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The business world is exhibiting a growing dependency on computer systems, 
their operations and the databases they contain. Unfortunately, it also suffers 
from an ever growing recurrence of malicious software attacks. Malicious attack 
vectors are diverse and the computer-security industry is producing an 
abundance of behavioral-pattern detections to combat the phenomenon.  

Modern processors contain hardware virtualization capabilities that 
support implementation of hypervisors for the purpose of managing multiple 
Virtual-Machines (VMs) on a single computer platform. The facilities provided 
by hardware virtualization grant the hypervisor control of the hardware 
platform at an effective privilege level that supersedes the OS. 

The purpose of this work is to research and develop a methodology based 
on a thin-hypervisor that exploits the virtues of hardware virtualization for the 
purpose of protecting a computer system against malicious penetration. To 
successfully accomplish this, the thin-hypervisor must be guaranteed to be 
trusted, with respect to its instructions its configuration structures and its true 
control over the hardware platform. Moreover, it must be able to protect itself 
indefinitely from subversion. The methodology presented here describes the 
means to establish a trusted thin-hypervisor and demonstrates how it may be 
exercised to restrict code execution exclusively to pre-signed, whitelisted, 
software. 

This methodology provides resistance to most APT attack vectors, 
including those based on zero-day vulnerabilities that may slip under 
behavioral-pattern radars. 

 
Keywords: cyber protection, APT prevention, hypervisor, thin-hypervisor, 

virtualization, attestation, trusted computing, whitelisting,  
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PREFACE 
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project team, as well as a major driver of its research and implementation effort. 
When setting out to explore new alternatives for creating trusted platforms and 
software protection schemes, the TrulyProtect team had only put forth vague 
goals and could not entirely foresee the final destination, as it needed to 
navigate uncharted waters. Eventually, the methodology crystalized and the 
research bore fruit, as described in this work. Funding for the TrulyProtect 
project supported the team's efforts throughout September 2014, after which 
continued research was based on individual grants and scholarships. 
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1 INTRODUCTION 

1.1 Modern System Execution Vulnerabilities 

An abundance of malicious software attacks plague the computer software 
industry. The attack methodologies are diverse, ranging from code-injection, 
buffer-overflow, viruses, worms and Trojans to rootkits. Malicious code is 
usually designed to gain access to and steal the victim’s data, such as personal 
information, credentials, trade secrets, or to gain access to the victim’s system in 
order to take advantage of the resource for inflicting further damage. Malicious 
code motivation is predominantly financial but in some case other motivations 
may exist as well. 

 
An assortment of recent cases bear witness to this escalating and dire problem: 

• Target (Nov 2013): Target is one of the largest discount retailers in USA, 
second only to Walmart. Malware designed to capture the details of 
swiped credit cards was installed in Target's payment server just prior to 
Thanksgiving sales. Roughly 40 million customer credit cards were 
abducted [1]. 

• JP Morgan Chase (Oct 2014): With assets surpassing $2 trillion, it is the 
largest bank in the USA and one of largest in the world. Four hackers 
penetrated the bank servers and obtained illegal access to over 80 million 
customer accounts, thereby reaping over $100M using these for online 
gambling, phishing and money laundering to name only a few [2]. 

• Anthem (Feb 2015): The largest health insurance company in the Blue-
cross Blue-Shield association. In Feb 2015, Anthem reported that its 
database had been breached and 80M current and past patient 
credentials and medical data had been exposed [3]. 

• Premera Health (Mar 2015): Premera Health is a large, non-profit, Blue-
cross Blue-shield health insurance company. The company reported that 
hackers broke into its database exposing 11 million customer records [4]. 

• Ashely Madison (July 2015):  Ashely Madison is an online dating service 
geared towards married people looking for an ex-marital relationship. In 
July 2015 a hacker group calling itself "The Impact Team" hacked Ashely 
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Madison's computers and stole its entire user base. The group tried to 
blackmail the site into shutting down and ended up leaking 25 Gigabytes 
of material when their demands were not met. The data breach caused 
an immense impact on the lives of the people involved, including two 
suicides linked to the event [5]. 
 
In many cases malicious attacks are not carried out in a single shot. Many 

attacks are multi-faceted, containing several intermediate steps, each designed 
to progress the offender to the next level of penetration before reaching the final 
goal. As an example, SophosLabs [6] details 5 stages of a Web malware attack 
leading from entry to execution on the compromised system: 

Entry – malicious code enters the victim system as a result of a drive-by 
download occurring when visiting a hijacked site or following a malicious link 
in an Email. 

Traffic Distribution – Drive-by downloads execute inside browsers. Their 
primary goal is to download an exploit kit. Traffic redirection occurs to conceal 
the Host IP address from which the exploit kits are eventually downloaded. 

Exploits – Once an exploit kit is downloaded it attempts to locate a system 
vulnerability that it can exploit in order to progress the attack. Exploits are 
usually encapsulated in PDF, FLASH, Java, JS or HTML files. 

Infection – Once a vulnerability is found by the exploit kit, it is used to 
download the actual malware executable code. SophosLabs identify several 
common malware payloads: Zbot(Zeus) – steals personal information by 
logging keystrokes and grabbing display frames; Ransomeware – restricting 
access to the user’s resources and demanding payment to restore access; PWS – 
steals user credentials and allows remote access; Sinowal(Torpig) – installs a 
rootkit to steal credentials and allow remote access.; FakeAV – a Fake antivirus 
that “finds” fake viruses and demands payment to “clean” them out. 

Execution – The downloaded malware has been installed in the victim 
system and is executed. This is the stage where the actual damage is inflicted. 

 
Other types of attacks exist as well, each seeking to abuse system or 

human vulnerabilities in order to penetrate a system in order to inflict damages, 
gain access to privileged information or completely take control. Many of these 
attacks are similarly multi-stage. Attacks may exploit all or some of the 
following common stages: 

Entry – Malicious code enters the system as a result of a malicious Email 
attachment, a bogus executable installation a buffer-overflow, a USB disk 
insertion a worm or a virus spreading. 

Non-privileged execution – In this mode of execution, malicious code that 
has entered the system executes in a low privileged level. It may still inflict 
some damage, however that damage is usually limited and may eliminate its 
capability to achieve persistency. In that case, the malicious code will disappear 
when the system is rebooted. 
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Escalation: privileged execution – A much more hazardous case occurs 
when an un-privileged code exploits a system vulnerability (usually in the O/S) 
and manages to escalate its privilege. It is beyond the scope of this text to 
describe the mechanisms that may be employed to achieve this, but the statistics 
are most staggering. Malicious code that gains privileged access may freely 
write to the file system on disk – both to user and to OS space, to the system 
registry or even to the boot record or BIOS memory. 

Acquiring Persistency – Using the capabilities of privileged execution, 
malicious code can strive for persistency. In other words, the capability to 
survive system reboot as well as a complete system power-cycle.  Achieving 
this level is the first step in securing the malicious code’s survival in the 
compromised system. Many infections will also go to great lengths to 
camouflage their existence using a variety of methods, some very cunning, to 
avoid detection and removal. 

Compromised system – Once malicious code has persistent execution on 
the system the perpetrator can potentially steal sensitive data, log keyboard 
activity to steal messages or passwords, grab screen-shots or even achieve full 
remote-control of the system. 

1.2 Creating Trust in a Remote System 

In general, achieving Trust in remote computer systems should be interpreted 
as generating a specific instance or object, which can be trusted and relied upon 
to act in a predetermined way under all circumstances [7]. In general, Trust 
encompasses validated software combined with some secret data known only 
to that software coupled with a methodology that assures protection against 
subversion and/or modification of the secret data. 

 
Therefore, Trust must be created, validated and then (indefinitely) sustained. 

 
The problem of remote authentication, determining whether a remote 

computer system is running the correct software version, is well known [8] [9] 
[10] [11]. Equipped with a remote authentication method, a service provider can 
prevent unauthenticated remote software from obtaining some secret 
information or some privileged service. For example, only authenticated 
gaming consoles can be allowed to connect to the gaming networks [12] [13] 
and only authenticated bank terminals can be allowed to fetch records from the 
bank database [14]. 

The research in this area can be divided into two major branches: 
hardware assisted authentication [15] [16] and software-only authentication [8] 
[9]. While in theory, hardware assisted authentication may provide more 
conclusive results regarding the authenticity of a remote machine, in practice 
the hardware fails to provide additional security due to inappropriate designs 
of currently available operating systems [17]. 
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Hardware assisted authentication uses an external hardware component, 
such as a Trusted Platform Module (TPM), to compute a cryptographic hash of 
the computer's hardware and software configuration to attest it. Frequently the 
TPM is used as the root of a chain of trust [18]. The TPM measures the 
authenticity of the BIOS. The BIOS then measures the authenticity of the boot 
loader and so on. Unfortunately, all common modern operating systems (e.g. 
Linux, Windows, OS X) allow the user to load drivers for execution with the 
same privileges as the operating system itself, i.e. ring 0 on x86 and x64 
hardware. Malicious or buggy drivers, which are executed with high privileges, 
allow random code execution and thus make it possible to circumvent the 
authenticity measurements of the TPM. Physical attacks on TPM were also 
shown to exist, assuming the assailant has access to the hardware were it is 
installed [19] [20] [21]. 

System-wide authentication entails simultaneously authenticating some 
software component(s) or memory region, as well as verifying that the remote 
machine is not running in virtual or emulation mode. These methods may also 
involve a challenge code that is sent by the authentication authority, and 
executed on the remote system. The challenge code computes a result that is 
then transmitted back to the authority. The authority deems the entity to be 
authenticated if the result is correct and was received within a predefined time-
frame. The underlying assumption, which is shared by all such authentication 
methods, is that only an authentic system can compute the correct result within 
the predefined time-frame. The methods differ in the means by which (and if) 
they satisfy this underlying assumption. 

1.3 Methods of Obfuscation 

One way of preventing circumvention of software, is by using methods of 
obfuscation [22] [23] [24] [25]. The term obfuscation refers to making software 
instructions difficult for humans to understand by deliberately cluttering the 
code with useless, confusing pieces of additional software syntax or 
instructions. Obfuscated code must still be functional, however its goal is to 
render the code difficult enough to understand and therefore too difficult to 
reverse-engineer. The assumption is that without properly reverse-engineering 
software, it is not possible to subvert or circumvent it to the gain of the 
aggressor. In most cases obfuscation methods attempt to protect two main 
aspects of malicious attacks: (a) software piracy; and (b) software tampering. 
Software piracy takes on the form of operating or redistributing software 
without a license or stealing software intellectual property, such as an 
algorithm used in a software product. Software tampering involves making 
changes to existing software, such as circumventing instructions that may check 
for licensing or by adding instructions that are designed to achieve some 
malicious activity, such as a virus or any other form of malware that needs to 
infiltrate the system. 
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More advanced, software publishers may protect their digital content 
product by encryption, using a unique key to convert the software code or data 
to an unreadable format, such that only the owner of the unique key may 
decrypt the software code. Such protection, however, is only effective when the 
unique key is kept secured and unreachable to an adversary. This reduces the 
security issue to that of securing the key. Since the software must also function 
properly in its untampered form, it must have the key available, leading to the 
necessity to obfuscate the key and the routines that make use of the key. 

It has been shown that obfuscated software code can be invariably broken 
by hackers, specifically since its content must still be readable to properly 
function [26] [27] [28] [29] [30]. Hackers equipped with the proper tools, such as 
disassemblers, logic analyzers, tools for static and dynamic analysis coupled 
with patience and dedication, have cracked even the most cunning software 
obfuscations methods. 

1.4 Security by Design 

Security by design [31] [32] proposes an alternative to methods of obfuscation, 
which propagate security by obscurity. Rather than attempting to secure a 
system after its implementation, by hiding or obfuscating its critical elements, 
security by design addresses the issues of security as part of the system design 
before its implementation. Using this approach [33], system design inherently 
encompasses active security techniques, vulnerability elimination and built-in 
resistance to attack adhering to best-practices. Security by design steers away 
from relying on secret operations, obscurity or obfuscation techniques to 
achieve security. Revealing the security design openly, without compromising 
its security, often leads to the best security by design methodologies. The reason 
for this is twofold: 

(a) System security does not rely on chance and is not dependent on as 
adversary's capability to investigate or stumble upon a secret. Security is 
fundamental to the methodology, where it can be shown that knowing its inner 
workings does not compromise it; and 

(b) The security methodology is open to all, for scrutinizing and peer-
review, leading to flaws, if any, being exposed and amended. 

1.5 Overview of the Proposed Methodology 

Protecting computer systems from malicious code, malware and data-breaches 
in an impregnable manner, must be based on foundations of "security by 
design". One of the key points in achieving this is successfully creating trusted 
components on the target system. The trusted components are comprised of 
software and its configuration data. In this context, setting up trusted software 
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on a computer system should be interpreted as software that can be guaranteed 
to perform in a predetermined manner, whose code contents are validated, that 
can protect its internal assets (code and data) from subversion and that can 
perform unique activities (such as cryptographic computations) that prove its 
authenticity at any time. 

1.5.1 Adversary Model 

We assume that an adversary is freely able to access system memory for writing 
and reading. Memory can be accessed for writing in a variety of ways. For 
example, contents can be loaded from disk, arrive over a communication 
channel or be injected directly into memory by an executing application. We 
further assume that an adversary is also able to write to some memory regions 
that should in principle be protected by the OS, based on exploiting system 
vulnerabilities. Such regions include, but are not limited to, application code, 
privileged kernel-mode code and system drivers. 

Furthermore, it is assumed that an adversary cannot obstruct the operation 
of a root (primary) hypervisor based on hardware virtualization. Nor can an 
adversary obstruct the protected mechanisms of SLAT (secondary level address 
translation) (i.e., EPT) and IOMMU that operate at a privilege that is higher 
than the OS while a hypervisor is active. 

Adversary attacks that are based on manipulating pure data in memory, 
in such a way as to render legitimate code malicious (referred to as code-reuse) 
are not considered. 

1.5.2 Proposed Methodology 

A general overview of the proposed methodology is presented here which shall 
be elaborated in detail in the following chapters. 

 
Computer systems that run application software are normally managed by 

Operating Systems (OS). The OS manages all hardware resources, schedules 
software for execution and provides hardware-oriented services [34] [35] to the 
applications that run above it. Since the OS is an intermediary between the 
hardware and the software, it must have full control over the hardware 
resources to properly manage and allocate them to the software applications in 
such a manner so as to maintain system integrity. As such, OS software routines 
must be given a higher privilege level than the application software. The 
elevated privilege assures that application software cannot circumvent the OS 
in accessing the hardware or software resources, which must be exclusively 
controlled by the OS. For this purpose, the central core of the OS, called the 
Kernel [36] [34], is composed of a group of routines that operate at an elevated 
privilege level. The Kernel routines carry out all the hardware and critical 
software management task. In modern processors, privilege level is enforced by 
a set of instructions that can only be performed when the processor is put in a 
high privilege mode. The OS configures the system so that only the kernel 
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routines operate at the higher privilege mode, while all other software 
applications operate at a lower privilege level and thus require kernel routine 
assistance in utilizing hardware resources. 

A critical security restriction, that must be enforced, is ensuring that 
malware does not infiltrate the OS kernel and can thus execute at an elevated 
privilege level, consequently allowing it to obtain full control of the computer 
system. However, this is easier said than done. Due to the size and complexity 
of operating systems, hackers and malware programmers are continuously 
finding vulnerabilities that are exploited to allow malicious software to gain a 
high privilege level and compromise the system. Therefore, the methodology 
proposed herein suggests the use of a software component having a higher 
privilege than the OS. Thus, it can be used to manage system security, even in 
light of the possibility that malware has infiltrated the kernel and achieved OS 
privilege level execution rights. 

The embodiment of a software component with privileges higher than the 
OS has been realized in the form of a hypervisor [37] [38] and is used to manage 
several operating systems on a single hardware platform. Hypervisors, first 
introduced in mainframe computers in the 1960s, now utilize hardware 
virtualization [39] that is available in most modern processors. 

Rather than use a hypervisor as a multi-operating-system manager, it is 
proposed to utilize its elevated privilege to manage and monitor a systems 
security. However, to achieve that, the hypervisor itself must be guaranteed to 
be trusted and completely free of malware and vulnerability to subversion. Two 
main aspects of hardware virtualization technology position the hypervisor as a 
favorable candidate for a software component that can be remotely trusted to be 
safe. First, a minimal hypervisor can be created and therefore with minimal 
complexity, making it easier to verify. And second, once a verified (and 
authenticated) hypervisor is in control of a hardware platform it is potentially 
able to resist all attempts of subversion. 

The proposed methodology, described in this work, proposes to run a 
minimal hypervisor for the sole purpose of securing a computer system. 
Furthermore, an attestation procedure [8] [40], governed by an external server 
system, is used to ensure that the hypervisor is trustworthy by authenticating 
and validating its contents. The attestation procedure will serve to guarantee 
that a hypervisor, after taking control of a remote system, is trustworthy and 
can be safely assumed to maintain its trustworthiness so-long as the system 
remains in operation. Once trustworthiness is established, the attestation server 
can transfer secret information directly to the trusted hypervisor in a safe 
manner. The secret information can then be used by the hypervisor to carry out 
cryptographic operations allowing it to further communicate, in confidence, 
with the attestation server. It can also receive, interpret and validate additional 
encrypted information, utilizing that to augment maintenance of cyber-security 
in a computer system. 
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1.5.3 Existing Methodologies Evaluation 

In 2016, Microsoft added a similar methodology to Windows 10, called Device 
Guard [41]. Device Guard is a group of features designed to take advantage of 
hardware-virtualization, SLAT and IOMMU to protect systems against 
unsigned applications, malware and APTs. Microsoft calls this technology 
Virtualization Based Security (VBS). The technology Microsoft offers is based 
on Microsoft's own Hyper-V, which is a full blown hypervisor that is integrated 
into Windows OS. 

To take advantage of Hyper-V it must be booted before the Windows OS. 
Similar to the methodology proposed in this thesis, when Device Guard is 
employed, the hypervisor verifies code integrity in both Kernel and User mode 
applications and manages memory access rights based on SLAT. Microsoft 
provides tools that sign applications (whitelisting) and when Device Guard is 
active, verifies signatures with components called CCI (Configurable Code 
Integrity) and HVCI (Hypervisor Code Integrity). 

Since Hyper-V is a full blown hypervisor, its attack surface is relatively 
large, which leaves an opening for exploitation attacks [42]. Hyper-V, which is 
booted before the OS, is not inherently secure and thus cannot be trusted. 
Therefore, potential attacks on the integrity of Hyper-V may be attempted to 
circumvent Device Guard. A secure boot, based on TPM, could be employed, 
however besides the added TPM hardware requirement, TPM has been broken, 
as mentioned above [19] [20] [21]. 

Furthermore, since the technology is based on Hyper-V, it is applicable 
only to systems running Microsoft operating systems.  

1.6 Research Contribution 

A methodology and system that achieve a strong system-wide protection 
against execution of a wide array of unauthorized code penetrations is 
proposed and studied. The research approach is distinguished from previous 
efforts by the implementation of an attested thin-hypervisor, which launches in 
an existing OS and which extends its security model over existing legacy 
applications without requiring their modification. 

The lean thin-hypervisor proposed provides for an extremely small surface 
of attack. The attestation procedure described provides a software-only solution 
that ensures the hypervisor can be trusted and contains safeguarded secret key 
material. 

The unique approach described here allows a system to dynamically shift 
between protected and unprotected modes of operation. This situation can be 
appreciated, for example, in a BYOD situation, where enterprise employees can 
use their own computers for private (unsecure use) without enduring the 
performance overhead associated with hypervisor protection (see chap. 4.5.1), 
then shifting dynamically into protected mode to run office applications that 
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warrant extensive security. Applications that execute in protected mode shall be 
protected and isolated from any malicious code the computer may have 
contracted. Dynamically shifting into protected mode is based on the capability 
to activate a thin-hypervisor after an OS already prevails. Securing trust in this 
situation entails administering a remote attestation procedure to establish a 
trusted environment in an otherwise untrusted computer system. 

The lean thin-hypervisor design is extremely apt to porting to other 
operating systems. Currently it is operating on Windows, IOS and Linux with 
ports to ARM/Android underway. Furthermore, since the proposed thin-
hypervisor is unrelated to a specific operating system, it may be used as a 
hosting hypervisor in a nested-hypervisor environment to provide application 
execution protection for applications running on multiple operating systems on 
the same computer system. 

1.7 Author Contribution 

The author is a major team member of the TrulyProtect research team, which 
was financed by the Finnish agency TEKES and the University of Jyväskylä. 
The author significantly contributed, together with the other team-members, to 
the research project in conceiving the ideas and developing the theory and the 
framework behind setting-up a trusted thin-hypervisor and its remote-
attestation for the purpose of securing a computer system against malicious 
software attacks. The author also substantially contributed to writing the 
software that implements the proposed methodologies that are studied under 
this research. 

Summaries of the included articles along with the author's contribution to 
each are detailed in chapter 6. 

 



 

2 USING A HYPERVISOR TO ENFORCE TRUST 

2.1 Hypervisors and Hardware-Assisted Virtualization 

A hypervisor, also referred to as a Virtual Machine Monitor (VMM), is software, 
which may be hardware assisted, to manage multiple virtual machines on a 
single system. The hypervisor virtualizes the hardware environment in a way 
that allows several virtual machines, running under its supervision, to operate 
in parallel over the same physical hardware platform, without obstructing or 
impeding each other. 

Hypervisors have been in use as early as the ‘60s on IBM mainframe 
computers [43]. After 2005  Intel and AMD have added hardware support in the 
form of virtualization extension instructions that are an extension to the x86 
instruction set architecture, allowing isolation of multiple operating systems 
efficiently, thus facilitating the construction of virtual machine monitors 
(Hypervisors) [44] [45]. Note that previously, construction of virtual machine 
monitors involved binary instrumentation and required modification in the 
code of the hosted operating systems. 

Each virtual machine has the illusion that it is running, unaccompanied, 
on the entire hardware platform. The hypervisor is referred to as the Host, 
while the virtual machines are referred to as Guests. Hypervisors are further 
categorized as: type-1 [46] (or bare metal) and type-2 hypervisors [47]. 

A type-1 hypervisor executes independently and directly over the system 
hardware. The OS of the Guests run above the hypervisor, in effect decoupled 
from the system hardware by the hypervisor. 

A type-2 hypervisor executes above a cooperating OS, where Guests run 
atop the hypervisor. This type of hypervisor uses the cooperating OS as a 
means to access and manage hardware resources. 

In order to support multiple OS guests, a type-1 hypervisor must 
unobtrusively intercept OS access to hardware resources so it can attend to 
them itself. The hypervisor can then manage hardware allocations that maintain 
proper separation between the Guests. The Guest OS is unaware of the 
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hypervisor’s intervention, as it experiences a normal hardware access cycle. The 
only distinction being the elapsed time, since the hypervisor mediation has a 
time-toll. 

 
FIGURE 1 depicts a virtualized system featuring a hypervisor that 

manages two Virtual-Machines (VMs), each running an operating system that 
manages its user applications. The hypervisor runs at a higher privilege level 
than the operating system. System calls, traps, exceptions and other interrupts, 
transfer control from user mode applications to their operating system. The 
operating systems handle these conditions by requesting services from the 
underlying hardware. The hypervisor is configured to intercept all those 
requests and handle them according to its policies. 

 

 

FIGURE 1 Virtualized system with 2 Virtual-Machines (VM). Each VM is a stack 
comprised of an OS with applications running over it. Applications utilize 
the OS by making system calls and Trap intercepts. Each OS believes to be 
running over the hardware platform, however OS requests from the 
hardware are intercepted and managed by the hypervisor, which maintains 
isolation between the VMs. 

To intercept all OS hardware access, hypervisors are configured to 
intercept privileged instructions, memory access, interrupts, exceptions and 
I/O, which are the OS vehicles for hardware access. Executing an intercepted 
privileged instruction causes a hypervisor VM_EXIT. In other words, the Guest 
VM is exited and the configured hypervisor intercept-routine is executed. When 
this occurs, the CPU mode changes from Guest-mode to Host-mode. 

Guest applications that require hardware resources, execute system calls 
to request support from their OS. FIGURE 1 depicts this chain-of-execution for a 
type-1 hypervisor with two Guest stacks. After fulfilling the intercept, the 
hypervisor indiscernibly returns to the Guest. 
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While hypervisors were generally designed to serve as virtual machine 
monitors, type-1 hypervisors, which control the underlying hardware platform, 
also providing a very good fit to serve as software security facilitators. 

Hypervisors have been previously used to secure systems. For example, 
the Software-Privacy Preserving Platform (SP3) [48] utilizes a hypervisor to 
maintain isolated memory-pages in protection-domains. Physical pages in the 
system can be individually encrypted with a symmetric-key, where each 
domain has an associated set of keys whose pages it is allowed to use. The 
hypervisor intercepts interrupts and exceptions and uses shadow page-tables to 
manage decryption and encryption of the appropriate pages when the 
application shifts between domains. This methodology keeps domain access to 
protected pages isolated from other domains as well as from the OS. The 
hypervisor stores the key-database and domain key-associations in its own 
isolated memory. 

2.2 The Thin-Hypervisor 

Our research project proposes to use a type-1 hypervisor environment for 
securing a single Guest stack. Rather than wholly virtualizing the hardware 
platform, a special breed of hypervisor, called a thin-hypervisor [49] [50], is 
used. The thin-hypervisor is configured to intercept only a small portion of the 
system’s privileged events. All other privileged instructions are executed 
without interception, directly, by the OS. The thin-hypervisor only intercepts 
the set of privileged instructions that allows it to protect an internal secret (such 
as cryptographic key material) and protect itself from subversion. FIGURE 2 
depicts a thin-hypervisor supporting a single Guest stack. The thin-hypervisor 
does not control most of the OS interaction with the hardware, therefore 
multiple OSs are not supported. However, system performance is kept at an 
optimum. Additionally, the thin-hypervisor runs at a higher privilege level than 
the operating system. System calls, traps, exceptions and other interrupts, 
transfer control from user mode applications to the operating system. The 
operating system handles these conditions by requesting service from the 
underlying hardware. The thin-hypervisor intercepts only a few of those 
requests, while remaining transparent to all others, which are thus serviced 
directly by the hardware. 

Thin-hypervisors have been previously used for security purposes. For 
example, TrustVisor [51] is a thin-hypervisor that enables isolated execution of 
designated portions of an application. TrustVisor is booted securely by making 
use of a TPM chip and once in operation, it depends on hardware virtualization 
to isolate portions of memory with Secondary Level Address Translation 
(SLAT) as well as protect memory from DMA access by physical devices with 
DEV or IOMMU. TrustVisor utilizes this capability to (i) protect itself; and (ii) 
extend TPM facilities to a so-called μTPM environment that is used to provide 
high-speed trusted-computing primitives. These capabilities are further used by 
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TrustVisor to achieve its ultimate goal of supporting a totally-isolated execution 
environment for designated self-contained software routines, called PALs 
(Pieces of Application Code). Software developers designate the portions of 
their codes that require isolation and group them into appropriate PALs. The 
developers register the PALs by providing a description of PAL bounds as well 
as memory regions they need to access. The TrustVisor guarantees that when 
PALs are called they operate in an isolated memory environment until they are 
exited. 

 

FIGURE 2 Thin-hypervisor securing a single VM stack. The thin-hypervisor only 
virtualizes a select subset of the OS's hardware requests. Most OS 
operations are executed directly by the hardware. 

A thin-hypervisor facilitates a secure environment by: 
(a)   Setting aside portions of memory that can be accessed only when the 

CPU is in Host mode 
(b)   Storing cryptographic key material in privileged registers, and 
(c)  Intercepting privileged instructions that may compromise its 

protected memory or key material 
 
A thin-hypervisor is also less susceptible to being hacked as a result of 

vulnerabilities, since its code and complexity are greatly reduced, as compared 
to a full-blown hypervisor. This serves to significantly reduce the threat surface 
that needs to be protected. 

Once this environment is correctly setup and configured, the thin-
hypervisor can be utilized to carry out specific operations, which may include 
use of the internally stored key material, in a protected region of memory. As a 
result of the tightly configured intercepts and absolute host control of select 
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memory regions, this activity can be guaranteed to protect both the secret key 
material and the operations' results. 

A correctly configured and active thin-hypervisor can effectively protect 
the secret key-material, after it is safely stored in privileged registers. However, 
the procedure by-which the secret material gets stored while the thin-
hypervisor is being setup – is delicate business, since an adversary can 
potentially grab the secret at that point. An additional question, requiring an 
answer, is where the secret is kept while the thin-hypervisor is not active? 

 
The approach to solving these issues is comprised of the following 

principles: 
1.       While the thin-hypervisor is not active, the secret key material 

shall not be stored anywhere in the system 
2.       When setting up a thin-hypervisor, an external system shall be 

used to verify that the thin-hypervisor has control over the 
underlying hardware 

3.       The same external system that verifies the thin-hypervisor shall 
provide the secret key-material 

 
The first principle is important to rule out the possibility of keeping secret 

material under the cover of obfuscation, which is known to be ultimately 
vulnerable. The second and third principles require maintaining a remote 
attestation server system and equipping it with the facilities to verify that a 
thin-hypervisor has been properly setup and configured on a remote system, 
such that a trusted environment is primed and can accept secret material, as 
well as keep it secret. 

2.3 Attestation of a Remote Hypervisor Activation 

Hypervisors can be nested. In other words, a hypervisor's Guest can itself be a 
virtualized system embodying a VMM (Host) and VMs (Guests) [52]. In order 
to support such a configuration the outermost surrounding hypervisor needs to 
specifically support nested-virtualization. 

We introduce the concept of a Root-Hypervisor: A Root-Hypervisor is the 
distinct hypervisor that has the ultimate control over the hardware platform. A 
Root-Hypervisor does not have to support nested-virtualization. However, in a 
nested virtualization environment the surrounding hypervisor, which supports 
and manages nesting is invariably the Root-Hypervisor. 

Hypervisor activation can be part of the system boot process or can occur 
after an OS is already active. This is achieved by capturing the OS instance, 
taking (virtualization) control of the system and instantiating the OS instance as 
a Guest (VM). Such a rootkit driver, dubbed "Blue-Pill" was suggested in 2006 
by Joana Rutkowska [53] and independently by King and Chen [54]. 
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Configuring and installing a hypervisor can only occur while the system is 
in Kernel-mode, since hypervisor instructions are all privileged instructions. 
Therefore, when launching a "Blue-Pill" style hypervisor, under the supervision 
of an operating system, the hypervisor configuration and installation functions 
must be implemented in a kernel-mode system software driver. We call this the 
HDriver (Hypervisor-Driver). The target system must have the HDriver 
installed and registered in order to successfully launch the hypervisor 
installation. 

Once a Root-Hypervisor has taken control of the system, by becoming a 
VMM host, it is capable of intercepting all further hardware events. This 
includes the aforementioned capability to manage and support the upbringing 
of a nested-hypervisor by one of its Guest VMs. Furthermore, the Root-
Hypervisor can take measures to conceal its existence. For example, by 
falsifying results of intercepted instructions that probe the hardware. This type 
of behavior has been suggested as an approach for hackers implementing 
hypervisor-based malware [55] [56]. 

It is self-evident that the Root-Hypervisor needs to be the first hypervisor 
to take control of the system. Being the first hypervisor to virtualize the system 
secures the opportunity to intercept hardware events as well as fully control the 
intercept activity of nested hypervisors. 

When attempting to use a hypervisor as the base foundation for enforcing 
trust in a computer system it is unequivocally essential to determine that the 
hypervisor is a Root-Hypervisor. In other words that it is the first hypervisor to 
virtualize the system, and thus has ultimate control of the hardware platform. 
Given the disingenuous capabilities of a hardware-virtualization based 
hypervisor, this task as not as simple as may initially appear [57] [58]. 

However, verifying that the hypervisor is a Root-Hypervisor is not the 
only concern in establishing trustworthiness. Granted, once the hypervisor is in 
control and validated as a Root-Hypervisor, it may be safe to assume that it can 
be utilized to enforce trust, as well as protect itself, as discussed in the 
paragraph below. However, during the process of establishing the hypervisor's 
control, even assuming it is the first hypervisor, it is critically exposed to 
subversion. The main concerns are the possibility of a malicious software 
making changes to the hypervisor's code or data-structures just before it takes 
control. These concerns are especially acute when the hypervisor is launched 
while an OS is already prevailing, since the potential of its being infected by 
malicious code is eminent. Furthermore, modern computer CPUs consist of 
more than a single processing unit, organized in a hierarchy of cores and logical 
processors. With multiple cores the system can execute several programs in 
parallel. This imposes additional verification requirements, since it is 
potentially possible for malicious code running on one core to undermine the 
process of establishing the hypervisor on another. Moreover, the system can be 
regarded as trustworthy only if a root-hypervisor is successfully instantiated 
and verified on all the existing cores. 
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Attestation [59] [60] is the collective effort of verifying and validating that 
the hypervisor is a root-hypervisor, properly installed on all cores, that has not 
been subverted in any way. Namely it establishes a trusted platform in a target 
computer system. 

One of the main instruments to facilitate attestation is time-measurements. 
The reason for this is the execution overhead associated with virtualization 
intercepts. For example, an attestation procedure may measure the time it takes 
to complete a pre-known procedure and attempt to determine whether 
intercepts occurred and accordingly consumed time. However, timing 
measurements cannot be conducted by the system being attested, since requests 
to fetch time readings from the hardware can be intercepted and the results 
falsified. Hence, an external system must be involved in the attestation process. 
We use an Attestation Server for this purpose and perform a Remote-
Attestation Procedure. The attestation server communicates with the attestation 
target, sends it a challenge in the form of executable instructions and measures 
the turn-around response time. In this case, the time measurement can be 
considered objective. 

2.4 Protecting a Thin-Hypervisor that Enforces Trust 

We assume at this point that a thin-hypervisor is brought up on a computer 
system and it is successfully attested by an attestation-server, therefore it can be 
trusted. In the next chapter we will explain and demonstrate that following a 
successful attestation procedure we can assume the following: 

• The hypervisor is a Root-hypervisor, i.e., it is the first hypervisor to be 
launched in the computer system and it has control of the underlying 
hardware 

• The hypervisor code contents are verified and authenticated, i.e., 
instructions that will execute in host mode have not been subverted, 
therefore the hypervisor can be trusted to perform as intended 

• The hypervisor contains secret material, received in confidence from 
the attestation-server, during the attestation procedure. The secret 
material is known only to the hypervisor and the attestation-server 

 
A significant part of the hypervisor configuration and routines must be 

dedicated to enforcing and maintaining trust after the attestation has validated 
the initial conditions of trust. To accommodate, the hypervisor's surface of 
attack must be considered and appropriate means need to be deployed to 
provide ample resistance. The following major aspects of hypervisor trust 
maintenance are reviewed, as examples: 
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2.4.1 Secret Material Storage 

The hypervisor receives secret material in confidence from the attestation-
server. The secret material is a basis for cryptographic operations, such as 
decryption or signing, which the hypervisor carries out as part of the general 
security-scheme implemented by the hypervisor. Naturally, this secret material 
must be kept out of reach and is a potential target for an adversary wishing to 
subvert the hypervisor functions. To overcome this, the hypervisor stores the 
secret information in privileged registers, as well as configures VM exit 
intercepts on access attempts to the privileged registers. See section 25.1.3 in 
[44]. Any attempt to access these registers will be intercepted by the hypervisor, 
which will either ignore the access request or report an invalid result. 

2.4.2 Protecting Hypervisor Configuration-Structures 

Hypervisor configurations are stored in dedicated data-structures. For example, 
VMCS in Intel, section 24.1 [44] and VMCB in AMD, section 15.5.1 [61]. The 
contents of these repositories must be vigorously defended from illicit access. 
Otherwise an adversary might make changes that will eventually subvert the 
hypervisor. For example, she may replace the address setting of the intercept 
handler, and thus, when a VM exit intercept occurs, the adversary's intercept 
routine shall be activated instead of the intended one. To subjugate this threat, 
the hypervisor takes advantage of a mechanism called Second Level Address 
Translation (SLAT). See Intel EPT chapter 28 of [44] and AMD RVI chapter 15.25 
[61]. SLAT is discussed later in section 4.1. At this point we only mention that 
SLAT allows a hypervisor complete control over memory access-rights. Subject 
to this, the hypervisor configures the SLAT to disallow any access to the 
memory pages that contain it configurations. In effect, this memory does not 
exist outside host mode and therefore cannot be accessed. 

