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Summary. We show how a moment-based estimation procedure can be used to compute point es-
timates and standard errors for the two components of the widely used Olley-Pakes decomposition of
aggregate (weighted average) productivity. When applied to business-level microdata, the procedure
allows for autocovariance and heteroskedasticity robust inference and hypothesis testing about, e.g. the
co-evolution of the productivity components in different groups of firms. We provide an application to
Finnish firm-level data and find that formal statistical inference casts doubt on the conclusions that one

might draw based on a visual inspection of the components of the decomposition.
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1. Introduction

Productivity growth of industries is a key driver of long-term economic growth. Starting with Bailey
et al. (1992), a number of papers have explored how various decompositions of industry productivity
growth are able to capture its key microeconomic sources, such as the reallocation of resources between
firms and plants. In this context, the cross-sectional efficiency of resource allocation has attracted
increased attention (e.g. Eslava et al. 2004, 2010, 2013, Chari 2011; see also Van Biesebroeck 2008).
One reason for this is that this approach seems to avoid at least some of the problems hampering
dynamic productivity decompositions (Bartelsman et al. 2013, Eslava et al. 2004, 2010). The measure
that the papers in this strand of the literature typically use is the static decomposition introduced
by Olley and Pakes (1996). The Olley-Pakes (OP) decomposition shows how industry productivity,
which equals the weighted average of firm-level (or plant-level) productivity, can be decomposed into
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(i) the unweighted average of the productivity of firms and (ii) a covariance-like term between activity

(i.e. output or input) shares and productivity.

The within-industry covariance term between firm size and productivity is of particular economic
and policy interest, because the smaller this term is, the smaller the share of activity (or resources)
that gets allocated to the most productive firms. Olley and Pakes, for example, argued that the
deregulation of the U.S. telecommunications equipment industry may have increased the covariance
term by increasing the allocation of resources to the most productive firms. Bartlesman et al. (2009,
2013) argued, in turn, that a low covariance term is a good indicator of misallocation of resources
and policy-induced market distortions; they provide evidence that variation in the covariance term
explains an important fraction of the cross-country differences in productivity. Melitz and Polanec

(2015) have recently proposed a dynamic extension of the OP decomposition.

This paper builds on the observation that hypothesis testing and inference appear to be a neglected
part of the decomposition literature. In particular, the estimation of the standard errors of the two
components of the OP decomposition has not, despite its increasing popularity in applied literature,
received attention. While there are papers that contain statistical inference on some components of
the decompositions (e.g. on the unweighted mean component of continuing firms or the entry and exit
components), there are, to the best of our knowledge, few papers that present standard errors for all
components of a decomposition simultaneously or address inference on the policy-relevant covariance-
like terms. An example is Foster, Haltiwanger and Krizan (2006) who regressed productivity on
indicators of entry and exit, obtaining a regression analogue to a decomposition of productivity growth

to entry and exit effects and growth in continuing firms.

The aim of this paper is to start filling this gap in the literature. We outline a moment-based
procedure to the estimation of the OP components and their standard errors and illustrate how a

simple two-step recipe can be used for inference and hypothesis testing in applications.

It seems obvious that it would be worthwhile to have a procedure for testing hypotheses about the
magnitude of the OP components as they are, like any other statistical estimate, a function of the
available microdata and thus subject to sampling error. In applications, it may, for example, be of
interest to plot the confidence intervals for the covariance term or to test the joint hypotheses about

the temporal evolution of the OP components.

Many of earlier studies on the productivity decompositions have been based on large census-based
data sets. These data sets may cover (nearly) the entire population of firms of a country. We can
think of such data as a sample drawn from a larger super-population or an underlying stochastic
data-generating process (see, e.g. Davidson and MacKinnon 2004, Berk et al. 1995, and Gelman and
King 1994). An emerging tendency in the literature is towards using alternative data sources and
finer decompositions (by, e.g. firm cohort, geographic region or firm type) in the hope that they help

us to better understand the microeconomic determinants of industry productivity. This tendency is
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likely to lead to denser slicing of the available microdata, strenghening thus the need for appropriate
inference procedures. One can envisage that, in the near future, researchers increasingly combine
survey-based measures to the large census-based data sets to analyze, for example, how certain firm
attributes, such as quality of management, organizational choices, firms’ innovativeness or research
and development efforts, affect the productivity-enhancing reallocation within and between industries.
When such combined data are used, the need for explicitly measuring sampling error becomes stronger.

