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Abstract

We show the everywhere differentiability of viscosity solutions to a class of Aron-
sson equations in Rn for n ≥ 2, where the coefficient matrices A are assumed to be
uniformly elliptic and C1,1. Our result extends an earlier important theorem by Evans
and Smart [19] who have studied the case A = In which correspond to the ∞-Laplace
equation. We also show that every point is a Lebesgue point for the gradient.

In the process of proving the results we improve some of the gradient estimates
obtained for the infinity harmonic functions. The lack of suitable gradient estimates
has been a major obstacle for solving the C1,α problem in this setting, and we aim to
take a step towards better understanding of this problem, too.

A key tool in our approach is to study the problem in a suitable intrinsic geometry
induced by the coefficient matrix A. Heuristically, this corresponds to considering the
question on a Riemannian manifold whose the metric is given by the matrix A.

1 Introduction

For any open set Ω ⊂ Rn with n ≥ 2, we consider the Aronsson equation:

(1.1) AH [u](x) := 〈Dx(H(x,Du(x))), DpH(x,Du(x))〉 = 0 in Ω,

where the Hamiltonian H is given by H(x, p) = 〈A(x)p, p〉. We denote the set of all
uniformly elliptic matrices A of order n by A (Ω). Our main result is the following theorem.

Theorem 1.1. Assume A ∈ A (Ω) ∩ C1,1(Ω). Then any viscosity solution u ∈ C(Ω) to
the Aronsson equation (1.1) is everywhere differentiable in Ω.

In order to show the robustness of the methodology, following Evans-Smart [19] we also
show that every point is a Lebesgue point for the gradient.

Observe that when A is the identity matrix of order n, the Aronsson equation (1.1)
becomes the infinity Laplace equation:

(1.2) ∆∞u :=
n∑

i,j=1

uxiuxjuxixj = 0 in Ω.

Key words and phrases: L∞-variational problem, absolute minimizer, everywhere differentiability, Aron-
sson’s equation.
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G. Aronsson [1, 2, 3, 4] initiated the study of the infinity Laplace equation (1.2) by
deriving it as the Euler-Lagrange equation, in the context of L∞-variational problems, of
absolute minimal Lipschitz extensions (AMLE) or equivalently absolute minimizers (AM)
of

(1.3) inf
{

esssup
x∈Ω

|Du|2 : u ∈ Lip(Ω)
}
.

Employing the theory of viscosity solutions of elliptic equations, Jensen [21] has first proved
the equivalence between AMLEs and viscosity solutions of (1.2), and the uniqueness of
both AMLEs and infinity harmonic functions under the Dirichlet boundary condition. See
[29] and [6] for alternative proofs. For further properties of infinity harmonic functions,
we refer the readers to the paper by Crandall-Evans-Gariepy [13] and the survey articles
by Aronsson-Crandall-Juutinen [7] and Crandall [12].

For L∞-variational problems involving Hamiltonian functions H = H(x, z, p) ∈ C2(Ω×
R× Rn), Barron, Jensen and Wang [8] have proved that an absolute minimizer of

(1.4) F∞(u,Ω) = esssup
x∈Ω

H(x, u(x), Du(x))

is a viscosity solution of (1.1), provided the level sets of H are convex in p-variable. Recall
that a Lipschitz function u ∈ Lip(Ω) is an absolute minimizer for F∞, if for every open
subset U b Ω and v ∈ Lip(U), with v|∂U = u|∂U , it holds

F∞(u, U) ≤ F∞(v, U).

See [16], [5], [22], and [23] for related works on both Aronsson’s equations (1.1) and
absolute minimizers of F∞. Recently, Bjorland, Caffarelli and Figalli [9] (see also [11])
studied the infinity fractional Laplacian, that is, the L∞-variational problems associated
to non-local Hamiltonian functions.

The regularity for infinity harmonic functions (or viscosity solutions to (1.2)) has at-
tracted great interest recently. When n = 2, Savin [30] has showed the interior C1-
regularity, and Evans-Savin [18] have established the interior C1, α-regularity. Wang and
Yu [32] have established the C1-boundary regularity and, moreover, they have also ex-
tended Savin’s C1-regularity to the Aronsson equation (1.1) for uniformly convex H(p) ∈
C2(R2) [31]. When n ≥ 3, Evans and Smart [19, 20] have established the interior ev-
erywhere differentiability of infinity harmonic functions, whereas Wang and Yu [32] have
extended this to the boundary differentiability. For the inhomogeneous infinity Laplace
equation, the everywhere differentiability has been shown by Lindgren in [25]. In this
paper, we extend the Evans-Smart [19, 20] differentiability result to cover also the case of
the Aronsson equation (1.1) for A ∈ A (Ω)∩C1,1(Ω) and n ≥ 2. The result is not merely a
straightforward generalization of the known theory, since there are several new difficulties
in running the arguments.

The Evans-Smart method heavily relies on a linear approximation property proved
earlier by Crandall, Evans and Gariepy [13]. This result states that the difference quotient,
corresponding to the differentiability condition, has a convergent subsequence. Then one
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needs to show the uniqueness of the limit to conclude the result. A linear approximation
property also holds for the Aronsson equation (1.1); see Lemma 4.1 below. Lemma 4.1
was first proved by Yu [33] for some general Hamiltonian functions H(x, p); later a proof
was given in [23] when H(x, p) = 〈A(x)p, p〉 based on an intrinsic geometry induced by
the coefficient A.

For showing the uniqueness of the aforementioned limit, we need to establish certain
gradient estimates. The standard approach has been to study the ε-regularized equation.
After introducing the coefficient matrix, the regularized equation does not necessarily
have smooth enough solutions for the standard Bernstein type arguments which rely on
differentiating the equation. In order to overcome this obstacle, we need to approximate
the coefficient matrix, too.

We can prove the estimates required for the convergence results only if the coefficient
matrix is close enough to the identity. As we want to consider the general case, we need
to use a blow-up argument to reduce the problem to studying merely such matrices. This
requires a careful analysis of the final reasoning for the differentiability result.

Finally, the introduction of the coefficient matrix into our gradient estimates causes
several technical difficulties not present in the case of the ∞-Laplace equation. The equa-
tion includes terms with partial derivatives of the coefficient matrix. In order to control
these new terms, we need to establish a series of new estimates.

In the process of proving the gradient estimates we are also able to improve the earlier
estimates for the infinity harmonic functions by Evans and Smart, see Theorem 3.3 below.
The lack of suitable gradient estimates has been a major obstacle in solving the C1,α prob-
lem for the∞-Laplace equation [18]. We aim to take a step towards better understanding
of the problem also at this front.

As a final remark we would like to point out an interesting question related to the
assumption A ∈ C1,1. Already making sense of the equation (1.1) requires the coefficient
matrix to be at least C1. In the classical theory, on the other hand, this sort of higher
regularity results are typically based on perturbation arguments which require the coeffi-
cient to be, say, Hölder continuous. In our setting this corresponds to assuming A ∈ C1,α.
Now it is an interesting question whether the regularity assumption in Theorem 1.1 can be
relaxed and, in particular, whether it holds for instance for merely A ∈ A (Ω)∩C1(Ω). As
proved in Lemma 4.1, the linear approximation property only requires A ∈ A (Ω)∩C(Ω).

2 Preliminaries

First of all, recall that the coefficient matrix A = (aij(x))1≤i,j≤n is called uniformly elliptic
if there exists L > 0 such that

(2.1) L−1|p|2 ≤ 〈A(x)p, p〉 ≤ L|p|2, x ∈ Ω and p ∈ Rn.