2.4.3 Using Intel VT-d and AMD-Vi (IOMMU) 

While SLAT provides an immaculate solution to protect against memory access 
performed by software running on one of the core processors, I/O device DMA 
transfers provide an alternate route to access memory. Virtual to physical 
address translation during CPU memory transfers is managed by the MMU 
(Memory Management Unit), which implements SLAT when hardware 
virtualization prevails. On the other hand, I/O device DMA allows devices to 
access memory directly. An adversary may potentially attempt to affect critical 
memory sections protected by the hypervisor with SLAT, using DMA or RDMA 
(Remote DMA), thus subverting the hypervisor and penetrating the system. 
Fortunately, Intel and AMD have implemented solutions for this issue to 
enhance hypervisor performance. The motivation for this was to allow a 
hypervisor means to configure I/O device DMA access that ensures VM 
separation without resorting to hypervisor intercepts on each I/O access. Intel 
have added the IOMMU and VT-d technology, called "Virtualization 
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Technology for Directed I/O" [62] and AMD have added AMD-Vi technology 
"AMD I/O Virtualization Technology (IOMMU) Specification" [63]. AMD-Vi 
and Intel VT-d technology provide facilities to configure the IOMMU to remap 
DMA addressing. The configuration is used to map separate VM devices to 
individual and isolated memory domains. Each VM can then access only its 
own memory domain and is blocked from other VM domains. To avert 
potential subversion by accessing memory, the thin-hypervisor configures the 
IOMMU to remap the (single) VM's I/O DMA access to a memory domain that 
excludes the same memory pages protected by the SLAT. This procedure 
ensures that critical pages, whose access is allowed only by the hypervisor, are 
protected both from memory access as well as DMA and RDMA access. In 
effect, being completely invisible to the outside world. 

2.4.4 Secure AES Cryptography 

Based on the availability of secret material stored inside the hypervisor and 
protected in privileged registers, the hypervisor may perform cryptographic 
operations as part of the general security-scheme. An adversary that is aware of 
this, may attempt to attain the AES key using side-channel attacks [64] [65]. To 
avoid this threat the hypervisor uses a hardware implementation of AES, 
available on modern processors, such as AES-NI (AES New-Instructions) [66]. 
Furthermore, the implementation of AES cryptography is managed entirely in 
CPU registers, as opposed to using memory buffers for intermediate results. 
This combination reduces vulnerability to potential side-channel attacks to 
virtually non-existent [67] [68]. 

2.4.5 Intercepting Critical Instructions 

The thin-hypervisor must also protect its existence. Since malicious code may 
also penetrate the system and achieve kernel-level execution mode, it is 
imperative to intercept all privileged instructions that may obstruct the 
hypervisor's presence. Thus, for example, the VMXOFF instruction, which 
causes the system to exit Virtualization mode must be intercepted and ignored. 
Similarly, VMPTRLD, VMPTRST, VMCLEAR, VMWRITE and VMREAD 
instructions, which access the hypervisor configuration structures must be 
intercepted and ignored as well. 

 



 

3 REMOTE SOFTWARE ATTESTATION 
METHODOLOGY 

3.1  Previous Work 

Pioneer [69] is a software-only component designed to provide execution of a 
remotely authenticated executable on an untrusted and possibly compromised 
legacy host system. Pioneer is composed of a dispatcher system that is used to 
manage a challenge-response protocol with the untrusted platform, where an 
authenticated executable is to be run. The methodology of Pioneer is based on a 
verification utility, which first establishes itself as a root of trust, by executing 
code that both checksums itself and verifies that it is running. The verification 
utility is randomized by receiving a challenge seed from the dispatcher. Once 
trusted, the verification utility proceeds to authenticate the executable in 
question. Pioneer is based on two assumptions on the untrusted platform: 

(a) It has a single logical processor 
(b) It does not contain a virtualization extension 

Logical processors multiplicity, which was introduced in modern CPUs, 
violates the assumptions of Pioneer. The authors propose a remedy for this 
vulnerability by introducing a data dependency between the different parts of 
the challenge [70], thus preventing its parallel execution. Pioneer execution on 
processors with a virtualization extension is discussed in [71]. The authors 
describe a modification to the original method which allows not only to achieve 
consistent results on all processors but also to employ intermediate variations to 
detect virtualized environments. 

 
Kennell and Jamieson proposed a method [8] that produces the result by 

computing a cryptographic hash of a specified memory region. Any 
computation on a complex instruction set architecture (Pentium in this case) 
produces side effects. These side effects are incorporated into the result after 
each iteration of the hashing function. Therefore, an adversary, trying to 
compute the correct result on a non-authentic system, would be forced to build 
a complete emulator for the instruction set architecture to compute the correct 
side effects of every instruction. Since such an emulator performs tens and 
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hundreds of native instructions for every simulated instruction, Kennell and 
Jamieson conclude that it will not be able to compute the correct result within 
the predefined time-frame. 

The method of Kennel and Jamieson was further adapted for modern 
processor environments [40]. The adaptation solves the security issues that arise 
from the availability of virtualization extensions and multiplicity of execution 
units. 

3.2 Attestation Goals 

The design of an attestation procedure for the purpose of establishing trust in a 
remote multi-processor environment must verify all of the following points: 

1. Verify that the hypervisor is a root-hypervisor that has control of the 
machine, i.e., no emulator or primordial hypervisor already exists in 
the system 

2. Validate the hypervisor contents 
3. Verify that the hypervisor that is being attested is the one executing 
4. Ensure that all cores/logical-processors are running the attested 

hypervisor  
5. Create a trusted communication channel to the hypervisor  
6. Transfer a secret to the trusted hypervisor  

 
Point (1) is required to ensure that the hypervisor being launched and attested 
is not "fooled" into a false-sense of control by a primordial hypervisor that is 
already controlling the machine and configures it in a nested-virtualization 
frame-work. If this scenario could transpire, a malicious thin-hypervisor could 
potentially grab control of the system before our thin-hypervisor in which case 
the hypervisor activities could be intercepted and subverted by the malicious 
root-hypervisor. 

 
Point (2) is essential to validate that the code, which composes the hypervisor, is 
the intended code and that it can be trusted to behave in a pre-deterministic 
fashion. Code validation includes the initialization code, to guarantee that the 
hypervisor configuration data-fields are pre-determined as well and can be 
trusted. Without this validation the hypervisor would be open to a malicious 
attack in the form of changing part(s) of its code in a way tailored to reveal its 
secret or subvert its operation. It can be easily shown that even a single bit 
changed in the hypervisor's code section would allow completely subverting it. 
For example, consider changing a significant bit in the address of a routine call 
that will hurdle the CPU towards a section of malicious code. 

 
Point (3) verifies that the hypervisor that is being attested is actually the one 
that eventually executes and takes control of the system. This validation is 
important to counter the possibility that an adversary manages to subvert the 
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attestation process in a manner that validates the correct hypervisor code. 
However this code exists in a separate memory buffer but will not be the code 
to run and control the system after the attestation is complete. If such was the 
case, the attestation server could be fooled into accepting the remote attestation 
and giving up the secret to the adversary. 

 
Point (4) is relevant in systems that support multiple processors. In these 
environments, each processor can execute its own separate hypervisor. Truly 
controlling the system requires controlling all of the existing processors. Since 
system memory is shared by all processors, it can be contemplated that if one or 
more of the existing processors is not configured with the hypervisor, but with 
a malicious (alternative) hypervisor or no hypervisor at all – system memory 
contents could be subverted through that processor and thus, trust would be 
confiscated. 

 
Point (5) is based on the requirement to manage the attestation with a system 
that is separate from the target system and which can be considered "objective". 
To support this model, the target system and attesting system must 
communicate. Communications between the two systems must be secured to 
avert all possibility to affect the attestation results or allow an adversary to 
acquire the secret. The security measures here need to account for the 
possibilities of eavesdropping or man in the middle attacks. 

 
Point (6) is a requirement that facilitates setting up a trusted environment 
between an interested party and a remote system that it needs to trust. The 
secret should generally be interpreted as a cryptographic key. Assuming that 
the secret is transferred securely to the hypervisor, after it is trusted by virtue of 
validating all the points above, the interested party can provide the hypervisor 
information that only it can understand and respond to or receive proof of the 
hypervisor's hegemony in the remote system. 

3.3 Hardware side effects 

Modern processors manufactured by Intel and AMD provide a facility to count 
occurrences of side-effect events, internal to the CPU circuitry, called 
performance events. The main goal behind this feature is to support CPU 
performance monitoring. 

Performance events are defined as internal CPU-circuitry state changes 
resulting from instruction execution, but not linked directly to the instruction 
results. For example: cache hit or cache miss events on specific cache memories, 
such as L1/L2/L3 or the translation lookaside buffer (TLB). The number of 
possible performance events greatly outnumber the available hardware counter 
circuits. Therefore, it is possible to dynamically link an available hardware 
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counter (called a performance counter) to a specific performance event. Once 
linked, the performance counter counts the number of events that occurred. 

In processors manufactured by Intel and AMD, performance counters are 
realized by a set of model-specific registers. Performance monitoring 
mechanisms were introduced with the Pentium processor and later evolved 
with the introduction of the P6 family, Pentium 4, core and all later processors. 

In general, some performance mechanisms are architectural. These 
performance counters are uniformly defined for all processors, while others are 
non-architectural, meaning they are specific to the micro-architecture and vary 
between the different processor families. Most processor models are restricted 
to 2-4 individual performance counters, while the different Xeon-family 
processors are an exception in their capability to support 9-25 performance 
counters, depending on the exact model. 

3.4 Challenges 

3.4.1 Overview 

A challenge in this work, is a piece of native-code, delivered to a remote target 
system for the purpose of attestation. The challenge is delivered to the target 
system, where it is executed and produces a result once it completes. The result 
is transmitted back to the attestation system that originally sent the challenge. 
The attestation system is responsible to evaluate the result and ultimately 
decide whether the response can be considered correct, in which case the target 
can be trusted and the secret information (normally a cryptographic key) may 
be transmitted back in response. 

Challenges need to be devised so-as to calculate a result whose correctness 
proves all 6 points detailed above and complete within a given timeframe. To 
achieve this multifaceted goal, the challenge code calculates a hash value of a 
memory region whose contents includes: 

(a) The critical portions of the HDriver (the subject of the 
attestation) 

(b) The challenge itself 
(c) A prefabricated virtual-memory page-table (as will be explained 

below) 
It continuously convolute the hash calculation with hardware side-effects 

that are monitored during the memory scanning process required to calculate 
the hash. The challenge code, incorporates the intermediate hardware side-
effect measurements into its result calculation, as well as governs the 
calculation flow progress according to the intermediate result value. 
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3.4.2 Challenge Construction 

3.4.2.1 Node Network 
A challenge consists of a group of individual Nodes. Each node contains 
machine code instructions that perform one specific, well defined, operation on 
an intermediate result. Upon completing its operation the node determines the 
next node to transfer control to, according to the current intermediate result 
value. In general, each NodeR can transfer control to one of three nodes: 
NodeR[A,B or C]: 

(a) If the parity of the intermediate result is even, control shall be 
passed to NoadRA – this represents a 50% chance on a random 
value. 

(b) Otherwise, if the current intermediate result is positive, control is 
transferred to NoadRB 

(c) Otherwise, it is transferred to NoadRC  
This represents a 25% chance for each of the two latter cases. 

TABLE 1 Node Categories Table 

Node operations are generally categorized as: 
1. Hash calculation 
2. Side-effect inducing 
3. Hardware side-effect counter blending 

 
Each node category contains a group of nodes that carry out an operation 

pertaining to that category. Nodes that belong to the "hash calculation" 
category shall read the next word from memory and add it to an on-going hash 
calculation. These nodes shall also progress to the next word in the scanned 
memory space, as well as determine if the entire memory region was 
completely scanned, in which case the challenge needs to terminate.  

Nodes belonging to the "side-effect inducing" category perform an 
operation that creates a significantly different side-effect on a bare-metal 
computer system as opposed to a virtualized system. 

Nodes belonging to the last category, "hardware side-effect counter 
blending", convolute the intermediate result with one of the side-effect counter 
values currently monitoring a system hardware side-effect. 

Nodes are also subdivided into groups that can be supported on a given 
CPU architecture. Since more advanced CPUs are normally backwards 
compatible, nodes that are supported on a certain CPU architecture will usually 
also be supported on all more advanced architectures. 

When constructing a challenge, nodes are selected from a pool of available 
nodes that are supported by the target system architecture. Node selection is 
accomplished by repeated random selection with replacement until a 4K region 
(1 page) is filled. Following this, the nodes are linked, by randomly selecting 
NodeIA, NodeIB and NodeIC for each NodeI in the previous selection. This 
process creates a node network depicted in FIGURE 3. Not all selected node 
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links are accepted. The network is built under a restriction, which ensures that 
all circuits existing in the network contain at least one node of each category 
type. This restriction is essential to ensure that during challenge execution, the 
calculation does not get into a deadlock, as well as ensuring that all phases of 
hash calculation and side-effect blending occur, under all circumstances. 

A dedicated node, called the Prolog node, is always the first node to 
execute. Furthermore, it is executed only once at the beginning. The prolog 
node is the node that is called to execute the challenge. It is responsible for the 
initialization of the system in preparation of challenge execution. The prolog 
configures the hardware side-effect registers, it sets the cache into a known 
state-0 and configures a dedicated virtual page-table. Prolog node 
configurations shall be discussed below in greater detail. An additional 
dedicated node is the Epilog node, which is the exit node. When the challenge 
calculation is complete, the epilog node is called to perform some house-
keeping chores, restore the system state and then return the calculated 
challenge result to the caller. The 1st category of nodes, which calculate the hash 
value by scanning the memory-region, are the nodes responsible for branching 
to the epilog node once scanning is complete. 

3.4.2.2 Virtual Mapping 
A challenge is always accompanied by a virtual mapping, which maps a 
relatively large virtual address space to a relatively small physical address 
space. The mapping is determined by randomly selecting a physical page for 
each virtual address. Naturally, assuming an unbiased distribution, each 
physical page is mapped to several virtual pages. Page tables used to support a 
virtual-memory environment normally map a single virtual page to a single 
physical page [72] within a specific task. Several different virtual pages may 
point to the same physical page to implement memory sharing among separate 
tasks. However, in this case, a synthetic page-table needs to be constructed to 
designate this special mapping. 
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FIGURE 3 Challenge Node Network: Note that every circuit includes at least one node 
of every category. The prolog node executes first; one of several branches 
transfers control between nodes, according to the current calculation result; 
the epilog node completes the calculation and terminates the challenge. 

The physical page region shall contain the pages to be attested during the 
challenge execution. These pages include the virtual-memory page-tables, the 
page that contains the challenge code and the pages that contain the critical 
components of the HDriver. See FIGURE 4. The critical components of the 
HDriver are a set of routines that, once attested, can be considered as a root for 
a chain of trust employed to verify the entire contents of the hypervisor. The 
critical routines include: 

(a) Hypervisor initialization 
(b) RSA encryption 
(c) RSA signature verification 
(d) Communication with the external attestation server 
(e) Challenge execution. 
 

The main purpose of designating critical routines is to confine the code 
requiring attestation by challenges to a concise kernel that is not expected to 
frequently change over time. Thus, future hypervisor versions that are based on 
a constant kernel of critical-routines can utilize existing challenges. 
 

 

Epilog 

Prolog 

Cat 1 

Cat 2 

Cat 3 
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FIGURE 4 Challenge Virtual Mapping. Each physical page is mapped by multiple 
virtual pages. The Page-Tables are a synthetic construct that reflect the 
virtual mapping. The Nodes page contains the nodes that comprise the 
challenge and the HDriver pages contain the HDriver's critical function 
code, whose contents verification is a major goal of the attestation 
procedure. 

 

3.4.2.3 Challenge Memory Scan 
The hash calculation order is governed by a pseudo-random-walk (FIGURE 5) 
according to an LFSR (Linear-Feedback-Shift-Register) generator [73]. Every 
virtual-space address is visited once, however, as a result of the special virtual 
mapping, physical addresses are visited multiple times. This is designed to 
induce side-effects. In a hashing, category 1 node (see: TABLE 1), the value at 
each visited address is accumulated into the current hash result. The next 
address to visit is then calculated according to the LFSR function and if it 
returns to the preliminary address (scan is completed), control is transferred to 
the epilog (the exit node). Other node types perform additional actions on the 
current result, such as convoluting the result with a hardware event counter 
value, but do not advance to the next address location. 

 

 

FIGURE 5 Pseudo-random walk to scan the virtual memory-space, using the LFSR 
algorithm. Each word in the virtual-space is visited exactly one time in a 
pseudo random order.  

 

Physical-page region 
Page-Tables HDrivercritical Nodes 

Virtual Space 
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The nodes that make up the challenge are located in a single physical page. 
However, as noted above, this page is mirrored in several virtual pages by 
virtue of the synthetic virtual mapping described above. The challenge code is 
constructed so as to execute each node in a separate virtual page. Therefore, 
control transfers between nodes are designed to take the long-jump, across the 
virtual address space, rather than the short jump inside the challenge page. This 
matter of things is depicted in FIGURE 6. 

The virtual-space random walk creates pseudo-random data-cache 
patterns that affect future cache hit/miss events. Similarly, execution of nodes, 
each at a different virtual location, creates pseudo-random code-cache and TLB 
cache patterns. Each affecting its corresponding cache hit/miss events. 
Hardware side-effect convolution type nodes, incorporate a transient hardware 
counter result into the accumulated hash value. Thereby, both changing the 
current result value, as well as affecting node progress flow. 

 

 

FIGURE 6 Control Transfer between Nodes. All nodes are replicated in all virtual 
pages that are mapped to the challenge physical page. However, each node 
executes from a separate virtual page. The figure illustrates a transfer of 
control from node N2 to node N4 in the Physical and Virtual spaces. 

It is stipulated that challenge results calculated in an environment that is 
different than the intended will generate a significantly different challenge 
result and thus be easily detected (for example, an attempt to execute the thin-
hypervisor under an emulator or as a nested-hypervisor). 

The possibility of calculating a correct result by means of emulation shall 
also be impossible within the allotted timeframe restriction. 

3.4.3 Challenge Repeatability 

An incorrect challenge result (or a result delivered past the time restriction) is 
considered a means to detect one of the 6 points discussed in section 3.2 above. 
Conversely, a correct result proves authenticity and trustworthiness of the 
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attested system – therefore, it follows that the result must be 100% repeatable, 
given repeated runs on any authentic system. 

Challenge repeatability can be tested by running the challenge multiple 
times on the same system, as well as running it in other systems of the same 
type and configuration containing the same HDrivercritical routines. 

Furthermore, repeatability allows correct challenge results to be 
determined empirically, by executing the challenge on a test machine and 
recording the result. Repeatability is therefore defined as a required property of 
challenge generation. 

To achieve repeatability, the challenge must start by putting the system 
into a well know state-0. This is the responsibility of the Prolog node. In 
addition, all node operations must be deterministic in nature, so that repeated 
executions, starting at state-0, always produce the same exact result.  

To ensure repeatability of a challenge execution, two main prerequisites 
must be upheld: 

(a) The contents of the physical-section (being hashed) must be the same 
(b) The values read from hardware-side-effect counters must be 

deterministic every time they are accessed. 
 

Upholding the former requirement is generally simple. The physical-
section contains 3 parts, as displayed in FIGURE 4. The pages of the critical 
routines in HDriver are designed to remain constant, even between progressing 
versions of HDriver. The challenge page is identical by definition. The page-
tables, which describe the virtual to physical mapping associated with the 
challenge are kept identical by always using the same predetermined physical 
addresses for the physical-section. Situations where a particular physical-
section may not be available are resolved by allotting for several predetermined 
options as described later in section 3.5.3. Upholding restriction (b) is much 
more involved, as will be elaborated in the following paragraphs. 

 
Prefetch Optimization: recent generations of modern processors have 

seen great advancement in pipeline optimizations, to gain significant 
improvements in throughput. These include branch-prediction circuits and pre-
fetcher units. Statistically these predictive actions have a positive effect on 
performance – effectively increasing overall throughput. However, side-effect 
event counters are affected as well, leading to seemingly non-deterministic 
count results. For example, consider counting L1 data-cache hits: when a load 
operation causes a new cache-line to be filled it is normally not counted as a hit. 
However, if that cache-line happened to be previously pre-fetched – the load 
operation will be counted as a hit. Such may be the case with Intel's Instruction 
pointer based stride-prefetcher [74]. In the event that consecutive memory-read 
operations with equal offsets (strides) the following access will cause a prefetch 
of the next cache line. Since prefetching is reliant on several system-load 
conditions, it does not always happen – leading to a non-deterministic 
hardware-event count. To uphold determinism an anti-stride-prefetch 



43 
 
algorithm must be used, implemented by intermittently accessing words on 
even and odd address boundaries when accessing memory to calculate the 
hash. The pseudo-code to achieve this can be described as: 

offset  0 
even_address  start_even_addresseven 
LOOP 

 access address [even_address+offset] 
 increment even_address by stepeven 

 offset  offset XOR 1 
ENDLOOP 
 

Out of Order Execution: Modern processors optimize execution throughput by 
adding support for out of order execution of the instruction stream [75]. Instead 
of the processor remaining idle while waiting for the current instruction to 
complete execution, the processor is allowed to continue fetching and 
processing the next instruction only if it is independent of the results of the 
current instruction. A synchronizing mechanism exists to verify the allowable 
conditions and put all the results in order. In Intel processors, for example, this 
will also effect the L1 data cache [76]. Due to out of order execution, situations 
exist where reading the side-effect counters associated with cache hits or misses 
may be non-deterministic. To uphold determinism, the instruction pipeline 
must be brought up to date ("synchronized") before accessing the hardware-
event counters. In Intel processors, for example, this is achieved with the 
LFENCE or MFENCE instructions. 
 
Cache Eviction Policy: Cache eviction policy has a significant effect on 
processor throughput optimization. This issue becomes even more acute but 
also more complex in multi-processor environments. Processor manufacturers 
invest great effort in perfecting cache eviction policies, however, for trade 
reasons these remain mostly undocumented. Traditional cache-eviction policies 
such as LRU or MRU are deterministic in nature. Given a fully-evicted (i.e. 
empty) cache architecture and a known stream of memory access operations 
will generate a deterministic cache contents. Therefore, an additional operation 
will produce a cache-hit or cache miss repeatedly. Modern processor, however, 
are employing cache eviction policies that are much more elaborate than these 
and in which applying a known memory access stream to a fully-evicted cache 
does not display deterministic results. Several articles study the cache eviction 
policies in multi-processor environments Last-Level-Cache (LLC) [77] [78] [79]. 
 

Intel processor first level cache (L1 cache) is structured as a 32K-byte, 8-
way set associative cache. Each cache line contains 64 bytes. Therefore, every 
4K-byte page contains 64 possible cache-lines. Two cache-lines at similar offsets 
in two separate 4K pages will, therefore, share the same L1 cache set. When all 8 
sets of a specific cache-line offset are populated, the next cache-line to enter the 
set shall evict one of the existing cache-lines already stored in that set. 
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To establish the determinism of the Intel L1 cache eviction, we performed 
the following trial. After fully evicting the processor cache, 8 reads are 
performed from offset 0 of 8 sequential 4K pages (labeled 0 to 7). Since the cache 
was initially empty, the read cache-lines are stored in the 8-ways of the cache-
line corresponding to a page's offset 0. Following that, a 9th read is performed 
from offset 0 of a different page. This read must perform an eviction of one of 
the previous (0 to 7) cache-lines to make room for the new line. To determine 
which cache-line was actually evicted, the first 8 pages are re-accessed in the 
same order as initially. A hardware side-effect counter that monitors L1 cache-
hits is monitored after every page access to determine the first page index that 
did not generate a hit. Evidentially this is the page that was evicted when 
accessing the 9th page. 

This trial run is performed separately for every processor, while all other 
processors are kept dormant at a HALT condition, so their activity will not 
pollute cache contents. The entire trail, for all processors, is repeated several 
times to collect meaningful statistics. TABLE 2 displays the recorded results 
performed on an Intel Nehalem i7-2400 8-processor system. 

 

TABLE 2 Indexes of cache-lines selected for eviction when accessing a 9th cache-line after 
filling all 8-ways of the cache set 

 Trial 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Proc 0 6 1 0 1 6 1 0 1 6 1 0 1 6 1 0 1 
Proc 1 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
Proc 2 5 1 4 1 7 7 7 7 7 7 7 7 7 7 7 7 
Proc 3 0 6 1 0 1 6 1 0 1 6 1 0 1 6 1 0 
Proc 4 7 5 7 5 7 5 7 7 7 7 7 7 7 7 7 7 
Proc 5 0 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
Proc 6 6 1 0 1 6 1 0 1 6 1 0 1 6 1 0 1 
Proc 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7  

 
It can clearly be seen from TABLE 2 that the evicted page is not selected 

consistently, given the same start conditions and the same memory access 
stream. Clearly this will obstruct generating a repeatable challenge calculation, 
since the cache patterns will not be consistent during the memory hashing 
procedure. Furthermore, note that most of the evictions were the last read page 
(index 7) pointing to a preference towards MRU. 

The foregone conclusion of these trials is that there are additional criteria 
buried in the cache logic that govern its preferred eviction selection. There are 
additional well defined cache eviction policies that may be in use in Intel's L1 
cache eviction engine. However, there is no formal documentation available. 
Rather than reverse engineer a specific cache eviction policy, we opted for a 
more generalized solution to this problem in the form of a "cache training" 
approach. According to the hypothesis that the cache contains an internal finite-
state-machine that determines the best eviction policy and assuming that this 
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state-machine cannot be manipulated by conventional software access, it was 
contemplated that pre-training the cache could instigate a well-defined and 
repeatable state that would lead to consistent cache eviction. To prove this 
hypothesis, the same cache eviction trials were reapplied, however, before each 
trial commenced the cache was trained by repeatedly applying the memory 
access stream (i.e., reading offset 0 of 9 consecutive pages). The following 
pseudo code summarizes this test trial: 
invalidate cache       //Empty entire cache 
do 2-times:  {read offset-0 of 9 consecutive 4K pages} //Train cache 
read offset-0 of 8 consecutive 4K pages   //Fill 8-way set 
read offset-0 of page 9     //Cause eviction 
for pg=0, 1, 2 until 7 
    read offset-0 of consecutive page pg 
    if (NOT cache-hit) 
        return  pg      //pg was the evicted 

 
TABLE 3 depicts the results of this modified trial run. It clearly shows that 

cache-training unmistakably generates consistently repeatable results. Note that 
once the cache is trained the preferred eviction policy is LRU, since the least-
recently accessed page (index 0) was evicted as a result of accessing the 9th page. 

 

TABLE 3 Indexes of cache-lines selected for eviction when accessing a 9th cache-line after 
filling all 8-ways of the cache set with a preliminary cache-training procedure 

 
 Trial 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Proc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Proc 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Proc 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Proc 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Proc 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Proc 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Proc 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Proc 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
                 

 
To re-verify this conclusion an additional try was attempted. This time the 

first 8 pages were accessed in the following random order: {3, 0, 5, 2, 1, 4, 7, 6}, 
both during cache-training and page access. The detection procedure after 
reading the 9th page was still conducted sequentially from 0 to 7.  

TABLE 4 depicts the results and shows that page index 3 was invariably 
evicted, supporting the notion of LRU on a trained-cache. 
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TABLE 4 Indexes of cache-lines selected for eviction when accessing a 9th cache-line after 

filling all 8-ways of the cache set according to a random sequence and with a 
preliminary cache-training procedure. 

 Trial 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Proc 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
Proc 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
Proc 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
Proc 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
Proc 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
Proc 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
Proc 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
Proc 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
 

To summarize, challenge repeatability must be upheld by the individual 
node types that comprise the challenge. 

 
The Prolog node, which conditions the system execution has the 

responsibility of invalidating and then training the cache. To do so it applies the 
exact memory access stream that will later be in effect when calculating the 
hash of the virtual memory region. This is achieved by generating the same 
pseudo-random walk governed by the LFSR algorithm described in section 
3.4.2.3.  

The hash-calculation nodes, which access memory, must use the anti-
prefetcher procedure. This is achieved by dedicating a CPU register as the 
access offset and repeatedly XORing it with 1. 

The hardware side-effect counter blending nodes, need to execute 
synchronization instructions to defeat the out-of-order execution engine before 
accessing hardware side-effect counters. 

3.5 Attestation Flow 

3.5.1 Overview 

The attestation process begins when the thin-hypervisor needs to be established 
on the target system. This occurs as part of the operating system boot-up 
procedure. After completing preliminary boot-up chores, the OS brings up 
registered drivers. When the HDriver is instantiated it attempts to install the 
thin-hypervisor and perform an attestation procedure to establish a trusted 
mode of operation. 

The attestation procedure entails a four-way communication handshake 
with an external attestation server, depicted in FIGURE 7. The target system 
initiates communications by connecting to the attestation server and sending 
out a record that includes identification information. In response, the attestation 
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server sends the target a challenge and its associated virtual mapping. It also 
starts a time measurement. Upon receiving the challenge the target system sets 
up a procedure to atomically execute the challenge and install the thin-
hypervisor. This operation is performed in parallel on all cores of a 
multiprocessor system. Once complete, the target system has the thin-
hypervisor installed on all of its cores, as well as challenge results (one result for 
each processor). Challenge results are sent to the attestation server, which 
evaluates them by verifying that they are both correct and delivered within a 
pre-allotted timeframe. The attestation server also verifies that the same 
(correct) result was delivered by all processors. 

3.5.2 Hypervisor Initialization 

In a multiprocessor system, each processor contains the provisions to support 
its own separate hypervisor. Different hypervisors may be installed on each 
processor. However, in the case of a hypervisor, which is designed to protect a 
system, each processor must be installed with the same exact copy.  Hypervisor 
initialization, on all processors, needs to occur between receiving the challenge 
and virtual-mapping from the attestation server and before replying with the 
challenge-result and random material. Once the system is virtualized, i.e., the 
hypervisor is in control of the system, the hypervisor can protect itself from 
subversion. However, during the period of its upbringing and initialization it is 
in a vulnerable state, where malicious code may have the opportunity to make 
changes to the hypervisor code or data structures in an effort to create 
backdoors [80] [81] through which the system can later be subverted. 
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FIGURE 7 Four-Way Handshake: Attestation-Server  Target. (I) Target identifies 
itself and defines its hardware and software platform parameters; (II) 
Server administers a challenge + Virtual-mapping. It may also identify itself 
with a certificate; (III) Target responds with challenge result and random 
material, encrypted with the server's public-key; (IV) If the challenge result 
checks-out and was replied within the time constraint, the server replies 
with the secret-key, encrypted with the random material sent to it in packet 
(III). 

 
To mitigate this predicament a critical section is applied, into which all the 

processors in the system must simultaneously enter, execute the challenge 
provided by the attestation server and instantiate the hypervisor. While each 
processor is executing the challenge, all other processors must be dormant to 
ensure they are not executing malicious code. Furthermore, all processors must 
be at the highest IRQ level [82] with all interrupts disabled to ensure that only 
the challenge code executes on a single processor while all other processors 
remain dormant. Once in the critical section, all instructions executed must be 
verifiable by the attestation result to ensure that the initialization procedure has 
not been maliciously tampered with. This implicates, for example, that OS 
routine calls cannot be made. 

Before entering the critical section, a portion of memory is allocated from 
the system's non-page-pool [83]. This memory area shall subsequently 
accommodate the data-structures required to support the hypervisor on all 
processors. The reason for allocating memory from the kernel-mode non-paged-
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pool heap is to ensure that future access to any of these pages does not cause a 
page-fault (which can cause a system fault if occurring at a high IRQL). Since at 
this stage the critical section has not yet begun, the memory allocation is 
performed by a system call to the OS. 

Memory allocation is performed by an arbitrary processor that is assigned 
the task of bringing up the hypervisor. After allocating memory, the processor 
issues an IPI generic call to schedule the function containing the critical section 
process, on all other processors. Since an IPI (Inter Process Interrupt) is mapped 
to a high IRQ level (14), only one level below the highest level, which is used 
only for halting the system as a result of a BugCheck, all processors in a 
running system must immediately respond to an IPI [82]. 

In response to the IPI scheduling, all processors enter the critical section, 
where the IRQ level is raised to the maximum value and all interrupts are 
disabled. Once inside the critical section, all processors accept the first 
(normally processor 0) are HALTed. Only a single processor is allowed to 
continue to execute the challenge code whilst all other processors are kept 
dormant in a HALT condition. 

When the single processor completes the challenge execution, the result is 
stored in a CPU register and the processor issues an IPI to release the next 
processor from dormancy and allow it to proceed into challenge execution. The 
processor then becomes dormant by HALTing in its current position. This 
process continues until all processors have completed execution of the 
challenge one by one. The last processor to execute the challenge, releases all 
other processors to continue through the general process. 

All processors generate a true-random number that is stored in a 
privileged CPU register and then all but the first processor become dormant 
again. The first processor completes a global-initialization followed by a local 
(private) initialization and an RSA encryption of the challenge result 
concatenated with the random number using the attestation server's Public-key. 
It then releases the next processor and becomes dormant. The next processors 
repeat this process for their local initializations (since the global initialization 
needs to be performed only once). The last processor to complete its local 
initialization, releases all processors from dormancy, who then commence to 
implement hardware virtualization and enter the (safe) hypervisor mode. 

Once virtualized, each processor can safely lower its IRQ level and exit the 
critical section. At this point each processor contains the random number it 
generated in a privileged register (protected by the hypervisor) and possesses 
an RSA-encrypted record containing the challenge result and random number. 
This record shall be sent to the attestation server. It is stipulated that if the 
challenge result is correct the hypervisor as well as the initialization process can 
be trusted. Otherwise it cannot. Judgement of this is the responsibility of the 
external attestation server and as mentioned above, depends on a correct 
response produced within a limited timeframe. 

 
The critical section procedure can be summarized using pseudo-code as: 
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Start Critical Section: 
RAISE_IRQL 

if (NOT FIRST PROCESSOR) { HLT } 

DR0   challenge() 

if (NOT LAST) { SEND_IPI(NEXT) & HLT } else { SEND_IPI(ALL) }  

GENERATE RAND 

if (NOT FIRST PROCESSOR) { HLT } else { initialize_global() } 

RSA_ENCRYPT(DR0 | RAND) 

initialize_local() 

DR0, DR1   RAND 

if (NOT LAST) { SEND_IPI(NEXT) & HLT } else { SEND_IPI(ALL) } 

VIRTUALIZE 

LOWER_IRQL 

End Critical Section: 
 
The diagram, displayed in FIGURE 8, depicts the timeline associated with 

the hypervisor-initialization critical section execution timeline in a 4-processor 
environment. 

 
Global initialization is performed once during the hypervisor initialization 
process. It includes setting a variety of control fields that have bearing on 
managing the hypervisor's activity. In addition, hypercalls are registered to 
enable their future use. Hypercall function call-backs are used to allow guest 
functions to request services from the hypervisor. 

 
Local initializations are performed for every processor. These initializations 
include setting up the Interrupt-table, the hardware virtualization control 
structures for the Guest, for the Host and for general Hypervisor control, as 
detailed below. 

 
IDT tables define the addresses of interrupt service routines. The local 

initialization sets up a separate IDT for the Host and for the Guest. The Guest 
IDT is configured to allow the hypervisor to intercept interrupts which are not 
exceptions, i.e. interrupts whose vector is above 32. The host IDT defines 
interrupts service routines which record the vectors of the occurred interrupts, 
thus allowing the hypervisor to inject them to the guest later. 

 
Local initialization also addresses the hypervisor control structure, which 

contains three parts: 
 

Guest area: defines the segment registers and other special purpose registers 
which will be used by the guest upon its activation. The guest area is mostly 
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filled with the current values of the corresponding registers. The reason for this 
is that the thin-hypervisor transposes the original OS and its application-stack 
to the guest. The original OS continues its operation as a guest, immediately 
following the initialization procedure, from the same point it launched the 
hypervisor initialization. 
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FIGURE 8 Timeline diagram of hypervisor initialization critical-section. This scheme 
ensures that challenge execution and hypervisor configuration occur one 
core at a time while all other cores are dormant. 
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Host area: defines the segment registers and other special purpose registers 
which will be used by the host upon VM Exit. The host area defines the IDT 
register to point to the host IDT table which was previously allocated and 
configured. Likewise the CR3 register is defined to point to the hypervisor's 
pre-allocated and pre-configured page tables hierarchy. The instruction pointer 
register is set to hypervisor's VM Exit handling routine. 

 
Control area: defines the events that cause VM Exits. In particular this area 
defines the exception vectors that the hypervisor wishes to intercept. Likewise, 
this area holds a pointer to the SLAT hierarchy. 

 
Modern hypervisor technology adds a second-level-address-translation 

(SLAT) [84]. Previously, hypervisors used shadow pages to manage memory 
separation between Guest virtual-machines running on the same host. The 
SLAT addresses the associated shadow-page overhead by adding a translation 
phase in hardware, in addition to the default virtual-to-physical translation 
occurring routinely in paged-mode operation. The secondary translation occurs 
only while the processor is in Guest mode and translates the Guest's (virtual) 
physical address to a real machine (Host) physical address, as depicted in 
FIGURE 10. Intel implements SLAT as EPT [85], while AMD implements it as 
RVI [86].   