We illustrate our estimation procedure by applying it to Finnish firm-level panel data from 1995
to 2007. The application is a case study, which for brevity focuses on a single industry and cross-
regional differences in productivity. We find that formal statistical inference casts some doubt on
the conclusions that one might draw based on a visual inspection of the two components of OP
decomposition. It also turns out that the covariance term, which often is of major policy interest,
cannot be measured as accurately as the unweighted average of the productivity of firms.

We believe that the method of inference proposed in this paper should be useful in addressing
substantive research questions in economics as well as in other disciplines. For example, as the
rapidly growing applied literature that uses the OP decomposition shows, understanding the drivers
of industry growth is clearly of major policy interest. Our method can be used to formally test
how certain public policies affect the reallocation of resources within industries and thereby economic
growth. Our method also has implications for statistical testing of certain aggregation procedures
that have been used in previous studies.

The remainder of this paper is organized as follows: The next section presents OP decomposition.
In the third section, we develop the moment-based procedure using insights from the Generalized
Method of Moments (GMM) estimation. The fourth section describes the illustration that uses Finnish
firm-level data. Section five concludes by discussing the scope of our contribution and areas of empirical

research where our method could be useful.

2. Olley-Pakes Decomposition

We start by writing a formal expression for the OP decomposition. To this end, let s;; denote the
activity share of firm ¢ in period ¢, and ¢;; an index of productivity. How s; and ¢;; are measured
depends on the application as the decomposition can be applied either to an industry-level index of
total factor productivity (TFP) or to that of labour productivity, be done in levels or in log-units and
computed using either input or output shares. When input shares are used, there is a direct link to
the standard measures of aggregate industry productivity (e.g. van Biesebroeck 2003 and Fox 2012).

For concreteness, we frame our analysis in terms of labour productivity. We also assume that the
index of firm-level productivity is measured in log-units, i.e. ¢;; = log (Y;+/L;;), where Yj; is a measure
of value added and L;; is the number of employees in firm ¢ at time ¢. The activity shares are measured

by labour inputs so that s;; = L/ Zf\/:tl L;;, where Ny refers to the number of firms in period t.
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Taking a single cross-section of the microdata for period ¢, the OP decomposition of the aggregate

productivity index of an industry is

N, _ .
P =9 + Zizl(sif —5)(pit — Py, (1)

where ®; = vaz‘*l sitpit is the weighted mean of firm-level productivity, p, refers to the unweighted
mean and the last term is the covariance term. The covariance term consists of the deviations of input
shares around their unweighted cross-sectional mean (s; — 5;) where 5, = 1/Ny, and the deviations
of firm productivity around their unweighted, cross-sectional mean, (p;; — @;). To distinguish the
second term of (1) from the standard sample (cross-sectional) covariance covi(s;t,¢it), we denote
G = vaz‘l(sit —35¢) (it — @;) in what follows. This means that ¢; = cove(s;t, pit) X Ny

A large part of the subsequent development in this paper is motivated by the simple observation
that the two terms of (1) can be estimated jointly by regressing ¢;; on a constant and an appropriately
scaled s;; using Ordinary Least Squares (OLS). This insight relies on the anatomy of the regression, ex-
pressed in terms of population moments E [@i |sit] = E [@ir] + cov (@i, sit) [var (sie)] ™ (sie — E [si]).
This expression immediately suggests that the two components can be captured by a single moment

condition using a standard GMM procedure that we outline below.

3. Computation and Inference

3.1. Moment-Based Approach

We assume for simplicity that the microdata used to compute the OP decomposition is a balanced
panel and that the sample period has length T. The aim is to compute the 27" decomposition terms
and to estimate the associated standard errors. The approach can be generalized to many kinds of
unbalanced panels (see, e.g. Wooldridge 2002, Ch. 17 and the discussion below).

<,

We let (#,¢) = (@4, ..., 87, C1,...,cr) be the vector of decomposition terms and define scaled s;;
as 8%, = (sit—3;) /02N, where 57 is the cross-sectional sample variance of s;, i.e. 57 = N1 Zﬁ\il(sit —
)2 in period t (where for simplicity we use IV instead of N — 1 when computing sample variances).
We also let D; be a (7' x T') period dummy matrix with typical element d;; j, which is equal to one
if t = k and equal to zero otherwise. If we use the period dummy matrix and if we collect the scaled

input share data s, for firm 4 into a (7" x T') diagonal matrix S¥ = diag [s};, ..., s}p], we can define a

(T x 2T') data matrix X; = [D; Sf]. We can now write a population moment condition

E[X{ (pi = XiB)] = Ocrx) 2)

where ¢, = (@i1, ..., pir) and B = (8',7) = (61, ...,07,71,...,77) is a (2T x 1) parameter vector.

