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But helpless Pieces of the Game  
He plays Upon this Chequer-board of Nights and Days;  
Hither and thither moves, and checks, and slays,  
And one by one back in the Closet lays...  

Omar Khayyam 
(Rubaiyat, translation by Edward Fitzgerald) 



 

ABSTRACT 

Kyppö, Jorma 
The N-dimensional N-person Chesslike Game Strategy Analysis Model 
Jyväskylä: University of Jyväskylä, 2016, 256 p. 
(Jyväskylä Studies in Computing 
ISSN 1456-5390; 250) 
ISBN 978-951-39-6877-9 (nid.) 
ISBN 978-951-39-6878-6 (PDF) 

In this research a mathematical, symmetric n-player game model, based on chess is 
designed. Symmetry in this context refers to players' positions with respect to 
each other. While the order of move naturally violates the symmetry, this prob-
lem may also be solved. The motivation for building this kind of game model 
stems from the difficulty of finding mathematical solutions for multi-player 
games in general. The number of varying factors is so huge, that finding opti-
mal strategies is mathematically almost impossible. The best way to attempt 
this is to use simulation. Once the model has been built, it can be applied in 
many ways by using computational algorithms based on the created model. 
Chess in this design is the basic structure around which the model is built. The 
players’ weighting values can later be changed, as well as the weighting values 
of the pieces, in order to better reflect the variety of real-life situations. While 
chess is a board game, it can mirror various types of interactions between a 
number of different participants. Thus the game, in a larger extent, may play a 
role in understanding such things as politics, ecology and weather forecasting. 
During this research a great number of spin-off results and observations were 
discovered.  

The main objective and result of this research was, however, to create a symmetric n-
person strategy game, because currently there is no simple mathematical model for 
symmetric n-player, strategy games. 

Keywords: N-player strategy game, combinatorics, tiling, topology, chess, 
multinomial formula, tetrahedron, game theory, graph theory  
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1 INTRODUCTION 

Chess has been known as a game for some two thousand years. The basic form 
of this game was called chaturanga, and the movements of the pieces in this 
game differed significantly from their movements in the modern game of chess. 
There are various theories related to the primary structure of chess and 
particularly to its predecessor. Chess arrived in Europe around 1000 AD, and 
after several changes reached its present form. Ever since then, one of the most 
interesting pieces has been the knight. The strangeness of the knight’s moves in 
relation to the moves of the other chess pieces often led to people to connect 
chess with the rituals and religious magic of ancient India and with number 
theory and prime numbers. 

The knight’s moves on a chessboard can be described by using so-called 
knight’s trails and paths. The construction of knight’s trails and paths are classic 
problems and special cases of the Hamiltonian path problem in graph theory.  

This problem can be generalized, for example, by changing the number of 
cells or squares where the chess pieces are placed and, by changing the shape of 
the cells. In addition to the usual rectangular chessboard, two-dimensional 
triangular or hexagonal chessboards may also be used, for there are exactly 
these three different ways to tile an infinite, two-dimensional, plane surface by 
regular polygons. 

Why then does the knight move so strangely on the chessboard? Let's 
imagine that we are developing a chess game on a square board. Based on the 
details in Chapter 6, we will arrive at a game, which can be played on an 8x8 
rectangular board between four players. Historical references indicate that, in 
the beginning, chess was thought to have four players, but the movements of 
the chess pieces in early chess resembled, to some extent, the movements of the 
pieces in our theoretical chess models. 

One can also create three- or multidimensional variations of chess by 
means of the cube and hypercube. In all the variations, the knight’s moves may 
easily be defined. Not only the size and the form of the chessboard, but the 
knight itself and its moves may be generalized. The term hyperofficer is used for 
the hyperknights and hyperbishops situated on n-dimensional chessboards with 
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various tilings. The movements of hyperofficers may be depicted by so-called 
knights graphs. Knights graphs have the cells of the boards as vertices and the 
knight’s movements define the edges. 

1.1 Basis of the research 

The original idea for this research grew from research concerning the famous 
Four Color Conjecture (4CC), which appears now as the Four Color Theorem 
(4CT). This difficult problem, which emerged in 1878, has defeated hundreds of 
researchers over the past century. At the same time, however, it has given rise 
to a great deal of progress in the field of graph theory. Although the author of 
this research has also spent a few years trying to solve this problem, he did ob-
tain enough results that led to his master's thesis and orientation to graph theo-
ry, particularly to topological graph theory. 

The graph theoretical starting point for this work was suggested by 
studies concerning the knights trails mentioned above. Research on the general-
izations of these problems suggested the rules of so-called abstract chess, and 
this built the basis for new kinds of chess games. With the same boundary con-
ditions as those for the normal 64-square chessboard, we developed another 
game: hexagonal chess on an 87-hexagon board, made for three players. It was 
the number of players in the game that provided exciting new strategic dimen-
sions, which have no direct connection with the movement of the pieces. The 
movements of the chessmen follow, in line with the abstract chess idea, the 
normal rules of chess as far as possible. This led to other games built by the 
same principles: special kinds of chess games that are presented in this thesis’ 
6th and 7th chapters. 

 Background 1.1.1

Scientific research is largely motivated by natural human curiosity, an attraction 
of some kind of will to find something new, despite the fact that reaching the 
limits of knowledge is a hopeless task. Infinity and eternity do not feel pity to-
wards our often-failed attempts to find enlightenment. However, to expand 
mankind's knowledge is a fascinating task: to take one more step, to walk one 
more street, just to get a chance to look around the corner and see if there is 
something new to find.  

To make a new discovery in this world is really difficult. Every thought, 
every idea, every theory has probably already been conceived by someone else. 
When science is taking steps from one level to the next, it always creates condi-
tions for new discoveries and inventions. The question is not whether we will 
find them or not, but who will, and when? Always when a new discovery is 
made, our culture goes up a little higher on the stairs of knowledge and opens 
up opportunities for completely new kinds of achievements. It is rarely that we 
get very large results: the greatest part of the scientific work consists of small 
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results on one level. And it is quite usual that more than one researcher will 
offer their own tiny variation of any particular result.  

When starting his studies in the university, the foremost target of the au-
thor of this thesis was to reach a point on the frontier, where knowledge meets 
the unknown. This could provide an opportunity to step into new territory and 
add something new, no matter how small, to science. However, over time, one 
becomes aware that even the border area itself is so blurred that finding it is 
more than difficult. Every now and then you may think that you’ve got a mar-
velous idea that no one else has come across before. Later on, however, an ex-
amination of the literature will quite likely dispel that false notion. The result 
might have been published already a century ago, or just a few years ago. One 
of the most disheartening situations is when you are in the process of putting 
your newly obtained results in writing and you find that a journal has just pub-
lished identical results. You can always take solace by seeing that at least the 
direction seems to be correct. 

In Jyväskylä University there was in the 90’s a seminar, "Graphs and 
Knots," which was attended by visiting Professor Frank Harary, an internation-
ally-known graph theorist. During his visit, we considered a game theoretic 
problem, a possible solution to which we discussed by email correspondence. 
However, the solution was a proof similar to another problem, belonging to the 
field of graph theory. This problem concerned a generalization of the classical 
problem of finding a Hamiltonian path on a chessboard by a knight. The first 
proof of this problem was presented by Leonhard Euler in the 18th century. 
Constructing a new proof was done quickly enough and soon there were only a 
few special cases to solve. However, when this proof was almost ready, another 
research group published their proof of the same problem, using a different 
method, and our work remained unfinished.  

 However, this research did have a spin-off, because during the process we 
wondered if the problem could be generalized. This led to a further thought: 
why does a knight’s move differ so much from the moves of all of the other 
chess pieces? A few years earlier, the author of this thesis had been thinking 
about the same peculiarity and came to the conclusion that chess might origi-
nally have been a four-person game. This conclusion was based solely on the 
knight’s move and the shape of the game board, but very soon it became evi-
dent that this could really be true, as shown by some historians (Benton & Ben-
ton 1977, Bidev 1986, Bird 2004, Bornet 2012). 

This led to further research, and the realization that chess was divided into 
"prime elements" and its rules were made for the previously-mentioned abstract 
game of chess. The next stage of chess was rebuilt from these prime elements. 
All of the subsequent changes in the rules took place over the millennial jour-
ney of chess from India, to Persia, to Arabia, and then to Europe. As a result, 
two new games were created. The first one consisted of triangles, but was not 
playable by abstract chess rules, although it was a good theoretical model. The 
second game was composed of 87 hexagons and was quite an interesting and 
fascinating chess game for three players. 
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Because the second game seemed to be so interesting, it was reasonable to 
specify the rules in detail. However, the idea was to stay absolutely faithful to 
the rules of traditional chess. During its millennial history, chess had been go-
ing through several evolutionary stages, which made it so perfect, that even the 
smallest changes would cause unpleasant surprises. Some of the rules were 
easy to apply, but every now and then there came a situation, where we had to 
choose the most appropriate rule among several choices. In such a situation, the 
third game model, with triangles, was useful, as comparing it with traditional 
chess brought up a rule option, where the isomorphism requirement was best 
achieved. The game was born in two weeks, and was called Trichess by Profes-
sor Harary.  

The next step was to find out what kinds of games had previously been 
developed. It turned out that some quite similar games existed. In 1912 an Aus-
trian engineer, Siegmund Wellisch, invented a primitive game of chess on a board 
of 91 hexagons. It was primitive because in this three-player game, there were 
no bishops. The knights moved in same way as bishops in Trichess. In the earli-
er versions of Trichess, we also reached the same conclusion regarding bishops, 
but later found out, that the conclusion wasn’t correct. The most famous similar 
game was probably Polish chess, which was called Glinsky Chess, by its inven-
tor, Wladyslaw Glinski, who developed this game in 1936. This game is also 
played on a board of 91 hexagons, but it was designed for only two players. The 
movement of pieces corresponded to those of our Trichess pieces. For this game, 
which is also called Hexagonal Chess, world championship tournaments have 
been held since the 1980’s. (Gik & Määttänen 1988) 

However, it should be pointed out that these so-called fancy chess games 
have been extensively developed. Trichess differs from most of these games, 
because it was never developed for the purpose of generating a new game, it 
was just a spin-off product of the research concerning the mathematical struc-
ture of chess. 

We did, however, make several tests of Trichess. The first test games, 
which were the basis for making one rule change, were attended by brothers 
Pasi and Harri Halttunen, and a little later by a national level chess player, Risto 
Nevanlinna from Jyväskylä and a computer science teacher, Heikki Saastamoinen. 
After this, the game was ready.  

After that, it was left in a drawer for three years into a drawer, until there 
was an innovation competition, to which we entered it after a suggestion from a 
colleague. To our pleasant surprise, it became rewarded in this innovation 
competition. This led to the commercialization of the game, but also explicitly 
to its further development, which resulted in to a broader generalization of 
chess, to the universal chess model. 

The universal chess model, and consequently this study, might never have 
been on this stage if the patenting process would have not been such a problem. 
Already in the beginning of the process we found some slightly similar, but ba-
sically very different variations like the above-mentioned Wellisch chess, which 
we present also as an example in this thesis. However, the patent process re-
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vealed, that a person called Dana Rewega had received a patent (Rewega 1992) 
in the United States just a few months before the idea of Trichess was born. Re-
wega’s game was almost identical to Trichess. This did stop the direct patenting 
of the game, but not its development and marketing.  

A most interesting aspect of Rewega’s game is the realization that some of 
the same ideas can be born in different places around the world at same time. 
Rewega’s patent was approved at the end of 1992 and the idea of Trichess was 
born in May 1993. This innovation process is documented in e-mail correspond-
ence between the author and Professor Frank Harary (Appendix 1.) The birth of 
the process is explained in more detail in Section 6.1.1. How Rewega discovered 
his model remains a mystery because no other information about him is known 
after 1992. 

Later on we investigated whether the game could get some kind of patent. 
The first patent was about a boardless chess, a chess game without a chessboard 
(Kyppö 1997). This game was based on same ideas, which gave rise to the 
Trichess model. After this a patent application was made about the board num-
bering system (Kyppö 1999). Other similar games were found, but the game's 
extensive patenting outside Finland would have required the support of a clear 
marketing plan. However, even if an international patent application was made, 
it was not economically feasible to pay for it, because there were no clear and 
visible markets. The experience was interesting nevertheless, because it showed 
how difficult it is to publish ideas so that you can keep the copyright. 

However, the development of boardless chess was a part of the idea of 
universal chess, which got its birth from the patent problems of Trichess. Trich-
ess was a byproduct, or spin-off, of trying to solve a graph theoretical chess 
problem. In a way the patenting problems led to the continuing development of 
Trichess, and to deeper research into the elements of chess and finally to the 
model of universal chess, and to this research project. 

 The object of the research 1.1.2

The object of this research is to create a symmetric, n-person game model, 
which can be used to simulate, and solve, n-person game problems. Although 
the results of this study are initially used for constructions of n-person game 
strategies, the results can be later applied to understand and simulate other sys-
tems, which have several participants.  

One partial motivation for this research is the fact that in game theory 
there are no simple mathematical solution models for n-player strategy games. 
Therefore, one goal is a mathematical model, which can be used as a basis for a 
simulation model, because in game theory n-player problems are usually solved 
by simulation algorithms.  

Chess is suitable as a basis for this model, because it has clear rules, it is 
not based on randomness, and it has a finite number of solutions. The problem 
is the number of the solutions, which is so exponentially large that it has not 
been possible to benefit from this. However, this thesis also presents some 
smaller chess game variations, where a perfect definition tree is possible to pre-
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sent. In these multiplayer chess variations, the rules define them cooperative 
games, which means that it is possible to find allies in these games. This also 
makes the solution models more complex. 

Chess and checkers involve two players each of whom has a finite number 
of available strategies. Each player knows the other player’s moves, and there is 
no chance involved. Considering games with more than two players, one value 
will no longer suffice in representing the outcome. A cooperative game is one in 
which communication and coalition formation is allowed between players. A 
coalition is a subset of the n players among whom a binding agreement exists. 
For cooperative games with a given coalition structure, max”1 will find an equi-
librium point as a possible solution of the game and determine a strategy for a 
coalition. (Luckhart & Irani 1986) 

The theory of the general n-person game, in contrast to that of the zero-
sum two-person game, remains in an unsettled state. The chief problem seems 
to be that of determining the proper definition of a solution for such games. The 
efforts in this direction divide themselves into two groups, the cooperative the-
ory in which the players are expected to form coalitions, and the non-
cooperative theory in which such coalitions are forbidden. (Gale 1953) 

It is currently not known if Nash equilibria can be computed efficiently. 
For two-person games the known algorithms either have exponential worst-
case running time or it is unknown whether they run in polynomial time. For 
three player games, the problem seems to be even more difficult. While two 
player games can be formalized as a Linear Complementarity Problem (LCP) 
the problem for three player games is a Non-linear Complementarity Problem. 
Algorithms for approximating equilibria in multiple player games are also be-
lieved to be exponential. The problem of computing Nash equilibria is of con-
siderable interest in the computer science community and has been called one 
of the central open problems in computational complexity. (Lipton, Markakis & 
Mehta 2003) 

There are several fields in science and society, like mathematics, econom-
ics, meteorology and politics, where you can find use for the solution models of 
n-person games.  

One example is the Kyoto Summit described by Dementieva: Climate 
change is the first among the global environmental threats to civilization. We 
discuss a real-life cooperative game. Flexible mechanisms of the Kyoto protocol 
are the basis of the cooperative model. In our example there are three players: 
the European Union, the Russian Federation and the new members of the Eu-
ropean Union. (Dementieva 2004) 

This study examines the question: can the game of chess, or some other 
similar complex strategy game, be generalized using the same clear rules in dif-
ferent dimensions and in different tilings (tessellations) of the game board? The 
reason for this is that in a two-dimensional world, only three players, and in a 
three-dimensional world, only four players, can be placed in symmetrical posi-
tions to each other so that each player is in the same position relative to the oth-
                                                 
1  The algorithm of the authors 
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er players. In the higher dimensions, however, the number of different tilings is 
limited. After this, in case a suitable structure is found, the aim is to build a 
model, by which it is possible to achieve a simulating game software. This 
study is limited to chess because it is a widely known game, which has clear 
rules and already has been used to create strategies in politics, war, business, 
and other fields. 

1.2 Research problems 

Our aim here is to build a strategy game where n players can play against each 
other, so that they are all on an equal footing with each other as far as their po-
sitions on the board are concerned. We use the word symmetrical to describe this 
situation. The research question: 
 

Is it possible to create a multi-person-strategy board game, where n  
players are symmetrically positioned with respect to each other? 

 
Regardless of the form a two-dimensional game board has, it is not possible to 
place more than two or three players symmetrically to each other on it. By 
symmetry we mean here the strategic positions of the points in relation to each 
other for all the players. Two and three points can be set on a plane so that they 
all would play the same strategic role in relation to each other. For four or more 
points this is not possible. The opposite points' positions differ from those of the 
adjacent points, regardless of what kind of game board we choose to consider. 
Adding a fourth player requires a three-dimensional game board, and generally 
an n-player game board must be n + 1-dimensional. Four points are symmetri-
cally in three-dimensional space, three on a plane and one above them. The 
shape of the game board is n-simplex, also known as n-dimensional hypertetra-
hedron. A problem arises when we tile the game board into similar cells. In 
higher dimensions, this kind of tiling can be done only by hypercubes (honey-
combs), which have a shape that differs from hypertetrahedra. This means, that 
we can get a suitable shape for a multidimensional game board by using the 
hypertetrahedra, but a workable inside structure is achieved by using hypecu-
bes. Neverthless, it is quite complicated to use these two structures together. 

We decided to use the traditional game of chess as a base for the rules for 
this game, because these rules have a millennial history and the game has been 
widely used in game strategy research. Consequently another aim of this research 
is to build for this game such movements of pieces, which are isomorphic with the chess 
rules. 

Deep Blue was the first chess computer to defeat a reigning human world 
chess champion in a regulation match. A number of factors contributed to the 
system’s success, including its ability to extract useful knowledge from a data-
base of 700,000 Grandmaster chess games. Deep Blue takes a different approach 
for using the opening information in its database. Instead of subjecting a few 
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selected positions to detailed analysis, it creates an additional database we call 
the “extended book.” The extended book allows the system to quickly summa-
rize previous Grandmaster experience in any of the several million opening po-
sitions in its game database. Deep Blue uses knowledge extracted from the 
Grandmaster game database to improve its performance in actual play. The ex-
tended book technique, involving summarized human decisions to bias a 
search, also appears to be of general value in non-chess domains with access to 
large databases based on expert decisions. These databases include other 
games, medical diagnoses and stock trading. They are handy, especially when 
there is a useful similarity measure between differing situations for a given do-
main. (Campbell, Hoane & Hsu 2002)  

In our earlier research, we embedded the rules of chess in a 3-person 
game, which gives a good starting point to our n-person model. The extended 
book technique used by Deep Blue cannot be directly applied to n-person mod-
els because there doesn’t exist any database of such games. However, their 
similar rules provide some opportunities to also apply this technique in sub-
programs. And if the symmetrical model is workable, it can later be applied to 
different kinds of real-world game positions, for example by changing the pow-
ers of the players. 

1.3 Main Concepts 

Game theory, graph theory, chess, strategy games, combinatorics, arithmetical 
triangle, tiling (tessellation), hypercube, simplex – here we need all of them. An 
important main concept is naturally the graph. Figure 1 shows the three main 
parts of a graph G = (V, E), having vertices (a), edges (b) and faces (c). In the 
literature a vertex is also known as a node or a point, an edge as a line or arc 
and a face as a region.  

 
 

 

Figure 1 The basic elements of a graph 

Other basic concepts in this thesis are the degree of a vertex, the degree of a 
face, planar graphs, dual graphs and directed graphs (digraphs). The degree of a ver-
tex v is denoted deg(v) and equals the number of edges connected with or inci-
dent to the vertex, and a face degree, deg(f), is the number of edges surround-
ing the face. For example, Figure 1 shows that deg (a) = 2 and deg (c) = 3. 

A digraph or directed graph is a graph with each of its edges directed. 
(Gross et al. 2004). The directions are usually drawn as arrows. 
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A graph is said to be embedded in a surface S when it is drawn on S so that 
no two edges intersect. A graph is planar if it can be embedded in the plane. The 
planar graph has also a dual graph. Given a plane graph G, its geometric dual G* 
is constructed as follows: place a vertex in each region of G, including the exte-
rior region, and if two regions have an edge x in common, join the correspond-
ing vertices by an edge x* crossing only x. The result is always a plane pseudo-
graph. A 2-connected plane graph always has a graph or a multigraph as its dual, 
while the dual of a 3-connected graph is always a graph. A multigraph is a 
graph, where no loops are allowed, but more than one edge can join two verti-
ces. If both loops and multiple edges are permitted, we have a pseudograph. A 
loop is an edge joining a vertex to itself. The connectivity κ(G) of a graph G is 
the minimum number of vertices whose removal results in a disconnected 
graph or a graph having a single vertex. A graph G is n-connected if κ(G)  n. 
(Harary 1969)  

1.4 The Results 

The main result is the symmetrical n-person strategy game model, presented in 
Chapter 8. However, there are several spin-off results in different chapters. In 
Chapter 4 there is a hypothesis about the origins of famous Phaistos Disk in Crete. In 
same Chapter 4 there is also Fjögratafl, a hypothetical four–person tafl. The Chapter 
6 consist some previous ideas and innovations of the author including Trichess, 
Bridge chess, and Chess without a board. Also all the game models, including Large 
Chess and Four Dimensional Chess in Chapter 7 are made by the author. Some of 
the constructs of this chapter have been previously published or patented. In 
Chapter 8 there is the main result, but also a small result concerning a generaliza-
tion of Pascal's rule. Chapter 9 includes only spin-off results for the continuing 
research of the author, including the generalization of the Euler-Poincare character-
istic, some generalizations of Fibonacci sequences, strategy networks of small chesslike 
games, induced cycles in Pascal's polytopes, and some notes on the odd and even Eu-
clidean dimensions including Euler’s characteristics, Pi, and a generalization of the 
Golden Ratio. 

1.5 The structure of the thesis 

The thesis is divided into four main sections, from the general background the-
ory and previous results to the actual research problem and its solution. At the 
end of the thesis and before the summary, there is a chapter for the concluding 
remarks. It includes other results, which were obtained during the research 
process. They are also possible topics for further research. In Chapters 2 and 3, 
we give the tools to build the model. Chapters 4 and 5 discuss the history of 
board games and chess variations, which provides the background for this re-
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search. Chapters 6 and 7 describe our earlier research in this field, and in Chap-
ter 8 we present the model and its solution. In Chapter 9, we present some spin-
off results of this work for future research. In Chapter 2, Game Theory and N-
person Games, we discuss the problems and motivations for this research. Chap-
ter 3, Tiling in Different Dimensions, deals with the background theory, which is 
needed in Chapter 7. In Chapter 4, History and Prehistory of Chess, we explain the 
background of board games in relation to chess, and in Chapter 5, Later Chess 
Variations, we study chess variants occurring through the centuries. From Chap-
ters 4 and 5, there is a direct continuation to the game designs in Chapters 6, 7 
and 8. Chapter 6, The Basic Model of Universal Chess, deals with our earlier pub-
lished results, and Chapter 7, The Extensions of Universal Chess, concerns our ear-
lier unpublished results. In Chapter 8, Symmetric N-person Chess, we present the 
model we were searching for and the solution of this of this research problem. 
Chapter 9, Concluding Remarks, presents other results found during this research. 
In a few words, we could say that Chapters 2 and 3 are the soil from which this 
research grows, Chapters 4 and 5 create its roots and Chapters 6 and 7 the body 
or the trunk. Chapter 8 is the treetop and Chapter 9 the branches. 

The structure of the work and the connection between its chapters are il-
lustrated in Figure 2, where some of the results are also shown inside the boxes. 
The box of Chapter 9 is connected by lines to other boxes to show from which 
part of the research the spin-off results were obtained.  
 
 

 

Figure 2 The structure of the thesis 

1.6 Relation with other research 

This thesis is a monograph; however, parts of the contents are based on earli-
er works either published or patented by the author. The thesis is connected, 
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to a certain extent, with two patents Game especially chess and The numbering 
system of game board (Kyppö 1997, Kyppö 1999). This work also has some fairly 
thin interfaces with the author's licentiate thesis (Kyppö 1994). Some parts of 
the licentiate work can be found in Chapter 3, which deals with the theory of 
tiling. The workings of the patents are described in Chapter 6. 



 

2 GAME THEORY AND N-PERSON GAMES 

Game theory is a mathematical theory which deals with the interactions of in-
dividuals in some situation, usually that of conflict. There are choices available 
for each individual, and the eventual outcome of the game depends upon the 
choices of all the players involved. Each player has some influence on the even-
tual result of the game and will get the appropriate reward or suffer a loss. The 
key feature of the most interesting games is that the best choice depends upon 
the choices of the other players, and this is what differentiates the game theory 
from optimization theory. (Broom & Rychtar 2013) 

Each of us has to constantly make decisions, and these decisions must be 
based on something. Decision-making under uncertainty is, from a mathemati-
cal point of view, a complex process, where you must consider a huge number 
of different methods and theories. All these are connected by the fact that one-
person decision-making happens in a complex environment, in which the other 
participants are only variables that do not make decisions. In this environment, 
the decision-maker is only trying to find an optimal solution.  

The situation changes significantly if the decision-maker must also consid-
er the acyions of other decision-makers. In this case, we move into the field of 
game theory. 

Game theory is a subfield of mathematics, but it also has connections with 
the social and behavioral sciences. It studies interactions and decision-making 
between two or more participants in situations where their interests and goals 
are usually opposed but often also parallel, either partially or fully. In n-person 
games, the goals can be contradictory or shared by some of the participants. 

The game theory that is used to support decision-making is a wide sub-
field of operations research. The difference between the game theory and the 
optimization problems in operations research is the number of decision-makers 
with opposing interests. This number in game theory is usually two or more.  
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2.1 Background of the game theory 

Although people have been playing various games for thousands of years, 
when did we begin to analyze games? 

The Babylonian Talmud is a compilation of ancient law and tradition set 
down during the first five centuries AD and serves as the basis of Jewish reli-
gious, criminal and civil law. One problem discussed in the Talmud is the so-
called marriage contract problem: a man has three wives whose marriage con-
tracts specify that in the case of his death they receive 100, 200 and 300 units of 
the property, respectively. The Talmud gives apparently contradictory recom-
mendations. When a man dies leaving an estate worth of only 100 units, the 
Talmud recommends equal division. However, if the estate is worth 300 units 
proportional division (50,100,150) is recommended, while for an estate worth of 
200 units, its recommendation of (50,75,75) is a complete mystery. This particu-
lar Mishna has baffled Talmudic scholars for two millennia. In 1985, it was rec-
ognized that the Talmud anticipates the modern theory of cooperative games. 
Each solution corresponds to the nucleolus of an appropriately defined game. 
(Walker 1995) The Nucleolus method is one of the classic methods in game theory 
(Balog et al. 2012). 

In such games as chess where players alternate moves, but where there is 
effectively only a finite number of game sequences, there will be a determined 
an outcome with best play, usually assumed to be a draw. Thus if a player is 
sufficiently intelligent, he or she could work out the best play. This is formal-
ized in the original theorem of game theory, Ernst Zermelo’s theorem. Zermelo 
(1913) stated that in chess there is either a forced win for white, or a forced win 
for black, or the result is a draw, both sides can force a draw. (Broom & Rychtar 
2013) 

Poker involves not only strategy but also the luck of the draw. If you get a 
poor hand, you’re likely to lose no matter how clever your strategy is. In chess, 
on the other hand, all the moves are chosen by the players. Zermelo’s paper on 
chess apparently confused some of its readers, many secondary reports of his 
results being vague and contradictory. Zermelo tried to show that if the White 
player managed to create an advantageous arrangement of pieces it would then 
be possible to end the game within fewer moves than the number of possible 
chessboard arrangements. By a “winning configuration” or “advantageous ar-
rangement” Zermelo meant to achieve a situation from which White would be 
sure to win assuming that White didn't make any dumb moves. Zermelo 
proved his proposition by using principles of set theory. (Siegfried 2006) 

Modern game theory was born probably in 1944, when John von Neu-
mann, together with Oskar Morgenstern, published Theory of Games and Econom-
ic Behavior. The book was the foundation of much of modern game theory, in-
cluding the concept of cooperative games. But before this book, Emile Bore gave 
in the 1920’s an explicit demonstration of mixed strategies and minimax solu-
tion for two-player games. The classical game of Prisoner’s Dilemma was first 



30 
 
formulated in 1950, by Melvin Dresher and Merrill Flood. The name of the 
game and its associated story was invented by Albert W. Tucker as late as 1980. 
(Broom & Rychtar 2013) 

2.2 Two person games 

Two-player games are played by just two players. Before going to n-person 
games we study some classic two-player games. 

The popularity of pairwise games is not simply due to their relative sim-
plicity, but also to the wide applicability of this idea. (Broom & Rychtar 2013) 

 Two-person zero-sum games 2.2.1

The two-person zero-sum game is a simple game model. John von Neumann 
and Oscar Morgenstern developed a theory of how two-person zero-sum 
games should be played. There are two players: the row player and the column 
player. Both can choose among a number of strategies: the row player has 1, .., 
m and the column player 1, ..., n strategies. The use of each strategy in relation 
to the other player's strategy brings a reward. The zero-sum game got its name 
from the fact that the amount of these rewards is zero for all the strategies. 
(Winston 1994) In a matrix, zero sum means that the rewards are the row play-
er's profits while the column player loses an equivalent amount. Figure 3 
shows an example of a reward matrix of the zero-sum game. Here the row player 
has five and the column player six strategies.  
 

 

 

Figure 3 The payoff matrix of zero-sum game 

The solution for a zero-sum game is obtained by finding the minimum 
reward in every row of the row player. It is added to the last column on the 
right as a row minimum. After that - although here the order does not matter – 
we seek from the column player’s reward columns the maximum value and 
place it on the last row as the column maximum. Once this has been done, the 
row player chooses from the column of the row minimum the maximum value 
and selects the indicated strategy. In the example of Figure 3, the row player 
chooses the 6th strategy. In other words the row player chooses from each strat-
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egy the reward with which he could at least win and places it at the strategy 
row on a column on the right side of the matrix. From this column, the row 
player then chooses the strategy which has the greatest reward. Next, the col-
umn player searches the minimum value of the column maximum, and that will 
be his/her strategy. The reason for this is that the column player’s rewards are 
in fact losses which should be minimized. Therefore the column player selects 
from the options the worst one in each strategy, finally choosing the strategy 
where the worst option is the least bad. In this case, the choice would be the 4th 
strategy. Because all the rewards are positive in this example, it seems that the 
column player always loses, but the figures are relative. The matrix would look 
more reasonable if, for example, we reduced five credits from each reward. If 
we did so some of the rewards would get a negative value. Consequently, the 
negative numbers would be losses for the row player but profits of the column 
player. 

If the maximum reward of the minimum row has the same value as the 
minimum reward of the column maximum, then min (column maximum) = 
max (row minimum), the game has a saddle point. The saddle point is also the 
value of the game for the row player. If the game has no saddle point, then the 
value of the game cannot be calculated. In the example of Figure 3, there is a 
saddle point, because min {8,9,8,6,9} = 6 = max {2,2,0,1,1,6}. The saddle point is 
also the equilibrium point of the game. In that case, neither player should change 
the strategy, as a one-sided change would risk getting worse result for the play-
er doing it. (Winston 1994) 

If the reward of X is reduced in point (X,Y) = (strategy 6, strategy 3) to five, 
then the situation will change (Figure 4). The players would continue by choos-
ing the same strategies, but the saddle point would be lost and min = {8,9,8,6,9} 
= 6  5 = max {2,2,0,1,1,5}.  

 

 

Figure 4 A Zero-sum game without a saddlepoint 

We might speculate how the players would behave if they could guess the 
next strategy of the opponent. Such a "chain of speculations" (if "X knows, that 
Y knows"), however, creates a loop after a few steps, and the strategies that nei-
ther of the players would choose would remain outside of this loop. A situation 
where there is no saddle point in a zero-sum game can be solved by eliminating 
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first so-called dominating strategies and finally by solving the problem, either 
graphically or as an LP-problem.  

There are also games which don’t have a unique minimum of the column 
maximum or a unique maximum of the row minimum. Instead there may be 
several of them. A typical example of such game is the children's favorite game, 
stone-paper-scissors, where the players keep their hands first hidden and then 
show them, both at the same time. Each player can choose from among three 
different hand strategies (paper: palm is open, scissors: two fingers point out, 
stone: the hand is closed as a fist). The reward matrix can be formed by using 
the following rules: stone can break scissors, scissors can cut paper, and paper 
can cover stone. As a result, the reward matrix will look like in Figure 5.  

 

 

Figure 5 The Stone-, paper, scissors-game 

The task can be solved as a linear optimization problem (LP-problem) 
where every strategy gets the value of 1/3. The value of the game will be zero. 
However, solving a game situation as an LP-problem does not belong to this 
thesis as it has no relevance with the present research problem.  