Recall also the definition of the Hamiltonian

(2.2) H(x, p) = 〈A(x)p, p〉 =
n∑

i, j=1

aij(x)pipj , x ∈ Ω and p ∈ Rn.
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In this section, we will describe a regularization scheme of the Aronsson equation (1.1).
Let’s recall the definition of viscosity solutions of the Aronsson equation (1.1).

Definition 2.1. A function u ∈ C(Ω) is a viscosity subsolution (supersolution) of the
Aronsson equation (1.1) if, for every x ∈ Ω and every ϕ ∈ C2(Ω) such that if u−ϕ has a
local maximum (minimum) at x then

(2.3) AH [ϕ](x) ≥ (≤) 0.

A function u is a viscosity solution of (1.1) if u is both viscosity subsolution and superso-
lution.

For ε > 0 and a uniformly elliptic matrix B ∈ A (Ω) ∩ C∞(Ω), set the Hamiltonian
function HB by

HB(x, p) = 〈B(x)p, p〉, x ∈ Ω and p ∈ Rn.

We consider an ε-regularized Aronsson equation (1.1) associated with B and HB:

(2.4)

{
−AεHB [uε] := −AHB [uε]− εdiv(B∇uε) = 0 in Ω,

uε = u on ∂Ω.

For (2.4), we have the following theorem.

Theorem 2.2. For ε > 0, B ∈ A (Ω) ∩ C∞(Ω), and u ∈ C0,1(Ω), there exists a unique
solution uε ∈ C∞(Ω) ∩ C(Ω) of the equation (2.4).

Proof. Consider the minimization problem of the functional of exponential growth

cε := inf
{
Iε[v] :=

∫
Ω

exp
(1

ε
HB(x,∇v)

)
dx
∣∣ v ∈ Kε

}
,

where Kε is the set of admissible functions of the functional Iε defined by

Kε =
{
w ∈W 1,1(Ω)

∣∣ ∫
Ω

exp
(1

ε
HB(x,∇w)

)
dx < +∞, w = u on ∂Ω

}
.

Note that since u ∈ Kε, Kε 6= ∅. Let {um} ⊂ Kε be a minimizing sequence, i.e.,
lim
m→∞

Iε[um] = cε. Without loss of generality, we may assume that there exists uε ∈ Kε

such that um → uε uniformly on Ω, and Dum ⇀ Duε in Lq(Ω) for any 1 ≤ q < +∞. Since
HB(x, p) = 〈B(x)p, p〉 is uniformly convex in p-variable, by the lower semicontinuity we
have that

Iε[uε] =

∫
Ω

exp
(1

ε
HB(x,∇uε)

)
dx =

∞∑
k=0

∫
Ω

(
ε−1HB(x,∇uε))k

k!
dx

≤ lim inf
m→∞

∞∑
k=0

∫
Ω

(
ε−1HB(x,∇um))k

k!
dx

= lim inf
m→∞

∫
Ω

exp
(1

ε
HB(x,∇um)

)
dx = lim inf

m→∞
Iε[um] = cε.
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Hence cε = Iε[uε] and uε is a minimizer of Iε over the set Kε. Direct calculations imply
that the Euler-Lagrange equation of uε is (2.4). The uniqueness of uε follows from the
maximum principle that is applicable for the equation (2.4). The smoothness of uε follows
from the theory of quasilinear uniformly elliptic equations, and the reader can find its
proofs in the papers by Lieberman [26] page 47-49 and [27] lemma 1.1 (see also the paper
by Duc-Eells [17]).

Note that any viscosity solution u ∈ C(Ω) of the Aronsson equation (1.1) is locally
Lipschitz continuous, i.e. u ∈ C0,1

loc (Ω) (see [10] and [23]). Since we consider the interior
regularity of u, we may simply assume that u ∈ C0,1(Ω).

Now we will indicate that under suitable conditions on A, any viscosity solution u ∈
C0,1(Ω) of the Aronsson equation (1.1) can be approximated by smooth solutions uε of
ε-regularized equations (2.4) associated with suitable HB’s. For this, we recall that for
any A ∈ A (Ω) ∩ C1,1(Ω), it is a standard fact that there exists {Aε} ⊂ A (Ω) ∩ C∞(Ω)
such that

(2.1)
∥∥Aε∥∥C1,1(Ω)

≤ 2
∥∥A∥∥

C1,1(Ω)
for all ε > 0.

(2.2) For any α ∈ (0, 1), Aε → A in C1,α(Ω) as ε→ 0.

Theorem 2.3. For any A ∈ A (Ω)∩C1,1(Ω) with ellipticity constant L < 2
1
5 (see (2.1)),

let {Aε} ⊂ A (Ω)∩C∞(Ω) satisfy the properties (2.1) and (2.2). Assume that u ∈ C0,1(Ω)
is a viscosity solution of the Aronsson equation (1.1), and {uε} ⊂ C∞(Ω) ∩ C(Ω) are
classical solutions of the ε-regularized equation (2.4) on Ω, with B and HB replaced by Aε
and HAε respectively. Then there exists a constant δ0 = δ0(Ω, ‖A‖L∞(Ω)) > 0 such that if
‖DA‖L∞(Ω) ≤ δ0, then uε → u in C0

loc(Ω).

Proof. From Theorem 3.1, we have that for any compact subset K b Ω,∥∥Duε∥∥
C(K)

≤C
(

dist(K, ∂Ω), ‖u‖C(Ω), ‖Aε‖C1,1(Ω)

)
≤C

(
dist(K, ∂Ω), ‖u‖C(Ω), ‖A‖C1,1(Ω)

)
, ∀ ε > 0.

This implies that there exists a û ∈ C0,1
loc (Ω) such that, after passing to a subsequence,

(2.5) uε → û in C0
loc(Ω).

Since {Aε} satisfies (2.1) and (2.2), there exists ε0 > 0 such that for any 0 < ε ≤ ε0, it

holds that ‖Aε‖L∞(Ω) ≤ 2‖A‖L∞(Ω), and the ellipticity constant Lε of Aε satisfies Lε ≤ 2
1
4 .

Let δ0 > 0 be the constant given by Theorem 3.2 and assume ‖DA‖L∞(Ω) ≤
δ0

2
. Then

there exists 0 < ε1 ≤ ε0 such that ‖DAε‖L∞(Ω) ≤ δ0 for any ε < ε1. Thus Theorem 3.2
below is applicable to uε for any 0 < ε < ε1 and we conclude that there exist γ ∈ (0, 1)
and C > 0, independent of 0 < ε < ε1, such that

(2.6)
∣∣uε(x)− u(x0)

∣∣ ≤ C|x− x0|γ , ∀ x ∈ Ω, x0 ∈ ∂Ω.
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From (2.5) and (2.6), we see that

|û(x)− u(x0)| ≤ C|x− x0|γ , ∀ x ∈ Ω, x0 ∈ ∂Ω.

This implies that û ∈ C(Ω) and û ≡ u on ∂Ω. By the compactness property of viscosity
solutions of elliptic equations (see Crandall-Ishii-Lions [15]), we know that û ∈ C(Ω) is a
viscosity solution of the Aronsson equation (1.1) associated with A and HA. Since û ≡ u
on ∂Ω, it follows from the uniqueness theorem of (1.1) (see [10] and [23]) that û = u. This
also implies that uε → u in C0

loc(Ω) for ε→ 0.

