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Tommi Kärkkäinen∗ TOMMI.KARKKAINEN@JYU.FI
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Abstract
Large-scale educational assessment studies
(LSAs) regularly collect massive amounts of
very rich cognitive and contextual data of whole
student populations. Currently, LSAs are limited
to reporting student proficiencies in the form of
plausible values (PVs). PVs are random draws
from the posterior distribution of a student’s
ability, which is based on the Bayesian approach
with the prior distribution modeling the student
background within the population and the
likelihood test item response using the Rasch
model. While PVs have shown to be a reliable
estimate for proficiencies of populations, a more
comprehensive study of these rich data sets by
deploying machine learning algorithms may
provide a better understanding of the underlying
factors affecting student performance and thus
yield to better and more interpretable predictive
models. This paper presents such a novel
approach to learn directly from LSA data by
deploying a combination of both unsupervised
and supervised learning feature selection algo-
rithms to predict student performance on math
scores. Our technique learns the difficulty level
of different math questions and predicts weather
or not a student with a particular background
profile will be successful in answering correctly.

1. Introduction
Since 2000 triennially, the Organisation for Economic Co-
operation and Development (OECD) collects a massive
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amount of data of stratified samples of 15-year-old students
from all over the world for the Programme for International
Student Assessment (PISA). The sampled students not only
take a cognitive test—in which they have to demonstrate
their math, reading and science skills—but also reply to
a questionnaire, in which they provide information about
their social and economical background, as well as their
motivations, behaviors, and attitudes towards various as-
pects of education. All collected data is publicly available1

and according to the OECD, of very high quality in terms
of degree of validity and reliability (OECD, 2009; 2012).
Moreover, these data are comparable throughout different
countries so that they provide a very rich database for ed-
ucational machine learning (ML) and data mining (DM)
applications.

The participating countries pay large sums of money
(Musik, 2016) primarily with the goal to utilize PISA data
and analysis results for research. However, as concluded by
Rutkowski et al. (2010), not many researchers work with
these freely available and high quality datasets because of
the many technical complexities within them. The major
difficulty of conducting secondary analysis with PISA data
is that many desired properties that describe the students
are not originally observed features, but are already pre-
processed and made available as derived variables through
a combination of different state-of-the-art methodologies.
One example is that there are no single performance scores
for the cognitive test in PISA datasets. Instead, for each
student and each assessment domain—reading, math, and
science—five plausible values (PVs) are reported.

The PVs are random draws from the posterior distribution
of a student’s ability, which is defined as

f(β | xi, yi) ∝ P (xi | β, δ)f(β | λ, yi), (1)

1PISA data can be downloaded from http:
//www.oecd.org/pisa/pisaproducts/.

http://www.oecd.org/pisa/pisaproducts/
http://www.oecd.org/pisa/pisaproducts/
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where P (xi | β, δ) denotes a Rasch Model (Rasch, 1960)
given the student’s ability β and the test items’ difficul-
ties δ, and f(β | λ, yi) denotes a population model with the
background information of the student encoded in yi2. This
population model for a student i is estimated with the latent
regression model (Tarpey & Petkova, 2010) βi = yTi λ+εi,
where εi = N (0, σ2) (Marsman, 2014; OECD, 2014), and
with λ denoting the regression coefficients.

PVs have shown to be a reliable estimate for proficiencies
of populations (Monseur & Adams, 2008; Wu & Adams,
2002; OECD, 2009) and are used not only in PISA, but
also in other LSA studies, such as the National Assessment
of Educational Progress3, the European Survey on Lan-
guage Competences4, the Trends in International Mathe-
matics and Science Study, and the Progress in International
Reading Literacy Study5. However, these estimations are
done on normalized data and are based on linear regression
(i.e., the λ parameter in f above). Thus, it is worth in-
vestigating how deploying a general framework of ML can
complement the current state of art by using the raw data
which is publicly available.

