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A quantum system cannot be completely isolated from its environment, meaning that
information is transmitted between them.

In optomechanics, where a typical system under study is an optical cavity consisting of
highly reflective mirrors coupled with a mechanical resonator, dissipation phenomena
related to linear system-environment coupling are well known. However, nonlinear
phenomena are not understood to the same extent.

I consider a nonlinear coupling between a cavity and a heat bath, and illustrate the
effects of this coupling such as nonlinear dissipation of the cavity. I also propose
a model, where an optical cavity and a heat bath interact with two-level systems,
justifying nonlinear dissipation for the optical cavity.

To give some context to the results of this work, I include introductory reviews of op-
tomechanics, open quantum systems, and two-level systems together with the methods
used to study these topics. I also provide some calculations of simplified setups as well
as full derivations of the methods used in this work for a more pedagogical approach.

Keywords: optomechanics, open quantum systems, nonlinear dissipation, input-
output formalism, Master equation, Schrieffer–Wolff transformation
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Yksikään kvanttisysteemi ei voi olla täysin eristetty ympäristöstään, mikä johtaa in-
formaation välittymiseen systeemin ja ympäristön välillä.

Optomekaniikassa, missä tyypillinen tutkittava systeemi on peileistä koostuva opti-
nen kaviteetti yhdistettynä mekaaniseen värähtelijään, systeemin ja ympäristön line-
aarisesta kytkennästä johtuvat dissipaatioilmiöt ovat hyvin tunnettuja. Epälineaarisia
ilmiöitä ei kuitenkaan ymmärretä yhtä laajasti.

Tutkin epälineaarista kytkentää kaviteetin ja lämpökylvyn välillä ja havainnollistan
tästä kytkennästä johtuvia ilmiöitä kuten epälineaarista dissipaatiota. Esitän myös
optisen kaviteetin epälineaarisen dissipaation oikeuttavan mallin, missä optinen kavi-
teetti ja lämpökylpy vuorovaikuttavat kaksitilasysteemien kanssa.

Antaakseni tämän työn tuloksille kontekstia, sisällytän pohjustavat katsaukset opto-
mekaniikkaan, avoimiin kvanttisysteemeihin ja kaksitilasysteemeihin sekä näiden ai-
healueiden tutkimiseen käytettäviin menetelmiin. Esitän myös esimerkkilaskuja yk-
sinkertaistetuista malleista ja lisäksi johdan kaikki tässä työssä käytetyt menetelmät
mahdollisimman pedagogisen lähesymistavan saavuttamiseksi.

Avainsanat: optomekaniikka, avoimet kvanttisysteemit, epälineaarinen dissipaatio,
siirräntäformalismi, Master-yhtälö, Schrieffer–Wolff –muunnos
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Introduction

One of the first scientific speculations about light affecting the motion of a mechanical
object was made by Kepler [1] as early as in 1619 on the basis of his observations that the
tails of comets seemed to point away from the sun as they passed it by. The idea that light
could carry momentum was expanded a century later as Newton proposed the first particle
theory of light based on his measurements of refraction and reflection of light [2]. Maxwell
advanced the study of light considerably by formulating mathematically the behaviour
of electromagnetic radiation [3]. Later Einstein discussed that the momentum carried by
photons, particles of light, causes a radiation pressure on a surface that is exposed to light
[4]. While the pressure force is far too weak to be encountered in our daily lives, e.g. you
do not feel the recoil of a flashlight when you turn it on, the effect is still measurable as
shown by Nichols and Hull [5], using a delicate torsion system, as well as by Lebedev [6]
in the early 20th century. In 1978 Ashkin proposed a method of trapping single atoms
using the radiation pressure force [7] later known as optical tweezing. Another application
of radiation pressure, laser cooling of atoms that takes advantage of the Doppler shift of
lasers pointed at atoms from different directions, was introduced also in the 1970’s, e.g.
by Hänsch and Schawlow [8]. Other cooling techniques, including methods using optical
cavities, related to cold atoms are discussed by Chu in his review [9]. The progress in
laser interferometry lead to the very recent direct observation of gravitational waves [10].
A more extensive and detailed look on the development of the field of optomechanics, the
study of light-matter coupling, is provided by Aspelmeyer et al. [11].

Even though optomechanics emerged as a research field over the last few decades, a lot of
advancement has been made in such a short time. There are a few astonishing phenomena
arising from the radiation pressure that electromagnetic radiation exerts on mechanical
apparatuses. The ability to observe and manipulate nonclassical behaviour of mechanical
motion [12] revealing completely new kinds of classically impossible states using light is
one of the main motivations driving the study of optomechanical field of physics forward.
Similarly one can use optomechanical setups e.g. to measure extremely small displace-
ments [13], or to test fundamental aspects of quantum mechanics like decoherence in
macroscopic objects [11] with the help of quantum mechanical adjustments of ever larger
systems. One other possible application of an optomechanical setup is its usage as a
memory element in quantum computing [14].

Since a quantum system cannot be completely isolated from its environment in reality, in
order to properly model the time evolution of the system, the effects of the environment
on the system need to be considered as well. There are many possible approaches for
studying open quantum systems and they are used in various research fields of physics.
In this work, I concentrate on the input-output formalism as well as the Master equation
approach because of their applicability in optomechanics. Other examples of techniques
used in the field of open quantum systems are represented by non-equilibrium Green’s
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functions which are used to study transport phenomena in mesoscopic systems [15], and
the LSZ reduction which is utilized in scattering problems in particle physics [16], but
these two methods are not within the scope of this thesis.

The remark that the quantum system is open leads to the notion of dissipation, the ability
of the system to lose energy to the environment that it is interacting with or to transform
it to some unusable form. In general, dissipation can be considered as irreversible energy
loss from the system to the environment degrees of freedom [17]. Note that irreversible
processes increase the entropy of the system [18]. One example of this is friction that turns
a part of the energy corresponding to some mechanical motion into heat that dissipates
into the environment. Thus the dissipated energy is effectively lost since it can no longer be
accessed by the system. Additionally, an open quantum system is subject to decoherence,
the loss of quantum superposition states into classical ones. This is the underlying reason
for the classical behaviour of macroscopic objects [19].

There are several dissipation mechanisms in optomechanical systems, e.g. the damping
of studied mechanical motion due to friction, photons escaping from an optical cavity
due to the mirrors not being perfect, and resistance in electric circuits in the context of
circuit optomechanics, just to name a few. For simple systems linear dissipation models
are enough to explain their behaviour. However, the advances in material technology
have made the construction of micro and nano scale resonators possible, and nonlinear
damping has been measured e.g. in carbon nanotube and graphene resonators [20]. What
is meant by linear and nonlinear dissipation becomes apparent in this work.

Chapter 2 introduces the basic concepts of optomechanics followed by Chap. 3 detailing
open quantum systems. In Chap. 4, I construct a nonlinear model Hamiltonian, depicting
a cavity, a heat bath environment, and their mutual interaction, to demonstrate the
effects that a nonlinear system-environment coupling has on the time evolution of cavity
field operators. Chapter 5 serves as an introduction to two-level systems to work as
a background for Chap. 6 that focuses on showing how nonlinearities can arise from
two-level systems interacting with an optical cavity and its environment using quantum
electrodynamics (QED) and Schrieffer-Wolff formalism.
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Review of optomechanics

In this Chapter, I review the basics of optomechanics to familiarize the reader with the
research field and to motivate the results provided in this thesis. Although, in this work, I
do not discuss the physics of the optomechanical coupling, but I solely focus on the dissi-
pative properties of the cavity and the mechanical oscillator, this Chapter is constructed
to provide the reader with enough context to understand how the main results of this
thesis are related to optomechanics in general.

As one might expect, optomechanics involves both optical and mechanical aspects. In
Sec. 2.1, I introduce these concepts separately and then combine them in Sec. 2.2 to form
a complete picture of a full optomechanical system.

2.1 Cavity and mechanical motion
An optical cavity is a setup of mirrors that is able to reflect light so that it forms standing
waves, designated as modes, inside the cavity, see Fig. 1. Each of these modes has a
characteristic frequency, unique to it. The simplest type of optical cavity is the Fabry-
Pérot cavity that consists of two flat reflective surfaces facing each other where one mirror
is semi-transparent so that a laser beam can be directed into the cavity. It is easy to see
that, for a standing electromagnetic (EM) wave to form inside such a setup, its angular
frequency is required to be

ωcav,n =
nπc

L
, (2.1)

where n ∈ N is the mode number, c the speed of light, and L the separation of the two
mirrors. In this work, I only focus on cavities and mechanical oscillators whose modes are
spaced so sparsely that one is allowed to consider a single mode denoted by ωcav for the
cavity and ωm for the mechanics. This is a fairly accurate assumption for an optical cavity
whose lengths typically range from 10−5 m to 10−2 m [11], since these lengths correspond
to mode separations of the orders 1010 Hz to 1013 Hz.

Even though the mirrors of the cavity are very highly reflecting, they are not perfect and
some photons are lost from the cavity. A useful quantity for defining the reflectiveness of
the cavity is the quality factor

Qopt = ωcavτ = 2π
τ

Tcav

, (2.2)

where τ is the lifetime of a photon inside the cavity and Tcav is the period of the funda-
mental mode. Because of the τ/Tcav dependence, the quality factor can be tied to the
number of times an average photon can make the trip back and forth in the cavity. τ can
be written as the inverse of the damping rate of the cavity, κ. The damping can arise from
both internal properties of the cavity and external influences, e.g. the coupling between
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the cavity and the environment. For a Fabry-Pérot cavity the obvious loss mechanism
is that the mirrors are not perfectly reflective. This is emphasized by the fact that the
other mirror is semi-transparent so that the light can be directed into the cavity in the
first place. [11]

L
Figure 1: Standing waves form as the result of the interference of two waves, the left and
right moving electromagnetic fields in this case, and they are defined by their boundary
conditions so that there are nodes at both ends of the cavity. This schematic shows the
three modes with the smallest frequencies, the fundamental mode (red), the second (blue),
and the third mode (green).

An optical cavity with stationary mirrors can be modeled with a quantum mechanical
Hamiltonian of a harmonic oscillator with a fundamental mode ωho

Hho = ωhoO
†O +

ωho

2
, (2.3)

where O(†) is the second quantized annihilation (creation) field operator of the harmonic
oscillator.

Despite its very different appearance compared to a cavity, also a simple mechanical
resonator can be described by a similar Hamiltonian in the context of quantum mechanics.
Classically linear theory of elasticity can be applied to solve the vibrational modes of the
mechanical oscillator provided that its geometry is known [21]. With proper normalization
a classical equation of motion (EOM) [11]

meff
d2x (t)

dt2
+meffγm

dx (t)

dt
+meffω

2
mx (t) = Fext (t) (2.4)

of a harmonic oscillator with a single mechanical angular frequency ωm is obtained. Fo-
cusing solely on one mechanical frequency requires the assumption that the mechanical
modes are sparsely distributed, similarly to the modes of the cavity mentioned above.
Here meff is the effective mass of the oscillator, x (t) the time-dependent displacement,
γm the mechanical damping rate, and Fext (t) the net external force. The external forces
can include e.g. mechanical driving or the stochastic thermal motion caused by the en-
vironment of the resonator. Similar to the optical case Eq. (2.2), the quality factor of a
mechanical oscillator is defined

Qmec =
ωm

γm

. (2.5)

It is worth noticing that the effective mass of the mechanical oscillator is not always its
physical mass. For simple oscillating systems, e.g. an uncoupled harmonic oscillator, the
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displacement x (t) is naturally defined as the displacement of the center of mass which
leads the effective mass being the physical mass. However, for some systems the definition
of the displacement coordinate is not as clear, and this can deviate the effective mass
from the physical mass. Effective mass can, however, always be determined using the
linear theory of elasticity, and comparing the effective mass given by that theory to the
requirement that the potential energy of the oscillator is of the form U = meffω

2
m〈x2 (t)〉/2.

Using the Fourier transform convention x (ω) =
∫

dt eiωtx (t), the classical EOM (2.4) can
be solved to yield

x (ω) = χm (ω)Fext (ω) , (2.6)

where χm (ω) = [meff (ω2
m − ω2)− imeffγmω]

−1 is the susceptibility of the mechanical res-
onator. This solution shows explicitly how the mechanical motion is affected by the
external force, i.e. the response of the mechanics. Figure 2 shows schematically how
changing different parameter values affects the response of the mechanical oscillator.

meff = 0.7

meff = 1.0

meff = 2.0

-3 -2 -1 1 2 3
ω

0.5

1.0

1.5

2.0

2.5

|χm(ω) 2

(a)

ωm = 0.7

ωm = 1.0

ωm = 2.0

-3 -2 -1 1 2 3
ω

1

2

3

4

|χm(ω) 2

(b)

γm = 0.7

γm = 1.0

γm = 2.0

-3 -2 -1 1 2 3
ω

0.5

1.0

1.5

2.0

|χm(ω) 2

(c)

Figure 2: The response of a mechanical oscillator to an external drive. The varying
parameters are (a) the effective mass meff , (b) the fundamental frequency ωm, and (c) the
damping rate γm of the resonator. The values of the unaltered quantities in each figure
are kept at constant value 1.

A widely used extension of the simple damped harmonic oscillator is the Duffing oscillator
that introduces a nonlinear term proportional to x3 into the EOM. Landau and Lifshitz
[22] discuss the Duffing oscillator among other anharmonic oscillations. Micromechanical
resonators can be manufactured from e.g. graphene or carbon nanotubes, and the study of
their behaviour is an active field. Several types of micro- and nanomechanical resonators
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that exhibit nonlinear behaviour are studied e.g. by Zaitsev et al. [23] and Eichler et
al. [20]. I do not provide any derivation of these extended models here, but for example
Zaitsev et al. [23] provide a clear and detailed derivation of the EOM of their nonlinearly
dissipative doubly clamped beam oscillator.

2.2 Optomechanical system
In a full optomechanical system, the cavity element and mechanical motion are coupled
which allows the study of interaction between matter and electromagnetic radiation, e.g.
visible light. For example, mechanical motion can be introduced to a Fabry-Pérot setup
by allowing one of the mirrors to be attached to a micro- or nanomechanical spring while
the other is fixed in place, see Fig. 3a. The laser that is directed into the cavity exerts a
radiation pressure force on the moving mirror thus causing it to vibrate. Because of the
simple geometry of the Fabry-Pérot cavity, the average radiation pressure force caused by
the momentum transfer of the cavity photons is easy to calculate. A single photon of the
wavelength λ has a momentum of p = 2π/λ with the unit convention ~ = 1. Note that
I use this convention throughout this work. Ideally the photon scatters back from the
vibrating mirror thus transferring the momentum |∆p| = 4π/λ. The average radiation
pressure force is determined by the momentum transfer of the average photon number
〈a†a〉 that happens during the time τc = 2L/c that it takes for a single photon to do a
full round-trip in the cavity. Thus the radiation pressure force is

〈Frad〉 = |∆p| 〈a
†a〉
τc

=
ωcav

L
〈a†a〉. (2.7)

Here a(†) is the annihilation (creation) operator of the single cavity mode.