 Two –person constant-sum games 2.2.2

The basic idea in a two-person constant-sum game is the same as in the zero-
sum game. The sum in the two-person constant-sum game is some constant c, 
whereas in the zero-sum game it is always zero. In other words, the zero-sum 
game in fact is a constant-sum game where c = 0. Rewards and strategies are 
presented in the same way in both, that is, by using a reward matrix. Also in 
this matrix the rewards reflect the row player's profits and the column player’s 
loss. If all the rewards are positive, then the column player always loses some 
amount.  

The solution of this game is similar to that of the zero-sum game. We 
search from each row the row minimum, and from each column the column 
maximum. After that one has to find the maximum value among the row min-
imum values and the minimum value among the column maximum values. 
These results give the optimal strategy for both players. So the strategy is to 
choose the option of “the best bad result”. The basic assumption is that the 
game is always played in the best possible way and that your opponent is fa-
miliar with this strategy. Figure 6 is an example of a constant-sum game.  
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Figure 6 A Constant-sum-game 

In this example, we have a game where two imaginary politicians, here the 
column player and the row player, are struggling over the votes of a million 
voters. The numbers in the game matrix have to be multiplied by 1000. Thus the 
value of 720 means 720 000 voters. The numbers are based on Gallup surveys 
made before the elections. In the election campaign, there are four possible po-
litical themes and the candidates choose their electoral strategies from among 
them. Each candidate must think which of the campaign strategies A, B, C or D 
he/she should emphasize. 

 The numbers in the matrix refer to the row player’s voters. If each player 
chooses the A strategy, then as a result the row player will get 720 000 votes and 
the column player 1 000 000 - 720 000 = 280 000 votes. Each player tries to find a 
game strategy where the smallest possible reward is the greatest. Thus, the row 
player lists for each strategy the worst possible outcome and places it on the 
right side of the matrix, in the Min-column. From among these rewards, the 
row-player selects the greatest one, in this case, the B strategy, which adds up to 
550 000 votes. The column-player acts in the opposite way by listings for each 
strategy the best possible outcome, which is then placed below the matrix in the 
Max-row. From among these rewards, the column-player selects the smallest 
one, in this case, the B strategy, which has 550 000 votes. For the column-player 
this means, that he/she will get 1 000 000 – 550 000 = 450 000 votes. Because 
both players have chosen strategy B, the row-player will win the election by 550 
000 votes against 450 000. Naturally, the column-player could have chosen a 
different strategy, but in all of them the loss would have been greater against 
the B strategy the row player chose. If the row-player had chosen some other 
strategy in the case where the column-player selects the B strategy, then the 
row-player would have lost in two of them, in A and C and won in D. But also 
with the D strategy he/she would have won less than in the chosen strategy. In 
addition, in this game Max (row minimum) = 550 = Min (column maximum), 
which means that the game also has a saddle point and hence 550 is also the 
value of the game for the row-player. (Winston 1994) 
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 Two-person non-constant-sum games 2.2.3

Most of the business game models are not constant sum games. They are usual-
ly non-constant sum games because, in the world of business, the competing 
sides are rarely in full conflict amongst themselves (Winston 1994).  

Two-person non-constant-sum games can be divided into so-called co-
operative-sum and non-co-operative-sum games. We will observe as an exam-
ple a small non-co-operative-sum game where the players are not allowed to 
jointly plan their strategies, and we will see what could happen when the game 
becomes co-operative. The reward matrix differs in some detail from the zero-
sum game reward matrix. The rewards are expressed with coordinates of two 
numbers (x, y). The number on the left (x) gives the reward of the row player, 
and the number on the right (y) is the reward of the column player. Because the 
given numbers now stand for profits for each player, also the column player 
will get the maximum reward from among the minimum rewards (not the other 
way around). 

Let’s take again the example in politics. Two ministers from different par-
ties, A and B, are fighting for power inside the government and both have two 
main strategies: to increment one’s own power by a dirty game behind the back 
and at the expense of the other player (X) or to create a consensus with the other 
party (Y). The rewards of these strategies have been estimated in such a way 
that taking all the powers for yourself will give five points because of the ad-
vantages brought by your increased power, but at the same time the attempt to 
try to achieve this goal brings two minus points because of the lost political 
reputation and possible disintegration of the government, and other conse-
quences as well. Correspondingly, loss of your own power brings three minus 
points. A consensus with the other party in maintaining the government pro-
vides neither credit nor loss points to your tally.  

With this information, a reward matrix can be created (Figure 7, on the 
left). Here A is the row player and B the column player. It should be noted that, 
if both choose the attacking strategy X, then the government will break down 
and both players will lose. If both sides select a consensus, then the government 
will stay put and the situation will remain unchanged, resulting in status quo. 
The profit towards securing a victory can be obtained by the player only if the 
player selects an attacking strategy but the opponent does not do same, and will 
lose the game. However, here the matrix tells us that in this case the equilibri-
um point is not the point where the government can be maintained but where 
both players choose the offensive strategy while losing at the same time politi-
cal points. This example, from real life warns us about circumstances where the 
balance of power could eventually lead to a negative outcome for the state. 
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Figure 7 A Non-constant-sum game 

If, instead, this game was played co-operatively, then the players would 
probably choose a strategy that would give the most favorable outcome to all 
the participants. In that case, the government would stay and neither of the par-
ticipants would experience any great gain or loss.  

If we evaluate the rewards in different strategies, we notice that the equi-
librium point remains the same also in a situation where victory would bring 
better rewards. On the other hand, if the loss, which means a loss in the power 
position, is reduced from three points to one point, then the equilibrium point 
will change its position to where it supports the government (Figure 7, on the 
right). In Figure 8, we have the same game analyzed graphically. Also in this 
illustration, we can see the change of the equilibrium point. The equilibrium 
point is on the centroid of the polygons. The centroid a polygon is the arithme-
tic mean position of all the points. 

 
 

 

Figure 8 A Non-constant-sum-game seen in the coordinate system 

A classic example about two person non-constant-sum game without co-
operation is the famous prisoner’s dilemma. Two escaped prisoners who had par-
ticipated in a robbery have been recaptured and a new trial is waiting for them. 
Before their capture, they had decided not to confess. They both are guilty, but 
the police does not have enough evidence. To get them to testify against each 
other, the police tells each prisoner: “If only one of you confesses and testifies 
against the partner in crime, the person who confesses will go free while the 
person, who doesn’t confess will be convicted and given a 20-year jail sentence. 
If neither of you confesses, you will each get a 1-year prison sentence. If both 
confess, the sentence will be 5 years for each. After this declaration, the prison-
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ers are not able to discuss the matter and hence are unable co-operate among 
themselves (Figure 9).  

 

 

Figure 9 Prisoner’s dilemma 

For each prisoner, the “confess” strategy dominates the “don’t confess” 
strategy. If each prisoner follows his “confess” strategy, both get five years in 
jail, but if they keep on their original plan, and do not confess, both get only one 
year in prison. In this game, (-5,-5) is the equilibrium point because if either 
prisoner changes his strategy his reward will decrease from -5 to -20. However, 
each prisoner would be better off at point (-1, -1). (Winston 1994) 

The paradoxical quality of this result helps explain part of the fascination 
of the dilemma and the game. But the major reason for the interest is purely 
practical. Comparable outcomes in social life are often less advantageous than 
we might hope, and the prisoners’ dilemma provides one possible key to their 
understanding.  

It is tempting to think that the problem here arises because the prisoners 
cannot communicate with one another. If they could get together, they would 
quickly see that the best result for both comes from ‘not confessing’. But com-
munication is not all that is needed. Each still faces the choice of whether to 
hold to an agreement that they have struck over ‘not confessing’. Is it in the in-
terest of either party to keep to such an agreement? A quick inspection reveals 
that the best action in terms of pay-off is still to ‘confess’. (Heargrave Heaps & 
Varoufakis 1995) 

2.3 N-person games 

In most competitive situations, there are more than two competitors. Any game 
with n players is an n-person game. We begin with several citations starting 
from the year 1950. 

One may define a concept of an n-person game in which each player has a 
finite set of pure strategies and in which a definite set of payments to the n 
players corresponds to each n-tuple of pure strategies, one strategy being taken 
for each player. For mixed strategies, which are probability distributions over 
pure strategies, the pay-off functions are the expectations of the players. This 
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gives rise to polylinear forms of the probabilities with which the various players 
play their various pure strategies. (Nash 1950) 

The complexity of the mathematical work needed for a complete investi-
gation increases rather rapidly with increasing complexity of the game. So it 
might only be feasible to use approximate computational methods. A less obvi-
ous type of application is the study of cooperative games. By a cooperative 
game we mean a situation involving a set of players, pure strategies and pay-
offs as usual; but with the assumption that the players can and will collaborate. 
This means the players may communicate and form coalitions which will be 
enforced by an umpire. (Nash 1951) 

The theory of the general n-person game, in contrast to that of the zero-
sum two-person game, remains in an unsettled state. The chief problem seems 
to be that of determining the proper definition of a solution for such games. The 
efforts in this direction divide themselves into two groups, the cooperative the-
ory in which the players are expected to form coalitions, and the non-
cooperative one in which such coalitions are forbidden. The most general theo-
rem in the literature concerning n-person games with perfect information states 
that all such games possess an equilibrium point among their pure strategies. 
This equilibrium point will not in general be unique, nor will such games be 
solvable in the sense of Nash. (Gale 1953) 

If the object of game theory were to uncover effective strategies in situa-
tions involving conflicts of interest, then the investigations would center on the 
construction of the game tree and on examining the outcomes resulting from 
the combinations of strategies by several players. Enormous difficulties would 
be encountered here. To see this, let us take one of the simplest games of strate-
gy, Tic-Tac-Toe, and see what is involved in constructing its game tree. Issuing 
from the root, there are 9 branches, which represent the 9 first moves open to 
Player 1. Each of the new branch points will have 8 branches. We must continue 
this branching process for at least 5 moves, since no game can end before the 
fifth move. By the time we get to the fifth move, we have 9x8x7x6x5 = 15120 
branches. To be sure, we can drastically reduce this number by taking into ac-
count the symmetries of the Tic-Tac-Toe grid. For example, on his first move, 
Player 1 has essentially only 3 alternatives: center, corner, and side. Were he 
choose center, Player 2 would have essentially two alternatives: corner or side; 
if Player 1 chose side, Player 2 would essentially have five alternatives (since 
one degree of symmetry remains); and so on. Nevertheless, even taking symme-
tries into account, we would have a rather large tree; and although some effort 
would be saved in reducing the number of branches, more effort would be 
needed to examine the sets of situations which are equivalent by symmetry. 
(Rapoport 1970)  

Figure 10 (left and center) shows the two situations, where Player 1 (x) 
chooses the center and a side. Player 2 (o) chooses a corner and a side in this 
figure. The rightmost picture shows a situation where Player 1 wins the game. 
This simple game and the problematics we face when building its game tree has 
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connections with the issue we discuss in sub-section 9.2, which deals with small 
chesslike games and their game trees. 

 

 

Figure 10 Tic-Tac-Toe 

When we are dealing with real life situations, a preliminary problem must 
be solved before the game tree is constructed. One must ascertain the "rules of 
the game". The essential function of rules is to delimit and specify the available 
alternatives and several situations which can result from the player's choices. If 
the number of "moves" and the number of alternatives available at each move 
are quite small, it may be possible to list each player's available strategies. The 
representation of the game by its strategies alone is called representation in 
normal form. Once the game is represented in the normal form, the rules of the 
game become irrelevant. The rules are important only to the extent that they 
determine the structure of the game tree and through it the available strategies 
and outcomes associated with the combined strategy choices. A two-person 
game represented in the normal form is a game matrix with rows and columns. 
A three-person game would have to be represented by a three-dimensional grid 
and an n-person game by an n-dimensional grid with an n-tuple of payoffs in 
each "box". Once the game is represented in the normal form, the game matrix 
(or grid) rather than game tree becomes the mathematical object of interest. 
(Rapoport 1970) 

Trees are often used as models of decision making in artificial intelligence 
(AI) and game theory. From the rules or definition of a game, the game tree rep-
resentation can be specified for an n-person game. Because most games of inter-
est have combinatorially explosive game trees, AI programs tend to analyze 
partial game trees in order to determine best moves. 

Game theory solutions to non-cooperative games are usually a set of strat-
egies for each player that are in some sense optimal: the player can expect the 
best outcome given the constraints of the game and assuming the other players 
are attempting to maximize their own payoffs. A solution for an n-person, per-
fect information game is a vector which consists of a strategy for each player. 
For the player a strategy defines the move to make for any possible game state. 
(Luckhart & Irani 1986) 

There are examples of small three-player games, with rational payoff ma-
trices, in which all Nash equilibria are irrational. Algorithms for approximating 
equilibria in multiple player games are believed to be exponential (Lipton, 
Markakis & Mehta 2003). 
 



39 
 

There is a huge amount of literature about two-person games among N 
participants. We, however, believe that the participants of a genuine N-person 
game should simultaneously play with all the other players in the game. The 
appearance of powerful personal computers has made the modeling and simu-
lation of N-person games possible. Several papers have appeared describing 
simulations of some practical situations. (Szilagyi 2012) 

The lack of attention from biological disciplines on multi-player games has 
two reasons. Firstly, real conflicts often comprise pairwise games, and a lot can 
be learnt from considering them. Secondly, the mathematics involved in the 
analysis of multi-player games is more complex, and it is harder to come up 
with generalizable results. (Broom & Rychtar 2013) 

Citing Rapoport above: “Two-person game is represented as a game ma-
trix and N-person game as an n-dimensional grid” (Figure 11). Broom and 
Rychtar concentrate to analyze multi-player games through biology, but these 
rules are general. The complete payoffs to the three-player, two-strategy game 
can be written as: 
 

 
 
Similarly for the four-player, two strategy game we have:  
 

 
 

 
 

 

Figure 11 Four-player game represented in a 4-grid 

Some games are directly formulated as multiplayer games, and some 
games can be easily modified for many players. Killer whales, Orcinus Orca 
have been observed to use a collective hunting technique, the so-called carousel 
feeding. A small group of whales releases bursts of bubbles to round the prey 
into a tight defensive ball close to the surface and the whales then slap the ball 
with their tails, stunning or killing up to 10-15 fish with successful slaps. The 
technique requires good cooperation by a number of whales. This can be mod-
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elled as a multi-player stag hunt game since whales may, instead of cooperating, 
feel tempted to start feeding on their own. (Broom & Rychtar 2013) 

2.4 Summary 

Game theory is much too large a field to be explained in a single chapter, and 
hence here is only a part of it. This thesis presents an n-person game model. The 
role of game theory becomes significant just at the stage when the model is to 
be tested by simulations to obtain information about the processes and events 
in the games. It is however appropriate already at this stage to deal with game 
theory, particularly because of its bearing on further research. 

Different games, their strategies and game theory form a complex context, 
but the big picture it is even more complex. Richard Guy (1996, page 45) has 
these thoughts about games: 

It is hard to draw the line between mathematics and psychology. There are 
even cases where one should prefer a bad move to a good one! We often refer to 
a move as being “good” if it wins, and “bad” if it doesn’t. In theory it usually 
suffices to find any good move, or to show that no good move exists. But in re-
al-life games there are many other criteria for choosing between various options. 
If you are losing, then all your options are bad in the above sense, but in prac-
tice they are not all equal, and you might prefer one that makes the situation too 
complicated for your opponent to analyze (the Enough Rope Principle). (Guy 
1996) 

This kind of thinking might work for example in computer games. The au-
thor did once succeed in making a simple chess program to go out of its mind 
for more than ten moves. This was due simply to starting the game in a “stupid” 
way by moving only pawns one step and one by one starting from the left side. 
The program didn’t “understand” what was happening. 

Here we have been briefly discussing some basic matters of game theory, 
relevant to this thesis. However, the object of this thesis is to present a mathe-
matical model where it is possible to embed symmetric games with more than 
two players. These symmetric games should, if needed, later transform into 
asymmetric ones just by changing their parameters. This model can later be 
used to simulate n-person games. By simulation, it is possible to find optimal 
strategies and their outcomes. The representations of these games by their strat-
egies give their normal forms (see Rapoport 1970, Figure 11), which can be inves-
tigated by game-theoretical tools. 

 
 
  



 

3 TILING IN DIFFERENT DIMENSIONS 

It is essential to discuss in this thesis about tiling, because we need this concept 
when we create different game boards. The text and figures in the first three sec-
tions 3.1, 3.2 and 3.3. are based on our earlier publications (Kyppö 1993, Kyppö 1990, 
Kyppö 1993). 

3.1 Concepts 

In tiling or tessellation, or sometimes paving, a plane is divided into different ge-
ometric shapes and patterns. In this thesis, we use the term tessellation also 
when dividing a three- or multidimensional space. The words tiling and tessel-
lating are often used interchangeably, and there isn’t a great difference between 
these two words. Tiling might be a bit more restricted term used to describe 
how polygons tile the plane. Therefore, in this research, tiling is used for two 
dimensions and tessellation for higher dimensions. 

Graph G = (V,E) is said to be regular if all its vertices have the same degree 
and is complete regular if its dual graph G' is also regular (Ore & Wilson 1963). 
This means that each face in G is bounded by the same number of edges, which 
implies that the degree in each vertex of G’ is the same. Briefly, for all connected 
planar graphs we have the formula: 

k + r = 4E(S). 

In this formula, fr is the number of faces with r neighbors and vk is the 
number of vertices of degree k. E(S) is the Euler characteristic for the surface S. 
On a two-dimensional plane, E(S) = 2. (White 1973) 

We can try this formula for the simple graph in Figure 1, where there are 
four vertices and three faces. Two of the vertices have degree 2, the two others 
have degree 3. There are only three faces: two of them have degree 3 and one 
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(outside the graph) has degree 4. In the given formula we get: (4-2)*2 + (4-3)*2 + 
(4-2)*0 + (4-3)*2 + (4-4)*1 = 4 + 2 + 0 + 2 + 0 = 8 = 4*2 = 4*E (S) when S is a plane. 

We get the general formula for regular plane graphs when we give only 
one value for r, and we get: k + (4 – r)fr = 4E(S). This formula can 
also be derived to the form k = 2rE(S). We won’t go deeper 
in these formulas here, but in Figure 12, on the left, is an example of a regular 
planar graph and its dual graph, which is not regular graph. All the faces of this 
dual graph have three edges, but the degree of vertices varies. This is also an 
example of a triangular planar graph, and hence the formula simplifies to 

k = 12. This formula is also known as Kempe’s formula, and it has 
played a key role in solution trials and solutions of the famous Four Color Con-
jecture (4CC) (Appel & Haken 1977). Kempe’s formula reveals that if we begin 
to draw a regular triangular graph where each vertex has a degree greater than 
6, the graph will soon become denser on the border and hence impossible to 
draw. If the degree is less than 6 the graph will close and become a projection of 
a regular polyhedron on the plane. There are two projections of this kind: a pro-
jection of the icosahedron, when the degree is 5, and a projection of the tetrahe-
dron, when the degree is 3. If the degree is equal to 6, then the surface is divid-
ed into an infinite number of similar triangles, which is an example of regular 
tiling. 

For complete regular graphs, where k and r are fixed, the formula gets a 
simpler form: (4 - k)vk + (4 – r)fr = 4E(S) or (2r-rk+2k)v = 2rE(S). The formulas 
can easily be verified from the planar graph on the right in Figure 12. 

 

 

Figure 12 A regular graph, its dual graph and a complete regular graph 

3.2 Regular -tiling 

In tiling, we divide the plane to polygons in such a way that there will be no 
free space between the polygons (Grünbaum & Shephard 1987). In regular tiling, 
we do the same by using regular polygons. So the edges of a tiled plane form 
part of a complete regular planar graph. There are only three polygons that 
make regular tiling possible. These polygons (Figure 13) are the triangle, quad-
rilateral and hexagon (Maor 1987). Why they are precisely these becomes clear 
when you look at the formula (2r-rk+2k)v = 4r for infinite complete regular pla-
nar graphs. In this formula, r is the number of edges in the polygon and k is the 
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degree of vertices of the graph. This formula gives the number of vertices v = 
4r/(2r-rk+2k). We can see that the number of vertices in the graphs of Figure 12 
is infinite, for in each graph 2r-rk+2k=0, and hence v = 4r/(2r-rk+2k) = . 

Let’s consider 2r+rk-2k=0  r=2k/(k-2). Because k is an integer and k  3, 
formula 2k/(k-2) will get integer values only when k = 3, 4, and 6, wherein the 
corresponding values of r are 6, 4 and 3. Therefore, for only these polygons, the 
set of pairs (r, k) is the set {(6,3), (4,4), (3,6)} and the number of vertices can in-
crease to infinity in complete regular graphs. The pairs (r,k) are mirror images 
of each other, and hence we can conclude that triangular and hexagonal graphs 
are dual graphs to each other and the graph of quadrilateral (here square) faces 
is self-dual. 
 

 

Figure 13 The three ways of planar regular tiling 

Another way to find these graphs is to look at the size of the angles of a 
regular r-gon. The sum of all angles of the r-gon is, in radians, (r-2) π/2, where-
in one corner angle is (r-2)π/2r if all the angles are of the same size. For exam-
ple, the sum of the angle degrees in a triangular graph is (3-2) π/2 = (3-
2)*180°/2 = 90°. If this kind of r-gon graph divides a plane, the angle of the cor-
ner must have the same degree at each point. Because the length of the circle is 
always 2π (=360°), the sum of all angles around one point is 2π and thus in each 
point the degree of one corner angle is 2π/((r-2) π/r)=2r/(r-2). This expression 
gets the values 6, 4, 3.33…, 3, 2.8, …, 2, where r = 3, 4, 5, 6, 7, 8, ..., . The divi-
sion gets integer values only if r = 3, 4 or 6. For example the graph, that consists 
of regular pentagons cannot tile the plane regularly because one corner angle 
has the size (5-2)π/10 = 3*360°/10=108°, which means that in one point or ver-
tex only three pentagons can touch and one 36° angle would be left to be filled.  

This example implies that the plane can be tiled regularly also by using 
different kinds of combinations of various polygons. It has been shown that the 
following polygon sets can also form a regular tiling on plane: {4,8}, {4,6,12}, 
{3,4,6}, {3,12}, {3 4} and {3,6}. (Maor 1987) 

 As we can see, there are six polygon sets of this kind, but it has been 
shown that the last two sets, {3,4} and {3,5}, both can form two different sets. 
This will provide eight regular tiling types. One of these, {4,8}, using squares 
and octagons, can be seen in Figure 14.  

  
 



44 
 

 

Figure 14 Tiling of the plane by regular squares and octagons 

Finally we discuss the differences between, a face and a 2-cell. Among the 
basic concepts we have defined athe vertex, an edge and a face. When we exam-
ine more complex topological surfaces and graphs embedded in them, we need 
to extend the definition of a face. Next, a more precise description of a face is 
defined as well as a more general concept of a 2-cell. 

A graph is embedded in a surface S if it is possible to draw it on S so that the 
edges intersect each other only in vertices. A graph is planar if it can be embed-
ded on a plane. A pseudograph is a graph that allows multiple edges and loops. 
Let a pseudograph G be embedded in surface S. The components of S - G are 
called faces of the embedding. A face of an embedding of graph G is said to be a 
2-cell if it is homeomorphic to the open unit disk. If the cell for an embedding is 
a 2-cell, then the embedding is said to be a 2-cell embedding. (White 1973)  

A circular disk (unit disk) is the surface of a circle. Each topological image 
of a circular disk is called a 2-cell. Similarly an edge is called a 1-cell and a ver-
tex a 0-cell. An embedding of a graph into a closed surface is called a cellular 
embedding (2-cell embedding) if G divides S into 2-cells. (Ringel et al. 1974) 

3.3 Tessellation of the three-dimensional space 

When we leave the plane and go to three-dimensional space, we find out that 
there are fewer possibilities of tiling this space, than tiling the plane. This is be-
cause the set where the regular polygons for tiling could be selected is infinite. 
There are an infinite number of regular polygons of which triangle, quadrilat-
eral and hexagon are suitable for regular tiling. But in third dimension there 
exist only a finite number of regular polyhedra, the well-known Plato's five sol-
ids. The polyhedra in Figure 16 from left to right are the tetrahedron, cube, oc-
tahedron, icosahedron and dodecahedron. Tetrahedron is self-dual, which 
means that if a corner point (vertex) is placed inside its every face and the 
points are connected to each other then another tetrahedron is generated inside. 
Similarly, the cube and octahedron are each other's duals, as are the icosahe-
dron and dodecahedron. The faces of the polyhedrons (polyhedra) are triangles, 
quadrilaterals or pentagons only.  
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There are very few complete regular graphs in the sphere. The equation 
(2r-rk+2k)v=4r gives those graphs. Since v, k and r are positive integers, 2r-
rk+2k must also be positive, and the expression 4r/(2r-rk+2k) must be a posi-
tive integer. Thus the following condition for r is obtained: 

 
2r-rk+2k>0  r<2k/(k-2) 

 
When k=2, then r<  and the graph is a usual polygon. 
When k>2, it results in r<6 for k=3 and r < p = 2k/(k-2)=2/(1- ), when k→ . 
This implies, that r ∈ (2,6)  r ∈ [3,5], when k>2. 

 
These values of r give the following results: 
 

and

and

and

 

 
Possible positive values of v for these equations are obtained when k=3, 4 

and 5 (a), and k=3 for (b) and (c). These five graphs are the only complete regu-
lar planar graphs (Figure 15), when k 3, and the embeddings of these graphs on 
the sphere are regular polyhedrons (polyhedra), the five Platonic solids (Figure 16). 
(Maor 1987, Grünbaum 1967) In case of other values of r, when k>2, there exist 
only negative or infinite values of v. 

 

 

Figure 15 The five complete regular planar graphs 
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Figure 16 The Regular Platonic solids 

Only one of these five solids, the cube, tiles the space regularly (Figure 17). 
This result can be calculated in basically the same way as we calculated the reg-
ular tessellation, but the calculations become more complicated because the 
formula has to be built in a different way. For example, one of the pillars of the 
formula, the condition 2e = 3f, is no longer valid in three-dimensional space, 
because several polyhedrons are connected to each other.  

 

 

Figure 17 The regular tessellation of three-dimensional space by cubes 

As on the plane, also in three-dimensional space it is possible to find dif-
ferent combinations of polyhedrons which divide the space without leaving any 
empty spaces in between. However, this is not a regular tessellation. In three-
dimensional space, a regular tessellation would mean that every polyhedron 
has to be identical with each other, each face must touch the same number of 
other faces (usually one) and each vertex must have the same degree.  

If the first restriction (identical polyhedrons) is removed and more types 
of polyhedrons are allowed, there will be more possibilities to tile the space 
with similar solids. The chances of this combinatorial tessellation are limited, 
taking into account the number of different regular polyhedrons. One example 
is the 14-polyhedron, which consists of 6 quadrilaterals and 8 hexagons, 36 edg-
es and 24 vertices, so that all the neighbors of quadrilaterals are hexagons, and 
every second of the hexagons’ neighbors is a quadrilateral (Maor 1987). This 
kind of polyhedron is called truncated octahedron (Figure 18, A13) and it is one of 
the 13 Archimedean solids (Torquato & Jiao 2009). Structures of this type are be-
long to crystallography.  

 



47 
 

 

Figure 18 The Archimedean solids (Torquato & Jiao 2009) 

3.4 Tessellation of N-dimensional space 

As in three-dimensional space, tessellation in higher-dimensional spaces has a 
limited number of options. Tessellation in n-dimensional space, where n  3, is 
only possible with hypercubes. If we use combinatorial tessellation, slightly 
more options can be found. The options can be best understood with the aid of 
the Schläfli symbol. However, first we must clarify what are the polytopes.  

 Polytopes 3.4.1

The definition of regularity needs three statements: one on regular faces, anoth-
er on equal faces, and a third on equal solid angles. There is another definition 
involving only two statements but with the same effect. We replace the consid-
eration of solid angles by that of vertex figures. The vertex figure of vertex O of a 
polygon is the segment joining the mid-points of two sides through O (see Fig-
ure 19 on left). The vertex figure at the vertex O of a polyhedron is a polygon 
whose sides are vertex figures of all the faces that surround O, thus its vertices 
are the mid-points of all the edges through O (see Figure 19 on right). So, a pol-
yhedron is regular if its faces and vertex figures are all regular. 

If the mid-points of all the edges that emanate from a given vertex O of a 
polytope lie on one hyperplane, then these mid-points are the vertices of an (n-
1)–dimensional polytope called the vertex figure of the polytope at O. Begin-
ning with the regular polygons (triangle, quadrilateral, pentagon, …) we can 
define a regular polytope inductively as follows. A polytope (dimension n > 2) 
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is said to be regular if its cells are regular and there is a regular vertex figure at 
every vertex. (Coxeter 1973). See different kind of vertex figures in Figure 19. 

A polygon is a finite planar figure, which is surrounded by straight lines. 
All the sides of a regular polygon are equal in length, and the angles between 
them are of same. A polygon is called an n-gon if the number of its corner an-
gles is n. The first part of the word polygon, “poly-“, means many and the last 
part “-gon” an angle (from Greek polug non via Latin). 

A polyhedron is a solid surrounded by faces, which are polygons. The fac-
es are surrounded by edges and vertices (points). All the faces of regular poly-
hedrons are identical regular polygons. There are exactly five regular polyhe-
drons; the tetrahedron, cube, octahedron, dodecahedron and icosahedron. 
These are also known as Plato’s solids. The ending –hedron (from Greek poly-
edron via Latin; 'hedra' = 'seat', 'base') in the word polyhedron, refers to a tip or 
a face of a geometrical solid.  

 A polytope is a finite area surrounded by hyper-planes in n-dimensional 
space. So, polytope is a general term for n-dimensional geometric solids, which 
are separated from outer space by 0, 1, 2, ..., n-1 multi-dimensional polytopes. 
An N-dimensional polytope is regular if the surrounding (n-1)-dimensional 
polytopes are regular. A polyhedron is a three-dimensional polytope, and a 
polygon is a two-dimensional polytope.  

The concept polytope was first presented in 1882 by German Reinhard 
Hoppe as polytop in its German form (Effenberger 2010). Alicia Boole Stott, an 
Irish-English mathematician, made it known more widely in its English form 
(Ball & Coxeter 1987). By it, Stott originally meant four-dimensional polytopes. 
There exist exactly six regular four-dimensional polytopes, which have surfaces 
that consist of identical regular polyhedrons. Their interfaces consist of 5, 16 or 
600 tetrahedrons, or 24 or 12 dodecahedrons, or 8 cubes. The ending of the 
word polytope, tope means a surface.  

 As told, polyhedrons and polytopes can be defined more accurately by 
the vertex figure. A polygon’s vertex figure is a line segment that connects the 
centers of the two edges of a vertex O. The vertex figure of a polyhedron is a 
polygon, which is generated when the centers of the adjacent outgoing edges of 
the vertex O are joined together. For example, the vertex figure of a cube is a 
triangle. A polyhedron is regular if all its faces and vertex figures are regular. 
Similarly, the vertex figure of an n-dimensional polytope is n (n-1)-dimensional 
polytope, which is generated between the center points of the edges of the ver-
tex O. The n-dimensional polytope is regular if it is surrounded by (n-1)-
dimensional polytopes and its vertex figures are regular (Coxeter 1973).  

 

 

Figure 19 Vertex figures 
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 Schläfli symbol 3.4.2

In geometry, the Schläfli symbol is a notation that defines regular polytopes and 
tessellations. By using the Schläfli symbol, it is possible to define several differ-
ent kinds of polytopes and also tessellations in various dimensions. The Schläfli 
symbol is used often in scientific articles in the field of chemistry. This notation 
was developed in the 19th century by a Swiss mathematician Ludwig Schläfli, 
and it is of the form {p, q, r, ...}, where the number of attributes gives the dimen-
sion of a polytope (Coxeter 1973). Next we explain this notation in detail.  