 

 

FIGURE 9 Translating Guest virtual address to Host physical address with SLAT 

 
SLAT configuration includes both a mapping of Guest physical address to 

Host physical address as well as Read/Write/Execute rights that pertain to the 
Guest. Hypervisor utilizes SLAT as a means to protect the memory regions that 
contain its vulnerable configuration structures and, as described in the next 
chapter, to manage and control Guest applications execution rights. 

The SLAT is initialized as part of the local initialization performed by each 
processor. Generally, the SLAT is configured to a 1-to-1 mapping between 
Guest Physical Addresses and Host Physical Addresses. However, access rights 
for pages containing the hypervisor code as well as its configuration structures 
that need to remain out of the Guest's reach, are turned off. Therefore, they 
appear as non-existent to the Guest. By virtue of this, all hypervisor code and 
control structures, described above, which contain configurations that oversee 
hypervisor behavior, among them configurations that render the hypervisor 
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capable of protecting itself from subversion, are completely out of reach of the 
Guest. 

3.5.3 Challenge Execution 

Challenge execution occurs on each processor separately while all other 
processors are dormant in a HALT condition, as detailed in section 3.4.3. Before 
challenge execution can commence the environment needs to be prepared to 
support it, as shown in FIGURE 4. This entails: 

• Allocating the appropriate physical section in the non-paged pool 
• Configuring a page-table that reflects the pseudo-random Virtual-

Mapping, see para 3.4.2.2. 
• Copying the challenge code contents (nodes), received from the 

attestation server, into the Nodes physical-page 
• Copying the critical section of the HDriver into the appropriate 

physical-pages that will be attested by the challenge 
 

Physical page allocation from the non-paged pool needs to start on a 
prescribed physical address and contain a fixed number of consecutive physical 
pages. Hence ensuring a deterministic page-table, whose contents must agree 
with the page-table used when precomputing the current challenge result. The 
actual allocation is performed by a system-call to the OS. Since a free 
consecutive-page section in the non-paged pool depends on the previous 
allocation order and cannot be guaranteed, the actual allocation requested is 
larger than the required amount. Every challenge result is pre-calculated for 
several physical-section locations. This allows shifting inside a successful 
allocation to one of the locations for which a pre-calculated challenge result 
exists. This is depicted in FIGURE 10. Challenge results are pre-calculated for 
physical-sections A, B, C and D. The cyan arrows below depict larger allocation 
requests. Note that the first 7 (depicted) allocation results allow using the A 
location, while the 8th (last depicted) allocation alternative can use the B 
location. The same idea is applied for other possible alternative allocations. It is 
assumed that at least one alternative allocation position shall succeed. 

 

 

FIGURE 10 Pre-calculated challenge results at locations A, B, C and D. During runtime 
a larger allocation is requested, thus for any available allocation position (as 
described by the cyan arrows) at least one of the pre-calculated challenge 
results can be used.  

A B C D 
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Page table configuration includes setting up a virtual page-table that 
reflects the virtual mapping table received from the attestation server. It always 
sets up virtual address 0 to point to the challenge page, where the Prolog node 
is always located at offset 0. Therefore, once this page-table prevails, the Prolog 
node is located starting at offset 0. 

The first physical pages of the allocated physical-section contain the root 
pages of the page-table, followed by the challenge page and then followed by 
the critical section of the HDriver. Additional pages required to reflect the 
virtual mapping are used after the HDriver pages. See FIGURE 11. 

 
Page table formats are governed by one of three possible processor modes 

[87]: 
• 32 bits non-PAE 
• 32 bits PAE 
• 64 bits 

 
After allocating and configuring the page-table the challenge nodes are 

copied to the appropriate page (physical page 2, 3 or 4 in the allocated physical 
section). Similarly, the pages containing the critical routines of the HDriver are 
copied to the pages following the challenge page. At this point the challenge 
can be executed by transferring control to the prolog node at offset 0 of the 
challenge page. The prolog node completes the initialization requirements 
before the challenge nodes can be executed. These initializations include 
pointing the processor's CR3 register to the page-table root page, thereby 
enforcing the virtual-mapping, invalidating all processor caches and 
configuring the hardware side-effect counters. 
 

 

FIGURE 11 Three modes of challenge page-tables.  
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3.5.4 Secondary Attestation 

The HDriver code contains the routines required to communicate with the 
attestation server, initialize the hypervisor, setup challenge execution, as well as 
the hypervisor itself. These routines are subdivided into 2 sections: section A 
and section B. Section A is considered critical, since it contains the routines 
required to perform the hypervisor initialization and the local attestation of 
section B, based on RSA signatures.  Section A is the critical section copied to 
the attested physical section. Therefore, the routines in section A are the ones 
attested by the challenge. Furthermore, they are not expected to change in the 
future, consequently challenge results shall remain intact even if the HDriver 
evolves, so long as changes are confined to section B. 

By performing a challenge attestation of section A, we can trust section A 
(assuming the challenge result is correct) to perform a trusted attestation of 
section B based on RSA signatures. This architecture constitutes a chain of trust 
[88]. 

3.6 Secure communications 

The four-way handshake communication protocol between an attestation server 
and a target system detailed in FIGURE 7 must be performed securely. Thereby 
ensuring that the secret information eventually transferred to the target system, 
should it pass the attestation challenge, will not fall prey to a malicious 
assailant. Since the communication flows between two remote systems, no 
assumption is made regarding the safety of the data communicated. It is 
assumed that all communications may be subject to recording. Moreover, since 
the assailant may have ownership and physical access to the target system, it is 
further assumed that communications may be recorded after arriving at the 
target system. 

 
Detailed Security measures for each type of transmission: 

 
1. Target  Auth. Server: In this preliminary transmission the target 

identifies itself. None of the information communicated requires 
concealment, therefore the transmission occurs openly. 

2. Auth. Server  Target: The attestation server reply to the target 
contains the challenge-code, the virtual mapping and possibly the 
server's certificate. Since challenge and virtual mappings are 
transmitted once only and never repeated, there is no need to conceal 
their contents. Similarly, a server certificate contains only public 
information and therefore does no need concealment either. 

3. Target  Auth. Server: In the course of this transmission, the target 
transfers the challenge execution results (one per each processor) to the 
Server. The target also transfers a random value that is generated by 
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the hypervisor, which was instated in the target immediately after 
executing the challenge. It is desirable to conceal the challenge results 
in order to eliminate the possibility of replay attacks from other 
systems that may receive this exact challenge at some later time. 
Furthermore, as will be explained later, the random value generated by 
the hypervisor, must absolutely remain concealed. To achieve these 
concealments, the target encrypts the entire reply with the attestation 
server's public RSA key, which is hard-coded in the HDriver on the 
target. The challenge results and random value shall also remain 
concealed from the target OS, since these values are known only to the 
instated hypervisor, which keeps them concealed from the Guest OS. 

4. Auth. Server  Target: Assuming the challenge results are correct, 
the attestation server will transfer the secret information back to the 
target system. Naturally, this reply must be concealed. This is achieved 
by encrypting the entire reply record with the random value received 
in the 3rd transmission, as key. Since this value is known only to the 
target system hypervisor, it is the only entity that can decrypt and 
interpret the secret information. It should be noted that at this point the 
attestation server can trust the remote hypervisor, since the challenge 
results were correct and timely. 

 
To sum, communications for information and secret key material transfers, 

between the attestation server and the target system hypervisor, during the 
remote attestation procedure, can be achieved in a fully concealed and secure 
manner. 

3.7 Verifying the Attestation Goals 

In section 3.2 six attestation goals were detailed. We review each requirement to 
verify that the attestation methodology described above upholds all the 
requirements. 

 
1. Verify that the hypervisor is a root-hypervisor that has control of the 

machine, i.e., no emulator or primordial hypervisor already exists in the 
system: 
The challenge code includes nodes whose function is defined as 
hardware side-effect inducing. One type of such a node executes an 
instruction that forces a hypervisor intercept. For example, the CPUID 
instruction always generates a VM_EXIT. Furthermore, a hypervisor 
cannot suppress such a VM_EXIT. At best it can immediately return to 
the Guest. However, a hypervisor intercept must cause a CPU control 
change to the hypervisor's intercept handler, which in turn causes 
several cache pattern changes. The instruction cache gets a new cache-
line (of the hypervisor handler) and the TLB cache stores the address 
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translation of the handler address. Therefore, challenge results will 
significantly deviate from the expected results in a system with no 
hypervisor, as compared to a system with a Hypervisor. 
 
The only alternative to circumvent this, is if the target system contains 
an emulator that can track hardware side-effects, such as cache 
patterns. However, thousands of instructions would be necessary to 
fully emulate the effects of a few single native instructions. Therefore, 
an emulated result could not be produced in the predetermined 
timeframe. 
 

2. Validate the hypervisor contents 
Hypervisor contents are inherently verified since the challenge 
implements a hash calculation of the critical functions, which in turn 
are used later to verify signatures of the entire hypervisor code. 
 

3. Verify that the hypervisor that is being attested is the one executing 
Countering this requirement implies that an adversary has made 
changes in the challenge code to his advantage but is hashing the 
original (unchanged) challenge contents in an effort to keep the 
calculation result correct. By doing so, an adversary may hope to alter 
the flow of setting up a trusted hypervisor, while still generating the 
correct challenge result. 
 

However, making such a change will be detected by the 
challenge procedure described above, since cache patterns shall 
develop differently when executing code that calculates a hash of 
itself as opposed to hashing a different memory location. The reason 
for this is that when an instruction is executed, the cache line 
containing that instruction is invariably stored in cache and the 
address translation of the code's virtual page is stored in TLB cache. 
Therefore, if the instruction loads a value located within its cache line, 
a cache hit is guaranteed. However, if that instruction loads a value 
from a different location, a cache hit is not guaranteed. Actually, 
when this situation occurs for the first time a cache miss will surely 
occur. This difference will lead to different challenge results under 
each condition. 

 
Alternatively, an adversary may try to make changes to the 

critical HDriver routines, but use the original HDriver contents in the 
hashing process, with the intent to later execute the modified code. 
This situation is restricted, since it is up to the challenge code to 
determine that the code that will be executed is the one that was 
hashed. Nevertheless, the challenge code cannot be altered without 
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detection, as explained above. Therefore, this alternative cannot be 
realized as well. 

 
4. Ensure that all cores/logical-processors are running the attested hypervisor 

In multiprocessor systems each individual processor must be attested. 
To ensure this requirement, the HDriver routine, responsible for 
execution of the challenge nodes, creates a critical section. An IPI 
directs all processors to that section, in which each processor, 
individually and atomically, executes the challenge code and achieves 
its own challenge result, followed by instantiating the hypervisor. 
During the execution of the critical section, interrupts are turned off 
and the IRQL of all processors is set to maximum, ensuring that 
interrupts cannot occur. 
 

The outcome of the critical section is that each processor is in 
Host mode with an enabled hypervisor and each processor contains 
its individual challenge result. An encrypted record containing a 
series of challenge results, calculated by all the processors, is then 
sent to the attestation server. 

 
On the attestation server's end, two major validations are 

performed: 
(a) The number of processors expected from the system type 

identified when communications were setup, is equal to 
the number of challenge results received 

(b) All challenge results are equally correct and received 
within the restricted time frame. 

 
It follows from both these validations that all processors in the 

target are executing a trustworthy hypervisor. 
 

5. Create a trusted communication channel to the hypervisor 
Section 3.6 details the provisions taken to uphold this restriction. 
Confidential information is sent from the target to the attestation 
server using RSA encryption with the attestation server's public-key. 
Therefore, it can be interpreted correctly only by the attestation server. 
 

Confidential information returned from the attestation server to 
the target uses encryption, based on random material received from 
the target. An adversary cannot apprehend this information over the 
communication channel, since it is sent encrypted with PKI. 
Similarly, it cannot be seized in the target system itself, because it is 
generated internally by a hypervisor setup to protect its resources. 
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6. Transfer a secret to the trusted hypervisor 
The attestation server will transfer a secret to all the processors of a 
successfully attested target. As described in the previous point, the 
secret data is encrypted with random material provided by each of the 
hypervisors instantiated on each individual processor. Upon receipt, 
each hypervisor shall decrypt and safely store the secret in a 
privileged register, which it can protect, since any access to the 
privileged register is intercepted by the hypervisor. The attestation 
server can fully trust the hypervisors to protect the secret, since all 
hypervisors are trustworthy by virtue of point (4) above.  

 
 
 



 

4 EXECUTION PROTECTION OF NATIVE CODE 

4.1 Overview of the methodology 

Many operating systems, among them x86 architecture operating systems, 
enforce control over memory access rights for applications through the virtual 
paging mechanism. Access rights normally dictate Read, Write and Execute 
rights. Virtualization extensions, which were introduced to the x86 architecture 
by Intel and AMD, allow a hypervisor to control memory access rights at an 
additional level, below operating systems, through a mechanism called Second 
Level Address Translation (SLAT). Intel and AMD refer to this mechanism as 
Extended Page Table (EPT) in chapter 28 of [44] and Rapid Virtualization 
Indexing (RVI) [61], respectively. Virtual paging and SLAT can be used to 
specify the Read, Write and Execute rights of a particular memory page (Execute 
rights are controlled by the "NX bit" in virtual paging, see chapter 4 [44]).  When 
SLAT is enabled, the memory access restrictions of both the Virtual paging and 
the SLAT apply in tandem. For example, if Virtual paging allows Read and 
Write access for a certain page, however SLAT allows only Read access – the net 
access rights for this page shall be Read-only. Unlike virtual paging, SLAT 
defines the memory access rights of the physical rather than the virtual pages, 
thus providing the hypervisor with complete control over access rights for the 
entire memory and in all memory modes. 

The methodology described here, is based on utilizing the hypervisor's 
control over SLAT to prevent execution of unauthorized software. To protect a 
system against execution of unauthorized (or arbitrary) native code, the system 
is first scanned when it is in a known good state. This can take place, for 
example, immediately after a new system is installed from an original, certified, 
source – such as a DVD provided directly from the OS manufacturer. The 
scanner locates all executable files, including .exe, .dll and .sys (driver) files and 
creates a database of signatures for each code-page (4K granularity) of each 
executable. 

Initially, when the hypervisor starts executing, it configures the SLAT to 
deactivate the Execute rights of all pages, thus effectively receiving an intercept 
for any execution attempt of the guest. After returning control to the guest, 
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upon such an intercept, the hypervisor has the opportunity to verify the 
executing page authenticity, by hashing the page content and comparing it to 
the precomputed value prepared during the scanning phase. After authenticity 
is established, the hypervisor grants the page's Execute rights but forfeits its 
Write rights, thus setting up to be intercepted in case of any attempt to modify 
the authenticated Execute page. In the event that such an interception occurs, as 
a result of a modification attempt, the hypervisor grants the page Write rights 
but forfeits its Execute rights. Therefore, at all times, a page can have either 
Execute rights or Write rights, but never both at the same time.  

 
Code-pages are authenticated by comparing hash value calculated during 

execution attempts against pre-calculated signatures organized by the scanning 
program in a database that is kept locally on the target system. After being 
compiled, the database is signed, in order to prevent any illicit modifications. If 
additional software needs to be installed in the system, the database of code-
page signatures must be extended to accommodate the signatures of the new 
software's executable files. Since the database must be signed, only an authority 
capable of signing the modified database can make this addition. The 
hypervisor can verify the authenticity of the database signature, since it 
possesses the attestation authority's Public key. Finally, the hypervisor can be 
trusted to apply the correct key, since it is part of the contents being 
authenticated by the attestation procedure. Section 4.2 contains a detailed 
description of the database structure. 

4.2 Whitelisting an Execution Environment 

Application whitelisting, based on pre-determining the list of software 
application allowed to execute on a system is a well-known methodology for 
maintaining system security. Windows enterprise versions have built-in 
support [89], as well as several commercial products on the market that exercise 
this methodology [90] [91].  However, these products all maintain security at 
the application-level granularity. Moreover, they are reliant upon OS services to 
enforce their security. This leaves the door wide open for malicious hackers to 
exploit 0 days and OS vulnerabilities that allow them to inject executable code, 
through which persistency may then be achieved. It may suffice to only 
infiltrate memory with a few single instruction codes to ultimately gain access 
and control over a computer system. The methodology described herein 
addresses and amends these deficiencies by maintaining a whitelist at the 
physical-memory level rather than the application-level, as well as relying upon 
a trusted hypervisor to carry-out the security enforcement rather than the OS.  

 
We begin our detailed explanation of the rogue-execution prevention 

mechanism, by describing the structure of the whitelist database that contains 
the hash values of the code-pages in all the system's executable modules (see 
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FIGURE 12). This database consists of a collection of descriptors for all 
executable modules. Each module descriptor contains information for a specific 
executable (PE file in Windows [92] or ELF file in Linux [93]), which resides on 
the machine. Each descriptor is signed by an RSA signature in order to prevent 
an attacker from manipulating its contents. We note that an attacker can 
potentially remove module descriptors, but he cannot alter existing descriptors 
or add new ones. Each module descriptor contains its size, which allows to 
locate the next descriptor. The descriptor also holds the path of the executable 
which is represented by this descriptor. The driver uses the path field to 
identify the descriptor corresponding to the loaded image. As was explained in 
section 4.1, the verification procedure needs to know the executable’s expected 
location in memory. This information is stored in the base field of the module 
descriptor. Finally, the module descriptor contains a list of section descriptors. 
Each section descriptor corresponds to an executable section in the executable, 
and contains the following fields:  

• Record size — the size of this section descriptor. This field allows 
to locate the next descriptor. 

• Offset — the offset of this section from the beginning of the image 
file. 

• Length — the size of the section described by this descriptor. 
• Page[i] — a page descriptor that corresponds to the ith page of the 

section. The number of pages in the section is calculated as the 
section size divided by 4096. Since pages must begin on a page-
boundary, partial pages may exist at the beginning or the end of the 
section. Partial pages also have a descriptor. This descriptor 
contains the page's hash and the indexes of the first and last 
relocation indexes pertaining to this page. 

• Number of Relocs — the total number of relocation descriptors 
that follow. 

• Reloc[i] — relocation descriptor, which contains an offset into the 
page where an address needs to be adjusted to account for an 
application relocation in virtual space. The type field determines 
the width of the address to relocate. 

• Number of Datums — the amount of the datum descriptors that 
follow. 

• Datum[i] — datum descriptor, which is required to generate a 
relocation when it crosses a page boundary. 
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4.3 Enforcing Valid Execution of Native Code 

4.3.1 Initialization 

Recall that the HDriver is the kernel-mode device-driver that instantiates the 
hypervisor along with the mandatory attestation procedure. The HDriver 
constructs some data structures that are later used by the hypervisor. We note 
that the hypervisor cannot (and does not) trust these data structures and 
therefore their critical parts contain a signature proving their authenticity. 
During initialization, the driver loads the database containing the hash values 
to a pageable region of memory, and installs two callbacks; the first callback is 
invoked every time the operating system loads an executable to memory and 
the second callback is invoked every time a process terminates. Both callbacks 
update a data structure that represents the memory layout of all the processes 
that are currently active. 

 
 

 

FIGURE 12 Database structure of executable code-page hashes. The database includes a 
section for each executable module. Each module contains an array of 
sections and each section contains an array of signed executable pages 
along with the possible relocation data for each of the pages it contains. 
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This data structure contains a linked-list of process descriptors. Each 
process descriptor contains the corresponding process identifier and a pointer 
to a linked-list of module descriptors. Each module descriptor contains the 
load-address location in memory of the corresponding module and the 
whitelist database index of this module’s descriptor. FIGURE 13 depicts this 
data structure. 

The HDriver initializes and installs the hypervisor, which later manages 
the access rights of physical pages. The hypervisor and the HDriver callbacks 
must operate concurrently, since the callbacks update the memory layout data 
structure that is used by the hypervisor. It would be advantageous to guarantee 
that the HDriver and the hypervisor are the first executables to load in the 
system. Unfortunately, the driver initialization order is determined by the 
operating system and cannot be altered. Therefore, the operating system may 
(and normally does) load and initialize some drivers prior to the HDriver. 

 

 

FIGURE 13 Process memory-layout data-structure. The structure is a linked-list of 
processes currently executing in memory. Each process contains a linked-
list of all the modules executing within that process. 

Consequently, the callback, which is installed only during HDriver 
initialization, will not be called for those drivers. The HDriver solves this 
problem, by traversing operating system-specific data structures that contain 
information on the drivers that were already loaded. By doing this, the HDriver 
has the opportunity to properly initialize the process memory-layout data-
structure with the processes that are already running in the system. FIGURE 14 
presents the data structures that are used by a 64-bit version of Windows 8. A 
driver’s initialization function receives a pointer to the driver object that 
represents the current driver. The DriverSection field points to a data structure 
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that represents all loaded drivers. Each such structure is a member in three 
doubly linked lists: LoadOrder, MemoryOrder and InitOrder. Each such list is a 
cyclic enumeration of the loaded driver ordered by: driver’s load time, driver’s 
memory location and driver’s initialization time, respectively. 

4.3.2 Access Rights Modification 

Once the hypervisor completes the attestation procedure and its initialization 
process, it initially deactivates the Execute rights of all memory physical pages 
in the SLAT. Therefore, after returning control to the guest, any attempt to 
execute an instruction triggers a "SLAT Violation" (unauthorized access to 
physical memory) which causes a VM Exit intercept that passes control to the 
hypervisor. 

 

 

FIGURE 14 Windows 8 linked-list of loaded device-drivers 

 
The hypervisor then has an opportunity to verify the authenticity of the 

page containing the instruction that invoked the intercept, by validating the 
page's signature. If the page is not successfully authenticated, the hypervisor 
signals a breach condition and aborts the offending guest process. Otherwise, if 
the page is authenticated, the hypervisor will change its access rights to Read 
and Execute. 
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FIGURE 15 Physical page access-rights state diagram. Following hypervisor 
initialization and attestation, all physical pages have R/W access only. Any 
such page that is executed will cause a hypervisor VM Exit that will 
validate the page's signature before allowing it R/X access only. An attempt 
to write to the page will cause a hypervisor VM Exit allowing it to remove 
Execute access and restoring the page to the initial R/W access rights. 

After returning control to the guest, all instructions in this page can be 
freely executed without causing additional intercepts. However, any attempt to 
write to this page triggers a "SLAT violation" and an intercept into the 
hypervisor, which changes the access rights to Read and Write and deactivates 
its Execute right. This process is depicted in FIGURE 15. A detailed description 
of the verification procedure appears below. 

In a multiprocessor system each processor has its own hypervisor and a 
separate configuration structure. In particular, each processor has its own SLAT 
hierarchy, which can independently (of other processors) specify the access 
rights for each physical page. The hypervisor must maintain identical 
configurations of all processor SLAT hierarchies (with a few exceptions, as we 
will see later) in order to fully prevent execution of unauthorized instructions. 
To understand how this can occur, consider the following scenario: an authentic 
page requests execution rights on processor A. The hypervisor verifies the page 
and grants it Read and Execute access rights, thus preventing its further 
modifications. However, processor B still has Read and Write access rights for 
this page, which enable it to modify the contents of the page. A malicious user 
can write malicious code to this page using processor B and then execute this 
malicious code on processor A. Unfortunately, a processor can modify only its 
own SLAT hierarchies [44]. To solve this problem, whenever the hypervisor on 
some processor needs to change the access rights of a page, it first sends a 
request to hypervisors on all other processors to make the intended change in 
their SLAT. The same change is made on the SLAT hierarchy of the originating 
processor, only after all the SLAT hierarchies of all other processors were 
changed. 

The inter-hypervisor request mechanism is implemented as follows. 
During its initialization the hypervisor allocates a constant-size queue of 
requests for each processor, which represents the outstanding access rights 
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requests that the hypervisor running on that processor needs to serve. In 
addition, the hypervisor installs an interrupt service routine on a special vector 
(0xFE), which is not in use by the operating system. This interrupt service 
routine issues a hypercall with a special value, which informs the hypervisor 
that its requests queue is not empty. The hypervisor serves this hypercall by 
applying all the changes described by the requests in the queue and clears the 
queue. In order to issue a request to another (remote) processor, the hypervisor 
performs two steps: 

(a) It inserts a new element in the requests queue of the remote processor 
(b) It sends an IPI (Inter-Process Interrupt) to the remote processor on the 

special vector (0xFE). 
 

After issuing the request, the hypervisor waits for the changes to be 
applied. FIGURE 16 depicts the entire process of access rights modification as it 
is performed in a multiprocessor system. The procedure follows a 7 step 
sequence: (0) A page access violation occurs in a guest application. The 
hypervisor on that process intercepts the event; (1) The hypervisor adds access-
right change requests to all the other processor request queues; (2) The 
hypervisor then sends a special IPI to all other processors; (3) The IPI service 
routine on all processors generates a hypercall to enter the hypervisor on the 
receiving processor; (4) each alerted hypervisor fetches all pending requests 
from its request-queue and (5) performs the required access-rights change in its 
copy of the SLAT table; the originating hypervisor monitors the other 
processor's SLAT tables directly and when the requested access-rights change is 
detected in all other SLAT tables (6) it makes the change in its own SLAT table. 
This procedure guarantees that all SLAT tables remain in synch after every 
access-rights change event. 

 

FIGURE 16 Access rights modification in a Multiprocessor environment. Each core has 
its own SLAT table, therefore changes to the SLAT table in one core must be 
reflected in the SLAT table of all other cores. 
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4.3.3 Execution Request Verification 

The intercept event caused by an attempt to execute an instruction in a memory 
page that does not have Execute rights, transfers control to the hypervisor, who 
then has the opportunity to validate the page. The verification procedure is as a 
Boolean function returning true only if the verification succeeds. This function 
has one parameter — the virtual address where the SLAT violation occurred. 
The verification function performs the following steps: 

1) Fetch the current process identifier from OS-specific data structures. 
FIGURE 17 depicts this process on a 64- bit version of Windows 8. 

2) Locate the process identifier in the memory layout data structure, 
which was prepared by the HDriver. The process descriptor contains 
a pointer to a list of module descriptors. 

3) Locate the module descriptor that contains the virtual address that 
triggered the SLAT violation. The module descriptor contains the 
index of the database entry that corresponds to this module. 

4) Copy the module descriptor from the database to a memory region 
that is protected by the SLAT (i.e. all types of access are restricted). 

5) Validate the signature of the module descriptor. 
6) Locate the information describing the page that triggered the SLAT 

violation: 
a) Locate the section descriptor 
b) Locate the hash value of the page 
c) Locate the index of the first and the last relocations 
d) Locate the index of the first and the last data values 
e) Compute the address of the first and the last bytes described 

by the hash value. For example, if only the first 20 bytes of 
the page belong to the section, then only those bytes should 
be hashed. 

7) Hash the page (or its part) as follows: 
a) Let p be a pointer to the first byte to be hashed 
b) Initialize pi to 0 
c) For each relocation r do: 

i. Hash the bytes [pi..r.offset-1] 
ii. Let d be the datum at offset r.offset; d exists only if the 

relocation field bytes cross the page boundary. 
iii. If d does not exist, fix the address at r.offset and hash it 
iv. Else, hash d.value and verify that this is the value 

(relocated) at r.offset  
v. Advance pi to r.offset + length(r.type) 

d) Hash the bytes [pi..{the last byte to be hashed}] 
8) Compare the hash result to the expected hash value and return true 

iff they are equal 
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FIGURE 17 Windows 8 Process ID location 

 
The Datums array holds the values of relocation fields that cross page 

boundaries. The verification procedure must read the value at the relocation 
position but, since it operates in kernel-mode, it must not read data that might 
induce a page fault. This can occur if a relocation field crosses a page boundary 
into a page that is not currently in main memory. For this reason, values of 
relocations that cross page boundaries are stored in the special Datums array. 
FIGURE 18 presents the most general example of a verification process. Here, 
only part of the page contains code to be hashed. This code section contains 3 
relocated fields, labeled A, B and C. Note that C only partially belongs to the 
page, as it crosses into the next page. Relocated fields A and B contain modified 
address values that need to be fixed to obtain their original value. Relocated 
field C's original value is stored in the Datum array. Therefore, this section will 
be hashed in 3 iterations: 

I. Bytes of 1 and fixed bytes of A 
II. Bytes of 2 and fixed bytes of B 

III. Bytes of 3 and relevant (included in page) bytes of Datum point C, 
taken from the Datum array. The verification routine shall also verify 
that the included bytes of field C contain the expected values after 
relocation. 
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FIGURE 18 Page Validation Process. Relocations need to be accounted for. Their 
location and width in the section is recorded in the database for this 
purpose. The intended value is also recorded if the relocation field crosses a 
page boundary to ensure that bytes past the page are not read at a high 
IRQL. 

4.4 Special Execution Pages 

4.4.1 Mixed Pages 

Some pages may contain both code and data. Typically, such pages cross the 
boundary between a code section and a data section, where those sections are 
not page-aligned by the linker. The problem these pages pose is that it is unsafe 
to grant them Execute rights, since they cannot be authenticated entirely and 
once the entire page is granted Execute rights, rogue code could potentially be 
injected and executed from the un-authenticated data part. However, the code 
in these pages cannot execute without Execute rights. The solution to this 
problem is controlled execution. 

In essence, controlled execution monitors execution of individual 
instructions within a mixed-page, to corroborate that only instructions 
belonging to the authenticated part of the page are allowed to execute. After 
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granting the (partial) page Execute rights, the hypervisor monitors the 
instruction pointer by intercepting after the execution of every single 
instruction. During every such intercept, the hypervisor checks whether the 
instruction pointer has exited the authenticated section, and if so, the 
hypervisor deactivates the Execute rights of the page. To enter this mode of 
operation, the hypervisor sets the Monitor Trap Flag, sections 24.6 and 25.5.2 
[87], after granting Execute rights to a mixed page. After returning control to the 
guest, this mode will cause a VM exit to the hypervisor on the next instruction 
following the instruction that is executed upon returning control to the guest 
(VM entry). The hypervisor maintains this mode of operation until the 
instruction pointer exits the authenticated part of the mixed page. 

Controlled execution is the safest solution to the problem of mixed pages, 
however, it has dire consequences to execution performance. To alleviate this 
problem, an alternative approach has been researched and evaluated, albeit not 
as hermetically secure. According to this alternative approach, modern-
processors have the IA32 DEBUGCTL MSR which may be configured to define 
advanced breakpoint functionality. Coupled with setting the TRAP flag in the 
processor's EFLAGS register, the hypervisor can configure the processor to 
generate a breakpoint after every branch instruction, rather than after every 
instruction. Thus, the hypervisor intercepts all branches that may potentially 
transfer control outside the authenticated area. When the hypervisor gains 
control, due to such an intercept, it has the opportunity to deactivate the 
Execute rights of the mixed page, if this occurs. Two additional facilities must 
be established to augment this mode of operation: (a) interrupt activation and 
(b) fall-off-the-edge. When the former occurs, the processor activates the 
interrupt service routine without activating single-instruction breakpoints. In 
this case, the hypervisor must deactivate the mixed page's Execute rights, since 
the interrupt service routine may potentially cause execution of rogue 
instructions in the unauthenticated part of the mixed page. The hypervisor 
achieves this by taking over the entire IDT table so that any interrupt activation 
is first captured by the hypervisor, allowing it the opportunity to deactivate the 
mixed page's Execute rights. In the latter case, the hypervisor must protect 
against the potential case of the last instruction in the authenticated part 
progressing sequentially into the unauthenticated part. Since in this case, 
control has exited the authenticated part without a branch taking place, an 
intercept to the hypervisor does not occur. To resolve this difficulty, the 
hypervisor can make use of the processor's DEBUG registers, which allow 
setting up hardware breakpoints on a specific addresses. The hypervisor can 
thus setup a hardware breakpoint on the first address of the unauthenticated 
part, giving it the opportunity to gain control in this case and properly 
deactivating Execute rights. Naturally, this case will also trigger a breach 
condition. As mentioned above, this performance-improvement comes at the 
price of hermetic security. This follows from the fact that the hypervisor cannot 
secure the TRAP bit in the processor's EFLAGS register, as there is no way to 
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configure a hypervisor intercept when this flag is changed. Exploiting this 
vulnerability may be difficult but not impossible. 

If absolute security is opted, single-step controlled execution based solely 
on the Monitor Trap Flag must be preferred. Fortunately, the occurrences of 
these cases are rare and from empirical study overall performance is not 
significantly degraded. 

4.4.2 Page Modifying Instructions 

A rare, but nevertheless existing type of instruction, writes data to the page 
from-which it is executing. Such an instruction cannot successfully run in a 
protected system, while still respecting mutual exclusivity between Write and 
Execute permissions. The hypervisor detects these instructions and solves the 
conflict by setting the page to Write permission and executing the special 
instruction inside the hypervisor by interpretation. 

4.4.3 Code Pages that Include Data-Sections 

Some executable applications contain code-pages that belong wholly to the code 
section of the executable file, however contain embedded data sections, which 
the application writes to. The problem with these sections is that these pages 
and the locations of the unusual embedded data-sections are not recorded 
anywhere in the executable file. Therefore, they can only be detected and 
mapped empirically. Fortunately, such case have only been seen in a few OS 
executable files. The solution to this problem is to augment the scanning utility 
and to extend the whitelist data-base to allow locating and labeling these pages 
as special pages and to include the embedded data section addresses and sizes. 
The hypervisor then treats these pages as mixed pages with embedded data 
sections, in a similar fashion to that described for mixed pages detailed in 
section 4.4.1. The only difference being that this extension allots for several code 
and data sections in a mixed page. 

4.4.4 Self-Modifying Code 

Self-modifying code is code that writes out its own instructions as they are 
being executed. This type of behavior is practiced by Microsoft's "Patch-Guard", 
otherwise known as Kernel-Patch-Protection [94] [95], which is a stealthy part 
of the Windows OS responsible to protect Windows own integrity. The problem 
presented by this is similar to that described in section 4.4.2 above with respect 
to data being written to the same page as the instructions that write them, 
however it is more severe, since the data being written are instructions that are 
also executed. 

A general solution to this problem does not yet exist. However, from 
extensive tests run on several versions of Linux and Windows this problem 
manifests itself only in well-defined cases, such as Microsoft's Patch-Guard. 
The proposed solution, applicable to well-known discrete instances, is for the 
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hypervisor to detect and verify that this is the case and respond with: (a) allow 
a deviation from the strict permissions scheme by granting these special pages 
full permission rights or (b) quietly disabling its execution altogether and 
continuing normal execution without raising an error condition. The former 
solution is unsafe, since it exposes a vulnerability according to which an 
adversary may devise injected code to masquerade as a well-known 
implementation, such as Patch-Guard, but eventually generate malicious code. 
The latter solution has the disadvantage of skipping the execution of code that 
may be important in the system. However, in the specific case of Microsoft's 
Patch-Guard, we argue that Patch-Guard is redundant to the protection 
provided by the hypervisor. 

4.5 Performance 

4.5.1 Hypervisor Overhead 

When a hypervisor is activated on a system, two major parasitic performance 
overheads apply: (a) servicing VM exit intercepts and (b) secondary level 
address translation (SLAT) [96]. The former occurs on every event for which the 
hypervisor is intercepts the guest and performs a VM exit. Several such events 
are mandatory VM exits, as detailed in 25.1.2 [44]. Additional events shall cause 
a VM exit only if configured to do so in the hypervisor's control structures. 
During a VM exit the processor must record the reason for the exit as well as 
record the state of the guest (save its control registers) and then load the host 
state (restore its control registers). This activity is reversed upon returning to 
the guest when preforming a VM entry. The overhead of these procedures is 
associated with every intercept and has been measured empirically on an Intel 
Core i7-3687U to be in the range of between 1194 to 3042 cycles, depending on 
whether the required host configurations is already in cache or not, 
respectively. Naturally, an exact value depends on the processor. To calculate 
the total associated overhead, the number of cycles spent inside the intercept 
service routine needs to be added and is, of course, a function of the tasks to be 
performed in each intercept. 

This type of performance overhead is minimized in a thin-hypervisor, as 
compared to a full-virtualization hypervisor used to manage several concurrent 
VMs, since only a handful of intercepts, needed to protect a single VM (and the 
hypervisor itself), are configured to VM exit. 

 
The latter performance overhead source (b) is inherent to activating the 

secondary level address translation (SLAT). In a system with a hypervisor that 
activates SLAT, every memory access that misses the TLB is associated with 
additional CPU cycles that consult the SLAT to perform the necessary 
translation from guest-physical to actual-physical memory address as well as 
verifying access rights. The additional cycles accumulate to a noticeable 
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performance degradation. This type of performance overhead clearly depends 
on the characteristics of the load. 