The analogy principle says that a suitable estimator for unknown population parameters can be
found by considering the sample counterpart of a population moment (see, Manski 1988). Apply-
ing this principle to (2) results in a single-equation panel Generalized Method of Moments (GMM)
estimator for 8 = (6',7) (Cameron and Trivedi 2005, pp. 744-745).
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In our case, the model is just-identified, as the number of instruments is equal to the number
of parameters. The moment condition therefore results in the familiar pooled OLS estimator of a
linear panel model. To derive it, note that the estimator solves N~! Zf\;l [Xi’ <g0i — XZB\)} = 0.
Stacking all firms ¢’ = (¢} -+ ¢/y) and X' = (X] - -- X/y), the pooled OLS estimator is B=(0,7) =
(X'X) ' X/,

The OLS estimator is numerically equivalent to the two components on the right hand side of
(1), i.e. (@',€'). The result follows from the standard results on partitioned regression and from the
fact that the model is completely saturated in terms of (orthogonal) period indicators. In particular,
picking any é\t, one can show that :9; =P, — %S; = @;. The last step follows from 5} = 0. Similarly,
picking any 4, one can establish that 7; = (Zijil(sjt)(goit — @0) ( Z-A;l(sft)2>_1 . This expression
simplifies to covy x N = vazl(sit —3¢) (it — @;). It is thus equal to ¢ as desired.

To summarize, obtaining the point estimates for the two OP components from microdata consists
of two steps: First, s;; is demeaned and scaled by IV times its cross-sectional variance. Second, one
regresses ;; on a constant and the scaled s}, using OLS. The estimator for the constant gives ,, and

the estimated coefficient of the slope is ¢.

3.2. Autocovariance and Heteroskedasticity Robust Statistical Inference

The benefit of casting the estimation of the OP decomposition in terms of a population moment
condition and GMM is twofold. First, the GMM framework can be used to establish the asymptotic
properties of the estimators, their asymptotic normality in particular. Second, it provides a simple
way to compute autocovariance and heteroskedasticity robust standard errors (see, e.g. Cameron and
Trivedi 2005, Ch. 6 and 22 and Wooldridge 2002, Ch. 14).

To describe the autocovariance and heteroskedasticity robust estimator of the standard errors, we
note that moment (2) implicitly defines a (7"x 1) vector of regression errors u; = ¢; —X; 3 for each firm
1. If it were the case that these errors were uncorrelated over time for a given firm and homoscedastic,
using the classical OLS variance-covariance estimator would lead to an estimator for the standard
errors of @, and 7; that are similar (but not identical) to the conventional standard error estimators
for the sample mean and covariance. However, there are strong reasons to suspect that the errors
are both correlated over time for a given firm and heteroscedastic. The former should be allowed for
because shocks to the productivity of firm ¢ are likely to be persistent over time. Heteroscedasticity is
also expected in most microdata and should therefore be allowed for. For example, the cross-sectional
variance of productivity shocks may vary over time, leading to a form of heteroscedasticity.

Assuming independence over ¢ and N — oo, the autocovariance and heteroskedasticity robust

estimate of the asymptotic variance matrix of the estimator is

1 1
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where u; = p; — Xzﬁ.

Estimator (3) can be used to obtain a consistent estimate of the asymptotic covariance matrix for
B that is robust to within-firm autocorrelation and heteroscedasticity of unknown form. This familiar
variance estimator is a suitable choice when one is unwilling to make assumptions about the within-
firm autocorrelation structure or the type of heteroscedasticity in the microdata. It is also suitable
when the data are a short panel and thus have relatively few observations per each firm (small T") but
include many firms (large IV); see Cameron and Trivedi (2005, Ch. 22 and 24) and Wooldridge (2003)
for further discussion.

The estimator is easy to implement because it can be computed using a standard OLS command
with an option for cluster-robust standard errors. Some of the standard econometric software (such as
Stata) make by default a small-sample correction when computing cluster-robust standard errors, but
this correction can often be undone and, in any case, does not matter in large samples. Confidence
intervals and joint tests follow from standard argumentation.