In this paper, we describe a ML approach that combines un-
supervised learning with several supervised learning algo-
rithms and deploys various feature selection algorithms by
working directly with raw data. One particular challenge is
the sparsity of raw cognitive data due to the design of tests,
and missing values in the questionnaire data (Saarela &
Kärkkäinen, 2014; 2015a;b; Kärkkäinen & Saarela, 2015;
Rutkowski et al., 2010). This work addresses the high spar-
sity of the cognitive data by clustering the scored cogni-
tive item response data into several difficulty bins and us-
ing each bin as a label as we explain later in Section 3.1.
Since there were enough data points without missing con-
textual data from the PISA background questionnaire, we
defer to imputation for the future work and focused on
complete data. We examined the interaction between dif-
ferent classifier-feature selection algorithms and show that
ML is a promising and complementary approach to under-
stand and predict student performance.

The structure of this paper is as follows. In Section 2, we
describe the PISA data. After that, our overall method is
explained in Section 3, and the experimental results are pre-
sented in Section 4. Finally, in Section 5, overall results are
summarized and directions for further work are discussed.

2In the official PISA literature, it is not explicitly reported
which features of the student’s background are actually taken into
account (OECD, 2014). However, Monseur and Adams (2008)
argue that all information from the background questionnaire is
utilized.

3nces.ed.gov/nationsreportcard/
4www.surveylang.org/
5See both http://timssandpirls.bc.edu/

Table 1. Item cluster allocation to booklets in PISA 2012. PM
denotes cluster of math, PR cluster of reading, and PS cluster of
science items.

BOOKLET ID ITEM CLUSTER
B1 PM5 PS3 PM6A PS2
B2 PS3 PR3 PM7A PR2
B3 PR3 PM6A PS1 PM3
B4 PM6A PM7A PR1 PM4
B5 PM7A PS1 PM1 PM5
B6 PM1 PM2 PR2 PM6A
B7 PM2 PS2 PM3 PM7A
B8 PS2 PR2 PM4 PS1
B9 PR2 PM3 PM5 PR1

B10 PM3 PM4 PS3 PM1
B11 PM4 PM5 PR3 PM2
B12 PS1 PR1 PM2 PS3
B13 PR1 PM1 PS2 PR3

2. Data
We use the two main student datasets from the latest PISA
assessment, which was conducted in 2012 (the 2015 data is
not yet public): the scored cognitive item response and the
student questionnaire data file. Both datasets have 485,490
observations (the students who attended the 2012 PISA as-
sessment) and a couple of hundreds of variables.

As explained above, every student that attends the PISA
test is assigned only a small fraction of the whole item bat-
tery. In PISA 2012, there were 13 main different tests—
called booklets—and 210 different cognitive test items.
Since mathematics was the main assessment domain in
PISA 2012, the majority of the items, i.e. 108 of them, are
items that test the math proficiency of the students. These
cognitive test items were organized into groups—in PISA
denoted as item clusters—so that each booklet contained
four item clusters (this is illustrated in Table 1) and was
estimated to be completable in two hours. As can be seen
from Table 1, each booklet contained at least one cluster
with math items. Our goal in this study is to predict the
math performance of the students, which is why we use
the sparse 108 × 485, 490 matrix of the scored math items
for building the labels of our classifiers (this will be further
explained in Section 3.1).