An optical setup is not the only method of studying optomechanics. An equivalent elec-
trical circuit, presented in Fig. 3b, can be constructed to study the microwave domain.
A simple LC-circuit is known to behave like a harmonic oscillator, and therefore it can
be used instead of the optical cavity to study a different frequency range. Mechanical
motion is introduced to the system via a capacitor whose capacitance varies as a function
of the displacement, and this capacitance as well as its impact on the LC-circuit can be
measured. Note that the electric field between the capacitor plates and the magnetic
field of the inductor consist of photons just like the visible light in the optical cavity,
meaning that both kinds of setups can be used to study the same phenomena. Since the
magnetic and electric fields appear in separate locations, the photons that they consist
of are delocalized [24]. To model the effects of a heat bath environment, the harmonic
oscillator circuit is coupled capacitively to a transmission line. The circuit analogs of
the optomechanical system are not the focus of this thesis, however the quantization of
electrical circuits is studied in detail in [24] and [25].

As mentioned above, to understand the physics in an optomechanical system, it is not
enough to study the cavity and the mechanics as separate harmonic oscillators, each with
their own fundamental mode. The optical cavity is coupled to the mechanical motion by
attaching one of the mirrors to a spring that is forced to oscillate due to the radiation
pressure force of the driving laser. Thus the separation, L, of the two mirrors of the
cavity is affected which in turn, according to Eq. (2.1) changes the frequencies of the
standing EM waves that are able to form inside the cavity resulting in different radiation
pressure exerted on the mechanics. This feedback between the cavity and the mechanics
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(a) CS2

L C
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x

(b)

Figure 3: Schematical depictions of (a) an optical optomechanical system consisting of two
highly reflective mirrors facing each other, the other being coupled to mechanical motion,
and (b) an equivalent electrical circuit. The system-environment coupling is denoted by
(a) “in” and “out” that represent the incoming laser and the escaping photons, respectively,
(b) the transmission line to which the LC-circuit is capacitively coupled.

is known as backaction and it creates interesting nontrivial dynamics into the system. A
way to solve the motion of an optomechanical setup coupled to a heat bath is introduced
in Chap. 3 along with explicit exemplary calculations of the problem.

Let us consider one interesting application of optomechanical systems. The optome-
chanical coupling between the cavity and the mechanics can be used to cool down the
mechanics [11], i.e. the phonon population of the mechanics can be decreased. Figure
4 illustrates three possible transitions that can occur between the number states of the
optomechanical system. The cavity can be pumped using a laser with the frequency ωp

so that ∆ = ωp − ωcav ≈ −ωm, where ωcav is the dominating cavity frequency and ωm

is the frequency of the mechanics. This detuning ∆ of the cavity is referred as the red
sideband regime. In this sideband regime, the cavity can be excited to a higher energy
level by allowing it to absorb the energy of a phonon. The cavity can then relax to a
lower photon population. In the red sideband this process is the dominating one which
leads to the cooling of the mechanics.

|ncav, nm − 1〉
|ncav, nm〉

|ncav, nm + 1〉

|ncav + 1, nm − 1〉
|ncav + 1, nm〉

|ncav + 1, nm + 1〉
ωm

ωp
ωcav

ωp + ωm

ωp
ωp − ωm

Figure 4: Schematical description of the possible transitions when the cavity is pumped
at the frequency ωp in terms of the phonon number nm of the mechanics and the photon
number ncav of the cavity. Pumping at the red sideband makes the transition to the lower
phonon number state (blue path in the figure) dominant thus cooling down the mechanics.



3

Open quantum systems

Optomechanical systems cannot be completely isolated from their environment. This has
to be taken into account when measuring an observable of the open system to properly
handle the effects of the environment on the system. In this Chapter, I focus on two
ways of treating the time evolution of open quantum systems, the Master equation (ME)
approach and the input-output formalism.

On one hand applying the input-output formalism on some open quantum system leads
to a quantum Langevin equation (QLE) describing the time evolution of some operator
of the system when the coupling between the system and its environment is known. On
the other hand the ME approach gives the time evolution of the density operator of the
system. These two seemingly different methods still describe the same phenomena and
can be intuitively thought as the equivalents of a Heisenberg picture and a Schrödinger
picture for open quantum systems.

The approach to open quantum systems in this work relies on the fact that the system is
Markovian, meaning that the past states of the system do not influence its future. The
concept of Markovianity is explored in Sec. 3.1, and the introduction to the subject mostly
follows the discussion by Breuer et al. [26]. In Sec. 3.2, I discuss an introduction to the
input-output formalism that is accompanied with calculations related to optomechanics
presented in Sec. 3.3. The ME approach and its connection to the input-output formalism
is discussed in Sec. 3.4.

3.1 The Markov process
Classically a Markovian process is defined so that the probability of the process to be in
the state xn at a time tn is fully determined by the values xn−1 and tn−1. In other words
the states x1, . . . , xn−2 at the times t1, . . . , tn−2 play no role in determining the future of
the system, a property which can be intuitively summarized by saying that the system
has no memory.

The quantum mechanical description is a bit more subtle. By defining the trace norm
of operator O as ||O|| = Tr|O| = Tr

√
O†O, the trace distance measuring the distance

between two quantum states described by the density operators ρ1 and ρ2 is determined
by [26]

D (ρ1, ρ2) =
1

2
||ρ1 − ρ2||. (3.1)

The trace distance is a well-defined metric on the state space S (H) of the overall Hilbert
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space H since it satisfies the following criteria

D (ρ1, ρ2) ≥ 0, (3.2a)
D (ρ1, ρ2) = 0⇔ ρ1 = ρ2, (3.2b)
D (ρ1, ρ2) = D (ρ2, ρ1) , (3.2c)
D (ρ1, ρ3) ≤ D (ρ1, ρ2) +D (ρ2, ρ3) , (3.2d)

for all ρ1, ρ2, ρ3 ∈ S (H). The first three conditions are satisfied trivially but the triangle
inequality (3.2d) requires a short proof.

Since a density matrix is a Hermitian operator, the trace norm can also be defined as
||ρ|| =

∑
i |λi|, where λi ∈ R are the eigenvalues of ρ. Also the sum of two Hermitian

operators is still Hermitian meaning that ||ρ1 − ρ2|| =
∑

i |λ1,i − λ2,i|. Now

D (ρ1, ρ2) +D (ρ2, ρ3) =
1

2
||ρ1 − ρ2||+

1

2
||ρ2 − ρ3||

=
1

2

∑
i

|λ1,i − λ2,i|+
1

2

∑
i

|λ2,i − λ3,i|

≥ 1

2

∑
i

|λ1,i − λ3,i|

= D (ρ1, ρ3) ,

(3.3)

where the triangle inequality of R is utilized.

Now that the trace distance is established as a metric in the state space, it can be used as
a natural way of distinguishing two quantum states from each other, just like one would
do for two points in R3 using the Euclidean metric. Suppose that a quantum system is
prepared to either the state ρ1 or ρ2 with equal probabilities. Now the maximum proba-
bility of successfully determining the quantum state with a single quantum measurement
is given by

Pmax =
1

2
[1 +D (ρ1, ρ2)] . (3.4)

Note that the probability is well defined, since the trace distance is bounded from above,
D (ρ1, ρ2) ≤ 1, and the condition D (ρ1, ρ2) = 1 is satisfied only when ρ1 and ρ2 are
orthogonal.

Let Φ : S (H) → S (H) be a completely positive and trace preserving map. The time
evolution of an open quantum system from t0 to t > t0 can be expressed this way provided
that initially the system and the environment are in an uncorrelated state. It can be
shown that such a mapping is a contraction for the trace distance. This means that for
all ρ1, ρ2 ∈ S (H) it holds that

D (Φρ1,Φρ2) ≤ D (ρ1, ρ2) . (3.5)

This shows us that using any trace preserving and completely positive mapping does not
help us to distinguish two quantum states from another.

Suppose now that two quantum states ρ1 (0) and ρ2 (0) are prepared and sent through a
noisy channel Φt. The receiver gets the states Φtρ1/2 (0) = ρ1/2 (t) obeying the relation
(3.5), i.e.

D (ρ1 (t) , ρ2 (t)) ≤ D (ρ1 (0) , ρ2 (0)) . (3.6)
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One can see that the noisy channel makes the two quantum states less distinguishable,
which can be interpreted as a loss of information from the studied open system to the
environment over time. Analogously the increase in the trace distance over time can be
interpreted as information flowing back to the system from the environment.

Now Markovianity can be properly defined. A quantum map Φt : S (H) → S (H),
Φtρ (0) = ρ (t), is Markovian if D (ρ1 (t) , ρ2 (t)) decreases monotonically for all ρ1/2 (0) ∈
S (H) for all times t ≥ 0.

Therefore a process is non-Markovian if there exist some initial states whose trace distance
increases for some time interval t2 > t1 ≥ 0, i.e. it is not enough to check the Markovianity
condition for only two possible initial states to confirm the process to be Markovian.
Instead, one has to consider every possible initial state to make sure that information
cannot flow back to the system for some specific initial setup.

While Markovianity means the continuous loss of information from the system to the envi-
ronment, in a non-Markovian process information can be transmitted to the environment
and flow back at some later time. This means that some memory effects are present, since
the state of the system is not only determined by its infinitesimally previous state but also
some states earlier than that. Therefore, the Markovianity criterion can be expressed in a
more intuitive manner. Markovian evolution is determined solely by the previous instant
whereas in a non-Markovian process the system can be thought to have a memory of its
past states that can then affect its time evolution at later times.

3.2 Input-output formalism
Consider now an isolated system, i.e. a system that does not interact with any other
physical system. Thus the dynamics is entirely determined by the system itself. The
Heisenberg equation of motion [15]

dO (t)

dt
= i [H (t) , O (t)] +

∂O (t)

∂t
(3.7)

is enough to determine the complete time evolution of the operator O of an isolated system
described by the Hamiltonian operator H. Both O and H are in the Heisenberg picture
in this formulation, and the partial derivative denotes the time derivative with respect to
the explicit time dependence. To briefly return to the optomechanical context, say that
the cavity truly was isolated. Then the time evolution of the cavity field operator a would
be described by trivial oscillation

ȧ = −iωcava (3.8)

as given by Eqs. (2.3) and (3.7).

Naturally experimental setups are not ideal isolated systems that do not exchange any
information with their environments. The loss mechanisms discussed above in Sec. 2.1
related to an optical cavity and mechanical oscillators are a clear manifestation of this.
To take into account the effects of the environment, an approach that considers also the
dynamics of the environment needs to be utilized. In other words the aim is to develop a
quantum mechanical equation of motion for a system field operator that not only includes
the isolated time evolution of the system but also the effects of the environment, see Fig.
5. As a prototypical example let us consider a harmonic oscillator coupled to a heat bath.
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As we shall see in Secs. 3.3 and 4.1 the description developed here will provide important
insight into optomechanical systems.

E

S
input output

Figure 5: Schematic of the interaction between the system S and the environment E . An
open quantum system can receive information from the surrounding heat bath (input) as
well as lose some back to the environment (output).

The approach suited for treating the time evolution of damped open quantum systems
where explicit inputs from the environment are considered was developed by Gardiner and
Collett [27], and their method of constructing a stochastic quantum Langevin equation
has since become a widely used practice in the study of open quantum systems [28,
29]. Note that here I lay out the general framework of the method and provide some
simple results. An explicit calculation using this method for a slightly different system-
environment coupling is provided in Appendix A.

Let the environment be modeled by a set of noninteracting bosonic harmonic oscillators
described by the Hamiltonian

HE =
∑
n

ωnc
†
ncn, (3.9)

where the annihilation (creation) operator of the nth mode is denoted by c(†)
n .

Let the coupling between the environment and the system be described by the following
Hamiltonian

HI = i
∑
n

gn
[
c†na− cna†

]
. (3.10)

The strength of the coupling between the system field operator and the nth mode of the
environment is given by gn.

Neither the system nor the environment are isolated systems, meaning that Heisenberg
EOMs, given by Eq. (3.7), cannot be formally constructed for them. However, this can be
done for both the environment and the system field operators when the whole “universe”,
i.e. the system, the environment, and their mutual interaction, is considered as an isolated
system whose Hamiltonian is

H = HS +HE +HI, (3.11)
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where HS is the Hamiltonian of the open quantum system that is not required to be
specified for this formalism. The EOMs of the environment and the system degrees of
freedom are given by

ċn (t) = i [H, cn] = −iωncn + gna, (3.12)

ȧ (t) = i [H, a] = i [HS, a]−
∑
n

gncn, (3.13)

which represent the coherent transfer of excitations between the system and the environ-
ment.

The dynamics of the bath degrees of freedom can be expressed in terms of an initial
condition at t0 < t and the state of the system at times t′ < t

cn (t) = e−iωn(t−t0)cn (t0) + gn

∫ t

t0

e−iωn(t−t′)a (t′) dt′. (3.14)

Analogously one could have expressed cn (t) using the state of the system at times t′ > t

cn (t) = e−iωn(t−t1)cn (t1)− gn
∫ t1

t

e−iωn(t−t′)a (t′) dt′, (3.15)

where some final condition is determined at t1 > t.

Let us plug the solution of the environment degree of freedom (3.14) back into the EOM
for the system operator (3.13) to get

ȧ (t) = i [HS, a]−
∑
n

gne
−iωn(t−t0)cn (t0)−

∑
n

g2
n

∫ t

t0

e−iωn(t−t′)a (t′) dt′. (3.16)

Following Gardiner and Collett [27], I impose that the coupling strength between the
system and a particular mode of the environment does not depend on the frequency of
said mode. This assumption, called the first Markov approximation [27], allows us to
define the coupling constant κ so that

(gn)2 =
κ

2πD
, (3.17)

whereD is the density of states of the modes, which I assume to be frequency independent,
i.e. n = ωnD = ωn∂n/∂ωn.

This gives us a general quantum Langevin equation for any open quantum system that is
linearly coupled to its environment

ȧ (t) = i [HS, a (t)]− κ

2
a (t) +

√
κain (t) , (3.18)

where the input field is defined as

ain = −
√

1

2πD

∑
n

e−iωn(t−t0)cn (t0) . (3.19)

The input and output approaches are related to each other by a simple time-reversal
symmetry which gives the output of the system to the environment in the form

aout = ain −
√
κa (3.20)
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due to the sign difference between the integrals of Eqs. (3.14) and (3.15).

As it is possible to see from (3.18), the assumption of frequency independent system-
environment coupling guarantees that the dynamics of the system is Markovian in the
sense that the dynamics is entirely local in time. The evolution of the system at time t
does not depend on its previous states at times t′ < t, since all operators in the QLE are
defined at the same instant.