 
An empirical study was performed to evaluate hypervisor overhead, 

given different types of load. Standard benchmarks were repeatedly carried out 
with and without an active hypervisor and performance results were recorded 
and compared. Tests were based on a variety of benchmarks selected from the 
well-known "Phoronix Test Suite" benchmark suite [97]. The benchmark test 
results are recorded in TABLE 5.  

TABLE 5 Hypervisor overhead comparison results of various Phoronix benchmarks 

Benchmark Units 
No 
hypervisor 

Thin-
hypervisor 

vmwar
e KVM 

Parallel BZIP2 Compression  sec 26.58 26.92 28.92 28.39 

Unpack Linux sec 10.31 11.81 14.83 11.4 

X11 - 500px Putimage Square Op/sec 2822 2795 1643 905 

X11 - Scrolling 500x500 px Op/sec 8140 7683   

X11 - Char in 80-char line Op/sec 11966667 10546667   

X11 - PutImage XY 500x500 Square Op/sec 123.73 120.7   

X11 - Fill 300x300px Trapezoid Op/sec 220500 210200   

X11 - 500px Copy From Win To Win Op/sec 6832 6672   

X11 - 500px Compositing: Pixmap To Win Op/sec 9087 8481   

 
FIGURE 19 depicts the calculated overhead incurred by each type of 

hypervisor for each benchmark. It can be seen that the thin-hypervisor 
overhead is in the order of 10% or less and that it generally incurs less overhead 
than full-virtualization hypervisors. 

4.5.2 Execution Protection Overhead 

System overhead, as a result of execution protection, is attributed to actions that 
need to take place in the hypervisor during a VM exit. This occurs, as depicted 
in FIGURE 15, when: (a) execution of a write-only page is attempted or (b) as a 
result of a write to an execute-only page. The former’s handling is more 
involved, since it warrants calculating the page’s hash and verifying its 
signature, while in the latter case the operation is automatically granted. In both 
cases, however, the SLAT needs to be updated. In single-processor 
environments, updating the SLAT is straightforward, however, in 
multiprocessor environments, as previously detailed, this is more elaborate, 
since it requires interrupting all the other processors, by activating their 
respective hypervisor, which in turns updates its own SLAT. The (a) intercept, 
mentioned above, occurs when an executable page is first executed after the 
application was loaded. Both (a) and (b) intercepts occur after an executable 
page was swapped out and then back in. Therefore, overhead is also closely 
related to the swap activity in the system. 
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FIGURE 19 Hypervisor Performance Overhead Comparison 

Empirical measurement of the performance hits that should be expected 
when activating the thin-hypervisor for execution protection purposes, were 
accomplished by two main approaches. 

First, the time required for the VM exit service routine to perform a page 
authentication was measured directly, by fabricating a function call that 
generates this situation and repeatedly calling the function. Clock cycles 
required to complete the function call were measured and recorded. Average 
results show that execution-page authentication took roughly 60,000 CPU 
cycles. Note, that while this number is significant in itself, the number of times 
it occurs during normal execution of an application is extremely small. 
Furthermore, most occurrences happen in tandem with fetching a swapped-out 
page from disk, which takes an order of magnitude more than the 
authentication. Therefore, the associated performance overhead is generally 
overshadowed by other, related, performance degradations. 

The second approach to measuring performance degradation was based 
on measuring standard benchmark results on systems with and without 
execution protection and comparing these results to yield average performance 
degradation figures under different loads. Measurements were performed on 
single core systems and multiple-core systems to compare the effects on 
different types of platforms. 

 
A subset of benchmarks from the standard Phoronix benchmark suite [97] 

were executed and their results recorded (see TABLE 6) under the following 
conditions: (a) Single core system: (a1) free-running vs. (a2) with execution 
protection; (b) Multi-core system: (b1) free-running vs. (b2) with execution 
protection and (b3) free-running with hypervisor active. The purpose of the (b3) 
measurement was to isolate the performance degradation pertaining only to the 
hypervisor. 
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TABLE 6 Comparative measurements of standard benchmarks with and without 

execution protection 

X11 

Appache 
Static 
Web 
Page 
Serving 

PutImage 
Square 

Scrolling 
500 x 
500 px 

X11 - Char 
in 80-char 
line 

PutImage 
XY 500 x 
500 
Square 

Fill 300 x 
300px 
Trapezoid 

500px 
Copy 
From 
Window 
To 
Window 

Copy 
500x500 
From 
Pixmap 
To 
Pixmap 

500px 
Composit. 
From 
Pixmap To 
Window 

500px 
Composit. 
From 
Window 
To 
Window 

Unpacking 
the Linux 
Kernel 

Req./Sec Op./sec Op./sec Op./sec Op./sec Op./sec Op./sec Op./sec Op./sec Op./sec Seconds 

Single 
Core 

Free-run 7978.41 1628 8140 10126667 119.43 147833 8050 8060 7180 6838 14.74 

Protected 5445.5 1353 6127 8141667 106.33 138250 7325 8060 6842 6537 15.86 

Multiple 
Cores 

Free-run 15447.43 3327 8140 11966667 123.73 220500 6832 8050 9087 8833 10.4 

Protected 10450.99 2465 7633 10433333 116.72 208667 6638 8047 8253 8833 12.73 

HV Free-run 10775.58 2537 7683 10546667 120.7 210200 6672 8047 8481 8833 12.39 

 
This measurement can then be subtracted from the general overhead 

measurement to determine the net average overhead of execution-protection. 
FIGURE 20 depicts the total execution protection overhead for single-core and 
multi-core platforms. FIGURE 21 exhibits the net execution protection 
overhead, obtained by deducting the hypervisor-only overhead from the 
general execution protection overhead. Results show that execution protection 
activities cause a performance degradation lower than 6%. Activating execution 
protection   

 

 

FIGURE 20 Execution Protection Overhead 
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FIGURE 21 Net Mutli-Core Execution Protection. Overhead of total execution 
protection less overhead of an idle hypervisor. 

4.6 Execution Protection of Interpreted Code 

The execution-protection methodology described thus far is appropriate for all 
native-code software applications. When considering software that executes by 
interpretation or is based on JIT (Just in Time) compilation, this methodology 
needs to be augmented. The reason for this is that in the process of interpreting 
software, the actual machine instructions that ultimately execute are 
instructions that belong to the interpreter software. The interpreter itself may be 
non-malicious, as well as signed. Nevertheless, this does not ensure that the 
software it interprets is not malicious. Another way to look at this, is that 
interpreted software must be considered as data rather than code, since its 
instructions do not execute directly on the machine. Rather, they are input-data 
to the interpreter application. 

Software applications that are based on JIT compilation similarly require 
special consideration since a valid signature of the software cannot be used to 
automatically validate the native-code instructions that will eventually be 
generated and then executed on the CPU. 

Software applications based on interpreted code and/or JIT compilation 
are extremely widespread in recent years. These include, for example, Java, C#, 
Java-Script, Python, Ruby, Perl and PHP to name only a few frequently used 
languages. 

The full details of the required augmentation needed in the execution-
protection methodology are beyond the scope of this work. However, for 
completeness, an outline is presented. One possible approach to extend the 
concept of pre-signing executable code in the case of interpreted code is to 
create a chain-of-trust. The idea behind this approach is to build a methodology 
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layer upon layer, where each subsequent layer is deemed trusted by the 
previous layer. In our case the root-of-trust is the thin-hypervisor, trusted by 
virtue of its attestation. To support protection of interpreted or JIT-compiled 
software, the whitelist database shall include the signature of the (original) pre-
interpreted software. Furthermore, the JIT-compiler or interpreter application 
shall be a pre-signed application, which includes several additions and changes 
relevant to the modified execution-protection scheme for interpreted code. The 
modifications shall delineate a procedure to follow when handling interpreted 
code. 

The first change imposed on the Interpreter involves its preparation to 
execute the software. This process is the parallel of the loader's operation before 
executing a native-code application. The Interpreter will involve the hypervisor 
in preparations to run the software by making appropriate hyper-calls. In 
response, the hypervisor will validate the signatures of the original software. 
Furthermore, the hypervisor will set the access rights of all memory-pages 
containing the software to Read-Only. The motivation for this is to ensure that 
any changes attempted to that memory shall trigger a VM exit intercept to the 
hypervisor. If this occurs, the hypervisor will set the page's access rights to 
Write-Only, thus allowing the page to be rewritten. However, since now the 
page cannot be read, an attempt to interpret and execute its commands, ensures 
a hypervisor intercept, giving it the opportunity to revalidate the page's 
signature before changing its access to Read-Only. 

An additional change required in the Interpreter is validation of pages 
from which it will interpret code. Besides having Read-Only access rights, these 
pages must exclusively be verified pages that have undergone hypervisor 
validation. 

The last change and the most complex one, involves isolating the 
Interpreter's data structures, making them inaccessible to other parts of the 
system – including the OS. Intel has developed the Security-Guard-Extension 
(SGX) technology [98], which provides Data-Enclave protection on processors 
that support the SGX extension. Nevertheless, such protection may also be 
implemented by exploiting the capabilities of the thin-hypervisor on processors 
that do not support SGX. 

Interpreted languages that have a JIT-compiler are treated in a similar 
fashion. In this case, the chain-of-trust is threaded through the JIT-compiler, 
which is a signed application that contains several changes in support of 
execution-protection. The original software is validated by the hypervisor and 
its memory pages assigned Read-Only access rights. The JIT-compiler translates 
validated software pages and generates native-code in pages that the 
hypervisor configures Execute-Only and also creates an ad-hoc signature entry 
for each such page in an extension to the whitelist data-base. To ensure the 
chain-of-trust, the JIT-compiler's data structures must be completely isolated 
from the rest of the system using data-enclave technology. 

 



 

5 MANAGEMENT STATION 

5.1 Overview 

The hypervisor prevents execution of unauthorized software by exploiting the 
SLAT mechanism coupled with verification of signatures in a whitelist data-
base. Obviously, the hypervisor can do so only after its activation. Therefore, 
the system remains vulnerable before and during hypervisor initialization: a 
malicious software may acquire execution rights and then either activate a 
malicious hypervisor or prevent activation of our hypervisor. In both cases, our 
hypervisor is not active and therefore cannot provide execution protection, 
while the system owner may be under the wrong impression that such 
protection is in effect. 

It is, therefore, desirable to constantly inform the user in regard to the 
protection status of the given system. However, this notification cannot be 
provided by the system itself, since assuming it has been overtaken maliciously, 
it cannot be trusted. It is therefore self-evident that the software application that 
oversees the integrity a system must run on some other, remote platform, which 
can be guaranteed to be unaffected by the same malicious intervention. Since 
the Execution-Protection architecture already involves the use of a remote 
attestation server, which furthermore shares a secret with the attested 
hypervisor on the target machine, it is the perfect platform candidate to host 
this integrity-validation application. When envisioning a large array of 
computer systems, such as a network of computer stations deployed 
throughout the building of some enterprise, the attestation server along with 
the integrity-validation application can be considered an IT Management-
Station for managing and monitoring the safe execution in the entire computer 
station network. 
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5.2 Management Station Functions 

The management station, described above, has two major responsibilities: 
attestation and monitoring. Furthermore, it may be used as a platform to 
administer application software upgrades to some or all of the systems under 
its supervision. 

By attestation, we mean that the management station acts as the remote 
key-server, attests the hypervisor that is being activated on a remote system and 
provides it with the secret information (i.e., cryptographic key). A detailed 
description of this process appears in chapter 3. The attestation protocol 
guarantees that the secret information is provided only to authentic 
hypervisors, which can then protect the system (and themselves) from 
unauthorized use. Therefore, possession of this secret information can be 
regarded proof of the system's authenticity and integrity. 

The second responsibility of the management station is monitoring and 
notification, by which we mean that the management station constantly 
monitors and informs the user about the protection status of each of the remote 
systems, for example by displaying their statuses on the screen and sending 
alerts if a problem is detected. To support this scheme, the hypervisor is 
obligated to send a periodic message to the management station, thus 
indicating that the remote system is protected. This periodic message acts as a 
heart-beat, allowing the management system to follow-up on the well-being 
and activity of the hypervisor on each remote system.  

To prove that its authenticity and can thus be trusted, the hypervisor signs 
its messages with the secret key that it received from the management station 
during the attestation protocol. In order to prevent replay attacks, the 
management station generates and sends to the hypervisor a random number s 
which acts as a session id. The session id s is sent only once during the 
attestation protocol. Then in each periodic message, sent t time units after the 
attestation has completed, the hypervisor generates and sends to the 
management station, a signed message containing (s; t). This message proves 
that the hypervisor belonging to session s is active at time t. FIGURE 22 depicts 
the described protocol. 

5.3 Updating Software Applications 

Once a system is whitelisted and execution-protected, i.e., it contains a data-
base of signatures for all the executable pages of all its executable software 
applications, DLLs and drivers as well as contains and activates the thin-
hypervisor – the system is limited to the exclusive execution of whitelisted 
software only. Execution of anything else will be immediately rejected by the 
hypervisor. 
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When new software packages need to be installed on the target computer 
they must be signed (on a page by page basis) and the signatures need to be 
added to the target-system's whitelist data-base before the new software can 
run. Software package installations normally comprise of a compressed archive 
and installation script, which guides an installation process. The installation 
archive may be passive, in which case it contains an installation application that 
the installer needs to execute; or it can be active, in which case it is a self-
expanding archive the automatically expands and executes the installation 
script. In both cases, the first executable to run would be the installation 
application(s), later followed by the rest of the executable components, after the 
new software application launches. 

 

 

FIGURE 22 Protocol between thin-hypervisor and management station. The protocol 
begins with the 4-way handshake initially performed to attest the 
hypervisor and furnish it with secret information. It is followed by periodic 
notification from the hypervisor to prove that it is continuously functioning, 
and therefore the system can be considered protected. 

Generating an extension to the whitelist data-base must be performed by 
the system that possess RSA signature capability. In other words it owns the 
RSA private key corresponding to the public key used by the thin-hypervisor 
for validating the signatures. Most naturally this would be the management 
station, since the thin-hypervisor has already made use of this public key 
during the attestation phase. It is proposed to install an installation archive 
scanner on the management station to prepare signature extensions for the 
target whitelist data base. 

The assumption underlying a utility to generate the whitelist extension is 
that the installation package for the new software is verified and validated. In 
other words, it may be trusted as original and does not contain malware. This 
assumption is usually reasonable when the software installation archive has 
been procured directly from a well-known, and trusted (by reputation) software 

Thin-
hypervisor 

Management 
Station 

…
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vendor. In cases where additional measures must be taken, it is possible to 
imagine a software package being installed in a "sandbox" computer system for 
extensive testing, study and possibly forensics in order to validate it as "clean" 
software [99] [100]. Under this assumption, the utility scans the entire archive 
and produces signatures for all the executable pages in all the executable 
components found inside the archive. The installation procedure is signed as 
well, ditto the executable part of a self-expanding archive. The utility produces 
a whitelist extension, which is added to the existing whitelist database already 
installed on the target system, where the new software installation is intended. 
Once the signature extension has been added to the target's whitelist database, 
the installation archive can be copied to the target and activated. 

5.4 Protecting the Management Station 

Management station protection is beyond the scope of this work. However, it 
shall be mentioned that management station safety and trustworthiness is 
critical to the execution-protection scheme and the underlying assumption is 
that the management station can, and is, properly protected against malicious 
penetration. Completely assuring the cyber-security of a single system is 
generally a manageable IT task. We only mention several guidelines that should 
be followed to achieve this: 

• The Management station should not be connected to the general 
Internet 

• The management station should be connected to the local LAN 
behind a Firewall that prevents all possible communications, save one 
single TCP Listen port, across which the management station accepts 
TCP connections from target systems for attestation and monitoring 
purposes 

• The management station should have a single administrator account 
with strong password protection 

• Management station databases should be encrypted on disk and all 
access restricted by passwords 

• Relevant passwords shall not be stored in plaintext anywhere in the 
management station 

 



 

6 SUMMARY OF ORIGINAL ARTICLES 

This thesis includes 7 articles. In this chapter each article is summarized and the 
author's contribution is stated. 

6.1 Preventing Execution of Unauthorized Native-Code Software 

Resh, A.; Kiperberg, M.; Leon, R.; Preventing Execution of Unauthorized 
Native-Code Software. To be published in: JDCTA, International Journal of Digital 
Contents Technology and its Applications, 2016. 
 
This article describes the methodology underlying the prevention of malicious 
native-code from executing on a computer system. The paper studies the 
implications of implementing a thin-hypervisor, creating a trusted environment 
with remote attestation and managing system security by controlling memory 
access at a privilege level above the operating system. 

The article focuses on attestation of a remote thin-hypervisor on a modern 
computer platform that contains multiple cores, creating a trusted environment 
that includes a secret key, maintaining trust and exploiting hardware 
virtualization to control a system's native-code execution rights with a whitelist 
database. The article also studies the effects of the thin-hypervisor and 
execution protection on system performance. 

The author was a major party in the research efforts preceding this paper 
and was a main contributor in formalizing the algorithms and methodologies 
employed. The author implemented the remote-attestation and symmetric 
cryptography in the hypervisor side and the challenge generator in the server 
side, as well as took part in other implementation aspects. The author defined 
and supervised the performance measurements and statistical analysis related 
to this paper. 

The author was the lead-writer of this article with research and 
implementation in close collaboration with the co-authors. 
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6.2 System for Executing Encrypted Native Programs 

Resh, A.; Kiperberg, M.; Leon, R.; Zaidenberg, N.J.. System for Executing 
Encrypted Native Programs. Reports of the Department of Mathematical 
Information Technology, Series B. Scientific Computing, No. B 12/2016, ISBN 978-
951-39-6810-6, 2016. 
 
Computer software is susceptible to reverse-engineering even when it is 
distributed as native machine code. Reverse engineering allows an adversary to 
steal algorithms or administer changes to the software in an effort to bypass its 
licensing or administer malicious code. Solutions to combat reverse-engineering 
are generally based on obfuscation techniques. However, these have been 
proved mostly ineffective. 

This article studies a new and novel methodology to create an 
environment that supports execution of encrypted code as a means to evade 
software reverse-engineering. The article focuses on the use of a thin-hypervisor 
to perform run-time decryption of native-code instructions, inside the CPU 
cache, thereby isolating the actual code from any potential adversary. The 
article describes the means for setting up a trusted hypervisor that contains 
secret key material, the hypervisor's attestation and a software encryption tool. 
It compares two alternative approaches to performing secure, just-in-time, 
decryption and execution: In-place execution vs. Buffered execution; and 
displays comparative performance results. 

The author was a major party in the research efforts preceding this paper 
and was a main contributor in formalizing the algorithms and methodologies 
employed. The author implemented the encrypting utility and the run-time 
decryption and execution parts in the thin-hypervisor. The author also 
developed the hypervisor side AES cryptography. The author defined and 
supervised the performance measurements and statistical analysis related to 
this paper. 

The author was the lead-writer of this article with research and 
implementation in close collaboration with the co-authors. 

6.3 Remote Attestation of Software and Execution-Environment 
in Modern Machines 

Kiperberg, M.; Resh, A.; Zaidenberg, N.J.. Remote Attestation of Software and 
Execution-Environment in Modern Machines. The 2nd IEEE International 
Conference on Cyber Security and Cloud Computing, 2015. 
 
This article studies the problem of remotely authenticating a target system 
encompassing a modern hardware platform. Authentication of a remote system 
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is generally possible using hardware or software. The article focuses on a 
software only methodology and expands on existing attestation schemes to 
adapt to modern computer platforms that include multiple core processors and 
hardware virtualization. The article extends the notion of attestation to 
validating that the remote target system is running the correct version of 
software, that the system is not being virtualized and that a by-product of the 
attestation includes transfer of secret key material to the target system. 

The author was a major party in the research efforts preceding this paper 
and was a main contributor in formalizing the algorithms and methodologies 
employed. The author led the research related to the correct exploitation of 
hardware side effects in modern multi-processor systems. The author 
implemented the remote-attestation and the challenge generator. 

The author was a principle-writer of this article with research and 
implementation in close collaboration with the co-authors. 

6.4 Timing and Side Channel Attacks 

Zaidenberg, N.J.; Resh, A.. Timing and Side Channel Attacks. Cyber Security: 
Analytics, Technology and Automation, vol. 78, pp. 183-194, 2015. 

 
This book chapter surveys an assortment of indirect attacks designed to break 
codes, guess passwords and gain illegal access into protected systems. As 
opposed to direct attack techniques, indirect attacks collect evidence by 
monitoring an abundance of parameters that are indirectly effected by the main 
activities. The chapter describes timing, power measurement and hardware 
event counters in this context. 

The author was a principle-writer of this article in close collaboration with 
the co-author. 

6.5 Trusted Computing and DRM 

Zaidenberg, N.J.; Neittaanmäki, P.; Kiperberg, M.; Resh, A.. Trusted Computing 
and DRM. Cyber Security: Analytics, Technology and Automation, vol. 78, pp. 205-
212, 2015. 

 
This book chapter studies the concepts supporting the notion of trusted-
computing and the solutions it provides to Digital Rights Management (DRM). 
The chapter focuses on the Trusted Platform Module (TPM) for computer 
system platforms. TPM methodologies are described and its weaknesses 
analyzed. Additional techniques and methodologies are presented as well in 
the areas of video and DVD rights management, as well as disk encryption and 
mobile phone data privacy. 
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The author took part in the related research and worked in close 
collaboration with the co-authors. 

6.6 Can keys be hidden inside the CPU on modern Windows host 

Resh, A.; Zaidenberg, N.J.. Can keys be hidden inside the CPU on modern 
Windows host. ECIW 12th European Conference on Information Warfare and 
Security, Jyväskylä, 2013. 

 
This conference paper studies the alternatives and implications of storing 
cryptographic keys in a computer system. Alternative solutions are discussed 
and evaluated. The paper concludes that the major obstacle to safeguarding 
keys in a computer system are rogue kernel-mode drivers that may infiltrate 
modern operating systems. This paper's conclusions eventually led to the 
research and development of thin-hypervisor based techniques to solve this 
problem. 

The author was the main party in the research that led to the findings in 
this paper. 

The author was the lead-writer of this article in close collaboration with 
the co-author. 

6.7 System for Executing Encrypted Java Programs 

Kiperberg, M.; Resh, A.; Algawi, A.; Zaidenberg, N.J.. System for Executing 
Encrypted Java Programs. 38th IEEE Symposium on Security and Privacy (IEEE 
S&P 2017), Submitted. 3rd International Conference on Information Systems Security 
and Privacy (ICISSP 2017), 2017. 

 
In recent years managed execution environments have gained increasing 
popularity. This article studies the applicability of protecting code against 
reverse-engineering by executing encrypted code in managed environments. 
While native machine code can be guaranteed to execute atomically in the 
confines of the CPU (cache for example), this guarantee cannot be extended to 
managed-code, since software instructions are not executed directly. Rather 
they need to be interpreted locally by the managing system. 

This article focuses its study on the methodology required to execute 
managed JAVA software by incorporating parts of the JVM engine (which 
interprets JAVA bytecode during runtime) inside a trusted thin-hypervisor. It 
details the scheme for generating and attesting a trusted and secure hypervisor, 
which contains a secret decryption key, decrypting JAVA bytecode securely 
within the thin-hypervisor and the intercommunications with the parts of the 
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JVM outside the thin-hypervisor. Measurements of the associated performance 
degradation are presented as well. 

The author was a major party in the research efforts preceding this paper 
and was a main contributor in formalizing the algorithms and methodologies 
employed. The author implemented the Java encrypting software. 

The author was a principle-writer of this article in close collaboration with 
the co-authors. 
 



 

7 CONCLUSIONS 

This chapter summarizes the contributions made by the thesis, its extensions 
and modifications to existing practice, its limitations and direction for future 
research. 

7.1 Contributions 

The thesis' main contribution is a complete solution and methodology to protect 
a system against malicious penetration with native-code. The methodology 
combines several components, some previously studied and others new, novel, 
solutions. It also provides extensions and modifications to existing practice that 
were required to support modern computer platforms. To support resistance 
against system penetration, a remote trusted environment is setup and 
maintained, therefore, the contribution of the thesis is not limited to 
penetration-protection, but also extends to the field of trusted computing. 

Hypervisors, based on hardware virtualization have become common in 
the last decade for the purpose of managing several operating-system stacks on 
a single computer platform. Thin-hypervisors, controlling only a single 
operating-system guest, with minimal interference, have also been proposed for 
a variety of purposes. The thesis expands on these ideas by extending the 
concept of a thin-hypervisor to execution-protection of a guest. 

Creation of a remote trusted environment requires attestation capabilities 
of arbitrary computer platforms. The thesis expands on attestation schemes 
proposed by Kennell and Jamieson [8] as well as others [9] and adapts them to 
modern computer platforms, which contain multiple core CPUs and may 
themselves be operating stealthy hypervisors. The thesis also proposes how to 
maintain trust on a remote system following a successful attestation. 

To conclude, the thesis advances the idea of resistance to malicious native-
code penetration, both at the user-application level and the operating-system 
level, by harnessing the thin-hypervisor's control over the computer system's 
memory access. 
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7.2 Limitations & Future Research 

Execution-protection works well for the vast majority of applications executing 
over Windows, Linux and OSX operating systems, running on Intel or AMD 
processors. However, in a small minority of executable applications, special 
pages exist, as described in detail in chapter 4.4. While operative solutions have 
been given to these singularities, a performance toll exists in most cases. 
Exceptional to this are self-modifying applications that modify their own code-
page while executing. As mentioned in section 4.4.4, a general solution for these 
executable pages does not yet exist. An example to this is Microsoft's Patch-
Guard executable. The specific, individual, solution given by the thesis to this 
situation is not completely safe. However, the barrier to exploiting it as a 
vulnerability is extremely high. Fortunately, these are very rare and at least in 
the case of Microsoft's Patch-Guard, the safest recommendation is to disable it 
altogether, since when execution-protection is in operation it is not needed. 

The thesis methodology covers execution-protection against malicious 
penetration with native-code. Many modern software applications, frequently 
in use, are based on languages that are interpreted and/or JIT-compiled. To 
accommodate protection against penetration based on this type of executable 
software, the thesis methodology must be expanded to implement a chain-of-
trust approach, as well as combine data-enclave solutions. Chapter 4.6 includes 
an outline for this scheme. However, it remains beyond the scope of this thesis 
and is left for future research. 

Finally, the thesis methodology only addresses penetration attempts based 
on executing native-code that has been injected into the system maliciously. 
Granted this is the vast majority of cyber-based penetration. However, 
additional techniques do exist. For example, the thesis methodology cannot 
protect against a penetration tactic, which manages to inject data into the 
computer system and by virtue of that manipulate legitimate code into acting 
maliciously. 
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YHTEENVETO (FINNISH SUMMARY) 

Laiteläheisen tietoturvan vahvistaminen 
 
Liike-elämä on tullut entistä riippuvaisempi tietokonejärjestelmistä, niiden 
toiminnoista ja tietokannoista. Myös haittaohjelmien hyökkäykset ovat tulleet 
jokapäiväisiksi. On olemassa monenlaisia hyökkäysvektoreita, ja tietoturvalli-
suusala tuottaa lukuisia käyttäytymismalleihin pohjautuvia menetelmiä ilmiön 
havaitsemiseksi ja käsittelemiseksi.  

Nykyaikaiset prosessorit jotka soveltuvat hyvin hypervisorien käyttöä 
tukevaan laitteistovirtualisointiin mahdollistavat useiden virtuaalikoneiden 
(VM) suorittamisen yhdellä tietokonealustalla. Laitteistovirtualisointitoiminnot 
antavat hypervisorille laitteistoalustakontrollin käyttöoikeustasolla joka ylittää 
käyttöjärjestelmän äyttöoikeustason. 

Tämän työn tarkoituksena on tutkia ja kehittää yksinkertaistetun thin-
hypervisorin pohjalta metodologia, jossa käytetään hyväksi laitteistovirtuali-
soinnin hyviä puolia pahantahtoisen tunkeutumisen estämiseksi tietokone-
systeemiin. Onnistuminen tässä edellyttää, että luottamus yksinkertaistettuun 
thin-hypervisoriin täytyy olla taattu sen käskyjen, määritysrakenteiden ja sen 
todellisen laitteistoalustakontrollin suhteen. Lisäksi sen täytyy kyetä suojau-
tumaan koodin turmelemiselta kaikkina aikoina. Tässä esitetty metodologia 
kuvaa sitä, kuinka voidaan pystyttää luotettava yksinkertaistettu thin-
hypervisor ja käyttää sitä niin että se rajoittaa koodin suorittamisen yksinomaan 
etukäteen allekirjoitetuille, sallituille ohjelmistoille. 

Tämä metodologia antaa vastustuskyvyn useimpien APT hyökkäysvekto-
reiden torjumiseksi ja käsittelee myös ne nollapäivähaavoittuvuudet jotka 
voivat jäädä huomaamatta käyttäytymismalleihin pohjautuvilta ilmaisimilta. 
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Abstract 

The business world is exhibiting a growing dependency on computer systems, their operations and 
the databases they contain. Unfortunately, it also suffers from an ever growing recurrence of malicious 
software attacks. Malicious attack vectors are diverse and the computer-security industry is producing 
an abundance of behavioral-pattern detections to combat the phenomenon. This paper proposes an 
alternative approach, based on the implementation of an attested, and thus trusted, thin-hypervisor. 
Secondary level address translation tables, governed and fully controlled by the hypervisor, are 
configured in order to assure that only pre-whitelisted instructions can be executed in the system. This 
methodology provides resistance to most APT attack vectors, including those based on zero-day 
vulnerabilities that may slip under behavioral-pattern radars. 

 
Keywords: Hypervisor, Trusted computing, Whitelisting, Attestation, APT-protection, Cyber-

security 
 

1. Introduction 
 

An abundance of malicious software attacks plague the computer software industry. The attack 
methodologies are diverse, ranging from code-injection, buffer-overflow, viruses, worms and Trojans to 
rootkits. Malicious code is usually designed to gain access to and steal the victim's data, such as personal 
information, credentials, trade secrets, or to gain access to the victim's system in order to take advantage 
of the resource for inflicting further damage. Malicious code motivation is predominantly financial but 
in some case other motivations may exist as well. 

In many cases malicious attacks are not carried out in a single shot. Many attacks are multi-faceted, 
containing several intermediate steps, each designed to progress the offender to the next level of 
penetration before reaching the final goal. As an example, [1] details 5 stages of a Web malware attack 
leading from entry to execution on the compromised system: 

 Entry  malicious code enters the victim system as a result of a drive-by download occurring when 
visiting a hacked site or following a malicious link in an email. 

 Traffic Distribution  drive-by downloads execute inside browsers. Their primary goal is to 
download an exploit kit. Traffic redirection occurs to conceal the IP address from which the exploit 
kits are eventually downloaded. 

 Exploits  once an exploit kit is downloaded it attempts to locate a system vulnerability that it can 
exploit in order to progress the attack. Exploits are usually encapsulated in PDF, FLASH, Java, JS 
or HTML files. 

 Infection  once a vulnerability is found by the exploit kit, it is used to download the actual 
malware's executable code. SophosLabs identify several common malware payloads: Zbot(Zues)  
steals personal information by logging keystrokes and grabbing display frames; Ransomeware  
restricting access to the user's resources and demanding payment to restore access; PWS  steals 
user credentials and allows remote access; Sinowal(Torpig)  installs a rootkit to steal credentials 
and allow remote access; FakeAV  a Fake antivirus that "finds" fake viruses and demands payment 
to "clean" them out. 

 Execution  the downloaded malware has been installed in the victim system and is executed. This 
is the stage where the actual damage is inflicted. 

 



Other types of attacks exist as well, each seeking to abuse system or human vulnerabilities in order to 
inflict damages, gain access to privileged information or completely take control. Many of these attacks 
are similarly multi-stage. Attacks may exploit all or some of the following common stages: 

 Entry  malicious code enters the system as a result of a malicious email attachment, a bogus 
executable installation a buffer-overflow, a USB disk insertion, a worm or a virus spreading. 

 Non-privileged execution  in this mode of execution, malicious code that has entered the system 
executes in a low privileged level. It may still inflict some damage, however that damage is usually 
limited and may eliminate its capability to achieve persistency. In that case, the malicious code will 
disappear when the system is rebooted. 

 Escalation: privileged execution  a much more hazardous case occurs when an unprivileged code 
exploits a system vulnerability (usually in the OS) and manages to escalate its privilege. It is beyond 
the scope of this text to describe the mechanisms that may be employed to achieve this, but the 
statistics are most staggering. Malicious code that gains privileged access may freely write to the 
filesystem on disk, to the main memory  both to user and to OS space, to the system registry or 
even to the boot record or BIOS memory. 

 Acquiring Persistency  using the capabilities of privileged execution, malicious code can strive for 
persistency. In other words, the capability to survive system reboot as well as a complete system 
power-cycle.  Achieving this level is the first step in "securing" the malicious code's survival in the 
compromised system. Many infections will also go to great lengths to camouflage their existence 
using a variety of methods, some very cunning, to avoid detection and removal. 

 Compromised system  once malicious code has persistent execution on the system the perpetrator 
can potentially steal sensitive data, log keyboard activity to steal messages or passwords, grab 
screenshots or even achieve full remote-control of the system. 

While system penetration is possible to some extent, without resorting to execution of unrecognized 
instructions in the system  ultimately all penetration goals are served only by executing some form of 
(rogue) executable instructions, which were not part of the system before the penetration. The 
methodology proposed by the authors in this paper, takes advantage of this fact, to provide an efficient 
way to protect against most such invasions, performed by a large variety of penetration techniques and 
also in many cases that utilize a previously unknown zero-day vulnerability. 

The authors propose an approach whereby native-code is verified just before it receives execution 
rights. To achieve this, the entire system is first "whitelisted" by generating a database that contains 
signatures for every executable code-page that exists in the system's executable files, DLLs, drivers etc. 
A hypervisor is utilized to intercept and verify every execution attempt, at a page granularity, according 
to the whitelist database. The system is based on the approach proposed by Averbuch et al. [2] [3], in 
which an attested kernel module is responsible for performing cryptographic operations. 

Hypervisors have been previously used to secure systems. For example, the Software-Privacy 
Preserving Platform (SP3) [4] utilizes a hypervisor to maintain isolated memory-pages in 
protection-domains. Physical pages in the system can be individually encrypted with a 
symmetric-key, where each domain has an associated set of keys whose pages it is allowed to use. 
The hypervisor intercepts interrupts and exceptions and uses shadow page-tables to manage 
decryption and encryption of the appropriate pages when the application shifts  between domains. 
This methodology keeps domain access to protected pages isolated from other domains as well as 
from the OS. The hypervisor stores the key-database and domain key-associations in its own 
isolated memory.  

 
2. Thin hypervisor 

 
A hypervisor, also referred to as a Virtual Machine Monitor (VMM), is software, which may be 

hardware assisted, to manage multiple virtual machines on a single system. The hypervisor virtualizes 
the hardware environment in a way that allows several virtual machines, running under its supervision, 
to operate in parallel over the same physical hardware platform, without obstructing or impeding each 
other. Each virtual machine has the illusion that it is running, unaccompanied, on the entire hardware 
platform. The hypervisor is referred to as the Host, while the virtual machines are referred to as Guests. 



Hypervisors have been in use as early as the `60s on IBM mainframe computers [5]. After 2005 
Intel and AMD introduced hardware support for virtualization (Intel VT-X [6], AMD AMD-V 
[7]) which allows implementing hypervisors on the ubiquitous PC platforms.  

In order to support multiple OS guests, a hypervisor must unobtrusively intercept OS access 
to hardware resources so it can attend to them itself. The hypervisor can then manage hardware 
allocations that maintain proper separation between the Guests. The Guest OS is unaware of the 
hypervisor's intervention, as it experiences a normal hardware access cycle. The only distinction 
being the elapsed time, since the hypervisor mediation has a time-toll. 

 

 
Figure 1. Virtualized system featuring a hypervisor and two operating systems executing 6 programs. 

The hypervisor runs in a higher privilege level than the operating system. System calls, traps, 
exceptions and other interrupts, transfer control from user mode applications to their operating system. 

The operating system handles these conditions by requesting some service from the underlying 
hardware. The hypervisor intercepts those requests and handles them according to some policy. 

 
To intercept OS hardware access, hypervisors can be configured to intercept privileged 

instructions, memory access, interrupts, exceptions and I/O, which are the OS vehicles for 
hardware access. Executing an intercepted privileged instruction causes a hypervisor VM_EXIT. 
In other words, the Guest is exited and the configured hypervisor intercept -routine is executed. 
When this occurs, the CPU mode changes from Guest-mode to Host-mode. 

Guest applications that require hardware resources, execute system calls to request support 
from their OS. Figure 1 depicts this chain-of-execution for a hypervisor with two Guest stacks. 
After fulfilling the intercept, the hypervisor indiscernibly returns to the Guest. While hypervisors 
were generally designed to serve as virtual machine monitors, hypervisors, which control the 
underlying hardware platform, are also very good platforms to serve as software security 
facilitators. 