In applications, it may be of interest to plot the confidence intervals of the covariance term or to
test joint hypotheses about the components of the productivity decomposition. For example, testing
whether the covariance term has remained stable over the sample period is equivalent to testing Ho:
v1 = ... = vp using standard joint testing procedures, such as the Wald test. Similarly, testing for
Hy: yr—s = ... = vy = 0 corresponds to analysing the null hypothesis that the industry index of
productivity during the last s years of the sample period is no higher than it would have been if the
input shares were randomly allocated within the industry. Finally, the null hypothesis of constant

growth (rate) of the average firm productivity can be examined by testing Hy: 02—61 = ... = Op—0p_1.

3.3. Discussion and Extensions
3.3.1. Mutually Exclusive Subgroups

The first, perhaps most obvious, extension to the basic procedure builds on the observation that the
aggregate productivity index for a group of firms can be computed as a weighted mean of the aggregate
productivities of the sub-groups of firms. If one is willing to assume that the industry affiliation of
firms is time invariant (which in reality may not be the case), this observation suggests that one can
assign all the firms of an industry to mutually exclusive subgroups and estimate the productivity
decompositions and the associated standard errors separately for each sub-group.

To illustrate how that could be done, we assume that there are J subgroups (j = 1, ..., J) and take
the following four steps: First, we define sub-group indicator g;; j, which is equal to one if firm ¢ belongs
to group j in period t and is zero otherwise. This implies that in each period, the number of members
in sub-group j is Ny; = Zf\il git,j- Second, we scale the input shares by period and within each

*

sub-group to obtain s}, ;= (sit —Em)(&\?j]\ft,j)_l, where 5; ; is the mean and ?f\fj is the cross-sectional

*

sample variance of the input share in sub-group j in period t. By definition, St j IS zero for firm 4
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in period ¢ if it does not belong to group j during the period. Third, we let ® denote the Kronecker
product and define &;t = (Git.1, - Git,7) ® (dit 1, ..., dis7) and Sf = (s;‘m, ey 8:t7J> ® (dit s s ditT),
which are row vectors of length JT'. Finally, we use population moment condition (2) and the GMM
approach to estimate the two components of the OP decomposition for each sub-group by redefining
matrix X; so that its ¢ row is now x}, = [(Ni’zt §f£] Of course, B = (#',7') has to be redefined
accordingly, i.e. to be a (column) vector of length 2JT.

This extension is of potential interest in applications. For example, to study whether the (relative)
importance of the covariance terms in an industry is similar in J geographic regions in a given period,
we could test Hp: ;1 = ... = 7,g using a joint test. Implementing such a test is straightforward
because in each row of X; the first JT terms are group-specific period indicators (i.e. the complete
set of period indicators interacted with the complete set of sub-group indicators) and the next JT
terms are the period and sub-group-specific input shares sft’ i We illustrate a variant of this test in
our application.

It is important to recognize that 6/?;’1 +71...+ é\t’J +7,7 1s not equal to Py, i.e. the weighted mean
of firm-level productivity in period ¢. However, if these estimates are weighted by the employment
share of each sub-group in period ¢, S;; = Zfil git,j Lit/ Zf\il L;;, they total to ®;. That is, &; =
Si.1 (@1 + %1) + ..+ St (é\tJ + %J), where Z;-le St =1.

3.3.2. Industry-Level Productivity

The terms corresponding to the left hand side of (1), ® = (®1, ..., &), are periodic weighted averages
and their standard errors can be obtained directly from an alternative moment-motivated regression.
To show how, let ¥, = itv/Lit, collect these weighted productivity indices for firm i into ¢} =
@k, - i)', and define a (T x T) matrix X} with ¢ row x}{ = (du,iv/Lit, ..., dr,uv/Lit) , where dit s
is a period indicator. Thus, the rows of X consist of weighted period dummies.

Using this notation, we obtain the following moment condition for firm ¢:
E [X} (9] —Xja)] = Oy (4)

where a = (o, ...,ar)" is a (T x 1) parameter vector. By the analogy principle, this moment condition
results in the standard pooled OLS estimator of a linear panel model that regresses ¢}, on the complete
set of period indicators interacted with v/L;. Stacking all firms ¢* = (¢}’ - ¢}) and similarly for
X*, the OLS estimator is a = (X""X*)_1 X*p*. This is an estimator of ®. Equivalently, if we let
W, = diag (L1, ..., LiT)), (4) can be rewritten as E [D;/W; (p; — D;a)] = 0. Stacking all firms
D = (D) ---D/y) and using the stacked D and W = diag [W1, ..., Wy], the resulting estimator for
®isa = (D'WD) ' D'We.