For the classification features, we are interested in all at-
tributes that are directly concerned with the students’ at-
titudes towards mathematics and that might explain their
math performance. In the PISA background questionnaire,
there are 53 different math attitudinal statement questions6,
in each of which the student is asked to tick one box of a
Likert-scale depending on the degree to which he or she
agrees (totally disagree, disagree, agree, or totally agree)

6Variables ST29Q01–ST46Q09 (position 67–119) in PISA
questionnaire data set, see https://www.oecd.org/pisa/
pisaproducts/PISA12 stu codebook.pdf

nces.ed.gov/nationsreportcard/
www.surveylang.org/
http://timssandpirls.bc.edu/
https://www.oecd.org/pisa/pisaproducts/PISA12_stu_codebook.pdf
https://www.oecd.org/pisa/pisaproducts/PISA12_stu_codebook.pdf
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with the given statement. Examples of such statements in-
clude I will learn many things in mathematics that will help
me get a job and my parents believe studying mathematics
is important. All 53 questions/statements can be found in
Figure 1. We select all students that have non-missing val-
ues for all of these questions. Because of the rotated design
in PISA, these are a bit less than one third of the students
from each country. For example, in the Finnish subset,
there are 2,491 (out of 8,829) students, which have non-
missing values for all these 53 features, and in the whole
PISA data, there are 136,344 (out of 485,490) students with
complete values for this feature set.

3. Methodology
3.1. Unsupervised learning from cognitive data for

label creation

We define identifying the students that are likely to suc-
ceed or fail math items of certain difficulty as a prediction
problem. Our goal is to train a supervised learning algo-
rithm that predicts success or failure from the data. How-
ever there are several problems with identifying the labels
necessary for this approach. First, the plausible values can-
not be used, since that would be akin to engineering an al-
ready known formula (see Section 1). Second, as discussed
in Section 2, the students were administered different cog-
nitive tests and the single items in the tests vary in their dif-
ficulty (OECD, 2014), which is why we cannot simply use
the total sum of correct items for each student as their la-
bel. The raw scored cognitive data has a high percentage of
missing data and no aggregated test scores and no item dif-
ficulties are available. Besides the PVs, the only available
information about the actual performance of each student in
the cognitive test is the fact whether he or she was adminis-
tered an item and—in case the item was administered—the
score the student obtained for it. The score values can be
either 0 (fail), 1 or 2 (partially or fully correct).

To be able to work with the available data, we designed
an algorithm to extract labels from raw data and use these
labels to train a predictive model. For every different
test/booklet, we summed up the total scores of the included
math items. Then, we assigned each math item that was
included in the test—a summary of the cluster of differ-
ent items of the main tests was provided in Table 1—to a
bin which we denote as difficulty level in such a way that
each difficulty level is of same size (i.e., includes the same
number of items). We chose the number of difficulty levels
for our label matrix Λ to be seven, because the OECD de-
fined seven math proficiency levels (see Figure 15.4 in the
PISA 2012 technical report by the OECD (2014)). Hereby,
it is assumed that all of the different booklets are consistent
with regard to their average difficulty, which is supported
by the fact that each test should be fair and solvable within

two hours.

We created a binary label for each student and each of the
seven difficulty levels, which takes value 1 if the student
answered more than half of the questions in that category
correctly and 0 otherwise. The labels were stored in the
seven-dimensional label matrix Λ. Basically, we consider
the student to be able to solve items of a certain difficulty
if he or she answered the majority of the items of this dif-
ficulty bin in his/her particular test correctly. This matrix
is complete, i.e. with no missing values, since each book-
let contains items from each category. Depending on the
target group we are interested in, we either create our label
matrix Λ only for one country (for instance, for Finland the
8, 829 × 7 matrix) or for a bigger group (for example, for
all PISA countries the 485, 490× 7 matrix).

3.2. Supervised learning for multi-label prediction

Having the label matrix Λ fixed, we have to decide which
kind of classifier should be trained for our data. Many dif-
ferent supervised learning algorithm have been introduced
in the ML literature (Kotsiantis et al., 2007). However,
the performances of different prediction models can vary
depending on the data and their preprocessing. A model
that performs perfectly on one dataset might perform very
poorly on another dataset. Since we could not know what
the best model and preprocessing for our data were, we
first compared different approaches for the Finnish subset
of PISA (see Section 4) before we selected the best ap-
proach to produce the final results.