The term (−κ/2) a is the damping of the system, since one can see that it results in a
term proportional to e−

κ
2
t in the solution of a. Thus such a term decreases the amplitude

of a over time, effectively dissipating energy from the system to the environment. Notice
that the external damping of the system arises from the system-environment interaction
naturally without any prior knowledge of the system itself.

If the system is just a cavity described by the Hamiltonian of the harmonic oscillator
(2.3), the QLE of this system is

ȧ (t) = −iωcava (t)− κ

2
a (t) +

√
κain (t) , (3.21)

where Eq. (3.8) is used to get the time evolution of an isolated cavity with dominating
frequency ωcav. This QLE is not limited to optical cavities, since any harmonic oscillator
such as a simple mechanical resonator also obeys the above equation provided that it is
coupled with its environment similarly.

The QLE (3.21) can easily be solved using the Fourier transform a (ω) =
∫

dt eiωta (t)
that gives us

a (ω) =

√
κ

i (ωcav − ω) + κ
2

ain (ω) (3.22)

showing the response of the cavity to an external field. In terms of the output of the
cavity, the response can be written as

a (ω) =

√
κ

i (ωcav − ω)− κ
2

aout (ω) . (3.23)

3.3 Linear formulation of optomechanics
In the discussion above in Sec. 3.2, I focus only on the time evolution of a cavity. Let
us now discuss the full optomechanical system. Consider an optical cavity (operator
a) coupled to mechanics (operator b) by allowing one of the cavity mirrors to oscillate.
Assume that both the cavity and the mechanics have only one dominant mode. Let us
consider the coupling up to linear order

ωcav (x) ≈ ωcav (x0) +
∂ωcav

∂x

∣∣∣
x0

(x− x0) . (3.24)

In this case the Hamiltonian can be written as [11]

Hopt = ωcava
†a+ ωmb

†b− g0a
†a
(
b† + b

)
, (3.25)

where g0 is the single photon coupling strength. Note that the zero-point energies, pre-
sented in Eq. (2.3), of the cavity and the mechanics are omitted. The form of the coupling
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term makes intuitive sense based on the above discussion about radiation pressure. a†a is
the photon number of the cavity and it is related to the average radiation pressure on the
mechanics by Eq. (2.7). b†+ b that is proportional to the displacement of the mechanical
oscillator, is coupled with the radiation pressure force.

Equation (3.18) can be utilized to write the QLEs of the field operators of the cavity and
the mechanics provided that both are linearly coupled to the environment

ȧ = −iωcava−
κ

2
a+ ig0a

(
b† + b

)
+
√
κain, (3.26a)

ḃ = −iωmb−
γ

2
b+ ig0a

†a+
√
γbin, (3.26b)

where κ and γ determine the strengths of the cavity-environment and mechanics-environment
couplings, respectively.

Assuming that the coherent laser pump driving the optical cavity is strong, the cavity
field operator (input field) can be linearly decomposed as

a(in) = α(in) + δa(in), (3.27)

where α is the average coherent amplitude of a rotating at the frequency of the pump ωp,
and δa is a fluctuating term.

A similar decomposition can also be written for the mechanics (and its input field)

b(in) = β(in) + δb(in). (3.28)

Here I assume that the mechanical system is not driven on average, i.e. βin = 0.

The zeroth order approximations in terms of the fluctuations of the EOM (3.26) can be
written, and they give the following steady state solutions

α =

√
καin

κ
2
− i [∆ + g0 (β∗ + β)]

, (3.29a)

β =
ig0 |α|2
γ
2

+ iωm

, (3.29b)

where ∆ = ωp − ωcav is the detuning of the cavity. Since α and β represent the average
field quantities for the cavity and the mechanical modes, |α|2 and |β|2 can be identified
as the average number of photons in the cavity and phonons in the mechanics.

The detuning ∆ determines two important regimes known as the red and blue detuned
sidebands, respectively. By adjusting the detuning, its size can be fixed to match the
fundamental mechanical mode ωm. This way the system consists of two harmonic oscilla-
tors with the same fundamental frequencies enabling them to exchange quanta. The red
detuned regime, on one hand, is characterized by the condition ∆ ≈ −ωm while the blue,
on the other hand, corresponds to ∆ ≈ ωm, see Fig. 6. In the blue sideband the mechan-
ical resonator absorbs energy causing the amplification of the resonance, and conversely
in the red sideband energy is emitted into the cavity resulting in effective cooling of the
mechanics [11]. The quantum theory of cooling is not explored further here, however Mar-
quardt et al. [30] provide a review of the subject. As a short sidenote, it is important to
distinguish the two sidebands when performing the rotating wave approximation (RWA)
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Figure 6: Schematical description of optomechanical detuning sidebands in terms of mode
densities of states of the mechanics, the cavity, and the laser pump. (a) In the blue detuned
sideband the mechanical motion is amplified whereas in (b) the red detuned sideband the
mechanics are cooled down.

on the Hamiltonian (3.25) since this approximation in different regimes results in different
dominating terms of the optomechanical coupling.

The first order approximation of Eq. (3.26) with respect to the fluctuations can be
constructed. This approximation is expanded around the steady state solution meaning
that the zeroth order terms in fluctuations vanish. Thus I get

δȧ =
[
−iωcav −

κ

2
+ ig0 (β∗ + β)

]
δa+ ig0α

(
δb† + δb

)
+
√
κδain, (3.30a)

δḃ =
(
−iωm −

γ

2

)
δb+ ig0

(
α∗δa+ αδa†

)
+
√
γδbin, (3.30b)

and similar Eqs. for δa† and δb†. These EOMs show explicitly the optomechanical back-
action since the time evolution of the cavity field operator depends on the mechanics and
vice versa.

The QLEs (3.30a) and (3.30b) can be solved by Fourier transforming the equations which
turns the differential equations into algebraic ones. Short proof of this is provided in
Appendix D as well as the complete definitions of the Fourier transforms used in this
work. This way the optomechanical response function can be calculated to gain insight
on how the system responds to an external force, similar to the case of the mechanical
resonator presented above in Sec. 2.1. More on linear response theory can be found in
standard textbooks such as [31].

In the red sideband, the interaction term simplifies to −g0

(
a†b+ ab†

)
, whereas in the

blue sideband the interaction between the cavity and the mechanics can be approximated
as −g0

(
a†b† + ab

)
. These are the resonant terms in their respective sidebands, while the

nonresonant ones are discarded due to the RWA. In the red sideband, the cavity and the
mechanics are able to exchange quanta allowing the mechanics to cool down [11]. On the
contrary, the interaction term corresponding to the blue sideband is related to parametric
amplification of the mechanics [13].

For completeness, let us calculate the optomechanical response in both red and blue
sideband regimes. In the red sideband regime, the first order approximation with respect
to the fluctuations is

δȧ =
[
−iωcav −

κ

2
+ ig0β

∗
]
δa+ ig0αδb+

√
κδain, (3.31a)

δḃ =
[
−iωm −

γ

2

]
δb+ ig0α

∗δa+
√
γδbin. (3.31b)
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Comparing these red sideband resolved QLEs to the full EOMs (3.30) one can see that
δa and δb† are no longer coupled with each other, and neither are δa† and δb. Fourier
transforming these EOMs gives(

χ−1
cav −iG
−iG∗ χ−1

m

)(
δaω
δbω

)
=

(√
κδain,ω√
γδbin,ω

)
, (3.32)

where

G = g0α, (3.33a)

χ−1
cav = −i (ω − ωcav) +

κ

2
− ig0β

∗, (3.33b)

χ−1
m = −i (ω − ωm) +

γ

2
. (3.33c)

Recall that |α|2 is the average photon number of the cavity. Now the optomechanical
coupling strength G can be expressed in terms of the field amplitude provided that α ∈ R.
Experimental setups have been developed in attempts to increase the optomechanical
coupling strength in order to achieve nonlinear quantum effects that start to become
observable in the strongly coupled regime of g0 > κ [11, 32].

The effect of a drive on the cavity and the mechanics can be formulated in the red sideband
regime (

δaω
δbω

)
=

1

χ−1
cavχ

−1
m + |G|2

(
χ−1

m iG
iG∗ χ−1

cav

)(√
κδain,ω√
γδbin,ω

)
. (3.34)

This shows us that the decoupling that is achieved by going to the sideband resolved
regime simplifies the response of the optomechanical system significantly. Here δa is only
coupled with δb and vice versa.

A similar calculation can be performed in the blue sideband regime. The EOMs of the
optomechanical system up to first order in fluctuating terms are

δȧ =
[
−iωcav −

κ

2
+ ig0β

]
δa+ ig0αδb

† +
√
κδain, (3.35a)

δḃ =
[
−iωm −

γ

2

]
δb+ ig0αδa

† +
√
γδbin. (3.35b)

Fourier transform the EOMs of δa and δb† to get(
χ̃−1

cav −iG
iG∗ χ̃−1

m

)(
δaω
δb†−ω

)
=

(√
κδain,ω√
γδb†in,−ω

)
, (3.36)

where

χ̃−1
cav = −i (ω − ωcav) +

κ

2
− ig0β, (3.37a)

χ̃−1
m = −i (ω + ωm) +

γ

2
. (3.37b)

Note that the frequency dependence of the Hermitian conjugate of δb is −ω to keep the
Fourier transforms consistent.

The response of the optomechanical system is thus in the blue sideband regime(
δaω
δb†−ω

)
=

1

χ̃−1
cavχ̃

−1
m − |G|

2

(
χ̃−1

m iG
−iG∗ χ̃−1

cav

)(√
κδain,ω√
γδb†in,−ω

)
. (3.38)
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3.4 Master equation approach
Quantum Langevin equations are one way of studying the time evolution of open quantum
systems. An alternative method is the Master equation approach that describes the time
evolution of the density operator of the studied system. Here I show how these two
descriptions can be linked, and in the following I derive the ME for a system whose QLE
is already known to be (3.18). The derivation of the Master equation presented here is
based on the quantum information lecture notes by Preskill [33].

Let us first focus on an isolated quantum system. The time evolution of a pure quantum
state |Ψ (t)〉 of the system is governed by the Schrödinger equation [34]

i
∂

∂t
|Ψ (t)〉 = H |Ψ (t)〉 , (3.39)

where H is the Hamiltonian of the system. Since in the Schrödinger picture the states
evolve in time whereas the operators do not, we can consider the operator U (t, t0) that
generates the time evolution for the state |Ψ〉 as

|Ψ (t)〉 = U (t, t0) |Ψ (t0)〉 . (3.40)

We can thus write the Schrödinger equation as

i
∂

∂t
U (t, t0) = HU (t, t0) (3.41)

giving the explicit form of the time-evolution operator

U (t, t0) = e−iH(t−t0). (3.42)

The time evolution of the state |Ψ (t)〉 over an infinitesimal time interval dt can therefore
be expressed up to linear order by expanding the operator exponential in powers of −iH

|Ψ (t+ dt)〉 = (1− iHdt) |Ψ (t)〉 . (3.43)

If we now consider a general state, the general form of its density operator ρ is [35]

ρ (t) =
∑
n

pn |Ψn (t)〉 〈Ψn (t)| , (3.44)

where the coefficients pn satisfy pn ≥ 0 for all n and
∑

n pn = 1.

Considering Eq. (3.43), one gets

ρ̇ (t) = −i [H, ρ (t)] . (3.45)

This EOM can be seen as an alternative formulation of the Schrödinger equation, both
of them expressing the idea that the dynamics of an isolated system is generated by the
system Hamiltonian.

Consider an open quantum system with a density operator ρS (t) ∈ S (H) where S (H) is
the state space of the Hilbert space H. Input-output formalism utilizes the assumption
that the time evolution is Markovian, see (3.17), and also the following derivation of the
Master equation is formulated in terms of Markovian evolution. Above in Sec. 3.1, the
definition of Markovianity implies that the time evolution of a state of a system during
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the next infinitesimal interval is determined by the current state of the system, i.e. there
are no memory effects. Let ε : S (H)→ S (H) be a Markovian quantum channel, meaning
that over an infinitesimal time interval it operates on the density operator of the system
in the following way

ρS (t+ dt) = εdt [ρS (t)] . (3.46)

Because of the imposed Markovianity, εdt makes the quantum states on which it operates
less distinguishable, cf. Eq. (3.6). Therefore the quantum channel εdt has to be a
contraction for all instants for it to be Markovian, i.e. εdt is required to be completely
positive and trace preserving.

Up to linear order in time the quantum channel εdt has the form

εdt = 1 + Ldt (3.47)

where L is a linear mapping L : S (H) → S (H) called the Lindblad superoperator. This
linearization of the quantum channel implies that

ρ̇S (t) = L [ρS (t)] . (3.48)

Suppose that the system evolves during the interval [0, t] and let us divide this interval
into n subintervals of equal length. If the length of an individual subinterval approaches
zero, the definition (3.46) of Markovian evolution can be applied over each infinitesimal
subinterval in succession. Using the linearized form (3.47) of εdt gives

ρS (t) = lim
n→∞

(
1 +
Lt
n

)n
[ρS (0)] = eLt [ρS (0)] (3.49)

assuming that the Lindblad superoperator does not depend on time.

Therefore the determination of the dynamics of the open quantum system discussed here
corresponds to the determination of the Lindblad superoperator L. In order to achieve
this, I start by describing the dynamics of the system (S) and the environment (E) in
terms of the unitary dynamics of a globally isolated quantum system.

Assume that the system and the environment are not initially entangled, i.e. the state of
the system and the environment together can be expressed as a product state

|Ψ〉S ⊗ |0〉E . (3.50)

The unitary time evolution operator, denoted U , may entangle the system with the envi-
ronment over time. Let {|µ〉E} be an orthonormal basis of the environment. Expanding
in the basis of the environment, U operates so that

U : |Ψ〉S ⊗ |0〉E 7→
∑
µ

Mµ |Ψ〉S ⊗ |µ〉E , (3.51)

where the operators {Mµ} are called Kraus operators.

Since U is unitary, the completeness relation for the Kraus operators can be derived

1 =
∣∣∣ |Ψ〉S ⊗ |0〉E ∣∣∣2 =

∣∣∣∑
µ

Mµ |Ψ〉S ⊗ |µ〉E
∣∣∣2

=
∑
µ,γ

S〈Ψ|M
†
µMγ |Ψ〉S E〈µ | γ〉E =

∑
µ

S〈Ψ|M
†
µMµ |Ψ〉S , ∀ |Ψ〉S .