3 A priori estimates

Motivated by [19, 20], we will establish some necessary a priori estimates of smooth so-
lutions uε of the equation (2.4) associated with Aε satisfying (2.1) and (2.2), which is
the crucial ingredient to establish everywhere differentiability of viscosity solution of the
Aronsson equation (1.1).

In this section, we will assume A ∈ A (Ω)∩C∞(Ω), and uε ∈ C∞(Ω)∩C(Ω) is a solution
of the ε-regularized equation (2.4) with B and HB replaced by A and HA.

3.1 Lipschitz estimates

We begin with the following theorems.

Theorem 3.1. For u ∈ C0,1(Ω) and A ∈ A (Ω) ∩ C∞(Ω), assume uε ∈ C∞(Ω) ∩ C(Ω)
is a solution of the ε-regularized equation (2.4), with B and HB replaced by A and HA.
Then we have the estimates

(3.1) max
Ω
|uε| ≤ max

Ω
|u|,

and for each open set V b Ω, there exists C > 0 depending on n,L, ‖u‖C(Ω),dist(V, ∂Ω),

and ‖A‖C1,1(Ω) such that

(3.2) max
V
|Duε| ≤ C.

Proof. The estimate (3.1) follows from the standard maximum principle of the equation
(2.4). For (3.2), we proceed as follows. To simplify the presentation, we will use the

Einstein summation convention. Denote uεi = ∂
∂xi
uε, uεij = ∂2

∂xi∂xj
uε, aij as the (i, j)th-

entry of A, and aijk = ∂
∂xk

aij . Recall that

AH [uε] = 2aikuεku
ε
ija

j`uε` + aijk u
ε
iu
ε
ja
k`uε`.

Taking ∂
∂s of the equation (2.4), we obtain

2aikuεku
ε
ijsa

j`uε` + 4aiks u
ε
ku

ε
ija

j`uε` + 4aikuεksu
ε
ija

j`uε` + aijksu
ε
iu
ε
ja
k`uε` + 2aijk u

ε
isu

ε
ja
k`uε`
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+aijk u
ε
iu
ε
ja
k`
s u

ε
` + aijk u

ε
iu
ε
ja
k`uε`s + ε div(ADuεs) + εdiv(AsDu

ε) = 0.(3.3)

Set

(3.4) Gεm := 4aimuεija
j`uε` + 2amjk uεja

k`uε` + aijk u
ε
iu
ε
ja
km,

and

(3.5) F εs := 4aiks u
ε
ku

ε
ija

j`uε` + aijk u
ε
iu
ε
ja
k`
s u

ε
` + aijksu

ε
iu
ε
ja
k`uε` + εdiv(AsDu

ε).

Define the operator Lε by

(3.6) Lεv := 2aikuεkvija
j`uε` +

n∑
m=1

Gεmvm + εdiv(ADv).

Then (3.3) can be written as

(3.7) −Lε(uεs) = F εs .

Set vε := 1
2 |Du

ε|2. Then

vεi =

n∑
s=1

uεsu
ε
si and vεij =

n∑
s=1

[
uεsiu

ε
sj + uεsiju

ε
s

]
,

so that by using the equation (3.7) we have

Lεv
ε =

n∑
s=1

[
2aikuεku

ε
siu

ε
sja

j`uε` + uεsLεu
ε
s + εaijuεsiu

ε
sj

]
= 2|D2uεADuε|2 +

n∑
s=1

[
εaijuεsiu

ε
sj − uεsF εs

]
.(3.8)

Set zε := 1
2(uε)2. Then by the equation (2.4) we have

Lεz
ε = 2aikuεku

ε
iju

εaj`uε` + 2aikuεku
ε
iu
ε
ja
j`uε` +

n∑
m=1

Gεmu
ε
mu

ε + εuε div(ADuε) + εaijuεiu
ε
j

= 2〈Duε, ADuε〉2 + ε〈ADuε, Duε〉+ uεAεH [uε]

+4uεaimuεmu
ε
ija

j`uε` + 2uεamjk uεja
k`uε`u

ε
m

= 2〈Duε, ADuε〉2 + ε〈ADuε, Duε〉
+4uε〈ADuε, D2uεADuε〉+ 2uε〈〈Duε, DADuε〉, ADuε〉,

where 〈Duε, DADuε〉 is interpreted as the vector (〈Duε, AkDuε〉)k with Ak being the
element-wise derivative of A. Choose φ ∈ C∞0 (Ω) such that

φ = 1 in V, 0 ≤ φ ≤ 1,
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and, for β > 0 to be determined later, define the auxiliary function wε by

wε := φ2vε + βzε.

If wε attains its maximum on ∂Ω, then

sup
V

vε ≤ sup
V

wε(x) ≤ max
Ω

wε = max
∂Ω

wε =
β

2
max
∂Ω

u2,

hence (3.2) holds. Thus we may assume wε attains its maximum at an interior point
x0 ∈ Ω. This gives

Dwε(x0) = 0, D2wε(x0) ≤ 0,

so that

(3.9) −Lεwε(x0) = −(2aikuεka
j`uε` + εaij)wεij

∣∣∣
x=x0

≥ 0.

On the other hand, from (3.8) and (3.9) we have that, at x = x0,

0 ≤ −Lεwε(x0) = −Lε(φ2vε)− βLεzε

= −φ2Lεv
ε − βLεzε − vεLεφ2 − 8φaikuεka

j`uε`φi

n∑
r=1

uεrju
ε
r − 4εφ

n∑
m=1

φia
ijuεmju

ε
m

=

[
−2φ2|D2uεADuε|2 − εφ2

n∑
s=1

aijuεsiu
ε
sj − 2β〈Duε, ADuε〉2 − εβ〈Duε, ADuε〉

]
−
[
4βuε〈ADuε, D2uεADuε〉+ 2βuεamjk uεju

ε
ma

k`uε`

]
−

[
8φaikuεka

j`uε`φi

n∑
r=1

uεrju
ε
r + 4εφ

n∑
m=1

φia
ijuεmju

ε
m

]
+ φ2

n∑
s=1

uεsF
ε
s − vεLε(φ2)

= I1 + I2 + I3 + I4 + I5.

We estimate I1, · · · , I5 as follows. Since 〈ξ, Aξ〉 ≥ 1
L |ξ|

2 for all ξ ∈ Rn, we have

I1 = −2φ2|D2uεADuε|2 − εφ2
n∑
s=1

aijuεsiu
ε
sj − 2β〈Duε, ADuε〉2 − εβ〈ADuε, Duε〉

≤ −2φ2|D2uεADuε|2 − ε

L
φ2|D2uε|2 − 2β

L2
|Duε|4.

Applying Young’s inequality, we can estimate I2 by

I2 = −4βuε〈ADuε, D2uεADuε〉 − 2βuεamjk uεju
ε
ma

k`uε`

≤ 4β|uε||ADuε||D2uεADuε|+ C|Duε|3

≤ β4/3|D2uεADuε|4/3 + C|Duε|4 + C(β),

where we have used (3.1). Henceforth C > 0 denotes constants depending only on n, L,
‖A‖C1,1(Ω), ‖u‖C(Ω), and dist(V, ∂Ω).
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Similarly, by Young’s inequality we have

I3 = −8φaikuεka
j`uε`φi

n∑
r=1

uεrju
ε
r − 4εφ

n∑
m=1

φia
ijuεmju

ε
m

≤ 8φ〈ADφ,Duε〉 · 〈Duε, D2uεADuε〉+ 4ε〈AD2uεDuε, Dφ〉φ
≤ C|D2uεADuε||Duε|2φ+ Cε|D2uεDuε|φ

≤ 1

8
|D2uεADuε|2φ2 +

ε

16L
|D2uε|2φ2 + C|Duε|4 + C.