In Zaki and Meira (2014), classification techniques have
been categorized into probabilistic classification, decision
tree classifier, linear discriminant analysis (LDA), and sup-
port vector machines (SVM). We chose at least one from
each of these categories of classifiers with different objec-
tives and compared their performances in terms of their
prediction accuracy. Altogether, we compared two prob-
abilistic classifiers (nearest neighbour and naı̈ve bayes),
one LDA, one SVM, and one decision tree based classi-
fier (random forest). For each of the different classifiers,
the Finnish subset of PISA was randomly divided, so that
two thirds of the data was used for training the classifier,
and one third was used for testing it.

The most important step for learning from the data is the
dimension reduction in the feature space. We were looking
for the minimal set of features to represent our data, since
redundant or even noisy features lower the accuracy of pre-
diction models, make them less comprehensible, and in-
crease the computational complexity. Generally, dimension
reduction methods can be divided into those techniques that
extract features and those that select features (Tang et al.,
2014). To get the best results, we tested with each clas-
sification algorithm two feature extraction—i.e., Principal
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Component Analysis (PCA) and Isomap—and four feature
selection methods—i.e., Fisher (Duda et al., 2000), Anova
(Elssied et al., 2014), Gini (Hall, 1999), and MRMR (Peng
et al., 2005).

3.3. Difficulty levels are predictive

Correct answers for easier questions are predictive for
harder ones. With the intention to predict the performance
of the students in each difficulty level as accurately as
possible, we implemented an additional set of classifiers,
which were the same as described above but with the dif-
ference that for each classifier, the information if the stu-
dent mastered the previous difficulty level(s) was iteratively
added to the original set of 53 features. That means that
for predicting difficulty level λ6 we had 54 features, for
predicting λ5, we had 55 features, and for predicting λ1,
we had 58 features. The order of the difficulty levels is
λ1 < λ2 . . . < λ7, with λ1 being the easiest and λ7 being
the most difficult one.

4. Results
We tested our algorithmic approaches by using the Finnish
subset in PISA only, and then we applied the best approach
first, to the Finnish (Section 4.3) and second, to the whole
PISA data (Section 4.4). In Table 2, the results of the ex-
periments with the different classifiers and dimension re-
duction methods are reported. As can be seen from the
table, with respect to the classifier, SVM performed overall
the best.

Moreover, we made the observation that the prediction ac-
curacy was for all models the best for the highest difficulty
level λ7 and the worst for the second easiest one λ2. The
prediction accuracy for λ1 went up again, probably because
the classifiers had learned that most of the students succeed
in the math items of the easiest category.

4.1. Iterative approach

To test our hypothesis that the information whether or not
the student had mastered the previous difficulty level can
enhance the accuracy of our classifier for the next diffi-
culty level (see Section 3.3), we iteratively added–before
predicting the next item difficulty—the previous item diffi-
culty vector(s) as a further feature(s) to the classifiers. Nat-
urally, testing and training data were divided according to
the same indices as our original feature and label matrix.
With this adjustment, the prediction accuracy improved no-
ticeably (on average 2− 5%) for difficulty level six to two
for all classifiers. For difficulty level seven, the features
remained the same and the accuracy of the classifier could
not improve. For difficulty level one, the accuracy of the
classifier actually dropped slightly. A possible explanation

for that fact is, as discussed in Section 4, the general diffi-
culty to predict the performance on the second easiest math
difficulty level λ2 correctly, as well as the observation that
the prediction accuracy of the easiest difficulty level λ1 was
very high in the non-iterative approach.

4.2. Feature selection

As pointed out in Section 3.2, to avoid overfitting, we are
interested in a prediction model that uses the most impor-
tant features only. Therefore, we saved from all of our clas-
sifiers all features that were selected by the four feature se-
lection algorithms in each iterative step. Then, when build-
ing the final prediction model we used for each iterative
step only those features that were chosen by the different
feature selection algorithms (see Section 4.3). Moreover,
for training the prediction model two thirds of the data were
used, and for testing it the remaining third of the data was
used.