(3.52)
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This implies that
1 =

∑
µ

M †
µMµ. (3.53)

Initially the total (S+E) density operator is given by

ρSE (0) = ρS (0)⊗ ρE (0) = (|Ψ〉S ⊗ |0〉E) (S〈Ψ| ⊗ E〈0|) . (3.54)

The unitary mapping entangling the system and the environment is known (3.51), and
now the general density operator of the combined system and the environment is

ρSE =
∑
µγ

(Mµ |Ψ〉S ⊗ |µ〉E)
(

S〈Ψ|M
†
γ ⊗ E〈γ|

)
. (3.55)

Tracing out the degrees of freedom of the environment gives us the operator-sum rep-
resentation of the quantum channel that describes the evolution of the system density
operator. The evolution during an infinitesimal time interval is

ρS (t+ dt) = εdt [ρS (t)] =
∑
µ

MµρS (t)M †
µ. (3.56)

If the system does not undergo any quantum jumps during the infinitesimal interval dt,
the Kraus operator corresponding to that is

M0 = 1 + (−iHS +K) dt, (3.57)

where the system Hamiltonian HS and the operator K are Hermitian. On the other hand,
if the system undergoes quantum jumps, these are represented by Mµ, µ ∈ N, so that

Mµ = LµdB, µ ∈ N. (3.58)

Here Lµ is a Lindblad operator or a quantum jump operator and dB is a Wiener process.
More on stochastic calculus is presented, e.g. by Gardiner and Collett [27].

We can show that these definitions are consistent with the evolution of an isolated system
in the limit where no quantum jumps occur. The completeness relation of the Kraus
operators (3.53) can be used to get

1 =
∑
µ

M †
µMµ = 1 +

(
2K +

∑
µ∈N

L†µLµ

)
dt+O

(
dt2
)
, (3.59)

which implies that

K = −1

2

∑
µ∈N

L†µLµ. (3.60)

Now we see that when the system is isolated and no jumps occur, i.e. Mµ = 0, µ ∈ N,
the isolated time evolution presented in Eq. (3.45) is recovered from the operator-sum
representation (3.56).

By plugging in Eqs. (3.57), (3.58) and (3.60) to the operator-sum representation (3.56),
a short calculation yields

ρS (t+ dt) = ρS (t)− i [HS, ρS (t)] dt

+

[∑
µ∈N

LµρS (t)L†µ −
1

2

{
ρS (t) , L†µLµ

}]
dt+O

(
dt2
)
.

(3.61)
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Therefore the Master equation can be written in the form

ρ̇S = L [ρS] = −i [HS, ρS] +
∑
µ∈N

LµρSL
†
µ −

1

2

{
ρS, L

†
µLµ

}
. (3.62)

To explicitly express the ME for a specific system, one still needs to know the form of
the Lindblad operators. The method outlined above allows me to form the QLE for the
system. Since it is possible to construct the operator-sum representation of a quantum
channel acting on the field operator of the system in the Heisenberg picture using the
same Kraus operators as for the density operator, I can pick the Kraus operators so that
the QLE is satisfied. The Master equation is then obtained by plugging in the same
Kraus operators in the operator-sum representation of the quantum channel acting on
the density operator in the Schrödinger picture (3.56).

We can use the fact that Heisenberg and Schrödinger pictures need to provide the same
expectation value for observables to determine the link between the QLE and the ME.
Let ϕdt be a superoperator determining the infinitesimal time evolution of a system field
operator A in the Heisenberg picture. Now using the cyclic property of trace

〈A〉Hei = Tr (ϕdt [A] ρ) = Tr

(∑
µ

M †
µAMµρ

)

= Tr

(
A
∑
µ

MµρM
†
µ

)
= Tr (Aεdt [ρ]) = 〈A〉Sch .

(3.63)

ϕdt is therefore the adjoint of εdt and I denote it by ε†dt. This implies that, in the Heisenberg
picture, the infinitesimal time evolution of an operator of an open quantum system can
be expressed as

A (t+ dt) = ε†dt [A (t)] =
∑
µ

M †
µA (t)Mµ. (3.64)

Let us determine the Master equation of a linearly dissipative system described by the
QLE (3.18). Slight modifications to the expressions Kraus operators given by (3.57)
and (3.58) are needed to correctly express the input field terms of the QLE. Let us take
the zeroth Kraus operator to be

M0 = 1 + LdB + (−iHS +K) dt, (3.65)

where L has dimensions of
√

dt and dB is a Wiener process. Assume that the other Kraus
operators are higher order in dt. Taking the terms up to O (dt) in time, the completeness
relation of the Kraus operators (3.53) implies that

L = −L†, (3.66a)

K = −1

2
L†L+O

(
dt

3
2

)
. (3.66b)

The expression of M0 given in Eq. (3.65) can be inserted back into the operator-sum
representation (3.64) leading to the following expression for the operator a

a (dt) = ε†dt [a (0)] = ε†dt [a0]

= a0 + i [HS, a0] dt+ a0LdB + L†a0dB

+ L†a0LdB2 − 1

2

{
a0, L

†L
}

dB2 +O
(

dt
3
2

)
= a0 + i [HS, a0] dt+ [a0, L] dB − La0LdB2 +

1

2

{
a0, L

2
}

dB2 +O
(

dt
3
2

)
.

(3.67)
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The constraints of L are now that L needs to be anti-Hermitian and the above expression
has to coincide with the QLE (3.18). Since L describes the quantum jumps of the system
induced by the environment, input field terms should be included as a part of it. One can
consider the term a†inaindB2 as a flux of particles from the environment to the system.
With the ansatz

L =
√
κ
(
a†0ain − a0a

†
in

)
dB, (3.68)

the following commutator gives the input term of the linear QLE

[a0, L] dB =
√
κaindt, (3.69)

where standard bosonic commutation relations [15] are used as well as the fact that a
commutes with ain because the input field does not contain any system field operators.
Using these commutation relations repeatedly reveals that[

−La0L+
1

2

{
a0, L

2
}]

dt = −κ
2
a0

[
ain, a

†
in

]
dt2 (3.70)

Since the input field obeys the commutation relation[
ain (t) , a†in (t′)

]
= δ (t− t′) (3.71)

provided that the processes are considered to be Markovian [19], I can write[
aindt, a†indt

]
= dt. (3.72)

Collecting the terms from Eqs. (3.69) and (3.70) shows that

a (dt) = i [HS, a0] dt− κ

2
a0dt+

√
κaindt, (3.73)

i.e. the choice of the form of the zeroth Kraus operator (3.65) and the Lindblad operator
(3.68) gives the form of the QLE explicitly derived from Eq. (3.18) up to the first order. If
I use the same Kraus operator to get the time evolution of the density operator, I obtain

ρS (t+ dt) = ρS − i [HS, ρS] dt

−
√
κ
[
ρS, a

†] 〈ain〉 dt+
√
κ [ρS, a]

〈
a†in

〉
dt

+ κ
[
〈ainain〉

(
− a†ρSa

† +
1

2

{
ρS, a

†2})dt
]
dt

+ κ
[ 〈
a†ina

†
in

〉(
− aρSa+

1

2

{
ρS, a

2
})

dt
]
dt

+ κ
[ 〈
a†inain

〉(
aρSa

† − 1

2

{
ρS, aa

†})dt
]
dt

+ κ
[ 〈
aina

†
in

〉(
a†ρSa−

1

2

{
ρS, a

†a
})

dt
]
dt,

(3.74)

where I denote ρS = ρS (t) and the environment degrees of freedom are traced out. Here
the topmost row corresponds to the isolated evolution of the density operator, and the
next row, involving the commutators with the density operator, is related to the time
evolution associated with the coupling to the environment. The terms proportional to
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a†inain and aina
†
in describe dissipation whereas the terms with a

(†)
in a

(†)
in are responsible of

dephasing [36].

Suppose now that the environment is a bath with thermal noise. The following relations
are then recovered [19] 〈

a†indt aindt
〉

= Ndt, (3.75a)〈
aindt a†indt

〉
= (N + 1) dt, (3.75b)

〈aindt aindt〉 = Mdt, (3.75c)
〈aindt〉 = βdt, (3.75d)

where 0 ≤ N ∈ R and M,β ∈ C so that |M |2 ≤ N (N + 1). If the system is in thermal
equilibrium , β = M = 0 and N = Nth, where

Nth (ωn) =
(
e
ωn
kbT − 1

)−1

(3.76)

is the thermal population of the environment at temperature T .

Thus in thermal equilibrium, the Master equation of the linearly dissipative system is

ρ̇S =− i [HS, ρS] +Nthκ
[
aρSa

† − 1

2

{
ρS, aa

†} ]
+ (Nth + 1)κ

[
a†ρSa−

1

2

{
ρS, a

†a
} ]
.

(3.77)

Notice that Nth → 0 when T → 0. Therefore, at zero temperature, the Master equation
is

ρ̇S =− i [HS, ρS] + κa†ρSa−
κ

2

{
ρS, a

†a
}
. (3.78)
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Nonlinear model Hamiltonian

The following model, depicting the coupling between a harmonic oscillator and a heat
bath environment, can be used to describe both cavities and mechanical resonators. In the
context of mechanical resonators, nonlinear dissipation and damping of micromechanical
resonators have attracted a lot of attention in the last few years [20,23,37,38], including a
nonlinearity not explained by the Duffing response reported by Singh et al. [39]. Graphene
resonators are also used in optomechanical systems and can exhibit large quality factors
[40]. Better understanding of the dissipation phenomena of mechanical resonators (and
cavities) may help us to improve the performance of optomechanical systems.

The system Hamiltonian is given by Eq. (2.3). The Hamiltonian of the environment of
the harmonic oscillator is given in Eq. (3.9) as a set of bosonic modes each with a distinct
frequency ωn. The interaction between the system and the environment is modeled with
the following Hamiltonian

HI = i
∑
n

gL
n

[
c†na− cna†

]
+ i
∑
n

gN
n

[
c†na

2 − cna†2
]
, (4.1)

where gL
n and gN

n describe the strengths of the linear and nonlinear couplings between
the system and the nth mode of the environment, respectively, and c(†)

n and a(†) are the
annihilation (creation) operators of the environment and the system. Note that the first
linear interaction term corresponds to Eq. (3.10) and the quantum Langevin equation
resulting from this type of interaction is already discussed above.

The nonlinear interaction introduced in Eq. (4.1) represents one of the possible choices,
arguably the simplest, allowing the introduction of a nonlinear system-environment cou-
pling. On the one hand, I explore the consequences on the form of the QLE in the
presence of this nonlinear system-environment coupling in Sec. 4.1. The QLE is then
solved and the solutions are then compared to the case of bare linear coupling in Sec. 4.2.
Additionally, Sec. 4.3 focuses on the ME of a nonlinearly dissipative harmonic oscillator.

A possible justification for the appearance of a nonlinear system-environment coupling
is presented in Chap. 6 where the idea that two-level systems (TLS) can give rise to a
nonlinear interaction between environment and cavity modes is introduced.
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4.1 Derivation of the quantum Langevin equation
Let us derive the equation of motion of the system field operator a in presence of a system-
environment coupling of the form given in Eq. (4.1). In analogy to what I do in Sec. 3.2,
I employ input-output formalism to derive the QLE of the system. While I later focus on
the case of a harmonic oscillator coupled to a bath, let us leave the system unspecified
for the input-output formalism to achieve the general EOM using the coupling (4.1).

Consider a total Hamiltonian constituted by the Hamiltonians of the system, the envi-
ronment, and the interaction between these two

H = HS +HE +HI

= HS +
∑
n

ωnc
†
ncn + i

∑
n

gL
n

[
c†na− cna†

]
+ i
∑
n

gN
n

[
c†na

2 − cna†2
]
, (4.2)

where a(†) and c
(†)
n are the annihilation (creation) operators of the system and the nth

environment mode, respectively, in the Heisenberg picture.

The Hamiltonian H represents the Hamiltonian of a closed system. Therefore writing the
Heisenberg EOM using this total Hamiltonian is justified. The equation of motion for the
nth annihilation field operator of the environment is

ċn (t) = i [H, cn] = −iωncn + gL
na+ gN

n a
2. (4.3)

This EOM can be solved, in analogy to the linear case, as

cn (t) = e−iωn(t−t0)cn (t0) + gL
n

∫ t

t0

e−iωn(t−t′)a (t′) dt′ + gN
n

∫ t

t0

e−iωn(t−t′)a2 (t′) dt′. (4.4)

Analogously, the EOM for a can be written as

ȧ (t) = i [H, a] = i [HS, a]−
∑
n

(
gL
n + 2gN

n a
†) cn. (4.5)

Like for the linear case in Sec. 3.2, in the following I make the simplifying assumption that
the coupling constants gL

n and gN
n are independent of the frequency of the nth environment

mode (
gL
n

)2
=

κL

2πD
;

(
gN
n

)2
=

κN

2πD
, (4.6)

where D is the density of states over the oscillatory modes and it is considered to be a
positive constant. Recall that n = ωnD = ωn∂n/∂ωn. Note that here κL corresponds to
κ in the purely linear context of definition (3.17).

With this approximation, I can plug the solution for cn (4.4) back into the EOM for a
(4.5)

ȧ (t) = i [HS, a]−
√

1

2πD

(√
κL + 2

√
κNa

†)∑
n

e−iωn(t−t0)cn (t0)

− 1

2πD

(√
κL + 2

√
κNa

†)√κL

∫ t

t0

∑
n

e−iωn(t−t′)a (t′) dt′

− 1

2πD

(√
κL + 2

√
κNa

†)√κN

∫ t

t0

∑
n

e−iωn(t−t′)a2 (t′) dt′.

(4.7)
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Considering the identity, see Appendix A,∑
n

e−iωn(t−t′) = 2π |D| δ (t− t′) (4.8)

and defining, as in the linear case,

ain = −
√

1

2πD

∑
n

e−iωn(t−t0)cn (t0) , (4.9)

I can write the final form of the quantum Langevin equation for a as

ȧt = i [HS, at]−
κL

2
at − κNa

†
ta

2
t −
√
κLκN

(
a†tat +

1

2
a2
t

)
+
√
κLain,t + 2

√
κNa

†
tain,t, (4.10)

where the terms resulting from the linear system-environment interaction are also explic-
itly written out. The explicit time dependence of the field operator a is expressed using
subscripts for notational convenience, showing that the time evolution is local in time,
i.e. Markovian, on the same argument as for the case of pure linear coupling. Here the
commutator describes the time evolution generated by the isolated system.

In the limit κN → 0 we can see the form of the QLE resulting from only the linear
system-environment coupling, see Eq. (3.18).

4.2 Solving the nonlinear quantum Langevin equation
In this Section, I solve the quantum Langevin equation (4.10) up to linear order in fluc-
tuations of a. The obtained results are compared to the case of solely linearly coupled
cavity as formulated in Eq. (3.21).