The authors propose to use a hypervisor environment for securing a single Guest stack. Rather 
than wholly virtualizing the hardware platform, a special breed of hypervisor, called a thin-
hypervisor, is used [8] [9]. The thin-hypervisor is configured to intercept only a small portion of 
the system's privileged events. All other privileged instructions are executed without interception, 
directly, by the OS. The thin-hypervisor only intercepts the set of privileged instructions that 
allows it to protect an internal secret (such as cryptographic key material) and protect itself from 
subversion. Figure 2 depicts a thin-hypervisor supporting a single Guest stack. Since the thin-
hypervisor does not control most of the OS interaction with the hardware, multiple OSs are not 
supported. However, system performance is kept at an optimum.  



 

 
Figure 2. Thin hypervisor. The hypervisor runs in a higher privilege level than the operating system. 

System calls, traps, exceptions and other interrupts, transfer control from user mode applications to the 
operating system. The operating system handles these conditions by requesting some service from the 

underlying hardware. A thin hypervisor can intercept some of those requests and handle them 
according to some policy.

 
Thin hypervisors have been previously used for security purposes. TrustVisor [10] is a thin 

hypervisor that enables isolated execution of designated portions of an application. TrustVisor is 
booted securely by making use of a TPM chip and once in operation, it depends on hardware 
virtualization to isolate portions of memory with Secondary Level Address Translation (SLAT) 
as well as protect memory from DMA access by physical devices with DEV or IOMMU. 
TrustVisor utilizes this capability to (i) protect itself; and (ii) extend TPM facilities to a so -called 

TPM environment that is used to provide high-speed trusted-computing primitives. These 
capabilities are further used by TrustVisor to achieve its ultimate goal of supporting a totally -
isolated execution environment for designated self-contained software routines, called PALs 
(Pieces of Application Code). Software developers designate the portions of their codes that 
require isolation and group them into appropriate PALs. The developers register the PALs by 
providing a description of PAL bounds as well as memory regions they need to access.  The 
TrustVisor guarantees that when PALs are called they operate in an isolated memory environment 
until they are exited. 

A thin-hypervisor facilitates a secure environment by: 
1. Setting aside portions of memory that can be accessed only when the CPU is in Host 

mode 
2. Storing cryptographic key material in privileged registers and 
3. Intercepting privileged instructions that may compromise its protected memory or key 

material 
A thin-hypervisor is less susceptible to being hacked as a result of vulnerabilities, since its 

code and complexity are greatly reduced, as compared to a full -blown hypervisor. 
Once this environment is correctly setup and configured, the thin-hypervisor can be utilized to 

carry out specific operations, which may include use of the internally stored key material, in a 
protected region of memory. As a result of the tightly configured intercepts and absolute host 
control of select memory regions, this activity can be guaranteed to protect both the secret key 
material and the operations' results. 

The thin-hypervisor can effectively protect the secret key-material, after it is safely stored in 
privileged registers and the thin-hypervisor is correctly configured and active. However, the 
procedure by-which the secret material gets stored while the thin-hypervisor is being setup  is 
delicate business, since an adversary can potentially grab the secret at that point. An additional 
question, requiring an answer, is where the secret is kept while the thin -hypervisor is not active? 

The authors' approach to solving these issues is based on an approach described in [11] and is 
comprised of the following principles: 



 While the thin-hypervisor is not active, the secret key material shall not be stored 
anywhere in the system 

 When setting up a thin-hypervisor, an external system shall be used to verify that the 
thin-hypervisor has control over the underlying hardware 

 The same external system that verifies the thin-hypervisor shall provide the secret key-
material 

The first principle is important to rule out the possibility of keeping secret material under the 
cover of obfuscation, which is known to be ultimately vulnerable. The second and third principles 
require maintaining a remote key-server system and equipping it with the facilities to verify that 
a thin-hypervisor on a remote system has been properly setup and configured, such that a trusted 
environment is primed and can accept secret material.  
 
2.1 Adversary Model 
 

We assume that an adversary is freely able to access system memory for writing and reading. 
Memory can be accessed for writing in a variety of ways. For example, contents can be loaded from disk, 
arrive over a communication channel or be injected directly into memory by an executing application. 
We further assume that an adversary is also able to write to some memory regions that should in principle 
be protected by the OS, based on exploiting system vulnerabilities. Such regions include, but are not 
limited to, application code, privileged kernel-mode code and system drivers. Accordingly, memory that 
has been accessed for writing, by the application or by the OS, is never trusted for execution purposes. 

Furthermore, it is assumed that an adversary cannot obstruct the operation of a root (primary) 
hypervisor that is based on hardware virtualization, as well as secondary memory translation (i.e., EPT) 
and IOMMU that operate at a privilege that is higher than the OS when a hypervisor is active. 

Adversary attacks that are based on manipulating pure data in memory, in such a way as to render 
legitimate code malicious (referred to as code-reuse) are not considered. 
 
2.2 Contribution 
 

The authors propose a methodology and system that achieve a strong system-wide protection against 
execution of a wide array of unauthorized code penetrations. Our approach is distinguished from previous 
efforts by the implementation of an attested thin-hypervisor, which launches in an existing OS and which 
extends its security model over existing legacy applications without requiring their modification. 

The unique approach described here allows a system to dynamically shift between protected and 
unprotected modes of operation. This situation can be appreciated, for example, in a BYOD situation, 
where enterprise employees can use their own computers for private (unsecure use) without enduring the 
performance overhead associated with protection, then shifting dynamically into protected mode to run 
office applications that require tight security. Applications that execute in protected mode, shall be 
protected and isolated from malicious code the computer may have contracted. 

Dynamically shifting into protected mode is based on the capability to activate a thin-hypervisor 
after an OS already prevails. Securing trust in this situation entails administering a remote attestation 
procedure to establish a trusted environment in an otherwise untrusted computer system.  

 
3. Achieving trust in a remote system 

 
The problem of remote software authentication, determining whether a remote computer system is 

running the correct version of a software, is well known [12] [13] [14] [15] [16] [17]. Equipped with a 
remote authentication method, a service provider can prevent an unauthenticated remote software from 
obtaining some secret information or some privileged service. For example, only authenticated gaming 
consoles can be allowed to connect to the gaming networks [18] [19] [20] and only authenticated bank 
terminals can be allowed to fetch records from the bank database [21]. 

The research in this area can be divided into two major branches: hardware assisted authentication 
[22] [23] [24] and software-only authentication [12] [13] [25]. In this paper we concentrate on software-
only authentication, although the system can be adapted to other authentication methods, as well. The 
authentication entails simultaneously authenticating some software component(s) or memory region, as 



well as verifying that the remote machine is not running in virtual or emulation mode. Software-only 
authentication methods may also involve a challenge code that is sent by the authentication authority, 
and executed on the remote system. The challenge code computes a result that is then transmitted back 
to the authority. The authority deems the entity to be authenticated if the result is correct and was received 
within a predefined time-frame. The underlying assumption, which is shared by all such authentication 
methods, is that only an authentic system can compute the correct result within the predefined time-
frame. The methods differ in the means by which (and if) they satisfy this underlying assumption. 

Kennell and Jamieson proposed [12] a method that produces the result by computing a cryptographic 
hash of a specified memory region. Any computation on a complex instruction set architecture (Pentium 
in this case) produces side effects. These side effects are incorporated into the result after each iteration 
of the hashing function. Therefore, an adversary, trying to compute the correct result on a non-authentic 
system, would be forced to build a complete emulator for the instruction set architecture to compute the 
correct side effects of every instruction. Since such an emulator performs tens and hundreds of native 
instructions for every simulated instruction, Kennell and Jamieson conclude that it will not be able to 
compute the correct result within the predefined time-frame. The method of Kennel and Jamieson was 
further adapted, by the authors, to modern processors [11]. The adaptation solves the security issues that 
arise from the availability of virtualization extensions and multiplicity of execution units. 

Establishing a thin-hypervisor that receives a remote secret (cryptographic key) in confidence and 
which may execute cryptographic operations with that secret key, provides an excellent software-only 
platform to utilize and sustain trust. The utilization of trust is based on being able to deliver encrypted or 
cryptographically-signed material to the remote system. The thin-hypervisor can decrypt and/or validate 
the received material and act accordingly. Any attempts to make changes, additions or deletions to the 
delivered material will inevitably be detected by the thin-hypervisor, provided the secret key is kept 
secret. Trust sustainability is upheld by eliminating any possible access to the secret material as well as 
rejecting any attempts to disrupt the code or state of the thin-hypervisor. Fortunately, a hypervisor has 
the available facilities to achieve just that. 

Setting up a trusted thin-hypervisor on a remote system, while adhering to the 3 principles noted in 
the previous section, involves the following validations:  

1. The thin-hypervisor's code is validated 
2. The validated code is the one that executes when a VM_EXIT occurs 
3. The thin-hypervisor controls the underlying hardware 

 
3.1 Overview of the methodology 
 

The vehicle to perform this remote verification is a piece of code, called an attestation-challenge [26] 
[27]. The attestation-challenge is administered by the key-server to the remote machine, as it is 
configuring the thin-hypervisor. The remote machine is required to load and execute the challenge code, 
returning an attestation result to the key-server within a pre-limited time-frame. The attestation-challenge 
calculates the checksum of the thin-hypervisor code, but in addition convolutes the checksum calculation 
with hardware side-effects, sampled by the challenge as it is executing. The side-effect samples are 
hardware-registers that count hardware events, such as cache hits or misses, TLB hits or misses etc. 

The key-server considers a correct response received within the allotted time-frame, proof that the 
correct thin-hypervisor code is executing and it has true control of the remote system's hardware. 

 
3.2 Remote attestation 
 

As described above, the attestation challenge calculates the checksum of the thin-hypervisor's code 
convoluted by hardware event samples. The attestation challenge is composed of several computational 
nodes. Each node executes a single operation related to the challenge result calculation and then branches 
to the next node according to the current result value. Three different branches are possible for each 
node: 

 Branch A: if the result parity is even (50% chance) 
 Branch B: if the sign bit is set (25% chance) 
 Branch C: Otherwise (25% chance) 



Branch target nodes may be the same or different, for each possible branch option. The variety of nodes 
include: 

 Checksum operation  Sum a hypervisor code value 
 XOR hardware counter  Xor hardware-event-counter i with current checksum result 
 AND hardware counter  AND hardware-event-counter i with current checksum result 
 Multiply hardware counter  Multiply hardware-event-counter i with current checksum result 
 MAC calculation (such as SHA-1)  

where i is a Data-Cache Hit, Data-Cache Miss, TLB-Hit, TLB Miss, etc. Due to the multiple 
branches stemming from each node, the entire set of nodes comprises a network. 

 

 
Figure 3. A challenge node network. 

 
The node network is built to guarantee that every circuit contains at least one of each node-type. The 

first node to execute is the "Prolog" node, which sets up the environment and configures the hardware 
side-effect counters. The "Epilog" node is the last node to execute. It performs clean-up and returns the 
final challenge result. 

Checksum calculation is performed by summing a wide virtual space that is redundantly mapped to 
the physical memory space that contains the code regions need to be attested along with their page-tables. 
The challenge is always accompanied by a (pseudo-random) virtual map that is designed to map the 
relatively small physical-page region to the relatively large virtual space.  Naturally, each physical-page 
is mapped to multiple virtual-pages. The physical-page region includes: 
 The thin-hypervisor code pages 
 The challenge code page (all the code of the nodes) 
 The page-table pages that define the virtual map 

The challenge nodes are contained in a single physical-page, however, individual nodes are mapped at 
different virtual space locations and as such, each Node executes from a different location. 

The checksum calculation order is governed by a pseudo-random-walk according to an LFSR (Linear-
Feedback-Shift-Register) generator [28]. Every virtual-space address is visited once, however, physical 
addresses are visited multiple times. This is designed to induce side-effects. In a check-summing node, 
the value at each address is accumulated to the checksum. Other node types perform additional action on 
the current result, such as adding in hardware event counter values or calculating a MAC. 

The virtual-space random walk creates pseudo-random data-cache patterns that affect future cache 
hit/miss events. Similarly, execution of nodes, each at a different virtual location, creates pseudo-random 
code-cache and TLB cache patterns. Each affecting its corresponding cache hit/miss events. Hardware 
side-effect convoluting type nodes, incorporate a transient hardware counter result into the accumulated 
checksum. Thereby, both changing the current result value, as well as node progress flow. 

It is stipulated that challenge results calculated in an environment that is different than the intended 
(for example at attempt to execute our thin-hypervisor under an emulator or as a nested-hypervisor) will 
generate a significantly different challenge result and thus be easily detected. The possibility of 



calculating a correct result by means of emulation shall also be impossible within the allotted timeframe 
restriction. 

 

 
Figure 4. A challenge node network. 

 
4. Controlled execution 
 
4.1 Introduction 
 

The x86 architecture allows the operating system to control memory access rights of applications 
through the virtual paging mechanism. Similarly, virtualization extensions, which were introduced by 
Intel and AMD, allow a hypervisor to control memory access rights of operating systems through a 
mechanism called Second Level Address Translation (SLAT). Intel and AMD refer to this mechanism 
as Extended Page Table (EPT) [6] and Rapid Virtualization Indexing (RVI) [7], respectively. Virtual 
paging and SLAT can be used to specify the "read", "write" and "execute" rights of a particular memory 
page ("execute" rights are controlled by the "NX bit" in virtual paging [6] Unlike virtual paging, SLAT 
defines the memory access rights of the physical rather than the virtual pages, thus providing the 
hypervisor with complete control over the access rights in all memory modes. 

Our hypervisor uses SLAT to prevent execution of unauthorized software. Initially, the hypervisor 
forfeits the "execution" rights of all pages, thus effectively intercepting any execution attempt. Upon 
such intercept, the hypervisor verifies the executing page authenticity, by hashing the page content and 
comparing it to a precomputed value. After authenticity is established, the hypervisor grants the page 
"execution" rights but forfeits its "write" rights, thus intercepting attempts to modify authenticated pages. 
Upon interception of such a modification attempt, the hypervisor grants the page "write" rights but 
forfeits its "execution" rights. Therefore, at all times, a page can have either "execution" rights or "write" 
rights, but not both.  

Page authentication in its simplest form consists of two steps: hashing and comparison. In the first 
step, the hypervisor applies a hash function to the page being authenticated. In the second step, the 
hypervisor checks whether the result of the hash function appears in a database of valid hash values. This 
database is built ahead of time by scanning the hard drive for installed applications, computing the hash 
values of the applications' code pages, storing the hash values in a database, and finally signing the 
database, in order to prevent its unauthorized modification. Section 4.2 contains a detailed description of 
the database structure.  

In some cases, after loading a page into memory, the operating system alters the page's content 
according to a set of rules called relocations. A relocation describes an absolute address that is referenced 
by the application that might need to be adjusted. This adjustment is necessary only if the application 
was loaded to a non-preferred location, but this is usually the case [29] [30]. In order to apply a relocation 
at offset x, the operating system first computes the relocation offset, which is the difference between the 
application's actual and preferred loading locations, and then adds this difference to the address at offset 
x. Conceptually, during a page's authentication, the hypervisor first restores the original values at the 
relocation offsets, and then computes the hash of the resulting page. In practice, the page is not modified 
during authentication; instead, the hashing calculation is performed on some temporal value at relocation 
offsets.  



Unfortunately, some pages contain both code and data. Obviously, the hypervisor cannot fully 
authenticate such pages. On the one hand, granting these pages with "execution" rights will allow 
execution of any code in the unverified (data) area of the page, and therefore compromise the security of 
the entire system. On the other hand, the authentic code cannot be executed from a page without 
"execution" rights. We propose the following solution to this problem. The hypervisor grants the page 
with "execution" rights but starts monitoring the guest's instruction pointer. Whenever the instruction 
pointer exits the authenticated area, the hypervisor forfeits the "execution" rights of the page. Section 4.4 
contains a detailed description of this process.  

The hypervisor monitors the instruction pointer using the processor's debugging facilities. 
Specifically, the hypervisor resumes the guest in a single-step execution mode. In this mode, the 
processor generates an interrupt after every executed instruction, thus enabling the hypervisor to verify 
that only the authenticated portions of the page are executed, and thus maintain appropriate rights for 
partially authenticated pages. Some processors provide an extension to the single-step mode, in which 
the interrupt is generated only after execution of branch instructions, such as jumps, calls and returns. 
The instruction pointer can exit the authenticated area not only due to a branch instruction but also by 
falling through the last instruction. The hypervisor intercepts the latter case by installing a hardware 
breakpoint at the byte following the last instruction of the authenticated area. 
 
4.2 Database structure 
 

We begin our detailed explanation of the execution prevention mechanism, by describing the structure 
of the database that contains the hash values (see Figure 5). That database consists of modules 
descriptors. Each module descriptor contains information of a specific executable (PE file in Windows 
[31] or ELF file in Linux [32]) which resides on the machine. Each descriptor is signed by an RSA 
signature in order to prevent an attacker from manipulating its contents. We note that an attacker can 
potentially remove module descriptors, but he cannot alter existing descriptors or add new ones. Each 
module descriptor contains its size, which allows to move to the next descriptor. The descriptor also 
holds the path of the executable which is represented by this descriptor. The driver uses the path field to 
identify the descriptor corresponding to the loaded image. As was explained in section 4.1 the verification 
procedure needs to know the executable's expected location in memory. This information is stored in the 
"Base" field of the module descriptor.   

Finally, the module descriptor contains a list of section descriptors. Each section descriptor 
corresponds to an executable section of the executable, and contains the following fields: 

 Record size  the size of this section descriptor. This field allows to move to the next descriptor.  
 Offset  the offset of the section described by this descriptor from the beginning of the image file. 
 Length  the size of the section described by this descriptor. 
 Page[i]  page descriptor that corresponds to the ith page of the section. 
 # Relocs  the amount of relocation descriptors that follow. 
 Reloc[i]  relocation descriptor  explained below. 
 # Datums  the amount of the datum descriptors that follow. 
 Datum[i]  datum descriptor  explained below. 

The amount of page descriptors can be deduced as follows. Let L denote the section's offset rounded 
down to a page boundary and let R denote the sum of section's offset and section's length rounded up to 
a page boundary. Then the amount of page descriptors if (R-L)/4096. In other words, that database holds 
a page descriptor even for partial pages, i.e. pages that only partially belong to the section. In that case 
only the bytes that belong to the section are hashed. 

The page descriptor consists of the hash value of the corresponding page (or its part), and two indexes 
to the Reloc[] array: the index of the first relocation and the index of the last relocation that apply to this 
page. The relocation descriptor consists of two fields: type  which determines whether the relocation 
applies to an 8-byte or a 4-byte region, and offset  the location in page where the relocation applies. 
The datum descriptor consists of two fields: offset  offset from the module beginning, value  8 bytes 
at that location. The verification procedure uses the datum descriptor array (in addition to the relocation 
array) during verification of pages that contain relocations that cross page boundaries. 

 



 
Figure 5. Structure of the database containing the hash values. The database consists of many modules, 

each of which consists of many sections. Each section contains the hash values of pages that it 
occupies, the relocations in those pages and datums  values of relocation that cross page boundaries. 

 
4.3 Execution prevention 
 

The hypervisor is part of a device driver, which acts as a mediator between the hypervisor and the 
operating system. In particular, the driver constructs some data structures that are later used by the 
hypervisor. We note that the hypervisor cannot (and does not) trust these data structures and therefore 
their critical parts contain a signature proving their authenticity. During initialization, the driver loads 
the database containing the hash values to a pageable region of memory, and installs two callbacks; the 
first callback is invoked when the operating system loads an executable to memory, the second callback 
is invoked when a process terminates. Both callbacks update a data structure that represents the memory 
layout of all the processes that are currently active. The data structure is a list of process descriptors. 
Each process descriptor contains the corresponding process identifier and a pointer to a list of module 
descriptors. Each module descriptor contains the location in memory of the corresponding module and 
the database index of this module's descriptor. Figure 6 depicts this data structure. 

During the driver's initialization it installs the hypervisor which manages the access rights of physical 
pages. The hypervisor and the driver callbacks operate concurrently: the callbacks update the memory 
layout data structure that is used by the hypervisor. Unfortunately, the driver initialization order is 
determined by the operating system and cannot be affected. Therefore, the operating system may load 
and initialize some drivers prior to our driver initialization. Consequently, the callback, which is installed 
during initialization, will not be called on those drivers. Our driver solves the problem, by traversing 
operating system-specific data structures that contain information about the drivers that were loaded. 
Figure 7 presents the data structures that are used by a 64-bit version of Windows 8. 

Initially the hypervisor forfeits the "execution" rights of all the physical pages. An attempt to execute 
an instruction triggers an "EPT Violation" (unauthorized access to physical memory) which passes the 
control to the hypervisor. The hypervisor verifies the authenticity of the page containing the instruction 
and changes its access rights to "read" and "execute". An attempt to write to this page triggers an "EPT 
violation" and the hypervisor changes the access rights to "read" and "write". This process is depicted in 
Figure 8. A detailed description of the verification procedure appears below. 
 



 
Figure 6. Memory layout data structure. The memory layout consists of a list of process descriptors. 
Each process descriptor contains the process identifier of the corresponding process and a pointer to a 

list of module descriptors. Each element of the module descriptors list contains the index of the 
corresponding module and its location in memory. 

 

 
Figure 7. Memory layout data structure. The memory layout consists of a list of process descriptors. 
Each process descriptor contains the process identifier of the corresponding process and a pointer to a 

list of module descriptors. Each element of the module descriptors list contains the index of the 
corresponding module and its location in memory. 

 

 
Figure 8. Physical pages access rights state diagram. "RWX" represents full access rights. "RW" 
represents "read" and "write" access rights. "RX" represents "read" and "execute" access rights. 

 
On a multiprocessor system the hypervisor has a different configuration structure for each processor. 

In particular, each processor has its own EPT hierarchy, which can independently (of other processors) 
specify the access rights for each physical page. The hypervisor has to maintain identical configurations 
of all the EPT hierarchies (with a few exceptions, as we will see later) in order to prevent execution of 
unauthorized instructions.   



Consider the following scenario: an authentic page request execution rights on processor A. The 
hypervisor verifies the page and grants it "read" and "execute" access rights, thus preventing its further 
modifications. However, processor B still has "read" and "write" access rights to this page, which enable 
it to modify the contents of this page. A malicious user can write malicious code to this page using 
processor B and then execute this malicious code on processor A.  

Unfortunately, a processor can modify only its own EPT hierarchies [6]. Therefore, whenever the 
hypervisor on some processor decides to change the access rights of a page, it sends a request to 
hypervisors on other processors to make the intended change in their EPT. Only when all the EPT 
hierarchies of all the other processors were changed, the same change is made on the EPT hierarchy of 
the initial processor. 

The request mechanism is implemented as follows. During its initialization the hypervisor allocates a 
constant-size queue of requests for each processor, which represents the access rights requests that the 
hypervisor running on that processor needs to serve. In addition the hypervisor installs an interrupt 
service routine on a special vector (0xFE), which is not in use by the operating system. The interrupt 
service routine issues a hypercall with a special value, which informs the hypervisor that its requests 
queue is not empty. The hypervisor serves this hypercall by applying all the changes described by the 
requests in the queue and clears the queue. In order to issue a request to another (remote) processor, the 
hypervisor performs two steps: (1) it inserts a new element to the requests queue of the remote processor, 
and (2) sends an IPI to the remote processor on the special vector (0xFE). After issuing the request, the 
hypervisor waits for the changes to be applied. Figure 9 depicts the entire process of access rights 
modification as it is performed on a multiprocessor system. 

 

 
Figure 9. Access rights modification on a multiprocessor system: (0) an EPT violation on processor 1 
triggers the hypervisor; (1) the hypervisor inserts a request into the request queue of processor 2; (2) 

the hypervisor sends an IPI to processor 2; (3-5) the hypervisor monitors the EPT hierarchy of 
processor 2 and waits for the change to occur; (3) the IPI that was sent in step 2 triggers an ISV; (4) the 
ISV hypercall to the processor 2 hypervisor; (5) the hypervisor fetches the request and changes the EPT 

hierarchy accordingly; (6) the processor 1 hypervisor observes that modification in the remote EPT 
hierarchy and performs the same modification in its local EPT hierarchy. 

 



 
Figure 10. The GS register points to a local storage of the current processor. This local storage points 
to a data structures that represents the currently executing thread  the thread block. The thread block 
points to a data structure that represents the process which hosts the thread  the process block, which 

holds the identifier of the represented process. 
 
The verification procedure can be seen as a boolean function returning true iff the verification 

succeeds. This function has one parameter  the virtual address that triggered the EPT violation handler. 
The function performs the following steps: 
1. Fetch the current process identifier from OS-specific data structures. Figure 10 depicts this process 

on a 64-bit version of Windows 8. 
2. Locate the process identifier in the memory layout data structure, which was prepared by the driver. 

The process descriptor contains a pointer to a list of module descriptors. 
3. Locate the module descriptor that contains the virtual address that triggered the EPT violation 

handler. The module descriptor contains the index of the database entry that corresponds to this 
module. 

4. Copy the module descriptor from the database to a memory region that is protected by an EPT (i.e. 
all types of access are restricted).  

5. Validate the signature of the module descriptor. 
6. Locate the information describing the page that triggered the EPT violation: 

a. Locate the section descriptor 
b. Locate the hash value of the page 
c. Locate the index of the first and the last relocations 
d. Locate the index of the first and the last datums 
e. Compute the address of the first and the last bytes described by the hash value. For example, 

if only the first 20 bytes of the page belong to the section, then only those bytes should be 
hashed. 

7. Hash the page (or its part) as follows: 
a. Let p be a pointer to the first byte to be hashed 
b. Initialize pi to 0 
c. For each relocation r do: 

i. Hash the bytes [pi..r.offset-1] 
ii. Let d be the datum at offset r.offset 

iii. If d is null, fix the value at r.offset and hash it 
iv. Else, hash d.value and verify value at r.offset 
v. Advance pi to r.offset+r.length 

d. Hash the bytes [pi..the last byte to be hashed] 
8. Compare the hash result to the expected hash value and return true iff they are equal 

Figure 11 presents the most general example of a verification process. Datums hold the values of 
relocations that cross page boundaries. Since on the one hand the verification procedure must read the 
value at the relocation position but on the other hand it must not attempt to read data that may induce a 
page fault, we chose to store the values of relocation that cross page boundaries in a special array  the 
datums array. 

 



 
Figure 11. Page authentication in its most general form. In this case the section starts in the middle of a 
page. The section contains three relocations: a, b and c. Relocation c only partially belongs to the page 
being authenticated. The verification function first computes the hash of the bytes preceding relocation 
a (the first segment). It then subtracts from the value at position a the difference between the actual and 

the expected locations of the module and hashes the result. The same is done for relocation b and the 
second segment. Finally the verification function hashes the third segment and the relevant part 

relocation c. Since the value of relocation c cannot be read from the page, it is read from the datums 
array.

 
4.4 Secure execution of mixed pages 
 

Some pages may contain both code and data. Usually, such pages appear on a boundary between a 
code section and a data section when those sections are not page-aligned. The problem with such pages 
is that on the one hand it is unsafe to grant these pages "execution" rights since they cannot be 
authenticated entirely, and on the other hand, the code in these pages cannot execute without "execution" 
rights. The solution to this problem is controlled execution. In essence after granting the page "execution" 
rights, we make sure that the control does not exit the authenticated area, by monitoring the instruction 
pointer. The hypervisor monitors the instruction pointer by activating the hardware debugger in a single-
step mode. In this mode, the processor generates an interrupt on vector 1 after each instruction executes. 
The hypervisor intercepts this interrupt and checks whether the instruction pointer has left the 
authenticated area, and if so, the hypervisor forfeits the "execution" rights of the page.  

The hardware debugger is controlled by the debug control register (DR7), the debug address registers 
(DR0-DR3) and the flags register. These registers define conditions in which the processor should 
generate a breakpoint, which is actually an interrupt on vector 1. When the defined conditions are met, 
the processor generates an interrupt and sets the debug status register to report the conditions that were 
sampled. A hypervisor can intercept interrupts and attempts to access the debug and the flags register. In 
other words, the hypervisor has full control of the debugging facilities and can, therefore, use these 
facilities securely, as will be described below.  

In order to start monitoring the instruction pointer, the hypervisor sets the trap flag in the flags register 
and begins intercepting all interrupts (by modifying the guest IDT). After every instruction executed by 
the guest, a VM_EXIT occurs, enabling the hypervisor to check whether the instruction pointer is within 
the authenticated area. The processor clears the trap flag when an interrupt occurs, therefore the 
hypervisor must intercept not only the interrupt at vector 1 (the breakpoint vector) but also all the other 
interrupts. When an interrupt occurs, the hypervisor forfeits the "execution" rights of the partially 
authenticated page.  

On modern processors we can improve the performance of the presented system. The 
IA32_DEBUGCTL MSR provides additional means to define the breakpoint conditions. Specifically 
when the single-step on branches flag (bit 1) is set (in addition to the trap flag in the flags register), the 
processor generates a breakpoint after every branch instruction, rather than every instruction. During 
instruction pointer monitoring, the hypervisor sets this flag thus intercepting all branches that may 
potentially transfer the control outside the authenticated area. Another way to leave the authenticated 
area is by falling through the last instruction. Therefore, the hypervisor installs a breakpoint on the byte 



following the last instruction, by writing its address to DR0 and setting the appropriate flags in the debug 
control register. 
 
4. Management station 

 
The hypervisor that was described in section 2 can prevent execution of unauthorized software by 

exploiting the SLAT mechanism. Obviously, the hypervisor can do so only after its activation. Therefore, 
the system remains vulnerable before and during its initialization: a malicious software may acquire 
execution rights and then either activate a malicious hypervisor or prevent activation of our hypervisor. 
In both cases, our hypervisor cannot provide protection against execution of such an unauthorized 
software. It is, therefore, desirable to inform the user about the protection status of the given system. 
  

The management station has two responsibilities: attestation and monitoring/notification. By 
attestation, we mean that the management station acts as the remote key-server, attests the hypervisor 
that is being activated on a remote system and provides it with some secret information (i.e., 
cryptographic key). A detailed description of this process appears in section 3. The attestation protocol 
guarantees that the secret information is provided only to authentic hypervisors, which can then protect 
the system from unauthorized access. Therefore, possession of this secret information is a proof of the 
possessor's authenticity.  

The second responsibility of the management station is monitoring and notification, by which we 
mean that the management station constantly monitors and informs the user about the protection status 
of remote systems, for example by displaying the statuses on the screen. The hypervisor is obligated to 
send a periodic message to the management station, thus indicating that the remote system is protected. 
The hypervisor signs its messages with the secret information that it received from the management 
station during the attestation protocol.  

In order to prevent replay attacks, the management station generates and sends to the hypervisor a 
random number s which acts as a session id. The session id s is sent only once during the attestation 
protocol. At the t's time unit the hypervisor sends to the management station a signed message containing 
(s,t). This message proves that the hypervisor belonging to session s is active at time t. Figure 12 depicts 
the described protocol. 

 

 
Figure 12. The protocol between the management station and the thin-hypervisor. The protocol 

consists of a 4-way handshake and periodic notifications. The "+" sign here means concatenation. 
 

5. Performance 
 

System overhead, as a result of execution protection, is attributed to actions that need to take place in 
the hypervisor during a VM_EXIT. This occurs when (a) execution of a write-only page is attempted 
and (b) as a result of a write to an execute-only page. The former's handling is more involved, since it 
warrants calculating the page's hash and verifying its signature, while in the latter case the operation is 
automatically granted. In both cases, however, the EPT needs to be updated. In single-processor 
environments, updating the EPT is straightforward, however, in multiprocessor environments, as 



previously detailed, this is more elaborate, since it requires interrupting all the other processors by 
activating their respective hypervisor, which in turns updates its own EPT. 

The (a) and (b) intercepts, mentioned above, occur when an executable page is first executed after the 
application was loaded and after a page was swapped out and then back in. Therefore, overhead is also 
closely related to the swap activity in the system.  

Performance measurements of execution-protection overhead were conducted by measuring overhead 
directly as well as by running well-known benchmarks on single-processor and multiprocessor systems, 
with and without execution protection. The benchmark suite used was the "Phoronix Test Suite" [33]. A 
variety of test benchmarks were selected to reflect different types of loads, such as: CPU intensive, 
graphics, disk-access and network. 

The tests were performed on a system with the following configuration:  
 Intel Core-i7-3687U@3.3GHz (4 Cores) 
 8192MB DRAM 
 Intel HD4000 Graphics 
 Intel 82579LM Gigabit Network 
 Linux (Ubuntu 14.04 kernel 3.19.0-25 generic X86 SMP) 
 GCC 4.8.4 

 
5.1 Test A 
 

In the first test, we measure the direct overhead associated with authorizing a writable page for 
execution. An executable file is mapped to memory. The executable file contains a function void 
f(void) configured on a page boundary. The first instruction in f() is the return instruction; The 
Linux posix_fadvise() function is called to ensure that when f() is called a page fault requiring 
a page-load from disk shall occur. This also mandates a VM_EXIT and an executable-page validation 
when the system is execution-protected. We measure the number of CPU cycles involved in calling f(). 
We measure 10000 calls to f() while execution-protection is enabled and disabled. The average number 
of CPU cycles required to execute f() without execution protection enabled was: 917021, while with 
execution protection enabled was: 976754. The difference, 59733 cycles, reflects the number of CPU 
cycles required to authenticate a page for execution. 
 

 
Figure 13. Overhead of the benchmark execution under different conditions: (a) single core;  

(b) multiple cores; and (c) with hypervisor but without execution protection 
 
5.2 Test B 
 

In the second test, we measure the overhead associated with executing intensive benchmarks 
selected from the "Phoronix Test Suite":  



a) Apache  Static Web Page Serving 
b) X11  PutImage Square 
c) X11  Scrolling 500x00 px 
d) X11  Char in 80-char aa line 
e) X11  PutImage XY 500x500 Square 
f) X11  Fill 300x300 px AA Trapezoid 
g) X11  500px Copy from Window to Window 
h) X11  Copy 500x500 Pixmap to Pixmap 
i) X11  500Px Compositing from Pixmap to Window 
j) X11  500px Compositing from Window to Window 
k) Unpacking the Linux Kernel    

To measure the effects of multiple cores, the benchmark comparisons were executed on a single 
core (by disabling other cores) and once again when all cores were enabled. In each case the 
benchmark was executed on a system with execution-protection enabled and disabled to generate 
the overhead comparison. The results are presented in Table 1 and depicted graphically in Figure 
13. 

 

 
Figure 14. Overhead of execution protection only after subtraction of the hypervisor overhead. The 

dashed line represents the average overhead. 
 

 Single Multiple Hypervisor Net 
a 32% 32% 30% 2% 
b 17% 26% 24% 2% 
c 25% 6% 6% 1% 
d 20% 13% 12% 1% 
e 11% 6% 2% 3% 
f 6% 5% 5% 1% 
g 9% 3% 2% 0% 
h 0% 0% 0% 0% 
i 5% 9% 7% 3% 
j 4% 0% 0% 0% 
k 8% 22% 19% 3% 

 
Table 1. Test results 

 
 
5.3 Evaluation 
 

The results show that the total overhead of the execution-protection with a thin-hypervisor 
exists within a 0%-30% band, depending on the type of benchmark tested. When hypervisors are 
activated on systems and secondary level address translation (SLAT) is active, system overhead 
is caused by the additional translation required for memory access, which was measured as well. 
This parasitic overhead, as well as overhead caused by response to mandatory VM_EXIT events 
is associated with all hypervisors, however is minimized when using a thin-hypervisor. By 
subtracting this parasitic overhead from the general overhead values obtained for each benchmark, 
we present the net overhead associated with execution-protection, as can be seen in Figure 14 and 
in the rightmost column of Table 1. The results show an average overhead value of 1% within a 
0%-3% range. 



 
6. Conclusions 

 
The growing threat of malicious code infiltration into computer systems is extremely grave in light of 

the economic losses and potential havoc they bestow. Hackers are becoming shrewder and much more 
cunning in their attack methodologies. They are winning the battle with the anti-malware protection 
industry, which is propagating an abundance of security software products geared to monitor, identify 
patterns and employ behavioral heuristics. As the authors point out, all Advanced-Persistency-Attacks 
(APTs) eventually need to execute instructions on the processor. Therefore, a suggested alternative 
method to eradicate most APTs is real-time monitoring and validation of executing instructions. An 
undertaking which can be appropriately addressed by using an attested, and therefore trusted, hypervisor. 
The associated total overhead is confined to 30%, where in most scenarios it is below 15%. With 
computer hardware performance advancing in great leaps, we believe that in return for rendering a system 
substantially safe from APTs, viruses, worms, buffer-overflows and malicious code injection, this 
overhead is justified. 
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Abstract 

An important aspect of protecting software from attack, theft of algorithms, or illegal software use, is 
eliminating the possibility of performing reverse engineering. One common method to deal with these 
issues is code obfuscation. However, in most case it was shown to be ineffective. Code encryption is a 
much more effective means of defying reverse engineering, but it requires managing a secret key 
available to none but the permissible users. The authors propose a new and innovative solution. Critical 
functions in protected software are encrypted using well-known encryption algorithms. Following 
verification by external attestation, a thin hypervisor is used as the basis of an eco-system that manages 
just-in-time decryption, inside the CPU, where decrypted instructions are then executed and finally 
discarded, while keeping the secret key and the decrypted instructions absolutely safe. The paper 
presents and compares two methodologies that perform just-in-time decryption: in-place and buffered 
execution. The former being safer, while the latter boasts better performance. 