If the Schläfli symbol consists of only one variable, {p}, it is a polygon, that 
is, a p-gon. For example, the quadrangle is {6}. When there are two parameters 
{p, q}, the polytope is a polyhedron with p-gons as its faces. Around one vertex 
(point) there are q faces. So, for example, {4,3} is a cube, the faces of a cube being 
squares and each vertex is joint to three squares. In the four-dimensional space, 
the Schläfli symbol has the form {p, q, r}, where p and q are as above and r is the 
number of the polyhedrons around one edge. For example, for the tesseract, 
which is a four-dimensional polytope, the Schläfli symbol is {4,3,3}, where the 
first figures, 4 and 3 mean the cube. The last number, 3, tells that every edge is 
surrounded by three cubes. In Figure 20 there is the Schlegel’s diagram of a 
four-dimensional hypercube. Schlegel’s diagram illustrates the polytopes as 
projections to space that is lower by one dimension. For example in Figure 17, 
there is a projection of a four-dimensional hypercube in a three-dimensional 
Euclidean space. In case of hyper cubes the Schläfli symbol notation is the fol-
lowing. The symbol of a five-dimensional hypercube is {4,3,3,3}, because in this 
dimension each two-dimensional face of the five-dimensional hypercube is sur-
rounded by three four-dimensional hypercubes. In general, {4, 3n-2} is the 
Schläfli symbol2 of an n-dimensional hypercube. The first number is the number 
of the edges in the two-dimensional quadrilateral. The second number indicates 
how many 2-dimensional quadrilaterals are limited to the vertices, of the hy-
percube. The third number indicates how many three-dimensional cubes are 
limited to the two-dimensional quadrilaterals of a four-dimensional hypercube, 
etc. (Coxeter 1973) 

 
 
 

 
 
 

 

Figure 20 The Schlegel diagram of the four-dimensional hypercube 

                                                 
2  n-2 is not an exponent in this presentation, but the number of digits 3. 
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Another example could be a triangle, which has a simple Schläfli symbol 
{3}. The tetrahedron has four faces, which are all triangles, and each vertex is in 
contact with three triangles, so the tetrahedron has the Schläfli symbol {3,3}. In 
the Figure 16 we presented, five regular polyhedrons, the Plato's solids. Also 
the cube and the tetrahedron belong to this group of solids. The other three, as 
it is possible to count from that figure, have the following Schläfli symbols: oc-
tahedron {3,4}, icosahedron {3,5}, and dodecahedron {5,3}. (Coxeter 1973, Ball & 
Coxeter 1987) 

In the case of tessellations and honeycombs the Schläfli symbol differs 
slightly. We will explain this more closely in the next section. 

 Honeycombs 3.4.3

Honeycomb is a name used in geometry for space filling. It means also close 
packing of higher-dimensional cells. Close packing means, that there are no 
gaps between the cells. A honeycomb is a kind of tessellation in varying num-
bers of dimensions. 

The honeycomb as a structure means a space-saving construction, and its 
name comes from the hexagonal honeycomb structure made by bees. In geome-
try the honeycomb structure has, however, a more general meaning. It means 
filling or packaging the space in such a way that there remain no empty spaces. 
In this case of polyhedrons and polytopes of higher dimension, a honeycomb is 
one form of tessellation.  

 A three-dimensional honeycomb consists of an infinite number of poly-
hedrons which are connected to each other and fill the space so that the face of 
each polyhedron is also a part of another polyhedron. A honeycomb is called 
regular if all its polyhedrons are regular and identical.  

 The structure of the honeycomb can also be represented by a Schläfli 
symbol. Let's take again as examples, a quadrilateral, cube, and hypercube. The 
Schläfli symbol of a quadrilateral is {4}, and for cube it is {4,3} because in the 
cube each corner point is limited to three edges. The quadrilaterals can also tile 
a two-dimensional plane, whereby each quadrilateral is surrounded by four 
quadrilaterals against the edges, and another four quadrilaterals touch each 
corner point. Each corner point of the quadrilateral is thus in contact with four 
edges instead of three. For this reason the Schläfli symbol is {4,4}. When we ex-
tend this to three-dimensional space and tessellate it with cubes, we get the val-
ue of {4,3,4}, where the first 4 and 3 are the Schläfli symbols of a cube. The third 
number, 4, tells us to how many cubes one edge belongs. The number of these 
cubes is four. In four-dimensional space, which is formed by hypercubes, the 
Schläfli symbol of a honeycomb is {4,3,3,4}, where the first three numbers repre-
sent the tesseract, the four-dimensional hypercube {4,3,3}, and the last number, 
4, tells us that in the four-dimensional honeycomb one quadrilateral is a mem-
ber of four four-dimensional hypercubes. So the fourth number 4 tells us to how 
many hypercubes one quadrilateral face is limited. In general, {4, 3n-2, 4} is the 
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Schläfli symbol3 of a honeycomb made by n-dimensional hypercubes. (Coxeter 
1973) 

The structure of honeycombs, polygons and polyhedrons may be deter-
mined by a vertex figure as we have already shown. The vertex figure is creat-
ed, as explained earlier, when a vertex is placed in the center of each edge that 
is incident to a given vertex (point) of each polygon, polyhedron, the n-
dimensional solid or honeycomb and all these vertices are connected to each 
other. (Coxeter 1973) 

 For example, the vertex figure of each polygon is always a triangle, and 
the vertex figure of a cube is a tetrahedron. The vertex figure of a two-
dimensional quadrilateral tessellation, a two-dimensional honeycomb, is a 
quadrilateral and the vertex figure of a three-dimensional honeycomb, which 
consists of cubes, is an octahedron. The Schläfli symbols of these three vertex 
figures are: {4}, {3,4} and {3,3,4}. They are presented in Figure 19 from left to 
right. The vertex figure of a four-dimensional honeycomb that consist of four-
dimensional hypercubes is a 16-cell, also known as a hexadecachoron.  

 In other words, the vertex figure of a two-dimensional honeycomb, which 
is also a two-dimensional tessellation and tiling, is constructed by connecting 
the vertex figures of the elements of the honeycomb to each other. For example, 
in a honeycomb that consist of quadrilaterals we connect four triangles to each 
other (Figure 19, center), and in a honeycomb, that consist of cubes, we connect 
eight tetrahedrons to each other (Figure 19, right).  

A three-dimensional honeycomb is an infinite set of polyhedral fitting to-
gether to fill all space just once, so that every face of each polyhedron belongs to 
one other polyhedron. A honeycomb is regular if its cells are regular and equal. 
(Coxeter 1973) 

In this study the most relevant aspect is the honeycomb model that is 
based on hypercubes, because it is the only one in the n-dimensional Euclidean 
space that is regular. The regularity means that it consists of identical elements, 
which in the lower dimensions are quadrilaterals and cubes, and in the higher 
dimensions, when n > 3, are hypercubes.  

 Kissing number 3.4.4

The kissing number problem is a geometric problem that got its name from bil-
liards: two balls “kiss” if they touch (Pfender & Ziegler 2004). The Kissing 
number is also sometimes called the Newton number, the contact number, the 
coordination number, or the ligancy. (Conway & Sloane 1988) 

In mathematics the kissing number means the number of n-dimensional 
hyperspheres (n-balls) that can touch at the same time, one n-dimensional ball 
of the same size. For example, in two-dimensional space, the kissing number is 
6, which means that a circle can touch six circles of the same size. In the three-
dimensional Euclidean space, the number is 12, and in the four-dimensional 
Euclidean space it is 24. In 5, 6 and 7 dimensions, the number is known to be to 
                                                 
3 n-2 is not an exponent in this presentation, but the number of digits 3 
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40, 72 and 126, respectively. In higher dimensions, the exact number is known 
only for dimensions 8 and 24. In these dimensions, the numbers are 240 and 
196,560. In geometry, the kissing number is generally defined as the number of 
such hyper-manifolds that may contact other hyper-manifolds without inter-
secting them. (Pfender & Ziegler 2004) 

In the kissing number problem, the idea is to seek the maximum kissing 
number for n-dimensional Euclidean spaces. The two-dimensional kissing 
number 6 (Figure 21 left) is trivial, and is easily determined. Also, in three-
dimensional space, it is easy to arrange 12 balls of the same size around a ball of 
a similar size and thus conclude that the kissing number is at least 12. To prove 
that the 13th ball cannot be added is difficult, though there is a lot of space left. 
Isaac Newton proved that 12 balls can be added around one ball. His contem-
porary, David Gregory, believed a 13th ball could be introduced among these 
12. This did cause a disagreement between these two mathematicians in 1694 
(Pfender & Ziegler 2004). The final proof for the number 12 was obtained as late 
as in 1953. In Figure 21, there are 12 balls arranged around a single ball, which 
creates a kind of icosahedron configuration (graphics: Detlev Stalling, ZIB Ber-
lin) (Pfender & Ziegler 2004). It was known already that the number would be 
either 24 or 25 in four-dimensional space. Of these options, 24 was clearer since 
it is possible to place that number of balls around the four-dimensional sphere. 
The problem turned to be similar as in the three-dimensional case: would it be 
possible to place a 25th ball on that sphere also? The answer is no: in 2003, Oleg 
Musin proved, by using a subtle trick, that the correct answer is 24. (Musin 
2003). 

 

  

Figure 21 Visualization of 2D and 3D kissing numbers 

The exact value of the kissing number in n dimensions is not known for n > 4. 
The exceptions are n = 8 (240), and n = 24 (196,560), as shown in the table below 
(Mittelmann & Vallentin 2010). The results in these dimensions are connected 
with the existence of the E8 lattice and the Leech lattice. These two are highly 
symmetrical lattices. 
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Table 1 First 24 Kissing numbers (Conway & Sloane 1988) 

Dimension  Kissing number 
1   2 
2  6 
3   12 
4   24 
5   at least 40; no more than 44 
6   at least 72; no more than 78 
7   at least 126; no more than 134 
8   240 
9   at least 306; no more than 364 
10   at least 500; no more than 554 
11   at least 582; no more than 870 
12   at least 840; no more than 1,357 
13   at least 1130; no more than 2,069 
14   at least 1582; no more than 3,183 
15   at least 2564; no more than 4,866 
16   at least 4320; no more than 7,355 
17   at least 5346; no more than 11,072 
18   at least 7398; no more than 16,572 
19   at least 10688; no more than 24,812 
20   at least 17400; no more than 36,764 
21   at least 27720; no more than 54,584 
22   at least 49896; no more than 82,340 
23   at least 93150; no more than 124,416 
24   196,560 

 
Figure 22 shows the growth of the kissing number in different dimensions. 

The red line shows the known maximum value and the blue line the known 
minimum value. Black circles are the dimensions the exact value of which is 
known.  
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Figure 22 The kissing number in dimensions 1 – 24 

 

 Packing problems 3.4.5

The topic of cutting and packing is characterized by the fact that problems of 
essentially the same logical structure appear under different names in the litera-
ture: for example, cutting stock and trim loss problems, bin packing, dual bin 
packing, strip packing, vector packing, and knapsack problems, vehicle loading, 
pallet loading, container loading, and car loading problems, assortment, deple-
tion, design, dividing, layout, nesting, and partitioning problems, capital budg-
eting, change making, line balancing, memory allocation, and multiprocessor 
scheduling problems. (Dyckhoff 1990) 

Over time, the variety of the names using in cutting and packing problems 
(C&P problems) has been quite large in the literature, as can be seen from Table 
2 (Dyckhoff 1990) 
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Table 2 The variety in C&P names (Dyckhoff 1990) 

 
 

However, in this research project we are primarily interested in geometric 
packing and especially in sphere packing. In mathematics, ball packing, or more 
precisely sphere packing, is used to arrange n-dimensional balls of n-
dimensional Euclidean space in such a way that the balls do not intersect each 
other. The spheres are usually supposed to have the same size. Sphere packing 
problems can be generalized to packing of different sizes of spheres, and pack-
ing in n-dimensional Euclidean space and in non-Euclidean spaces, such as hy-
perbolic space. In a typical sphere packing problem, we try to find an arrange-
ment where the spheres would fill as large an amount of space as possible. The 
ratio of the space that spheres fill to the space they don’t fill is called the density 
of the sphere arrangement. 

 This kind of packing is also related to the Kepler’s conjecture (Figure 24, 
on the right (Mainz & Girolami 2012)) in the case of three-dimensional Euclide-
an space which must be filled by balls as efficiently as possible to minimize the 
empty space. Kepler conjecture can be formalized as the following theorem: No 
packing of congruent balls in Euclidean three space has density greater than that of the 
face-centered cubic packing and the best packing density of  = 74%. Kepler conjec-
ture is also the 18th of the famous David Hilbert’s 23 mathematical problems. 
The optimal type of packing is the hexagonal close packing and the face-
centered cubic packing (Figure 24, on the left (Hales 2005)), where the balls are 
in a form of a tetrahedron, just as Kepler assumed. The problem was proved by 
Thomas Hales. He used the so-called ”proof by exhaustion” by separately prov-
ing each sub-problem. The proof remained incomplete, and, in 2014, Hales 
made a new proof by using large computer programs. (Hales 2005, Hales et al. 
2015) 

Here are some notes of Hales about the proof process. It is not essential to 
explain in this context more closely the term tame graph and its quite long defi-
nition, which includes eight conditions.  
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The combinatorial structure of each possible counterexample to the Kepler 
conjecture is encoded as a plane graph satisfying a number of restrictive condi-
tions. Any graph satisfying these conditions is said to be tame. A list of all tame 
plane graphs up to isomorphism has been generated by an exhaustive comput-
er search. The tame plane graphs encode the possible counterexamples to the 
Kepler conjecture as plane graphs. The archive is a computer-generated list of 
all tame graphs. 

The original proof classifies tame plane graphs by a computer program 
written in Java. Therefore, as a first step in the formalization, we recast the orig-
inal Java program for the enumeration of tame plane graphs in Isabelle/HOL. 
The archive that came with the original proof contained over 5,000 graphs. The 
first formalization resulted in a reduced archive of 2,771 graphs. 

However, a bug caused two graphs to be missed in an early draft of the 
blueprint proof. (Hales et al. 2015)  

 

 

Figure 23 Space packing and Kepler conjecture 

A direct proof using just a paper-and-pen has not been done, but the re-
sult has been checked by a logical HOL –proof program, called Isabelle. Kep-
ler's problem, as well as the way it was solved, is comparable to the classic four-
color conjecture (4CC). After more than 100 years, a long and complicated com-
puter solution was found. Hales did again use the proof assistant Isabelle, while 
Georges Gonthier and Benjamin Werner used the proof assistant Coq in 2004 
for the 4CC. (Gonthier 2005) 

3.5 Summary 

This chapter primarily considers tiling, tessellation and packing, the aim being 
to find a model that can be used to construct a game board of Euclidean dimen-
sions that can be varied while the mathematical structure of the board stays 
similar. Similarity here means that the model is scalable to different dimensions 
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in a regular manner, whereby it is possible to generalize. Sections 3.1 - 3.3 dealt 
with the basic concepts as well as tiling and tessellation in the two-dimensional 
plane and three-dimensional space. In Section 3.4 we started to examine a gen-
eral solution for the problem in n-dimensional Euclidean spaces. In Subsections 
3.4.1 and 3.4.2 we reviewed some basic concepts and tools needed for the re-
search. In these subsections, we defined the manifolds and studied the Schläfli 
symbol. The Schläfli symbol was important in helping us to understand how 
tessellations and manifolds differ in differing n-dimensional spaces. In Sections 
3.4.3, 3.4.4 and 3.4.5, we briefly explained honeycombs, the kissing number and 
packing problems. 

These concepts will be necessary in Chapter 8, where we try to find an op-
timal working model for a symmetrical n-player game. The possible models are 
based on these structures. 

 



 

4 THE HISTORY AND PREHISTORY OF CHESS4 

This thesis deals with games based on chess. The aim is to use them to study n-
person game models. Accordingly, it is reasonable to look back in history to 
find out how the game of chess was born. This chapter is divided into three 
parts. The first part studies board games that are older than chess. The motive 
for this is to get an idea of the kinds of elements used and the way chess may 
have evolved. The second part examines in particular, the early stages of the 
chess and the various theories related to it. The third part provides a further 
review of the more recent, as well as historical, chess variations. The motive for 
this third part is to get a historical overview of chess variants, and hence to get a 
perspective on the variants presented later in this thesis.  

The oldest known board games are at least 5000 years old. One of the old-
est and most famous is chess, dating back nearly 2000 years. We start this study 
with board games that are older than chess. 

4.1 Old chesslike strategy games 

It is possible to categorize the world’s oldest board games in various ways. One 
way is to classify them into war games, race games (e.g, backgammon), position 
games (e.g, Go), mancala games (e.g, Mancala), dice games and domino games 
(Bell 1979). Of today’s games, backgammon is probably the most famous among 
the race games, chess and draughts among the war games, and Go among the 
position games. Below, in the first subsection, we will consider the four oldest 
race games, and then, in the following subsection, three old war games, and 
finally, in the third subsection, the position game Go and two other very old 
strategy games. We do this because these games might have some connections 
with the prehistory of chess. Also the mancala games belong to the oldest 

4 This chapter includes a couple observations placed in the summary. The first observation 
deals with the famous Phaistos Disk and the second one with the evolution of board games.  
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games, but we will talk about them only briefly in the summary. In the sum-
mary you can find some speculations about the Phaistos Disk and its possible 
connections with the race games.  

 Four race games 4.1.1

We consider first the race games, among which are also the oldest known board 
games: Egyptian Mehen and Senet as well as the Royal Game of Ur, from Su-
mer. As the fourth race game, we study in this chapter also the Ashtapada, be-
cause it might provide a link between race games and chess.  

4.1.1.1 Mehen, an ancient n-person game 

The earliest mention of Mehen, an ancient Egyptian game, was found in Hesy-
Ra's tomb, from the period of 2800 - 2600 BC. Shore (1963) explains this game in 
detail below. 

Given the playing-board and pieces of some ancient game, scenes showing 
the game in progress, and specialist knowledge of games, it should be a matter 
of deduction to reconstruct the rules of the game. Attempts to do so for the 
games of ancient Egypt have not proved satisfactory; and in the case of the so-
called "serpent" game, it has not even been possible to set up the pieces. 

The requirements for the game of Mehen are represented in a painted sce-
ne from the tomb of Hesy-re, close to the step pyramid of Djoser, and dated to 
the period of the Third-Dynasty (2800 B.C.). The board is circular, and its upper 
surface is covered with the figure of a coiled snake, its head at the centre and its 
tail at the perimeter. The figure of snake is divided into nearly 400 squares 
along its length. The playing-pieces kept in a box at the side comprise a set of 
six animals (three lions and three lionesses) and thirty-six colored marbles. 
(Shore 1963)  

Mehen, which means “coiled”, was originally a mythical Egyptian snake 
god. On the game board, the snake is thought to present the “world serpent” 
related to the mythical story of Osiris and his journey to the underworld. The 
world serpent, a mythological symbol of Ouroboros, is well-known throughout 
the world. It is a snake, which is eating its own tail, in the form of a ring. It is 
also known in Scandinavia. In the mythological tales of Vikings, it has the Old 
Norse name jörmungandr or jormagund. In Egypt, the game had religious and 
mythological meanings related to the passage to the land of the dead, and back. 
Mehen’s mythical aspects can also be found in another game, Senet, which is 
presented in Section 4.1.1.2. Benedikt Rothöhler says: "Ancient Egyptian 
boardgames normally have a religious symbolism, although it is often very dif-
ficult to find the exact meaning. One cannot examine the subject of Egyptian 
boardgames without taking into account this background. The symbolism of 
Egyptian boardgames, especially Mehen and Senet, is directly connected with 
the functions of this deity." (Schädler 1999, page 10, Rothöhler 1999)  

 The game itself consists of a round disk, inside which there is a snake 
(Figure 24, below left). The serpent's head is in the middle of the disc, Shore 
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(1965), and on its back there are some 400 compartments, supposedly meant for 
game pieces. Other versions of the game, with different number of compart-
ments, are also found. In addition, the game includes throwing sticks as well as 
balls and lions as game tools. No rules have been found for Mehen, but, in Su-
dan, and in some Arabic countries, a game called Hyena, with quite similar 
rules, is played. The rules of Mehen are built on the basis of this game. In 
Mehen there are six lions of different colors and for each lion there are six simi-
larly colored balls. This adds up to 36 balls. Based on these facts, it has been as-
sumed that Mehen has been a game for six players and thus the oldest known 
multi-player game (Rogersdotter 2011).  

In Figure 24, there are three pictures depicting Mehen. At the top, four 
men are playing the game (Rothöhler 1999). Below on the left, is a board where 
the snake can be clearly seen (Figure by Rob Koopman, Mehen, old Egyptian 
serpent game, WikiCommons). Below on the right, is a board kept in the British 
Museum and with the following description: “A figure of a crouching lion in 
ivory: intended for use as a gaming-piece, originally carved with great detail 
but now in rather poor condition. The front paws are missing, as is the side of 
the head, and the surface of the ivory has decayed. The features still visible in-
clude the eyes and details of the mane, as well as the slightly open mouth, in 
which the teeth are delineated. The detail is only preserved in a small area be-
neath the chin and also beside the surviving ear. The underside of the lion is 
worn smooth from use.” (British Museum number EA66216) 

 

 

  
 

Figure 24 Mehen game from ancient Egypt 

The process of the game and the rules can be summarized as follows: 
Each player throws his sticks (which play the role of dice) and when he gets an 
acceptable number, he is allowed to move the first ball to the first square, which 
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is located at the tail of the serpent. After the balls travel to the center, they turn 
back. When one of the balls has reached the starting point, the player is allowed 
to send a lion on its way on the game board. When the lion has arrived in the 
center, where the serpent's head is, it turns back. On the way back, the lion can 
eat the other players' balls if it lands on the same square with them. The winner 
is the one, who has eaten all the opponents’ balls or most of them.  

4.1.1.2 Senet 

Senet is an ancient Egyptian game, the earliest mention of it is found around 
3500 BC (Cazaux 2003, Piccione 1980). Senet is a race game like Mehen. The 
game is not only one of the oldest known in the world, it also deserves to be 
mentioned because a painting in which the pharaoh is playing Senet with his 
queen was found among the drawings in the pyramids. In Figure 25, there are 
three pictures: on the top left, there is a senet board from Tutankhamun’s tomb; 
on the top right, Queen Nefertari plays senet in a scene from her tomb; and be-
low there is a senet board with numbered squares to indicate the sequence of 
play, the squares 15 and 26-30 having special significance (Hageman 2005). Ear-
lier, on the basis of these figures, it was assumed that the game could have been 
chess and the origins of chess were attributed to Egypt (Ferlito & Sanvito 1990). 
But just by looking at the game pieces in the painting, it is easy to conclude that 
the game is, in fact, Senet. There are only two kinds of game pieces visible. 

 

  
 

 

Figure 25 Senet 

The play of the game is briefly as follows. On the game board, there are 30 
squares, and each player has five game pieces. The pieces are moved on the 
board by the numbers given by the four sticks that are used as dice to decide 
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the movements of the pieces in same way as in Mehen. The results provided by 
these four sticks also determine who can make the next move, but there is no 
need to explain that in detail in this context. If a piece gets in same square with 
the opponent’s piece, then it has to be moved to the initial screen. However, if 
two pieces are in successive squares, then they are safe. Three pieces in succes-
sive squares form a barrier that the opponent cannot breach. The pieces move 
along the board in an “s” shaped pattern: first on the top 10 squares, then back 
10 squares along the center line, and finally on the bottom 10 squares. The last 
five squares on the board are marked with symbols as special squares. One of 
these would send the piece to the 15th square in the center of the board, the oth-
er four are safety squares. Also the 15th square is safety square with a symbol 
figure. The aim of the game is to be the first to get one’s own game pieces off 
the board. A piece is allowed to be removed from the board if it gets the exact 
number value of the last, 30th square. (Hageman 2005, Botermans et al. 1990).  

4.1.1.3 The Royal Game of Ur 

The Royal Game of Ur has many similarities with Senet. It is a race game, where 
the players follow a certain coiled route. However, there are no preserved rules 
of the game and the rules were arrived at on the basis of the game board and 
game pieces. The earliest discoveries of this game dated to 2600 BC from Meso-
potamia, and the game can be found later, in 1800 BC, also in Egypt. In the 
Egyptian game, the shape of the board is a bit different (Cazaux 2003), as can be 
seen in Figure 26 5. We shouldlook at a couple of the rule options proposed by 
researchers.  

 Each player has seven pieces and the moves are determined by throwing 
small, tetrahedron-shape dice. Players start from the larger section of the board 
made of flower patterns, each player from the corner flower of his own (Figure 
26, on the left)6. On the boards in Figure 26, the route of the lower-positioned 
player runs along the long edge, through a narrow pass and then rotates coun-
ter-clockwise at the smaller end of the board and returns back along the middle 
squares. The route of the other player is a mirror image of this. The game in 
Figure 26, suggested by RC Bell7 (Bell 1979), is slightly different. The figure on 
the left depicts an original game stored in the British Museum. Here it is shown 
as a mirror image in order to make it easier to compare with the other two 
boards. In Figure 26, the board on the bottom is the modified version of the lat-
er game in Egypt.  

 If a piece gets on the square where there is an opponent’s piece, then the 
opponent's piece has to start the game from the beginning. The flower squares 
are safety places, and they may contain several game pieces. The winner is the 
first to get his pieces off the board (Bell 1979, Botermans et al. 1990), just as in 
Senet.  
                                                 
5  http://www.luckydog.pwp.blueyonder.co.uk/games/ur/ 
6  By BabelStone (Own work), CC0, 

https://commons.wikimedia.org/w/index.php?curid=10861909 
7  Figure 27, on the right 
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Figure 26 The Royal Game of Ur 

 

4.1.1.4 Ashtapada 

Ashtapada is a game which is thought to be the predecessor of chaturanga8, and 
hence also the predecessor of chess, especially because of the shape of the game 
board. The earliest mention of the word ashtapada, which means "eight feet" or 
"eight fields" in Sanskrit, can be dated to ca. 400 BC (Cazaux 2003). Ashtapada 
could be played by 2, 3 or 4 players, each of whom had two game pieces. Each 
player placed his two game pieces on the two center squares of his side (Figure 
27). Using dice, the pieces were moved along the marked route, pictured as a 
red line in Figure 27. When the piece reached one of the four center squares, it 
was allowed to be removed from the board. If a piece lands on the same square 
was one of the opponent's piece, then the opponent's piece would be returned 
to the beginning. The marked squares are safety places, where the pieces are 
safe from the opponents. The winner is the player who is the first to get all of 
his pieces off of the board. (Botermans et al. 1990) 

 

                                                 
8  Section 4.2.1 Chaturanga 
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Figure 27 The Ashtapada-game 

 

4.1.1.5 Summary 

It is easy to see similarities among these four race games, although their geo-
graphical distance from each other is long, from Egypt to India. The ashtapada 
that was presented is a kind of unifying link between mehen and chess. The 
game play in ashtapada is comparable to the race on a snake's back in mehen, 
while the game board of ashtapada is similar to the present chess board.  

 Tafl games, Latrunculi and Petteia 4.1.2

Tafl games were brought by the Vikings to Scandinavia, British Isles and Rus-
sia. They are strategy games thought to have links with the birth of chess, the 
first tafl games having been found in the same era. The origins of this game are 
not known with certainty: it may have been developed by the Vikings, but it 
has also been claimed that the Vikings could have picked up the game from the 
British Isles, possibly from the Picts (Lawrence 2013). However, it is generally 
assumed that this game is based on a game called Latrunculi, which was played 
by Roman soldiers. Latrunculi is a game that is probably based on a Greek 
game called Petteia. On the other hand, it has been thought that Petteia had 
some influence on the emergence of chess. This is the reason why these three 
games are discussed together in this chapter.  

4.1.2.1 Hneftafl and other tafl games 

Hneftafl is the oldest known of these tafl games; the initial findings of it are 
known from 600 - 700 AD. In Denmark there has been found even an older 
game board, known as the Vimose discovery, from the 5th century. However, 
the Vimose board also could have been a Roman latrunculi game. Hneftafl, that 
is, the king's board, spread with the Vikings in the 9th – 11th centuries, after which 
chess replaced it. The most recent discoveries of the game, dated to 1587, are 
from Wales and from Lapland, dated to 1723. On the basis of these games, also 
the rules of hneftafl have been determined (Page 1969).  
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The oldest confirmed hneftafl discovery is quite recent. It was made in 
2008 and 2011 in Viking ships, in Estonia, Salmi (Konsa et al. 2009, Peets, 
Allmäe & Maldre 2011). The older of these discoveries is timed in the period of 
650 - 720 AD, but the ship was probably built already in the beginning of the 7th 
century. So we can assume that the game board was probably made in the 7th 
century. What makes this interesting is that the assumed predecessor of chess, 
i.e. chaturanga, was mentioned for the first time also in that same century. In 
the ships, no game board was found, but in the older ship there were 72 game 
pieces and one King piece. The number of pieces indicates the existence of two 
game sets, as in one hneftafl there should be 36 pawn pieces. On the King piece, 
a human figure was drawn. In Figure 28 (Peets, Allmäe & Maldre 2011), there is 
a dice on the left and a King piece on the right found on the older ship. From 
another ship, was found a King piece wearing a metallic helmet.  

 

 

Figure 28 Hneftafl game pieces from Salmi, Estonia  

The rules are best known about the Sami tablut-game, which was still 
played, according to Carl Linnaeus’s documentation, in 18th century Lapland 
(Lawrence 2013, Helmfrid 2005, Bayless 2005). In tablut, in the center of the 
game board, instead of the Vikings there are Swedish army soldiers wearing 
18th century uniforms. The troops that siege them are Russian soldiers. The 
number of the besieging soldiers is 16, and there are 8 soldiers who defend the 
king in the centre (Figure 29 on the left, Wilhelm meis, en.wikipedia Public 
Domain). It might be added that Irish had a game called fidchell the Breton 
Celts gwezboell and Welsh had gwyddbwyll (Niehues 2014), in which the size 
of the board and the positions of the pieces were exactly the same as in tablut 
(Figure 29, center).  
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Figure 29 Tablut, gwyddbwyll9 and hneftafl 

Next we will explain the rules of the tafl-game that are mostly applicable 
to hneftafl. In other tafl games, the rules are quite similar, the main differences 
being the starting positions and the board size. To explain the rules, we use the 
board in Figure 29, on the right (own photo). This one is an exact copy of the 
board found from the Norwegian Gokstad Viking ship (Helmfrid 2005), and the 
pieces of this game are copies of the pieces found in the Outer Hebrides, on the 
coast of Scotland. This game board was bought in 2014 by the author from The 
National Museum of Iceland with the attached information: “The ornamenst on 
the textile board originate from the Gokstad vikingship where a Viking game 
board with pieces was found. The pieces are based on the design of the famous 
Lewis chess pieces found on the Outer Hebrides west of Scotland, an area un-
der Viking rule at the time the pieces were made (about 1100 AD)”. 

 The rules are simple. The game board has 11x11 squares. The sieging 
player (black) has 24 warriors, six on each side, as shown in the figure. The de-
fending player (white) has the king in the center of the board, defended by 12 
warriors.  

The goal of the game for White is different from that for Black. White is 
winner if the king manages to escape to one of the castles in the corners. Black 
wins if it manages to capture the white king.  

 All the pieces move in the same way as the rooks in the chess, which is 
towards the sides of squares. A game piece can move as far as there are free 
squares, but it cannot jump over other pieces. The center square of the board is 
a place of safety, where the king is not threatened and where warriors are not 
allowed to stop. The king is captured if it is surrounded on all four sides by the 
opponent’s warriors or the edge of the game board. The warrior is captured and 
removed from the board if it is surrounded on two opposite sides by the oppo-
nent’s warriors or if it is between an opponent’s warrior and one of the castles 
in the corners.  

Figure 30 depicts four other versions of tafl games. Tawlbwrdd is Welsh, 
Alea Evangelista was a game of Saxons, Ard Ri (Figure: François Haffner on 
fr.wikipedia Public Domain) as a Scottish game and Brandubh (Figure: Luis 

                                                 
9  By Llydawr, 

https://br.wikipedia.org/wiki/Gwezboell#/media/File:Gwyddbwyll.jpg 
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Dantas, en.wikipedia Public Domain) an Irish version of Hneftafl (Helmfrid 
2005).  

 

 

Figure 30 Tawlbwrdd10, Alea Evangelii11, Ard Ri and Brandubh 

When chess came to Europe, it was often mistaken as one of the tafl 
games. Because of this, Vikings began to refer to chess as Skáktafl to distinguish 
it from the other tafl games. Also the names of other tafl games had meanings: 
hneftafl meant “the board game of the fist, tawlbwrdd “tall-board” and alea 
evangelii “board game of the Gospels" (Bayless 2005). 

Interestingly, there is also a theory, that hneftafl could have been of Pictish 
origin (Lawrence 2013), which would make this game much older. 