For I4, by using 0 < ε ≤ 1, we have

I4 =
n∑
s=1

[
4φ2uεsa

ik
s u

ε
ku

ε
ija

j`uε` + φ2uεsa
ij
k u

ε
iu
ε
ja
k`
s u

ε
`

+ φ2uεsa
ij
sru

ε
iu
ε
ja
k`uε` + εφ2uεs div(AsDu

ε)
]

≤ 1

8
|D2uεADuε|2φ2 + C|Duε|4 +

ε

16L
φ2|D2uε|2 + C.

Finally, for I5, we have

I5 = 2vεaikuεk(φ
2)ija

j`uε` + 4vεaik(φ2)ku
ε
ija

j`uε` + 2vεaijk (φ2)iu
ε
ja
k`uε`

+vεaijk u
ε
iu
ε
ja
k`(φ2)` + εvε div(ADφ2)

≤ C|Duε|4 + C|D2uεADuε||Duε|2φ+ Cε|Duε|2

≤ 1

8
|D2uεADuε|2φ2 + C|Duε|4 + C.

Combining all these estimates with (3.9) yields that, at x = x0,

2φ2|D2uεADuε|2 +
ε

L
φ2|D2uε|2 +

2

L2
β|Duε|4

≤ |D2uεADuε|2φ2 + C|Duε|4 + Cβ4/3|D2uεADuε|4/3 +
ε

8L
φ2|D2uε|2 + C(β),

so that

|D2uεADuε|2φ2 +
2

L2
β|Duε|4 ≤ C|Duε|4 + Cβ4/3|D2uεADuε|4/3 + C(β).

We may choose β > 1 sufficiently large so that

|D2uεADuε|2φ2 +
β

L2
|Duε|4 ≤ Cβ4/3|D2uεADuε|4/3 + C(β).

Multiplying both sides of this inequality by φ4 and applying Young’s inequality implies

|D2uεADuε|2φ6 +
β

L2
|Duε|4φ4 ≤ Cβ4/3|D2uεADuε|4/3φ4 + C(β)

≤ 1

2
|D2uεADuε|2φ6 + C(β).
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Hence we have

|Duε|4φ4
∣∣∣
x=x0

≤ C.

This finishes the proof, since vε = 1
2 |Du

ε|2 attains its maximum at x0.

Next we will establish the boundary Hölder continuity estimate of uε.

Theorem 3.2. With the same notations of Theorem 3.1, assume that in addition L < 21/4.
Then there exist δ0 > 0, ε0 > 0, γ ∈ (0, 1), and C > 0 depending only on Ω and ‖A‖L∞(Ω)

such that if ‖DA‖L∞(Ω) ≤ δ0 and 0 < ε < ε0, then

(3.10) |uε(x)− u(y0)| ≤ C|x− y0|γ , y0 ∈ ∂Ω, x ∈ Ω.

Proof. To show (3.10), assume for simplicity that y0 = 0 ∈ ∂Ω. Define w(x) = λ|x|γ ,
where λ > 1 is chosen such that

−w + u(0) ≤ u ≤ u(0) + w on ∂Ω.

This is always possible, since u is Lipschitz. Now we claim that w is a supersolution of
the ε-regularized equation (2.4). In fact, direct calculations imply

−aik(x)wk(x)wij(x)aj`(x)w`(x) = −λ
2γ2aikxka

j`x`
|x|4−2γ

· λγ
[
(γ − 2)

xixj
|x|4−γ

+
δij
|x|2−γ

]
= λ3γ3(2− γ)

〈x,Ax〉2

|x|8−3γ
− λ3γ3 〈x,A2x〉

|x|6−3γ

≥ λ3γ3 2− γ
L2
|x|3γ−4 − λ3γ3L2|x|3γ−4

= λ3γ3

(
2− γ
L2

− L2

)
|x|3γ−4.

Note that we can choose γ > 0 so that γ̃ := 2−γ
L2 −L2 > 0, since L < 2

1
4 . Next we estimate

−aijk (x)wi(x)wj(x)ak`(x)w`(x) = −λ3γ3aijk (x)ak`(x)
xixjx`
|x|6−3γ

≥ −λ3γ3‖A‖L∞(Ω)‖DA‖L∞(Ω)|x|
3γ−3

Finally, for the regularization term we can estimate

−εdiv(ADw)(x) = −ελaijγ δij
|x|2−γ

− ελaijγ(γ − 2)
xixj
|x|4−γ

− ελγaijj
xi
|x|2−γ

≥ −ελLγ(n+ γ − 2)|x|γ−2 − 2ελnγ‖DA‖L∞(Ω)|x|
γ−1.

Putting these estimates together, we have

−AεH [w]
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≥ 2λ3γ3γ̃|x|3γ−4 − λ3γ3‖A‖L∞(Ω)‖DA‖L∞(Ω)|x|3γ−3 − 2ελLγ(n+ γ − 2)|x|γ−2

−2ελnγ‖DA‖L∞(Ω)|x|γ−1

≥ 2λ3γ3γ̃|x|3γ−4 − λ3γ3‖A‖L∞(Ω)‖DA‖L∞(Ω)|x|3γ−3 − Cε|x|3γ−4.

Set

δ0 := δ(Ω, A) =
minx∈Ω

γ̃
2|x|

‖A‖L∞(Ω)

.

If ‖DA‖L∞(Ω) ≤ δ0 and ε0 > 0 is sufficiently small, then we have γ ∈ (0, 1) that

−AεH [w] ≥ 0.

By the comparison principle, we conclude that w + u(0) ≥ uε in Ω. Similarly, we have
−w + u(0) ≥ uε in Ω. Thus we obtain

|uε(x)− u(0)| ≤ λ|x|γ , x ∈ Ω.

This completes the proof.

3.2 Flatness estimates

In this section, we will prove refined a priori estimates of the ε-regularized equation (2.4)
under a flatness assumption. Assume uε ∈ C∞(Ω) ∩ C(Ω) is a smooth solution to the
ε-regularized equation (2.4) associated with A ∈ A (Ω) ∩ C∞(Ω).

Theorem 3.3. Assume B(0, 3) ⊂ Ω. For any 0 < λ < 1, if A ∈ A (Ω) ∩ C∞(Ω) satisfies
A(0) = In and

(3.11) ‖DA‖L∞(B(0, 3)) + ‖D2A‖L∞(B(0, 3)) ≤ λ,

and if uε ∈ C∞(Ω) is a smooth solution of (2.4) that satisfies

(3.12) max
x∈B(0,2)

|uε(x)− xn| ≤ λ,

then there exists a constant C > 0 independent of ε and λ such that

(3.13) |Duε(x)|2 ≤ uεn(x) + Cλ1/2 for all x ∈ B(0, 1).

Proof. Set Φ(p) := (|p|2 − pn)2
+ = max{|p|2 − pn, 0}2. Let φ ∈ C∞0 (B(0, 3)) be such that

φ = 1 in B(0, 1), φ = 0 outside B(0, 2), 0 ≤ φ ≤ 1, and |Dφ| ≤ 2.