In Figure 1, the histogram of all the selected features for
all iterative steps and all 53 initial features is shown. As
can be seen from the histogram, the variable Maths Self-
Concept - Get Good Grades is the most chosen feature by
the feature selection algorithms, and therefore the most im-
portant variable in our math performance prediction model.
Furthermore, it can be seen that, for instance, the feature
Subjective Norms - Parents Like Mathematics is never cho-
sen by any of the feature selection algorithms and that this
feature therefore, seems to be negligible/insignificant when
predicting the math performance of Finnish students.

Figure 2 also illustrates the sum of chosen features by the
different feature selection algorithms. However, in this fig-
ure also the additional features λ7-λ2 are included. As can
be seen, the information whether a student was able to mas-
ter the preceding difficulty levels, are important features for
the math performance prediction of the next difficulty level.
It should be noted that the sums of the lasts six features
cannot be fully compared, because λ7 had the chance to be
selected in all of the six last prediction models, while λ2
could be selected only in the very last prediction models.

4.3. Results for Finland

In Table 3, the final results of the best approach for the
Finnish data, i.e. the iterative SVM classifier with only the
features that had been chosen at least five times (original
features) or at least three times (additional λ features) by
the feature selection algorithms, are reported. In each iter-
ative step, only the features that were selected for this step
were included. The table shows the accuracy, precision, re-
call, and f-score, which were computed on the confusion
matrix of the test data.

As expected, the accuracy results are better for the higher
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Table 2. Comparison of prediction accuracy (Finnish students performance in math items of different difficulty defined in label matrix
Λ) with different classifiers and feature selection algorithms. The best accuracies for each level are underlined.

Predicting success in math items of difficulty level 7
Full PCA Isomap ANOVA Fisher MRMR Gini

Nearest Neighbors 0.936816525 0.935601458 0.935601458 0.930741191 0.933171324 0.940461725 0.934386391
Naı̈ve Bayes 0.749696233 0.933171324 0.917375456 0.764277035 0.776427704 0.940461725 0.767922236
LDA 0.919805589 0.917375456 0.899149453 0.883353584 0.878493317 0.940461725 0.876063183
SVM 0.940461725 0.939246659 0.940461725 0.940461725 0.940461725 0.940461725 0.940461725
Random Forests 0.938031592 0.940461725 0.939246659 0.933171324 0.929526124 0.940461725 0.931956258

Predicting success in math items of difficulty level 6
Full PCA Isomap ANOVA Fisher MRMR Gini

Nearest Neighbors 0.834750911 0.825030377 0.835965978 0.82746051 0.817739976 0.838396112 0.817739976
Naı̈ve Bayes 0.720534629 0.843256379 0.831105711 0.731470231 0.742405832 0.838396112 0.742405832
LDA 0.808019441 0.809234508 0.833535844 0.784933171 0.795868773 0.838396112 0.795868773
SVM 0.838396112 0.837181045 0.838396112 0.838396112 0.838396112 0.838396112 0.838396112
Random Forests 0.834750911 0.832041312 0.832320778 0.812879708 0.834750911 0.838396112 0.815309842

Predicting success in math items of difficulty level 5
Full PCA Isomap ANOVA Fisher MRMR Gini

Nearest Neighbors 0.696233293 0.690157959 0.716889429 0.693803159 0.708383961 0.64763062 0.696233293
Naı̈ve Bayes 0.662211422 0.722964763 0.705953827 0.673147023 0.670716889 0.708383961 0.67436209
LDA 0.699878493 0.688942892 0.705953827 0.690157959 0.693803159 0.708383961 0.685297691
SVM 0.722964763 0.716889429 0.710814095 0.721749696 0.722964763 0.713244228 0.719319563
Random Forests 0.722964763 0.701470231 0.714459295 0.720534629 0.704738761 0.713244228 0.722964763