4.1.2.2 Latrunculi 

The Roman board game Latrunculi (soldiers game or little soldiers) has been con-
sidered as a game, which formed the basis for the Vikings' Tafl games. The old-
est mention of this game is from Varro 116 - 27 BC (Botan & Nu u 2009). There 
were different sizes of game boards, from 8x8 to 8x12 squares. Also in the pro-
posed rules, there are small nuances. In general, the rules are as follows: If the 
game board is as shown in Figure 3112, then each player has 12 soldiers on the 
back row. In the centre, in front of them, the dux, director, is placed. All the 
pieces move in the direction of the sides as far as they can go, in same way as 
the rook in chess or the pieces of hneftafl. The pieces are also “eaten” in the 
same way as in hneftafl, which means that a game piece is eaten if on its both 
sides there is an opponent's game piece. The exception is the dux, which must 
be sieged from all sides. Normally, the dux moves just like the soldiers do, but 
it also can jump over another piece, which is not allowed for the soldiers. The 
game ends when the dux is under siege from all sides, which is 2, 3 or 4 sides 
depending on its location, or when the opponent’s army is totally destroyed. 
(Perkis 2010)  

                                                 
10  Helmfrid 2005 
11  Botermans et al. 1990 
12  Author's Note & Disclaimer: Permission is granted to any and all who wish to link or 

borrow images and text, they are used under the Internet Fair Use policy for educa-
tional resources.  Dr. Wladyslaw Jan Kowalski, 
www.aerobiologicalengineering.com/wxk116/Roman/BoardGames/latruncu.html 
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Figure 31 Latrunculi 

 

4.1.2.3 Petteia 

Petteia is an interesting mystery in the history of board games: the game can be 
found in pictures of Achilleus and Ajax playing it in ancient Troy. The paintings 
(Figure 32)13 on pots are from the period of 550 - 500 BC, so the game must be at 
least that old. Also the oldest written sources of the game are from that period, 
for example Plato and Aristotle mentioned this game. Petteia may be even older 
because the Trojan war, which destroyed the town, most likely took place about 
1190 BC. The pictures do not tell anything about the shape of the game board 
because they are shown from the side (Figure 32)14. In this game dice were not 
used, for it was a pure strategy game. It is thought that the game was taken to 
India by Greek soldiers, who accompanied Alexander the Great during his 
wars. There, this game could have affected chaturanga, a game played with dice 
in India at that time. So petteia might have affected chaturanga to make it more 
like a strategy game, hence giving an impetus to the development of chess. 
However, this is only a conjecture, as no rules of petteia have survived to our 
day. (Austin 1940, Mark 2007)  

The rules of this game have, however, been derived reasonably well, 
based on some assumptions. On the basis of these assumptions, petteia is 
thought to be very much like Roman latrunculia and perhaps developed from 
it.  

 

                                                 
13  http://www.gamesmuseum.uwaterloo.ca/Archives/Austin/ 
14  Public domain, Workshop of Diosphos Painter - Marie-Lan Nguyen (2011), 

https://commons.wikimedia.org/wiki/File%3AAchilles_Ajax_dice_Louvre_MNB91
1.jpg 
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Figure 32 Petteia 

The Greek philosopher Plato, who lived between the 4th and 5th centuries 
BC, wrote that the game originally came from Egypt. More information can be 
found about the game of poleis (cities), and sometimes the names petteia and 
poleis (also known as polis) have been used in parallel. Also the rules of poleis 
were used in deducing the rules of petteia. The board is usually 8x8 or 8x12. All 
the game pieces are placed on the opposite longer sides of the board in one row. 
The game pieces are moved in the same way as in latrunculi, or as the rook is 
moved in chess. Also, the capture of the opponent's game piece happens in the 
same way as in latrunculi. However, in this game there is no director piece, so 
the game was probably won by the one who first captured the opponent's piec-
es. The game may also have ended in a kind of checkmate, like chess. In one of 
his essays written in about 380 BC, Plato describes: "Bad petteia players, who 
are finally cornered and made unable to move, by clever ones." So it seems that 
in this game all the losing opponent's pieces end up checkmated. Plato wrote 
this sentence as a metaphor about good and bad philosophy students, at the 
same time opening the rules of petteia for us. (Samsin 2002)  

  Seega, Checkers, and Alquerque 4.1.3

In Sections 4.1.1 and 4.1.2, we introduced race games and war games. In this 
section, there are three games that are also strategy games but are structurally 
slightly different. However, these three games have some common characteris-
tics, which we will discuss in the summary section.  

4.1.3.1 Seega 

The rules of seega are simple, but the game has been said to be as difficult as the 
game of Go if not more complex. Games such as chess, backgammon, checkers, 
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Othello and Go have been of interest to the AI research community. The ancient 
Egyptian board game of Seega is a challenging game that, in some ways, is 
more difficult than chess and may even be comparable to Go in difficulty (Ab-
delbar, Ragab & Mitri 2004). The game board is relatively small, only 5x5 
squares (Figure 33, left)15. However, other board sizes up to 9x9 squares are 
known. Thus, this kind of board was easy to set up anywhere, even by drawing 
it in the sand. On the smallest, 25-square board, each player has 12 game pieces, 
leaving only one free square in the center. At the beginning of the game, players 
decide who is going to start. Then they put their game pieces alternately, two at 
the same time, in any square except the center one. When all the pieces are on 
the board, then the player who has set the last two pieces can start the game. 
The game pieces move horizontally and vertically as rooks do in chess. The op-
ponent's piece can be captured just as in tafl and latrunculi, that is, when sur-
rounded by two of the opponent’s game pieces. The game piece can be moved 
as long as you can capture an opponent’s piece with it. It is obligatory to cap-
ture the opponent's piece if that is possible. The center square is a safety square. 
If you cannot move any of your game pieces, then the turn passes to the oppo-
nent. The player achieves a "Great Victory" if he can capture all the opponent's 
pieces. This doesn’t happen very often. Mostly the result is a draw, which is 
referred to as a "Small Victory". (Botermans et al. 1990)  

 
 

 

Figure 33 Seega and its variation from Somalia 

Plato assumed that the Greek petteia was of Egyptian origin, and Egyptian 
seega has been compared with petteia (Austin 1940). Because of this, there are 
theories according to which Petteia had its roots in seega. Later it was found 
that seega is from a later period, from the Roman era in Egypt. However, it is 
possible, that seega and petteia are based on some unknown older Egyptian 
game, perhaps the one which Plato referred to. Seega is also known by other 
names: seeja and siga. This is a bit confusing, for Murray used the term siga also 
for the Indian saturanga game (Samsin 2002). Another interesting point is the 
possible connection between seega and checkers. Checkers differs from the oth-
er previously discussed games in one detail: capturing opponent's pieces does 
not happen by surrounding them but by jumping over them to a square which 

                                                 
15  www.etsy.com/listing/94083139/egyptian-seega-game-board-with-midnight 

Etsy has been a Certified B Corporation since 2012. 
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is of the same color as the starting square. But also checkers have different vari-
ations in different cultures.  

 In Somalia, seega is played on the same game board, but has with some 
modifications to the rules. The game is called high jump (Figure 33, right)16, and 
it differs from seega in that the opponent's piece is captured by jumping over it. 
This is permitted only vertically and horizontally, not diagonally as in checkers. 
In addition, the centre square is the safety square. One major difference is that 
the game pieces are already on the board when game begins. (Bell 1979, Boter-
mans et al. 1990) 

4.1.3.2 Checkers 

Checkers (Draughts) is one of the best-known board games, and it is necessary 
to write a few words about it in this research. It is assumed that checkers was 
born in southern France, sometimes between the 11th and 13th centuries (Boter-
mans et al. 1990). But it is possible, that the historical roots of checkers are earli-
er, than the 11th century. It might also be a variant of ancient Greek or Egyptian 
games. The original French name came from the expression “jeu de dames”, 
which means “women’s game”. In most languages, this game has a name that 
refers to this French expression. The English terms for it, draughts and checkers, 
which are derived from chess, differ from the terms in other languages. There 
are several variations of this game known around the world. The differences are 
related to the board size, how the game pieces are set on the board, and the 
right to move pieces also backwards. The most common checker versions are 
English checkers and international checkers. Below, are brief descriptions of 
both versions.  

 English checkers is played on an 8x8 chessboard, where each player has 
12 pieces. The popularity of this game may be due to the fact that it can be 
played on a chess board, which usually is easily available. The pieces are set on 
black squares, leaving two free rows in the middle. The game board is placed so 
that in the right-hand corner of the player there is a white square. The player 
with black pieces starts the game, and the pieces move only diagonally on black 
squares. If there is an empty square behind the opponent's piece, then the piece 
can be captured. If after this capture there are still free squares behind the op-
ponent's pieces, the player can capture as many opponent’s pieces during one 
of his turns as possible, using the same game piece. During this kind of chain-
capturing, each captured piece must be removed immediately because it might 
influence the game if left in place. The pieces must not capture or move back-
wards. If a piece reaches the opponent’s back row, then it becomes a king that 
can move backwards. The winner of the game is the player who has captured 
all the opponent's pieces or besieged them so that they cannot move. In this 
game, it is obligatory to capture if possible. If the player doesn't do that, there is 
a variety of sanctions to be applied.  

                                                 
16  www.etsy.com/listing/108300196/seega-game-board-with-greek-geometric 

Etsy has been a Certified B Corporation since 2012. 
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International checkers, or Polish draughts, is played on a 10x10 board 
(Figure 34, on the left, Michel32Nl, en.wikipedia Public Domain), where each 
player has 20 pieces. Another major difference with the English checkers is that, 
in this game, pieces can move from the start and capture also backwards. (Bo-
termans et al. 1990) 

The game that is popular in North America and the British Common-
wealth, English draughts, has pieces moving forward one square diagonally, 
kings moving forward or backward one square diagonally and a forced-capture 
rule on 8 x 8 board. In 2007, all the moves of English checkers were completely 
analyzed by computers for the first time. This game has roughly 500 billion 
possible positions (5 × 1020). The task of solving the game, that is, determining 
the final result in a game with no mistakes made by either player, is daunting. 
Almost continuously since 1989, dozens of computers have been working on 
solving checkers, applying state-of-the-art artificial intelligence techniques to 
the proving process. An important finding of this research was that perfect play 
by both sides leads to a draw. (Schaeffer et al. 2007) 

4.1.3.3 Alquerque 

It is thought that the alquerque game (Figure 34, right)17 was a role model for 
checkers. Alquerque, where the capturing was carried out almost in the same 
way as in checkers, was brought to Spain in the 11th century by the Moors. In 
alquerque, a piece could be captured if there was a free square behind it. Thus, 
it was possible to move diagonally, vertically and horizontally.  

 

  

Figure 34 Checkers and Alquerque 

 

4.1.3.4 Summary and discussion 

In Figure 33 on the left, there is a seega board. It is very similar to the alquerque 
board shown in Figure 34 on the right. In seega, at the beginning of the game, 
the pieces are placed by the players on squares chosen by them, but in the So-
malian variant the pieces are placed in the starting position as shown in Figure 

                                                 
17  http://mittelalter-lagerbedarf.de/Spiele/ 

http://mittelalter-
lagerbedarf.de/images/product_images/popup_images/254_1.jpg 
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33, on the right. As can be seen, the setup is the same as in alquerque. These two 
properties suggest that Somalian seega could be an intermediate form between 
seega and alquerque and leading further to checkers.  

So it seems that Egyptian seega might have developed from Roman 
latrunculi. Later came the variant of seega which led to alquerque and checkers. 
On the other hand, it is thought by some that latrunculi developed from petteia, 
which was inspired by some Egyptian board game. Even though it is possible 
that this intermediate board game was seega, no older evidence than that from 
the Roman era exists.  

 Go and Liubo 4.1.4

Weiqi is better known in the West under its Japanese name Go. Liubo was con-
temporaneous with weiqi, though some claim that it dates back to the Shang 
dynasty in the second millennium BC (Papineau 2001). Because of this relation, 
we discuss these two games in this same section. 

4.1.4.1 Go 

Go and seega games have some surprising similarities, and therefore also the 
Japanese go is included in our historical review of war and strategy games. Go 
is different from the strategy games presented in previous sections: the players 
do not try to destroy the opponent's pieces but to conquer new areas. Go is a 
positional game. Go is the name of the game in Japan; however, the game has 
its origins in the Chinese game called Weiqi. The game is very old, and the first 
records of it are in Zuozhuan written texts from as early as 500 BC (Papineau 
2001). The rules are simple, but the game itself extremely complex. The game 
description is summarized below. Go, also known as Baduk, is frequently con-
sidered to have more strategic depth than any other board game commonly 
played, more even than Chess. In Go, two players, Black and White, alternative-
ly place stones on a 19 x 19 board. Unlike in chess or in checkers, pieces are 
played on the corners of the squares. A group of stones consists of a set of 
stones of one color connected by means of direct orthogonal connections. (John-
son 2014) 

On the game board (Figure 35) 18 is a 19x19 grid, where are 361 stones as 
game pieces. The number of stones is exactly the same as the number of line 
intersections on the board lattice. Of these, 180 are white and 181 black. All the 
stones are identical except for the color. At the beginning of the game the board 
is empty. The black player starts by putting a stone on one of the line crossings, 
which can include a crossing on the board edge. After this, the players alter-
nately put their stones on some free crossing point. A player can also pass 
his/her turn, and the stones, which already are on the board, cannot be moved. 
The aim of the game is to conquer regions on the board, which is done by plac-

                                                 
18  By Goban1 - Own work, Public Domain, 

https://commons.wikimedia.org/w/index.php?curid=15223468 
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ing stones on the board in such a way that they make chains within which there 
are as many free points as possible. The term chain in this context refers to the 
stones of the same color which are connected to each other by a line between 
the points. All the points without a stone are considered free. A stone or a stone 
chain can be threatened by conquering free points around it. Once the last free 
point has been occupied, the captured stones are removed from the board. After 
the removal, each player is allowed to place his/her stones on the released 
points. It is strategically advantageous to build a chain in such a way that inside 
there are only single free points. The opponent is not allowed to place stones on 
such points. If there are more points available, then the opponent may try to 
take over the inside area. It is also not always reasonable or economical to re-
move all the free points from the threatened stones. If the last free point is not 
occupied, then the stone or stone chain is imprisoned. The stones remain on the 
board, but they will be removed at the end of the game. (Botermans et al. 1990) 

 
 

 

Figure 35 Go 

At the end of the game, the free points inside the chains and the cap-
tured stones will be added up. The sum of these two is the final score (Boter-
mans et al. 1990).  

4.1.4.2 Liubo 

Liubo is a Chinese game from the era of the Han Dynasty around 200 BC - 200 
AD. The name Liubo consists of "liu", which means six, and "bo", which means 
a stick or a game played with dice. Liubo has been thought by some to be a 
predecessor of Chinese chess, the xianqi, and this is the reason for this short 
presentation. There are no clear rules left of this game either, although the game 
is still played. Our knowledge about this game is restricted to the game board 
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(Figure 36)19 and the game equipment, the six sticks, which were used as dice. 
Both players had six game pieces. It is thought that the game pieces went 
around the game board, and hence liubo was a race game. On the board, there 
were twelve paths and, in the middle, the water, just like in xianqi. (Li 1998) 
 

 

  

Figure 36 Liubo-game 

It has been claimed that liubo was mentioned already during the Shang 
Dynasty (1600 BC - 1028 BC). The group of scholars who claim so think that the 
origins of chess are in China, where liubo disappeared in the 6th century and 
xianqi took its place (Li 1998).  

 Konane and Agon 4.1.5

In the end of this section, we will introduce two very special kinds of board 
games, Konane and Agon. Konane (Figure 37) was developed in Hawaii, which 
is an isolated island far from the rest of the world, and hence might shed light 
on the evolution or birth processes of board games. Agon (Figure 38 (Walker 
2014)) has, as its peculiarity, a hexagonal board which might be the oldest one 
known.  

4.1.5.1 Konane 

In Hawaii, an ancient board game called konane can be found (Ernst 1995, 
Hearn 2005). This game was added to this research because of its background. 
Hawaii had its first contact with the rest of the world in 1778. Captain Cook vis-
ited the islands and gave a report about a game, most probably konane that he 
saw there: "One of their games resembles our game of draughts (checkers), but 
from the number of squares, it seems to be much more intricate. The board is of 
the length of about two feet, and it is divided into two hundred and thirty-eight 
squares, fourteen in a row (hence a 14-by-17 board). In this game they use black 
and white pebbles, which they move from one square to another." (Ernst 1995) 

                                                 
19  http://america.pink/liubo_2725490.html 

AMERICA.PINK is free online article encyclopedia . All images and text on this site 
are used legally and does not violate copyright law. Our site is an educational re-
source and not a commercial. 
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This game has some connections with checkers, but also has several differ-
ences. The isolation of Hawaii leads us to two interesting questions: A. Did the 
Hawaii people invent the game by themselves? B. Did they bring it to the is-
lands with them? Answering "yes" to these questions opens up fascinating 
speculations in both cases. 
 
A. If they did invent it by themselves, it means that the human brain has some 

processes that enable it to find the same kinds of games independently. 
Cognitive science might be able to help us in this research. Another, but 
quite different example is the Maori game Mu Torere in New Zealand (Bo-
termans et al. 1990). 

 
B. If they brought the game from somewhere else, it tells us that the evolution 

of the board games is indeed very old. The Hawaiians came to the islands 
from the Southern Pacific in two waves. The last one was in about 1000 AD 
and the first one ca. 300 AD. To follow their migratory path, I had to (para-
doxically) add to my research also a paper from a totally different field of 
science. Just "lately" (2003 - 2009), DNA research has found out that the Pol-
ynesians, including Hawaiians and Maoris (in New Zeeland) left South East 
Asia (Philippines, Taiwan) already 5,000 years ago. (Soares et al. 2011, Su et 
al. 2000) This means that, if Konane belongs to a large board game family 
with a common evolution, the basic forms of these games must be that old. 

 
”The ancient Javanese/Malayan game of main chuki or tjuki is similar to 
Konane in that it is a kind of checkers played with 60 white beans and 60 black 
beans on the 120 points formed by intersections of lines [Wilken 1893, 162; Wil-
kinson 1925, 60].” (Ernst 1995) 

ScienceDaily (January 27, 2009 ): Pacific people spread (Figure 37, below) 
from Taiwan, language evolution, study shows. New research into language 
evolution suggests most Pacific populations originated in Taiwan around 5,200 
years ago. Scientists at the University of Auckland have used sophisticated 
computer analyses of vocabulary from 400 Austronesian languages to uncover 
how the Pacific was settled. 20 The colonization of Polynesia has remained a 
controversial topic. Two hypotheses, one postulating Taiwan as the putative 
homeland and the other asserting a Melanesian origin of the Polynesian people, 
have received considerable attention. Surprisingly, Taiwanese Y haplotypes are 
rarely found in Micronesia and Polynesia. Likewise, a Melanesian-specific hap-
lotype is not prevalent among the Polynesians. However, all the Polynesian, 
Micronesian, and Taiwanese haplotypes are present in the extant Southeast 
Asian populations. Evidently, the Y-chromosome data does not lend support to 
either of the prevailing hypotheses. Rather, we postulate that Southeast Asia 
provided a genetic source for two independent migrations: one towards Taiwan 
and the other one towards Polynesia through the islands of Southeast Asia. (Su 
et al. 2000) 
                                                 
20  https://www.sciencedaily.com/releases/2009/01/090122141146.htm 
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Figure 37 Konane game from Hawaii 21 and Polynesian migrations 

 
There are other ways to investigate the colonization of Polynesia, using 

rats. People have been in the Pacific for over 40 000 years. The first people to 
arrive in the region were part of one of the first ‘Out of Africa’ migrations. 
Sometime around 60,000 years ago, during a period when sea levels were much 
lower than today, they most likely followed the coastline through southern Asia, 
along the landmass of Sunda. The Lapita people are believed by most prehisto-
rians to be the ancestors of the Polynesians. The Lapita colonists were the first 
humans to arrive on the islands of Remote Oceania. Archaeological evidence 
suggests that these colonists moved from the Bismarck Archipelago out into the 
previously uninhabited islands of Remote Oceania sometime around 3000 years 
ago. Lapita sites appear at about that time from the Reef Santa Cruz Islands 
through Vanuatu, New Caledonia, Fiji, Tonga, and Samoa. Like the Polynesians, 
the Lapita peoples carried with them their familiar and important food items 
and introduced these to the pristine island environments they settled. The ani-

                                                 
21  Left, http://tabtop.blogspot.fi/2009/04/konane.html 

© Ian Henry 2009  Contact via email ianhenry@tbltop.com 
Right, http://www.pricepages.org/Hawaii/week9/ 
Photo by Seth Price, seth@pricepages.org 
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mals that were introduced by Lapita peoples to Remote Oceania included the 
dog, the pig, the chicken, and the Pacific rat. The Pacific rat, also known as kiore, 
does not belong to the same species as the rats introduced by Europeans – and 
does not interbreed with them. Therefore the kiore found on Pacific islands to-
day should be the direct descendants of those introduced by Lapita peoples. A 
mitochondrial DNA analysis of Polynesian populations of Rattus exulans, kiori, 
tells also how Polynesia was populated. (Matisoo-Smith 2009) 

4.1.5.2 Agon 

The agon board game is included in this presentation primarily because of the 
shape of its board. Agon is probably the oldest known strategy game on a hex-
agonally tiled board. 
 
 

 

Figure 38 Agon 

 
The origins of this game are probably in the 18th century. Agon is a game 

for two players and was first seen in France in the 1780s. It is notable for being 
one of the earliest games played on a hexagonal grid and one of the breed of 
race games which relies purely on skill rather than on an element of luck such 
as dice. Each player has a queen and her six guards. The players strive to be the 
first to get their queen and her guards to the centre of the board. The name 
comes from an ancient Greek word for contest, or challenge. (Walker 2014) 
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 Summary 4.1.6

There are innumerable old board games, and it is not reasonable to discuss all 
of them in this thesis. In this section (4.1), we have, however, gathered a group 
of games, which may in one way or another have connections to the birth of 
chess. In the following section (4.2), we will examine the games that are related 
to the history of chess, while in this section (4.1), we examined games that 
might have been related to the "prehistory" of chess. Some conclusions are 
drawn in Section 4.2.5. 

4.2 Origins of chess 

We have been discussing board games, some older than chess, and some of 
their predecessors. Now we are going to focus on the birth of chess.  

Chess has been known for two thousand years. The ancient sources of 
chess can be found in Karnamak-i-Artak-Hatr-i-Papakan (the deeds of Ardershiri’s 
son Papakan). This manuscript was written during the Sasanian Dynasty be-
tween 224 AD and 651. AD (Mark 2007)  

At that time, the game was called chaturanga (Figure 41), where the 
movements of chessmen were different. The board was called ashtapada (see 
Section 4.1.1.4). The word chaturanga means, in Sanskrit, quadripartite and was 
used to describe the Indian army, which had four divisions made up of ele-
phants, cavalry, chariots, and infantry (Hooper & Whyld 1987). Since that time, 
the most fascinating chesspiece has without any doubt been the Knight. The 
peculiarity of the Knight’s movements and its numerical symbolism have been 
the main factors of the hypothesis connecting the origins and structure of chess 
with the secret magical religious rituals of ancient India (Bidev 1986). On the 
account of Forbes’ false trail, the ancestor of chaturanga was once considered to 
be a form of four handed-chess (Hooper & Whyld 1987). We continue with this 
theory in Sub-section 4.2.2. 

Chess arrived in Europe in 1000 AD. After several modifications, medieval 
chess achieved its present form. Several theories about the origin and structure 
of chess appeared in the following years. Probably the oldest known chessmen 
were those found by Burjakov in 1977 in Afrasiab, Uzbekistan, close to Samar-
kand. These chessmen have been dated on the 8th century. In Figure 39, there 
are some Afrasiabian chessmen. 
 

 



80 
 

 

Figure 39 Possible chessmen found in Afrasiab, Iran 

 
On top there are horses; the riding man below right has been assumed to be the 
king. (Cazaux 2003, Cazaux 2003, Mark 2007) 

The early Indian form of chess arrived in China in 400-300 BC. The game 
was transformed into a variation which is still known as Chinese Chess (Xiang-
chi). Chinese chess is in many ways the most important variety of chess. For 
example, the pieces do not move on the squares, but on the line-intersections of 
the squares. Neither of the fighting forces are on the same battle field, as they 
are placed on the opposite banks of a river. It has also been claimed that the ori-
gins of chess are in China instead of India. From China, chess moved to Japan, 
where it is called Shogi. The size of the one-colored game board varies from a 
7x7 board to a 25x25 board, with 177 pieces on each side. The best-known of 
these is the Middle Shogi with a 12x12 board having 46 pieces on each side. 

 Chaturanga 4.2.1

During its journey of over thousand years to Europe, chaturanga went through 
several transformations before it got its final form as chess. For example, the 
Queen, called firzan or fers, and at the very beginning mantri, moved only one 
step diagonally. The Bishop, fil, originally gaja, meaning an elephant, moved 
exactly two steps diagonally (Hooper & Whyld 1987). Also the dice were often 
used in the game (Gollon 2013).  

We will now observe how all of the game pieces move. The King, raja, 
moved as the king in chess does: one step to any of the eight neighboring 
squares. The Queen, or firzan, moved only one step in the four corners on the 
board. The rook or ratha moved, just like the modern rook, to vertical or hori-
zontal directions as far as it could. The Bishop, or fil, moves to the direction of 
the corners, jumping over one square. However, also some other types of 
movements have been documented. The knight, or asva, moved as the knight in 
current chess does. The pawn, or sippoy, moved as today, that is, one step for-
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ward. In Figure 40, on the left, is the starting position for the pieces. On the 
right, we can see Krishna and Radha playing chaturanga.22 

 

  

Figure 40 Chaturanga 

Chaturanga later on spread to Persia and Arabic countries, where it was 
called shatranj, and later chess (Cazaux 2003). We’ll discuss this evolution more 
closely in Chapter 6. 

 Chaturaji, the four-person chaturanga 4.2.2

There also exists a four-player version of chaturanga (Figure 42), which has 
been suggested to be chaturanga’s basic form. (Benton & Benton 1977, Bird 
2004) The name of the game is chaturaji, which means the four kings (p.299) 
(Forbes 1860). This theory, however, has not received wide support, but was 
one of the most important reasons why our research on universal chess began. 

The idea that the four-player chaturanga could have been the basic form of 
chess is based on the Cox-Forbes theory. Hiram Cox claimed, in 1801, that chess 
is based on four-handed chaturanga of Hindu people, which had been devel-
oped as early as 3600 BC. Forbes wrote that the developer of the game was the 
wife of the legendary King Ravan of Sri Lanka. She might have developed the 
game to entertain her spouse, when he was besieging the town of Lanka. 
(Forbes 1860, Cox & Harington 1807)  

The game was later changed to a two-player game, because there were not 
always enough players. Forbes developed the theory further after Cox. Howev-
er, the Cox-Forbes theory has now been rejected because there is no evidence of 
four-player chaturanga before the 11th century (Hooper & Whyld 1987). 

The game was played as follows. Two cube-shaped dice were used, but 
without the numbers 5 and 6; the corresponding faces were blank. The starting 
position is shown in Figure 41. The figure on the left is taken from the web pag-
es of Cazaux23 (whose book is one of our references) and the figure on the right 
is Cox's sketch of the game. 

                                                 
22  By Darkness1089 at English Wikipedia - Transferred from en.wikipedia to Commons 

by Laurens using CommonsHelper., Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=7330681 

23  http://history.chess.free.fr/chaturanga.htm 
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Figure 41 Chaturaji, the four-person chaturanga 

The game pieces moved in the same way as in chaturanga, and hence the 
pawns and knights moved just like in modern chess. Firzan was the queen but 
moved like the king in modern chess. The elephant, which in chaturanga 
moved like the bishop in modern chess, was moved in this game like the rook 
in the modern game. The rook moved in a very special way, diagonally, but 
only one step at a time and leaping over one square. So the rook was moving 
exactly in the same way as the queen in chaturanga. On the playing board, the 
ship among game pieces was the rook. Each player had four pawns. The dice 
decided which game pieces the players could move. If the number was one, the 
player was allowed to move a firzan or a pawn, number two was for rooks, 
number three for knights and number four for elephants. If the dice show one 
of the blank sides, where ordinary dice have five or six, then the former is one 
and the latter is four. Firzan (king/queen) can be captured, but it does not need 
to be removed from the board. The winner will be the player who obtains most 
points from the captured the pieces. The points given were: for firzan 5, ele-
phants 4, knights 3, rooks 2 and pawns 1. If a player had captured the other 
three firzans, he got 3x5 = 15 points in case he had lost his own firzan. If that 
firzan was preserved, he got 54 points. (Sachau 1910) 

 Byzantine circular chess 4.2.3

Byzantine chess (Figure 42, Cazaux24), or circular chess, round chess, was an 
odd chess variant played on a circular board with 64 squares and 4 citadels 
(Hooper & Whyld 1987, Josten 2001). The moves were similar to those of 
shatranj, except that there was no pawn promotion. The Arabs called this Ro-
man chess (Josten 2014, page 88).  
                                                 
24  http://history.chess.free.fr/byzantine.htm 
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Figure 42 Byzantine chess 

Byzantine chess, invented about 1000 years ago, is one of the most inter-
esting variations of the original chess game Shatranj. It was very popular in By-
zantium since the 10th century (and possibly created there). Princess Anna 
Comnena tells that the emperor Alexius Comnenus played ’Zatrikion’ - as Byz-
antine scholars called this game. Zatrikion or Byzantine chess is the first known 
attempts to play on the circular board instead of a rectangular one. The board is 
made up of four concentric rings with 16 squares (spaces) per ring giving a total 
of 64 squares - the same as in a standard 8x8 chessboard. It also contains the 
same pieces as its parent game – and most of the pieces with almost the same 
moves. In other words, we can divide the normal chessboard into two halves 
and make a closed round strip out of it. (Hooper & Whyld 1987, Khalfine & 
Troyan 2007)  

 Xiangqi, Chinese chess 4.2.4

A majority of researchers consider that the origins of chess are in India, but a 
large number of thes believe that chess was developed from xiangqi, a Chinese 
chess (Bidev 1986, Li 1998).  

In Chinese chess, the game board has 8x8 squares just like a traditional 
chess board, but it is divided into two 4x8 regions between which there is a riv-
er. Instead of placing the game pieces on the squares, they are placed on the 
intersection points of lines, which means that in practice there are 9x10 places 
for the game pieces (Figure 43, Inductiveload, en.wikipedia Public Domain). In 
addition, there are two castles of four squares, which are marked with diagonal 
lines on the game board. The kings are in the castles. (Li 1998)  
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Figure 43 Chinese chess 

Next, we will look at the movements of pieces in relation to traditional 
chess. The king moves like in chess, but it cannot leave his castle. On the board 
(Figure 43), the king is down and up in the centre. The two counselors, who are 
beside the king, are also inside the castle, from which they cannot leave. Coun-
selors can move only diagonally. There are two bishops on the side of the coun-
selors outside of the castle. The bishop is allowed to move diagonally exactly 
two steps but may not jump over another game piece and cross the river. There 
are two knights on the side of the bishops. The knight moves just like a knight 
in chess but with the difference that it does not jump over another piece. Two 
rooks are placed at the corners, and they move exactly like rooks in chess. Two 
cannons are placed on the third line. The cannon moves just like a rook in chess, 
but it differs from a rook because it captures the opponent's pieces in a peculiar 
way. The cannon can move only by jumping over another piece, but just over a 
single one. It can jump also over the player's own game piece. Pawns move on 
their own territory one step forward and capture an opponent's pieces in the 
same way. After passing the river, they can also move horizontally. Pawns are 
not coronated on the opposite row but can continue moving horizontally. They 
can also capture horizontally. (Li 1998) The other chessmen can pass the river 
without any exceptional rules. 

A game is won by checkmating the opponent's king or by bringing it to a 
position where it is threatened and cannot stop the threat. In contrast to a tradi-
tional chess, the game can also be won by making a draw, which means that the 
king is not under a direct threat, but – as well as any other piece – cannot be 
moved. Chinese Chess ends in a real draw if neither of the players can make a 
checkmate or winner-draw. (Li 1998) 

 Shogi, the Japanese chess 4.2.5

Shogi ("shogi" = "general game") is very similar to chess, but differs from it in 
some details. One great difference is the possibility to take your opponent's 
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pieces for your own. Also, the board size is different: shogi is played on a 9x9 
board. In the beginning, there were also larger versions of shogi, of which the 
largest was a 25x25 board game, Grand shogi (shogi and one), which had 354 
game pieces, with several different types of officers. In Figure 4425, the shogi 
board on the left is marked with its original Japanese names for the game pieces 
and, on the right, with chess symbols. (Botermans et al. 1990, Li 1998) 

 
 

 

Figure 44 Shogi 

Shogi rules can be summarized as follows: Each player has 20 game pieces 
on the 81-square board. The first three lines are its own territory. Both players 
have game pieces that are of the same color. The narrow end of the piece points 
towards the opponent. The reason for this rule is that during the game the play-
er can also take the opponent's game pieces for his own pieces. Kyosha or 
spearman, moves like a rook, but only straight ahead. Keima or knight moves 
like a knight in chess, but only forward. Ginsho or silver general can move one 
step forward or diagonally, but not to left, right or backwards. Kinsho or gold 
general can move one square to any direction except diagonally backwards, so it 
has six directions to move. Osho or jewel general or king moves exactly like a king 
in chess. Kakugyo or bishop moves just like a bishop in traditional chess. Hisha or 
rook moves just like a rook in traditional chess. Fuhyo or soldier moves like a 
pawn in traditional chess. The difference from chess is that in shogi the soldier 
cannot make a double step in the beginning, and it captures directly in the next 
square forward, not diagonally. (Botermans et al. 1990) 

So in shogi there is no queen, and in addition, the knight’s and pawn’s 
moving directions are limited as compared with those in chess. On the other 
hand, there are three other officers in shogi: spearman, silver general and gold 
general. Another difference is in coronation: in shogi all the other pieces except 
the king and the gold general can be coronated. The spearman, the knight, sil-
ver general and the pawn can be coronated to gold general. The bishop can be 
coronated to a dragon horse (dragon knight), which has the same movements as a 
king and a bishop. The rook can be coronated to the dragon king, which can 
move as a combined rook and king. A game piece will be coronated, when it 

                                                 
25  http://www.chessvariants.com/shogi.html 
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arrives in the opponent’s territory, which means rows 7-9, moves there and 
then leaves from there. It is not necessary to coronate a game piece immediately; 
it can be made at an appropriate time. However, if a game piece reaches the last 
row of the opponent side, it cannot be moved before coronation. (Botermans et 
al. 1990) 

One of the major differences between shogi and chess is that the player 
can take the captured opponent’s game piece at any time during the game back 
on the board as his own piece. The piece returns to where it was on the board 
when the game started. So any possible coronation is not taken into account. 
The place where a piece is placed on the board is determined separately, but 
here we have no need to explain this part of the rules in detail. The game ends 
in checkmate like traditional chess. The starting position on the board is shown 
on the right in Figure 44. The king is back in the middle, and next to it are the 
gold generals, silver generals, knights and spearmen. The bishop is in front of 
the knight at the left, and the rook in front of the knight at the right. (Botermans 
et al. 1990, Hooper & Whyld 1987) 

 The Magic squares 4.2.6

Magic squares are not games, but because of one peculiar piece in chess, the 
knight, we should also consider the magic squares in this chapter about the ori-
gins of chess. 