Define
vε = φ2Φ(Duε) + β(uε − xn)2 + λ|Duε|2.

Applying Theorem 3.1, we have

|uε|+ |Duε| ≤ C in B(0, 2).
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If max
B(0, 2)

vε is attained on ∂B(0, 2), then by (3.1), (3.11), and (3.12) we have

max
B(0, 2)

vε(x) = max
∂B(0,2)

(
β(uε − xn)2 + λ|Duε|2

)
≤ βλ2 + Cλ ≤ Cλ,

and hence
max
B(0,1)

(
|Duε|2 − uεxn

)
+

2 ≤ max
B(0, 1)

Φ(Duε) ≤ Cλ

so that (3.13) holds. Therefore we may assume that vε attains its maximum at an interior
point x0 ∈ B(0, 2). If

(
|Duε|2 − uεn

)
(x0) ≤ 0, then Φ(Duε)(x0) = 0 and

max
B(0,1)

Φ(Duε) ≤ max
B(0,1)

vε(x) = vε(x0) ≤ vε(x0) ≤ βλ2 + Cλ ≤ Cλ

so that (3.13) also holds. So we can also assume(
|Duε|2 − uεn

)
(x0) > 0.

To estimate vε(x0), let Lε and F εs be given by (3.6) and (3.5). We need to compute
Lεv

ε at x0. Using

AH [uε] + εdiv(ADuε) = 2aikuεku
ε
ija

j`uε` + aijk u
ε
iu
ε
ja
k`uε` + εdiv(ADuε) = 0,

we obtain

−Lε((uε − xn)2) = −4aikuεku
ε
ija

j`uε`(u
ε − xn)− 4aikuεka

j`uε`(u
ε
i − δin)(uεj − δjn)

−8aik(uεk − δkn)uεija
j`uε`(u

ε − xn)

−4aijk (uεi − δin)uεja
k`uε`(u

ε − xn)

−2aijk u
ε
iu
ε
ja
k`(uε` − δ`n)(uε − xn)

−2ε(uε − xn) div(ADuε −ADxn)− 2ε〈Duε − en, A(Duε − en)〉
= −4

(
〈Duε, ADuε〉 − ankuεk

)2 − 2ε〈Duε − en, A(Duε − en)〉
−8aik(uεk − δkn)uεija

j`uε`(u
ε − xn)

−4aijk (uεi − δin)uεja
k`uε`(u

ε − xn)

+2aijk u
ε
iu
ε
ja
k`δ`n(uε − xn) + 2ε

n∑
i=1

aini (uε − xn)

= J1 + J2 + J3 + J4 + J5 + J6,

where we denote en = (0, ..., 0, 1).
Applying (3.12) and Theorem 3.1, we have by straightforward calculations that

|J3| ≤ Cλ|D2uεADuε|,

and

|J4|, |J5| ≤ Cλ,
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as well as
|J6| ≤ Cελ.

Since ‖DA‖L∞ ≤ λ and A(0) = In, we have |A− In| ≤ Cλ on Ω and hence∣∣〈Duε, ADuε〉 − ankuεk∣∣≥ ∣∣|Duε|2 − uεn∣∣− ∣∣〈Duε, (A− In)Duε〉
∣∣

−
∣∣ann − 1

∣∣|un| − n−1∑
k=1

∣∣ankuεk∣∣
≥
∣∣|Duε|2 − uεn∣∣− Cλ.

Hence we have that

J1 = −4
(
〈Duε, ADuε〉 − ankuεk

)2 ≤ −4
∣∣|Duε|2 − uεn∣∣2 + Cλ.

Since 〈ξ, Aξ〉 ≥ 1
L |ξ|

2, we also have

J2 ≤ −
ε

L

∣∣Duε − en∣∣2.
Combining all these estimates on Ji’s, we have

−Lε
(
(uε − xn)2

)
≤ −4

(
|Duε|2 − uεn

)2−2ε

L
|Duε − en|2

+Cλ(1 + |D2uεADuε|).(3.14)

Moreover, similar to the proof of Theorem 3.1, we have

1

2
Lε
(
|Duε|2

)
= 2|D2uεADuε|2 + ε

n∑
s=1

(
aijuεsiu

ε
sj − uεsF εs

)
≥ 2|D2uεADuε|2 +

ε

L
|D2uε|2 − C|D2uεADuε||Duε|2 − C|Duε|4

≥ |D2uεADuε|2 +
ε

L
|D2uε|2 − C.(3.15)

Next we need to estimate Lε(φ
2Φ(Duε)). First recall

Lε(Φ(Duε)) = 2aikuεka
j`uε`(Φ(Duε))ij + εdiv(AD(Φ(Duε)))

+
(
4aisuεija

j`uε` + 2asjk u
ε
ja
k`uε` + aijk u

ε
iu
ε
ja
ks
)
(Φ(Duε))s.

As explained earlier, we may assume |Duε|2 > uεn at x0 ∈ B(0, 2). With this assumption
we have at x = x0 that

(Φ(Duε))s = 2
(
|Duε|2 − uεn

)(
2

n∑
k=1

uεksu
ε
k − uεns

)
,

and

(Φ(Duε))ij = 2
(

2

n∑
s=1

uεsju
ε
s − uεnj

)(
2
n∑
s=1

uεsiu
ε
s − uεni

)
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+2
(
|Duε|2 − uεn

)(
2
n∑
s=1

(uεsiu
ε
sj + uεsiju

ε
s)− uεnij

)
.

Hence we obtain that, at x = x0,

Lε(Φ(Duε)) = 4aikuεka
j`uε`

(
2
n∑
s=1

uεsju
ε
s − uεnj

)(
2
n∑
s=1

uεsiu
ε
s − uεni

)
+ 4
(
|Duε|2 − uεn

)
aikuεka

j`uε`

(
2
n∑
s=1

(uεsiu
ε
sj + uεsiju

ε
s)− uεnij

)
+ 2εaij

(
2

n∑
s=1

uεsiu
ε
s − uεni

)(
2

n∑
s=1

uεsju
ε
s − uεnj

)
+ 2ε

(
|Duε|2 − uεn

)
aij
(

2
n∑
s=1

(uεsiu
ε
sj + uεsiju

ε
s)− uεnij

)
+ 2εaijj

(
|Duε|2 − uεn

)(
2
n∑
s=1

uεsju
ε
s − uεnj

)
+ 2
(
|Duε|2 − uεn

) n∑
m=1

Gεm

(
2

n∑
s=1

uεsmu
ε
s − uεnm

)
= 4aikuεka

j`uε`

(
2
n∑
s=1

uεsju
ε
s − uεnj

)(
2
n∑
s=1

uεsiu
ε
s − uεni

)
+ 8
(
|Duε|2 − uεn

)
aikuεka

j`uε`

( n∑
s=1

uεsiu
ε
sj

)
+ 2εaij

(
2
n∑
s=1

uεsiu
ε
s − uεni

)(
2
n∑
s=1

uεsju
ε
s − uεnj

)
+ 4εaij

(
|Duε|2 − uεn

)( n∑
s=1

uεsju
ε
sj

)
+ 2
(
|Duε|2 − uεn

)(
2

n∑
s=1

uεsLε(u
ε
s)− Lε(uεn)

)
= K1 +K2 +K3 +K4 +K5.