If the system is described by a harmonic oscillator Hamiltonian HS = ωcava
†a, as in the

case of an optical or microwave resonant cavity, or for the approximate description of a
mechanical oscillator, Eq. (4.10) can be written as

ȧ = −iωcava−
κL

2
a− κNa

†a2 −
√
κLκN

(
a†a+

1

2
a2

)
+
√
κLain + 2

√
κNa

†ain. (4.11)

With a view to the application of this description of nonlinear couplings to experimentally
relevant conditions which include, for instance, the physics of optomechanical systems, I
linearize the field operator a like in the case of the full optomechanical system discussed
in Sec. 3.3 so that a(in) = α(in),t + δa(in) where αt = |α| e−iωp(t−t0) is the average field
amplitude of the cavity strongly pumped by the input field and δa is a small fluctuation
around this point rotating at the angular frequency of the cavity. The components of the
input field both rotate at the angular frequency of the pump, ωp.

Using this decomposition and neglecting all the fluctuation terms of second or higher
order, I arrive to the following form of the QLE

δȧ =i∆αt −
κL

2
αt − κNα

∗
tα

2
t −
√
κLκN

(
|α|2 +

1

2
α2
t

)
+
√
κLαin,t + 2

√
κNα

∗
tαin,t

−
[
iωcav +

κL

2
+ 2κN |α|2 +

√
κLκN (α∗t + αt)

]
δa

−
[
κNα

2
t +
√
κLκNαt − 2

√
κNαin,t

]
δa† + [

√
κL + 2

√
κNα

∗
t ] δain,

(4.12)
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where the time derivative α̇t = −iωpαt, determined by the coherent pump, is utilized.
∆ = ωp − ωcav is the detuning of the cavity.

First, let us consider the zeroth order equation that determines the equilibrium solution,
i.e. I neglect all the fluctuation terms of Eq. (4.12)

0 = i∆αt −
κL

2
αt − κNα

∗
tα

2
t −
√
κLκN

(
|α|2 +

1

2
α2
t

)
+
√
κLαin + 2

√
κNα

∗
tαin. (4.13)

I fix αin,t = αin ∈ R which corresponds to a specific choice of the time origin t0, and I
solve for αt. With this information |α| as a function of the input field can be constructed.
Some numerical plots of |α| are shown in Figs. 7 and 8.

(a) κL = 1 · 10−2∆

(b) κL = 5 · 10−2∆

Figure 7: Numerical solutions of Eq. (4.13) for |α| as a function of the input field with
different linear coupling strengths. Comparisons of the values of |α| between the results
given by the bare linear coupling (dashed black), i.e. when κN = 0, and the full nonlinear
model couplings (green, blue, red) are presented. The value of κL used to produce each
plot is given below the respective figure. The detuning ∆ = 1 and the nonlinear coupling
κN = 1 · 10−5∆ are kept constant.

Note that, due to energy minimization arguments, one has to consider that the physically
acceptable solution is represented by the solution that minimizes |α|. Furthermore, one
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(a) κN = 1 · 10−5∆

(b) κN = 1 · 10−4∆

Figure 8: Numerical solutions of Eq. (4.13) for |α| as a function of the input field with
different nonlinear coupling strengths. Comparisons of the values of |α| between the
results given by the bare linear coupling (dashed black), i.e. when κN = 0, and the full
nonlinear model couplings (green, blue, red) are presented. The values of κN are below
the respective figures. The detuning ∆ = 1 and the linear coupling κL = 0.1∆ are kept
constant.

can note that, contrary to the linear case, the αin dependence of |α| is nonmonotonous;
in particular for large enough values of ain an increase of the input field leads to a de-
crease of the population of the harmonic oscillator. This behaviour is in contrast to the
one encountered in the case of purely linear dissipation and speaks for the nonlinearity
introduced by the extra nonlinear dissipation channel.

There are two distinct regions of the input field where there are either one or three
solutions, respectively. For small values of αin, the system behaves like in the case for
which the linear dissipation only is present. However, for larger input fields, the nonlinear
system behaviour starts to deviate from its linear counterpart and eventually three distinct
solutions emerge. Figure 8 shows that by increasing the κN/κL ratio, the regime of input
field values where the system behaves approximately linearly, decreases in size making
the monotonically decreasing solution of |α| the physical solution starting from very small
values of ain.
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Figures 7 and 8 show that regardless of the choice of the strength of the linear and non-
linear couplings, there is a threshold value of αin where one of the metastable solutions
becomes the stable physical solution. This new stable solution of |α| decreases monoton-
ically with the increase of αin making the behaviour of the cavity nonlinear for a strong
input field. I consider the regime where κL � κN and I take the lowest order approxi-
mation of Eq. (4.13) with respect to the nonlinear coupling granting me the value of the
threshold in the regime ∆� κL

αth
in =

√
κ2

L + 4∆2

4
√
κN

. (4.14)

This choice is instrumental to the analysis that will be developed in the future, where the
effect of nonlinear dissipation in optomechanical systems is considered. In the analysis of
optomechanical systems, one is often lead to consider situations for which |∆| ≈ ωm which
is implied in the regime in which the above threshold is derived, since usually ωm � κ. The
full derivation of the threshold value is given in Appendix B. The approximate analytical
values of the threshold are compared to some numerical calculations of the exact zeroth
order approximation (4.13) in Fig. 9.

●
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●

●

●
●

●
●

●

Analytical estimate

● Numerical value

10-7 4·10-7 7·10-7 10-6

κL

Δ
κN
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2.0

κL

Δ
αin
th

Figure 9: A comparison between the numerical solutions (blue dots) obtained from Eq.
(4.13) and the analytical expression (red line) given by Eq. (4.14), respectively, of the
threshold αth

in , where a metastable solution becomes the stable one, for different values of
the nonlinear coupling constant κN. Here ∆ = 1 is kept constant as well as the linear
coupling κL = 1 · 10−2∆ in order to be in the appropriate sideband regime for Eq. (4.14).

Now that the equilibrium solutions are derived, we examine the first order approximation
around the point given by the zeroth order approximation. The EOM for δa is given by
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Eq. (4.12)

δȧ =−
[
iωcav +

κL

2
+ 2κN |α|2 +

√
κLκN (α∗t + αt)

]
δa

−
[
κNα

2
t +
√
κLκNαt − 2

√
κNαin

]
δa† + [

√
κL + 2

√
κNα

∗
t ] δain.

(4.15)

Note that by taking the Hermitian adjoint of both sides of Eq. (4.12), the EOM of δa† is
obtained.

In the frame rotating at the cavity frequency, i.e. when ωcav = 0, we can write Eq. (4.15)
in Fourier space as[
−iω +

κL

2
+ 2κN |α|2 +

√
κLκN (α∗t + αt)

]
δaω =

[
−κNα

2
t −
√
κLκNαt + 2

√
κNαin

]
δa†−ω

+ [
√
κL + 2

√
κNα

∗
t ] δain,ω

(4.16)

and analogously for δa†−ω. With χ−1
c =

[
−iω + κL

2
+ 2κN |α|2 +

√
κLκN (α∗t + αt)

]
, F =[

κNα
2
t +
√
κLκNαt − 2

√
κNαin

]
, and

√
κ =

[√
κL + 2

√
κNαt

]
we get from Eq. (4.16)(

χ−1
c F
F ∗ χ−1

c

)(
δaω
δa†−ω

)
=

(√
κ∗δain,ω√
κδa†in,−ω

)
. (4.17)

This can be solved to give(
δaω
δa†−ω

)
=

χ2
c

1− |F |2 χ2
c

(
χ−1

c −F
−F ∗ χ−1

c

)(√
κ∗δain,ω√
κδa†in,−ω

)
. (4.18)

Now that the fluctuations around the equilibrium solution are known, one can consider
the uncertainty related to measurements performed on the system. In the quantum limit,
a measurement of an observable always has some intrinsic uncertainty related to the
measured observable and some other noncommuting observable. The most well known
example is the Heisenberg uncertainty of position and momentum ∆x∆p ≥ ~/2 [34].
The following discussion on quantum uncertainty and quantum measurements follows an
extensive review of the subject by Clerk et al. [13].

The noise spectral density of a quantum mechanical operator O describes the intrinsic
uncertainty present in the measurement at a given frequency ω. Consider, for instance,
an optomechanical system where one tries to measure the displacement of a mechanical
resonator using an optical cavity. A change in position can be measured by observing
the phase shift of the light in the cavity resulting from the change in the width of the
cavity. The measurement of the phase has some uncertainty due to the imprecision of the
position of the mirrors. Additionally photons transfer momentum to the mirrors causing
backaction noise. These two noise sources are intrinsic properties of cavity measurements.
When a mechanical oscillator is coupled with the cavity in order to measure its position,
the momentum transferred by photons to the mirrors also change the momentum of the
resonator, thus causing additional uncertainty.

The noise spectral density can be defined as

SOO (ω) =

∫ ∞
−∞

dt eiωt〈O (t)O (0)〉, (4.19)
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i.e. it is the Fourier transform of the quantum autocorrelation function of operator O.
Here the angular brackets denote the quantum statistical average. Note that quantum
mechanical operators O (t1) and O (t2) do not necessarily commute at different times
t1 6= t2, and therefore the quantum spectral density is asymmetric in frequency and can
be complex valued. Classically this cannot happen since classical variables, even if defined
at different times, commute. The spectral density can be decomposed into parts that are
symmetric and asymmetric in frequency. The symmetric part is analogous to classical
noise and is given by

S̄OO (ω) =
1

2
[SOO (ω) + SOO (−ω)] =

1

2

∫ ∞
−∞

dt eiωt〈{O (t) , O (0)}〉, (4.20)

where the curly brackets denote an anticommutator.

Now the symmetric spectral density characterizing the noise at a certain frequency can
be identified as δa†ωδaω + δa†−ωδa−ω, and it can be plotted as a function of the frequency
ω, see Fig. 10. I consider small enough values of |α| so that |α| is still in the linear regime
as a function of the input field, see Fig. 7, i.e. it obeys the relation

|α| =
√

κL
κ2L
4

+ ∆2
αin. (4.21)

Also only the sideband regime, where the threshold value αth
in (4.14) is valid, is considered

since it is the one that is best understood.
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Figure 10: The responses δa†ωδaω + δa†−ωδa−ω of the cavity coupled linearly (red), Eq.
(3.10) and nonlinearly (blue), Eq. (4.1), to the environment. For both figures the used
parameters are ∆ = 1, κL = 0.1∆ and αt = 0.5. The values of κN used in each plot are
given by the respective figures.

The peak of the measurement noise is centered at the fundamental frequency of the cavity
for both the linear (κN = 0) and the nonlinear (κN > 0) couplings. When the nonlinear
coupling is present, the uncertainty of a measurement is higher compared to the linear
interaction. Additionally we see that an increase in the strength of the nonlinear coupling
leads to a higher maximum uncertainty. However, the uncertainty distribution is not
widened by the increase of κN meaning that the linewidth of the uncertainty distribution
decreases. Thus the error in the measurement, although always present and larger in value
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compared to the linear case, is better localized in the frequency space when the nonlinear
interaction is considered.

Recall that αt rotates at the frequency of the pump ωp. For the linear coupling alone the
spectral density does not depend on αt which can be seen from (4.18) by setting κN → 0.
However, this is not the case when the nonlinear coupling differs from zero. Figure 11
shows that for the nonlinear case the spectral density is affected by the choice of the phase
of αt. In the regime ∆� κL � κN, the reversal of phase from αt to −αt makes the peak
of the uncertainty distribution even higher. This effect is more noticeable for larger values
of κN.

α = -0.5

α = 0.5
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(a) κN = 1 · 10−4κL
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Figure 11: The responses δa†ωδaω + δa†−ωδa−ω of the cavity coupled nonlinearly to the
environment with the Hamiltonian (4.1) for opposite phases of α, more precisely αt = −0.5
(black) and αt = 0.5 (blue). For both figures ∆ = 1 and κL = 0.1∆. The values of κN are
denoted under the respective figures.

4.3 Master equation for the nonlinearly dissipative harmonic
oscillator

Let us determine the Master equation of a nonlinearly dissipative system described by
the QLE (4.10). Recall from the case of linear dissipation the form of the EOM (3.67) for
the system operator a. The following form of L is taken as an ansatz

L =
[√

κL

(
a†0ain − a0a

†
in

)
+
√
κN

(
a†20 ain − a2

0a
†
in

)]
dB. (4.22)

as opposed to the linear case where only the first term is present.

The input terms of the QLE (4.10) are obtained from the following commutator

[a0, L] dB =
(√

κLain + 2
√
κNa

†
0ain

)
dt. (4.23)
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The other terms of the ME are[
−La0L+

1

2

{
a0, L

2
}]

dt =
{
−κL

2
a0

[
ain, a

†
in

]
dt− κNa

†
0a

2
0

[
ain, a

†
in

]
dt

−
√
κLκN

(
a†0a0 +

1

2
a2

0

)[
ain, a

†
in

]
dt

+ (2κNa0 +
√
κLκN) a†inaindt

}
dt

=− κL

2
a0dt− κNa

†
0a

2
0dt

−
√
κLκN

(
a†0a0 +

1

2
a2

0

)
dt

+ (2κNa0 +
√
κLκN) a†inaindt2,

(4.24)

where the commutation relation (3.72) is used.

Combining Eqs. (4.23) and (4.24) shows that

a (dt) =
[
i [HS, a0]− κL

2
a0 − κNa

†
0a

2
0 −
√
κLκN

(
a†0 +

1

2
a2

0

)
+
√
κLain + 2

√
κNa

†
0ain

]
dt+ (2κNa0 +

√
κLκN) a†inaindt2.

(4.25)

Using Eqs. (3.75a) and (3.76) one can see that Eq. (4.25) approaches the QLE (4.10) for
an environment in a thermal equilibrium in the limit T → 0. However, let us not go to
that limit as of yet, but instead write the general Master equation given by the ansatz
(4.22)

ρS (dt) = ρS − i [HS, ρS] dt

−
√
κL

[
ρS, a

†] 〈ain〉 dt+
√
κL [ρS, a]

〈
a†in

〉
dt

−
√
κN

[
ρS, a

†2] 〈ain〉 dt+
√
κN

[
ρS, a

2
] 〈
a†in

〉
dt

−
[
〈ainain〉

(
κLa

†ρSa
† + κNa

†2ρSa
†2 +
√
κLκNa

†ρSa
†2 +
√
κLκNa

†2ρSa
†

− 1

2

{
ρS, κLa

†2 + κNa
†4 + 2

√
κLκNa

†3})dt
]
dt

−
[ 〈
a†ina

†
in

〉(
κLaρSa+ κNa

2ρSa
2 +
√
κLκNaρSa

2 +
√
κLκNa

2ρSa

− 1

2

{
ρS, κLa

2 + κNa
4 + 2

√
κLκNa

3
})

dt
]
dt

+
[ 〈
a†inain

〉(
κLaρSa

† + κNa
2ρSa

†2 +
√
κLκNaρSa

†2 +
√
κLκNa

2ρSa
†

− 1

2

{
ρS, κLaa

† + κNa
2a†2 +

√
κLκNa

2a† +
√
κLκNaa

†2})dt
]
dt

+
[ 〈
aina

†
in

〉(
κLa

†ρSa+ κNa
†2ρSa

2 +
√
κLκNa

†ρSa
2 +
√
κLκNa

†2ρSa

− 1

2

{
ρS, κLa

†a+ κNa
†2a2 +

√
κLκNa

†a2 +
√
κLκNa

†2a
})

dt
]
dt,

(4.26)

where I denote ρS = ρS (0) and a = a0. Note that at finite temperature this is an
approximate description of the dynamics of the system, since the QLE (4.10) is not
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satisfied exactly using the ansatz (4.22) even though the chosen form of L is the only
anti-Hermitian operator that generates the correct input field terms.