Although chess is supposed to have been modeled after ancient Indian 
armies and their battles, the game might have had some religious meaning con-
nected with a fertility cult, mainly by numerology and the use of dice (Bidev 
1986). 

The idea itself does not seem far-fetched with the knight’s move on a 
chessboard, and the so-called magic squares may have something in common. 
We are going discuss this briefly in Section 6.1.1, which is about knight’s paths. 

Magic squares first appeared in Arabic sources in AD 900. They were fig-
ures in a square grid that would add to the same number in four directions. The 
number was the total of the numerological values of the consonants in a partic-
ular Hebrew name, each Hebrew consonant having been assigned a numerical 
value in cabala. (Roos 2008) 

This method of construction was subject to a number of variations. For ex-
ample, the knight's move in its path may be upwards and to the left instead of 
to the right, or it may be made downward and either to the right or left, and 
also to other directions. There are in fact eight different ways in which the 
knight's move may be started from the center cell in the upper line. Some might 
prefer another method for locating numbers in their proper cells, which in-
volves the conception of a double cylinder. This method consists of having aux-
iliary squares around two or more sides of the main square and temporarily 
writing the numbers in the cells of these auxiliary squares when their regular 
placing carries them outside the limits of the main square. The temporary loca-
tion of these numbers in the cells of the auxiliary squares will then indicate into 
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which cells of the main square they must be permanently transferred. (Bouisson 
1985) 

So the magic square is, in a way, twisted to a cylinder horizontally or/and 
vertically. After this twisting, the knight’s move can continue over the edges of 
the main magic square. This helps the knight to find its final goal in the original 
magic square. In Figure 45, there are four magic squares. Each of them has the 
same sum on every row, column and diagonal. In the magic square on left this 
sum is 15, and in the magic square in the middle the sum is 111. On the right, 
there is a magic square of Mercury on ”a chess board” with the middle sum 260. 
The squares have numbers 1 … n, where n is the number of squares. (Bouisson 
1985) 

  
 

   

Figure 45 Four magic squares 

The magic squares are generally composed so that their body of figures is 
numerically balanced. For example, each line will add up to the same total as 
any other line. If done well, even the diagonal lines will add up correctly. 
Through connecting their integers in a certain way, graphic representations of 
that square's master figure are born. In the course of their mastering the crea-
tion of theses squares, the ancient cosmologists discovered not merely harmo-
nious numerical arrangements, but interesting patterns and unique figures that 
sometimes repeated themselves in other magic squares, mystically connecting 
the collection. In this, each magic square was considered a numerical house or 
domain from where important references to the mysteries of numerical nature 
might be divined. Obviously, the magic square science may have been an im-
portant stage in the development of understanding fractions, decimals, and 
square roots. But perhaps more important was their probable influence in the 
derivation of units of measure. If you were working with the circle or hexagon, 
the measure of square of six was practical. (Hamilton 2001) The square of six is 
also called the square of Sun, and one of this kind can be found in Figure 46, 
where it is the second from left. 

These magic squares did have religious meaning in ancient times, at least 
among Chinese, Arabs and Hebrews. Magic squares reveal, by the sum of their 
letters, the names of planetary genii. Thus, the simplest, the magic square of 15, 
or the square of Saturn, gives in each direction a total of 45, the secret number of 
Saturn. In Hebrew, letters and figures correspond to the numerical value of the 
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letters. Jupiter’s square is set out in four columns, each one of which gives a to-
tal of 34, and the total sum of 136. Mars has five columns with the sum of 65, 
and the total of 325. Venus has seven columns, with the sum 175, and the total 
of 1225. Moon has nine columns, with a base of 369, and the total of 3321, Mer-
cury has eight columns, with a base of 260, and the total of 2080. In a similar 
way, the magic square of 111, that of the sun, gives us the number of SVRTh, 
Sorath – the demon of the sun, 666, as that of the Beast in the Apocalypse. The 
number 111 is also the number of Nakiel, a mystical number whose meaning 
has been noted especially in Arabic magic. (Bouisson 1985) 

The beast of the Sun, Sorath (spelled Samech, Vau, Resh, Tau in Hebrew) 
has the numerical value 60 + 6 + 200 + 400 = 666. Nachiel, with the numerical 
value 111 was the angel of the Sun. (Roos 2008, Powell 2010) 

The magic square of six was called "Squarer of the Sun". From within its 
body of cells, certain other figures could be extracted, all derived from the fa-
ther figure of 666. Why then is 666 considered so dark and nefarious? The an-
swer is simply that it is associated with pagan belief systems and cosmology 
that was adopted and improved by the Pythagorean School - controversial even 
to this day. (Hamilton 2001) 

We may also note that the magic square of Mercury (Figure 45, on the 
right), was designed on 64 squares' ”chessboard”, but there is no evidence that 
the size of the chessboard has anything to do with Mercury. 

 Speculations about the origins of chess 4.2.7

The dominating view is that chess has its roots in India and the game is based 
on chaturanga, which was described in Section 4.2.1. Hyde placed the game to 
India already in 1694, and the focus later moved to northwestern parts of India. 
However, there are very different opinions among researchers about the origins 
of the game. This is one reason why we observe here several games related to 
chess. Among the countries which have been suggested to be the birth place of 
chess are China, Persia, Afghanistan and Babylon, but there are also numerous 
other candidates (Mark 2007). 

Of these theories about the birthplace of chess, particularly that on China 
has gained popularity. The argument is based on the theory that a Chinese gen-
eral Han Xin developed the Chinese chess, Xiangqin, in 204 BC, when two op-
posite armies were in their winter positions. The same theory claims that anoth-
er old Chinese game, Liubo (Li 1998), which we already discussed in Section 
4.1.4.2, would have formed the basis for chess. Lin's view is based on Irwin's 
The Origin of Chess paper dating back as far as to 1793. Irwin’s view, on the other 
hand, is based on the material of his Chinese friend of Pan Zhen-guan. Never-
theless, no better evidence for Lin's theory exists. This Chinese origin has also 
been supported by Needham and Bidev. The theories of these three were creat-
ed during the years 1962 to 2007. (Bidev 1986, Mark 2007) 

Arguments in favour of a Chinese influence have been put forward in 
Needham 1962, and Bidev 1986 and 1987, and a Chinese origin has been argued 
in Li 1998; a Persian origin has been propounded in Bland 1851 and Yekta in 
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1970, and an origin somewhere on the Silk Road or in the Kushan Empire has 
been suggested in Josten 2001. (Mark 2007) 

In the life of Timur, by Ibn Arabshah, a more complicated game is de-
scribed on a larger board, several additional pieces, and of a hundred and ten 
squares, with fifty-six men, while Chess, in its usual form, had but thirty-two 
pieces on sixty-four squares. Chess is supposed to have been invented in India, 
and brought to Persia in the sixth century of our era. To this opinion, the author 
of our Persian manuscript places himself in direct opposition, maintaining 
chess, in its perfect and original form, was invented in Persia and taken to In-
dia, from whence it returned in its abridged and modern state. Whether the 
game existed first in a larger or smaller form, of course, affects. (Bland 1851) 

Josten supports Linder's theory of 2001, according to which the game 
would have been born somewhere on the side of the Silk Road or in the ancient 
Kushan Empire, located in the area of current Pakistan and North-East India. If 
this was the case, the game would have emerged sometime between the years 
50 BC and 200 AD. In Figure 46, there are objects thought to have been chess 
pieces, found in Kushan. On the left side, there is an elephant. The ancient Indi-
an army consisted of infantry, cavalry, chariots and elephants. Today these 
have been transformed to pawns, knights, bishops and rooks in current chess. 
(Mark 2007, Josten 2001)  

In Figure 39, we presented game pieces found in Afrasiab, which today is 
in an Uzbek territory. Also, Afrasiab was earlier a part of the kingdom of Kush. 

 

 

Figure 46 Possible chess pieces from Kushan (Josten 2001) 

Also the four-handed chaturanga, chaturaji (Section 4.2.2), has been sug-
gested to be an early form of chess. This is not very probable as the earliest ref-
erences to this game are from as late as the 11th century. Also Kraaijeveld, in 
2000 in his interesting research, in which he compared chaturanga, chaturaji 
and Chinese chess from an evolutionary view point, reached the conclusion that 
chaturaji is not the basic form of chess. He made a list of all various chess-like 
games played in the world and family trees for them, the kinds of family trees 
usually made for animals and plants. (Kraaijeveld 2000) The method is referred 
to as phylogenetic. When applying this method for biological species, family 
trees are made by comparing fossils and the characteristics of currently living 
organisms. Several variants have been suggested as the ancestor of all the other 
chess variants. The ancient Indian Chaturanga is usually seen as at least close to 
the ancestor of chess, but the 4-sided Indian dice-variant, Chaturaji, has also 
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been regarded as ancestral at various points in time. More recently, Li (1998) 
presented a hypothetical reconstruction of the original form of Xiangqi. Other 
ideas on the identity of the ancestor of chess have been suggested, but as no full 
details on the pieces, moves and other rules of these hypothetical ancestors 
have been given, it is not possible to include them here. Therefore, phylogenetic 
analyses are performed using Chaturanga, Chaturaji and Li’s proto-Xiangqi as 
the hypothetical ancestors. To illustrate that using the wrong ancestor gives 
demonstrably wrong results. An analysis was first carried out with a candidate 
ancestor of which we can be absolutely sure that it is not the correct one: Feder-
ation chess26, a 3-dimensional fictional variant from Star Trek. From the two 
trees with an Indian ancestor, the one with Chaturanga gives a better match 
with historical knowledge than the one with Chaturaji. This suggests that the 4-
sided dice-game Chaturaji is less likely than Chaturanga to be the ancestor of 
chess. This is in accordance with historical sources, which suggest that the 4-
sided dice-game was an experiment of a much later date than the 2-sided game. 
The lower probability of Chaturaji to be the ancestor of chess cannot solely be 
caused by it being a dice-controlled game. Whether play is controlled by dice or 
not is only one of 109 features used in the analyses. The analyses take the full 
set of characteristics into account, without focusing on a single one. 

Comparison of the Chaturanga-based tree (being the better of the two “out 
of India” trees) with the proto-Xiangqi-based tree shows that the former is in a 
better agreement with historical events than the latter. In other words, the phy-
logenetic analyses performed here suggest that the ancestor of the range of 
chess variants used here resembles more Chaturanga than Xiangqi. This does 
not necessarily mean that chess originated in India. (Kraaijeveld 2000) 

The relationship between chess and shogi thus points to a common origin, 
that is, to chaturanga, which was born in India around the 7th century AD. 
From there, chaturanga moved to the west and the north, going through several 
transformations on its way. The western branch was called Shatranj in Arabia 
and eventually referred to as chess in Europe. From the northern branch be-
came Xiangqi in China and Janggi in Korea. Sometimes during the 11th to 13th 
centuries, chess arrived in Japan, where became Shogi. (Benton & Benton 1977, 
Cazaux 2003) 

4.3 Three viewpoints for the boardgames 

In the following three Sections we present three viewpoints and ideas in con-
nection with the evolution process and structure of board games, especially 
chess. We also present two experimental game models. 

                                                 
26  Known better as Tri-Chess 
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 Evolution of chess 4.3.1

The oldest board games, as presented earlier, before the chess, and also before 
chaturanga, were the Egyptian Senet (3500 BC) and Mehen (2800 BC), as well as 
the Royal Ur 20-square game in Mesopotamia, Sumer (2600 BC). This Sumerian 
game can also be found later in Egypt (1800 BC). These three games are clearly 
the world's oldest known board games. The next age group (about 500 BC -.... 
500 AD) includes the ones we have already described in this chapter: Petteia, 
Latrunculi, Ashtapada, Seega, Tafl, Go and Liubo. 

The games above can be divided into two main groups in at least three 
ways. In some of them, a rectangle-shaped game board is used, while some use 
a circle-shaped game board. Some games have squares for the game pieces, 
some have holes. And, finally, some of them are race games and some war one 
games. When it comes to the places for the game pieces, a hole is a natural 
choice: you can always make a hole in the ground and put your game piece, e.g. 
a stone, there. It is the same with a square board, which is easy to draw in the 
sand. Interestingly, a hexagonal game board seems to have appeared only two 
or three hundred years ago. The oldest hexagonal game we could find is Agon, 
presented in Sub-section 4.1. The next games of this kind seem to have been the 
fairy chess games in the 20th century, which are presented in Chapter 5. 

Also, hexagons in tiling seem to appear in mosaic art rather late, at the ear-
liest in the 15th and 16th centuries (Grünbaum & Shephard 1987). This seems 
quite strange, for there are plenty of hexagons in nature. The best-known ex-
ample is obviously the honeycomb. 

The oldest board games are race games, which differ completely from 
chess and its predecessors not only by the game idea but the shape of the board. 
The only common factor is the capture of the opponent's pieces. An interesting 
connection between chess and race games is Indian Ashtapada, which also re-
sembles a race game, but is played on an 8x8-square chess board. The game 
board of the predecessor of chess, Chaturanga, had same game board, which 
was also called ashtapada, based on Sanskrit word for eight. Ashtapada can be 
connected with the race games by its safe squares and the race trail, which is 
like the snake in Mehen. 

The war games, Petteia, Latrunculi and Tafl in Europe, which are some 
two thousand years younger than these race games, but older or of the same 
age as chaturanga, are similar to chess except for the board shape. The idea of 
the game and how the game pieces move are also similar. In these games, the 
pieces move like rooks in chess and in Chaturanga. Also in these games the aim 
is to capture the king by besieging it with other pieces, which is similar to 
checkmating in chess.  

Chaturanga is generally considered to be the common "ancestor" of chess, 
and therefore the previous games should be compared to it. One connection 
between Chaturanga and Mehen can be found in the game board. In Mehen, the 
game board was a disc depicting Mehen, the snake god, in the form of a snake. 
The turning point was the serpent's head in the middle of the disc. The game 
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board of Chaturanga was Ashtapada, which was used also in the Ashtapada 
game. In Ashtapada, the race started from the edge of the board and ended at a 
snake-like circle in the center of the board (see Figure 27). In Indian Ashtapada, 
the location of the game pieces was given by the squares of the 8x8-square 
board, whereas in Mehen the game pieces were in holes on the back of the 
snake. Another similarity between Mehen, Ashtapada and Chaturanga was that 
of capturing opponent's pieces, which happened if a piece went into the same 
square or hole as the opponent's piece. 

A game of chaturanga end in checkmate just like chess, which meant that 
the opponent's king has been immobilized. The king was only imprisoned, not 
captured. A similar system operated in the Vikings’ Hneftafl, where the game 
ended when the king was surrounded on four sides and thus imprisoned. In 
addition, in Hneftafl warriors moved just like the rook (elephant) in Cha-
turanga. On the other hand, Hneftafl seems to have been based on the Roman 
Latrunculi, which probably was based on the Greek game Petteia. And Plato 
assumed that the origin of Petteia was in Egypt. This opens up an interesting 
hypothesis about the development chains of these games. 

On the basis of these considerations, Chaturanga, and hence also Chess, 
might be a combination, or a hybrid, of some race and war games. This idea is 
backed not only by the author of this thesis but the same thoughts have also 
occurred to other researchers.  

According to this idea, Chess would be a hybrid game combining western 
characters inherited from Greco-Roman or Indian games with some eastern el-
ements which have also led to Xiangqi. Others before me have suggested links 
with board games such as the Liubo, Polis or Ashtapada. (Cazaux 2003). 

 Was the Phaistos Disk a game? 4.3.2

In Section 4.1.1 of this thesis, we discussed the ancient Egyptian board game 
Mehen. We also found an interesting theory concerning an old mystery, the fa-
mous Phaistos Disk found in Crete. Figure 4727 shows both sides of this disc: on 
the left, the A-side, and on right, the B-side. 

A question arises concerning the purpose of the Phaistos Disk: Could it 
have been a board game? Some researchers have reached this conclusion. At 
one time, it was thought that the Phaistos Disk contains old unknown writing. 
The writing code fascinated researchers and they tried to crack it in the way the 
code of the famous Rosetta Stone had been cracked.  

The Rosetta Stone is a fragment of a stela inscribed with a priestly decree 
in honor of Ptolemy V. The main significance of the text lies not in its content, 
however, but in the fact that it is written in three scripts: hieroglyphic, demotic, 
and ancient Greek. Early Orientalists recognized immediately the potential of 
the Stone for the decipherment of Egyptian hieroglyphs. Thomas Young made 
great advances, especially with the demotic text, but it was Jean-François 

                                                 
27  By PRA - Own work, CC BY 1.0, 
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Champollion who made the final breakthrough in 1822. In so doing, he cracked 
much more than two Egyptian scripts: he opened up Egyptian culture as a 
whole to historians. (Parkinson 1999)  

The Phaistos Disk has been dated roughly to the period of the Minoan cul-
ture. The Minoan civilization, which is the oldest known European high culture, 
began about 4000 years ago on the island of Crete. This culture came into being 
and existed before the Indo-European people arrived in Europe and before the 
cultures of ancient Greece, including Athens and Sparta, had appeared. The 
Minoan people are today best remembered by the labyrinth in the palace of 
Knossos and the Minotaur. During that time, three different writing systems 
were known in Crete: the ancient Cretan hieroglyph system, the Minoan Linear 
A, and, as the youngest, the Mycenaean Linear B, which was created after the 
Minoan period. However, the Phaistos Disk does not contain any of these. The 
linear writing systems were developed from the hieroglyphs and are more ad-
vanced. The hieroglyphic figures were replaced by stripe-shaped marks. Cretan 
linear-to-linear B has been interpreted, but not its linear-to-A(Castleden 2012, 
Whittaker 2013). 

 

  

Figure 47 The Phaistos Disk 

The Phaistos Disk has always been an attractive object for researchers, and 
it has been interpreted in countless, from an astronomical map, to merchant, to 
music notes. That it could have been a game is only one interpretation among 
these. 

The only known object which has similarities to the Phaistos Disk is an 
Etruscan Magliano Disc (Figure 48). This disc dates back to about 500 BC, and it 
includes writing, an Etruscan text, which has only been partly interpreted. A 
small lead plate found at Magliano, probably dating from the 5th century BC, 
has a strange spiral inscription on each side, running from the exterior margin 
inwards toward the center. There are about seventy words. The word for 
"gods", aiser, which occurs here and elsewhere, seems to refer to a group or "col-
lege" of gods. (De Grummond & Simon 2009) 
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The Magliano Disc is about 1000 years younger than the Phaistos Disk, but 
nevertheless it has led researchers to interesting interpretations about the Phais-
tos Disk and its possible connections to ancient Troy. There are also suspicions 
that the Phaistos Disk could be a fake.  

Jerome Eisenberg claims the following: The Phaistos Disk is a small clay 
disk stamped with a series of unique ‘hieroglyphs’ purportedly excavated in 
July 1908 by Luigi Pernier in the palace of Phaistos on the Island of Crete. It 
may not ever rank in the public’s mind with the Piltdown Man as an object of 
great renown in the field of man’s attempt to fool both the public and countless 
numbers of scholars. However, its exposure as the most famous fabrication of 
an ancient script should certainly end the long-standing controversy over its 
origins and the translation of its intriguing hieroglyphs. On this 100th anniver-
sary of its ‘discovery’, the writer hopes to bring to light its dubious origin. The 
interpretations of the script range from scholarly discussions of its relationship 
to ancient Greek scripts such as Proto-Ionian and, obviously, Minoan, to Anato-
lian (Hittite and Luwian), as well as often far-fetched links to Basque, Indo-
European, Proto-Slavonic, Rhodian, Coptic, Semitic, Proto-Byblic, Tatarish-
Turkish, scripts from the Black Sea area (South Caucasian/Georgian, Kartveli-
an, Colchian, Mingrelian-Laz), and even West Finnish or Old Estonian, Indian, 
Chinese, and Polynesian. (Eisenberg 2008) 

Jerome Eisenberg continues: Luigi Pernier - in addition to his possible 
wish to compete with the spectacular discoveries of Federico Halbherr at 
Gortyna and Arthur Evans at Knossos - may have created and planted the disk 
to excite the sponsors of the excavation to encourage them to supply further 
backing. Dr Jean Faucounau kindly sent the writer a copy of his book Le Déchif-
frement du Disque de Phaistos (1999) which the writer had previously quoted 
from other authors only. He was gratified to find several excellent sources illus-
trating at least four of the signs. The shields closely resemble the shields carried 
by the Sea People on the Kadesh battle reliefs on the walls of the Ramasseum at 
Thebes. (Eisenberg 2008) 

 

 

Figure 48 The Magliano disk28 

                                                 
28  Eisenberg 2008 
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However, these points are not the main focus of this thesis, so we return to 
the idea of the game. Peter Aleff (2002) has listed several points that intercon-
nect the Phaistos Disk and the race games of Mehen and the Royal Game of Ur. 
The first and most obvious is, of course, the shape of the disc, the Phaistos Disk 
being of the same shape as the Mehen game and the circulating loop inside it 
resembling a snake. There is another similar connection with the Royal Game of 
Ur and with some other ancient games. This connection is the rosette, a flower 
with eight leaves, which occurs on the Phaistos Disk. On the Phaistos Disk, 
there are four rosettes; three on the A-side: at the beginning at the side of the 
circle, in the middle at the end and just before the center; and one on the B-side, 
just at the beginning, at the edge. The rosette is as a very old symbol, and it can 
be found for example on numerous Babylonian wall reliefs. It is considered to 
symbolize the beginning of life and its end. In Mesopotamia, the goddess Ishtar 
is the symbol of Ishtar, the planet Venus. In Mesopotamian mythologies, the 
rosette was considered to be a flower in the Tree of Life in the Biblical garden of 
Eden. A rosette can also be found in games, for example, in the Royal Game of 
Ur, which has 20 squares and five rosettes, as well as in its Egyptian variant 
(Figure 26). A game board inlaid with lapis lazuli, shell and bone, one of several 
similar ones, was found in the Royal Graves of Ur in Sumer, dating to about 
2500 BC. The "Game of 20 Squares" and boards of this type have the same track 
as in Ur, but one of its ends is unfolded into a straight line. They appeared in 
Egypt only under the foreign Hyksos rulers, but remained popular there even 
after these unpopular invaders had been driven out. (Aleff 2002) 

It is interesting that the oldest discovered rosette objects dating back al-
most 30,000 years, were found in a mammoth hunters' grave east of Moscow. 
The earliest example here, and one of the most beautiful, is an 8-leaf rosette 
carved on an ivory disk from about 28,000 years ago. It was found in a child's 
burial place at the Aurignacian site of Sungir in Russia, and its funerary context 
suggests that it may have been associated with a cluster of rebirth and regenera-
tion ideas. (Aleff 2002) 

A rosette can be found also at the centre of the Senet game, where it is a 
symbol of the 15th square, which is a safety square. Sometimes this rosette is 
replaced by the ankh symbol, which has the same symbolic meaning – life, 
planet Venus or sun – as the rosette (Figure 25). The ancient Egyptian ankh-
symbol appeared later as the Coptian ankh, crux ansata (Evans 2004). The ro-
sette can also be found in the ancient Egyptian Seega game (Figure 33), where it 
was also the safety square at the centre of the board. 

Aleff’s observations might have a point, keeping in mind that there are al-
so other connecting factors which he did not mention. The Minoan civilization 
in Crete had a strong connection with the Egyptian culture of that time, because 
the geographical distance was short between them. In addition, the last refer-
ences to the Egyptian Mehen game during the Middle Kingdom of Egypt (2000 
BC - 1400 BC) were found in Cyprus, close to Crete. During the same time (2200 
BC – 1300 BC), the Minoan culture flourished in Crete. 
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Furthermore, the Royal game of Ur, as well as the Egyptian version, had in 
addition to the rosette also another corresponding figure. The Phaistos Disk has 
17 rings, which are called “shields”. Each shield has seven holes: one in the cen-
tre and six on the edge. Fifteen of them are on the A-side and two on the B-side. 
In the Royal Game of Ur, there are seven ring-shaped game pieces. All of them 
have a point in the center, and four on the edge. Also the game board has five 
squares with similar points. A similar kind of point pattern can also be found in 
the other squares, larger in two of them, and smaller in four of them. Altogeth-
er, there are 15 patterns of this kind. 

So, the Phaistos Disk can be connected with the Royal Game of Ur by two 
figures (the rosette and the “shield”) on the board, and with Mehen by its ser-
pentine structure. In Mehen, the game starts from the tail of the snake, and the 
turning point is in the centre, by the head of the snake; in the Royal Game of Ur, 
both the starting and the ending squares have rosettes; and in the Phaistos Disk 
there are rosettes in the center and in the edge, where the path starts. But could 
there be something else, something more obvious that connects it to Mehen and 
the Royal game of Ur? 

Indeed, there may be. A 5000 year-old 20-square game was found in 
Shahr-i Sokhta in the eastern part of Iran, near the border of Afghanistan. The 
interesting point is that instead of squares there were twenty loops. These loops 
were formed by a twisted long snake (Figure 49) (Piperno & Salvatori 1983), 
similar to the one in the Egyptian Mehen game (Figure 25). This game was ac-
tually 200 - 300 years older than the oldest so-far found the Royal 20-square 
Game of Ur. It has been referred to as "the world's oldest backgammon game" 
(Jarrige, Didier & Quivron 2011, Schädler & Ulrich 2014). In this game, the 
snake’s tail is in its mouth; it is just like the legendary world serpent, the ourobo-
ros (Sheppard 2013). 

 
 

  

Figure 49 The Royal Ur’s game found in Iran 

However, the most interesting thing in this game is that it builds a connec-
tion between Mehen and the Royal Game of Ur. In addition, in Mehen the 
snake’s head is in the middle of the disk-shaped game board, the place where 
the players turn back. In the game of Shahr-i Sokhta, the serpent's head is also 
located at the point where, according to Bell was the point of departure (Bell 
1979) (Figure 26). If we look at the Sumerian Royal game of Ur, (Figure 26), we 
will notice that there is a rosette in the same square. 
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The Phaistos Disk also has a snakelike path to the center, the location of 
the head of the snake in Mehen. Instead of a snake’s head on the A-side of the 
Phaistos Disk, there is a rosette just like in the Royal Game of Ur in the end 
square or in the Shahr-i Sokhta version of this game. 

One might therefore assume that the Phaistos Disk indeed may have been 
an ancient race game where the figures are instructions on what the player has 
to do in different squares. This theory could be strengthened if game pieces of 
the same shape as the shield figures on the Phaistos Disk could be found in 
Phaistos. In the Royal Game of Ur, there was a similar shield figure except that 
number of the points in the shield was five, not seven. In Figure 50, there is a 
sketch of what the Phaistos Disk might look like as a game. As game pieces, 
there are circular discs with seven points. On the left (own photo), there is the 
start position, and in the middle we see an imaginary game situation. The pic-
ture on the right is the Mehen game (Robinson 2015). 

 
 

   

Figure 50 The Phaistos disk as a game, and Mehen 

 Fjögratafl, a hypothetical four–person tafl 4.3.3

In this summary, we have been comparing ancient board games in order to un-
derstand the evolution of board games and in particular, the evolution of chess. 
One point of interest has been the four-player chaturaj game and the European 
hneftafl of a similar age. A similarity between these two games is the game 
board, divided by a square, the center region and four teams, one on each edge. 
A four-player Hneftafl game is not known, but we present it here in the last part 
of this chapter as a hypothetical game. This is because the idea of tri-chess, is 
based on this logic. We call this new game in Icelandic Fjögratafl (Figure 52). 

 

 

Figure 51 Fjögratafl 
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The rules are as follows. The game pieces, warriors and kings, move just 
as in Hneftafl – like rooks in traditional chess. In this game, each team has a 
king, which can be captured in the same way as in Hneftafl. Also the warriors 
can be captured in the same way as in Hneftafl. If the king dies, then his warri-
ors become disabled and cannot move. They can be removed from the board by 
capturing them. Also, if all the warriors of one king die, then the king will be 
disabled. The winner is either the team which has the last remaining king or a 
king who succeeds to escape to the safety castle in centre of the board. The king 
can also move to the safety castle in the corner, but when there he cannot move 
his warriors. 

4.4 Summary 

As we saw in the previous chapters, there are several different opinions about 
the origins of chess. The dominant theory suggests that India is the home of 
chess, followed by the claim that China is the birth place of chess. These theo-
ries are based on various ancient texts, archaeological discoveries and logical 
reasoning concerning different rules, game board sizes and the development of 
the game in different periods. In this fourth chapter, we also present some other 
old board games in order to estimate the evolution of chess when compared to 
other board games. 

This thesis is not attempting to provide the right answer to the origins of 
chess, although we did present several viewpoints. The motive for these obser-
vations is an attempt to understand this development and evolution, as the ex-
pansions of chess, presented in this thesis, are based on the basic structures of 
chess. 



 

5 LATER CHESS VARIATIONS 

An enormous number of chess variants have been developed through the ages. 
Today, knowledge of these is rapidly increasing because of the internet. In this 
chapter we examine some old variants which were invented before the 20th cen-
tury. We also take a look at some of the best-known modern variants, focusing 
on variations with more than two players, because they are relevant to the con-
tents of this thesis. Here we list only a few games, although during this research 
we found almost 150 chess variants in the literature. 

It has been interesting to find out that in all older variants, the game board 
consisted of squares. It seems that hexagons and triangles came to be used more 
widely in the 1970s and 1980s at the earliest. The earliest hexagonal chess game 
we found was published in 1912 (Jelliss 1992). An older, and perhaps the oldest, 
hexagonal board game could be Hexagonia, which we will briefly explain in this 
chapter. In Section 5.3, we will consider the similarity and origins of some modern 
three-handed chess variations. This discussion also forms a small sub-result and a part 
of the research we carried out when investigating the background for this thesis. 

5.1 Ancient N-handed chess games 

When we (Kyppö, based on research with Frank Harary) developed a three-
handed chess game in 1993, it seemed unique. During the development, we 
found in the literature a similar type of game, which had been developed in 
1912. It was a smaller three-handed chess game (Gik & Määttänen 1988). After 
releasing our game in 1995, we found a couple of other games of that kind. The 
World Wide Web began to grow strongly at the same time, and because of it, an 
increasing number of chess variants became more widely known. For this the-
sis, it was reasonable to study the history of chess variants more broadly. It is 
amazing how far back in time, multi-player variations of chess were created. 
The oldest record we found for this thesis is dated back to 1762. However, the 
Three Kingdoms game that we present in the following Section (5.1.1), is clearly 
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even older, although the first mention of it dates back just to 1876 (Deutsche 
Gesellschaft für Natur- & Völkerkunde Ostasiens 1876). The first reference to 
the game was made at least by 12th century (Li 1998).  

 Three Kingdoms and Three Friends -games 5.1.1

Chinese Chess, San Guo-qi, means Three Kingdoms (Figure 52, right)29. This 
game was created in China, probably in the beginning of the second millenni-
um. 
 

 

  

Figure 52 Three Friends and Three Kingdoms games 

Information about this game can be found in Dr. O. von Möllendorf’s arti-
cle "Schachspiel der Chinesen", dating back to 1876 (Deutsche Gesellschaft für 
Natur- & Völkerkunde Ostasiens 1876). According to this source, the idea of the 
game is based on 3rd century China, when a war was waged between three 
kingdoms. After the fall of the Han dynasty, three kingdoms, Wei, Shu and Wu, 
were fighting against each other for about 40 years, over the control of China, 
and these wars gave the name of this game. Möllendorf’s article appeared in the 
19th century, but the game was already mentioned in Yao Kung-wu’s work 
Notes on Books Read in the Jun Study in 1151. (Li 1998) The Three Kingdoms game 
is a clear variant of Chinese chess, Xiangqi. The game pieces are similar, and 
also in this game the board is divided by a river, though in this case it branches 
into three. The game also has another variation, the Three Friends game, San-you-
qi, which was invented by Zheng Jinde between the 16th and 17th centuries. 
(Figure 52, left)30.  
  