(3.16)

Here Gεm is as defined in (3.4). Now we estimate K1, ...,K5 separately as follows. For K1,
we have

K1 = 4
[
2〈Duε, D2uεADuε〉 − 〈(D2uε)n, ADuε〉

]2
,

where (D2uε)n denotes the nth-row of D2uε. For K2, we have

K2 = 8(|Duε|2 − uεn)|D2uεADuε|2.
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For K3, we have

K3 ≥
2ε

L

n∑
i=1

(
2

n∑
s=1

uεsiu
ε
s − uεni

)2
.

For K4, we have

K4 ≥
4ε

L

(
|Duε|2 − uεn

)∣∣D2uε
∣∣2.

From (3.7), we have

K5 = 2
(
|Duε|2 − uεn

)( n∑
s=1

2uεsF
ε
s − F εn

)
,

so that we can apply Theorem 3.1 to estimate∣∣K5

∣∣ ≤ (|Duε|2 − uεn)(Cλ|D2uεADuε|+ ε

4L
|D2uε|2 + Cλ

)
.

Putting these estimates into (3.16) gives

Lε(Φ(Duε)) ≥ 8
(
|Duε|2 − uεn

)(
|D2uεADuε|2 +

ε

4L
|D2uε|2

)
(3.17)

+ 4
[
2〈Duε, D2uεADuε〉 − 〈(D2uε)n, ADuε〉

]2

+
2ε

L

n∑
i=1

(
2

n∑
s=1

uεsiu
ε
s − uεni

)2

− Cλ(|Duε|2 − uεn)|D2uεADuε| − Cλ.

It follows from (3.17) that

Lε
(
φ2Φ(Duε)

)
= φ2Lε

(
Φ(Duε)

)
+ Φ(Duε)Lε

(
φ2
)

+4aikuεka
jluεlφφi(Φ(Duε))j + 2εφaijφi(Φ(Duε))j

≥ 8φ2
(
|Duε|2 − uεn

)∣∣D2uεADuε
∣∣2 + Φ

(
Duε

)
Lε
(
φ2
)

+4φ2
[
2〈Duε, D2uεADuε〉 − 〈(D2uε)n, ADuε〉

]2

+4aikuεka
j`uε`φφi(Φ(Duε))j +

2ε

L
φ2

n∑
i=1

(
2
n∑
s=1

uεsiu
ε
s − uεni

)2

+2εφaijφi(Φ(Duε))j − Cλφ2
[
1 +

(
|Duε|2 − uεn

)∣∣D2uεADuε
∣∣].

It is easy to see that

|Lε
(
φ2
)
| =

∣∣∣2aikuεkaj`uε`(φ2)ij + εdiv(ADφ2)

+
(

4aisuεija
j`uε` + 2asjk u

ε
ja
k`uε` + aijk u

ε
iu
ε
ja
ks
)(
φ2
)
s

∣∣∣
≤ C|Duε|2 + φ

∣∣D2uεADuε
∣∣+ Cε

≤ φ
∣∣D2uεADuε

∣∣+ C,
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so that
Φ
(
Duε

)
|Lε
(
φ2
)
| ≤

(
|Duε|2 − uεn

)2(
φ|D2uεADuε|+ C

)
.

By Young’s inequality, we have

4aikuεka
jluεlφφi(Φ(Duε))j

= 8aikuεka
j`uε`φφi

(
|Duε|2 − uεn

)(
2
n∑
s=1

uεsju
ε
s − uεnj

)
= 8aikuεkφφi(|Duε|2 − uεn) ·

(
2〈Duε, D2uεADuε〉 − 〈(D2uε)n, ADuε〉

)
≤ 4φ2

[
2〈Duε, D2uεADuε〉 − 〈(D2uε)n, ADuε〉

]2

+ 16
[
〈Dφ,ADuε〉(|Duε|2 − uεn)

]2
.

Thus by Theorem 3.1, we obtain

4φ2
[
2〈Duε, D2uεADuε〉 − 〈(D2uε)n, ADuε〉

]2
+ 4aikuεka

j`uε`φφi(Φ(Duε))j

≥ −16
[
〈Dφ,ADuε〉(|Duε|2 − uεn)

]2

≥ −C
(
|Duε|2 − uεn

)2
.

Similarly, by Young’s inequality, we have that

2εφaijφi
(
Φ(Duε)

)
j

= 4εφaijφi
(
|Duε|2 − uεn

)(
2
n∑
s=1

uεsju
ε
s − uεnj

)
≤ Cε|Dφ|2

(
|Duε|2 − uεn

)2
+
ε

L
φ2

n∑
i=1

(
2
n∑
s=1

uεsiu
ε
s − uεni

)2
,

which gives

2ε

L

n∑
i=1

(
2
n∑
s=1

uεsiu
ε
s − uεni

)
2φ2 − 2εφaijφi

(
Φ(Duε)

)
j

≥ −Cε|Dφ|2
(
|Duε|2 − uεn

)2
≥ −Cε

(
|Duε|2 − uεn

)2
.

Putting all these estimates together and applying Young’s inequality, we conclude that

Lε
(
φ2Φ(Duε)

)
≥ 8φ2

(
|Duε|2 − uεn

)∣∣D2uεADuε
∣∣2 − C(|Duε|2 − uεn)2

−
(
|Duε|2 − uεn

)2(
φ|D2uεADuε|+ C

)
−Cλ

(
|Duε|2 − uεn

)∣∣D2uεADuε
∣∣φ2 − Cλφ2

≥ −C(|Duε|2 − uεn)3 − C(|Duε|2 − uεn)2 − Cλ(|Duε|2 − uεn)− Cλφ2

≥ −C(|Duε|2 − uεn)2 − Cλ(|Duε|2 − uεn)− Cλ.(3.18)
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Combining the estimates (3.14), (3.15), with (3.18) yields that, at x = x0,

0 ≤ −Lε
(
vε
)

= −Lε
(
φ2Φ(Duε)

)
− βLε

(
(uε − xn)2

)
− λLε

(
|Duε|2

)
≤ C

(
|Duε|2 − uεn

)2
+ Cλ

(
|Duε|2 − uεn

)
+ Cλ

−4β
(
|Duε|2 − uεn

)2 − 2εβ

L

∣∣Duε − en∣∣2 + Cβλ+ Cβλ
∣∣D2uεADuε

∣∣
+2λ

(
− |D2uεADuε|2 − ε

L2
|D2uε|2 + C

)
.

Thus we have that, at x = x0,

(4β − C)
(
|Duε|2 − uεn

)2
+ 2λ

∣∣D2uεADuε
∣∣2 +

2λε

L2

∣∣D2uε
∣∣2

≤ Cλ
(
|Duε|2 − uεn

)
+ C(1 + β)λ+ Cβλ

∣∣D2uεADuε
∣∣.

Choosing β > C and applying Young’s inequality, we obtain

β
(
|Duε|2 − uεn

)2 ≤ Cλ+ 2β2λ.

Thus we conclude that, at x = x0,(
|Duε|2 − uεn

)2 ≤ Cλ.
This completes the proof.

4 Differentiability

This section is devoted to the proof of Theorem 1.1. In order to do it, we need some
lemmas. The first lemma is the linear approximation property, which was proved by Yu
for some general Hamiltonian functions H(x, p) (see [33] Theorem 2.9 and Remark 2.11);
later a proof based on the intrinsic distance was given in [23] Theorem 6 for the special
case H(x, p) = 〈A(x)p, p〉. Below for reader’s convenience, we sketch the proof of Lemma
4.1 based on the intrinsic distance and [23].

