated counts X̃1, . . . , X̃c of size n are drawn from
a multinomial distribution M(n, p̃) instead of M(n,p), respectively Ỹ ∼ M(m, q̃). As the
distribution of the allocated counts is biased, the identification errors may propagate into
the expected values of the indices causing bias in the index values.

In this paper, we do not comment on the properties of the indices per se but restrict our
analyses to study the error propagation into the indices due to classification errors as follows.
Using a general notation of index I with correct classification and index Ĩ with incorrect
classification, we concentrate on the proportional bias defined as follows
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%bias =
E(Ĩ)− E(I)

|max I −min I| , (1)

where the expectations are Monte Carlo estimates. Similar proportional bias has been used
by Chen et al. (2010) to study error propagation in remote sensing. The %bias provides
a measure of the biological significance of the bias and enables us to compare the bias in
different biological indices over a range of taxa distributions. Similarly, we study the effect
of classification errors on the variation of the biological indices as follows

%sd =
sd(Ĩ)− sd(I)

|max I −min I| , (2)

where the standard deviations are Monte Carlo estimates.
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3 Materials and methods

3.1 Data

To study the effects of identification errors on biological indices, we use two datasets. The
first data is a benthic macroinvertebrate image data set with 6814 individual images of 33
lotic taxa and two lentic gastropod taxa. Lotic specimens were collected during research
projects of the Finnish Environment Institute and the national freshwater biomonitoring
program in Finland, whereas lentic specimens were collected by the department of Biological
and Environmental Sciences at the university of Jyväskylä. The taxonomic identities of
the specimens were verified by three taxonomic experts and are considered to be true (i.e.
form the gold standard). The macroinvertebrates were batch imaged onto a computer one
taxa at a time using VueScan(c) software (http://www.hamrick.com/, Phoenix, Arizona,
USA) with an HP Scanjet4850 flatbed scanner at an optical resolution of 2400 d.p.i. The
images were normalized to the same intensity range and color balance. The specimens were
segmented from these batches to their individual images and from each image, a total of
64 geometric and color scale features were extracted. The feature extraction was done with
ImageJ (Rasband, 1997-2010). Detailed information on the features and taxa used can be
found in Ärje et al. (2013).

The second data set is abundance data of benthic macroinvertebrates gathered during the
national freshwater biomonitoring program 2006–2013 in Finland. The monitoring program
includes a total of total 12 stream types (small, medium and large or extra large peatland and
woodland streams for northern and southern Finland separately). For details, see Aroviita
et al. (2012). For each stream type, there are reference streams that are considered to be
in near natural condition unaltered by human-induced stressors and non-reference streams
considered to be impacted by human actions. The second data set comprises a total of 149
taxa. We restrict our analysis to taxa that are present in both data sets and combine some
taxa into groups to obtain equal taxa lists (i.e. 32 taxa) for both the image data and the
monitoring data. The taxa list and info of combined taxa can be found in the appendix
(Table 7).

3.2 Classification

We first use the image data for taxa identification, i.e. classification. The data is divided
10 times into training (33,33 %), validation (33,33 %) and testing (33,33 %) sets. Each
classifier is first trained with the training data and the validation data is utilized to find
the optimal parameter values. Then, training and validation data are combined and used
to train the classifier with the chosen parameter values. Finally, we evaluate the classifier
with the test data. This procedure is repeated 10 times, once with each data split. The
error rate of a classifier is then calculated as the average classification error from these 10
repetitions. Similarly, we obtain the confusion matrix of a classifier as the average from the
10 repetitions.