Using Eqs. (3.75a)–(3.75d), at thermal equilibrium the Master equation of the nonlinearly
dissipative system is

ρ̇S =− i [HS, ρS]

+Nth

[
κLaρSa

† + κNa
2ρSa

†2 +
√
κLκNaρSa

†2 +
√
κLκNa

2ρSa
†

− 1

2

{
ρS, κLaa

† + κNa
2a†2 +

√
κLκNa

2a† +
√
κLκNaa

†2} ]
+ (Nth + 1)

[
κLa

†ρSa+ κNa
†2ρSa

2 +
√
κLκNa

†ρSa
2 +
√
κLκNa

†2ρSa

− 1

2

{
ρS, κLa

†a+ κNa
†2a2 +

√
κLκNa

†a2 +
√
κLκNa

†2a
} ]
.

(4.27)

At zero temperature, the ME of the nonlinearly dissipative system has the following form

ρ̇S =− i [HS, ρS] + κLa
†ρSa+ κNa

†2ρSa
2 +
√
κLκNa

†ρSa
2 +
√
κLκNa

†2ρSa

− 1

2

{
ρS, κLa

†a+ κNa
†2a2 +

√
κLκNa

†a2 +
√
κLκNa

†2a
}
.

(4.28)

Notice that this ME is not in the Lindblad form (3.62) even though the system is im-
posed to be Markovian. This is due to the nonlinear system-environment interaction and
the choice of the form of the zeroth Kraus operator (3.65) to correctly create the input
dynamics of the QLE. However, a non-Lindblad form ME of the system (S) can be for-
mulated in the Lindblad form with the help of some ancillary environment (A) so that
the dynamics of the combined S–A system can be described in the Lindblad form [41].
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Review of two-level systems

This Chapter serves as a general introduction to two-level systems, and aims to illustrate
how interactions with TLSs can be modeled, e.g. when a TLS is under stress.

5.1 Algebra of two-level systems
TLSs can be found in various physical systems such as tunneling atoms [42] that are
encountered, e.g. in amorphous glasses [43]. Another example of TLSs are dangling
bonds that are atoms, immobilized e.g. in a solid, that have an unpaired valence electron.
Their chemical behaviour is similar to free radicals. Dangling bonds can be found, for
instance, on silicon surfaces [44, 45]. Also nanomechanical beams can act as TLSs as
shown by Faust et al. [46] in their experiment, where a silicon nitride beam having two
orthogonal vibrational modes is driven by radio frequency signals. A typical textbook
example of a solvable TLS is a spin-1

2
system, such as an electron, in an external magnetic

field [47].

Formally the Hamiltonian of a TLS can be expressed on a two-dimensional Hilbert space
spanned by two states, say |a〉 and |b〉, as a linear combination of the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(5.1)

that obey the commutation relation

[σj, σk] = 2iεjklσl, (5.2)

and operate on the two states of the TLS in the following way

σx |a〉 = |b〉 , σy |a〉 = i |b〉 , σz |a〉 = |a〉 ,
σx |b〉 = |a〉 , σy |b〉 = −i |a〉 , σz |b〉 = − |b〉 .

(5.3)

Especially one can see that the state of the TLS can be flipped using the following ladder
operators

σ− |a〉 =
1

2
(σx − iσy) |a〉 = |b〉 , σ+ |b〉 =

1

2
(σx + iσy) |b〉 = |a〉 . (5.4)

Alternatively, one can express the TLS in the Schwinger representation using the bosonic
annihilation (creation) operators d(†)

a/b of the a/b state of the TLS. The number operators
of the two states are

na = d†ada nb = d†bdb. (5.5)
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Thus the spin operators can be defined

Jx = d†adb + d†bda,

Jy = i
(
d†bda − d†adb

)
,

Jz = na − nb,

J+ = d†adb,

J− = d†bda.

(5.6)

One can easily check that the Eq. (5.6) is in agreement with definitions (5.2)–(5.4).

5.2 Modeling two-level systems and the interaction with them
Large dielectric losses in superconducting quantum bits have been shown to be a major
source of decoherence for these qubits in low temperatures and weak driving voltages [48].
This decoherence is proposed to be due to a coupling to a bath of two-level systems that
can interact with the surrounding electric field using their dipole moments. The two-level
systems get saturated in higher temperatures and voltages thus making the effect less
relevant in this regime. Similarly TLSs are used to explain the excess dielectric loss in
various amorphous materials [49].

In Chap. 6, I derive nonlinear dissipation effects of a harmonic oscillator as a result of
the mediation of the oscillator/environment by an ensemble of two-level systems. This
derivation represents a general justification of the nonlinear interaction Hamiltonian (4.1),
but it is not an exact derivation.

In the context of superconducting QED and nanomechanical systems, a TLS can be
represented by a double well potential [43, 50, 51], see Fig. 12, in which a particle is
allowed to tunnel between two local energy minima with energy separation ∆0 through
a barrier of height V and thickness d. The energy separation of the two states is given
by ∆0 = ωe−λ, where ω is the frequency of the tunneling particle, and the tunneling
parameter λ is given by the barrier properties so that λ = d

√
2mV , where m is the

mass of the tunneling particle. Such a tunneling particle can be, for instance, a certain
mechanical mode with effective mass m if one considers a mechanical system or a charged
ion moving between two energy minima.

Let us focus on a TLS under tension, and consider that mechanical and dielectric TLSs
can be handled analogously [50]. On the one hand, a mechanical TLS can be, for instance,
a mechanical system that has two possible vibrational modes [46]. On the other hand,
dielectric materials are insulators that can be polarized by applying an electric field. For
example, dielectric TLSs can exist in glasses where, due to their amorphous nature, energy
minima with some energy separation are present and they can be occupied by ions [43].

An external strain field mediated by phonons, in the mechanical (acoustic) case, or by
an electric field, in the dielectric case, modifies the shape of the wells. The external
strain deforms the environment of the tunneling particle, altering the energy splitting ∆
between the two wells. In this case the energies of the two eigenstates of the TLS differ by
E =

√
∆2

0 + ∆2. The mechanical deformation potentials and dielectric dipole moments,
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∆0

d

V

Figure 12: Schematic of the tunneling model of a two-level system. The TLS is formed
using a double well potential whose two local energy minima are separated by a potential
well of height V and thickness d. The energy difference of the minima is ∆0.

D, D′ and µ, µ′, respectively, can be expressed as [50]

D =
2γ∆

E
,

D′ =
2γ∆0

E
,

µ =
2p∆

E
,

µ′ =
2p∆0

E
.

(5.7)

The parameters γ and p tell how much the TLS is deformed under the mechanical strain
field |~ε| or the electric field

∣∣∣ ~E∣∣∣, respectively, so that 2γ = d∆/d |~ε| and 2p = d∆/d
∣∣∣ ~E∣∣∣.

Note that these quantities are determined in the direction of the applied field. The
Hamiltonian of a dielectric TLS under electromagnetic strain can be written as [50]

HTLS =
E

2
σz −

1

2
(µσz + 2µ′σx)

∣∣∣ ~E∣∣∣ , (5.8)

and its mechanical analog with the following replacements:
∣∣∣ ~E∣∣∣ → |~ε|, µ → D, and

µ′ → D′.

To model the dissipation of a two-level system, the spin-boson model is often used [51,52].
In the spin-boson model, the two-level system is embedded in a heat bath described by
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a set of bosonic harmonic oscillators given by the familiar Hamiltonian HE (3.9). Also
the environment is coupled to the TLS by σz so that, in its second quantized form, the
spin-boson model Hamiltonian is

HS−B = HTLS +HE + σz
∑
j

gj

(
cj + c†j

)
, (5.9)

where gj is the coupling strength and
(
cj + c†j

)
the displacement associated with the

jth oscillator in the environment. In general, the dynamics that follow from this type
of coupling are non-Markovian [53]. Extensions of this model are also explored in the
literature, e.g. the inclusion of the nonlinear coupling σz

∑
j,k gjgk

(
cj + c†j

)(
ck + c†k

)
between the TLS and the environment [51, 52]. Relaxation and dephasing times of the
TLS can be calculated for various dissipation schemes for the standard spin-boson model
(5.9) and also for the quadratic coupling version of the model [52].
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Derivation of nonlinear phenomena

The following derivation can be seen as a loose justification for the nonlinear model
Hamiltonian (4.2) even though here I specifically focus on an optical cavity instead of a
nonspecific harmonic oscillator. We propose a general model that takes the advantage of
coupling the system and environment via two-level systems to explain the manifestation
of nonlinearities in the optical framework of optomechanics.

An effective model in a certain subspace of the total Hilbert space can be obtained from the
full Hamiltonian of the tripartite system by applying a so-called Schrieffer-Wolff trans-
formation. The model that is derived through this procedure can be, to some extent,
approximated to contain terms similar to the simple nonlinear model Hamiltonian (4.2)
although several other nonlinear interactions appear as well.

6.1 Interaction between light and matter
The standard QED formulation that is used here closely follows the formulation presented
in the book Quantum optics by Walls and Milburn [36]. The minimum substitution
Hamiltonian describing the interaction between an electron and an electromagnetic field,
light in the case of an optical cavity, is of the form [36]

H =
1

2m

(
~p− e ~A

)2

+ eV (~x) +Hfield, (6.1)

where ~A is the vector potential of the EM field, ~p, m, and e are the momentum, the mass,
and the charge of the electron, respectively, and V (~x) is a position-dependent potential
that the electron feels. The vector potential of the EM field has a general second quantized
form

~A =
∑
m,n

√
1

2ε0ωn
em,n

[
un (~x) bn + u∗n (~x) b†n

]
, (6.2)

where em,n is the polarization vector, ε0 the vacuum permittivity, ωn the frequency cor-
responding to the nth field mode, and b

(†)
n the second quantized annihilation (creation)

field operator of the nth mode of the EM field. For a box-shaped space, of volume V,
the mode functions un (~x) take the form un (~x) = V −

1
2 ei

~kn·~x and from now on I denote
ξn = (2ε0ωnV )−

1
2 . For the majority of this Section, I use the vector potential of only one

mode, denoted by b, not to be mistaken for the field operator of the mechanical part of
an optomechanical system above. The results obtained for this single mode can easily be
modified to describe multiple modes, namely the cavity and the environment, whose field
operators are denoted by a and cn, respectively.

The second quantized formulation of the minimum substitution Hamiltonian (6.1) is

H = Hel +Hint +Hfield, (6.3)
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where the electron and EM field Hamiltonians are, respectively,

Hel =

∫
ψ̂† (~x)

(
p2

2m
+ eV (~x)

)
ψ̂ (~x) d~x =

∑
j

Ejd
†
jdj, (6.4)

Hfield =
∑
n

ωnb
†
nbn. (6.5)

Here the second quantized electron field operators ψ̂ (~x) can be written in terms of unper-
turbed single particle states φj (~x) and fermionic annihilation (creation) operators d(†)

j so
that ψ̂ (~x) =

∑
j djφj (~x). The orthonormality of the functions φj (~x) is the cause of the

rightmost equality of Eq. (6.4), and Heφj (~x) =
(
p2

2m
+ eV (~x)

)
φj (~x) = Ejφj (~x). The

field operators of the electron obey the common fermionic anticommutation conventions.

The interaction part of the total Hamiltonian can be written in terms of a linear interaction
between the charged particle and the EM field

Hint,1 = − e

2m

∫
ψ̂† (~x)

(
~A · ~p+ ~p · ~A

)
ψ̂ (~x) d~x (6.6)

and a quadratic interaction, given that the EM field is strong

Hint,2 =
e2

2m

∫
ψ̂† (~x) ~A2ψ̂ (~x) d~x. (6.7)

Let us first focus on the linear interaction whose Hamiltonian can be explicitly written as

Hint,1 = − e

2m

∑
j,k,α

√
1

2ε0ωα
d†jdk

∫
φ∗j (~x)

[ (
bα~uα (~x) + b†α~u

∗
α (~x)

)
· ~p

+ ~p ·
(
bα~uα (~x) + b†α~u

∗
α (~x)

) ]
φk (~x) d~x

(6.8)

In this derivation, I am focusing on EM fields in the optical regime, and therefore the
wavelength of the radiation, λphoton = 2π/

∣∣∣~k∣∣∣, is much longer than the characteristic size
of the volume where the electrons are confined, e.g. an atom. This entails that ~uα (~x)
varies in a larger lengthscale than the electron wavefunctions φk (~x), and therefore the
dipole approximation is valid, allowing us to approximate

Hint,1 = − e

m

∑
j,k,α

ξαd
†
jdk

(
bαe

i~kα·~x0 + b†αe
−i~kα·~x0

)∫
φ∗j (~x) p φk (~x) d~x. (6.9)

Looking at the second quantized electron Hamiltonian (6.4), it can immediately be seen
that, except for the momentum part, everything commutes with ~x. This can be utilized
together with the commutation relation, [p2, x] = −i2p∫

φ∗j (~x) p φk (~x) d~x = im

∫
φ∗j (~x) [He, ~x]φk (~x) d~x = imvj,k

∫
φ∗j (~x) ~x φk (~x) d~x, (6.10)

where vj,k = Ej −Ek is the difference of eigenenergies of the jth and kth electron states.
The rightmost equality comes from the stationary Schrödinger equation Heφn (~x) =
Enφn (~x).
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Let us define the coupling strength for the linear interaction term as

gjkα = −ievj,kξαei
~kα·~x0

∫
φ∗j (~x) ~x φk (~x) d~x (6.11)

and choose the phase of gjkα so that the coupling constant is real valued. The linear
interaction Hamiltonian can be written as

Hint,1 =
∑
j,k,α

d†jdkgjkα
(
bα + b†α

)
. (6.12)

It is now straightforward to explicitly write the Hamiltonian describing the quadratic
interaction, Hint,2, by inserting the definition of the vector potential (6.2) into Eq. (6.7).
This gives

Hint,2 =
e2

m

∑
j,k,α,β

ξαξβd
†
jdk

∫
φ∗j (~x)

(
bαe

i~kα·~x + b†αe
−i~kα·~x

)(
bβe

i~kβ ·~x + b†βe
−i~kβ ·~x

)
φk (~x) d~x.