 
Keywords: Hypervisor, Trusted computing, Attestation, Cyber-security 

 
1. Introduction 
 

Digital content such as games, videos, and the like may be susceptible to unlicensed usage, which has 
a significant adverse impact on the profitability and commercial viability of such products. Commonly, 
such commercial digital content may be protected by a licensing verification program; these, however, 
may be circumvented by reverse engineering of the software instructions of the computer program which 
leaves them vulnerable to misuse. 

One way of preventing circumvention of the software licensing program, may be using a method of 
obfuscation [1] [2]. The term obfuscation refers to making software instructions difficult for humans, as 
well as reverse-engineering software tools, to understand by deliberately cluttering the code with useless, 
confusing pieces of additional software syntax or instructions. However, even when changing software 
code and making it obfuscated, the content is still readable to the skilled hacker [3] [4]. 

Additionally, publishers may protect their digital content product by encryption, using a unique key 
to convert the software code to an unreadable format, such that only the owner of the unique key may 
decrypt the software code. Such protection may only be effective when the unique key is kept secured 
and unreachable to an adversary. Hardware based methods for keeping the unique key secured are 
possible [5] [6] [7], but may have significant deficiencies, mainly due to an investment required in 
dedicated hardware on the user side, making it costly, and, therefore, impractical. Furthermore, such 
hardware methods have been successfully attacked by hackers [8] [9]. 

Software copy-protection is currently predominantly governed by methodologies based on 
obfuscation, which are volatile to hacking or user malicious activities. There is, therefore, a need for a 
better technique for protecting sensitive software sections, such as licensing code. 

In this paper, we present a system that allows encrypting and executing native programs written for 
the x86 architecture. The system is based on the approach proposed by Averbuch et al. [10], in which an 
attested kernel module is responsible for decryption and execution of encrypted functions. The main 
deficiency of the proposed approach is the inability of the kernel module to protect itself from the 
operating system. As a consequence, a vulnerability in the operating system may compromise the secret 
key. Moreover, the attestation server has to attest not only the kernel module responsible for decryption 
but also the entire operating system. The complications of operating system attestation and a partial 
mitigation are described in [11]. 



This paper proposes to solve all these complications by utilizing the virtualization extension, which 
is available on modern processors [12] [13], in order to enable the decrypting kernel module to protect 
itself, thus eliminating the need for operating system attestation. Figure 1 depicts the components of the 
proposed system as well as their relationships. The system is deployed on three computers: a 
development machine, on which the program to be encrypted, is compiled and encrypted; the attestation 
server, which stores the decryption key, and delivers it to the target machine; and the target machine, 
which executes the encrypted program. A special driver, which embeds a hypervisor, is installed on the 
target machine prior to execution of an encrypted program. The hypervisor obtains the decryption key, 
which is necessary for program execution, from the attestation server, when an encrypted program is 
loaded to the memory. 

 
1.1 Intel SGX 

 
Intel has announced its new security technology named Software Guard Extensions (SGX) [32], 

which enables developers to create secure containers, called enclaves, inside a process address space. 
The enclave address space is protected from any other software not resident in the enclave, including 
privileged software. This guarantees that malware, at any privilege level, cannot compromise the 
confidentiality or integrity of enclave resident software or data. SGX does not rely on a hypervisor or 
hardware virtualization, instead it encompasses two new instruction-set extensions that allow initializing 
and managing the enclaves. Secure storage is managed in an Enclave-Page-Cache, which is protected by 
hardware from "non-enclave" access. SGX provides the means for implementations to the same end as 
proposed by our methodology, however the SGX processor extensions are available only in the newest 
Intel processors. Therefore, utilizing an SGX based solution requires specific hardware, adds to 
equipment cost and is not supported on legacy systems. 

 

 
Figure 1. Native code protection system. The original program is encrypted before its distribution. The 

encryption key is stored in the attestation server, which delivers it to the hypervisor in the target 
machine upon successful attestation. The hypervisor is initialized by a driver, which also hosts the code 

of the hypervisor. 
 
1.2 Contribution 
 

The methodology proposed in this paper provides for a software-only solution, based on the 
availability of hardware virtualization and secondary-level address translation, incorporated in most Intel 
and AMD CPUs released after 2008. Furthermore, an innovative thin hypervisor is utilized to protect 
cryptographic keys and decrypted code to provide a truly secure just-in-time code decryption mechanism. 
The thin hypervisor is guaranteed to be trusted with the employment of remote attestation. 
 
 
 
   



2. Encryption tool 
 

The encryption tool is responsible for encryption of selected functions in a program. The user selects 
the functions to be encrypted by specifying their names in a configuration file. A map file or a debug 
symbols file, which are produced by a compiler, can then be used to translate the names of the functions 
to their locations in the program file. 

On Windows, program files, executables and dynamic libraries, are stored in Portable Executable 
(PE) format [14]. Figure 2 depicts the structure of a PE file. The different headers define the expected 
location of the PE file when loaded to memory, sizes and positions of various data structures inside the 
PE file, the number of sections contained in this PE file, etc. The section table contains a description of 
each of the sections contained in the PE file. Following the section table are the sections themselves. 
Sections vary in their structure and purpose: the .text section contains the code of the program, the .data 
section contains its constants. Other sections may contain information about resources (images and 
sounds) embedded in the PE file or information used during exception delivery. 

 

 
Figure 2. Structure of a Windows PE file. The structure contains a variable number of sections. Two of 

the most common sections are presented. 
 
 

 
Figure 3. The left image represents the structure of an ELF file as it is stored in disk. The right image 

represents the structure of an ELF file as it is loaded to memory. 



 
On Linux, program files, executable files and dynamic libraries, are stored in Executable and Linkable 

Format (ELF) format [15]. Figure 3 depicts the structure of an ELF file. An ELF file consists of a header, 
which is followed by data. The data may include: 

 Program header table, describing zero or more segments. Only two segments can be defined as 
loadable: the code segment and the data segment. The code segment is loaded to memory with 
read-write-execute permissions, while the data segment is loaded with read-only permissions. 
Other segments are not loaded to memory. 

 Section header table, describing zero or more sections. A typical ELF file holds a section called 
.text, which contains the code of the program. 

 Data referenced by entries in the program header table or section header table. 
The segments contain information that is necessary for runtime execution of the file, while the 

sections contain data for linking and relocation. Figure 3 depicts the structure of an ELF virtual-image 
at load time. 

The encryption tool modifies the given PE/ELF file by introducing a new section, which stores the 
selected functions in encrypted form. The instructions of the original functions are partially replaced by 
an exception inducing instruction. We propose to use either the halt instruction or the software 
breakpoint instruction. The halt instruction is a privileged instruction, which deactivates the current 
processor when executed in kernel mode, but generates a general protection fault when executed in user 
mode. The software breakpoint instruction generates a breakpoint trap when executed in either kernel or 
user modes. Faults and traps, being types of interrupts, can be intercepted by a hypervisor, which can 
then decrypt and execute the original encrypted function. Another benefit of the halt and the software 
breakpoint instructions is that they can be represented by a single byte (0xF4 for halt and 0xCC for 
software breakpoint), thus allowing them to fully cover any number of bytes. The software breakpoint 
instruction is superior to the halt instruction in that it generates an interrupt not only in user mode but 
also in kernel mode. 

 

 
Figure 4. Example of an encryption process of a single function. The encryption begins by classifying 
instruction is encryptable (normal face) and non-encryptable (bold face), and creating to copies. The 
complementary instructions in each copy are replaced by halts. Finally, one copy is written over the 

original functions, and the other is encrypted and added to the special section. 
 



As will be explained in section 5, it is highly important to intercept control transfers that leave the 
encrypted function. The encryption tool disassembles the function to be encrypted and inspects its 
instructions. The instructions then are classified as encryptable and non-encryptable. The encryption tool 
classifies an instruction as non-encryptable if it might transfer control out of the encrypted function. For 
example, the ret and the call instructions are always classified as non-encryptable, but the jmp instruction 
is classified as non-encryptable only if its destination lays outside of the protected function's bounds or 
if the destination cannot be determined statically (if it is stored in a register, for instance). 

The encryption tool produces two copies of the original function, the encryptable copy (EC) and the 
non-encryptable copy (NEC). In the EC all the non-encryptable instructions are replaced by the halt or 
the software breakpoint instructions. Then the encryption tool encrypts the EC and stores it in the new 
section. In the NEC all the encryptable instructions are replaced by the halt or the software breakpoint 
instructions. Then the encryption tool replaces the original function by the NEC. Figure 4 presents an 
example of such a transformation. 

 
3. Hypervisor 

 
A hypervisor, also referred to as a Virtual Machine Monitor (VMM), is software, which may be 

hardware-assisted, to manage multiple virtual machines on a single system [16]. The hypervisor 
virtualizes the hardware environment in a way that allows several virtual machines, running under its 
supervision, to operate in parallel over the same physical hardware platform, without obstructing or 
impeding each other. Each virtual machine has the illusion that it is running unaccompanied on the entire 
hardware platform. The hypervisor is referred to as the host, while the virtual machines are referred to 
as guests.  

A virtual machine control structure (VMCS) is defined for each virtual environment managed by a 
virtual machine monitor (VMM) [12]. This structure defines the values of privileged registers, the 
location of the interrupt descriptors table, and additional values that constitute the internal state of the 
virtual environment. In addition, this structure defines the events that the VMM is configured to intercept, 
and the address of the function that should handle the interception. The act of control transfer from the 
virtual environment to a predefined function is called vm-exit and the act of control transfer from the 
function back to the virtual environment is called vm-entry. Upon vm-exit the function can determine 
the reason of the vm-exit by examining the fields of the VMCS and altering them, thus altering the state 
of the virtual environment as it wishes. Finally, the VMCS can define a mapping between the physical 
memory as it is perceived by the virtual environment and the actual physical memory. As a consequence, 
the VMM can prevent access to some physical pages by the virtual environment. Moreover, the virtual 
environment will be unaware of this situation. 

We propose to use a hypervisor for securing a single guest. Rather than wholly virtualizing the 
hardware platform, a special breed of hypervisor, called a thin hypervisor, is used [17] [18]. A thin 
hypervisor is configured to intercept only a small portion of events. All other events are processed 
without interception, directly, by the OS. A thin hypervisor only intercepts the set of events that allows 
it to protect an internal secret (such as a cryptographic key) and protect itself from subversion. Figure 5 
depicts a thin hypervisor supporting a single guest. Since a thin hypervisor does not control most of the 
OS interaction with the hardware, multiple OS are not supported. On the other hand, system performance 
is kept at an optimum. 

 

 



Figure 5. Thin hypervisor. The hypervisor runs in a higher privilege level than the operating system. 
System calls, traps, exceptions, and other interrupts, transfer control from user mode applications to the 
operating system. The operating system handles these conditions by requesting some service from the 

underlying hardware. A thin hypervisor can intercept some of those requests and handle them 
according to some policy. 

 
A thin hypervisor facilitates a secure environment by: (a) setting aside portions of memory that cannot 

be accessed by the guest, (b) storing the cryptographic key in privileged registers, and (c) intercepting 
privileged instructions that may compromise its protected memory, reveal the cryptographic key, or 
attempt to subvert the hypervisor.  

Once this environment is correctly configured, a thin hypervisor can be utilized to carry out specific 
operations, which may include use of the cryptographic key, in a protected region of memory. As a result 
of the tightly configured intercepts and absolute control of the protected memory regions, this activity 
can be guaranteed to protect both the cryptographic key and the operations results. 
 
4. Remote attestation 
 

The problem of remote software authentication, determining whether a remote computer system is 
running the correct version of a software, is well known [5] [19-25]. Equipped with a remote 
authentication method, a service provider can prevent an unauthenticated remote software from obtaining 
some secret information or some privileged service. For example, only authenticated gaming consoles 
can be allowed to connect to the gaming networks [26-28], and only authenticated bank terminals can be 
allowed to fetch records from the bank database [29]. 

The research in this area can be divided into two major branches: hardware assisted authentication [5-
7] and software-only authentication [19-22]. In this paper we concentrate on software-only 
authentication, although the system can be adapted to other authentication methods, as well. The 
authentication entails simultaneously authenticating some software component(s) or memory region, as 
well as verifying that the remote machine is not running in virtual or emulation mode. Software-only 
authentication methods may also involve a challenge code that is sent by the authentication authority, 
and executed on the remote system. The challenge code computes a result that is then transmitted back 
to the authority. The authority deems the entity to be authenticated if the result is correct and was received 
within a predefined time-frame. The underlying assumption, which is shared by all such authentication 
methods, is that only an authentic system can compute the correct result within the predefined time-
frame. The methods differ in the means by which (and if) they satisfy this underlying assumption. 

 

 
Figure 6. The attestation protocol between the authentication authority and the target machine. The 
protocol consists of four messages. The first two messages are sent unencrypted, while the two last 

messages are encrypted. The third message is encrypted by the public key of the authentication 
authority and the fourth message is encrypted by the random value transmitted in the third message. 
 
Kennell and Jamieson proposed [19] a method that produces the result by computing a cryptographic 

hash of a specified memory region. Any computation on a complex instruction set architecture (Pentium 
in this case) produces side effects. These side effects are incorporated into the result after each iteration 



of the hashing function. Therefore, an adversary, trying to compute the correct result on a non-authentic 
system, would be forced to build a complete emulator for the instruction set architecture to compute the 
correct side effects of every instruction. Since such an emulator performs tens and hundreds of native 
instructions for every simulated instruction, Kennell and Jamieson conclude that it will not be able to 
compute the correct result within the predefined time-frame. The method of Kennel and Jamieson was 
further adapted, by the authors, to modern processors [30]. The adaptation solves the security issues that 
arise from the availability of virtualization extensions and multiplicity of execution units. 

The authentication protocol is depicted in Figure 6. The initial messages of the protocol carry 
information about the current configuration of the target machine. Following this exchange, the 
authentication authority transmits a message containing the challenge code to be executed on the target 
machine. The target machine executes the challenge, which computes a result that is a cryptographic 
hash of some memory region, possibly with some additional information. The target machine, 
concatenates a randomly generated number to the result, encrypts both values with the public key of the 
authentication authority, and transmits the encrypted message. The authentication authority verifies that 
the result is correct and was received within a predefined time-frame. If both are true the target machine 
is considered authentic. The authentication authority then shares some secret information with the target 
machine. This secret information constitutes a proof of the target's authenticity. The authentication 
authority encrypts the secret information with a random value obtained from message (3) used as the 
encryption key, and transmits the encrypted message to the target machine. 
 
5. Encrypted instructions execution 

 
In order to execute an encrypted program, the user must first install the driver, which encapsulates the 

hypervisor. The driver monitors the PE files (ELF files, in Linux) loaded by the OS, and keeps track of 
PE files that contain the special encrypted functions section. When the first such PE file is loaded, the 
driver initializes the hypervisor. During the initialization, the driver communicates with the 
authentication authority, passes the attestation verification, obtains the cryptographic key, and enters a 
virtualized state. 

The hypervisor is configured to intercept the general protection fault. When a protected program 
transfers control to an encrypted function, the processor attempts to execute the halt instruction, which 
induces a general protection fault, thus transferring control to the hypervisor. General protection faults 
rarely occur during the normal course of program execution, since they usually cause the program to 
terminate abruptly. Nevertheless, the hypervisor uses the data structures prepared by the encryption tool 
to test whether the general protection fault occurred during execution of an encrypted function. 

The hypervisor injects the interrupt back to the guest, if it was not caused by an encrypted function 
execution. Otherwise, the hypervisor decrypts the function and starts its execution. Since during its 
execution, the function is stored in memory in unencrypted form, it is highly important to ensure that no 
other code has access to the decrypted instructions of the function. We note that in modern processors, 
several execution units (logical processors) can execute programs concurrently. Therefore, we must 
ensure that programs executed by all execution units have no access to the unencrypted instructions. 

We present two approaches to sensitive functions execution: in-place execution and buffered 
execution. 

 
5.1 In-place execution 
 

According to this approach the hypervisor can be in one of two states: cold or hot. In the cold state 
the memory does not contain any sensitive information and only the cryptographic key and the 
hypervisor's state must be protected. This is the regular mode of operation described in section 3. The 
hypervisor switches to the hot state when the memory contains sensitive information, which cannot be 
protected by the normal hypervisor memory protection technique (for example, based on EPT), since its 
physical location is not known (or not constant). EPT (Extended Page Table) is a secondary address 
translation facility used by the hypervisor to translate guest physical addresses to actual physical 
addresses. Switching to hot mode occurs when the hypervisor triggers execution of a decrypted function.  

In the following description, we assume that the encryption tool uses halt as a replacement opcode, 
but the same is true when the software breakpoint opcode is used. 



At initialization the hypervisor's state is set to cold. In this state, in addition to the regular protection 
means described in section 3, the hypervisor intercepts general protection faults. An encrypted function, 
which was overwritten by the NEC consists mainly of halt instructions. Execution of any of these 
instructions induces a general protection fault, which causes a vm-exit and transfers control to the 
hypervisor. The hypervisor inspects the source of the general protection fault, and fetches the EC that 
corresponds to this NEC. Then the hypervisor switches to hot mode and decrypts the EC into its natural 
location, currently occupied by the NEC (the NEC is saved in a different location for future use). 

During the switch to hot mode, the hypervisor freezes all other execution units, and configures itself 
to intercept all interrupts. This behavior guarantees that the function in its decrypted form cannot be read 
by any other, potentially malicious, code, simply because no other code can run in hot mode. We note 
that all the control transfer instructions in the EC are replaced by the halt instruction, which induces a 
vm-exit. 

 

 
Figure 7. Example of encrypted function execution. The figure depicts two execution units, each with 

two alternating states: guest and host. The dashed horizontal lines are synchronization barriers, i.e. 
everything above the line is guaranteed to complete before anything below the line starts. 

 
When a vm-exit occurs in hot mode, the hypervisor first replaces the decrypted function with the 

NEC, and switches to cold mode. Following this, the hypervisor resumes all the execution units, 
configures itself to intercept only general protection faults, and returns control to the guest. Figure 7 
depicts the control flow during encrypted function execution. 

We suggest to freeze other execution units by inducing a vm-exit on each execution unit, and running 
a busy loop until the hypervisor switches back to cold mode. A vm-exit can be induced either implicitly 
with a timer or explicitly by sending an inter-processor interrupt (IPI). The former solution is much easier 
to implement but the later solution is much more efficient. 

The hypervisor intercepts interrupts in hot mode by replacing the original interrupt descriptor table 
(IDT) of the OS with a specially crafted IDT. In this special IDT each handler induces a vm-exit, for 
example, by executing the CPUID instruction. The hypervisor intercepts this instruction, realizes that an 
interrupt at vector N occurred and switches to cold mode. The hypervisor proceeds by installing the 
original IDT and moves the guest's instruction pointer to point to the Nth interrupt handler of the original 
IDT. 

 
5.2 Buffered execution 

 
In the following description, we assume that the encryption tool uses halt as a replacement instruction 

for NECs and software breakpoint as a replacement instruction for ECs.  
According to this approach, the hypervisor has only one state, in which it protects itself as described 

in section 3. In addition, the hypervisor configures itself to intercept general protection faults. Execution 



of halt instructions induces a general protection fault, which causes a vm-exit and transfers control to the 
hypervisor. The hypervisor inspects the source of the general protection fault, and fetches the EC that 
corresponds to this NEC.  

When the EC is resolved, the hypervisor decrypts it into a pre-allocated memory buffer, which is 
protected by the hypervisor's second-level translation tables (EPT). The decrypted EC will be executed 
in host mode, thus allowing it to reside in an EPT-protected buffer. Since the decrypted instructions are 
inaccessible by any other execution unit (in guest mode), there is no need to suspend them. Likewise, 
since the encrypted instructions are executed inside the hypervisor, there is no need to modify the IDT 
of the guest. Finally, there is no need to perform the costly transitions to and from the guest after every 
decryption. All these improve the overall performance of the system by a large factor. 

 

 
Figure 8. Memory layout during buffered execution. The functions resided at virtual address f754000, 
which is mapped to the physical address 7862000. The encrypted code is decrypted to virtual address 

ffffffff`0197000 which is mapped to the physical address 2000. The hypervisor changes the mapping of 
the virtual address f754000 to map the physical address 2000. 

 
The x86 instruction set architecture defines many memory access instructions as relative, meaning 

that their arguments should not be interpreted as actual memory locations but rather they should be 
interpreted as offsets from the current value of the instruction pointer. As a consequence, the same 
instruction may have different interpretations when executed at different locations. Therefore we must 
execute the decrypted EC at its natural location. In order to achieve this, the hypervisor modifies the 
virtual page table of the current process by mapping the virtual page containing the NEC to the physical 
address of the pre-allocated buffer containing the decrypted EC. Figure 8 depicts this transformation. 

The control flow during the execution of an encrypted function is illustrated in Figure 9. The process 
begins when an encrypted function is called. The first instruction in the NEC is the halt instruction; its 
execution triggers the general protection exception, which induces a vm-exit. The hypervisor prepares 
the system for buffered execution by performing the following steps: (1) the EC is decrypted into a pre-
allocated buffer; (2) the virtual page table is modified to map the natural location of the function to the 
pre-allocated buffer, as illustrated in Figure 8; (3) the values of the guest registers, which were stored 
during the vm-exit transition, are restored; (4) the decrypted function is called. The decrypted function 
executes until an interrupt occurs. The interrupt can be triggered by a software breakpoint instruction or 
by some other condition, e.g., a page fault. In both cases the hypervisor suspends the buffered execution 
by performing the following steps: (1) the values of the registers are stored to a memory region from 
which they will be restored during vm-entry; (2) the virtual page table is restored to its original state; (3) 



the decrypted EC is erased. If the interrupt was triggered by a software breakpoint instruction, the 
hypervisor resumes the guest immediately. However, if the interrupt was triggered by some other 
condition, the hypervisor injects the interrupt to the guest, and then resumes it. The interrupt injection 
mechanism allows the hypervisor to delegate the responsibility of interrupt handling to the operating 
system. Figure 9 illustrates the simple case of software breakpoint interrupt. 

 

 
Figure 9. Example of encrypted function execution in buffered execution mode. The figure depicts the 

control flow during the execution of an encrypted function. 
 

 
Figure 10. Execution modes. The left column represents the guest mode, while the right column 

represents the host mode. The lower row represents the kernel mode, while the upper row represents 
the user mode. The host mode can protect itself from the guest mode through the EPT mechanism. The 
kernel mode can protect itself from the user mode through the virtual memory protection mechanism. 

 
This approach is more efficient but potentially less secure than the in-place execution. According to 

this approach, the decrypted functions are executed inside the hypervisor itself. As a consequence these 
functions have the same privileges as the hypervisor. In particular, they can read and write memory, 
which is otherwise inaccessible to any code external to the hypervisor. One can argue that it is impossible 
for an adversary to replace the EC with random code, without knowing the cryptographic key. However 
unfortunately, it is possible that some memory manipulation can be performed indirectly by modifying 
the data on which the encrypted function works. Nevertheless, although possible, it seems to be 



extremely difficult to manipulate the behavior of unknown code through its data. Possible solutions to 
this problem will be discussed in our future research. 

 
6. Performance 

 
This section presents a performance analysis of the two execution methods that were described in 

section 5.  
We first measured the direct overhead associated with executing an encrypted function. To do that 

we created a function f() of size 128 bytes. The function's first instruction is a return instruction, 
therefore, once activated, the function immediately returns to the caller. In the executable file we encrypt 
f() and measure the number of CPU cycles used in a call to f(). Since f() is encrypted, calling f() 
entails a transfer from "cold" mode to "hot" mode, i.e. VM_EXIT to the hypervisor, decryption of f()'s 
contents execution of f() (in this case basically zero cycles since the first instruction is an immediate 
return) and then restoring to "cold" mode. Measurements of this full-cycle were averaged over 10000 
trials with an average of 7100 cycles when using "buffered" mode and 23,000 cycles when using "in-
place" mode. 

To measure the overhead associated with real-world applications, we decided to use standard 
benchmarks as the model. The measurements were performed by encrypting several of the major 
functions in standard benchmark programs and comparing the performance results of each benchmark 
when executed with and without those functions encrypted. Two performance measurements were 
obtained for benchmarks that were run with an encrypted function: (a) using "In-Place Execution" and 
(b) using "Buffered-Execution". 

System overhead, as a result of running encrypted code over the hypervisor, is attributed to actions 
that need to take place in the hypervisor during a VM_EXIT. This occurs when (a) an encrypted function 
is called; (b) a call is made from within an encrypted function to a non-encrypted function; a return 
occurs from the calls in (a) or (b). In (a) the function needs to be decrypted and the processor is put into 
"hot" mode: when the "In-Place" method is used other processors need to be frozen; when "buffered" 
mode is used the hypervisor needs to remap the execution pages. In (b) and (c) the operation is reversed 
by clearing decrypted-memory and putting the processor back into "cold" mode. Therefore, overhead is 
closely related to the number of transitions into and out of "hot" mode. 

Additional overhead can be observed as a result of activating the hypervisor without regard to 
activities required to support executing encrypted software. This overhead is attributed to the fact that 
the system is running over a hypervisor, which activates secondary level address translation (SLAT) 
that implies overhead as a result of the additional translation required for memory access, as well as 
needing to intercept some mandatory events.   

Performance measurements of encrypted software execution overhead were conducted by running 
well-known benchmarks on a multiprocessor system with and without encrypted functions.  

We chose the "Phoronix Test Suite" [31] as our benchmark suite. A variety of test benchmarks were 
selected to reflect different types of loads, such as: CPU intensive, graphics, disk-access and network 
activities. The tests were performed on a system with the following configuration:  

 Intel Core-i7-3687U@3.3GHz (4 Cores) 
 8192MB DRAM 
 Intel HD4000 Graphics 
 Intel 82579LM Gigabit Network 
 Linux (Ubuntu 14.04 kernel 3.19.0-25 generic X86 SMP) 
 GCC 4.8.4 

We have performed three tests. In each test, we have selected an application and encrypted 
several central functions. Table 1 summarizes the information about the encrypted function in 
each application. 

The first application, "Parallel BZIP2 Compression", is CPU intensive. It measures the time 
needed to compress a file (a .tar package of the Linux kernel source code) using BZIP2 
compression. The second application, "Unpacking the Linux Kernel", measures how long it takes 
to extract the .tar.bz2 Linux kernel package. The third application is "X11  500px PutImage 
Square". The package "x11perf" is a very basic performance/regression test for X.Org (Window 
System). 



Each of the benchmark tests was executed after a full system reboot (to ensure a "clean" 
system) and measured under the following conditions: (a) non-encrypted executable without a 
hypervisor active; (b) non-encrypted executable with a commercial hypervisor (VMWare) active; 
(c) non-encrypted executable with TrulyProtect thin-hypervisor active; (d) Encrypted executable 
using "In-Place" mode; and (e) Encrypted executable using "Buffered" mode. Each activation of 
a "Phoronix Test Suite" benchmark generates multiple runs of the benchmark to gather significant 
statistics.  

Table 2 presents the results that were measured during benchmark execution in various 
configurations. The two leftmost columns describe the configuration in which the test was 
executed. The third column specifies the parameter that was measured. The three rightmost 
columns contain the values that were measured for each parameter. The table is divided into f ive 
parts: (a) No hypervisor  where measurements were performed on a non-encrypted executable 
without an active hypervisor; (b) vmWare HV active and KVM HV active  where measurements 
were performed on a non-encrypted executable with a commercial hypervisor (vmWare and 
KVM); (c) TP HV Active  where measurement were performed with TrulyProtect thin-
hypervisor; (d) Overhead Calculation  this part summarizes the first three parts; (e) Net overhead 
calculations  this part presents the overhead of the in-place and the buffer decryption methods 
after subtraction of the overhead associated with TrulyProtect hypervisor.  

 

 
Table 1. Encrypted functions summary. 

 
The third part is further subdivided into three parts: (i) Non protected  where a non-encrypted 

executable was measured; (ii) In-Place  where an encrypted executable was executed using the 
in-place decryption method; (iii) Buffered  where an encrypted executable was executed using 
the buffered decryption method.   

The fourth part compares the execution times of a non-encrypted executable to four other 
modes of execution: (i) a non-encrypted executable while a commercial hypervisor is active; (ii) 
a non-encrypted executable while TrulyProtect thin-hypervisor is active; (iii) an encrypted 
executable which is executed using the in-place decryption method; (iv) an encrypted executable 
which is executed using the buffered decryption method. A graphical representation of this data 
appears in figures 11. Figure 12 presents the overhead of the in-place and the buffer decryption 
methods after subtraction of the overhead associated with TrulyProtect hypervisor.  

   
Overhead was calculated by solving for the degradation in percent relative to the reference 

benchmark result as measured without the hypervisor activated. 
 
 
 
 



 Parallel 
BZIP2 
Compression 

Unpacking 
the Linux 
Kernel 

X11 500px 
PutImage 
Square 

No HV Not 
Protected 

Execution 26.58 secs 10.31 secs 2822 ops/sec 

vmWare HV 
Active 

Not 
Protected 

Execution 28.92 secs 14.83 secs 1643 ops/sec 

KVM HV Active Not 
Protected 

Execution 28.39 secs 11.4 secs 905 ops/sec 

TP HV Active Not 
Protected 

Execution 26.92 secs 11.81 secs 2795 ops/sec 

In-Place Execution 31.74 secs 16.6 secs 1997 ops/sec 
VM_EXITs 222 129663 170857 
Decryptions 64 64743 85263 

Buffered Execution 27.07 secs 12.05 secs 2667 ops/sec 
VM_EXITs 174 64743 107316 
Decryptions 64 64743 107316 

Overhead 
Calculations 

vmWare HV  9% 44% 42% 
TP HV  1% 15% 1% 
In-Place  19% 61% 29% 
Buffered  2% 17% 5% 

Net Overhead In-Place  18% 46% 28% 
Buffered  1% 2% 5% 

Table 2. Test results. 
 

 
Figure 11. Overhead calculation relative to no-hypervisor benchmarks. 

 

 
Figure 12. Net encrypted execution overhead. 

 
7. Future work 

 
As was explained above, the buffered execution method is superior to the in-place execution method 

in terms of performance. Unfortunately, the buffered execution method allows an adversary to access 
regions of memory that are normally protected by the hypervisor. Consider the memcpy function, for 
example. Assume that this function is encrypted and is now being executed by the hypervisor in buffered 
execution mode. By specifying the address of the VMCS structure in the source or destination argument, 
an adversary can inspect and modify the control structures of the hypervisor. Moreover, since the 



hypervisor executes in kernel mode, the protected function can access OS memory region and execute 
privileged instructions. 

Fortunately, the x86 instruction set architecture provides a great variety of memory protection 
mechanisms, which can be utilized by the buffered execution method. One such mechanism is the virtual 
memory protection, which is available in both 32- and 64-bit execution modes. The virtual memory 
protected mechanism allows to specify a separate set of accessibility rights for kernel mode and user 
mode. Similarly, the hypervisor's memory protection (virtualization, to be precise) mechanism, called 
the Extended Page Table (EPT) on Intel processors, allows to specify a separate set of accessibility rights 
for host mode and guest mode. The different modes of execution and the protection mechanisms are 
summarized in Figure 10. 

The in-place execution method utilizes the EPT to protect hypervisor's control structures and other 
sensitive data from an adversary. We propose to use the virtual memory protection mechanism in the 
buffered execution method. In particular, the buffered execution method can execute the decrypted 
function in user mode inside the host mode (the upper right block in Figure 10); this mode is not used by 
the system described in this paper. In this mode we can prevent attempts to execute privileged 
instructions or access the hypervisor's control structures. 

The hypervisor can transit to this mode by executing the iret instruction, which is usually used to 
terminate an interrupt handler. This instruction modifies the execution location and the execution mode 
(from kernel to user). Since the execution takes place in host mode, interrupts cannot be intercepted by 
the hypervisor through configuration of the VMCS. The hypervisor is forced to use the IDT, which 
allows the kernel to specify the interrupt service routines for each of the 256 interrupt vectors. Upon 
interrupt, the interrupt service routine can decide whether to handle the interrupt inside the hypervisor or 
inject it to the guest. 

We believe that the described approach will substantially improve the security of the buffered 
execution method, thus making it absolutely superior to in-place execution. 

 
8. Conclusions 

 
We present research pertaining to the methodologies of executing encrypted native machine-code, 

where decryption and execution are done on the fly and secure with a thin hypervisor. Two alternative 
methods are considered: in-place and buffered  that trade security for performance. The in-pace method 
executes decrypted-code in guest mode, thereby limiting the functionality of the decrypted function to 
whatever a guest may perform. In buffered execution method, the decrypted function executes in host 
mode, potentially incurring the risk of a rogue implementation accessing sensitive memory areas. For 
this reason the in-place method is considered safer. However, in modern multi-processor systems, the in-
place method requires controlling (freezing) other execution units, while a single execution unit executes 
decrypted code. This requires larger overhead when compared to the buffered method and thus has a 
performance toll. Larger overhead is expected to be more significant for larger functions. The reason for 
this is related to the fact that overhead is acquired during transitions between cold to hot and hot to cold 
modes in the in-place method, as compared to transitions between host-execution of decrypted code and 
guest-execution of interrupts. Larger functions acquire more transitions, therefore overhead is more 
prominent in the in-place method. Given these results our conclusions are to use the (safer) in-place 
methodology for short functions (smaller than 1000 bytes). For larger functions (larger than 1000 bytes), 
allow a user-defined switch in the encryption tool to prefer security, in which case in-place shall be used, 
or performance, in which case buffered shall be used. In future work we plan to augment the buffered 
method to overcome its potential security flaws and render it the single and best alternative to use. 
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Abstract—The research on network security concentrates
mainly on securing the communication channels between two
endpoints, which is insufficient if the authenticity of one of the
endpoints cannot be determined with certainty. Previously [1],
[2] presented methods that allow one endpoint, the authentica-
tion authority, to authenticate another remote machine. These
methods are inadequate for modern machines that have multiple
processors, introduce virtualization extensions, have a greater
variety of side effects, and suffer from nondeterminism. This
paper addresses the advances of modern machines with respect
to the method presented in [1]. The authors describe how a
remote attestation procedure, involving a challenge, needs to be
structured in order to provide correct attestation of a remote
modern target system.

I. INTRODUCTION

Software, hardware and hybrid solutions for computer-

systems security are facing modern cyber-breaches, viruses,

worms, rootkits and other malicious executables. These secu-

rity solutions may be implemented successfully by remotely

creating a trusted application container. The application con-

tainer is executed on a, possibly, already compromised system.

One possible embodiment to manage this security paradigm

involves an authentication authority, which can administer an

authentication procedure to a remote machine.

The problem of remote software authentication, determining

whether a remote computer system is running the correct

version of a software, is well known [1]–[8]. Equipped with a

remote authentication method, a service provider can prevent

an unauthenticated remote software from obtaining some se-

cret information or some privileged service. For example, only

authenticated gaming consoles can be allowed to connect to

the gaming networks [9]–[11] and only authenticated bank

terminals can be allowed to fetch records from the bank

database [12].

The research in this area can be divided into two major

branches: hardware assisted authentication and software-only

authentication. While in theory, hardware assisted authenti-

cation may provide more conclusive results regarding the

authenticity of a remote machine, in practice the hardware fails

to provide additional security due to inappropriate designs of

currently available operating systems [5].

Hardware assisted authentication uses an external hardware

component, such as Trusted Platform Module (TPM) to com-

pute a cryptographic hash of the computers hardware and

software configuration and attest it.

Usually [13]–[15] the TPM is used as the root of the chain

of trust. The TPM measures the authenticity of the BIOS. The

BIOS then measures the authenticity of the boot loader and

so on. Unfortunately, all common modern operating systems

(e.g. Linux, Windows, OS X) allow the user to load drivers

for execution with the same privileges as the operating system

itself, i.e. ring 0 on x86 and x64 hardware. Malicious or

buggy drivers, which are executed with high privileges, allow

random code execution that makes it possible to circumvent

the authenticity measurements of the TPM.