We explore the effects of misclassifications with eleven different classifiers: Naïve Bayes
(NB, Hastie et al., 2009), Linear Discriminant Analysis (LDA, Hastie et al., 2009), Random
Forest (RF, Breiman, 2001), Random Bayes Array (RBA, Ärje et al., 2013), Support Vec-
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tor Machines (SVM, KSVM, Cortes and Vapnik, 1995), Reference Discriminant analysis +
nearest neighbor (KRDA, Iosifidis et al., 2014a), Graph Embedded Extreme Learning Ma-
chine (GEELM, Iosifidis et al., 2015), Graph Embedded Kernel Extreme Learning Machine
(GEKELM, Iosifidis et al., 2014b), Multilayer Perceptron (MLP, Haykin, 2009; Kiranyaz
et al., 2009) and Radial Basis Function Network(RBFN, Haykin, 2009; Kiranyaz et al.,
2011). Some of the classifiers are known to perform poorly with the macroinvertebrate im-
age data (Ärje et al., 2013) but are included as examples to fully explore to gradient of error
propagation.

NB and LDA are Bayesian classifiers (e.g. Hastie et al., 2009) that both assume that
features are normally distributed and which classify observations according to the high-
est posterior probability. LDA assumes that all classes have a common covariance matrix
whereas NB that features are independent from each other.

RF (Breiman, 2001) is a collection of random decision trees. For each tree, the classifier
takes a bootstrap sample of the training data. For each node in a tree, RF randomly selects
a subset of M features and chooses the one that best separates the data based on entropy.
RF builds k trees and uses voting to get the final class predictions for the test data.

RBA (Ärje et al., 2013) is an implementation of RF for quadratic discriminant analysis
(QDA) which is a generalization of LDA that allows arbitrary covariance matrices. RBA
forms a collection of random QDAs. Each QDA classifier is trained using a bootstrap sample
of the training data and M randomly selected features. RBA consists of k random QDAs.
It uses either voting, posterior weighted voting, averaged posterior probabilities, or highest
average rank to determine the final class predictions of the test data. RBA can also be
used to evaluate the importance of the features, which can thereon be used as weights when
sampling the features for each random QDA. Here we used averaged posterior probabilities
to make the final class decision.

SVM (Cortes and Vapnik, 1995) is a non-probabilistic binary classifier that determines the
hyperplane separating the two classes with maximal margin. Non-linear decision functions
are obtained by exploiting the kernel trick, which inherently maps the input data to a
feature space of high dimensions. The determination of the optimal hyperplane separating
the two classes in this high-dimensional feature space corresponds to the determination
of a non-linear decision function in the input space. Multi-class classification is obtained
by combining multiple binary classifiers. In this paper we employ the One-Versus-Rest
combination scheme. KSVM is an extension of SVM that uses a radial basis function kernel.

KRDA (Iosifidis et al., 2014a) is an extension of Kernel Discriminant Analysis (KDA)
that tries to overcome the assumption of the latter concerning the optimal representation of
each class. KDA employs the class mean for class representation, assuming that the classes
in the feature space are unimodal and follow Gaussian distributions. However, since these
two assumptions are usually not valid in many real world problems, class representation
by the class mean is suboptimal. KRDA overcomes this problem by determining both the
optimal class representation and data projection.

GEELM (Iosifidis et al., 2015) is an algorithm for Single-hidden Layer Feedforward Neural
(SLFN) network training that exploits geometric data relationships. GEELM first nonlin-
early maps the data from the input space to a high-dimensional feature space based on
random weights. Then a regularized regression problem is solved. The regularization term
in this process is designed in order to exploit geometric data (or class) relationships encoded
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in an intrinsic and a penalty graph. In our experiments we employed the graphs used in
Local Fisher Discriminant Analysis (LFDA Sugiyama, 2007, ,).

GEKELM is a kernel extension of GEELM. The main idea of GEKELM is that the
networkâĂŹs hidden layer can be formed by a very large (even infinite) number of neurons.
In this case, the ELM network is similar to an infinite neural network in which the training
data similarities are encoded in a kernel matrix (Iosifidis et al., 2014b). GEKELM trains such
a network by also exploiting geometric data (or class) relationships encoded in an intrinsic
and a penalty graph. For GEKELM we also employ the LFDA graphs.