 

                                                 
29  Deutsche Gesellschaft für Natur- & Völkerkunde Ostasiens 1876 
30  Cazaux, http://history.chess.free.fr/sanguoqi.htm 
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 Seven Armies game 5.1.2

This game is also a variation of Chinese chess: the game pieces and rules are 
partly the same, but there are seven players, as the name implies, and the game 
is played on a 19x19 Weiqi (Go) board (Figure 53). The developer of this game 
was Sima Guang, at the beginning of the second millennium. The Seven Armies 
game was inspired by fights between warlords around 400 - 200 BC. An inter-
esting detail is that the queen and the bishop already at that time moved like 
they do in modern chess. (Lo & Wang 2004) The game was probably developed 
between 1071 and 1085 (Li 1998).  

  

Figure 53 Seven Armies31 

 Four seasons chess 5.1.3

During Alfonso X Wise's regime in 13th century Spain, a four-handed chess 
game known by the name of Four Seasons was played. This game had some 
similarities with Chaturaji, the four-handed Chaturanga, but did differ from it 
by the positions of game pieces and by some of the rules. In Chaturaji (Figure 
42), the officers were placed on queues along the sides, starting from the cor-
ners, and the soldiers next to them. In Four Season Chess (Figure 54)32 the offic-
ers were placed at the corners in a quadrilateral formation and the soldiers 
around them. This formation resembles the so-called Spanish Square, better 
known as Tercio, used by Spanish Army in the 15th and 16th centuries. Tercio 
was created in 1493, when the company was divided into squadrons led by ser-
geants. One of the chief promoters of this reform was "the Great Captain", Gon-
zalo Fernández de Córdoba. (López & López 2012) 

 
 

                                                 
31  Cazaux, http://history.chess.free.fr/qiguoxiangxi.htm 

(Li 1998) 
32  http://www.chessvariants.com/historic.dir/4seiz.html 
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Figure 54 The Four Seasons Chess 

In this game, Kings, Rooks, and Knights move as in traditional chess, and 
Pawns capture diagonally as in traditional chess. Bishops move as in Cha-
turanga, diagonally, jumping over one square. When a Pawn reaches the oppo-
site edge, it will be coronated as a Queen (the General), which moves like the 
Queen in Chaturanga, diagonally one square. It is not difficult to understand 
why the Bishop and the Queen move in such a peculiar way, as in Chaturanga 
and Shatranj, because the game is quite an old variation of chess and, hence, 
might have been developed from these two old chess games. The King can be-
come checkmated just as in usual chess. In that case the King was removed 
from the board and the player who made the checkmate earned the King's army. 
It was also possible to use one or two dice in the game and play it as a money 
game, where the profits were calculated by the captured game pieces. The piec-
es were rated according to their value, so that the King had the value of 6 points, 
the Queen 5, the Rook, 4, the Knight 3, the Bishop 2 and, the Pawns 4, one point 
each. The game pieces were always green, red, black and white, reflecting the 
four seasons, spring, summer, autumn and winter, but also the four elements, 
air, fire, earth and water. The player usually attacked the opponent on the right 
hand side, but was also allowed to attack the left side. This imitated the move-
ment of the sun and was, together with the colors of the game pieces, part of the 
mystical symbolism of games in that time. (Burckhardt 1969, Golladay 2007, 
Verney 1885) 

5.2 Variations from the 18th and 19th century 

This Section provides an overview of chess variations between 100 and 300 
years ago. Numerous chess variations were developed during this period, but 
we focus only on variations that are either multi-player games or games played 
on a hexagonal board, or both. The games presented in this Section are: Mari-
nelli’s three-handed chess, four-handed chess games from the 18th and 19th cen-
turies, the Gala-game from 19th century Germany, Wellisch’s three-handed 
chess, Glinsky’s hexagonal chess and a game called Hexagonia.  
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 Marinelli’s three-handed chess 5.2.1

The earliest known European three-handed chess is Philip Marinelli’s game 
(Figure 55)33 from 1722 (Verney 1885).  
 

 

 

Figure 55 Marinellis’s three-handed chess 

Marinelli’s game is extended in a rather simple way by adding 3x8 
“wings” on three sides of a standard chess board. The same pieces as a player 
has in normal chess are placed on three sides. Each player has a queen located 
on the left side of the king. The game is not symmetrical, because the position of 
Black is different from that of White or Red. In addition, the black pawns have a 
shorter distance to coronation, which takes place, as in traditional chess, on the 
opposite side. The winner is the player who has checkmated both opponent’s 
Kings. Once the first player has been checkmated, the game pieces remain im-
mobilized on the board. However, all of them except the king can be captured. 
Marinelli’s three-handed chess was dedicated to the Savoy's Prince Eugene, 
who was inspired by the game and encouraged Marinelli to make it known 
around the world (Marinelli 1826). It is interesting that even though Marinelli’s 
game was created about 300 years ago new kinds of three-handed chess games 
are still being created. (Rewega 1992, Verney 1885)  

 Four-person cross-shaped chess games from Europe 5.2.2

Several cross-shaped, four-player chess games appeared in Europe during the 
18th and 19th centuries. The oldest of these, which dates back to 1784, was creat-
ed by “K.E.G.” in Dassau, and another can be dated back to 1792 Altenburg in 
Germany. We can call these games as Dassau’s game and Altenburg’s game. The 
oldest game for which the rules and the game itself are documented was Cap-
tain George Hope's Verney’s game dating back to 1881. (Verney 1885)  

These games were visually very similar in appearance, as shown in Figure 
56. 

 

                                                 
33  http://www.chessvariants.com/historic.dir/marinelli.html 
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Figure 56 Four-person cross-shaped games 

Figure 5634 (Verney 1885) shows the Verney’s chess game at the top; at the 
bottom on the left, there is the Altenburg’s game; and on the right we can see 
the Dassau’s chess game. As we can see, the starting position and the board of 
the Altenburg’s game are identical to that of Verney’s. There is one row less at 
the edges in Dassau’s game. 

In Verney’s game (Verney 1885), not all play against each other: the play-
ers on the opposite sides of the board are allies. Their aim is to checkmate the 
other two players. The checkmate has to be done against both of the opponents. 
Yellow and White therefore play against Black and Red. Each player has the 
same number and same kind of game pieces as in traditional chess. The moves 
are made clockwise. There are some peculiar rules in this game. The two allied 
players are not allowed to communicate with each other, and their kings can be 
placed on adjacent squares because they do not threaten each other. Because the 
persons involved in the game have uneven skill levels, there is a special rule by 
which the players whose turn comes second can change their allies in the be-
ginning of the game. A player is not allowed to make a move that would put his 
partner’s king in checkmate. A special situation arises when pawns of the allies 
are in front of each other. In such a case, pawns are allowed to jump over their 
ally's pawns. Castling is not allowed. (Verney 1885)  

Altenburg’s game is quite similar: the opposing players are allies in it as 
well. Once one of the kings has been checkmated, no game piece of this player 
is allowed to be moved any longer. In addition, this game has a large number of 
special rules. However, in Altenburg’s chess, castling is allowed. In this game 

                                                 
34  http://www.chessvariants.com/multiplayer.dir/4players.html 

http://www.thisnext.com/item/9A7C52FA/B9566C41/Victorian-4-Player-Chess-
Set 
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he strictest silence as to the game must be preserved during the play. (Verney 
1885) 

 Gala-game 5.2.3

One of the historical chess games is the 19th century Gala game from Germany. 
Gala was once quite popular in Germany, especially in Schleswig-Holstein. The 
game board had 10x10 squares, and the game pieces were placed in the corners 
of the board as shown in Figure 5735. Although the game seems to have been 
made for four players, it was in fact a two-player game. Both of the players had 
two groups of game pieces, including two kings. Therefore the pieces had only 
two colors. In this game, there were no queens and knights. The yellow squares 
were on the higher level on the game board. The reason for this was that the 
pieces that moved to yellow squares changed their direction. The aim of the 
game was to capture the opponent’s kings. (Botermans et al. 1990) 

 

 

Figure 57 Gala-game 

The movement of the pieces differed quite a lot from those in the tradi-
tional chess. The pawns moved diagonally on their own territories, the 4x4 or-
ange regions in the picture. If a pawn went out from its territory on the region 
of yellow squares, it had to stop first on the first square. After that it was able to 
move to each neighboring square, exactly like the king in chess. If a pawn re-
turned back to its original territory, it could move only diagonally as in the be-
ginning. The rook moved on the orange-colored regions just like the rook does 
in traditional chess and on the yellow-colored region just like the bishop in tra-
ditional chess. The movements of bishops are mirror images of rooks' moves. 
On the orange region, bishops move just like they do in chess, and on the yel-
low region, bishops move like rooks in traditional chess. The king had also one 
peculiar feature compared with traditional chess. It could move all over the 
board like the king does in traditional chess, but if it got to one of the four cen-
tre squares, it could be placed in any free square, except the starting square! 
When a player threatens the king, he says, "gala". If the king cannot move to a 
safe square, it is captured. The player who has captured all the opponent's 

                                                 
35  http://www.chessvariants.com/historic.dir/gala.html 
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kings wins the game. The game ends in draw if each of the players has only one 
king left. (Botermans et al. 1990) 

 N-person chess game variations in 19th century Europe 5.2.4

In 19th century Europe, many really peculiar chess variants can be found. One of 
these is G.R. Neumann's four-hand chess dating back to 1867. Also in this game, 
White and Yellow play together against Black and Red, but the shape of the 
game board is different: 8x16 squares. Each team is placed side by side on their 
own side of the board (Figure 58).  
  

 

 

Figure 58 A Four-person chess 

The team that is the first to checkmate the opponent team’s both kings is 
the winner. When one of the kings has been checkmated, the other pieces be-
come "dead", but will remain on the board. However, the other player of the 
team can "bring them back to life" by releasing the king from checkmate. Also in 
this game, the kings who are on the same side may be on adjacent squares be-
cause they do not threaten each other. 

There is another classic four-handed 19th century chess game we should 
mention: Russian chess. Russian chess has an interesting “fortress” solution: in 
every corner, there is a fortress, a bit outside of the main board (Figure 59). We 
find this solution fascinating, because the concept of universal chess, to be dis-
cussed in the next chapter, originally had its origins in the fortress idea.  
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Figure 59 A Russian four-person castle-chess 

Russian chess might be even older, but the earliest document about it can 
be found in a chess magazine that appeared in Berlin in the year 1850. Even this 
game is not truly for four persons, because the opposing players play together 
as allies. White and Yellow are partners and play against Black and Red. The 
game's specialty is the fortress system. Each player has, in his fortress reserve, 
an extra Bishop, Knight and Rook, which pieces, at the commencement of the 
game, the player can place in any position in the fortress. The rules are quite 
similar to those presented earlier, but we should pay attention to an example of 
an initial situation shown in Figure 59. Because the officers in the fortresses are 
not arranged in the same way, this affects the game. For example, Black can 
move the Bishop, which is in reserve, only after moving one of the pawns. It 
takes longer for the other players to move their Rook and Bishop. (Verney 1885) 

Next we present two bigger chess games, which do not differ that much 
from the four-player games. Figure 60 depicts Max Lang's six-player chess da-
ting back to 1881. It has exactly the same kinds of rules as those in Neumann's 
six-player chess. However, there are only four differently colored pieces in this 
game, for the players on the edge have pieces with the same color. This, howev-
er, should not cause confusion, according to the documentation (Verney 1885).  
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Figure 60 Eight- and six-handed chess games in 19th century 

Of the large older games we examine now Verney’s eight-handed chess 
(Figure 60), which is actually only an extension of his four-handed chess and 
has exactly the same rules. A similarity with the six-handed chess is with the 
colors of the pieces: players on the same side have pieces of the same color. 
Thus, there are only four different colors in this game. (Verney 1885) 

 A Hexagonal three person chess by Siegmund Wellisch 5.2.5

In 1912, Austrian engineer Siegmund Wellisch created a three-handed chess 
with a board of 91 hexagons (Figure 61). This was the earliest three-handed 
chess played on hexagons in the Variant Chess 1992 issue (Jelliss 1992). In this 
game there are no Bishops, and Knights move diagonally stepwise, in same way 
as Bishops in Glinski’s chess (next chapter) and in tri-chess (Chapter 6). Due to 
this, the game has three knights. (Hooper & Whyld 1987) 

 

 

Figure 61 Three-person hexagon chess by Wellisch 
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 Glinski’s hexagonal chess 5.2.6

The most famous of these kinds of chess games is Polish chess or Glinski’s hexag-
onal chess, developed by Wladyslaw Glinski in the 1950’s (Figure 62). This game 
is played on a 91-hexagon board. However, the game is not three-handed; it is 
intended only for two players. The movements of the pieces correspond to the 
moves in tri-chess, except for the pawn, as discussed in Chapter 6. The game is 
also known as hexagonal chess, and since the 1980's it has had its World Champi-
onships. (Gik & Määttänen 1988, Hooper & Whyld 1987)  

 

 

Figure 62 Glinski's hexagonal chess (Chess, Ramesh & Anand ) 

 Hexagonia-game 5.2.7

Perhaps the earliest game of chess with a hexagonal board, Hexagonia was cre-
ated by 1862 (Figure 64)36. However, the rules of the game related to the ending 
of the game differed from chess. In this game, there was no checkmate: the 
winner was the player who first got his King to the golden safety hexagon in 
the centre of the board. This kind of ending in Hexagonia has an interesting 
similarity with the Tafl games  

 

 

Figure 63 Hexagonia 

                                                 
36  https://boardgamegeek.com/image/1931516/hexagonia 
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The game board of Hexagonia consisted of 127 hexagons, which were 
blue, red and white, except for the middle safety box, which had the color of 
gold. Each player had eight pawns, four knights, two cannons and a king. No 
definite information has been preserved about the moves of the game pieces. 
The game was developed by British John Jacques along with several other 
games. (Routledge 1866) 

5.3 Modern variations 

In recent years, three-handed chess has spread more widely throughout Eu-
rope. The background of this game is quite interesting, since the same game 
appears to bear the hallmark of several different developers. It was difficult to 
find the original inventors of these games. However, we got to the conclusion, 
that the first of these variations were invented by Robert Zubrin, who was 
working in NASA. Probably he didn’t know about some quite similar games 
(Figure 65) 37  (Verney 1885) created already in the 19th century. Figure 
6438(Zubrin 1972) presents four variants, the oldest of which goes back to 1972. 
The inventor of this game was Robert Zubrin (Zubrin 1972).  On the left in the 
figure is Zubrin’s game and to the right are games designed by Patton, Ras-
mussin and Langronier, respectively. These three are from the end of the 1990's 
and after 2000. In recent years, the Patton's game has spread widely, although 
the developer's name is not always clear in its marketing. All four games have 
clearly the same structure. All three players have the same number of pawns 
and officers as in ordinary chess. The boards are assembled so that a chess 
board has been cut in the middle and then three of these kinds of “half chess 
boards” are placed together and connected to the center by bending and 
stretching the squares. Each board has thus 3x32 = 96 squares and in the centre 
a hexagram-shaped "star". 

 

    

Figure 64 Three-person chess games, with 96 squares 

 
These games are modern variations and do not differ greatly from some 

three-player chess games of the 19th century (Verney 1885). Two examples are 
                                                 
37  http://www.chessvariants.com/historic.dir/self.html 
38  https://boardgamegeek.com/image/395516/tri-chess 

By Slip - 3 players chessboard, CC BY 2.0, 
https://commons.wikimedia.org/w/index.php?curid=4433248 
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Waider’s and Self’s games (Figure 65). Waider’s game dates back to 1837 and 
Self’s chess was created in 1894. These two games have a fairly similar board, 
differing only in the centre. However, in these games three ordinary chessboard 
halves have been combined, just like in the previous four games. At the time, 
Waider also presented a four-handed chess, which was quite similar to previ-
ous ones. 

 

  

Figure 65 Waider’s and Self’s three-person chess games39 

5.4 Summary 

This chapter considers some of the numerous chess variations and chess-like 
games from different eras up to the present day. The modifications shown here 
have been based mainly on the form of the game board and the number of 
players. This gives some perspective on how many generally unknown innova-
tions have been made in this field and also how difficult it is to develop com-
pletely new game ideas or new ideas at all. Most of the things have been in-
vented and forgotten far in the past.  

The variants in this chapter give a background for the idea of universal 
chess, which we will present in the following three chapters. 
 

 
 
 

                                                 
39  http://www.chessvariants.com/historic.dir/self.html 

(Verney 1885) 



 

6 BASIC MODEL OF UNIVERSAL CHESS 

The basic principles described earlier can be generalized to ”universal chess” 
rules. These rules remain mostly the same despite the number of officers and 
pawns in the game and the size of the game board. For larger board types, we 
create new officer types to cover wider defense zones. A game board can also be 
transformed into multiple dimensions. Also, if we want to increase the number 
of players while preserving equality, then higher dimensions are necessary. 
Finding a suitable multidimensional geometric structure is a problem, because 
in higher dimensions regular tiling can be done only by hypercubes. Due to the 
limited ability of humans to ”give form” to higher-dimensional objects, the 
three- or four-dimensional versions of chess are mainly used to simulate game-
theoretical models. The Knight is a chess piece the moves of which seem to dif-
fer the most from the moves of the other chess pieces. Attempts to understand 
this led to the invention of three-person hexagonal chess and later to the rules of 
the universal chess. The Knight has always been considered to be the most pe-
culiar chess piece, when it comes to the movements.  

As discussed in the introductory section, the starting point of this thesis is 
three-handed chess, which is greatly influenced by the Knight's odd move-
ments on the chess board. From these studies was born our own theory of prime 
chess (), which may never be proven correct or incorrect. However, this theory 
allows one to decompose chess into its “prime elements”, and to rebuild it 
again from these elements. From these elements, we built two distinct games: a 
standard, 64-square, two-player board game (chess) and an 87-hexagon three 
players board game. How this happened is explained in this chapter. To differ-
entiate between the two-handed and the three-handed chess, we developed, on 
the basis of the universal chess idea, our game, Trichess, and, as a general term 
for it, we use three-handed chess.  
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6.1 A theory about the origins of chess 

The strangeness of the Knight’s move and its possible numerical symbolism 
have been two of the main reasons for the hypothesis connecting the origins 
and structure of chess with secret magical and religious rituals of ancient India. 
Several theories have been proposed during the years about the birth of chess 
and its structure.  

Suppose that we want to create a game where kingdoms or kings are 
struggling against each other. Each player has a fortress of his own, and outside 
of this fortress there is an area where players can attack. Let's think of a situa-
tion where we have an open field for the game pieces to move. If we want to 
determine the places of the pieces on this field, then we must divide the field 
into regular parts. The two-dimensional plane can be divided, as told in Chapter 
3, to identical and similarly-sized regions exactly in three forms: triangles, 
squares and hexagons.  

 In this chapter, we examine first the classic Knight’s Path problem and 
Knight’s Tour problem, because this problem was one of the factors which led 
to the idea of universal chess. In the background, was an attempt to solve, to-
gether with professor Frank Harary, a generalization of the Knight’s Tour prob-
lem. After this, we discuss the birth process of the trichess board, as well as the 
defense zones that led to the determination of the officers in the game.  

 The Knight’s tour, and background of the research 6.1.1

The Knight differs from the other chess pieces in modern chess because of its 
"right-angled" move. Often the explanation for this has been connected with the 
way a horse or horseman moves around on a real battlefield.  

The Knight is the piece the movement of which probably surprises every-
one who becomes familiar with this game. In the hot climate of India, the rider's 
weapon was a spear or a mace by Kainulainen (1984). Hence Knight’s moves on 
the board resembled jumping. But on the other hand it has been thought that 
the Knight’s move might have been taken from some other games, perhaps the 
old magical temple games. In the so-called magic number squares, there can be 
found routes which could be interpreted as the Knight’s moves. (Kainulainen 
1984)  

The problem of the Knight’s Tour, on a traditional 8x8 chess board was 
solved (Figure 66, on bottom)40 already by Euler in 1759 (Biggs, Lloyd & Wilson, 
1986). The problem can be divided into two problems: the Knight’s Tour and 
the Knight’s Path, also called as the Knight’s open Tour. In the first one, the 
Tour, you always finish where you started. In the second one, the Path, it is 
enough just to go through all the squares. After Euler’s proof, numerous publi-
cations, which calculated a variety of ways to cover a chess board by knight’s 

                                                 
40  http://www.renneslechateau.it/index.php?sezione=studi&id=greatparchment, © 

2016 Mariano Tomatis Antoniono 
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tours, were written. The Knight’s Tour and the Knight’s Path are special cases 
of Hamiltonian cycles and Hamiltonian paths in the graph theory, which in turn 
is a special case of the Traveling Salesman Problem, which has many practical 
applications. In the Hamiltonian Path Problem, we investigate whether all the 
vertices in a graph could be visited. To be more exact, a Hamiltonian path, or 
spanning path, in a digraph D, is a path that includes all the vertices of digraph 
D. A Hamiltonian cycle, or spanning cycle, in a digraph D is a cycle that in-
cludes all the vertices of D. (Gross et al. 2004)  

In the Travelling Salesman Problem, we are looking for the minimum 
length of a spanning walk in an edge-weighted graph. Also in the Travelling 
Salesman Problem all the vertices must be visited, but it is not forbidden, unlike 
in the Knight’s Tour, to visit a single node more than once The Knight’s Tour 
(as well as the Knight’s Path) problem can be generalized by changing the 
shape of the chessboard. Schwenk proved in 1991 that on an m x n chess board, 
that consist of squares where n ≥ m ≥ 5, a Knight’s Tour can be found if m or n 
is an even number. If m <5, a Knight Tour is found only if m = 3 and n ≥ 10 and 
it is even (Schwenk 1991).  

 This result of Schwenk was used as the basis when we began to look for a 
generalization. Frank Harary wrote: “I shall e-write to Allen Schwenk and ask 
him to airmail to you his pretty paper on Knights move Hamiltonian cycles for 
all even b>=6. Then we will have a better idea where we can send our article.” 
(Frank Harary, Appendix 1)  

The aim was to prove the theorem, according to which a Knight’s Path al-
ways exists on m x n square tiled boards iff m ≥ n ≥ 5. The work that began in 
1993 remained unfinished and unpublished because another proof was made 
about the same theorem in 1994. However, this process finally led to the inven-
tion of Trichess, which we are going to discuss in Section 6.2. Therefore, we take 
also a brief look at the method of proof we used.  

A Knight’s Tour, abbreviated as KnT, as well as a Knight’s Path abbreviat-
ed as KnP, can be represented as a Knight’s Graph. In Figure 66 there is a 
Knight’s Graph in which we can search for KnT4 or KnP4, when m = n = 4. On 
the top left side of the graph in Figure 66, there is a 4x4 game board, where a 
Knight's Path covers only 15 of the 16 squares. There is a reason for this. On the 
4x4 gameboard, which consists of squares, it is not possible to find a Knight’s 
Tour, which is easy to verify if we look at the graph. The graph can be divided 
into four sub-graphs of four vertices each as shown in the middle figure. There 
are two types of these sub-graphs. In one of them, the degrees of the vertices are 
2 and 4, and, in the other, all the vertices have degree 3. This means that, in the 
sub-graphs where there are two vertices of degree 2, both of these vertices must 
be visited before leaving the sub-graph. This is not possible because at least to 
one of these two sub-graphs we must go via a vertex of degree 4. And from a 
vertex of degree 4 it is possible to go only to a vertex of degree 2. After that it is 
no longer possible to move to another vertex of degree 2 in a same sub-graph 
because the route goes via a vertex of degree 4.  
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 Figure 66 on the top right shows a Knight’s Path KnP5 on a 5x5 chess-
board by numbers 1 to 25. Starting from a corner of the game board, the Knight 
moves along a two squares wide strip and then spirally towards the center. It is 
easy to find out the route by following the numbers on the board. So, on this 
board there is a Knight’s Path.  

  
 
 

 

 

Figure 66 Knight’s Graph on 4x4 board, Knight’s Path on 5x5 board and The first Knight's 
Tour suggested by Euler 

The complexity of finding a Knight’s Tour and Path increases exponential-
ly as we increase the board size, as can be seen from figure 67, which shows the 
graph KnP6 of a 6 x 6 game board (Watkins 2004). At the same time, we may 
note, however, that the basic structure of the graph remains as the same. In each 
corner of the board, an interesting sub-graph is created. It is useful in trying to 
find a Hamiltonian path. These sub-graphs and their structure are the key to a 
more general proof if we continue with the kind of reasoning we used previous-
ly with KnT4. It is this structure of a graph that led us to generalize the same 
problem on tilings other than rectangles and squares.  
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Figure 67 KnP6, Knight’s Path on 6x6 board 

Figure 67 on the left depicts the Knight’s movements as a graph on a 6x6 
square chessboard. On the right of the figure, there is a detailed picture of one 
of the corners of the board and the relevant sub-graph. On the graph at the bot-
tom, it is possible to find by numbers how the vertices of this corner are situat-
ed in the main graph.  

In order to determine the structure of the graph when the board size in-
creases, a new idea was born. We began to generalize the Knight’s Tour and 
Path also on game boards with other kinds of tilings. At first, we applied this to 
a board which consisted of hexagons, where we determined the knight’s 
movements. Even though this generalization did not make any progress with 
the proof, in about two weeks it led to the creation of a game we refer to as 
Trichess. Figure 68 shows an example of a Knight’s Path on a small game board 
of 27 hexagons. How we got to these kinds of Knight’s moves will be explained 
in Sections 6.1.2 and 6.1.3 that follow. Next we explain the details of Figure 68.  
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Figure 68 Knight’s Path on hexagonal board 

On top left of Figure 68, there is a solution, where we can see one Knight’s 
Path. The colors of the numbers describe the colors of the hexagons. On the top 
right, there is a graph of the Knight’s movements on this same game board. This 
graph was made in same way as the graph for a square board in Figure 67. In 
this graph, circles correspond to black hexagons, squares to red hexagons and 
triangles to blue hexagons. The vertices that correspond to the numbers are 
shown in the hexagonal board that is under the graph in this figure. There are 
three different kinds of vertices (of degrees 4, 5, and 6). Those with degree 4 are 
situated on the short three-hexagon sides of this game board; the vertices of de-
gree 6 (deg(v) = 6) are at the center of the board (vertices 9, 10, 11, 15, 16 and 
21); the remaining vertices (nodes) have the degree 5 (deg(v) = 5). As we can 
see, the graph is tri-partite. This means that no two vertices of the same color 
are adjacent and that the number of the colors is three. The graph on the bottom 
left describes the colors of this game board, and there are connections (seen as 
edges) between. In the graph, the shape of the vertex describes the color of a 
hexagon cell on the game board. The size of the vertex is indicated by its de-
gree: for example, on the top, a small triangle refers to a set of three blue hexa-
gons with degree 4, and a larger triangle refers to a set of four blue hexagons, 
which have degree 5. On the bottom, the large triangle represents two blue hex-
agons of degree 6.  

The next phase of this study would, of course, be a trial to find Knight’s 
Tours and Paths on different-size hexagonal boards and then generalize the re-
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sults and look for similarities and general rules of Knight Paths and Tours as 
the size of the board varies.  

However, this thesis deals with a symmetric n-player game model, and 
the reason for explaining the process of the Knight’s Path or Trail was to find 
out how the process of Trichess got started. Next, we continue with TriChess. 

 The Game board 6.1.2

There are exactly three ways of tiling the plane by means of similarly shaped 
regular polygons. Rectangular chessboards with square cells are not the only 
ones: it is also possible to form triangular chessboards or hexagonal chess-
boards with well-defined Knight’s moves. So not only the chessboard but also 
the Knight’s move can be generalized. This may give rise to several new prob-
lems related to artificial chess boards in the field of graph and game theory.  

For the designer of the game board in ancient times, the natural way was 
to divide a plane into sections of the same size and shape, into areas that indi-
cate locations. Thus we once again are dealing with the concept of tiling. As 
mentioned before, there are only three polygons which can tile a plane evenly: a 
triangle, a square and a hexagon (Grünbaum & Shephard, 1987). 

 This can be seen in Section 3.2, where we deal with the infinite, complete, 
regular, planar graphs in which the degrees of vertices and faces are constants. 
There the formula v = 4r / (2r + rk-2 k), where k is the area of the node and r the 
degree, gave the number of vertices. By degree we mean the number of the 
edges which are connected with a vertex or surround a face. Next we define the 
concepts of zone and territory.  

As the first step, we select a 3x3 square, which is divided into 9 smaller 
squares, for the game board. The small square in the center of the board is the 
King’s fortress (K). The first zone consists of 8 squares which surround the cen-
ter square (Figure 69 on the left). We call this zone the first territory of the King. 
Next we take two new game pieces, A and B, which can move in various ways. 
Piece A moves horizontally or vertically and piece B diagonally. These two new 
pieces cover the whole first zone when the starting square is the center square. 
After this we extend the territory with the second zone of small squares which are 
in contact with the first zone. This zone has 16 squares (Figure 70 on the right, 
the gray squares). Eight of these squares, that is, a half of them, can be covered 
with pieces A and B if they continue directly to the direction they can move. 
This means that there will still be 8 uncovered squares. For these squares, we 
need a new game piece, marked with C in the figure. When we now observe 
these three pieces, we notice that they correspond to the rook (A), the bishop (B) 
and the knight (C) in the game of chess. These three pieces cover the whole of 
the King's second territory (Figure 69, on the right), which consists of the first and 
second zones. 
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Figure 69 King’s territories 

When a cell to be defended is chosen, its surroundings can be divided into 
different zones by distance (Figure 73 a). The cell chosen can have a shape of 
any of the previous three polygons. A two-dimensional plane can be filled regu-
larly only with three regular polygons: triangle, square or hexagon, as ex-
plained earlier. When the cells are squares, then the game pieces of type A and 
B, which move like the rook and the bishop in chess, cover only the lowest one 
of these zones, as shown in Figure 69. When moving into the second zone, some 
cells stay out of the bishop’s and rook’s reach, and especially these cells become 
the possible destination cells for a third piece C, the knight (Figure 69). This 
means that a piece like the knight is essential for a good and complete defense 
of the central cell. Let’s now assume that the central cell of the defense zone is 
called a fortress. 

Next we place, on the side of this fortress and its territories, another simi-
lar fortress with two zones. We do this in such way that both central fortresses 
will be unreachable by the territories of the neighboring fortress. So the distance 
between the two fortresses (K) will be two squares, and the total size of both 
fortresses and their territories is 5x8 = 40 squares (Figure 70). Then we place 
these fortresses so close to each other that both will have two defensive zones 
but will remain outside the second territory of the neighboring fortress. This 
will result in an 8x8-square board, which in fact is the Ashtapada board (Figure 
27) or standard chess board.  

 

 

Figure 70 Two fortresses 

Next, we make the board symmetrical by placing another fortress above 
each existing fortress outside their second territory. In this way the game board 
grows to 8x8 = 64 squares, which is the same size as that of the ancient Indian 
game board Ashtapada ("eight squares"). So now we have a 64-square game 
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board of four fortresses, where the basic chess pieces – the rook, bishop and 
knight – are the game pieces (Figure 71). This may lead us to think that chess 
might have been a four players’ game originally. 

 

 

Figure 71 The Symmetry of Kingdoms 

Let us return to Section 4.2 and the discussion about the origins of chess. 
When we study the history of chess we can see that chess came to Europe after 
1000 AD from the Arabian countries, where it was known as Shatranj (Mark 
2007, Eales 1985). There are other possible arrival routes: for example, the east-
ern route through Russia. The Arabs got the game from Persia (shatrang), the 
latter country having received it from the 8th century India. In India, the game 
might have evolved from a four-person board game, Chaturanga (see also Sec-
tion 4.2), "the four branches of army service", which was played on ashtapada 
boards. These four branches of military service were the cavalry (Knight), ele-
phants (Elephant, later Bishop), the chariots (Rook) and the infantry or ordinary 
soldiers. 

The Chaturanga signifies the game of four angas, or four species of forces, 
which, according to the Amira Kosha of Amara Sinha and other authorities 
means elephants, horses, chariots and foot soldiers, which, in the native tongue 
is Hasty, aswa, ratha and padatum. It was first brought to notice by the learned 
Dr. Thomas Hyde of Oxford, in his work De Ludus Orientalibus, 1694. (Bird 
2004)  

During the development of chess into its current form, the movements of 
the game pieces have changed considerably, and the information on their 
movements in the earlier forms of the game supports the idea about the zones. 
For example, the Bishop (fil) was able in the past only to jump diagonally over one 
square, that is, from the central square straight to the second zone. The first 
zone's corner squares were covered by the Queen's predecessor, a significantly 
weaker “senior officer” (firzan), which was able to move just one step and only diago-
nally. These early moves are still a part of today's Chinese chess. Chinese chess 
also has a special rule according to which the King and two senior officers can-
not leave the fortress. There are nine squares in this fortress. 