It follows from the definition of this alternative estimator that @ = 6+ ~ and that Var[a] =

Var [5—1— ﬂ . This suggests two things: First, that there is an indirect way to estimate the covariance
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term using the difference between the weighted and unweighted means, i.e. ¥ = a — 9. The standard
error of the covariance term is the square root of the diagonals of Var [y] = Var [6? — 5} . Second,
statistical inference about the left hand side of (1) can be based on (3), which provides a consistent
estimator of the asymptotic covariance matrix for a that is robust to within-firm autocorrelation
and heteroscedasticity. This relation implies that it is easy to test hypotheses about, e.g. how
aggregate industry productivity has developed over the sample period. For example, testing Hy:
(O — 01) + (vr — 71) = 0 would be a test of the hypothesis that there has been no (aggregate)
productivity growth over the sample period (i.e. 1 = @p).

3.3.3. Entry and Exit

In some applications it may be desirable to be able to allow for unbalanced panel data that are due
to the entry and exit of firms. One way to do so is to assume that there are three mutually exclusive
subgroups in each period, i.e. the subgroups for surviving incumbents (j = 1), entrant firms (j = 2)
and those firms that exit before the end of the next period (j = 3). One can then follow the steps
outlined above for the estimation of the OP productivity components in mutually exclusive subgroups.
The subgroup indicator g;; j is defined as follows: If firm ¢ neither enters at ¢ nor exits at t+1, g;r1 = 1
and = 0 otherwise. If firm 7 enters the data during period ¢, g;t2 = 1 and = 0 otherwise. For those
firms that exit at t + 1, ¢;1,3 = 1 and = 0 otherwise. Using this notation, Z?zl qit,j = 1.

There is, however, a remaining piece of ambiquity in how one should classify new plants that
enter the data by the end of period ¢ and exit by the end of period ¢t + 1. For them, ¢;2 = 1 and
¢it,3 = 1. When the time period becomes shorter, the share of such observations gets smaller. In
applications that use annual data, the number of observations of this type may be non-negligible.
A practical solution to this problem is to introduce a fourth plant category for such ’experimental’
short-lived entrants. An alternative way to think about this is to realize that in a dynamic context
entry is backward looking and exit is forward looking. Therefore, one could - as an anonymous referee
reminded us - treat a group of firms that exists in a given period both as a group of survivors and
entrants relative to the previous period and as a (different) group of survivors and exitors relative to
the next period. This approach would be in line with various (dynamic) versions of OP decomposition
discussed and proposed by, e.g. Bockerman and Maliranta (2007), Diewert and Fox (2009), Hyytinen
and Maliranta (2013) and more recently by Melitz and Polanec (2015).

Slicing the data as described above, one can, for example, compare productivity levels between
entrants and surviving incumbents in a given period (e.g. test Ho: Y2 + 02 — v1 — 61 = 0),
study whether the (relative) productivity levels of entry vintages change over time (e.g. test Hy:
(Ve2 + 0:2) — (Yt—s2 + 0t—s2) = 0 or Ho: 2+ 6t2 — Y1 — 0e1 = Ye—s2 + Ot—s2 — Ye—s1 — Ot—s.1)
and examine whether it is the change in the covariance component (e.g. test Ho: (12 — Vt—s2) =0

or Hy: Ye2 — Vel = Vi—s,2 — %—3,1), or changing average productivity of entrants (e.g. test Hy:
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(Or2 —01—s2) =0o0r Hyp: 0r20— 6011 =6;_52 —0;_s1) that drives the change.

4. Application

In this section, we apply our estimation procedure to Finnish firm-level panel data from 1995 to 2007.
What follows is presented as an illustrative case study rather than a full-blown and self-contained
empirical analysis. We therefore focus on the development of labour productivity in a single industry,
‘Computer and related activities’ (NACE 72). The industry is an example of a dynamic service
industry in Finland, with high net employment growth and intensive hiring and separation rates of

the employees.

4.1. Data

Our firm-level data come from the Structural Business Statistics (SBS) data of Statistics Finland.
The SBS includes all firms in the Finnish business sector. For larger firms, the SBS data are primarily
obtained from the Financial Statements inquiry. For those firms not covered by the inquiry, typically
employing less than 20 persons, data come from the Finnish Tax Administration’s corporate taxation
records and Statistics Finland’s Register of Enterprises and Establishments. We have used the implicit
price index of the industry obtained from the Finnish National Accounts for deflation.