MLPs (Haykin, 2009; Kiranyaz et al., 2009) are feed-forward, fully-connected Artificial
Neural Networks (ANNs), which can be described as directed graphs where each node is
performing some activation function to its inputs and forwarding the result to the input of
other neurons in the adjacent layer. MLPs may contain one or more layers of hidden neurons.
In this work, for all experiments, a conventional back-propagation training rule with a global
adaptation of the learning rate (with initial value of 0.001) is used and both shallow (single
hidden layer of 32 neurons) and deep (two hidden layers of 64 and 32 neurons respectively)
MLP configurations are considered.

RBFN (Haykin, 2009; Kiranyaz et al., 2011) is another well-known feed-forward, fully-
connected ANN type which can approximate any solution space or function as a sum of N
RBFs (such as Gaussian functions) in a single hidden layer. For training of RBFN, given the
specified maximum number of hidden neurons and the spread parameter of each Gaussian
neuron, for each epoch a hidden layer neuron is added to minimize training Mean-Squared
Error (MSE) below specified target level. For each data partition, the spread parameter is
chosen to minimize the validation data classification error. Both shallow (64 hidden neurons)
and deep (384 hidden neurons) RBFN configurations are considered.

3.3 Simulation study

We study the effect of classification errors on the richness, diversity, evenness and dominance
indices in each of the 12 river types for both, reference and non-reference compositions,
resulting in a total of 24 different taxa distributions. We use the reference and non-reference
streams as the two conditions being compared with the similarity indices. In biomonitoring,
the reference condition is often considered to be a known (i.e. fixed) target distribution.
Therefore, we study the error propagation of the similarity indices in two cases. In the first
case, the reference sample is assumed to be known, i.e. correctly identified by several human
experts, and the non-reference sample is classified using the aforementioned classifiers. In the
second case, both samples are classified using the classifiers and may contain classification
errors.

First, we draw 1000 samples from multinomial distributions, X ∼ M(n,p) for non-
reference streams and respectively, Y ∼ M(n,q) for reference streams. The taxa distribu-
tions p and q are weighted averages over one river type’s non-reference and reference stream
monitoring samples using sample sizes as weights. We calculate the values of all richness,
diversity, evenness, dominance and similarity indices, denoted by I. As a result, we obtain an
empirical distribution of each index I, called the correct distribution below. Second, we draw
1000 samples from multinomial distributions X̃ ∼M(n, p̃) and Ỹ ∼M(n, q̃), where p̃ = Ap,
q̃ = Aq and A is the average confusion matrix of a classifier. Using the allocated counts,
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we calculate the values of each index, denoted by Ĩ, and the obtained empirical distribution
is called the allocated distribution of the index I. Finally, we compare the distributions
of the correct and allocated index values to see how the different indices are affected by
misclassifications. In this work, we restrict sample sizes to n = m = {200, 500, 1000}.

4 Results
Considering solely classification error, the best classifier is GEKELM and the worst MLP
(see Table 2). However, we are more interested in the end result, i.e. how index values
affecting decision making are biased due to classification errors. Below we discuss the results
summarized over all river types, i.e. 24 different taxa distributions for the richness, diversity,
evenness and dominance indices and 12 different taxa distribution pairs for the similarity
indices. As an example, Fig. 1, 2 and 3 show the results for the most common river type of
the monitoring data, medium-sized non-reference peatland streams in southern Finland. All
following tables are ordered based on the classification errors of Table 2.

To evaluate the severity of error propagation to biological indices, we concentrate on the
proportional bias in Eq. 1. Table 3 shows the average proportional bias for the diversity,
richness, evenness and dominance indices over all river types, i.e. 24 different species dis-
tributions. As the sign of the bias can be different among the classifiers even in one river
type and different for the same classifier in different river types, in Table 3 the average is
taken over absolute proportional bias. With our parameters (c = 32, n = 500), SChao has
a very high maximum value which is reached if there is one large class with the majority
of observations and all other classes have a single observation in them. As this is a highly
unlikely scenario, we calculate the %bias in SChao proportional to the range of S, which is c,
instead of |maxSChao −minSChao|.