This kind of zone-oriented thinking led us to our conclusion that a game 
piece like the Knight was essential to the defense of the assumed central fortress. 
Figure 72 shows how the officers of Chaturanga covered the first two stones, 
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the second territory, around the center square (black). In the figure, we use the 
same abbreviations as in the modern chess game. This kind of thinking might 
have motivated the creation of a knight-like piece; there might have been a need 
to cover the squares which the fil, firzan and rook (originally ratha) did not cov-
er.  

 

 

Figure 72 The Officers of Chaturanga and the zones 

Next we consider the trajectories of the officers from a slightly different 
perspective, based on the direction of movement, and at the same time we de-
fine two new concepts, the file and the sector, for our future needs. The file is a 
common concept in chess, but here we are going to use it with a slightly more 
general meaning. 

The rook, bishop and knight can be defined in a more general way by us-
ing files. The rook moves from the fortress to the directions of the sides of the 
square in a straight line to four directions: 0°, 90°, 180° and 270°. We call these 
directions the files of the rook and the squares on these files the sectors of the 
rook. When we draw between these files new files to directions 45°, 135°, 225° 
and 315°, they determine the files of the bishops. The squares under these files 
are the sectors of the bishops. The sectors of the rook and the bishop cover all 
the squares on the first zone and territory, and half of the squares on the second 
zone. When we make new files between those of the rooks and bishops in such 
way that they cut the rest of the squares on the second zone, we get the direc-
tions: 26.6° + k*90° and 64.4° + k*90°, where k = 0, 1, 2 or 3. These files go 
through the center points of eight squares on the second zone. Those are the 
squares where the knight moves from the center fortress. Now, the second terri-
tory is also completely covered. If we enlarge the group of territories by adding 
new zones, we need new kinds of game pieces or new officers. This principle is 
relevant for the next step when we begin to generalize the game board.  

 The Zones and sectors on different boards 6.1.3

The theory of prime chess, and how this chess-like game was invented, stimu-
lated from the study of knight’s movements and why the game board for chess 
has 64 squares (Figure 73). This gave rise to a strange thought: perhaps the prede-
cessor of chess was a game for four persons? 
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Figure 73 The two-step-zone on the square chess board 

During the development of the game, these four kingdoms would have 
been united to two kingdoms and two kings. Two of the four kings could have 
been changed to queens (firzan). However, this was only an hypothesis. The 
important thing is that this reasoning led to ideas about new kinds of chess var-
iations. 

Interesting from an historical point of view, however, is the fact that the 
same hypothesis was also entertained in the past (Bidev 1986). The name of the 
predecessor of chess in Sanskrit was shaturanga, which translates to four sets; 
however, this is interpreted generally as referring to the four branches of ser-
vice, which are represented by three officers and soldiers. In Germany there is 
an old chess variant, Gala, which we described in Section 4. In Gala the teams 
were divided into the four corners of the board. A two-dimensional, planar, 
four-person game usually degenerates to a game of two players, because four 
points cannot be set on a plane so that they all would play the same strategic 
role in relation to each other. The positions of neighbors will always be different 
from those of their opponents. For three players, this would be possible. In Fig-
ure 74, on the left, there are three points, symmetrically placed on the plane; in 
the middle, there are four points asymmetrically placed; and, on the right, all 
four points are symmetrically placed in three-dimensional space. By symmetry 
we mean here the strategic positions of the points in relation to each other for 
all players. In the middle of Figure 74, the opposite points' positions differ from 
those of the adjacent points, regardless of what kind of game we choose to con-
sider.  
  

 

 

Figure 74 The Symmetry between three and four points 
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6.2 Trichess41 

As discussed earlier, different chess variants have been developed through the 
ages, as explained in Section 5. Among these variants there are many which 
have more than two players. These include three-player games. The three-
player chess we present in this section results from a trial to solve a certain 
mathematical problem, commented upon in the introduction of this thesis. This 
ancient mathematical problem, the Knight’s Path, was explained in Section 6.1.1. 
One of the ideas regarding it was to generalize the knight’s movement, and the 
original chess game had to be structured to the basics. We traced the evolution-
ary steps of chess back to Chaturanga and then transformed the game from the 
viewpoint of general chess theory. As a result, three different chess games were 
found: traditional chess, a theoretical game based on triangles, and a three-
players chess which is played on a hexagonal board. The Rules of three players 
chess were specified and completed from the basic rules of chess. The name 
Trichess was given to it by Professor Frank Harary in May 1993. 

The aim wasn't to create a game for three players; we only to study the 
movements of the game pieces on other than square-shaped cells of a game 
board. When we finally decided to take a hexagonal model instead of a trian-
gural or rectangular one, then also the number of players became naturally and 
logically three, due to the shape of the board. Next we will explain the princi-
ples of Trichess.  

 The Hexagonal board 6.2.1

 A kind of fortress/zone-based logic might help us to picture in our minds how 
the first game boards were created 2000 years ago. We could then build a chess 
board also on triangular and hexagonal boards, where the location of a game 
piece could be determined in a manner resembling that on the traditional 
square board. If the number of zones outside the fortress is two, then we will 
get territories such as those in Figure 75. When we create the game board using 
the same principles as the square board in Figure 73, we get new game boards 
(Figures 76 and 78).  

 
 

 

                                                 
41  Trichess was awarded an innovation prize in 1995 by the Jyväskylä Technology Center and 

the University of Jyväskylä. In 1999. Mika Vesterholm wrote a Java-program for this game, 
and Figures 80 – 81 and 84 - 88 are from that program. 
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Figure 75 The first zone on triagonal and hexagonal boards 

It is impossible to set up 4 players in equal positions in relation to each 
other on the plane. In the case of three players this is possible. When the move-
ments of chess pieces are transferred to a board consisting of hexagons, the two 
innermost defense zones may be covered withthe rook’s and bishop’s moves. 
The knight becomes essential in the third zone. The game with 3 fortresses con-
sists of 87 cells/hexagons (Figure 78). These cells on a trichess board are colored 
with three different colors (usually black, white and brown), and that is also the 
reason why three bishops are required for each player. The number of other 
officers equals the number of the officers in regular chess (Figure 81). By using 
these same principles, it should also be possible to construct a game of chess on 
a triangular board, but the movements of these chess pieces cannot be trans-
formed identically to the way they move on hexagonal and traditional chess. 
For example, in the starting position, none of the officers (the knight included) 
could move before one of the pawns had been moved. We will briefly return to 
this detail in Section 7.3.2. Figure 76 shows the fortresses (K) on a triangular 
board with two defense zones. The number of fortresses is six.  

 
 

 

Figure 76 The symmetry between kingdoms on a triangular board 

As a next step we build a chess board about hexagons and then show how 
the rules of the traditional chess can be applied to this kind of board. The first 
defense zone around this kind of fortress consists of six hexagons. This defense 
zone is colored gray in Figure 75 b. The second, the outer defense zone, is made 
up of twelve hexagons (Figure 75 b). 
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The rook can move towards any of the six sides, which means that there 
will be six sectors which are separated by angles of 60°. In Figure 78, the rook, 
marked with the letter A, can move to directions 30° + k*60 when k ∈ [0,5] k ∈ 
N. All of the hexagons of the first and every second on the second defense zone 
can be covered with a rook. On the second zone, six hexagons still remain un-
covered. These uncovered hexagons are intermediate sectors, and they are for 
bishops.  Bishops, marked with letter B in Figure 77, can move to directions 0° + 
k*60° when k ∈ [0,5] and k ∈ N. If we want to create a game with the same 
number of different officers as in ordinary chess, we must create a third defense 
zone to get the knight in the game. On this zone, there are 18 hexagons. The 
rook covers six of them. The bishop doesn't cover any of the hexagons on this 
zone: but it will cover hexagons next on the fourth zone. The uncovered 12 hex-
agons are for the knight. In Figure 77, the knight is marked by letter C and 
moves to the directions of approximately 10° + k*60° and directions of approx-
imately 50° + k* 60 when k ∈ [0,5] and k ∈ N. Now the number of different of-
ficer types is the same as in the traditional chess. 

 

 

Figure 77 The officers and their sectors in Trichess 

Next we add the fortress in the same way as in a square board, so that the 
territories don’t reach the neighboring fortress, which is the hexagon with K. In 
this way, the distance between the fortresses will be three hexagons and the 
total number of hexagons will be 65. If we want to add more fortresses so that 
they are in same position with these two, it is possible only by adding one more 
fortress above them. In this way, there will be three fortresses and the number 
of hexagons will increase to 87 (Figure 78). (Honkela 1999) 

So, now we have a game board and the game pieces as defined. The next 
step is to decide the number and positions of the pieces on the game board. 
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Figure 78 Symmetry of kingdoms on Trichess board 

This board has six sides, three long ones of 8 hexagons and three short 
ones of 4 hexagons. We choose the short side with four hexagons for the play-
er's corner positions. The reason for this is that the zones of the other players do 
not intersect these shorter sides and the number of chessmen is as close as pos-
sible to what it is in traditional chess. In traditional chess, the total number of 
chessmen is half of the number of squares. On the long sides, we can introduce 
only one full row, that is, 8 hexagons. In case we also used the next row, then it 
would mean that no free hexagons would remain between the neighboring 
teams. A reasonable number of chess pieces can be obtained from traditional 
chess: half of the squares (32/64) are free. The exact number of one player's 
pieces in three players' game would be then 87/2/3 = 14.5 => 14 or 15. When 8 
officers (there are 3 bishops and the king among them) are deducted from this 
number, then the remaining number of pawns is 6 or 7. The three rows (Figure 
79) on the short side have 4 + 5 + 6 = 15 hexagons. On the two bottom rows, 
there are 9 hexagons and thus the places for the king and the officers. On the 
third row, there are 6 hexagons for the pawns. The officers will be ordered as 
follows: on the back row, there are 4 hexagons, in the center of the row are the 
king and the queen. On the two corners are the rooks. In this way, castling is 
made possible. On the next row, we have the knights at the sides and the bish-
ops in the center, each on a different color. This kind of order between knights 
and bishops is necessary because only these positions protect all the chessmen 
on their starting places. A different kind of order would lead to a situation 
where bishops could capture opponents’ pieces already during their first 
moves. The bishop can move at the beginning of the game, just like the knight, 
even though none of the pawns have been moved. This is the biggest difference 
from the traditional chess. In Figure 79, the arrow shows how one of the bish-
ops can move from its starting position.  
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Figure 79 The officers and pawns in the opening position of Trichess 
 

 The Chessmen of hexagonal Trichess 6.2.2

When we start to describe the movements of chess pieces on a hexagonal board, 
we begin by taking a look at the traditional square board where the rook moves 
to the directions of its sides, and hence covers the whole of the innermost de-
fense zone. The sectors of the bishops are between the sectors of the rooks, and 
the second defense zone will be covered by the rooks and bishops. From this, it 
follows that the resulting board of 46 hexagons (Figure 80) can be formed with-
out the knights. They will become necessary only on the third defense zone. 

 

 

Figure 80 Hexagonal Trichess with 46 hexagons 

When we also add the knight, the board will grow to the size of 87 hexa-
gons, due to the third defense zone and the three fortresses (Figure 81).  

The development of these games began when we started looking for solu-
tions for generalizations of the Knight's Tour problem. It is possible to search 
for Knight's Tours and Knight’s Paths on hexagonal boards as well as on square 
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boards, but the structure of the graphs will change significantly. However, this 
plays no essential role in this section, where we concentrate on explaining the 
birth process of Trichess. In the development process, we divided the chess 
game into kinds of "initial elements", which means that we explored ancient 
Chaturanga and then followed the assumed evolution process of chess. We as-
sembled the game from its basic elements, but we also took into account the 
rule changes which have occurred in chess during the two millennia, and we 
formulate "abstract chess”. From this abstract chess model, we built Trichess 
and later on, traditional chess. The latter was done to ensure the correctness of 
the model. The third transformation, made on the triagonal board in this "evo-
lution”, was so unique that it could be considered a game different from chess. 
However, the triangular model provided useful support, when we tried to find 
a better isomorphism in the details between Trichess and traditional chess. Af-
ter all, during its millennial history, chess became so perfect that even the 
smallest changes over time would bring unpleasant surprises. Most of the rules 
we found easy to project to the new game, but every now and then we came 
across a situation in which we had to choose the correct rule among several op-
tions. In such cases, the triangular model was used for verification (Figure 76).  

 The Numbering system on the hexagonal board 6.2.3

Figure 81 shows the Trichess game board and the placement of chessmen before 
the game begins. The white player is on the bottom and the black player on the 
right. 

Because this chessboard consisted of hexagons, the determination of the 
numbering was clearly a problem. We decided to define the numbering in the 
same way as in traditional chess but applied to a board of 87 hexagons. The 
hexagon rows are marked by letters from a to k, starting from the bottom, 
which is the white player’s corner. The individual hexagons on each row are 
numbered from left to right. This means that the greatest number of the shortest 
row is 4 (a4) and the greatest number for the longest row is 11 (h11). The corner 
hexagons on the opposite side of white player are k1 on the left and k8 on the 
right. On k1 there is brown rook, and on k8 there is black rook. 

 
 
 
 
 
 
 
 
 

Figure 81 The Opening positions on the Trichess 
board of 87 hexagons  
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The practical implementation of the numbering  
 
However, the problem is the marking in the numbering of the board so that it 
would be  
 a) unbiased for any of the three players,  
 b) always visible regardless of the locations of chessmen,  
 c) observable to make the location of chessmen immediately apparent, and  
 d) appropriate for the board layout and not disturbing.  

 
The following solution we have presented (Kyppö 1999) fulfills these crite-

ria. In this solution, the coordinate for each hexagon is marked on three of its six 
corners so that each player can see one of these coordinates written in the cor-
rect way round for the player. The coordinates are compact in size, which 
means that they cannot be seen from faraway and thus remain non-disturbing. 
However, the coordinates are large enough, so that the players themselves can 
read them easily. The coordinates are written on the corners, so that they are 
not hidden by the chessmen. Coordinates are positioned in such a way that eve-
ry second intersection of the three hexagons has three coordinates and the rest 
of the intersections are free (Figure 82). The figure shows an enlarged view of 
the intersection of three hexagons: F8, F9 and G9. 

In the utility model, this is specified as follows: There is a game board for 
three players, formed by hexagonal boxes, which are arranged in a truncated 
equilateral triangular shape. In the game, each player is positioned behind the 
triangular tip of the extension, the player's viewing direction being essentially 
the game board. Each hexagon has three coordinates, and for each player one 
coordinate is placed in the player's viewing direction from the hexagonal to the 
nearest corner of the hexagon.  

 

  

Figure 82 Numbering of a hexagonal board 



130 
 

 Trichess as a game 6.2.4

Even though Trichess is based on standard chess, there are differences in the 
characters of the games. This is because the density of sectors is greater in 
Trichess, and hence also the power of officers. Another great difference is the 
dynamics of game: this is a multiperson game. However, the greatest difference 
is at the strategic level. Above the normal game there is also a second-level of 
game: being not a two-player game, the players can form allies with other play-
ers during the game. This creates interesting game-theoretical situations, similar 
to those in politics. As an example, we can take the political game in 1999 be-
tween the Finnish Social Democrats, the Centre Party and the National Coali-
tion Party. For the parliamentary elections in the spring of 1999, all these three 
parties had boldly transferred their best “chess officer”, the queen, to the central 
area, which means to real life, in the largest electoral district, Helsinki, in South 
Finland. Other well-known examples can be found from the time of the Cold 
War. The Soviet Union v USA v China, the political situation which formed the 
background for George Orwell's science fiction novel 1984 (Orwell & Mattila 
1999). In this book, the super-states were Oceania, Eurasia and the Far East. As 
another example, we can raise the crisis in Yugoslavia, which developed in the 
1990s. From the viewpoint of Trichess, the center of this crisis was Bosnia-
Herzegovina. For a long time, that state had been the meeting point of the East, 
West and South, or Orthodoxy, Roman Catholicism and Islam, or the Russian 
sphere of interest, Western countries and the poor South. In 2014, the center 
crisis point was around the Black Sea. 

In Trichess, the moves are based on traditional chess. The only difference 
is that the squares are replaced by hexagons. This means, that for example the 
rook can be moved to in any of six directions instead of four, because a hexagon 
has six sides. It is the same with the bishop, which moves to the direction of the 
corners as in traditional chess. The queen's movement combines the movements 
of the rook and the bishop. The king moves like the queen, but only one step at 
one move. The knight moves to the nearest hexagon, which the rook or the 
bishop cannot reach. The knight's movement can also be defined similarly to 
those in traditional chess: one step forward like the rook and one step diagonal-
ly like the bishop. Based on conventional chess, the movements of all chessmen 
are easy to learn, but at first it might be difficult to get used to a game that is not 
played on a square board. In particular, bishops might cause problems. Figure 
83 below shows the former world chess champion, Anatoly Karpov, solving a 
game situation where his king is threatened by a bishop.  
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Figure 83 Anatoly Karpov solves a checkmate in Trichess42 

The top of Figure 83 shows the game process (left to right). At first, Black 
moves one of his bishops in the center, where it threatens White’s king. This 
was a threat for Karpov, but it was easy to cancel as White’s rook can capture 
this Black’s bishop. The threat was created to demonstrate how the bishop can 
surprise opponents’ chessmen in the game. Photos represent the situation on 
the board on the top right. Next we explain the rules in more detail.  

 
The Rules 

 
The Board. The Trichess board differs from the traditional chessboard in that 
the 64 squares with two colors are replaced by three different colors (usually 
black, white and brown). We naturally need three bishops for each player, but 
the number of other officers equals their number in regular chess. 

The Trichess chessboard consist of 87 hexagons, called cells, which are col-
ored alternately: white, brown and black. The board has three long sides (8 hex-
agons) and 3 short sides (4 hexagons) arranged so that the opposite sides are 
always of different size. The three players place themselves on the short sides of 
the board. The cells (hexagons) form rows, which have three different directions. 
From the viewpoint of a player, the vertical rows are called files and the two 
(left and right) horizontal rows are called ranks. This means that all three rows 
are both files and ranks depending on the player’s viewpoint. That is why a row 
                                                 
42  The photos of Karpov were taken in August 1996 by Matti Turpeinen, the photographer of the 

Keskisuomalainen newspaper. The movements above are made by a trichess program created 
by the Vision project in 1999 – 2000 (the Department of Computer Science and Information 
Systems, University of Jyväskylä).  



132 
 
may also be called black-white rank, white-brown rank or brown-black rank. 
The rows, or lines, of hexagons of the same color that cross the chessboard are 
called diagonals.  

The players are called White, Brown (or Red) and Black, because these 
three colours are most commonly used with traditional chess boards. The play-
ers are seated in such way that on the left side of White is Brown and on the 
right side of White is Black. Of the three short sides, the White player selects the 
side with black hexagons on its corners. In the illustrations in this thesis, White 
can always be found at the bottom of the board.  

The Game process. The game is played between three opponents, who 
take turns making their moves in the mentioned order. The player with the 
white pieces begins the game. At the beginning of the game, each player has a 
set of 15 chessmen, one set of light color for the White side, the other black for 
the Black side and the third of brown color for the Brown side. No piece can be 
moved to a cell occupied by a piece of the same color. If a piece moves to a cell 
occupied by an opponent's piece, the latter is captured and removed from the 
chessboard as a part of the same move. One exception is en-passant, about 
which we will discuss later. A piece is said to attack a cell if the piece could 
make a capture on that cell.  

The Chess pieces. Each player has a set of 15 pieces: one set light in color 
for the White side, the other brown for the Brown side and the third black for 
the Black side. The first two rows are occupied by five kinds of “pieces”, distin-
guished by their shapes: King, queen, rook, bishop and knight. These are ab-
breviated in conventional notation: K, Q, R, B, N. The chessmen in front of these 
pieces, positioned on the third row, are called pawns, abbreviated by P. Behind 
the pawns are officers. On the back row, rooks are on corners, the king and the 
queen in the center. Each queen is placed on a cell of its own color. On the sec-
ond row, there are three bishops in the center and knights on the left and right 
side. 

The Moves. The King moves both in any rank direction and in any diago-
nal direction, one cell at a time (Figure 85, on the left). The Queen, rook, and 
bishop are long-range pieces that can cover any distance across the board in any 
direction, as long they are not obstructed. The Rook moves any distance on files 
or rank (Figure 84, left), and the bishop on the diagonals (Figure 84, on the 
right). This means that both the rooks and bishops have six possible directions, 
supposing the way is free, to leave their cell. The Queen combines the powers of 
a rook and a bishop. The Knight moves over two cells on a same file or rank, at 
a time. One of these cells is on the file, the other on the diagonal (Figure 85, on 
the right): thus “jumping” carries the Knight over any Black, Brown or White 
chessman that may occupy any of these intermediate cells. In other words, the 
Knight passes the first diagonal cell and then continues to one of the two cells 
which touch the first and second diagonal cell on same direction. Equivalently a 
knight takes three steps on two different files, at first jumping two steps in the 
same direction and then one step to the cell which is 60 degrees to the left or 
right from the original direction. Any piece other than a Pawn captures as it 
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moves; that is, an enemy piece can be captured by the capturing piece on a cell 
to which it may legally move. The capturing piece replaces the captured piece 
on the same cell, and the captured piece is removed from the board. 

 

  

Figure 84 The Moving directions of Rook and Bishop 

  

Figure 85 The Moving directions of King and Knight 

Moving directions in detail:  
 
The Rook moves to any cell along this file or rank on which it stands. It cannot 
leap over any piece. The Rook captures on the same direction it moves. When it 
captures an enemy piece, it occupies the cell of the captured piece. 

The Bishop moves along the diagonals it stands on, always on the cells of 
the same color. It cannot leap over any piece. The Bishop captures on the same 
direction it moves. When it captures an enemy piece, it occupies the cell of the 
captured piece. 

The King moves from its cell to one of the contacting cells or to the nearest 
cell of the same color if the cell is not threatened by any of the opponent's pieces. 
The kings of two opponents can never be on cells touching each other or on ad-
jacent cells of the same color. The King is the most important piece in the game. 
If the king is checkmated, the game is over. Winner is the player, who made the 
checkmate, but there might be cases, where the solution is more complicated 
(see Chapter 8.4. and case, when there are three players). The King can move to 



134 
 
any rank or file direction and to any diagonal direction as well, one cell at a 
time. The King captures the same way as it moves. When it captures an enemy 
piece, it displaces that piece. The King may not move to a cell that is threatened 
by one or more of an opponent's pieces. 

The Queen moves along the ranks, files, and diagonals it stands on. The 
Queen is the most powerful piece of all the chessmen. Its moves are the combi-
nation of the moves of a rook and a bishop. The Queen cannot leap over any 
piece. The Queen captures the same way as it moves. When it captures an ene-
my piece, it occupies the cell of the captured piece. 

The Knight moves at first one step like a rook and then another step diago-
nally forward like a bishop, or the other way round. In the cells that are be-
tween the departure and arrival cells, there may also be other pieces. The color 
of the departure cell is always different from the color of the arrival cell. So the 
Knight is the only piece that can leap over other chessmen (either his own or the 
opponent's). The Knight is also, with the King, the only officer whose move is of 
a fixed length.  

The Pawn is different from the pawn in traditional chess, because one 
player has two opponents. Thus, the pawn can move to two of the surrounding 
six cells, toward its opponents. The pawn can change its moving direction be-
tween the two opponents any time during the game. It moves forward only one 
cell at a time. The exception is the first move - even if this occurs late in the 
game: the pawn may, but it does not have to, advance two cells along the same 
file provided both cell squares are unoccupied. 

A pawn can diagonally capture cells of the same color on the right and left 
side. As the pawn has two directions to move, due to its two opponents, the 
number of cells where it can capture grows to three (Figure 86). It should be 
noted that of these three cells the pawns can capture the left-hand opponent's 
piece only in two left-side cells and the right-hand opponent’s piece only in two 
right-side cells. This rule is necessary: otherwise we might face a situation, 
where there are pawns of two different players in an attacking position, but on-
ly one of them could capture the other.  

 

 

Figure 86 The Moving directions of Pawn 

The pawn will be coronated when it reaches one of the eight cells on the 
opposite side. When the pawn reaches the eleventh rank, farthest from the start-
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ing cell, it is immediately replaced by a queen, rook, bishop, or knight of the 
same color, at the option of the owner. This transformation is called promotion 
or queening, because it is usual to promote the piece to a queen. If the chosen 
substitute is not a queen, the change is called under-promotion. A player may 
have two or more queens or other pieces, except a king. Promotion to a king is 
not permitted. 

If a pawn makes its first move known as a double advance, an adversary’s 
pawn that could have captured it had the first pawn moved only one cell may 
capture it in passing (en passant) if the pawns end up occupying the neighboring 
cells (Figure 87). This in passing capture may be made only on the immediate 
turn, not later. 

 

 

Figure 87 En passant in Trichess 

Castling is a compound move of the king and one of the rooks. It can be 
done only once in a game. The move is executed by moving the king one cell 
towards the left rook and then placing that rook over the king on the cell (Fig-
ure 88, below). The move is legal only if neither the king nor the rook has yet 
moved from its original cell, and if the king is not in check. Castling can also be 
carried out by simply placing the right rook on the cell over the king (Figure 88, 
above). Castling is prevented for the time being if the cell on which the king 
stands, or the cell which it must cross, or the cell which it is to occupy is at-
tacked by one or more of the opponent's pieces, or if there is any piece between 
the king and the rook with which castling is effected. 

 

 

 

Figure 88 Castling 

The objective and the game termination. The aim is to make the king of one of 
the opponent’s unable to move or, in another variation of the game, to make the 
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kings of all the opponents unable to move. All the other pieces can be captured 
and removed from the board. The king is said to be 'in check' if it is under at-
tack by one or more of on opponent's pieces, even if such pieces cannot them-
selves move. This situation is possible, when there are three players. The objec-
tive of each player is to place an opponent's king 'under attack' in such a way 
that the opponent has no legal move which would avoid the 'capture' of the 
king on the following move. The only ways of countering a check are to move 
the king, capture the attacker, or interpose a man on the line of check. Capture 
of a king is never consummated and remains symbolic – when the king is at-
tacked, in check, and cannot escape by any of the aforementioned means, then 
he is checkmated. The game is won by the player who has checkmated an op-
ponent's king with a legal move. This immediately ends the game. Games can 
also end by resignation when it is obvious that ultimate defeat cannot be avoid-
ed. The game is drawn when the player to move has no legal move left and his 
king is not in check. Such a game is said to end in a stalemate. The game can 
end in a draw by agreement between all three players during the game. The 
game may be drawn if an identical position is about to appear or has appeared 
on the chessboard three times. The game may be drawn if the last 50 consecu-
tive moves have been made by each player without the movement of any pawn 
and without the capture of any piece. The game can be, if it is agreed in advance, 
also continued between the last two players and to the second checkmate. More 
about this next. 
 
Two different ways to finish the game 

 
A. The player who makes the first checkmate of an opponent’s king, will be the 
winner ("first checkmate to win").  

B. The player whose king has been checkmated, will be out of the game, 
and the last player left on the board is the winner ("the last checkmate wins"). 
There is one addition of rule to this variant. That additional rule can be found 
below in the section Some related rules for the game, the defeat. The player whose 
king is threatened and has no way to escape can also resign and finish the game. 

If method B is used in tournaments, then the game can be activated by giv-
ing two points to the winner who is the last one to effect a checkmate and one 
point to the player who made the first checkmate. If both checkmates are made 
by the same player, then he/she gets three points. If one of the players resigns, 
and the two others continue, then the winner gets all three points. Hence, the 
game can end with the points as (3, 0, 0), (2, 1, 0) or (1, 1, 1) among the players. 
The last one is the case, when all three players end up with a draw. 
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Some related rules for the game 
 
The opening procedure. The White player makes the first move, after which 
the moves are made clockwise on the board. The Brown player has the second 
turn, and the Black one the last turn. 

The game. In the starting position, each player can move only bishops, 
knights and pawns. 

The move is finished a) when the piece has been moved to an empty cell 
and the player has released it from his hand, b) during the capturing process, 
when the captured piece has been removed from the board and replaced by the 
capturing piece and the player has released it from his hand, c) in castling, 
when the player has released the king, or d) in coronation, when the pawn has 
been removed from the board and the player has released the coronated piece. 

Check and checkmate. The king is in check, when it is threatened by one 
or both opponents. Check must be removed immediately during the next move 
of the player whose king is threatened: a) by moving the king to a cell, where it 
is not threatened, b) by capturing the piece that threatens the king or c) by mov-
ing another piece on the threat line for blocking. If the check cannot be prevent-
ed, then the king is in checkmate. 

The defeat. This rule is relevant only if the game has been agreed to be 
played with method B, as discussed earlier in this section. Any player whose 
king has been checkmated, has lost the game. Similarly, in case of resignation, 
the resigned player has lost the game. Matti ja antautumisilmoitus ovat 
tehtävissä missä pelin vaiheessa tahansa. The player who has lost first is elimi-
nated from the game, but the pieces remain, “powerless, on the board. "Powerless" 
means that they do not threat any other piece but that they, including the king, 
can be captured from the board. So the game can end in two different ways, but 
the players must agree about this before they start the game. "Voimaton", joka 
muuten oli myös sanan "matti" merkitys persian kielessä, tarkoittaa sitä että 
nappuloita ei voi liikuttaa, mutta ne eivät myöskään uhkaa muita nappu-
loita.This rule is necessary to avoid a situation where the strategic positions 
would change on the board if some of the chess pieces are removed from the 
board during the game process.  

Draw between two players. If only two players are left, then the game be-
tween these players ends to a draw in situations where it would end in draw in 
traditional chess. 

Draw between three players. The game can end in a draw also between 
all three players if the king of the player who has to do the next move is not in 
check, but this player cannot make any legal move.   

Irregularities. If during a game, it is discovered that there has been a vio-
lation of the rules, then all chess pieces must be returned to their positions be-
fore this violation occured. If this is not possible, then the game shall be void, 
and a new game must be played. All the rules above are consistent with the 
traditional chess rules. 
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The algebraic notation of moves. The chess pieces use standard symbols, 
capital letters, that are used in traditional chess: K for a king, Q for a queen, R 
for a rook, B for a bishop and N for a knight (In Section 6.1.1, though, we used 
symbol Kn for a knight because Kn is widely used in graph theory). Usually in 
chess a pawn doesn’t have a symbolic letter, but in the figures of this thesis we 
use the letter P.  

The columns (called files) are labeled by letters a to k from left to right 
from the white player's point of view, and the rows (called ranks) by numbers 1 
to 11, with 1 being closest to the White player. This closely resembles the stand-
ard algebraic chess notation, only the numbers and letters differ. This means 
that the largest number of the shortest row is 4 in the cell a4, and the greatest 
number for the longest row is 11 in the cell h11. On the opposite of the White 
player, on the kth row, the left cell is k1 and the right cell k8.  

In the starting position, White’s pieces are on rows a, b and c, Brown’s and 
Black's pieces are on rows f … k, so that Brown has cells f1, g1-2, h1-3, and k1-3. 
Black’s pieces are in cells f9, g9-10, h9-11, i8-10, j7-9 and k6-8.  

6.3 An asymmetric four-way chess 

Here we present an asymmetric chess game for four players. During the history 
of chess, several four-handed chess games have been developed, as already dis-
cussed in Sections 4 and 5. These games were all asymmetrical because they 
were two-dimensional. 

The asymmetrical four-handed chess we introduce here is a combination of 
traditional chess and trichess. In this game, we have four players, and the game 
is played on the traditional 64-square chessboard. The game is based on our 
universal model of chess, and was invented about the same time as trichess, 
which was introduced in Section 6.2. The idea for this game was to apply the 
principles of trichess to a traditional chessboard, but for four players. The mo-
tive for this comes from the same knowledge we had of trichess, the ancient 
four-handed chaturanga, which was introduced in Section 4.2.2. 

When we invented trichess in the early 90’s, we got the idea from four-
handed chaturanga, but we didn’t know how that game played like. When we 
were writing this thesis, we found a medieval chess-like game called Four Sea-
sons, which is presented in Section 5.13 and in Figure 54. It resembles this game 
to a surprising degree, particularly because of the initial position of the chess 
pieces. 

The chessboard is similar to that in traditional chess, with 64 white and 
black squares. The White player takes the corner where the square is named a1. 
On White’s left side is the Red player, on the opposite side the Black player and 
on the right side the Yellow player (Figure 89 - The colors are not seen in this 
figure.). The horizontal lines are called ranks and the vertical lines are called files. 
The diagonal lines are called diagonals. 
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Red        Black 

White  Yellow   

Figure 89 An asymmetric four-handed chess game (bridge chess) 

Bridge chess. The game can be played as Trichess, where all play against 
each other. As such, the game works well as a social game. Another way is to 
play in two-person teams, the adjacent or opposite players on the same side. In 
this case, communication is prohibited during the game. This kind of game can 
be called bridge chess after a well-known card game, bridge. 