We measure labour productivity ¢+ by (the logarithm of) value added per person in year 2000
prices, and activity shares s;; by the employment share of firms. The number of employees refers to
the average number of persons engaged in the activities of a firm during the accounting period. This
convention means that a person who has been employed in the firm for six months corresponds to
half an employee. Employees comprise wage and salary earners and self-employed persons. Employees
are converted to annual full-time employees so that, for example, an employee working half-time
represents one half of a person and two employees working half-time for one year represent one annual
full-time employee. We exclude from our empirical analysis the firm observations that have less than
one (employed) person or that have negative value added.

Inspired by Bockerman and Maliranta (2007), Ottaviano et al. (2009), and Bartelsman et al.
(2013), we focus on cross-regional differences in productivity. We estimate, in particular, OP produc-
tivity decompositions for two Finnish regions that are in many ways dissimilar. The first is Uusimaa,
which is a region in Southern Finland province. Uusimaa consists of Helsinki, the capital of Finland,
and 20 surrounding municipalities. The population of the region is 1.4 million, which is a quarter of
the total population of Finland. The second region is Itd-Suomi (Eastern Finland). It is a sparsely
populated region whose area is 7.6 times larger than that of Uusimaa but its population is only 40%
of that in Uusimaa. Uusimaa is much richer than [t4-Suomi; according to the statistics of Eurostat,
in 2006 the GDP per inhabitant was 56.9% above the EU average in Uusimaa but 14.7% below in

[ta-Suomi.



To appear: Journal of the Royal Statistical Society, Series A

10 Ari Hyytinen et al.

Table 1: Descriptive statistics

Region: Uusimaa Region: Ita-Suomi
Number Total number Aggregate | Number Total number Aggregate
Year of firms of employees productivity of firms of employees productivity
1995 667 105411 3.88 61 482 4 3.70
2000 855 21604.6 4.02 109 886.8 3.68
2005 892 24931.0 3.98 94 835.0 3.53
2007 1183 29614.7 4.09 108 807.7 3.69

Notes: Data source is Structural Business Statistics (SBS) data of Statistics Finland.

Fig. 1. Descriptive statistics

We define two mutually exclusive subgroup indicators based on the primary location of firms.
Some of the multi-unit firms have activities in several regions. In these cases, the location of the
firm refers to the region that has the highest within-firm employment share. The distribution of a
firm’s employment by region is computed by using Statistics Finland’s Register of Enterprises and
Establishments. The first subgroup indicator g; ;7 is equal to one if firm 7 is located in Uusimaa
( =U) in period ¢t and zero otherwise. The second indicator g s is defined similarly for firms located
in Ité-Suomi (j = I).

Descriptive statistics of the data can be found in Table 1. It displays for selected years the number
of firms (Ny; = Zf\il qit,j), total employment (Zf\il qit,jLit) and the weighted average of labour
productivity (Efitl Qit,jSitpit), separately for j € {U, I}.

4.2. Results
The results that we obtained by the moment-based approach developed above are displayed in Table
2. The two panels of the table display point estimates and the associated 95% confidence intervals,
based on the autocovariance and heteroskedasticity robust standard errors, for the average of labour
productivity (5, Panel A) and the covariance term (7, Panel B) separately for the two regions over
the sample period from 1995 to 2007.

Looking first at the point estimates only, Table 2 suggests the following. On the one hand, there is
a positive trend in average firm productivity in both the Uusimaa and [t&-Suomi regions. The point
estimates also show that average productivity is higher in Uusimaa. On the other hand, it seems that
the covariance component has made a negative contribution in both regions (its size diminishes over
time) and that it has on average been higher in Uusimaa. The confidence intervals of the average
firm productivity are much narrower in Uusimaa than in [t&-Suomi, whereas the confidence intervals
of the covariance term are about the same order of magnitude.

We illustrate the benefits of our inference procedure with the following examples:

First, the null hypothesis that the level of (aggregate) industry productivity has not changed from
1995 to 2007 (i.e. Ho: 62007, + 72007,; — 019955 — V19955 = 0) is rejected for Uusimaa (j = U) but not
for Itd-Suomi (j = I). The p-value for the (Wald) test of the former hypothesis is 0.001, whereas it is
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Panel A: Average of labour productivity by region