From Table 3, it is evident that richness indeces 1)-3) S, SChao and DMg are sensitive to
classification errors. For these indices, even the best classifiers result in approximately 20
%bias. All three indices are based on presence/absence data and linked to the number of
species, which may well be the cause of their sensitivity. This is due to the fact that even one
misclassified observation can bring a new taxa into the calculation and cause overestimation
in the number of taxa. This conclusion is also supported by Fig. 1 as the allocated index
value distributions for S, SChao and DMg are biased upwards for all classifiers.
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Figure 1: The effect of classification errors on richness, diversity, evenness and dominance
indices for medium-sized non-reference peatland streams in southern Finland. Here, X ∼
M(500,p). The red boxplots represent the correct index value distributions. The blue
boxplots represent the allocated index value distributions.
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Figure 2: The effect of classification errors on similarity indices for medium-sized non-
reference peatland streams in southern Finland when the reference sample is assumed to
be known. Here, X ∼ M(500,p) and Y ∼ M(500,q). The red boxplots represent the
correct index value distributions. The blue boxplots represent the allocated index value
distributions.
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Figure 3: The effect of classification errors on similarity indices for medium-sized non-
reference peatland streams in southern Finland when both samples may contain classifi-
cation errors. Here, X ∼ M(500,p) and Y ∼ M(500,q). The red boxplots represent the
correct index value distributions. The blue boxplots represent the allocated index value
distributions.
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The rest of the diversity, evenness and dominance indices have proportional bias 10 % or
under (Table 3), at least with the better classifiers that have classification errors under 30 %.
Actually, even for the poorly performing classifiers, NB (ce>51%) and MLP (ce>89%), the
error propagation into the biological indices is surprisingly small. The reason for this is that,
the calculation of these indices is based on taxa proportions instead of counts. Therefore few
individual misclassifications have less influence on the index values, at least with reasonably
large sample size. E1/D seems to have a slightly larger %bias thanD because it is proportional
to S and therefore affected more by extra species. Note that the proportional bias for H ′

and J ′ is identical, as the latter is a scaled version of the former. The Berger-Parker index,
d, depends only on the most common taxa in the sample so it may have high %bias in river
types where the most common taxa is one with a higher classification error rate. However,
this problem can be overcome since biologists are likely to choose classification methods that
identify the most common taxa of a sampling site well.

According to Tables 4 and 5, none of the similarity indices are as sensitive to classification
errors as the richness indices based on presence/absence data (Table 3). For similarity indices,
the quality of the classification method has a more clear impact as MLP produces severe
%bias in the index values when compared to the other classifiers. However, not taking MLP
into account, all of the similarity indices have proportional bias mostly under 10 % (Table 4).
QS and J are based on presence/absence data but are much less biased than S, SChao and
DMg. This may be because in QS and J the number of species affects both the numerator
and denominator. Extra species due to misclassifications thus increase both the number of
common taxa and the number of observed taxa and therefore do not increase the final index
value as much. Euclidian similarity, 1−D2

Eucl, and PMA index have very similar formulas,
yet 1−D2

Eucl has smaller proportional bias than the PMA index. Unlike PMA, 1−D2
Eucl

is affected by how the observations are distributed in non-common classes, giving a larger
distance if the observations in the non-common classes are distributed evenly. Therefore
Euclidian similarity has range [−1, 1], compared to the range of the PMA [0, 1].

The proportional bias increases the most for the Canberra metric, 1 − CM , when both
samples are classified (see Table 5), compared to the case when the reference sample is
assumed to be known (Table 4). In fact, all similarity indices have higher expected values
when both samples are classified, compared to the case when the reference sample is assumed
to be known (see Fig. 2 and 3). The index values are often biased downwards when only
one of the samples is classified and biased upwards when both samples contain classification
errors. This may be caused by the fact that classification errors increase the entropy and
evenness of the samples. The higher the evenness in both samples, the more similar they
become.