(6.13)
The nonlinear coupling strength can be written as

gjkαβ =
e2

2m
ξαξβ

∫
φ∗j (~x) ei(

~kα+~kβ)·~xφk (~x) d~x, (6.14)

since for every vector ~kn there exists ~kn′ = −~kn and thus all the possible combinations of
~k-vectors are handled properly by the sum over both α and β. Let us assume that also
the phase of the nonlinear coupling strength can be tuned so that it is real valued. Now
the quadratic interaction Hamiltonian takes the following form

Hint,2 =
∑
j,kα,β

d†jdkgjkαβ

(
bα + b†α

)(
bβ + b†β

)
. (6.15)

Two-level systems are now introduced into the model using the electron field operators.
A TLS can now be written in terms of Pauli matrices

σz = d†2d2 − d†1d1,

σ+ =
1

2
(σx + iσy) = d†2d1,

σ− =
1

2
(σx − iσy) = d†1d2.

(6.16)

These can be applied to the model by letting the summations above to allow only j, k = 1,
2. This leads to

H = Hel +Hfield +Hint,1 +Hint,2

=
ω0

2
σz +

∑
α

ωαb
†
αbα +

∑
α

(
bα + b†α

)(
g21ασ+ + g12ασ−

)
+
∑
α,β

(
bα + b†α

)(
bβ + b†β

)[
g21αβσ+ + g12αβσ−

+
1

2

(
g22αβ − g11αβ

)
σz +

1

2

(
g22αβ + g11αβ

)]
,

(6.17)

where ω0 is the energy difference between the excited state and the ground state of the
TLS.
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The above derivation focuses on one mode, but what we are interested in is the tripartite
cavity-TLS-environment system. Therefore, I consider now several modes, the fields of the
cavity and the bath, with annihilation operators a and cn, both fields coupling to TLSs.
The above calculations can be performed in the case of the vector potential describing
both the cavity and the environment modes so that the formulation of Eq. (6.17) for
these two fields is

H =
ω0

2
σz + ωcava

†a+
∑
α

ωαc
†
αcα

+
(
a+ a†

)(
gc

21aσ+ + gc
12aσ−

)
+
∑
α

(
cα + c†α

)(
ge

21ασ+ + ge
12ασ−

)
+
(
a+ a†

)2[
gc

21aaσ+ + gc
12aaσ− +

1

2

(
gc

22aa − gc
11aa

)
σz +

1

2

(
gc

22aa + gc
11aa

)]
+
∑
α,β

(
cα + c†α

)(
cβ + c†β

)[
ge

21αβσ+ + ge
12αβσ−

+
1

2

(
ge

22αβ − ge
11αβ

)
σz +

1

2

(
ge

22αβ + ge
11αβ

)]
+
∑
α

(
cα + c†α

)(
a+ a†

)[
gm

21αaσ+ + gm
12αaσ−

+
1

2

(
gm

22αa − gm
11αa

)
σz +

1

2

(
gm

22αa + gm
11αa

)]

(6.18)

Here the coupling constants between the TLS and the environment and between the TLS
and the cavity are denoted with superscripts e and c, respectively, and the subscript a
stands for the cavity mode. The mixed coupling constant gm

jkαa has a very similar form to
the nonlinear coupling strength gjkαβ. The key difference is that gm

jkαa has contributions
from both the environment and the cavity, i.e. it describes the coupling strength of the
environment coupling to the cavity via the TLS. The form of the coupling is

gm
jkαa =

e2

2m
ξeαξ

c
a

∫
φ∗j (~x) ei(

~keα+~kca)·~xφk (~x) d~x. (6.19)

Above in Eq. (6.18), we can see that the coupling between the environment and the cavity
arises from their interactions with the TLS, since by taking all the coupling constants to
zero, all we have left are the noninteracting Hamiltonians of the TLS, the cavity, and the
environment. Most notably, the last summation exhibits an explicit cavity-bath coupling.
The interactions between the cavity and the environment are schematically represented
in Fig. 13. In Sec. 6.2, I construct an effective model of these interactions utilizing the
property that the TLS has a large energy separation compared to the energies of the
cavity and the environment.

By looking at the Hamiltonian (6.18) from the perspective that focuses on the TLS being
the system of interest, leaving the cavity and the environment as noise sources for the TLS,
a few similarities shared with the spin-boson model introduced in Chap. 5 can be seen.
The cavity and the environment behave as if they are a bosonic heat bath surrounding
the qubit and there is a quadratic coupling between the displacement operators of the
cavity and the environment and σz like in the extended spin-boson model mentioned
above. Interestingly enough, this quadratic dephasing mechanism of the qubit is the
only dephasing described by this model. However the tunneling terms describing the
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E S

TLS

Figure 13: The environment E and the system S interact not only directly with each other
but also indirectly via a two-level system as given by the Hamiltonian (6.18).

dissipation of the qubit, i.e. the ones proportional to σx = σ+ + σ−, are linearly and
quadratically coupled to the displacement operators.

There are interesting special cases of dissipative environments. Recall the definition of
symmetrized spectral density, (4.20). Let us consider the symmetrical part of the spectral
density of the environment variable X =

∑
j gj

(
cj + c†j

)
S̄XX (ω) = 2J (ω) coth

(
ωβ

2

)
, (6.20)

where β = 1/ (kBT ). J (ω) is the spectrum of the environment.

A simple dissipation scheme is the Ohmic dissipation that requires the environment spec-
trum to be linearly dependent on frequency, i.e.

J (ω) =
π

2
αωΘ (ωco − ω) , (6.21)

where ωco is a cutoff frequency and the strength of the dissipation is determined by the
parameter α. In the high temperature limit, i.e. when β → 0, the dynamics described by
the Ohmic dissipation become Markovian [53]. Let us briefly focus on this case. Suppose
that the system in focus is a harmonic oscillator described by the Hamiltonian

HS =
p2

2m
+
mω2

ho

2
q2, (6.22)

wherem, p, q, and ωho are the mass, momentum, position, and the fundamental frequency
of the oscillator. Let the environment be a heat bath whose Hamiltonian is given by (3.9),
and let the interaction Hamiltonian between the heat bath and the oscillator be

HI = −qX. (6.23)

In the high temperature limit of the Ohmic dissipation model, the Langevin equation for
the oscillator can be written as [53]

mq̈ = −mω2
hoq − ηq̇ +Xt, (6.24)
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where Xt is a classical noise term, replacing the quantum mechanical noise X, obeys white
noise statistics 〈XtXu〉 = 2ηkBTδ (t− u), and η is the damping ratio. This QLE can then
be solved for q.

Another example of different dissipation models is the 1/f noise whose symmetrized
spectral density

S̄XX (ω) =
E2

1/f

|ω|
, (6.25)

E2
1/f = 2παωskBT , can be derived using sub-Ohmic spectrum of the environment

Js (ω) =
π

2
αω1−s

s ωs , s < 1, (6.26)

in the limit s → 0. To get the form (6.25) this spectrum can be inserted back to Eq.
(6.20) that is approximated to the lowest order in ωβ/2 at reasonably high temperature.

6.2 Schrieffer–Wolff transformation
The Schrieffer–Wolff transformation allows me to find the effective Hamiltonian on a
projection subspace of the overall Hilbert space. The effective Hamiltonian describes the
low energy physics on this specific subspace. The following formulation of the theory
follows the treatment of Essler et al. [54], and I present the same derivation of the
theory for completeness in Appendix C. This theory has been applied to different physical
systems, the most prominent arguably being the description of the half-filled Hubbard
model in terms of antiferromagnetic Heisenberg model [54].

Consider the stationary Schrödinger equation

H |Ψ〉 = E |Ψ〉, (6.27)

where H is a Hamiltonian operator acting on Hilbert space H. Impose now that the
Hamiltonian H consists of two parts, pure unperturbed Hamiltonian H0 with the spectral
decomposition

H0 =
∑
n

EnPn, (6.28)

where Pn is a projection operator on a subspace PnH of a Hilbert space H, and a pertur-
bation Hamiltonian H1 so that

H = H0 + λH1, (6.29)

where the parameter λ, describing the strength of the perturbation, is small.

We rewrite the spectral problem (6.27) as [54]PnH1Pn + λ
∑

m (m6=n)

PnH1PmH1Pn
En − Em

 |φ〉 =
E − En

λ
|φ〉, (6.30)

where the effective Hamiltonian on the subspace PnH is

Heff = PnH1Pn + λ
∑

m (m 6=n)

PnH1PmH1Pn
En − Em

(6.31)
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and the state |φ〉 ∈ PnH.

Let us move back to the optical cavity. Let H0 describe an ensemble of two-level systems,
where the energy level separation represents the largest energy scale in the problem,
see Fig. 14. The bands formed by the TLSs correspond to the projections Pn. The
perturbation Hamiltonian H1 corresponds to the terms in Eq. (6.18) associated with the
dynamics of the cavity and the bath, along with their coupling with the TLSs so that the
spin operators σ± raise/lower the state between different bands.

ωcava†a ωnc†
ncn

ω0

Figure 14: The energy separation ω0 between the bands of the TLSs is much larger than
the energy of the cavity or the environment.

Let us calculate the effective Hamiltonian in parts and start from the first order PnH1Pn.
Define σz |n〉 = M |n〉, where M is the magnetization quantum number of the state, and
σ± |n〉 = |n± 1〉. Denote Pn = |n〉 〈n|. Using these definitions, it can be seen that to the
first order only the terms proportional to 1 and σz remain, since they are diagonal and
thus the state |n〉 is their eigenstate. The other terms cancel out since 〈n |m〉 = δnm. The
remaining Pn operators are omitted from the following calculations, since the effective
Hamiltonian operates on the subspace PnH. The first order term is

PnH1Pn = ωcava
†a+

∑
α

ωαc
†
αcα

+
1

2

(
a+ a†

)2[
M (gc

22aa − gc
11aa) + (gc

22aa + gc
11aa)

]
+

1

2

∑
α,β

(
cα + c†α

)(
cβ + c†β

)[
M
(
ge

22αβ − ge
11αβ

)
+
(
ge

22αβ + ge
11αβ

) ]
+

1

2

∑
α

(
cα + c†α

)(
a+ a†

)[
M (gm

22αa − gm
11αa) + (gm

22αa + gm
11αa)

]
.

(6.32)

Recall the coupling constants, denoted by g, from Eqs. (6.11), (6.14) and (6.19). H1

contains only operators that raise or lower the state by one or do not affect the state.
The latter operators are ruled out by the summation of the second order term of the
effective Hamiltonian. Thus the rest of Heff can be written in terms of PnH1Pn±1H1Pn
which are very similar to each other, the only difference being that all the indices 1 and
2 are reversed.
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Let us calculate PnH1Pn+1H1Pn explicitly

PnH1Pn+1H1Pn =

[(
a+ a†

)
gc

12a +
(
a+ a†

)2
gc

12aa +
∑
α

(
cα + c†α

)
ge

12α

+
∑
α,β

(
cα + c†α

) (
cβ + c†β

)
ge

12αβ +
∑
α

(
cα + c†α

) (
a+ a†

)
gm

12αa

]

×

[(
a+ a†

)
gc

21a +
(
a+ a†

)2
gc

21aa +
∑
δ

(
cδ + c†δ

)
ge

21δ

+
∑
δ,ε

(
cδ + c†δ

) (
cε + c†ε

)
ge

21δε +
∑
δ

(
cδ + c†δ

) (
a+ a†

)
gm

21δa

]
.

(6.33)

Some of the terms in Eqs. (6.32) and (6.33) can be discarded as insignificant on the basis
of the size of their coupling constants. Remember that Eqs. (6.11), (6.14) and (6.19) give
us the following relations

g
c/e
jkα ∝

1√
ω

c/e
α V c/e

,

g
c/e
jkαβ ∝

1√
ω

c/e
α ω

c/e
β V c/e

,

gm
jkαa ∝

1√
ωe
αωcavV eV c

.

(6.34)

Let us first take a look at the terms
(
a+ a†

) (
cα + c†α

)
and

(
a+ a†

)2 (
cα + c†α

)
since they

are the crucial interaction terms in the total Hamiltonian (4.2) where HS = ωcava
†a. With

the help of Eqs. (6.32)–(6.34) it can be seen that the strengths of these contributions are
proportional to (ωcavω

e
αV

cV e)−1/2 and (ωe
αV

e)−1/2 (ωcavV
c)−1, respectively.

The cavity is considered to operate in the optical frequency range spanning roughly 400–
800 THz, and the environment has a significantly larger volume compared to the volume of
the cavity. The separation of the mirrors of an optical cavity is usually in the range from
10−5 m to 10−2 m [11] making the volume of the cavity small. Therefore any coupling
constant connected to fourth order terms in c and/or a is negligible compared to the
strengths of the two interaction terms discussed above. These fourth order terms are
therefore discarded.

The argument for discarding the other terms that are not linear in the environment degrees
of freedom is slightly different. For instance, in order to discard the

(
cα + c†α

)2 term, it is
required that

1

ωe
αV

e
� 1√

ωe
αV

e

1

ωcavV c
⇒ 1√

ωe
αV

e
� 1

ωcavV c
. (6.35)

This inequality is satisfied since the volume of the environment effectively means the
volume of the rest of the “universe” outside the cavity, and the volume of the optical
cavity is very tiny. Additionally, the frequencies of the environment modes coupling
to the cavity are of the same order as the intrinsic frequency of the cavity, making the
omission of the

(
cα + c†α

)2 term justified based on the enormous volume difference of these
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two entities. From this follows directly that only terms linear in the environment degrees
of freedom are significant.

The volume arguments can be heuristically interpreted as a statement of the locality of the
interaction between the cavity and the environment. The cavity is very small, thus it has
a large overlap with the TLSs resulting in a strong interaction, whereas the environment
modes are more spread out.

In total, I am left with

Heff = ωcava
†a+

∑
α

ωαc
†
αcα

+
1

2

[
(M + 1) gc

22aa + (−M + 1) gc
11aa + 2hλ,n g

c
12ag

c
21a

] (
a+ a†

)2

+
1

2

∑
α

[
(M + 1) gm

22αa + (−M + 1) gm
11αa

] (
cα + c†α

) (
a+ a†

)
+ hλ,n

∑
α

[
gc

12ag
e
21α + gc

21ag
e
12α

] (
cα + c†α

) (
a+ a†

)
+ hλ,n

[
gc

12ag
c
21aa + gc

21ag
c
12aa

] (
a+ a†

)3

+ hλ,n
∑
α

[
gc

12ag
m
21αa + gc

21ag
m
12αa + gc

12aag
e
21α + gc

21aag
e
12α

]
×
(
cα + c†α

) (
a+ a†

)2
,

(6.36)

where hλ,n = λ/ (En − En+1) + λ/ (En − En−1).