Software-only authentication usually targets a specific in-

struction set architecture that varies from ATMega [3], through

Pentium [1] to Intel Core [16]. The authentication entails

simultaneously authenticating some software component(s) or

memory region, as well as verifying that the remote machine

is not running in virtual or emulation mode. Software-only

authentication methods may also involve a challenge code,

that is sent by the authentication authority, and executed on

the remote system. The challenge code computes a result

that is then transmitted back to the authority. The authority

deems the entity to be authenticated if the result is correct and

was received within a predefined time-frame. The underlying

assumption, which is shared by all such authentication meth-

ods, is that only an authentic system can compute the correct

result within the predefined time-frame. The methods differ

in the means by which (and if) they satisfy this underlying

assumption.

A hybrid approach, in which the TPM is used as an

external source of time, was described in [5]. According to

this approach the TPM is used to time-stamp the beginning

and the completion of the challenge execution, thus reducing

the unpredictable deviations in time caused by network delays.

The TPM needs to be built on tamper proof hardware, an

assumption that is not always true as was shown by Tarnovsky

[17], [18].

Pioneer [2] is a software-only component designed to

provide execution of a remotely authenticated executable on

an untrusted and possibly compromised legacy host system.

Pioneer is composed of a dispatcher system that is used

to manage a challenge-response protocol with the untrusted



platform, where an authenticated executable is to be run. The

methodology of Pioneer is based on a verification utility,

which first establishes itself as a root of trust, by executing

code that both checksums itself and verifies that it is running.

The verification utility is randomized by receiving a challenge

seed from the dispatcher. Once trusted, the verification utility

proceeds to authenticate the executable in question.

Pioneer is based on two assumptions on the untrusted plat-

form: it has a single logical processor, and it does not contain a

virtualization extension. Logical processors multiplicity, which

was introduced in modern CPUs, violates the assumptions of

Pioneer. The authors propose a remedy for this vulnerability

by introducing a data dependency between the different parts

of the challenge [16], thus preventing its parallel execution.

Pioneer execution on processors with a virtualization extension

is discussed in [19]. The authors describe a modification to the

original method which allows not only to achieve consistent

results on all processors but also to employ intermediate

variations to detect virtualized environments.

The method proposed in [1] produces the result by com-

puting a cryptographic hash of a specified memory region.

Any computation on a complex instruction set architecture

(Pentium in this case) produces side effects. These side effects

are incorporated into the result after each iteration of the

hashing function. Therefore, an adversary, trying to compute

the correct result on a non-authentic system, would be forced

to build a complete emulator for the instruction set architec-

ture to compute the correct side effects of every instruction.

Since such an emulator performs tens and hundreds of native

instructions for every simulated instruction, the authors of [1]

conclude that it will not be able to compute the correct result

within the predefined time-frame.

The conclusion is probably true for the instruction set

architecture that was considered in [1]. Modern instruction set

architectures allow to construct an “emulator” that performs a

single native instruction for every simulated instruction. This

construction is provided through a virtualization extension of

modern Intel and AMD processors. In short, the virtualization

extension allows the software to specify a set of events to be

intercepted and a function to be called on their interception.

The events can be privileged instruction execution, memory

access, interrupts, etc. Since the software can alter this set

at any point, it can disable interception of the events that can

occur during the execution of the challenge and re-enable their

interception when the challenge completes.

Another feature of modern processors that was not dis-

cussed in [1], is multi-processing. During the execution of

the challenge by one logical processor, another logical pro-

cessor may affect the caches, which will lead to an incorrect

result. Moreover, the additional computational power of other

logical processors can potentially be utilized to deceive the

authentication authority.

In this paper we discuss the deficiencies of the method

described in [1] on modern machines that arise from the

virtualisation extension and multiplicity of logical processors.

We present solutions to the discussed problems.

1) R → A: R’s configuration

2) A → R: Authentication challenge

3) R → A: Result and random value

4) A → R: Sensitive information

Fig. 1. This figure depicts a possible communication protocol between the
authentication authority (A) and the remote machine (R).

This paper is organized as follows. Section II presents

methods of software-only remote authentication described

in [1], [2]. In section III we discuss the implications of

the virtualization extensions on these authentication methods.

Complications that arise from logical processors multiplicity

are discussed in section IV. Section V shows how side-effects

information on modern processors can be obtained and fully

utilized. Non-deterministic behavior of modern processors is

described in section VI. In section VII we discuss the condi-

tions that can allow an adversary to deceive the authentication

method described in this paper. Section VIII concludes our

results.

II. REMOTE AUTHENTICATION OF LEGACY MACHINES

Remote authentication methods define a protocol between

the authentication (attestation) authority and the remote ma-

chine. The protocol enables the authentication authority to

determine whether the remote machine is authentic.

Figure II depicts a possible structure of the authentication

protocol.

The initial messages of the protocol carry information about

the current configuration of the remote machine (transmitted

by the remote machine). Following this exchange, the authen-

tication authority transmits a message containing the challenge

code to be executed on the remote machine. The remote

machine executes the challenge, which computes a result, that

is a cryptographic hash of some memory region, possibly

with some additional information, and transmits it back to the

authentication authority. The authentication authority verifies

that the result is correct and was received within a predefined

time-frame. If both are true the remote machine is considered

authentic.

For practical reasons, the remote machine can generate a

random number, concatenate it to the result, and encrypt both

values before sending the reply to the authentication authority

to avoid replay attacks. The remote machine can then use

this random value, called the session key, as a proof of its

authenticity.

For example, this value can be used as an encryption

key to securely transmit some sensitive information from

the authentication authority back to the authenticated remote

machine. Clearly, an unauthenticated machine will not be sent

this sensitive information.

The structure of the challenges and the hardness assump-

tions vary between authentication methods. Some methods [2],

[3] choose the code of the challenge carefully and guarantee

that the challenge constitutes the most efficient computation of

the desired result. Other methods [1], incorporate side effects



into the computed result, thus, in some sense, utilizing the

entire processor circuitry in result computation. The goal of

both types of methods is to make it impossible to emulate

execution of the challenge on a non-authentic machine within

the predefined time-frame.

Another similarity between the structures of the challenges

produced by both types of methods is the division of the

challenge into blocks and the unpredictable control flow be-

tween the blocks. The control flow depends on the intermediate

values of the result. An invalid intermediate value produces

a different control flow, which in turn naturally leads to an

invalid final result.

Following each authentication request, a pseudo-random

challenge is transmitted, to eliminate replay attacks. The

authentication authority generates the challenges and computes

their results ahead of time. The blocks, their relative order

and the control flow are chosen pseudo-randomly during the

generation phase.

The blocks are constructed for a specific architecture. Ad-

vances in instruction set architectures can potentially render

the current blocks obsolete, by allowing new types of attacks

that are not prevented by the current variety of block types.

The most significant advances that require special considera-

tion are multi-core architectures and virtualization extensions.

The methods described in [2], [3] are subject to attacks

on multi-core processors [16]. The additional computational

resources can be utilized to deceive the authentication author-

ity. The authors of [16] propose to mitigate this attack by

widening the variety of blocks. The effect of virtualization

extensions on the methods described in [2], [3] were studied

in [19]. Some of the operations performed by the challenge

blocks produce different results in presence of an active virtual

machine monitor, thus producing an invalid final result. The

authors explain not only how to accommodate this diversion,

but also how this diversion can be incorporated into the

computed result, thus providing the authentication authority

with information regarding the configuration of the remote

machine.

The structure of blocks is discussed in [1]. The blocks can

be one of two types: blocks incorporating memory content

and blocks incorporating side-effects. Blocks of the first type

read content of memory from some pseudo-random location

and incorporate it into the accumulated result. Blocks of the

latter type fetch some information regarding side-effects from

the processor or the environment and incorporate it into the

computed result using a non-commutative calculation (with

regard to blocks of the first type). For example, if blocks of

the first type use addition, blocks of the second type can use

exclusive-or or rotate.

Every instruction that is executed by a processor modifies

its internal state. Some modifications result from the definition

of the instruction operations; others — are performed by the

processor to improve performance, e.g. cache population, or

for debugging and profiling purposes, e.g. L3 cache miss

count. Previously, processors were allowed to observe the

state of side-effects directly. Current versions of processors

Fig. 2. The figure depicts the mapping between the virtual and the physical
memories. The challenge is stored only in one page of the physical memory
(the blue square) but can be accessed via many virtual pages. During the
execution of the challenge the control flow is transferred between blocks in
different virtual pages to utilize the ITLB. The memory is accessed by the
challenge in pseudo-random order. The same data can be read multiple times
via different virtual pages.

provide a different mechanism: performance counters. The

processor defines pairs of registers: an event selection register,

which allows the software to specify the execution event to be

counted, and a monitoring counter register, which is increased

on each occurrence of the event specified by the first register.

The values of the counter registers can be considered the state

of the side-effect and as such can be incorporated into the

result.

It is desirable to construct the challenge in a way that

maximizes the side-effects produced by its execution. One of

the side-effects that were considered in [1] is the TLB man-

agement system. TLBs store translations of virtual addresses

to physical addresses of pages that were recently accessed.

Modern processors contain separate TLBs for instructions and

data as well as a shared TLB of a higher level, which is larger

but slower. When a new translation needs to be stored in a

TLB with no free slots, one of the slots is evicted according

to some policy, which varies between processors. In order

to achieve high utilization of the TLBs the authors of [1]

propose to map a large virtual memory region that maps a

smaller physical memory region that is to be authenticated

(Fig. II). The challenge then can compute the hash by reading

the contents of the physical memory region through different

pages of the virtual memory region, thus fully utilizing the

TLBs and inducing more side-effects. A typical layout of the

physical memory region that is mapped by the virtual memory

is depicted in Fig. II.

III. VIRTUALIZATION EXTENSION

Virtualization extension instructions are an extension to

the x86 instruction set architecture that allows isolation of

multiple operating systems efficiently, thus providing means

to construct virtual machine monitors [20], [21]. Previously,

construction of virtual machine monitors involved binary in-

strumentation and required modification in the code of the

hosted operating systems.

There are slight differences between Intel’s and AMD’s

implementation of the x86 virtualization extension. In this



Fig. 3. The figure depicts the layout of the physical memory that is mapped
by the virtual memory. The brown squares correspond the pages occupied by
the virtual page tables. The challenge is stored in single blue square, which
represents a single page. Other squares represent the physical memory region
that is authenticated by the challenge. Note that the challenge simultaneously
authenticates the contents of the entire range of physical pages: page-table,
challenge-code and memory region to authenticate.

paper we will discuss only Intel’s implementation and mention

the differences where they are important for the discussion.

A virtual machine control structure (VMCS) is defined

for each virtual environment managed by a virtual machine

monitor (VMM). This structure defines the values of privileged

registers, the location of the interrupt descriptors table, and

additional values that constitute the internal state of the virtual

environment. In addition, this structure defines the events that

the VMM is configured to intercept, and the address of the

function that should handle the interception. The act of control

transfer from the virtual environment to a predefined function

is called vm-exit and the act of control transfer from the

function back to the virtual environment is called vm-entry.

Upon vm-exit the function can determine the reason of the

vm-exit by examining the fields of the VMCS and altering

them, thus altering the state of the virtual environment, as it

wishes. Finally, the VMCS can define a mapping between the

physical memory as it is perceived by the virtual environment

and the actual physical memory. As a consequence, the VMM

can prevent access to some physical pages by the virtual envi-

ronment. Moreover, the virtual environment will be unaware

of this situation.

Interception of some events cannot be disabled, while inter-

ception of others cannot be enabled. For example, execution

of the CPUID instruction always causes a vm-exit, while

execution of the SYSCALL instruction never causes a vm-exit.

Processors produced by AMD allow disabling interception of

all events.

The existence of the VMM, does not affect the internal

state of the processor. Therefore, the authentication method

described in [1] can succeed in presence of a VMM. However

the VMM can intercept execution of privileged instructions

and modify their behavior, thus acting as malicious code.

The code itself can be hidden using the physical mapping as

described above.

We suggest the following method for VMM detection. Since

Intel processors do not allow to disable interception of the

CPUID instruction, execution of this instruction forces a vm-

exit. On vm-exit, the processor loads the first instruction of the

function whose address is specified in VMCS. This behavior

alone will affect some of the caches, regardless of the actual

implementation of the function. The lookup of the address

modifies at least one entry of the ITLB and the higher level

TLB (STLB). Fetching the first instruction modifies at least

one entry in the instruction cache, L2 cache and L3 cache.

In addition, execution of such an instruction takes much more

time when a VMM is active. Therefore, we propose to widen

the variety of blocks by adding blocks that produce events

whose interception cannot be disabled. An example of such a

block is a block that contains a CPUID instruction.

Unfortunately, on processors produced by AMD there are

no such events that are guaranteed to be intercepted. However,

the virtualization extension is enabled on AMD by setting

a bit of a model specific register called EFER. We propose

to add a block that reads the value of this model specific

register and incorporates it into the result. If the bit is set in

the value of this register, as perceived by the challenge, then

the authentication will fail. If the bit is not set, then either a

VMM is not active or it is active but it intercepts accesses to

the EFER register and alters its behavior. In the latter case,

however, the interception will modify the internal structure of

the processor and will be detected as a result of side-effects.

Thus, we force an adversary VMM to intercept accesses to

the EFER register by incorporating its value in the result.

IV. ACCOMMODATING MULTIPLE PROCESSORS

Modern processors consist of several execution units, called

logical processors, each of which contains separate execution

units (instruction decoder, branch predictor, arithmetic logic

unit (ALU), floating point unit, etc.). The processor has multi-

ple units of cache memory: translation lookaside buffer (TLB)

caches, instruction cache and data caches. TLB caches are

used to store information regarding virtual-to-physical address

translations. The caches are separated into instruction TLB and

data TLB and a unified, larger TLB. The instruction and data

TLBs are separate for each logical processor while the unified

TLB is shared by a group of logical processors, called a core.

Similarly, some caches, like the instruction cache and the L1

cache, are separate for each logical processor while the L3

is shared between all the logical processors. In addition, for

simplicity, the caches obey the inclusion policy, by which the

higher level caches include all the information contained in

the lower level caches. This policy implies that if a line is

evicted from a higher level cache it has to be evicted from all

the caches beneath. Therefore any logical processor can cause

eviction of data from a cache that is owned solely by another

logical processor.

We can conclude from the above discussion that in order to

preserve determinism of the cache memories state it is required

to “freeze” all logical processors but the one executing the

challenge. Unfortunately, simple solutions, like idle-loops are

not sufficient, since they affect the instruction TLBs and the

instruction caches.



01. static step = 0;

02. WaitFor(value):
03. forever:
04. MONITOR step
05. if step=cur_proc break
06. MWAIT step

07. ScheduledFunc(cur_proc,
total_procs, challenges):

08. step <- step + 1
09. wait_for(total_procs + cur_proc)
10. execute challenges[cur_proc]
11. encrypt the result
12. step <- step + 1
13. WaitFor(2 * total_procs)

Fig. 4. Pseudo-code of the challenge execution for multiple logical processors

We suggest to use the MONITOR/MWAIT pair of instruc-

tions to “freeze” other logical processors during challenge

execution. These instructions take a specified memory range

and put the processor in an idle state until the contents of that

specified memory region is modified. Since no instructions

are executed, the caches are not affected by the idle logical

processors.

The pseudocode of our solution is given in Fig. IV. The

protocol is executed by one of the logical processors, which

receives the challenge and schedules the routine Scheduled-
Func() (line 07) on all logical processors. The logical proces-

sors use the static variable step (line 01) for synchronization.

Only two manipulations are performed on this static variable:

increment and comparison. The comparison is performed by

the routine WaitFor(), which loops until the value of the static

variable step becomes value.

The loop uses the MONITOR and MWAIT instructions that

block until the specified memory region is written by some

other logical processor. Consider the execution of Scheduled-
Func() by the N th logical processor. Line 09 blocks until all

processors reach line 08 and logical processors 0, 1, . . . , N−1
reach line 12, i.e. complete the challenge execution. Then the

N th logical processor continues by executing the challenge

and encrypting its result with the public key of the authority.

Finally the N th logical processor awaits completion of the

challenge execution by all other logical processors. Forcing

each logical processor to execute its own challenge, prevents

an un-authenticated logical processor from copying the result

of the challenge calculated by an authenticated logical proces-

sor.

We note that during the execution of the challenge by

a logical processor, all other logical processors execute the

MWAIT instruction. The MWAIT instruction does not affect

the internal structures of the processor but prevent other core

to affect the tested core.

V. PERFORMANCE COUNTER CHAINING

Modern processors manufactured by Intel and AMD provide

a facility to count occurrences of side-effect events, internal to

the CPU circuitry, called performance events. The main goal

behind this feature is to support CPU performance monitoring.

Performance events are defined as internal CPU-circuitry state

changes resulting from instruction execution, but not linked di-

rectly to the instruction results. For example: cache hit or cache

miss events on specific cache memories, such as L1/L2/L3 or

the translation lookaside buffer (TLB). The number of possible

performance events greatly outnumber the available hardware

counter circuits. Therefore, it is possible to dynamically link

an available hardware counter (called a performance counter)

to a specific performance event. Once linked, the performance

counter counts the number of events that occurred.

In processors manufactured by Intel and AMD, performance

counters are realized by a set of model-specific registers.

Performance monitoring mechanisms were introduced with

the Pentium processor and later evolved with the introduction

of the P6 family, Pentium 4, core and all later processors.

In general, some performance mechanisms are architectural.

These performance counters are uniformly defined for all

processors, while others are non-architectural, meaning they

are specific to the micro-architecture and vary between the

different processor families.

Most processor models are restricted to 2-4 individual

performance counters, while the different Xeon-family pro-

cessors are an exception in their capability to support 9-25

performance counters, depending on the exact model.

One of the challenge’s goals is to determine if the remote

machine is executing under emulation or not. Two factors are

measured to determine this: the challenge result and the chal-

lenge’s elapsed execution time. The underlying assumptions

are that an emulating system shall evoke different performance

events as compared to a non-emulating system. Therefore, in

order to calculate a result that is correct for a non-emulating

system, its performance-measured environment must also be

emulated by an emulator attempting to masquerade itself.

Taking the previous example, where TLB side-effects are

measured, such an emulator would be required to maintain an

emulated TLB in order to provide the same results a normally-

running system would. A task that is not entirely impossible,

but would surely introduce a detectable elapsed-execution time

differentiation.

Even assuming that such a feat is possible with regard to

one of the side-effect modules, referencing several modules

in a single challenge would necessarily amplify the elapsed-

execution time differences, since these emulations are mostly

orthogonal.

Full emulation of Pentium processors accrue a speed toll

estimated at 2-3 orders of magnitude without maintaining side-

effects, which do not contribute directly to the software flow

or results.

Adding side-effect emulation would increase the execution

time by an additional factor. Hence, designing challenges that



utilizes a larger variety of performance measurements would

not interfere with non-emulated system performance, while

ensuring emulated-system differentiation.

A clear deficiency with respect to this is the low ration

of available performance counters to possible performance

events that can be measured. The novelty presented in this

paper, designed to overcome this deficiency, is the use of

“chained performance-counters”. The idea is to monitor many

side-effect inducing modules with a much smaller number of

available performance counters, by shifting the counters from

one module to the next according to a set of deterministic

rules. All CPU components that generate side-effects are

initialized to a known state before the challenge execution

begins. When challenge execution flow reaches a determinable

point, the contents of each side-effect inducing module is

deterministic and repeatable regardless of our measurement i.e

whether a performance counter was used to monitor its side-

effects or not. It follows that a performance counter can be

connected to the module to count new events. The new events

will occur deterministically for the active challenge given the

new determinable state.

As a result, monitoring performance events on multiple

modules, using a single performance counter to measure the

performance events of these modules, during several separate

time intervals, will require a masquerading emulator to em-

ulate all side-effect inducing modules to achieve the correct

result.

VI. NONDETERMINISM

Recent generations of modern processors have seen great

advancement in pipeline optimizations, to gain significant

improvements in throughput. In Intel and AMD processors,

driving most of the worlds laptop, desktop and server systems,

these include elaborate cache structures, branch-prediction

circuits and prefetcher units. As a result, a lot is going on

“behind the scenes” while the processor executes the main

program thread. Statistically these predictive actions have a

positive effect on performance — effectively increasing overall

throughput. However, side-effect event counters are affected as

well, leading to seemingly non-deterministic count results.

For example, consider counting L1 data-cache hits. When

a load operation causes a new cache-line to be filled it is

normally not counted as a hit. However, if that cache-line

happened to be previously prefetched, the said load operation

will be counted as a hit. Several prefetcher logic circuits exist

that account for predictive loads to cache lines.

As discussed earlier, the challenge result calculation incor-

porates side-effect counter values while iteratively calculating

a checksum. Since prefetchers are not directly controllable,

indirect means need to be employed to defeat the prefetch

logic and achieve deterministic challenge results.

VII. DISCUSSION

We have seen three advances in modern processors: virtu-

alization extension, multiplicity of logical processors and a

richer variety of performance events. Some advances improve

the reliability of the authentication methods by increasing the

resources required for a precise simulation. Other advances,

on the other hand, allow un-authenticated remote machines to

deceive the authority.

We have described how all the modern advances can be

used to strengthen the authentication methods and mitigate

deception attempts.

The main source of concern is the virtualization extension.

While an active VMM can be easily detected on modern

x86/x64 processors manufactured by Intel by issuing CPUID.

The same task is much tougher on modern processors man-

ufactured by AMD. A legitimate question to be asked is:

whether, in theory, a slightly modified version of a virtual-

ization extension can render an active VMM undetectable?

Consider an alternative implementation of the Intel virtu-

alization extension in which the interception of the CPUID

instruction can be disabled. Clearly, detection of an active

virtual machine monitor is still possible and is similar to our

proposal regarding AMD virtualization extension. Namely, we

propose reading the register whose bits define whether a virtual

machine monitor is currently active. On Intel, those bits are

defined in control register 4 (CR4). Unfortunately, a virtual

machine monitor can define the values of all control registers

in the VMCS, rendering our detection method ineffective.

Another approach to detection of an active VMM is acti-

vation of another VMM. The second VMM is executed either

directly by the hardware or with partial support of the currently

active VMM. The latter form of execution, called nested

virtualization, was implemented by some VMMs [22]. Since

the hardware does not support nested virtualization, the VMM

must react to certain virtualization extension instructions. By

executing these instructions, we can differentiate between

nested and regular virtualization.

We believe that it is possible, in theory, to implement a

virtualization extension that will allow a virtual machine mon-

itor to make itself undetectable. On the other hand hardware

implemented nested virtualization. cannot be detected. The

VMM can disable the interception of all events and schedule

a delayed vm-exit. If the delay is longer than the execution

time of the challenge then such a VMM cannot be detected

during the challenge, but can establish full control over the

processor during the delayed vm-exit.

VIII. CONCLUSION

We have seen that the recent advances in instruction set

architecture requires the authentication authority to introduce

modifications to the currently existing attestation methods.

Without accommodating the problems that arise from those

advancements the attestation procedure will fail on modern

hardware.

The problems attesting modern hosts vary from lack of

predictability, caused by logical processor multiplicity, to

unreliability, caused by virtualization extensions. While ev-

ery problem requires a unique solution, we note that only

paradigm shifting modifications of the instruction set archi-

tecture require redesigning the authentication challenges. We



have shownthat even those modifications do not prevent the

establishment of authenticity of a remote machine.
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Abstract  How would you know the US pentagon is planning an attack on Iraq? One 
possible plan is to infiltrate the pentagon using spies, flipping traitors etc. But this 
sounds like lots of work and it is a dangerous work. That is the direct approach. 
Another possible plan is to ask the pizza delivery guys in the area. 

People planning an attack probably adds up to lots of people urgently trying to meet 
deadlines, staying late in the office and ordering pizza. So the pizza delivery guys 
know about a pending attack! The pizza delivery guys do not know the nature of the 
attack but they know “something is up” in the pentagon because for a few days 
people are staying late at the office and ordering pizza at irregular hours.  

The pizza approach is the side-channel attack. This attack on the pentagon is not a 
direct channel attack. No spies were used. No attack on the pentagon defences. It is 
a side channel attack. Attack on the side effects of planning something. The people 
who plan need to work extra time and they also need to eat. 

 

 

1. Introduction 
In computing security there are numerous side channel attacks on side effects of 
verifying efficacy. These are not attacks that are designed on the primary line that 
was protected but on its side effects. A trivial such example is overcoming 
smartphone PIN protection on stolen smartphones. Normally there are 10,000 PIN 
combinations. However if the attacker can decipher the PIN digits by studying the 
smudge left on the device by the owner’s fingers the problem can become a 1:24 
problem, which is significantly easier. (Genkin et.al 2013) 

This type of attack is very powerful. Schneier (2012) estimates that the NSA is able 
to break AES encryption using side-channel attack. Though no such method has 
been published. 

                                                           
N. Zaidenberg • A. Resh 
Department of Mathematical Information Technology 
University of Jyväskylä, Jyväskylä, Finland 
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2. Hypervisor Blue pills and Red pills 

2.1. Subverting and Blue Pill concept 

A hypervisor is a type of software that allows running multiple operating systems on 
single hardware. The hypervisor treats a guest operating system in a similar fashion 
to the way an operating systems treats processes. The hypervisor manages the 
memory map for multiple operating systems in a similar fashion to the MMU of 
operating systems for processes. The hypervisor has a similar MMU for I/O devices, 
so one operating system is not effected by the I/O of another OS.  

x86 allows multiple protection rings, the 2 most commonly used is Ring 0 for the 
Operating System (supervisor mode) and ring 3 for user code. Recently, x86 added 
ring -1 protection, a ring for the hypervisor, which adds instructions to create and trap 
OS operations. There are two different instruction sets for AMD and Intel hardware 
(AMD-v and VT-x instructions) but the two instruction sets are mostly polymorphic. 

There are two possible hypervisors in x86 environments. Type 1(bare metal 
hypervisor) works directly over the hardware. The machine boots directly to the 
hypervisor. The hypervisor can then be used to boot other operating systems. We do 
not deal with type 1 hypervisor. 

Type 2 hypervisor, which interests us, starts as a process (in ring 3) under an 
Operating system. (The operating system boots over the hardware normally). After 
the process starts it executes instructions that allow it to become a hypervisor. Thus 
the hypervisor gains more permissions then the OS that started it. After starting (as a 
ring 3 process) the hypervisor transfers the OS that started the process to a type of 
guest (getting into ring -1). 

 

Joanna Rutkowska (2006) introduced the “bluepill” concept, a hypervisor which is 
barely noticeable. The hypervisor starts as a user process but gains complete control 
of the system (getting the user to run the process in the first place is a different 
problem). Rutkowska describes several such methods for example by hotel maids 
attacking hotel guest laptops etc.  

2.2. Local Hypervisor Red Pills – Direct and Sub-channel attack 

How can the user know he is not running some hypervisor rootkit (such as the blue 
pill) on his computer? Direct attacks on the Bluepill involve actively trying to attack 
the hypervisor for effects that may not be hidden well or calling instructions that 
should be allowed if no hypervisor is installed but should be prevented if an 
hypervisor is already running. 
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Fig 2.1 Type 1 and type 2 hypervisor 

 

It has been shown that the Bluepill can be developed to hide masking detections 
attempts very well by direct means and even allowing infinitely recursive hypervisor 
calls. This led to sub-channel indirect attacks on the blue pill by measuring side 
effects of running the hypervisor. (Rutkowska 2006) 

Perhaps attacks in this context are not clear. As it is the hacker that tries to install an 
invisible root kit the attacks in this context are by the lawful user who tries to detect 
and remove the “invisible” rootkit. 

While a malicious hypervisor can mask itself from an attacker there are certain 
attacks that are bound to cause side effects. For example calling the CPUID 
assembler instruction should normally take about 200 cycles. But if a hypervisor is 
involved it will consume roughly 5000 cycles as a result of CPU context switches 
between guest and hypervisor mode. (CPUID always exits to the hypervisor) 

Thus an attack on a naïve bluepill could be: 

1. Measure CPU clock tick 
2. Call CPUID 
3. Measure CPU clock tick 
4. If difference between 1 and 3 is greater the 400 cycles warn about blue pill 

Off course as hypervisor based rootkits become more complex this attack can also 
be prevented. For example by trapping the call to get the CPU time. 

There now exists a cat and mouse game in which more side effects can be 
measured (for example cache misses) and more attacks can be prevented by the 
hypervisor which cause more side effects that can also be attacked .(Rutkowska and 
Tereskin 2007) 

Type 1 hypervisor

The hardware

Hypervisor
(such as VMWAre ESX)

One or more guests

Type 2 hypervisor

The hardware

Operating system

The hypervisor
(such as VMWare Desktop or Virtual box)

one or more guests 
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2.3. Remote Hypervisor Red Pills 

The method described above demonstrates how the local computer can detect a 
malicious hypervisor rootkit as well as means that the hypervisor can use to hide 
itself better by catching more and more instructions. 

The problem is that the hypervisor can control the guest, tricking it into believing the 
hypervisor does not exist. Also since red pill tools are offered to users, malicious 
hypervisor authors can reverse engineer any red pill and build a hypervisor that 
manages to mask itself against said red pill. However we can actually eliminate the 
cat and mouse game. 

The problem lies with our check that is made locally using measuring tools that are 
all under the hypervisor control. However, the user can run his sanity test not locally, 
but using a cloud server. 

The hypervisor doesn’t control the cloud thus a 3rd party can efficiently detect if 
hypervisor is running. (It may be possible for the hypervisor to control the cloud 
response as it is caught by the OS but it is also possible for the cloud server to 
inform the user he is running a malicious rootkit using sub channel that the 
hypervisor does not control such as another computer) 

Kennell and Jamieson (2003) have suggested a method for remote verification of the 
genuiness of a virtual machine2 Kennel et al also include a mechanism to exchange 
an encrypted key with the authenticated host which was removed from our summary. 
(Shankar et. al 2004) 

The jest of the kennel method can be summarized as following: 

1. The cloud generates a random test. Tests are not identical and contain 
multiple steps. 
In each step side effects from the previous step are entered as input to the 
new step 

2. The test executes in the inspected host 
3. The inspected host sends a response. 
4. The cloud serve verifies the response as well as the time it took to generate it  
5. If the test was successful and within an allotted time the cloud server 

concludes that the host is genuine. 

The steps in Kennell Memory Test include scans of the memory and instructions that 
run on the inspected OS. The side effects include TLB misses and other effects that 
are bound to produce different side effects if a malicious hypervisor is running.  

Kennell et al (2003) argue that if the host is running some hypervisor there are 
bound to be different side effects. If the host is running an efficient emulator that also 
emulates all side effects the response will take too long to arrive. 

 
                                                           
2 the papers uses the term “genuinity” however the correct English term is genuiness. 
We will use the correct English term in this chapter). 
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3. Invisible character differences  
Let’s assume we have some login screen (with username and password) 

 

Fig 3 Username and password failure process  

The login can fail for many reasons like: 

 Username does not exist 
 Username is expired 
 Username is locked 
 Password is incorrect 

Of course for an attacker the different cases call for different behaviour. If the 
username is wrong there is no future with said username. If the username has 
expired the attacker may try again later. If the username is locked it is possible that 
the attacker activities have been detected. It is also possible to try later. Of course if 
the password is incorrect the attacker now has a correct username. The attacker can 
used the correct username for guessing the password (using dictionaries or brute 
force) or use the correct username for other attacks. 

Assuming an attacker only wish to find out the correct username it would be critical 
to have all failure screens look identical. As by having a different failure screen for 
each case – guessing the correct username by brute force would be possible. 

However, if the screens look identical, it is possible that several “invisible” 
differences exist. For example, if the communication is http communication 
transmitting a webpage, different web properties (setting cookies etc.) may exist for 
each of the cases)  

 

check that the username exist
(if expired return error. 

if true continue)

Checkt that the usernae has not expired.
Perform other checks.

(If the usename does not exist return 
error. else continue)

Check password.
If incorrect retrun error else allow access
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4. Timing Attacks  
Timing attacks occur when measuring the time it takes a system to respond. If the 
timing to receive a reply varies, not because of random variance in the delivery 
medium (such as the network time) but due to differences in responses and failure 
(for example different types of failure), an attacker can use the time variance to 
realize what type of failure has occurred. The information obtained using time 
measurements can later be used to attack the system. 

4.1. GameCube DVD password attack 

The GameCube (Nintendo game console) was not supposed to play recorded DVD 
(pirated copies). The original DVD was released with copy protection system that 
was not trivial to replicate. Pirated copies were supposed to be detected by the copy 
protection system and be rejected by the system. 

The DVD however had a programmable override (modchip) for the protection. The 
override may have been used by Nintendo in their system development. Had the 
password remained hidden we would never have heard about it. 

However Nintendo checked the password using memcmp comparing byte after byte. 
The verification process ended when the first incorrect password byte was detected 
(returning failure) or when all bytes were compared successfully. Thus if the 
password got the first byte correctly the password check will be just slightly longer 
(checking two bytes instead of one) then if we got the first byte wrong (checking only 
one byte). Using this method one by one, all bytes that encompass the password 
can be revealed.  

Thus the password was indeed leaked and 2nd generation GameCube modchips 
appeared (Domke 2004). Even though this method was well known, Nintendo had an 
identical problem with the Wii, which was released 5 years later. (Domke 2006) 

Assume a webserver has a password protected section were username and 
password are required to login. When the user types his or her username and 
password, the algorithm from section 2 occurs. The System first checks for the 
username. If no such User exists (or if the user has expired) the system returns with 
an error. If the user is OK then the system now verifies the password. If the 
password is not OK then an error message will appear. 

Assuming the answer is immediate, by timing the response times an attacker can 
use this timing attack to reveal correct usernames. Furthermore, even if the 
response occurs over some network which adds random delay (but similar random 
delay to both correct username and incorrect username – an attacker may still be 
able to guess the password. (Domke 2004) 

Adding short random delays to password checking does not prevent timing attacks. 
As long as the delays are not significant it can be shown that an attacker can still 
distinguish between two classes such as incorrect username and correct username 
but incorrect password. (Domke 2004) 
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5. AES Side-Channel Attacks 

5.1. AES Background 

AES (Advanced Encryption Standard) is the standard electronic-data symmetric-key 
encryption algorithm, specified by the NIST (US National Institute of Standards & 
Technology) since 2001 (AES 2001). It was labelled by the NIST as FIPS publication 
197 and is based on the Rijndael algorithm, proposed by two cryptographers from 
Belgium: Joan Daemen and Vincent Rijmen (2013). In addition to being adopted by 
the US Government it is also used for data transfer and communication worldwide as 
a successor to the Triple-DES, DES and RCx cryptographic algorithms. This finds 
use in many implementations, most notably the SSL3/TLS protocol, as well as disk 
encryption and authentication. 

AES is used to encrypt and decrypt fixed blocks of 128 bits (16 bytes). The 
cryptographic algorithm uses three possible key sizes: 128 bits, 192 bits or 256 bits. 
AES encryption and decryption is performed in several iterations, called “Rounds”. 
During each round, 4 steps (only 3 steps in the last Round) are performed on the 
intermediate data block to progress the encryption from a 16-byte plaintext (ptext) to a 
ciphertext (ctext). During decryption, similar steps are performed to achieve the 
opposite: decrypting the ctext to restore the ptext. The number of rounds used 
depends on the key size: 10, 12 and 14 rounds are used for key sizes of: 128, 192 and 
256 bytes. 

The encryption process can be summarized as follows: 

A. Key expansion: The original 128-bit key is expanded to 10, 12 or 14 Round-
keys. The data block in each round is combined with the Round-key 
corresponding to that Round. 

B. Initial round: Each ptext byte is combined with the original key 
C. Rounds (all but last): activate 4 transformations on the data buffer: SubBytes ; 

ShiftRows ; MixColumns ; Combine with round-key 
D. Last round: activate 3 transformations: SubBytes ; ShiftRows ; Combine with 

round-key 

The decryption procedure is similar, using the same original key but inverse-
transformations. 

5.2. AES Software Implementation 

Software implementations of AES normally make use of lookup tables in favour of 
performance and efficiency. The lookup tables are used to quickly determine the 
transformation results, which are activated in the AES rounds. While theoretically it is 
possible to calculate the transformations without resorting to lookup tables, using 
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only arithmetic, logic and Boolean operations, this carries a significant performance 
toll that is naturally avoided. 

Accessing lookup-tables that have a substantial size (as is the case for AES 
encryption/decryption) interacts with the underlying architecture’s cache mechanism. 
As we shall see below, this provides an opening for a side-channel attack crafted to 
reveal the key. 

5.3. Cache Memory 

Modern CPU systems have several levels of storage. They differ generally by a 
capacity vs. access-speed trade-off.  

Cache memory is used to buffer memory contents obtained during a memory cycle, 
so it can be provided much faster when it is needed in a following memory cycle. 
Cache operations are generally transparent to software and dedicated hardware is 
used to manage the buffering and utilization cycles of cache.  