While the aforementioned results (Figures 1, 2, 3 and Tables 3, 4 and 5) are obtained
with sample size 500, we also tested sample sizes 200 and 1000 to assess whether error
propagation in biological indices varies with sample size (see results in appendix, Tables 8,
9, 10, 11, 12 and 13). Of the diversity, richness, evenness and dominance indices, only S,
SChao and DMg are affected by sample size. For S and DMg, the average proportional bias
clearly increases with the sample size for all classification methods. For SChao, the %bias
increases for good classifiers. When there are more observations in the sample, the chance
of a misclassified observation introducing an extra species is higher. DMg proportional to
sample size which should make it less sensitive to changes in sample size. However, when
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Table 6: Average proportional bias for different classifiers over all river types and diversity,
richness, evenness and dominance indices (DIV), similarity indices when one sample is clas-
sified (SIM1) and similarity indices when both samples are classified (SIM2). Here, n = 500.
Standard deviation of the proportional bias is presented in parenthesis.

%Bias
Classifier DIV SIM1 SIM2
GEKELM 0.10 (0.08) 0.04 (0.04) 0.05 (0.04)
KRDA 0.10 (0.08) 0.04 (0.04) 0.05 (0.04)
KSVM 0.12 (0.10) 0.04 (0.05) 0.06 (0.05)
GEELM 0.10 (0.08) 0.05 (0.04) 0.05 (0.04)
RBA 0.11 (0.09) 0.04 (0.05) 0.05 (0.05)
RBFN 0.11 (0.09) 0.05 (0.05) 0.06 (0.05)
LDA 0.13 (0.10) 0.05 (0.05) 0.07 (0.05)
RF 0.13 (0.10) 0.06 (0.06) 0.07 (0.05)
SVM 0.14 (0.12) 0.06 (0.06) 0.08 (0.06)
NB 0.17 (0.12) 0.07 (0.06) 0.11 (0.08)
MLP 0.16 (0.12) 0.22 (0.18) 0.15 (0.12)

calculating the %Bias, the log(n) terms are cancelled and the %Bias is identical to that of
S. Of the similarity indices, the bias increases with sample size for QS, 1−CM and J when
both samples may contain classification errors. PMA, Cλ and 1−D2

Eucl are less sensitive to
sample size.

In addition to studying the effect of classification errors on biological indices, we compare
the different classification methods. Usually, classifiers are compared on error rate but we
are interested in their effect on decision making via the indices. The classifiers which have
classification errors under 20 % are very similar with respect to the %bias in biological indices
(Table 6). However, note that the third best classifier based on error rate, KSVM, introduces
more bias in the indices than some classification methods that have higher error rates than
KSVM. This is more clear for diversity, richness, evenness and dominance indices. Even
though the differences are small, this does show that classification error should not be the
only basis in the selection of classification methods.

Last, we consider the effect of individual river types, i.e. the effect of species distribu-
tion combined with the different confusion matrices. When we use automated classification
methods, the number of possible taxa is fixed based on the training image data and this
sets the dimensions for the confusion matrix. In this setting, taxa distributions with only
few taxa are problematic for indices based on presence/absence data (see e.g. Tables 14,
15, 16 and 17 in appendix). When a confusion matrix has many classes, misclassification
easily introduces extra taxa into the samples and therefore affects the index values. The
problem is even larger if the taxa present in the distribution happen to be ones with a high
classification error. On the other hand, taxa distributions with the majority of the taxa
present tend to produce smaller %bias in the index values. For indices based on proportions,
the most problematic taxa distributions are ones where the most common taxa have high
error rates as the highest proportions contribute most in the calculation of these indices.
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For example, in our simulation study, proportion based indices for medium-sized woodland
streams of northern Finland display higher bias than other river types (see Table 18 in ap-
pendix compared to Table 3). This is because almost half of this river type’s observations are
Baetis rhodani which is a taxa identified well only by RBA. Unsurprisingly, RBA is the only
classifier with a low bias in proportion based indices for medium-sized woodland streams of
northern Finland.

Using Eq. 2, we also study how the standard error of biological indices is affected by
classification errors. However, as there is very little difference in the standard errors before
and after classification, the results are not shown here.

5 Conclusions
In this paper, we discuss the effect of classification errors on biological indices describing
richness, diversity, evenness, dominance and similarity. We study the error propagation into
biological indices with simulation experiments based on real data. We train 11 classifiers with
benthic macroinvertebrate image data and use these classification results to evaluate how
different confusion matrices affect index values calculated from classified macroinvertebrate
samples. We study which indices are most sensitive to misclassifications and sample size and
how different taxa distributions affect the error propagation.