Predicting success in math items of difficulty level 4
Full PCA Isomap ANOVA Fisher MRMR Gini

Nearest Neighbors 0.614823815 0.611178615 0.575941677 0.592952612 0.599027947 0.585662211 0.605103281
Naı̈ve Bayes 0.648845687 0.626974484 0.640340219 0.668286756 0.660996355 0.619684083 0.659781288
LDA 0.640340219 0.650060753 0.634264885 0.620899149 0.636695018 0.619684083 0.645200486
SVM 0.67800729 0.679222357 0.643985419 0.653705954 0.65127582 0.623329283 0.653705954
Random Forests 0.650060753 0.646415553 0.611178615 0.64763062 0.625759417 0.623329283 0.622114216

Predicting success in math items of difficulty level 3
Full PCA Isomap ANOVA Fisher MRMR Gini

Nearest Neighbors 0.648845687 0.656136087 0.602673147 0.635479951 0.657351154 0.652490887 0.669501823
Naı̈ve Bayes 0.64763062 0.652490887 0.671931956 0.64763062 0.645200486 0.652490887 0.650060753
LDA 0.637910085 0.631834751 0.662211422 0.637910085 0.643985419 0.659781288 0.65127582
SVM 0.675577157 0.668286756 0.662211422 0.665856622 0.65127582 0.64763062 0.667071689
Random Forests 0.667071689 0.648845687 0.611178615 0.67436209 0.62818955 0.641555286 0.643985419

Predicting success in math items of difficulty level 2
Full PCA Isomap ANOVA Fisher MRMR Gini

Nearest Neighbors 0.573511543 0.583232078 0.539489672 0.543134872 0.539489672 0.546780073 0.546780073
Naı̈ve Bayes 0.571081409 0.582017011 0.622114216 0.569866343 0.579586877 0.602673147 0.583232078
LDA 0.577156744 0.580801944 0.602673147 0.59781288 0.589307412 0.607533414 0.57472661
SVM 0.59781288 0.59781288 0.605103281 0.596597813 0.599027947 0.605103281 0.599027947
Random Forests 0.572296476 0.599027947 0.545565006 0.591737546 0.571081409 0.603888214 0.567436209

Predicting success in math items of difficulty level 1
Full PCA Isomap ANOVA Fisher MRMR Gini

Nearest Neighbors 0.733900365 0.738760632 0.720534629 0.732685298 0.713244228 0.769137303 0.733900365
Naı̈ve Bayes 0.606318348 0.753341434 0.769137303 0.617253949 0.616038882 0.769137303 0.618469016
LDA 0.714459295 0.708383961 0.741567436 0.716889429 0.733900365 0.769137303 0.730255164
SVM 0.769137303 0.769137303 0.769137303 0.769137303 0.769137303 0.769137303 0.769137303
Random Forests 0.769137303 0.763061968 0.737545565 0.760631835 0.732685298 0.759416768 0.739975699

difficulty levels (because most students will fail this level)
and the lower difficulty levels (because most students will
master this level) than for the middle difficulty levels. On
the other hand, the precision increased monotonically from
the most difficult to the easiest question difficulty level.
This was most probably the case, because the classifier had
learned that most students fail items of the highest diffi-

culty and hence, simply returned 0 for the majority of the
test instances. Since accuracy is not the best measure of
performance we focus on the precision for the rest of the
discussion.
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Figure 1. Frequency of selected features of the 53 initial features by the four feature selection algorithms for the Finnish student data.
The higher the bar of a feature, the more often this feature was selected, and the more important this feature is for the prediction model.

Table 3. Results of iteratively predicting success in math items
of the different difficulty levels for Finnish students with SVM
and—for each difficulty level—only the most selected features by
the four feature selection algorithms.