Lemma 4.1. Let A ∈ A (Ω) ∩ C(Ω) and u ∈ C0,1(Ω) be an absolute minimizer of F∞
with respect to A in Ω. Then for each x ∈ Ω and every sequence {rj}j∈N converging to 0,
there exists a subsequence r = {rjk}k∈N and a vector ex,r ∈ Rn such that

(4.1) lim
k→∞

sup
y∈B(0, 1)

∣∣∣∣u(x+ rjky)− u(x)

rjk
− 〈ex, r, y〉

∣∣∣∣ = 0,

and H(x, ex, r) = LipdAu(x). Here

LipdAu(x) := lim sup
y→x

|u(x)− u(y)|
dA(x, y)

,

and

dA(x, y) := sup
{
w(x)− w(y) : w ∈ C0,1(Ω) satisfies H(z,Dw(z)) ≤ 1 a.e. z ∈ Ω

}
.
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Sketch of the proof of Lemma 4.1. Without loss of generality, assume x = 0 ∈ Ω and
u(0) = 0. We also assume LipdAu(0) > 0, since the case LipdAu(0) = 0 is trivial.

For any fixed r0 ∈
(
0, dA(0, ∂Ω)

)
, assume that rj+1 < rj < r0 for all j. For each j ∈ N,

define

uj(y) =
1

rj
u(rjy), Aj(y) = A(rjy), y ∈ B

(
0, r−1

j r0

)
,

A∞(y) = A(0), y ∈ Rn,

and

Hj(x, ξ) = 〈Aj(x)ξ, ξ〉, x ∈ B
(
0, r−1

j r0

)
, ξ ∈ Rn.

Also let dj denote the intrinsic distance dAj corresponding to Aj .

Recall that by [23] Lemma 15 there exists u∞ ∈W 1,∞(Rn) and a subsequence {rjk}k∈N
of {rj}j∈N such that ujk converges to u∞ locally uniformly in Rn, and weak∗ in W 1,∞(Rn).
Moreover, by [23] Lemma 19 that there exists a vector e ∈ Rn such that

u∞(x) = 〈e, x〉, x ∈ Rn, and H∞(e)
(
≡ H(0, e)

)
= Lipd∞u∞(0).

From this, we conclude that

sup
y∈B(0,1)

∣∣ 1

rjk
u(rjky)− 〈e, y〉

∣∣ = sup
y∈B(0,1)

∣∣ujk(y)− 〈e, y〉
∣∣ = sup

y∈B(0,1)

∣∣ujk(y)− u∞(y)
∣∣→ 0

as k →∞, and H∞(e) = LipdAu(0). This completes the proof.

Given a pair of functions A ∈ A (Ω) ∩ C(Ω) and u ∈ C0,1(Ω), and a pair of 0 6= r ∈ R
and x0 ∈ Ω, we define

Ax0,r(y) = A(x0 + ry), ux0,r(y) =
u(x0 + ry)− u(x0)

r
y ∈ Ωx0,r := r−1

(
Ω \ {x0}

)
.

Similarly, for any x0 ∈ Ω and any non-singular matrix M ∈ Rn×n, we define

Ax0,M (y) = A(x0 +My), ux0,M (y) = M−1
(
u(x0 +My)− u(x0)

)
,

for y ∈ Ωx0,M := M−1
(
Ω \ {x0}

)
.

The following scaling invariant property of absolute miminizers of F∞ is a simple
consequence of change of variables, whose proof is left for the readers.

Lemma 4.2. For any x0 ∈ Ω, r 6= 0, and a non-singular matrix M ∈ Rn×n, if u ∈
C0,1(Ω) is an absolute minimizer of F∞, with respect to A, in Ω, then ux0,r is an absolute
minimizer of F∞, with respect to Ax0,r, in Ωx0,r, and ux0,M is an absolute minimizer of
F∞, with respect to Ax0,M , in Ωx0,M .

We also need the following lemma, which was proved in [20].
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Lemma 4.3. For b ∈ Sn−1 and η > 0, if v ∈ C2(B(0, 1)) satisfies

sup
x∈B(0,1)

∣∣v(x)− 〈b, x〉
∣∣ ≤ η,

then there exists a point x0 ∈ B(0, 1) such that∣∣Dv(x0)− b
∣∣ ≤ 4η.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. For every point x0 ∈ Ω, we will show that there exists a vector
Du(x0) ∈ Rn such that

(4.2) |u(x0 + h)− u(x0)− 〈Du(x0), h〉| = o(|h|), ∀ h ∈ Rn.

From Lemma 4.2, we may assume that x0 = 0, u(x0) = 0, and A(x0) = In. By Theorem
4.1, in order to prove (4.2), it suffices to show that for every pair of sequences r = {rj}
and s = {sk} that converge to 0, if

(4.3) lim
j→∞

sup
y∈B(0, 3rj)

1

rj
|u(y)− 〈a, y〉| = 0

and

(4.4) lim
k→∞

sup
y∈B(0, 3sk)

1

sk
|u(y)− 〈b, y〉| = 0

for some a, b ∈ Rn, then a = b.
Since H(0,a) = 〈a, a〉 = 〈b, b〉 = H(0,b) = LipdAu(0), we have |a| = |b|. We prove

the above claim by contradiction. Suppose that 0 6= a 6= b. Then, without loss of
generality, we may assume that a = en. For, otherwise, let M be a nonsingular matrix

such that Ma = en. Set v(y) = u(|a|MT y)
|a| and Ã(y) = A(|a|MT y)M . Then by Lemma 4.2

v is an absolute minimizer of F∞, with respect to Ã. It is clear that (4.3) holds with u
and a replaced by v and en respectively.

Since |b| = |en| = 1 and b 6= en, we have

θ := 1− bn > 0.

Let C > 0 be the constant in (3.13) and choose λ > 0 such that

Cλ
1
2 =

θ

4
.

Choose r ∈ {rj} such that

(4.5) sup
y∈B(0, 3r)

1

r
|u(y)− yn| ≤

λ

4
,
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and

(4.6)

{
2

1+21/5
|ξ|2 ≤

〈
A(x)ξ, ξ

〉
≤ 1+21/5

2 |ξ|2, x ∈ B(0, 3r), ξ ∈ Rn,
r
∥∥DA∥∥

L∞(B(0,3))
+ r2

∥∥D2A
∥∥
L∞(B(0,3))

≤ 1
2 min

{
δ(B(0, 3)), λ

}
,

where δ(B(0, 3)) is the constant given by Theorem 3.2.

For x ∈ B(0, 3), let Ã(x) = A(rx) and ũ(x) = 1
ru(rx). Since DÃ(x) = r(DA)(rx) and

D2Ã(x) = r2(D2A)(rx) for x ∈ B(0, 3), it follows from (4.6) that{
2

1+21/5
|ξ|2 ≤

〈
Ã(x)ξ, ξ

〉
≤ 1+21/5

2 |ξ|2, x ∈ B(0, 3), ξ ∈ Rn,∥∥DÃ∥∥
L∞(B(0,3))

+
∥∥D2Ã

∥∥
L∞(B(0,3))

≤ 1
2 min

{
δ(B(0, 3)), λ

}
.

Let Ãε ∈ A (Ω) ∩ C∞(Ω) such that

(i)
∥∥Ãε∥∥C1,1(B(0.3))

≤ 2
∥∥Ã∥∥

C1,1(B(0,3))
for all ε > 0,

(ii) for any 0 < α < 1, Ãε → Ã in C1,α(B(0, 3)) as ε→ 0.