The most sensitive indices to classification errors are the richness indices based on pres-
ence/absence data, i.e. S, SChao and DMg. As the calculation of these indices relies on the
number of observed species, even one misclassified observation can introduce an extra taxa
into the calculation and therefore introduce bias into the index. These indices are even more
sensitive to errors when there are fewer taxa in the species distribution than in the confusion
matrix since this makes it possible to have false extra taxa. S, SChao and DMg are also sensi-
tive to sample size since increasing sample size increases the possibility of misclassifications
introducing extra taxa in the sample.

Diversity, evenness, dominance and similarity indices analyzed in this paper are less
sensitive to classification errors than richness indices, with proportional bias less than 10
% when using good classifiers. Presence/absence based similarity indices, i.e. QS and J ,
are less biased than S, SChao and DMg because in their calculation extra taxa increase
both the numerator and denominator, keeping the ratio roughly the same. Proportion-
based indices can also be sensitive to classification errors if the most common taxa in the
samples are poorly classified, i.e. identified. However, since biologists have prior knowledge
of expected taxa distributions at sampling sites they are likely to choose the classification
method accordingly. The classification methods used in this paper can be split into three
groups: good classifiers (ce < 20 %), mediocre classifiers (20 % < ce < 50 %) and poor
classifiers (ce > 50 %). Although different in error rates, the good classifiers do not really
differ when considering the proportional bias they bring into biological indices, allowing to
choose the most favourable classifier among them for a given scenario.

We found many of the similarity indices to be sensitive to sample size as well. When
both samples being compared are classified, bias caused by misclassifications increases with
sample size for QS, 1−CM and J . We found that for similarity indices, misclassifications of-
ten increase entropy of the samples. Thus, when both samples are classified, their similarity
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increases and the similarity index values become over-estimated. Therefore decision makers
should carefully consider cases where the necessity of mitigation measures is evaluated based
on similarity values. Based on our analyses and simulation experiments, the similarity indices
least affected by classification errors, sample size and taxa distributions are 1−D2

Eucl, PMA
and Cλ. The least biased diversity index is D. We acknowledge that there are other sources
of bias, e.g. sampling error, but in this paper we limit our analyses on classification errors
and restrict the study of the effect of sample size and taxa distribution to their interaction
with classification errors, when the counts follow a multinomial distribution. We also note
that the choice of an index ultimately depends on what needs to be measured from a mon-
itored community but we would generally recommend proportion-based indices for diverse
communities as these are the most robust against taxa misidentification error propagation,
based on our simulation experiments. When shifting the biomonitoring and ecological status
assessment process towards automation, the proposed expert system should consider only
indices that are robust to automated classification errors.

The results in this paper were obtained using automated classification. A nice property
of automated classification given a gold standard training set is the knowledge of confusion
matrices. As misclassifications with good classifiers are systematic and predictable, for fu-
ture work, correction methods will be considered in order to decrease the bias in biological
indices due to misclassification. Even though we like to think that human experts rarely
make identification errors, it does happen (Culverhouse et al., 2003) and can cause remark-
able bias in resulting index values and ecological status evaluations (Haase et al., 2010).
Unlike in automated methods, human expert errors rarely include knowledge of the human
expert’s confusion matrix. Also as human misclassifications may not be as systematic as
with automated classifiers it is not sensible to construct a correction method for every single
human expert. In contrast, it is highly sensible to construct a correction method for a well
performing automated classifier to further boost its performance.

Interesting future research directions include i) the comparison between human experts
and automated classifiers and how much human experts introduce bias into biological in-
dices due to prior knowledge affecting identification errors, ii) analysis of the classification
errors observed by expert systems when evaluation is conducted in varying conditions, e.g.
differences in illumination that might be caused either by product failures or by external
factors, iii) analysis of the classification errors observed when the expert system is trained
and evaluated using data obtained by different conditions, iv) analysis of the classification
errors observed when a test sample from a previously unseen class is processed.
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Table 7: Taxa used for the classification and simulation experiments. Baetis muticus and
Baetis niger are identified separately in the image data but are combined here into the
Baetis niger group to have equal taxa lists in both image and monitoring data. Similarly
Protonemura intricata and Protonemura meyeri are combined to Protonemura spp.