Difficulty Accuracy Precision Recall F-score
Level 7 0.9579 0.0312 1.0000 0.0606
Level 6 0.8555 0.1385 0.5294 0.2195
Level 5 0.7427 0.3309 0.6866 0.4466
Level 4 0.7843 0.4029 0.6975 0.5108
Level 3 0.7096 0.5496 0.7791 0.6445
Level 2 0.6757 0.6530 0.7095 0.6801
Level 1 0.7630 0.9493 0.7833 0.8583

4.4. Results for all countries participating in PISA

Table 4 shows the prediction results for all PISA countries
(i.e. the 136344× 53 feature matrix of all students that had
complete values for all 53 features from the background
questionnaire and the corresponding 136344× 7 label ma-
trix for the same students). However, it should be noticed
that the same settings as for Finland were used, that is the
classification algorithm and the selected features that were
optimized for the Finnish data. For difficulty levels λ6 and
λ5 the prediction accuracies are actually higher than for
the Finnish data. However, this is most likely the case be-
cause most of the world’s students are not able to solve
items of this difficulty level. This assumption is supported

by the very low precision values. Moreover, we see again
the worst result for predicting λ2, where the prediction ac-
curacy is only slightly better than guessing.

Table 4. Results of iteratively predicting success in math items of
the different difficulty levels for students from all in PISA partic-
ipating countries with SVM and—for each difficulty level—only
the most selected features by the four feature selection algorithms.

Difficulty Accuracy Precision Recall F-score
Level 7 0.9524 0.0003 0.0714 0.0006
Level 6 0.8872 0.0027 0.2414 0.0054
Level 5 0.7723 0.0133 0.3118 0.0255
Level 4 0.6156 0.1627 0.5016 0.2457
Level 3 0.5817 0.7934 0.5918 0.6779
Level 2 0.5350 0.5629 0.5404 0.5514
Level 1 0.6539 0.9591 0.6656 0.7859

5. Discussion and future work
PISA data—as well as LSA data generally—provide an in-
teresting source for educational ML and DM applications,
because they are of high quality, internationally compara-
ble, and publicly available. However, the challenges of
working with these data are the high sparsity of the raw
data and the lack of any readily available and comparable
cognitive test results of the students.
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Figure 2. Histogram of selected features of the 53 initial features
plus the 6 additional ones for the iterative steps by the four feature
selection algorithms for the Finnish student data.

In this paper, we have presented an approach to prepare
LSA data for supervised ML approaches. In addition, ini-
tial results of using our approach for predicting success
in math items of various difficulty, have been presented.
Hereby, we have tested different classification and dimen-
sion reduction algorithm for the Finnish data, and then ap-
plied the best classifier with only the selected features of
different feature selection algorithm for the Finnish and for
the whole PISA data. The prediction accuracy was further
improved by adding for each succeeding difficulty level
the information whether the student mastered the preced-
ing difficulty level(s). An analysis of the chosen features by
the feature selection algorithm enabled a predictive power
ranking of the questions asked in the background ques-
tionnaire that actually explained the students’ math perfor-
mance.

The results presented in this paper are only preliminary and
we intend to extend and improve our experiments and study
in various directions. First of all, the results that were pre-
sented here are based on the fully available raw data only.
We intend to perform similar experiments for the whole
contextual data by first imputing the missing values.

We also intend to compare our approach to the Rasch model
and plausible value approach currently used in most LSAs,
which has evolved from the psychometric literature. It has
been argued that one of the weaknesses of the Rasch model
is the fact that all students with the same raw score (i.e.,
number of correctly solved tasks) obtain the same ability
estimate (Embretson & Reise, 2013). It would be interest-
ing to compare this to our approach, where the difficulty
level of the solved items is taken into account. As dis-

cussed by Baker and Yacef (2010), comparing and inte-
grating machine learning techniques to the ones from the
psychometrics literature, is one of the most distinguishing
features that separates the educational ML/DM discipline
from the traditional ML/DM research area.
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