Then there exists an ε0 > 0 such that for ε < ε0

(4.7)

{
2

1+21/4
|ξ|2 ≤

〈
Ãε(x)ξ, ξ

〉
≤ 1+21/4

2 |ξ|2, x ∈ B(0, 3), ξ ∈ Rn,∥∥DÃε∥∥L∞(B(0,3))
+
∥∥D2Ãε

∥∥
L∞(B(0,3))

≤ min
{
δ(B(0, 3)), λ

}
.

Let ũε ∈ C0,1(B(0, 3)) be the unique solution of (2.4) associated with Ãε and H
Ãε

, with u
and Ω replaced by ũ and B(0, 3) respectively. Then, by Theorem 3.2, we have that ũε → ũ
uniformly in B(0, 3). By Lemma 4.2, ũ is an absolute minimizer of F∞ with respect to
Ã. From (4.5), we also have

sup
y∈B(0,3)

|ũ(y)− yn| ≤
λ

4
.

Hence there exists ε1 ∈ (0, ε0) such that for all ε < ε1,

(4.8) sup
y∈B(0,3)

|ũε(y)− yn| ≤
λ

2
.

Setting s̃k = sk/r. Then we have

lim
k→∞

sup
y∈B(0,3s̃k)

1

s̃k
|ũ(y)− 〈b, y〉| = 0.

Choose η = θ
48 and pick s ∈ {s̃k}, with 0 < s < 1, so that

sup
y∈B(0, s)

1

s
|ũ(y)− 〈b, y〉| ≤ η

2
.
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By Theorem 3.2, there exists ε2 > 0 such that for all ε < ε2,

sup
y∈B(0, s)

1

s
|ũε(y)− 〈b, y〉| ≤ η.

Applying Lemma 4.3 to 1
s ũ

ε(s·), we can find a point x0 ∈ B(0, s) such that

|Dũε(x0)− b| ≤ 4η,

which, combined with |b| = 1, yields

(4.9)

{
ũεn(x0) ≤ bn + 4η ≤ 1− θ + 4η,

|Dũε(x0)| ≥ 1− 4η.

From (4.8), we can apply Theorem 3.3 to conclude

|Dũε(x0)|2 ≤ ũεn(x0) + Cλ1/2 ≤ ũεn(x0) +
θ

4
.

This, combined with (4.9), implies that

(1− 4η)2 ≤ 1− θ + 4η +
θ

4
,

so that

θ ≤ 12η +
θ

4
≤ θ

2
,

this is impossible. Thus a = b, and there is a unique tangent plane at 0 and u is
differentiable at 0. The proof is complete.

5 Lebesgue points of the gradient

In this last section, we show that every point is a Lebesgue point for the gradient, which
extends the property on infinity harmonic functions by [19].

Theorem 5.1. Let A ∈ A (Ω) ∩ C1,1(Ω) and u be a viscosity solution of the Aronsson
equation (1.1). Then every point in Ω is a Lebesgue point of Du.

For the intrinsic distance dA associated with A, define the intrinsic ball

BdA(x, r) :=
{
y
∣∣ dA(x, y) < r

}
for x ∈ Ω and 0 < r < dA(x, ∂Ω). For E ⊂ Rn, define –

∫
E
f =

1

|E|

∫
E
f.
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Lemma 5.2. For 0 < λ < 1, let A ∈ A (Ω) ∩ C1,1(Ω) such that A(0) = In and∥∥DA∥∥
L∞(Ω)

≤ λ2. Assume u ∈ C0,1(Ω) is an absolute minimizer of F∞ with respect

to A, and satisfies, for BdA(0, 3) ⊂ Ω,

max
x∈BdA (0,3)

∣∣u(x)− u(0)− 〈a, x〉
∣∣ ≤ λ.

Then there exists a constant C > 0 depending on |a| such that

(5.1) –

∫
BdA (0,1)

∣∣Du(x)− a
∣∣2 dx ≤ Cλ.

Proof. Since

(1 + Cλ2)−1|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ (1 + Cλ2)|ξ|2, ∀x ∈ Ω, ξ ∈ Rn,

we have
(1 + Cλ)−1|x− y| ≤ dA(x, y) ≤ (1 + Cλ)|x− y|, ∀x, y ∈ Ω.

It suffices to show that

(5.2) –

∫
B(0,1+Cλ)

∣∣Du(x)− a
∣∣2 dx ≤ Cλ.

By the same argument as in the proof of [19] Theorem 4.1, (5.2) follows if

(5.3) sup
x∈B(0,1+Cλ)

|Du(x)| ≤ |a|+ Cλ.

To prove (5.3), let

S+
r u(x) := max

dA(z,x)=r

u(z)− u(x)

r
.

A simple modification of the proof of [23] Theorem 2 shows that S+
r u(x) is monotone

increasing with respect to r, and√
〈A(x)Du(x), Du(x)〉 = LipdAu(x) = lim

r→0
S+
r u(x).

This implies
|Du(x)| ≤ (1 + Cλ)S+

1 u(x), x ∈ B(0, 1 + Cλ).

For x ∈ B(0, 1 + Cλ), if BdA(x, 1) ⊂ BdA(0, 3) and dA(z, x) = 1, then we have

|u(x)− u(z)| ≤ |u(x)− u(0)− 〈a, x〉|+ |u(z)−u(0)− 〈a, z〉|+ |〈a, x− z〉|
≤ 2λ+ |a||x− z| ≤ |a|+ Cλ,

which implies that
S+

1 u(x) ≤ |a|+ Cλ, ∀x ∈ B(0, 1 + Cλ).

Hence we have that
|Du(x)| ≤ |a|+ Cλ, ∀ x ∈ B(0, 1 + Cλ).

The proof is completed by applying the argument in Theorem 4.1 of [19].
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Proof of Theorem 5.1. We want to show that for every x0 ∈ Ω and for every ε > 0, there
exists r0 > 0 such that

–

∫
BdA (x0,r)

∣∣Du(x)−Du(x0)
∣∣2 dx ≤ ε.

for every r ≤ r0. As before, by Lemma 4.2, we may assume that x0 = 0, u(0) = 0 and
A(0) = In. For an arbitrary 0 < λ < 1, since u is differentiable at 0, there exists r0 < λ2

such that

(5.4) max
z∈BdA (0, 3r)

∣∣u(x)− 〈Du(0), x〉
∣∣ ≤ λr, 0 < r ≤ r0.

Set Ar(x) = A(rx) and ur(x) =
u(rx)

r
. Then ur is an absolute minimizer of F∞ associated

to Ar. Observe that ‖DAr‖ ≤ r‖DA‖ and by [23] Lemma 5.4, dAr(rx, ry) = rdA(x, y).
Hence BdA(0, r) = rBdAr (0, 1). Therefore, (5.4) implies

(5.5) max
x∈BdAr (0, 3)

∣∣ur(x)− 〈Du(0), x〉
∣∣ ≤ λ, 0 < r ≤ r0.

Now we can apply Lemma 5.2 to conclude that

–

∫
BdA (0,r)

∣∣Du(x)−Du(0)
∣∣2 dx = –

∫
BdAr

(0,1)

∣∣Dur(x)−Du(0)
∣∣2 dx

≤ Cλ,

for every r ≤ r0 and λ small enough. This completes the proof.
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