Taxonomic group
Ameletus inopinatus Habrophlebia spp.
Arctopsyche ladogensis Heptagenia dalecarlica
Asellus aquaticus Hydraena spp.
Baetis niger group Hydropsyche pellucidula
Baetis rhodani Hydropsyche saxonica
Bithytnia tentaculata Hydropsyche siltalai
Caenis spp. Isoperla spp.
Corixidae Leuctra spp.
Ceratopsyche silfvenii Limnius volckmari
Ceratopogonidae Micrasema gelidum
Cheumatopsyche lepida Micrasema setiferum
Diura spp. Nemoura spp.
Elmis aenea Sphaeriidae
Ephemerella aurivillii Protonemura spp.
Ephemerella ignita Rhyacophila nubila
Ephemerella mucronata Taeniopteryx nebulosa
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Table 14: Proportional bias for richness indices for large or extra large woodland reference
streams of southern Finland with sample size n = 500. For this river type, c = 22.

%Bias
Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP
S 0.28 0.27 0.33 0.28 0.30 0.31 0.33 0.32 0.34 0.42 0.42
SChao 0.31 0.30 0.36 0.29 0.31 0.32 0.35 0.33 0.37 0.41 0.44
DMg 0.28 0.27 0.33 0.28 0.30 0.31 0.33 0.32 0.34 0.41 0.42

Table 15: Proportional bias for richness indices for small peatland reference streams of
southern Finland with sample size n = 500. For this river type, c = 19.

%Bias
Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP
S 0.29 0.29 0.34 0.27 0.34 0.30 0.36 0.36 0.39 0.46 0.41
SChao 0.36 0.37 0.43 0.34 0.41 0.40 0.41 0.42 0.46 0.48 0.46
DMg 0.29 0.29 0.34 0.27 0.34 0.30 0.36 0.36 0.39 0.46 0.41

Table 16: Proportional bias for richness indices for medium-sized peatland non-reference
streams of northern Finland with sample size n = 500. For this river type, c = 30.

%Bias
Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP
S 0.07 0.09 0.12 0.07 0.10 0.07 0.13 0.11 0.17 0.16 0.17
SChao 0.10 0.10 0.13 0.10 0.11 0.10 0.12 0.12 0.16 0.14 0.16
DMg 0.07 0.09 0.12 0.07 0.10 0.07 0.13 0.11 0.17 0.16 0.17

Table 17: Proportional bias for richness indices for large or extra large peatland non-reference
streams of northern Finland with sample size n = 500. For this river type, c = 29.

%Bias
Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP
S 0.06 0.08 0.08 0.05 0.09 0.05 0.10 0.08 0.12 0.13 0.09
SChao 0.07 0.08 0.09 0.07 0.08 0.09 0.09 0.10 0.12 0.11 0.10
DMg 0.06 0.08 0.08 0.05 0.09 0.05 0.10 0.08 0.12 0.13 0.09

Table 18: Proportional bias for proportion-based indices for medium-sized woodland non-
reference streams in northern Finland with sample size n = 500. Standard deviation of the
proportional bias is presented in parenthesis.

%Bias
Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP
H ′ 0.13 0.11 0.14 0.14 0.06 0.15 0.15 0.15 0.19 0.20 0.27
J ′ 0.13 0.11 0.14 0.14 0.06 0.15 0.15 0.15 0.19 0.20 0.27
D 0.11 0.09 0.11 0.12 0.04 0.13 0.12 0.12 0.14 0.14 0.18
E1/D 0.07 0.02 0.03 0.08 0.04 0.09 0.04 0.05 0.05 0.07 0.14
d 0.18 0.12 0.15 0.19 0.04 0.23 0.17 0.18 0.21 0.19 0.27
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