Cache memory is subdivided into cache-lines. When a memory element is stored in 
cache, an entire cache-line (which contains that memory element) is stored in cache. 
The cache circuitry kicks in at every physical memory access. 

Cache operation during a memory read cycle is best explained with an example: 

When a memory location is read-in by the processor, the cache is first 
inspected to determine if the required value can be obtained from the cache. If 
it can, this event is called a “cache hit” and the value is provided to the CPU 
directly from the cache. Such a memory cycle is significantly faster than 
retrieving the value from main memory. If the required value is not in cache, it 
is called a “cache miss” and the value must be retrieved from main memory. 
In this case the value is both provided to the CPU and stored in cache. The 
cache-miss event causes an entire cache-line to be retrieved from memory 
and stored to cache, called a cache-line fill. The next access to any memory 
location within that cache-line will be a cache-hit. 

When a cache-miss occurs and, as explained above, a cache-line is retrieved and 
stored in cache - some previously stored cache-line needs to be evicted from the 
cache to make room for the new one. Usually cache-lines are evicted according to 
an LRU (Least-Recently-Used) algorithm. 

As mentioned above, memory elements are stored to the cache in integral quantities 
of cache-lines. The address of a memory element is subdivided into 3 fields. The 
index field determines which cache-slot will be used. Note that all address locations 
that contain the same index value, share the same cache-slot. Each cache-slot also 
stores the tag, in addition to the cache-line content. The tag is used to define the 
exact memory location of the cache-line that is currently in the cache-slot. The 
LSBits are the offset field and define the offset of the memory element within the 
cache-line.  
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This mapping is referred to as the ‘Cache Association’. See figure 5.3.1 that depicts 
the cache structure and Association. When a cache-line fill operation occurs, a 
cache-slot will first be evicted (written back to memory) and then filled with the new 
cache-line contents. 

 

 

Fig 5.3.1 Cache Structure and Memory Association 

The figure 5.3.1 above depicts the mapping between a memory address and a 
specific cache-slot. This is called a 1-way association. Modern cache designs boost 
performance by increasing the number of available cache-slots for each index value. 
When more slots exist, a cache-line is not necessarily evicted when a new memory 
location with the same index needs to be stored to cache. 

 

Fig 5.3.2 2-Way Set Associative Cache 

For example, in a 2-way association, each cache-line index has 2 separate 
available slots. When a new cache-line is filled, only one slot must be evicted to 
make room for the new one. See figure 5.3.2Fig. An LRU (Least-Recently-Used) 
algorithm is usually used to decide which slot should be evicted. This architecture 
boosts performance, since recently used memory values have a better chance of 
remaining in cache and therefore increasing the cache-hit ratio. It is not uncommon 
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in modern CPU architectures to have 4-way and 8-way set associative cache 
designs. 

5.4. Side Channel Attacks on AES 

Several attack strategies have been developed against the AES algorithm. Some 
attempt to acquire the memory contents of the AES application using different types 
of stealthy techniques, such as DMA attacks, Cold-Boot attacks or use of Firewire, 
PCI, etc.  Once captured, memory contents can be analysed to retrieve the key 
used. 

Another category of methods resort to an indirect strategy, which does not attempt to 
access the AES application directly, but takes advantage of side-effects that occur in 
the computer system as a result of the execution of the AES application and which 
can eventually lead to revealing the key. As explained above, these belong to the 
“Side-Channel” attacks category. 

Cache-timing side-channel attacks are based on the fact that the processor 
accesses a cached memory element (cache-hit) at a significantly faster cycle time 
than that of a non-cached one (cache-miss). Different applications on the same 
system are protected from each other with Virtual memory; however the same 
underlying cache structure services all processes that run in parallel on the same 
CPU. Multiprocessing is supported by virtually all Operating-systems in use today. 
Consequently, if one process affects the cache subsystem, another parallel process 
can measure that affect even if it is restricted to accessing its own, private, address 
space. The timing differences between a cache-hit and a cache-miss are a factor of 
x10 – x20. This leaves ample leeway for one process, running along-side another 
process on the same CPU to accurately measure those affects. 

Recall that software driven AES applications make extensive use of lookup-tables. 
When a lookup-table entry is referenced it will be retrieved from the cache in the 
event of a cache-hit. Otherwise, in the event of a cache-miss it must be retrieved 
from main memory with a time penalty. An attacker routine, which runs in parallel to 
the AES process can measure the time of the encryption or decryption and compare 
the measurements when a specific lookup-table entry exists and then does not exist 
in the cache. One way for the attacking process to achieve this is to evict the 
specific lookup-entry from cache. To do that, it only needs to reference memory 
elements from its own memory space, which has the same index as that of the 
lookup-table entry. Doing so for enough memory elements (at least the cache 
association ways) guarantees that the lookup-table entry is evicted from cache. For 
example, in a 4-way associative cache, 4 references to memory elements with the 
same index will evict the lookup-table entry. Following this, 2 consecutive AES 
decryptions are triggered and timed. If the first time measurement is longer than the 
second, it can be concluded that the specific lookup-table entry in question was 
referenced. Otherwise, the converse is true. Since lookup-table references occur as 
a function of the key value, repeating this process for different lookup-table entries 
can be used to reveal the key value. Additional details can be found in the work of 
D. Osvic, A.Shamir and E.Tromer (2005). 
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Alternative methods may be employed by the attacking process to employ the same 
principles. For example, the entire cache may be evicted (this is usually a single 
instruction), followed by triggering of an AES decryption. The state of the cache 
would then reflect all the lookup-table entries that have been referenced. Now the 
attacking process can time references to memory elements in its own memory 
space, which have the same index value as a specific lookup-table entry. If the 
measured time corresponds to a cache-hit, it can be assumed that the lookup-table 
entry was referenced during the AES process. If the measured time corresponds to a 
cache-miss the converse can be concluded. 

AES software implementation may be written to obscure the use of lookup-tables in 
such a way that it becomes impossible to relate its use to key values. Alternatively 
the implementation can avoid use of lookup-tables altogether. The down side of 
these methods is the performance penalty. Use of lookup-tables is the fastest (albeit 
vulnerable) implementation. 

In 2010 Intel introduced a new instruction set in the Westmere processor family to 
perform AES calculations in hardware. This instruction set is dubbed AES-NI. The 
instruction set consists of 6 instruction op-codes: 2 for key expansion and 4 for 
encryption and decryption. By using these instructions the entire AES process is 
carried out in hardware in fixed, data-independent, timing. As a result, cache-timing 
attacks become completely useless. (Gueron 2012) 

 

6. Power based attacks 
RSA is a common cryptographic method that relies on mathematical operations 
(mainly multiplications and divisions). However multiplication has different power 
requirements for bits containing 0 (hereby “0-bits”) compared to bits containing 1 
(hereby “1-bits”). Due to the arithmetic nature of multiplication, multiplication 
involving “0-bits” is equivalent to NOP. Multiplication of “1-bits” on the other hand 
consumes more power for CPU operations.  

Assuming the attacker has access to the platform were RSA or similar protection 
algorithm is running, during validation of the correct key. It has been shown that 
using the power consumption of the platform the attacker can detect the “1-bits” in 
the key thus breaking the encryption. (AES 2001) 

Protection against power based attacks involves doing similar operations for “0-bits” 
and “1-bits” by doing random computations for “0-bits”. This method increases the 
computation time of RSA and similar algorithms as it adds random computations. It 
is also still vulnerable to attacks as computation is not 100% identical, however it has 
been shown that by adding random CPU work to “0-bits” the power consumption gap 
between “0-bits” and “1-bits” can be eliminated.  

Closely related to Power-analysis side-channel attacks, are Acoustic side-channel 
attacks. Computer systems emit (ultrasonic) acoustic sound as a result of current 
surges through electronic components, such as capacitors and coils. Monitoring and 
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analysing these sounds can reveal the underlying current consumption graph of the 
computer system. Therefore, a cryptographic system may be attacked in much the 
same way as one whose power usage is monitored. For implementation details see 
the work of Genkin, Shamir & Tromer (2013). Acoustic monitoring has a distinct 
advantage in that a physical connection is not required, as measurements can be 
achieved solely by using a sensitive microphone. 

Countermeasures that defeat these attacks may be to generate a random variety of 
sounds in the same spectrum, while computing the critical cryptographic algorithms. 
White-noise can also be used to acoustically drown the side-channel emissions. 
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1 Introduction 

Trusted Computing is a special branch of computer security. One branch of 
computer security involves protection of systems against external attacks. In that 
branch we include all methods that are used by system owners against external at-
tackers, for example Firewalls, IDS, IPS etc. In all those cases the system owner 
installs software that uses its own means to determine if a remote user is malicious 
and terminates the attack. (Such means can be very simple such as detecting signa-
tures of attacks or very complex such as machine learning and detecting anomalies 
in the usage pattern of the remote user). 

Another branch of attacks requires protection by the system owner against in-
ternal users. 

Such attacks include prevention of users to read each other’s data, use more 
than their allotted share of resources etc. To some extent anti-virus/anti-spam 
software is also included here. All password protection and used management 
software are included in this branch. 

The third branch, Trusted Computing, involves the verification of a remote host 
that the user machine will behave in a certain predictable way, i.e. protection 
against the current owner of the machine. The most common example for this kind 
of requirement is distribution of digital media. Digital media is distributed in some 
conditional access mode (rented, pay per view, sold for personal use, etc.). Obtain-
ing digital media usually does not entitle the user to unlimited rights. The user 
usually may not redistribute or edit the digital media and may not even be allowed 
to consume it himself after a certain date. (Media rentals, pay per view) However, 
as the user is consuming media on his private machine. How can the media pro-
vider assure himself that a malicious user does not tamper with the machine so 
that contents are not replicated? The problem of security against the owner of the 
machine is the problem region of Trusted Computing. In trusted computing as op-
posed to other branches of security the “attacker” is not limited to some attack sur-
face that was exposed to him but can also use a soldering iron to tap into busses, 
replace chips and other system parts etc. 

Trusted computing also includes other protection tools against the current own-
er (or possessor of the machine if not the legal owner). For example protection of 
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sensitive data or disk encryption solutions for laptops and mobile phones that can 
potentially be stolen. 

Trusted computing can also be used on the cloud to ensure that the host does 
not inspect a cloud server and the software running on the server is not stolen. 
Latest trusted computing technology involves means to ensure commands are sane 
and are not malicious, for example in computers on cars and avionics. In this 
chapter we will review DRM and Trusted computing solutions from multiple 
sources. 

2 Ethics – Trusted or Treacherous computing 

Users don’t like trusted computing. 
First and foremost, the concept of conditional access leads to numerous digital 

rights debates. For example, if I legally purchased contents, shouldn’t I be allowed 
to make backups of said contents? Especially as no media vendors are currently 
proposing to offer free (or even cheap) replacements of corrupted media contents! 
However, if we allow media to be replicated then how can we disallow illegal 
copies? What is stopping the user from redistributing copies or “backups”? How 
can we distinguish legal use of copies (backups) and illegal copies of the same 
content? 

Secondary, as many trusted computing devices requires the user to actively in-
stall something on his machine (a TPM chip, EFI firmware, etc.). And the said 
hardware component does not contribute to the end-user system features at all (if 
anything trusted computing only limits the user). Why would the user willingly 
spend money and install some piece of hardware in his computer that only serves 
to limit what she can and cannot do? 

All these reasons have lead Richard Stallman to call trusted computing treach-
erous computing and numerous hackers to try attacks on TPM chips and trusted 
platforms. 

As of writing this chapter there is no clear cut winner in this technology battle. 
On the one hand there is still no massive install base for trusted computing solu-
tions and on the other hand the trusted computing group is still alive and still re-
leasing new trusted platform modules and specs. 
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3 The Trusted Processing Module by TCG 

 
Figure 1: Trusted platform module 

The trusted platform module, as demonstrated in Fig. 1 is a separate computer 
chip that is added to the computer motherboard and is frequently connected to the 
CPU using the LPC (low pin count) bus. The TPM is a cryptographic co-processor 
that is able to perform several cryptographic functions as well as generate and 
store keys. 

The TPM can also verify the hardware and software that the system runs on 
and attest for the system’s sanity. 

When a remote host is querying the system for sanity it can use the TPM to 
verify that the software that it runs on was not tampered. TPM supports two attes-
tation methods: Remote Attestation and Direct Anonymous Attestation. 

3.1 Remote Attestation 

The attestation solution proposed by the TCG (TPM specification v1.1) re-
quires a trusted third-party, namely a privacy certificate authority (privacy CA). 
Each TPM has an RSA key pair called an Endorsement Key (EK), embedded in-
side the TPM (that the user cannot access – at least not easily.)  

In order to attest itself, the TPM generates a new RSA key pair (Attestation 
Identity Key or AIK).  
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Remote Attestation is a typical trusted 3rd party process. Assuming Alice 
wants to attest Bob and Bob wants to be recognized by Alice but neither wants to 
reveal his private identification code to each other, remote attestation is suggested. 
It requires a trusted party that both can trust. 

Bob attests himself by signing the public AIK using the EK, to the trusted 3rd 
party. The trusted 3rd party then verifies Bob by using Bob’s public EK. Of course 
the CA may and should blacklist TPMs if it receives too many requests using the 
same key simultaneously. Alice can later verify with the CA Bob has is indeed at-
tested. 

3.2 Direct Anonymous Attestation 

The Direct Anonymous Attestation (hereby DAA) protocol was only added to 
the TPM standard in version 1.2. DAA is based on three entities and two steps. 
The entities are the TPM platform, the DAA issuer and the DAA verifier. The is-
suer is charged to verify the TPM platform during the Join step and to issue DAA 
credentials to the platform. The platform uses the DAA credentials with the verifi-
er during the Sign step. The verifier can verify the credentials without attempting 
to violate the platform's privacy (zero knowledge proof [5, 6]). The protocol also 
supports a blacklisting capability, so that verifiers can identify attestations from 
TPMs that have been compromised. 

DAA allows differing levels of privacy. Using DAA Interactions is always 
anonymous, but the user/verifier may negotiate as to whether the verifier is able to 
link transactions (with the same user but not a specific user). Verifying transac-
tions would allow persistent data to be saved over sessions and would allow pro-
filing and tracing multiple logins. 

4 Intel TXT instructions 

Intel TXT technology defines unique extensions for the CPU instruction set to 
allow trusted execution [2]. Using intel TXT, one can attest the hardware, OS and 
software currently running and ensure a stable (as opposed to tampered) system 
state. Intel TXT uses the TPM for measurements and cryptographic functions to 
attest to a 3rd party and ensure that system software or the OS that is currently 
running is indeed trustworthy and non-tampered with. 

The PCR registers on the TPM contain measurements and SHA-1 hashes of 
various system stages and code and by checking and verifying these measure-
ments the system can be trusted to boot a non-tampered software. 
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5 AMD/ARM Trustzone 

AMD/ARM Trustzone is the ARM/AMD implementation of trusted compu-
ting. It is roughly corresponding to Intel TXT. The Trustzone implementation is 
used by both AMD and ARM. Trustzone allows signed secure OSs to be loaded, 
for example, by using AMD/ARM SVM.  

6 Other architectures for “Trusted computing” 

These architectures provide means to prevent replication of data and thus intro-
duce trust on various systems. We focused mainly on Video content delivery in 
this chapter. Different systems for preventing homebrew and pirated software on 
game consoles (which is another form of trusted computing) are covered in Chap-
ter 3. 

6.1 HDMI and HDCP and its predecessors 

The Video industry has always been interested in mixed goals: 

1. It searched for ways to deliver high quality video to the user’s home. Generat-
ing a new revenue stream from videos that no longer appeared in cinemas 
(Video/DVD rentals). 

2. It searched for ways to prevent the user from obtaining permanent access to the 
video equipment she rented by making illegal copies. 

To some extent the battle was a lost cause to begin with because the user could 
always point a standard camera to the screen and just record using the camera (or 
create low quality copies using older, already broken technology). However, the 
industry was interested in preventing the user from making high quality copies 
(for example, digital quality copies in the case of HDMI). 

This approach led to several technologies whose purpose was to circumvent the 
user’s ability to create illegal copies 

6.2 Macrovision 

Old VHS video devices had a macrovision device that prevented direct creation 
of copies of VHS media by connecting two video devices to each other. 
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The Macrovision devices modified the output stream in a way that was unno-
ticeable to users but prevented VHS devices to create VHS cassettes copies by 
daisy chaining devices. 

6.3 CSS and DeCSS and improvements 

CSS or Content Scrambling System is an encryption system that is used on all 
major DVDs. 

CSS was 40 bit encryption system. 
The use of CSS was supposed to make it impossible to copy video content di-

rectly from DVD to a video. This was done as the encryption keys were kept in 
unreadable (by data DVD players) location. 

CSS also allowed for DVD regions, Macrovision etc. 
DVD CSS was broken at 1999, about 3 years after it was introduced with the 

introduction of DeCSS software. An inherent bug was used to reduce the keys 
from 40bit to only 16bit long and most players were able to break this encryption 
in less than 1 minute by brute force. 

Two of DeCSS authors remain unknown even today. The 3rd was a Norwegian 
teenager: Jon Lech Johansen. Mr. Johansen was brought to trial and acquitted by 
the Norwegian court. The prosecution appealed and Mr. Johansen was acquitted 
for the second time. 

When DVD was superseded by Blu-Ray and HD-DVD CSS was replaced with 
the AACS (Advanced access contents system, which was broken using leaked 
keys). 

6.4 HDMI and HDCP 

HDMI or High Definition Media Interface is a high quality media interface al-
lowing high quality media transfer to monitors and screens. HDMI raised the 
problem of creating exact or near exact high quality replicas of video content. 

To avoid copying the contents, HDCP will encrypt the content travelling be-
tween two end points of HDMI and will only provide contents to devices with 
trusted keys. These keys can later be revoked if they are stolen. 

By 2010 the master key for HDCP had been leaked, rendering all revocation 
list useless. 

It is possible that the revocation key was used too many times and provided 
sufficient data that made breaking the key easier. 
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7 Other uses for trusted computing 

Several attacks on the user can be done after the attacker has obtained full or 
even partial control on the end user device. For example the attacker may be inter-
ested in the contents of the user hard drive after obtaining control of the user lap-
top (for example, by stealing it) 

Such trusted computing content protection methods involve the usage of pro-
tected (encrypted) storage were the keys are saved on the TPM. 

7.1 Microsoft Bitlocker and similar products 

Microsoft Bitlocker is a full disk encryption solution that can be used on com-
puters (especially laptops) to ensure that the disk contents are unreadable to an at-
tacker, even if the computer/laptop was stolen. The complete disk is encrypted and 
the key to decipher the disk content is unreadable and saved on the TPM. 

7.2 Protection on Mobile phone data 

Mobile phones contain private data that can be exposed if the phone is lost or 
stolen. 

Numerous technologies have been generated by various sources from using 
TPM and encryption on the device to a more biometric approach. 

Examples include apple usage of fingerprint reading devices on the iPhone de-
vice that are required to unlock a stolen phone. 

Other technologies include a kill code that is used to wipe the device and pre-
vent it from connecting to the network ever again. 

8 Attacks on trusted computing 

8.1 Reset Attacks on the TPM chip 

The TPM is often connected to the LPC (low pin count) bus. A legacy slows 
bus that exist on virtually all PCs. Attacks on this exist for over 10 years. One of 
the first cases of attacks on this bus occured on the first XBox.[9] By connecting 
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and eavesdropping to the LPC bug several hackers have been able to intercept and 
reset the TPM[8].   

8.2 Attacks on the implementation of TPM 

In 2010 [3] and later in 2012 [4] Chris Tarnovsky demonstrated physical at-
tacks against TPM chips by Infineon and ST microelectronic. Tarnovsky attacked 
the TPMs by eliminating parts of the TPM chips thermal casing and attacking (i.e. 
connecting external devices) to the chips itself. 

Tarnovsky demonstrated that ST and Infineon chips are made of older proces-
sors chips from their past. He demonstrated that by physically attacking the chips 
itself he could expose and modify content on the TPM chip itself. 

Tarnovsky’s methods require a special lab, chemicals and equipment which 
may not be in every hacker’s reach. But it is definitely not beyond the reach of 
professional attackers and hackers. 

8.3 Other attacks on trusted computing 

One of the features of the Intel CPU is SMM or software maintenance mode. 
SMM is used to allow updating CPU code (microcode). SMM code is executed at 
higher permissions then user, kernel or hypervisor code on the Intel platform. 
Therefore, SMM is considered to run at permission ring -2 (if Ring 3 is userspace 
code, ring 0 is kernel code and ring -1 is hypervisor) 

Rafal Wojtczuk and Joanna Rutkowska have demonstrated breaking TXT limi-
tations using SMM [1]. These attacks may have been Intel’s main reason for de-
vising the SGX extension. 

These attacks are possible because TXT protection blocks execution and per-
mission in rings 3 (user space), 0 (kernel) and -1 (hypervisor) but TXT memory 
defense is still vulnerable to attacks on Ring -2 using SMM permission level 
which does not require any special permissions and can be used even after the OS 
has been attested by the TPM. 

9 Beyond Trust – SGX 

SGX or Software Guard Extension is an innovative technology from Intel that 
will be implemented in future chips. SGX provides a solution to the trusted com-
puting problem on Intel platforms [2]. SGX technology allows creating an execu-
tion container for each process in which the process memory is contained.  This 



9 

approach is similar to the approach taken by Qubes OS development to create sep-
aration using hypervisor code between applications so different applications are 
running on different virtual OSs [6] and by Trusted computing software such as 
TrulyProtect, which keeps secrets in the hypervisor layer [7]. At the time of writ-
ing this chapter SGX is not available with any Intel CPU on the market (thus there 
are no known attacks on SGX). 
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Abstract 
The “Truly-Protect” trusted computing environment by Averbuch et al relies on encryption 
keys being hidden from external software and crackers. “Truly-Protect” saves the keys in 
internal registers inside the CPU. Such external keys should not be accessible by any 
software that runs on the machine prior to “Truly-Protect” validation or even after “Truly-
Protect” validation. The assumption is that the hackers cannot reverse engineer the CPU and 
discover the content of these registers. But is it really possible to hide keys in such places? 
 
Internal CPU memory is indeed not available for user processes. However, the CPU memory 
and registers are accessible from the running operating system kernel. Truly protect uses a 
validation protocol that also verifies the Operating system kernel does not include malicious 
additions. These tests should ensure a cracker has not modified the OS. But Modern 
Windows operating system support loading new kernel code segments (drivers) even during 
the operating system runtime. Can we prevent modifying the kernel (loading drivers) after 
“Truly-protect” has verified the kernel? 
 
In this work we examine modern Intel CPUs available on desktop PCs and the latest releases 
of Microsoft Windows (windows 7,8) for existence of good hiding places for the encryption 
keys.  

1. Introduction 
Contemporary digital rights security systems rely mainly on methods of obfuscation or use of 
plug-in HW devices, such as dongles. Use of HW dongles has been critiqued heavily by 
users, as being cumbersome and generally inconvenient.  Obfuscation methods, by which 
software protection is realized by introducing code-clutter to conceal the protection 
mechanism is largely losing the battle to crackers, who on average can break these 
protection schemes within weeks. A new approach, described by Averbuch et al [1] suggests 
a software-only solution, named Truly-Protect, based on encryption and just-in-time 
decryption of protected software. According to this approach, the protected software shall be 
stored in computer memory exclusively in its encrypted form. Decryption shall occur "inside 
the CPU", on-the-fly, as it is being consumed. The decrypted form shall not be stored back 
into memory. In fact, it shall never leave the confines of the CPU domain. See shaded area in 
Figure 1. 
Software protection based mainly on obfuscation still allows crackers to trace and reverse-
engineer the protected software, thereby opening the door to obtaining an unprotected copy. 
However, by keeping the decryption process and its keys, as well as the decrypted results 
inside the CPU domain assures that the software remains protected -- unbreakable by any of 
the currently know cracking techniques.  
 
According to Truly-Protect [1] the following procedure is used in order to successfully execute 
protected software on a target computer: 

 The target computer communicates to a remote authentication server and transmits 
proof of eligibility to execute protected software. 

 The remote server authenticates the target computer by employing a modified Kennel 
& Jamieson [2] procedure. The purpose of this step is to validate the target computer 
as a real (non-Virtual) machine running a recognized O/S. A side-effect of the 
validation procedure is exchange of key material. 

 The server protects the software by encrypting it using the key material exchanged 
with the target during the validation procedure. 
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 The protected (encrypted) software is downloaded to the target's memory and 
spawned for execution. 

 Protected software executes on the target computer using JIT, on-the-fly, decryption: 
Encrypted instruction code is loaded from memory into the CPU, where it is decoded, 
executed and then disposed. Decryption keys or decrypted instruction codes never 
leave the CPU domain. 

 

 

 

 

 

 
 
 

Figure 1: CPU & Memory Structure 

2. Problem Definition 
A full description of the validation and key-material exchange procedures, detailed in the 
procedure above, is beyond the scope of this discussion. We will proceed with the 
assumption that the validation procedure establishes the following: 

 The target computer is a real (non-VM) system 
 The target is running a recognized O/S that does not include potentially malicious 

components 
 The key material, required for decrypting the protected software, is generated by the 

validation procedure and stored in the CPU domain 
 
The Truly-Protect scheme is based on maintaining keys and carrying out the protected 
software decryption exclusively in the CPU domain. This implies that the decryption code runs 
in Kernel-mode (privilege level 0) on a protected O/S, such as Windows or Linux. This further 
implies that decryption must either be an integral part of the O/S or a Driver that is loaded into 
the O/S and operates in Kernel-mode. While this restriction in itself is a complication, it is a 
blessing in terms of software protection, since it establishes a basis upon which the Truly-
Protect goals can be realized. 
 
The protected software is assumed to execute in user-mode. However, according to Truly-
Protect, decrypted code cannot exist outside of the CPU domain. This restriction implies that 
decrypted code must either: 

 remain in the CPU register file for the duration of its execution, or 
 be latched in cache while the cache method for that space is set to Write-Back 

In the former case individual instructions must be decrypted and executed by a VM, while in 
the latter case, large blocks of code (for example, entire functions) may be decrypted and 
executed natively, directly from cache. These ideas have been described in detail in [1]. 
 
The most crucial aspect of Truly-Protect and its "soft-belly" is the decryption-key location. 
Once generated by the validation procedure, it must be locked in the CPU domain, such that 
it cannot be accessed under any condition, except, of course, to carry out the JIT decryption. 
As mentioned above, locating information in the CPU domain restricts its access to the O/S 
Kernel or driver modules executing in Kernel-mode. Therefore, storing the keys anywhere in 
the CPU domain will keep it safe from User-mode applications. We assume that during the 
validation procedure, when the key is initially generated, the CPU domain is clean of 
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malicious code. However, how can Truly-Protect guarantee that malicious Kernel-mode 
drivers are not loaded thereafter, gain access to the CPU domain and get hold of the key -- 
thereby using it to completely decrypt the protected software? 
 
Several approaches may be employed to accommodate: 

 Lock the key in a memory region that can be accessed only by the decryption engine 
 Prevent driver plug-ins to the O/S after the validation procedure has successfully 

completed. 
  Allow Kernel related changes or driver additions – but in the event that these occur – 

the key must be obliterated  

3. Discussion of Alternative Solutions 
Cache 
Cache memory is one good storage place, in which to conceal key information deep within 
the confines of the CPU domain. Most modern age computer systems contain one or more 
cache units for Instruction, Data or Unified caching. For example, the Intel Pentium 
processors contain 3 levels of cache units: L1 (Instruction and Data), L2 (Unified) and L3 
(Unified).  
Cache memory cannot be read or written directly by software (User or Kernel mode) as 
internal cache mechanisms maintain correspondence between cache and physical memory 
contents. Therefore, cache contents are read/written only by accessing the memory locations 
shadowed by cache. However, since delays between introducing new data (writing) to a 
cached location and when that data is actually committed to physical memory can be taken 
advantage of to store data in cache while keeping it out of physical memory. A procedure for 
achieving this is: 

 Configure memory location as type WB (Write-Back) 
 Read memory location (cache lines are filled) 
 Write critical information to memory location (only cache is written) 

Following this, Reads from the memory location will return the critical contents from cache. 
When done, the cache can be overwritten and invalidated. Using this technique, the critical 
information is never written out to physical memory. This has the distinct advantage of not 
compromising the critical information to a bus-analyzer, as well as not providing a possibility 
for physical memory to be polled or extracted from the main board for analysis. 
 
Keys or decrypted data may be manipulated in cache memory using the above technique. For 
keys, either data-cache or instruction-cache may be used: by storing keys directly in the 
former case or setting up an instruction sequence that generates a key in the latter. 
However, there are several limitations worth mentioning. Storage of critical information in 
cache, in the interim where it does not get written through to memory, can only be maintained 
temporarily, since most cache invalidation procedures that occur internally will cause cached 
data to be written out to physical memory. 
Furthermore, cached locations may be read by any process that has access to the address 
space being cached. Therefore, other processes that gain CPU control while the cache 
contains critical data may, in theory, obtain access to this data. 
 
Registers 
Registers are an appropriate storage location for keys, since they are located deep in the 
CPU domain and are never implicitly written out to physical memory. Not all registers are 
suitable for storage of decryption keys. Most contain values that have significant implication 
on execution flow, such as general purpose registers, registers that point to significant 
memory locations or registers that contain operational flags. 
The Intel architecture includes registers under two major categories: 

 Basic Program Execution Registers 
 System-Level Registers 
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Truly Protect focuses on the latter, since most system-level registers are protected from user-
applications and may only be accessed from Kernel-mode (privilege level 0). This provides 
better control over the possibilities for keeping keys locked in CPU and out of reach of 
malicious code. As mentioned above, system-registers that are suitable for storing arbitrary 
data without affecting execution flow are the best potential candidates for key storage. 
 

Debug Registers 
The Intel architecture contains 8 debug registers (DR0-DR7). DR6 and DR7 are used 
to report and configure breakpoint conditions; DR4-DR5 are reserved and DR0-DR3 
are used to store required breakpoint addresses. Since it can safely be assumed that 
debugging breakpoints will not be used (and will actually be prohibited) while Truly-
protect actively protects a system, the 4 breakpoint address registers, DR0-DR3, can 
be used to store a key. In a 32bit system, each of DR0-DR3 is 32 bits wide. 
Therefore, this totals 128 bits of key information. 
To ensure that a breakpoint does not occur at some arbitrary address, which 
happens to be part of the truly-protect key, the DR7 register is configured to disable 
the 4 DR0-DR3 breakpoints. An extremely useful facility is the DR7.GD[bit 13]. If this 
bit is set a #DB exception is generated if any of the debug registers (including DR7) 
are accessed. While not enough to guarantee that no other Kernel-mode program 
maliciously gains access to DR0-DR3, this facility may be used to control such 
access as part of a larger key-protection scheme. 
 
Model Specific Registers (MSRs) 
The MSRs are a group of system-registers used to report or configure a variety of 
system-related attributes. They may be used, amongst others, to control debug 
extensions, performance-monitoring, machine-check and memory type range 
definition (MTRRs). The majority of these registers cannot be used to store arbitrary 
values, however we will seek those that can. 
Different Intel processor families have slightly different MSRs, so that MSR usage 
needs to rely on their availability in the current system. This can be verified 
programmatically with the CPUID instruction. 
Performance counters are the most readily available MSR registers for storage. The 
most basic Intel architecture contains two 32 bit counters. Truly protect takes 
advantage of the performance counters during the validation process. However once 
that is complete, the counter registers can freely be used to store decryption keys. 
Counter register load commands of arbitrary values are supported in Kernel-mode 
and their corresponding control-registers can be configured to disable counting, thus 
ensuring that the preloaded values do not change. Both counters total 64 bits of key 
information. 
 

Dynamic Keys 
Dynamic keys are keys, or key modifiers, that are computed temporarily at run-time. They are 
computed in close propinquity to where they are needed for decryption and then immediately 
disposed of. Therefore, in a sense they are not stored anywhere, beyond the short period of 
time when used for decryption. Consequently, they may be stored in any of the CPUs 
general-purpose registers, provided that no other task can gain access to the CPU during that 
time. 
Dynamic-keys have the distinct advantage of not needing any prolonged storage, therefore 
no need to find a hiding place somewhere inside the CPU, unreachable to malicious 
programs. However, while that being true, the code required to compute the key does need to 
be stored somewhere and because code is relatively large (compared to a key) it must be 
stored in memory rather than in some internal register in the CPU. While this may seem like a 
tombstone for that idea – not all is lost. It may still be possible to write a dynamic-key 
calculation routine, whose instructions are not secret – rather its execution is controlled such 
that the calculation will be correct only if invoked by a legitimate source. 
Two useful tools may be recruited for this task. The first is to make use of the performance 
counters to count HW side-effects in the process of generating a dynamic-key. The 
advantage of this is clear: Dynamic-key values cannot be calculated by reverse-engineering 
the calculation routine. The routine must actually be executed on the target machine in order 
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to achieve the correct results. The second is the validation process, which runs just before 
any keys are introduced into the system. The validation process guarantees a clean (of 
malicious code) system. This gives us an opportunity to setup a software "mouse trap" 
around our dynamic-key calculation routine. Taking this simile a step forward: the rational is 
that if the mouse (malicious program) goes for the cheese (calculation routine) the trap 
(exception) is triggered. Dissimilar to the real mouse-trap case, the software incarnation can 
either catch and be rid of the mouse or it can annihilate the cheese, and so to speak, leave 
the mouse hungry. 
 
To sum, dynamic-key generators may be used to render decryption key material during run-
time, alleviating the need for protected key storage – provided that the generator code cannot 
be reverse-engineered and its execution is controlled.   
 
Avoiding Kernel-mode Plug-ins 
A common problem associated with all the above proposed key storage locations is their 
potential vulnerability to malicious kernel mode drivers. The Truly-Protect system suggests 
that a validity check shall be carried out as part of the encryption and key setup procedure. 
The validation verifies that the target system is real (non-virtual machine), running a 
recognized O/S version and does not contain malicious Kernel-mode drivers. In other words, 
it is safe to install the encrypted version of the software in the target's memory and store the 
decryption keys in the CPU domain. From this point on the encrypted software executes while 
simultaneously being decrypted by the Truly-Protect JIT decrypt engine.  
 
If at any point a malicious Kernel-mode driver is plugged in to the system while the protected 
software is executing, that driver may access the key storage locations, acquire the keys and 
use them to decrypt and obtain the protected software. 
 
To successfully protect the keys, the Truly-Protect system must either completely prevent 
plugging in Kernel-mode drivers while the protected software is executing or obliterate the 
keys if such a plug-in occurs. The Windows O/S, for example, supports driver plug-in as a 
standard procedure, therefore it is assumed to be difficult to enforce complete driver-load 
prevention. Consequently, the authors believe that the latter alternative, calling for key 
obliteration in the event that a Kernel-mode driver is loaded while the Truly-Protect system is 
active – is a more realistic approach. This warrants that the protection system be aware of 
any attempt to add a new Kernel-mode driver to the system and be alerted in time to 
obliterate the key. 
 
The success of this approach also heavily relies on the quality of the validation process, 
which must substantiate a "clean system", in the sense that no malicious Kernel-mode drivers 
exist at the time the key material is generated.   

4. Conclusions and Future Work 
The Truly-protect software-only protection system is based on executing encrypted software 
by decrypting it just-in-time during execution. Every execution unit (instruction or routine) is 
decrypted at the moment it is needed and the decrypted incarnation is purged immediately 
upon its completion. To achieve this, decryption keys must be present during runtime and the 
decryption keys must be hermetically guarded from malicious programs. 
The internals of the CPU are considered the safest place to store and guard the keys. 
Therefore, Truly-protect is designed to use the keys for decryption without the keys ever 
leaving the internal confines of the CPU. This means they do not exist in memory and are 
never present on any of the external system buses. 
Several storage places, inside the CPU, were considered: 

 Cache – has an appropriate storage state which may contain values that are different 
from the memory it shadows. However, since this state is highly instable it can only 
be utilized for short periods. 

 System Registers – are an appropriate storage place that is protected from all 
application level programs. However, is susceptible to prying by malicious kernel-
mode drivers. 
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 Dynamic-Keys – these do not need prolonged storage (beyond the decryption 
process). Nevertheless, the code required to generate the dynamic-keys must be 
protected against malicious invoking. 

 
Storage of key material inside the CPU domain is safe from User-mode programs but not 
from Kernel-mode drivers. Means must be provided to safe-guard keys from malicious drivers 
that may already exist in the system or are loaded while protected software is executing. 
 
No single solution amply solves all aspects of protecting keys on a target system, such that 
they cannot be confiscated by malicious code. Our future and on-going efforts are focused on 
combining several such solutions in order to provide fully-protected, software only, DRM 
solutions. 
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