Region: Uusimaa Region: Ita-Suomi
Point 95% confidence interval Point 95% confidence interval
Year estimate Lower bound  Upper bound estimate Lower bound  Upper bound
1995 3.51 3.46 3.57 3.33 3.14 3.52
1996 3.40 3.34 3.45 3.31 3.16 3.46
1997 3.44 3.39 3.49 3.40 3.27 3.53
1998 3.66 3.60 i 3.35 3.15 3.55
1999 3.73 3.67 3.78 359 3.35 3.66
2000 3.81 3.76 3.86 3.51 3.36 3.67
2001 3.74 3.68 3.79 3.39 3.21 3.57
2002 3.73 3.68 3.78 3.45 3.34 3.57
2003 3.72 3.67 e 3.51 3.42 3.61
2004 3.75 3.70 3.80 3.46 3.34 3.59
2005 3.79 3.74 3.84 3.56 3.45 3.66
2006 3.81 3.7 3.85 3.62 3.51 373
2007 3.85 3.80 3.89 357 3.44 371

Panel B: Covariance term by region

Region: Uusimaa Region: Ita-Suomi
Point 95% confidence interval Point 95% confidence interval
Year estimate Lower bound Upper bound estimate Lower bound  Upper bound
1995 0.37 0.17 0.57 0.37 0.1 0.63
1996 0.51 0.27 0.76 0.32 0.20 0.45
1997 0.49 -0.05 1.02 0.30 0.1 0.48
1998 0.32 0.02 0.62 0.29 0.1 0.48
1999 0.25 0.05 0.46 0.13 0.01 0.26
2000 0.21 0.01 0.41 0.17 0.04 0.30
2001 0.25 0.09 0.41 0.23 0.09 0.38
2002 0.22 0.06 0.38 0.00 -0.30 0.30
2003 0.25 0.04 0.47 -0.02 -0.21 0.18
2004 0.26 0.00 0.53 0.02 -0.22 0.27
2005 0.19 0.05 0.33 -0.02 -0.32 0.27
2006 0.25 0.1 0.39 0.06 -0.03 015
2007 0.24 0.11 0.38 0.12 -0.05 0.29

Notes: Data source is Structural Business Statistics (SBS) data of Statistics Finland. The point estimates for
the average productivity and covariance term as well as the 95% confidence interval (Cl) have been
calculated using the GMM procedure. The standard errors that have been used to calculate the Cl are
autocovariance and heteroscedasticity robust.

Fig. 2. Average of labour productivity and covariance term by region
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0.966 for the latter.

Second, there is a statistically significant improvement from 1995 to 2007 in the average produc-
tivity of firms in Uusimaa. For Uusimaa, we reject Hy: 62007, — 019950 = 0 at better than the 1%
significance level. However, the same null hypothesis for [t4-Suomi cannot be rejected as confidently;
its p-value is 0.042.

Third, we cannot reject Ho: Y2007,j —Y1995,; = 0 for either region (with p-values 0.255 and 0.108 for
j = U, I, respectively). This finding suggests that the negative trend in the covariance terms cannot
be measured accurately in our data.

Fourth, we clearly reject the null hypothesis that the level of industry productivity has, on average,
been the same in the two regions during the period from 1995 to 2007. This hypothesis is equivalent
to Hy: % 52%95(@7[] + v — 0,1 — ve,1) = 0, and the p-value of the associated test is less than
0.001.

Fifth, there is a statistically significant difference between the two regions in the average produc-
tivity of firms; the p-value of the test for Hy: 1—13 ?g%gs(ﬁt,(] —0;,1) = 0 is less than 0.001. However,
the regional difference in the covariance terms is not statistically significant; the p-value of the test
for Hy: % ?2%95(%7(] —y,7) = 0 is 0.146.

Finally, the numbers suggest that when we compare the two regions, the last six years of our
sample period might be special, with non-negligible regional differences: This is indeed what we find
if we test for such differences formally: Hy: % Zfi%EOQ(Ht,U +Ye,u — 0,1 — Ye,1) = 0 can be rejected at
better than the 1% significance level (p-value < 0.001). This result appears to be due to two things:
First, the average productivity of firms in Uusimaa has, on average, been higher during these years.
The p-value of the test for Hy: % ?2%02(&@ — 6 1) = 0 is less than 0.001. The covariance term
has also been higher in Uusimaa than in [td4-Suomi. However, the difference cannot be measured as
accurately; the p-value of the test for Hy: % 232%02(%7(] — Y1) = 0 is 0.024.

In summary, our findings show that formal statistical inference casts in some cases clear doubt on
the conclusions that one might draw about the sources of productivity dynamics based on a visual

inspection of the numbers.