Defining the following coupling strengths

gc
2 =

1

2

[
(M + 1) gc

22aa + (−M + 1) gc
11aa + 2hλ,n g

c
12ag

c
21a

]
,

gc
3 = hλ,n

[
gc

12ag
c
21aa + gc

21ag
c
12aa

]
,

gm
1,α =

1

2

[
(M + 1) gm

22αa + (−M + 1) gm
11αa

]
+ hλ,n

[
gc

12ag
e
21α + gc

21ag
e
12α

]
,

gm
2,α = hλ,n

[
gc

12ag
m
21αa + gc

21ag
m
12αa + gc

12aag
e
21α + gc

21aag
e
12α

]
,

(6.37)

and rearranging Eq. (6.36) using the common bosonic commutation relations, one gets

Heff = (ωcav + 2gc
2) a†a+

∑
α

ωαc
†
αcα

+
∑
α

gm
1,α

(
cα + c†α

) (
a+ a†

)
+
∑
α

gm
2,α

(
cα + c†α

) (
a+ a†

)2

+ gc
2

(
a2 + a†2 + 1

)
+ gc

3

(
3a+ a† + a3 + a†3 + 3a†a2 + 3a†2a

)
.

(6.38)

This formulation of the effective Hamiltonian justifies the appearance of different linear
and nonlinear dynamics of the cavity-environment system when mediated by two-level
systems. Most notably the displacement operator of the environment is coupled to the
displacement operator of the cavity both linearly and quadratically like the model Hamil-
tonian introduced in Chap. 4.
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Assuming that (ωcavV
c)

1
2 is very small, one can see that the linear coupling gm

1,α is stronger
than the quadratic one gm

2,α, as it is reasonable to expect. In the numerical calculations
above, the linear coupling is considered to be at least three orders of magnitude stronger.
Similarly one can justify that the shift of the resonant frequency of the cavity by 2gc

2 is
negligible compared to the fundamental frequency ωcav.

Additionally parametric coupling terms emerge. Parametric terms a2 and a†2, causing
the cavity field and the pump to have a different phases, are used by Pirkkalainen et al.
[55] to better align the theoretical model with the measurement data in their experiment
of squeezing the noise of a micromechanical resonator. They also suspect that nonlinear
dissipation could be the reason for the appearance of these terms. The above argument of
(ωcavV

c)
1
2 being small also means that the second order parametric terms a2 and a†2 are

more significant compared to the third order ones. The first order terms can be omitted
by applying a displacement operator on the effective Hamiltonian.
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Conclusions

The addition of even a very simple nonlinear coupling between a cavity and its environ-
ment alters the behaviour of the cavity distinctly. In the model explored in Chap. 4, the
average population of the cavity grows noticeably faster as the function of the strength
of the input field up to a certain threshold, after which it starts to decrease due to the
nonlinear dissipation mechanism. Moreover multiple equilibrium solutions of the average
cavity field emerge for strong enough laser pumping.

In addition, the nonlinear coupling to the environment gives rise to a change to the first-
order fluctuations around the equilibrium solution of the cavity field. As a direct result
the cavity spectral density is affected. An increased strength of the nonlinear coupling
increases the response while decreasing the linewidth. As opposed to the linear model,
the phase of the average cavity field also affects the spectral density of the cavity.

As the model discussed above is also applicable to mechanical resonators, these findings
emphasize the wealth of the phenomena that potentially can be observed in presence of
nonlinear dissipation effects.
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A

Derivation of the QLE for the nonlinear model
Hamiltonian

Let us explicitly express the derivation of the QLE of the system with the nonlinear
coupling to the environment (4.1) presented in Sec. 4.1. Consider a total Hamiltonian
including the Hamiltonians of the system, the environment, and the interaction between
these two

H = HS +HE +HI

= HS +
∑
n

ωnc
†
n (t) cn (t)

+ i
∑
n

gL
n

[
c†n (t) a (t)− cn (t) a† (t)

]
+ i
∑
n

gN
n

[
c†n (t) a2 (t)− cn (t)

(
a† (t)

)2
]
,

(A.1)

where the operators a and cn correspond to the system and the environment, respectively,
and gL(N)

n is the coupling constant of the (non)linear interaction. The time arguments of
the operators are important in the derivation, so they are left explicitly visible.

The system, the environment, and their mutual interaction form a closed system that is
subject to unitary time evolution described by the Heisenberg equation of motion (3.7).
Since the system Hamiltonian does not have any dependence on the environment field
operators cn, the Heisenberg EOM of the nth environment mode is

ċn (t) = i [H, cn (t)] = −iωncn (t) + gL
na (t) + gN

n a
2 (t) . (A.2)

This is an ordinary first order linear differential equation that can be solved for a given
initial condition cn (t0) at t0 < t to get

cn (t) = e−iωn(t−t0)cn (t0) + gL
n

∫ t

t0

e−iωn(t−t′)a (t′) dt′ + gN
n

∫ t

t0

e−iωn(t−t′)a2 (t′) dt′. (A.3)

For the system field operator, the Heisenberg EOM gives

ȧ (t) = i [H, a (t)] = i [HS, a (t)]−
∑
n

(
gL
n + 2gN

n a
† (t)

)
cn (t) (A.4)

following from the fact that the Hamiltonian of the environment (3.9) does not depend
on the system variable.

The formal solution of cn (A.3) can now be inserted to the EOM for a to make it a closed
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expression in terms of a and a†

ȧ (t) = i [HS, a (t)]−
∑
n

(
gL
n + 2gN

n a
† (t)

)
e−iωn(t−t0)cn (t0)

−
∑
n

(
gL
n + 2gN

n a
† (t)

)√
κL

∫ t

t0

e−iωn(t−t′)a (t′) dt′

−
∑
n

(
gL
n + 2gN

n a
† (t)

)√
κN

∫ t

t0

e−iωn(t−t′)a2 (t′) dt′.

(A.5)

Let us assume that the coupling constants gL
n and gN

n are independent of frequency(
gL
n

)2
=

κL

2πD
;

(
gN
n

)2
=

κN

2πD
, (A.6)

where D is the density of states over the oscillatory modes and it is constant since the
modes are considered to be evenly distributed, i.e. n = ωnD = n∂n/∂ωn. With these
new definitions, Eq. (A.5) takes the form

ȧ (t) = i [HS, a (t)]−
√

1

2πD

(√
κL + 2

√
κNa

† (t)
)∑

n

e−iωn(t−t0)cn (t0)

− 1

2πD

(√
κL + 2

√
κNa

† (t)
)√

κL

∫ t

t0

∑
n

e−iωn(t−t′)a (t′) dt′

− 1

2πD

(√
κL + 2

√
κNa

† (t)
)√

κN

∫ t

t0

∑
n

e−iωn(t−t′)a2 (t′) dt′.

(A.7)

Using the definition of the density of states, the following identity of the delta function
can be established∑

n

e−iωn(t−t′) =
∑
n

e−i
n
D

(t−t′) = 2πδ

(
1

D
(t− t′)

)
= 2π |D| δ (t− t′) (A.8)

that can be used to formally calculate the integrals of (A.7).

The input field is defined as

ain (t) = −
√

1

2πD

∑
n

e−iωn(t−t0)cn (t0) . (A.9)

I use Eqs. (A.8) and (A.9) on Eq. (A.7) to get the QLE of a

ȧ (t) =i [HS, a (t)]− κL

2
a (t)− κNa

† (t) a2 (t)−
√
κLκN

(
a† (t) a (t) +

1

2
a2 (t)

)
+
√
κLain (t) + 2

√
κNa

† (t) ain (t) .

(A.10)
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Derivation of the metastable–stable threshold value

Consider the zeroth order approximation in fluctuations of the QLE (4.11) of the nonlin-
early dissipative harmonic oscillator.

0 = i∆αt −
κL

2
αt − κNα

∗
tα

2
t −
√
κLκN

(
|α|2 +

1

2
α2
t

)
+
√
κLαin + 2

√
κNα

∗
tαin, (B.1)

where ∆ = ωp − ωcav is the detuning of the cavity. Divide the approximated EOM to
its real and imaginary parts. I denote Re (αt) = x and Im (αt) = y. In the following, I
assume that αin is a real number.{

0 = −∆y − κL
2
x− κN (x3 + xy2)−√κLκN

(
3
2
x+ 1

2
y
)

+
√
κLαin + 2

√
κNxαin

0 = ∆x− κL
2
y − κN (x2y + y3)−√κLκNxy − 2

√
κNyαin

(B.2)

For large enough values of the input field, this pair of equations has multiple solutions
of |α|, as seen in Fig. 7. The smallest valued one of these corresponds to the lowest
population of the oscillator, thus making it the stable solution. In the following, I derive
an expression of the threshold value of the input field where one of the metastable solutions
becomes the stable one. Unfortunately EOM (B.2) is too convoluted for this threshold to
be solved analytically exactly. Therefore I take the lowest order approximation in κN in
the limit κL � κN{

0 = −∆y − κL
2
x−√κLκN

(
3
2
x+ 1

2
y
)

+
√
κLαin + 2

√
κNxαin

0 = ∆x− κL
2
y −√κLκNxy − 2

√
κNyαin.

(B.3)

This pair of equations can be thought as a representation of two conic shapes, whose
intersections I am interested in. The problem is however a bit more subtle since I am after
the value of the input field where two solutions of |α| intersect, i.e. the intersections of the
two conics need to be of equivalent distance from the origin. Even this relatively simple
form does not produce any meaningful analytical expression of the threshold. Therefore
further approximations are needed. I solve formally for y to get

y =
∆x

κL
2

+ 2
√
κNαin +

√
κLκNx

, (B.4)

and I take the lowest, the first, order approximation of this with respect to x granting me

y =
∆x

κL
2

+ 2
√
κNαin

. (B.5)

This approximation is valid when 2αin �
√
κLx, i.e. when

|α|2 � 4α2
in

κL
. (B.6)
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Looking at the steady state solution of the linearly coupled cavity, i.e. Eq. (4.13) in the
limit κN = 0, one can solve

αt =

√
κL

κL
2
− i∆

αin. (B.7)

This shows that |α| acquires its maximum value in resonance so that

|α|2 =
4α2

in

κL
(B.8)

validating the approximation of y (B.5) in the regime ∆ � κL. This approximation can
be plugged back into Eq. (B.3). Now the pair of equations is easily solvable and the
approximate position of the threshold, where a metastable solution becomes the stable
one, is

αth
in =

√
κ2

L + 4∆2

4
√
κN

. (B.9)
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Derivation of the Schrieffer–Wolff transformation

Here I present the derivation of the formulation of the Schrieffer–Wolff method used in
Sec. 6.2. The derivation follows the presentation by Essler et al. [54].

Let P be a projection operator on a subspace PH of a Hilbert space H, and let H be a
Hamiltonian acting on this Hilbert space. Define the operator Q = 1− P . The following
relations

PHP |Ψ〉+ PHQ |Ψ〉 = PHP |Ψ〉+ PH |Ψ〉 − PHP |Ψ〉 = PE |Ψ〉 (C.1a)
QHP |Ψ〉+QHQ |Ψ〉 = E |Ψ〉 − EP |Ψ〉 = EQ |Ψ〉 (C.1b)

are satisfied if and only if the Schrödinger equation

H |Ψ〉 = E |Ψ〉 (C.2)

holds. Rewriting Eq. (C.1b) gives

EQ |Ψ〉 −QHQ |Ψ〉 = (E −QH)Q |Ψ〉 = QHP |Ψ〉
⇒ Q |Ψ〉 = (E −QH)−1QHP |Ψ〉.

(C.3)

This result can be plugged back into Eq. (C.1a) to acquire

PE |Ψ〉 = PHP |Ψ〉+ PH (E −QH)−1QHP |Ψ〉
⇒ EP |Ψ〉 = PH

[
1 + (E −QH)−1QH

]
P |Ψ〉.

(C.4)

Define now

Ĥ (E) = PH
[
1 + (E −QH)−1QH

]
, (C.5a)

|φ〉 = P |Ψ〉. (C.5b)

Consider that the Hamiltonian H consists of two parts, pure unperturbed Hamiltonian
H0 with the spectral decomposition

H0 =
∑
n

EnPn (C.6)

and a perturbation Hamiltonian H1 so that

H = H0 + λH1, (C.7)

where the parameter λ, describing the strength of the perturbation, is small. Define
Ĥn (E) by substituting the projection operator P in the definition of Ĥ (E), (C.5a), for
Pn. Note that all the results derived for the general projection P hold also for Pn.
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Using the properties of Pn, Qn, and H0, I can write [54]

Ĥn (E) =

En + PnH1

∞∑
k=0

λk+1

 ∑
m (m6=n)

PmH1

E − Em

k
Pn. (C.8)

By rearranging some terms, Eq. (C.4) can be written as

PnH1

∞∑
k=0

λk+1

 ∑
m (m 6=n)

PmH1

E − Em

k

|φ〉 = (E − En) |φ〉. (C.9)

Note that here |φ〉 is redefined to be included in PnH.

When λ = 0, the exact solution of this problem is E = En. For a small λ 6= 0 a
perturbative series around this known exact solution can be constructed. Up to the
second order it is

E = En + λE(1)
n + λ2E(2)

n . (C.10)

Now the spectral problem can be written as [54]PnH1Pn + λ
∑

m (m6=n)

PnH1PmH1Pn
En − Em

 |φ〉 =
E − En

λ
|φ〉, (C.11)

where the effective Hamiltonian on the subspace PnH is

Heff = PnH1Pn + λ
∑

m (m6=n)

PnH1PmH1Pn
En − Em

. (C.12)
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Fourier transform conventions

The Fourier transform conventions used in this work are

a (t) =

∫ ∞
−∞

dω

2π
a (ω) e−iωt,

a† (t) =

∫ ∞
−∞

dω

2π
a† (−ω) e−iωt,

a (ω) =

∫ ∞
−∞

dt a (t) eiωt,

a† (ω) =

∫ ∞
−∞

dt a† (−t) eiωt.

(D.1)

Let us show that Fourier transforming a differential equation turns it into an algebraic
equation. This happens because the following property of Fourier transform of a deriva-
tive. Integration by parts gives us∫ ∞

−∞
dt ȧ (t) eiωt = a (t) eiωt

∣∣∣∞
−∞
− iω

∫ ∞
−∞

dt a (t) eiωt = −iω
∫ ∞
−∞

dt a (t) eiωt,∫ ∞
−∞

dt ȧ† (t) eiωt = a† (t) eiωt
∣∣∣∞
−∞
− iω

∫ ∞
−∞

dt a† (t) eiωt = −iω
∫ ∞
−∞

dt a† (t) eiωt
(D.2)

The rightmost integrals can be identified using the above definitions of the Fourier trans-
form to show that the Fourier transforms of ȧ (t) and ȧ† (t), respectively, give us∫ ∞

−∞
dt ȧ (t) eiωt = −iωa (ω) ,∫ ∞

−∞
dt ȧ† (t) eiωt = −iωa† (−ω) .

(D.3)
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