5. Conclusions

We show how a standard moment-based GMM procedure can be used to simultaenously compute
point estimates for the components of the Olley-Pakes productivity decomposition and to estimate
their standard errors. The procedure provides applied researchers with a simple two-step recipe for
autocovariance and heteroskedasticity robust inference and allows for hypothesis testing about, e.g.
the co-evolution of the productivity components in different groups of firms. We have framed our
analysis in terms of population moments and GMM because they immediately suggest a number of

ways of how the estimation and inference procedure might be extended.
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We illustrate the procedure by applying it to Finnish firm-level data from 1995 to 2007. We find
that formal statistical inference casts some doubt on the conclusions that one might draw based on a
visual inspection of the two components of the OP decomposition. It also turns out that in our case
study, the covariance term, which often is of major policy interest, cannot be measured as accurately

as the unweighted average of the productivity of firms.

The scope of our analysis also deserves attention. We have proposed a method of computation and
inference for one of the many decomposition methods that have been used in the literature. Further
work could thus consider procedures for inference for the other popular decompositions, such as those
proposed by Bailey et al. (1992), Foster et al. (2001), Petrin and Levinsohn (2013) and Melitz and
Polanec (2015). Some of these methods appear to suggest that reallocation of resources has a negligible
or negative contribution to aggregate productivity growth in the United States (Bailey et al. 2001,
Foster et al. 2001, OECD 2003 and Petrin et al. 2011). This finding has not gone unchallenged. Some
authors argue that it is at least partly due to problems in measurement and economic interpretation
(e.g. Bartelsman et al. 2013), whereas others see it as a sign of deeper methodological problems
(Petrin et al. 2011; see also Fox 2012 for a critical account). In our view, it would be of interest to
know how wide the (robust) confidence intervals for the debated estimates are. Our procedure may

provide a starting point for such inference.

There appears to be ample room for appropriate inference procedures. For example, there is another
strand in the decomposition literature that explores the sources of aggregate productivity growth. In
this strand, productivity growth is decomposed into technical change and efficiency change using
Malmquist indices. For example, Fire et al. (1994) use the technique to identify for each point
in time the so-called efficient countries, which together define the current world technology frontier.
Statistical inference for these techniques has been considered by, e.g. Simar and Wilson (1999) and

Fuentes et al. (2001).

Another call for appropriate inference procedures comes from the need to analyze the workings of
public policies. The OP decomposition was originally used to examine whether and how deregulation
affects aggregate productivity and reallocation. Trade and price liberalization, tax reforms, labor
market reforms and new forms of subsidized government funding provide similar pseudo-experiments
as they are likely to have a differential impact on firms whose productivity is heterogenenous and on the
allocation of resources among such firms. Our inference procedures can be used to test, e.g. whether
such policy changes affect different industries or regions differentially. Moreover, in an ongoing work,
one of us is exploring how well the OP covariance component and its variants mirror policy-driven

allocation distortions (Maliranta and Mé&attéanen 2015).

We conclude by pointing out that what we, as economists, call the OP decomposition is a procedure
that decomposes a weighted average into a (simple) non-weighted average and a covariance-like term.

Inference procedures for such a decomposition may clearly be useful in other fields of social science
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and statistics.

We can provide several concrete examples of areas in which our procedure could be utilized. First,
there is a closely related research strand in the field of operations research that explores when and how
firm-level efficiency measures can be aggregated to industry level using weighted average estimators
(see Peyrache and Coelli 2009 and references therein). Our procedure for testing hypotheses about
the covariance term provides a means to test the conditions when such aggregation procedures work.
If the null hypothesis that the covariance term is zero cannot be rejected, industry efficiency can be

proxied by the average efficiency of the firms (see Peyrache and Coelli 2009).

The approach of this paper also has connections to aggregation theory. A classic question is whether
it is justified to aggregate micro equations to macro averages. The sum of linear micro equations can
be expressed as the macro (average) equation plus the covariance of micro variables and parameters,
where the covariance term is the aggregation bias (e.g. van Daal and Merkies 1984, and Stoker 2008,
and the references cited there). This expression has the same form as the OP decomposition. Various
ways of testing for aggregation bias have been suggested (e.g. Lee, Pesaran and Pierse 1990). Our
method suggests a new way of testing the bias directly by testing the significance of the covariance

term.

We see that the decomposition methods can also be utilized in other fields, such as political science,
sociology or geography. The procedure developed for the OP decomposition of the weighted average
provides a framework for statistical inference for such non-economic applications. For example, spatial
dimension is often important in political science and geography. The procedure outlined in this paper

can be extended to allow for dependence that results from spatial patterns.
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