Rules of the game. The rules of the game are a direct application of the 
rules of trichess presented in Appendix 2. 

6.4 Chess without a board 

Chess without a board is based on the model of Universal chess. The game of 
chess usually includes a game board marked with squares or identical cells. The 
squares or other markings show the permitted locations of the pieces. In the 
game of chess, only one piece can fit on a square, and each piece must remain 
on the game area marked with squares. 

Another idea (Kyppö 1997) is to create a boardless game, where no 
squares or other markings are required to show the permitted places of the 
pieces on the board or a base. Actually this idea was invented already in 1993 
(see Appendix 1, post number 16). In that kind of game no squares are required 
because the pieces always move a measurable distance in a set direction. Con-
tact between the pieces is defined by means of the intersection of the individual 
areas as replacements to squares. 

 The Game field and the chess pieces 6.4.1

The game area is a limited two-dimensional surface, which is formed by game 
board 1, in which the boundaries 2 are defined by a feature (Figure 90). In this 
example, the edge of the circular game board 1 forms the aforesaid boundary. 
Each player has a group 3 and 3' (Figure 90) of sixteen pieces, as in normal chess, 
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each comprising a king, a queen, two rooks, two bishops, two knights, and 
eight pawns. Each piece has a circular area around it, which is defined by the 
area of the base of the piece. 

 

 

Figure 90 Opening position, the guider and areas of chess pieces43 

In the initial arrangement, the pieces are placed so that on the White side 
the king and queen are in the middle, with the queen on the left. To the left and 
right of them there are, in order, a bishop, a knight, and a rook. Each is in its 
own area, so that the areas border one another. In front of these so-called no-
blemen are eight pawns, so that the area of each pawn touches the area of the 
nobleman behind it. At a distance of five area measures at right-angles to the 
pawns (there are four completely empty areas between), there is a straight line 
of Black pawns, behind which are correspondingly Black officers. The Black 
queen directly faces the White queen. 

In the initial setup, there are six area measures between the Black and 
White kings. The extent of the area of the game is defined by drawing a circle, 
the centrepoint of which is the centrepoint of the line segment between the 
Black queen and the White king. Though the game can be played on any level 
base whatever, the most advantageous game generally has a base, a particular 
game board, in which this delimitation has been ready made, as in this case. 

In Figure 91, the construction of a knight is used to exemplify the con-
struction of the pieces. The definition of the location of a piece takes place ac-
cording to a direction scale 11 printed on the upper surface of the base 8 of the 
piece (numbers in Figure 91). The direction device 10, a measuring rule or tape, at 
the base of the piece, which is attached to a rotating ring, is turned in the chosen 

                                                 
43  Fig.1 , Fig. 4a ja Fig 4b, and the small numbers are taken from a patent (Kyppö 1997). 
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direction and the movement of the piece is read from the set scale of the direc-
tion device. Its length is a measure of 10 areas, here called also belts, for a bish-
op, castle, and queen, a measure of 3 areas for a knight, and a measure of 2 are-
as for other pieces. The direction device is harmonized with the guider on left 
side of the game area (see Figure 90). 

Before the direction is set, the piece must be placed at right-angles to the 
setup of the game. This takes place with the aid of direction indicator 4, see Fig-
ure 90. Direction indicator 4 is on the left when viewed from the White player's 
position and it has a button moving in a groove 5 in the center, from which 
there is a measuring rule 6 that can be moved to the right. At the beginning of 
the game, direction indicator 4 is set parallel to a straight line drawn between 
the White and Black kings. 

Chess pieces. At the beginning of the game, both players have sixteen 
'Black' or 'White' pieces. Each has one king, one queen, two rooks, two knights, 
two bishops, and eight pawns. The number and setup of the pieces are thus the 
same as in 'conventional' chess. 

The Aim. The game's aim, opening procedure, and rules for moves are the 
same as in normal chess, except for the alterations described later. 

The Moves. Each piece can move from the point of departure within the 
framework of the predetermined rules. A piece cannot move to such a place 
that belongs to the area of another piece on its own side, nor to such a place that 
belongs to the area of one of the opponent's pieces. If the area of a moved piece 
intersects the area of one of the opponent's pieces, this latter is 'taken' and re-
moved from the area of the game. Only the knight and bishop may move over 
the areas of the other pieces. The area of a piece may not intersect the boundary 
of the area of the game. 

The Area. The definition of an area takes place in practice by the piece 
having a flat circular disc as a base, i.e. the aforesaid base 8, the surface area of 
which is the same as the area of the piece. In the piece, there is also a concentric 
inner ring 9, the so-called inner area, the diameter of which is half the diameter 
of the entire area (Figure 90). The aggressiveness of the pieces can be selected 
according to figures 4a and 4b. At the separately agreed start of a game, the ag-
gressiveness of the pieces can be reduced by moderating the intersection rule 
concerning the intersection of the area (base 8) and the inner area (ring 9) (Fig-
ure 91). The result of this moderation is that the pieces can also be located next 
to one another so that the ring-shaped zones remaining between the edge of the 
inner area and the edge of the entire area of the piece intersect one another. 

In Figures 92 and 93, there is an example oft another officer, the bishop. 
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Figure 91 The Knight of the Boardless chess44 

 

 

Figure 92 The Bishop of the Boardless chess 

 

 

Figure 93 The Sectors of the Bishop 

                                                 
44  Fig.2 , and the small numbers are taken from a patent (Kyppö 1997). 
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 Moves of individual pieces 6.4.2

The rook moves from the north in directions 0°, 60°, 120°, 180°, 240° and 300°. 
The number of steps in its move is not limited, provided the route is otherwise 
unobstructed (Figure 94, blue lines). 

The bishop moves two areas at a time in the directions 30°, 90°, 150°, 210°, 
270° and 330° (Figure 94, green lines). If there are other pieces in the area be-
tween, the bishop jumps over them. As in the case of the rook, the number of 
steps in bishops move is not limited. 
 

   

Figure 94 The sectors of the officers 

The knight moves over three areas at time in the directions of 20°, 40°, 80°, 
100°, 140°, 160°, 200°, 220°, 260°, 280°, 320° and 340°, one step at a time (Figure 
94, red circles). If there are other pieces in the areas in between, the knight 
jumps over them. 

The queen moves in the same way as the rook and bishop combined. 
The king moves like the queen, but only one area measure at a time. 
Castling is a king’s move complemented by the rook’s (castle’s) move. It is 

counted as a single move and takes place as follows: the king remains in place 
or else moves next to a rook that is on the same horizontal level, after which the 
rook moves over the king if the area on the other side of the king is free. Cas-
tling is impossible if one or other of the pieces, the king or the castle has already 
been moved. Castling is temporarily prevented if the king is threatened by one 
of the opponent’s pieces. 

The pawn moves only by the amount of its own area. Only the initial move 
may span two areas if the area is completely free. The pawn moves from its area 
to a distance of one step in a direction of ±30° forwards. A pawn, which threat-
ens an area that a pawn from the opponent’s original area has passed in a move 
of two steps, may, immediately on next move (and only then), take the oppo-
nent’s pawn, just as if the latter had moved only one step. This special move is 
termed taking en passant. 

Every pawn that has been able to move more than six areas from its origi-
nal position must during the same move and irrespective of the remaining piec-



144 
 
es, be changed into a queen, rook, bishop, or knight of the same color, as the 
player wishes. The transformation of the pawn is termed coronation and comes 
into force immediately and the pawn is replaced by another piece, the coronat-
ed piece. 

 The Rules 6.4.3

The opening procedure. The White player makes the first move.  
The move is finished a) when the piece has been moved to an empty cell and 
the player has released it, b) during the capturing process, when the captured 
piece has been removed from the board and replaced by the capturing piece 
and the player has released the hold from it, c) in castling, when the player has 
released the hold of the king, or d) in coronation, when the pawn has been re-
moved from the board and the player has released the hold of the coronated 
piece.  
Check, checkmate and stalemate. The king is in check, when it is threatened by 
the opponent. The check must be made ineffective immediately during the next 
move of the player, whose king is threatened: a) by moving the king to a loca-
tion, where it is not threatened, b) by capturing the piece that threatens the king 
or c) by moving another piece on the threat line. If the check cannot be prevent-
ed, then the king is in the checkmate. If the king is not threatened, but it is not 
possible to move to safe place and there is no other chess piece available to 
move, then the game becomes a draw and is referred to as stalemate. 
Irregularities. All the rules are consistent with traditional chess rules and with 
the rules of asymmetric, four-handed chess, previously introduced.  
The algebraic notation of moves. As in traditional chess, the chess pieces use 
capital letters as standard symbols: K for the king, Q for the queen, R for a rook, 
B for a bishop and N for a knight. For a pawn we use in this thesis P. The 
movements of the pieces are given as directions and lengths. The length unit is the di-
agonal of a zone of one chess piece. In case of a knight and a pawn, the length of a 
step is not given because it remains standard. The only exception is the first 
move of a pawn in case it is two steps. R90,5 means, that a rook moves five steps to 
the direction of 90°. N80 means, that a knight moves to the direction 80°.  
 
Wall version without the guider  
 
In the wall version, the pieces are attached to the base by magnets or by some 
other method. Gravity replaces a separate direction indicator, the guider. As a 
gameboard we use a flat metal plate where a circle shows the game area. The 
gameboard is set to hang in a vertical position, for example against a wall. On 
the bottom of chess pieces there are magnets and the pieces are placed on the 
area as shown in Figure 90. White's pieces are at the bottom and Black’s on the 
top. The position of the pieces is given by the directions which are drawn on the 
surface of the bottom of the pieces. At the beginning of the game, the orienta-
tion is specified by turning the piece in a position where the basic line x (Figure 
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93) is pointing straight down. This is the case if the free-hanging direction de-
vice is on the basic line. 

After this the piece is made to move by turning the direction device to the 
selected direction. The length of the move is read from the scale inserted on the 
direction device. The length of the direction device move is 10 area measures 
for bishops, rooks and queens, 3 for knights, and 2 for other pieces. (Kyppö 
1997) 

6.5 Summary 

This chapter has dealt with the issue of how our idea of universal chess was 
established, and especially the specific instance of it, a kind of three-handed 
chess we call trichess. This chapter explains the reasoning which led to game, 
and the game itself. In the beginning of this section we introduced the classic 
Knight Path’s problem, because it played a central role in the birth of trichess. 
In addition, this chapter introduces two other games based on the same idea, 
boardless chess (a chess without a gameboard) and an asymmetrical four-
handed chess. Of these two, the boardless chess was also patented. All of these 
games were developed before the writing commenced for this research and the-
sis. 

As we already discussed in the earlier chapters, it is really hard to invent 
something totally new. This has also been the case with trichess. One very good 
example is the 1000-year old Chinese three-player chessgame introduced in 
Chapter 5.  

We add to this summary section a picture, which shows that even Walt 
Disney's legendary cartoonist, Carl Barks, the creator of the Donald Duck char-
acter, thought about this kind of game already in the 1940s (Figure 95). It shows 
how most good ideas have already been considered by someone else in the past. 
In science, it is very difficult to find your way to the so-far never visited “last 
shore”, which is thought even not to exist. 

 
 
 

 

Figure 95 Three-handed chess suggested Carl Barks in 1947 



 

7 EXTENSIONS OF UNIVERSAL CHESS 

In this chapter we extend at first (Section 7.1) the square-tiled chess game by 
changing the size of its board, then (Section 7.2) we extend the size in differ-
ent dimensions by using cubes and hypercubes, and finally (Section 7.3) we 
explore models that are not based on square, hypercube or hexagonal tilings.  

7.1 Extension of chess on the plane 

The first chess extension on the plane generalizes the number of the officer 
types and, in connection with that, the board size. As the number of the de-
fense zones around the center fortress grows, this will create new types of 
officers. For example, if we add a third defense zone to the square board 
model, then the number of officers will rise by two and the gameboard will 
grow to 144 squares. This is due to the fact that the third defense zone brings 
in two new officer types. The squares where these officers can move with one 
step from the central square (fortress) are marked in Figure 96 with blue and 
red. The number of all officer types is considered to be even, as in the tradi-
tional chess, and therefore the length of the back rank with these officers will 
increase from 8 to 12, and, as a result, the entire size of the board will consist 
of 12x12 = 144 squares. We name these officers in Section 7.1.1. 
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Figure 96 Kn32 (blue) and B31 (red) on the 3rd defense zone 

We give the coordinates for the officers. The central square (fortress) has 
the coordinates (0,0), and in the coordinate point (x, y), the first parameter x is 
the distance from the center square vertically upwards in the direction files and 
y is the distance from the center square center horizontally to the right in the 
direction of the ranks. The new officers move the same way as the knight, but 
further away from coordinate (0,0) to squares (3,1) and (3,2). The knigth of tra-
ditional chess ends up in square (2,1).  

Other changes, besides the growth of the gameboard and officer types, 
take place in further extensions. However, they follow the same logic, which 
can be defined on the basis of universal, abstract chess. The same logic also 
works in traditional chess. On the basis of these rules, it is possible to build a 
general algorithm and a computer program, which works with all the variants 
of universal chess. In the following sections, the first models are presented 
through illustrations of the first universal chess game program45 (Figures 98, 
101-104, 107 and 110 on the right).  

 Extensions of chess on large square boards 7.1.1

Next we define some new concepts. When the boards are extended, new offic-
ers for covering the wider defense zones are created. A game board can also be 
transformed to multiple dimensions. The chess pieces of officers that move on 
the squares of the same color may be renamed hyper bishops. Officers that move 
from white to black squares or vice versa are called hyper knights. Therefore, on 
a usual, two-dimensional ,8x8 board, the rook is a hyper knight. 

We can determine the moves of hyper knights and hyper bishops on two-
dimensional rectangular boards by adding the new officers to every new de-
fense zone level. Hyper knights and hyper bishops are generally called hyperof-
ficers. Presumably all officers of the lower defense zones are capable of moving 
as far as they can in their directions (Figure 97).  
                                                 
45  Made by Mika Vesterholm in 1998 
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Thus, for example, the knight may move on a 12x12-board and larger 
boards along its direction as far as it can go, that is, like the bishop in the tradi-
tional chess, but to the direction (2n, 1n). The knight's direction on larger boards 
can be found as line number 3 in Figure 97. 

Hyper bishops’ and hyper knights’ moves are defined on two-dimensional 
square boards by adding a new officer for each new defense zone. Adding a 
new defense zone increases the size of the square board. On the traditional 64-
square board, the number of defensive zones is two: the first for the rook and 
the bishop, the second for the knight. The officers, which are on the outermost 
defense zone, move only one step in every move. On the lower levels of the de-
fense zone, officers can thus move to the specified direction on the game board 
as long as there are no other pieces on the sector. The directions are given as 
(x,y)-coordinates, between the lines x = 0 and y = x. Hyperofficers have abbre-
viations Knxy and Bxy, wherein Kn is the hyper knight, B the hyper bishop and 
xy the coordinates of one move. The sum of x+y is always even for hyper bish-
ops and odd for hyper knights. The traditional knight in chess is Knxy, where x = 
±1 or ±2, y = ±1 or ±2 and ⏐x+y⏐ = 3. The knight has 8 directions: Kn21, Kn12, 
Kn2,-1, Kn1,-2, Kn-1,-2, Kn-2,-1, Kn-2,1 ja Kn-1,2. In the following, we list as an example 
the hyperofficers of the first 6 defense zones. On the list, the traditional rook, 
bishop and knight are marked as follows.  

Table 3 Defense zones I -VI 

Rook = Knight10, Bishop = Bishop11, and Knight = Knight21. Moving from the 
starting square (0,0): 
Defense zone I Knight10: (1,0) ... (n,0),  

Bishop11: (1,1) ... (n,n) 
Defense zone II  Knight21: (2,1) ... (2n,n) 
Defense zone III  Bishop31: (3,1) ... (3n,n),  

Knight32: (3,2) ... (3n/2n) 
Defense zone IV  Knight41: (4,1) ... (4n,n),  

Knight43: (4,3) ... (4n/3,n) 
Defense zone V  Bishop51: (5,1) ... (5n,n),  

Knight52: (5,2) ... (5n/2,n)  
Bishop53: (5,3) ... (5n/3,n),  
Knight54: (5,4) ... (5n/4,n) 

Defense zone VI  Knight61: (6,1) ... (6n,n)  
Knight65: (6,5) ... (6n/5,n) 

 
In Figure 97, hyperofficers are marked as follows: 1: Knight10, 2: Bishop11, 3: 
Knight21, 4: Bishop31, 5: Knight32, 6: Knight41, 7: Knight43, 8: Bishop51, 9: Knight52, 
10: Bishop53, 11: Knight54, 12: Knight61, and 13: Knight65. 
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Figure 97 Hyperofficers’ moving trajectories, when there are 4 and 6 zones 

When we start to build larger game boards by increasing the number of 
officers and defense zones, we use the following rules. The size of the board 
increases with the number of new officers, so that N2 = (2k + 2)2, where k is the 
number of officers. Officers are always placed on the back row, so that the king 
and the queen are in the middle as in traditional chess, where the white queen 
is on a white square and the black queen towards it on the opposite side. On the 
left and right side of the king and queen are the bishops. The rooks are placed 
on the corner ends of the last line. The order of all the other officers, from the 
direction of bishops to that of rooks, is: first the knight, then the new officers 
from the fourth defense zone, and so on. The last added officers move on the 
board always only one step at a time; the other officers can move in the same 
direction as far as there are available squares and no occupied squares. The 
number of pawn rows grows each time when the size of the board is increased, 
so that the number of squares that remain unoccupied is always 50%. As a con-
sequence, on an NxN-sized board each player always has (N/2-2)/2 = N/4 - 1 
rows with pawns, that is, Nx(N/4 -1) pawns all in all. When we apply this for-
mula to traditional chess, we get, 8x(8/4 - 1) = 8 pawns, as it should be. We in-
crease the size of the board by adding the length of the pawn's first move. The rule 
says that the first step can reach halfway across the board. This rule works also 
with traditional chess. Thus, in traditional chess, the initial step can have a 
length of up to 2 squares, on a 12x12 board the first step can be up to 3 squares, 
on a 16x16 board the first step can be up to 4 squares, and so on, when we in-
crease the size of the board. All other rules are the same as in traditional chess. 

In Figures 98 and 99 there are examples of the 12x12 and 16x16 game 
boards. The left image shows on the 12x12 board, the starting positions of the 
game pieces, and the hyper knight’s (Knight32) move is shown by a green 
square. The right-hand image shows how a hyper bishop (Bishop31) has been 
moved to the opponent's side (purple square on 4th back row), and the colored 
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squares represent the squares where it could move next. The green squares are 
free, but on red squares there is the opponent's piece, and hence there is an op-
tion to capture a piece.  

 

  

Figure 98 Kn32 on 12x12 board (left) and B31 on 16x16 board (right) 

On the first six defense zone levels, the number of officers will increase: 2, 
1, 2, 2, 4 and 2, which is 13 new officers. There is no clear pattern for the number 
of new officers, but naturally if the number of defense level k is prime, there 
will be k-1 new officers. This is because the lower-level officers move to same 
direction, and every defense level number they reach must be a divisible num-
ber. If the number of level k is a prime number, then all the officers on that level 
are of a new type.  

 

 

Figure 99 A chess game on a 16x16 board 

Table 4 lists the number of new officers, hyperknights, and hyperbishops on 31 
first defense zones. Except for the 2nd zone, the number of officers grows by 
even numbers. Up to the 9th zone, the sum of officers is always a prime number. 
Of the 10 first primes, 9 is included. The prime 17 is not included.The primes 
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are marked as bold just for the interest. The width of the board is always 2k + 2, 
where k is the sum of the officers. 

Table 4 The officer types on the first 31 levels 

Zone New Knights Bishops Sum Board width 
 
1 2 1 1 2 6 
2 1 1 0 3 8 
3 2 1 1 5 12 
4 2 2 0 7 16 
5 4 2 2 11 24 
6 2 2 0 13 28 
7 6 3 3 19 40 
8 4 4 0 23 48 
9 6 3 3 29 60 
10 4 4 0 33 68 
11 10 5 5 43 88 
12 4 4 0 47 96 
13 12 6 6 59 120 
14 6 6 0 65 132 
15 8 4 4 73 148 
16 8 8 0 81 164 
17 16 8 8 97 196 
18 6 6 0 103 208 
19 18 9 9 121 244 
20 8 8 0 129 260 
21 12 6 6 141 284 
22 10 10 0 151 304 
23 22 11 11 173 348 
24 8 8 0 181 364 
25 20 10 10 201 404 
26 12 12 0 213 428 
27 18 9 9 231 464 
28 12 12 0 243 488 
29 28 12 0 271 544 
30 8 8 0 279 560 
31 30 15 15 309 620 

 
In Figure 100, the growth in the number of new officers is shown graph-

ically up to 31 levels, as in Table 4. The blue squares are hyper bishops, and the 
red squares are hyper knights. The squares on which no new officers will be 
placed are white. These squares are covered by lower level officers able to move 
long distances, not just one step. In other words, in the image on the right, each 
colored square represents a new officer. On the left-side image, the white 
squares are colored with a black dot added in the centre. The red or blue color 
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tells if the square is on the sector for a hyper knight or a hyper bishop when the 
starting point is the black square in the corner. 

 
 

 

Figure 100 The growth of the number of new officers 

 Extensions of chess on small square boards 7.1.2

The chess game can be generalized also to a more simple game using the same 
principles we used in enlarging the game. Earlier, we designed a traditional 8x8 
chessboard by using the principles of the universal chess so that two 5x5 de-
fense zones intersected each other (Figure 70, in Section 6.1.2). The central 
squares were left outside of this intersection. Of these two zones, the inner one 
defined the rook and the bishop, the second one the knight. When we enlarged 
the scheme to larger gameboards, then the increase of each new zone brought in 
new officers. The number of these officers defined the size of the gameboard.  
 
Small chess 
 
When the second defense zone is omitted, we get a 3x3-square grid. When the 
grids are overlapped with each other, as was done previously, we get a 5x5 
chess board. Following the idea of universal chess, there must be two officers of 
every type (except the queen and the king), and this affects the size of a game-
board. On the first defense zone, there are the two officer types – the rook and 
the bishop – and hence four officers. Therefore, the size of the board is (2k + 2)2 
= 6x6 = 36 squares. On the board, there are now pieces used in traditional chess 
but with three differences: there are no knights, the number of pawns is six, and 
the pawns don’t have the possibility to take a double step from the initial posi-
tion (Figure 101). On such a small board, we do not apply the formula N/4 – 1, 
which was applied in the previous section with large boards, to the number of 
pawns, because there must be at least one full rank of pawns. For the number 
ranks for pawns, this formula would give only ½, which is three squares. Be-
cause of this, the number of free squares on this board is only 33%. However, 
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the rule which says that the initial step is always to the middle of the board 
works also on this board.  
  

 

Figure 101 The opening position in the smallchess 

This type of game is well suited for educational use when we want teach 
chess. The rook and the bishop move just like in traditional chess, along long 
lines, though on the basis of the officers’ moving rule, that we mentioned in Sec-
tion 7.1.1 previously they should move only one step. Long lines are a better 
choice for making the game more educational and more playable. The duration 
of a game of this kind is by experience about 15 to 20 minutes. One special note: 
at the beginning of the game, the White player will have an opportunity for a 
second move checkmate. This is the case if White opens by moving the pawn 
that stands in front of the king and Black opens by moving the pawn which 
stands in front of the bishop of black squares. When the White’s queen moves 
now to the right side of the board, it will be a checkmate. 

 
Primitive chessgames 
 
Chess games can be simplified to make them even smaller than small chess, but 
then we have to be more flexible with respect to the universal chess model. 
These smallest games here are referred to as primitive chess games. We had three 
main reasons to begin the design of these kinds of games. These games can be 
used for educational purposes and for studying learning processes. Because of 
their small size, it is also possible to identify all game strategies. This is a topic 
which we are going to discuss more in Chapter 9, the last chapter of this thesis. 
The survey of the strategies of these simple games might later help us in our 
research on the strategies of more complex games, as there are some similarities 
between the structures of the strategy networks.  

Next we list the primitive chess games from the largest to the smallest. The 
simplest primitive chess games are suitable for children up to 3-5 years of age, 
even for 3-year-old children.  
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The next game after small chess is the primitive 5x6 chess game. Primitive 
5x6 chessgame is played on a board the size of which is 5x6 squares. Each play-
er has a king, two rooks, two bishops and five pawns (Figure 102). For these 
chessmen the rules are the same as in normal chess, except that the pawns do 
not have the possibility of taking two steps in the beginning, as in small chess. 
In this game the pawn can be coronated to a rook or a bishop.  
  

 

 

Figure 102 Primitive 5x6 chessgame, the opening position 

The primitive 3x6 chessgame is illustrated in Figure 103. Each player has a 
king, two rooks and three pawns. The rules are same as in chess, except that the 
pawns do not have the possibility to take two steps in beginning. The pawn can 
be coronated only to rook.  

The following games are even smaller and therefore they must have one 
very fundamental change in the rules, to make them playable. In these games, 
the pawns can be coronated to kings, and so one player can have more than one 
king. 

In the primitive 3x4 chessgame, each player has a king, and next to it two 
soldiers, one on both side (Figure 103). The pawns can be coronated to kings if 
they reach the opponent’s side of the board.  

In the Primitive 3x3 chessgame, both players have three pawns, which can be 
coronated to kings. Figure 103 shows the initial positions of 3x6, 3x4, and 3x3 
primitive chessgames. The green square shows, where the leftmost white pawn 
will next move.  
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Figure 103 Primitive 3x6, 3x4 and 3x3 chess games, the opening positions 

There are some differences with the traditional chess in these very small 
games. One great difference is that there might be more than one king. Another 
difference is in how the game ends. The loser is the player who cannot legally 
move any chesspiece. As in traditional chess, also in these games the king is not 
allowed to be moved into a square which is threatened. The game ends to a 
draw when both players can still move their pieces but only by repeating the 
same patterns endlessly. 

Finally, we introduce the most simpliest of these games, the primitive 2x3 
chess game in which both players have only two pawns, and they can be coro-
nated to kings.  

Figure 104 shows, on the left, the initial position (White pawn moves to 
the green square), and, on the right, a situation where another of the Black 
player’s pawns has been coronated to a king. In that same situation, the White 
player’s piece threatens (red square) one of the Black player’s pawns.  

 

 

Figure 104 Primitive 2x3 chessgame, two positions 
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Summary of the rules 

 
Two white and two black chess pieces are placed on a 2x3 chessboard with 6 
squares (Figure 104). The pieces move in the same way as the pawn in an ordi-
nary chess game. When reaching the opposite square, any of the chess pieces 
may get upgraded and become a king. In the following games, the kings follow 
the same rules as in ordinary chess. Nevertheless, the course of the game differs 
from ordinary chess in two ways: 1) A player may have more than one king; 2) 
the player who either loses all the chess pieces or cannot move any pieces any 
more (by his own move), loses the game. The game ends in a draw when both 
players may still move their chesspieces, even though the moves are endlessly 
repeated. The game on a 3x3 board (Figure 103 on the right) has the same rules. 
The game on a 6x6 chessboard (Figure 101) is like a game on an ordinary chess-
board, but with two exceptions: there are no Knights, and the Pawn is not al-
lowed to move two squares on its first move. The primitive 5x6 chessgame and 
the primitive 3x6 chess game are similar to small chess game. The only differ-
ence is that the small chess is smaller than traditional chess and has no Knights. 
The Primitive 5x6 chessgame is similar, but has no Bishops. 

7.2 The Extension to dimension N 

When we leave planar games and move to the third dimension, we will find 
that the tessellations are less regular than in the second dimension. On a two-
dimensional plane, there are infinitely many regular polygons, and three of 
them, a triangle, a square and a hexagon are suitable for regular tiling. As we 
already discussed in Chapter 3, tessellation and tiling mean the same thing, but 
in this thesis we use tiling only in dimension two, and tessellation in dimen-
sions greater than two. In the third dimension, there are only a finite number of 
regular polyhedral, consisting of the five Platonic solids: tetrahedron, cube, oc-
tahedron, icosahedron and dodecahedron. Of these, only the cube can form a 
regular tessellation in three-dimensional space. But just like on a two-
dimensional plane, also in three-dimensional space it is possible to find differ-
ent combinations of regular polyhedra which can tessellate the space. Strictly 
speaking, there are only five different polyhedra: cube, a combination of two 
octahedra and two tetrahedra, a combination of a tetrahedron and three trun-
cated tetrahedra, a combination of three truncated octahedra, and a combina-
tion of an octahedron and cuboctahedron (Ball & Coxeter, 1987). Cuboctahe-
dron is a polyhedron with eight triangular faces and six square faces. It has 12 
corner points, and in each of them two triangles and two squares touch each 
other. In Figure 105 (Hisarligil 2012), there are two very old drawings of this 
polyhedron. The one on the left was made by Pappus and the one on the right 
by Leonardo da Vinci (Hisarligil 2012). In this case, it is not the kind of tessella-
tion we are looking for a three-dimensional game board, where all the polyhe-
dra should be similar and every face should touch the same number (most 
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probably just one) of other faces. Therefore, the only option is to fill the space 
with cubes, because the cube is the only regular polyhedron that can tessellate 
three-dimensional space.  

 
 

 

Figure 105 The Cuboctahedron 

The defense zones around a cube are made in a similar way as around a 
square on a plane. When we build the first defense zone to cover one cube, we 
need a zone of 26 cubes. This is easy to account for. If a cube has on every side, 
(against every face and every corner) another cube, then there must be altogeth-
er 3x3x3 = 27 cubes, and hence around the central cube 26 cubes. We also notice 
that, in this zone of 26 cubes, there are three officer types, whose movement 
directions are (1,0,0), (1,1,0) and (1,1,1 ). The first one of these is the rook, which 
moves to the direction of faces to six different sectors. The other two are bish-
op_1 and bishop_2. The latter one we can also refer to as a kind of "knight". 
Bishop_1 moves toward the directions of 12 edges of the cube, and bishop_2 
moves towards the 8 corner points of the cube.  

The next dimension, the 4D-model, will include a rook that moves to 8 dif-
ferent directions, and also three other officer types. This 4D-model can be pro-
jected on two- and three-dimensional spaces. We are going to discuss this mod-
el in Section 7.2.2. 
 

 Three-dimensional two-person chess 7.2.1

In this chapter, the concept of cubic game board means a rectangular cuboid 
which consists of cubes. Each cube is a cell of this three-dimensional game 
board. The moves of hyperbishops and hyperknights are defined on three-
dimensional cubic game boards by adding a new officer on each new level of 
defense zone. These new defense zones naturally increase the size of the cubic 
game board. When the first defense zone is added around the central cube, the 
central fortress, we get, as explained in the previous section, a game board of 27 
cubes, where the first defense zone includes 26 cubes. There are three different 
kinds of movement from the center cube: namely, 6 to the direction of faces, 12 
to the direction of edges and 8 towards the corners (Figure 106). This means, 
that already on the first defense zone we need three different officers. We call 
them at this stage rook (moves towards the faces), bishop (moves towards the 
edges) and knight (moves towards the corners). Later on, the names of the of-
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ficers will be clarified and set in a final form. If we build a game board of this 
kind with one defense zone, using in this three- dimensional model, and the 
same principle as previously in the two-dimensional chess game, we get a game 
board of 5x5x5 = 125 cubes. When we follow the idea that the officers, whose 
number must be even, are on the edge of the game board, as in traditional two-
dimensional chess, and the pawns are on the next level, on the first defense 
zone, protecting the officers, then the size of this three-dimensional game board 
is at least 6x6x6 = 216 cubes. This is the minimum size, because between the 
players there must be at least two empty zones. We can make this game board 
even a bit smaller, but yet playable, if we use a rectangular cuboid instead of a 
cube. This kind of cuboid has the size of 4x4x6 = 96 cubes. In the game of this 
3D smallchess (Figure 107), each player has 4x4x2 = 32 chess pieces, which are 
placed on the both sides of the cuboid, so that on both back faces of the cuboid, 
there are 16 officers and in front of them on the first defense zone 16 pawns. 
Between these two players, there are two empty zones. 

One of the basic rules of universal chess is that all officers on the outer-
most defense zone move only one step in the determined direction. The officers 
of inner defense zones are allowed to move in their sectors as far as they can if 
there are no other chess pieces blocking their way. The directions are given as 
(x,y,z) coordinates. The hyperofficers can be marked as Knightxyz and as Bish-
opxyz , but from now on we use abbreviations where Kn represents a knight and 
B denotes the bishop, as we did in the two-dimensional case. Index xyz means 
the first step in the directions x, y and z in the xyz coordinate system. The sum 
of x+y+z is always even for hyperbishops and odd for hyperknights. For exam-
ple, the traditional knight’s move would be Kn210: two steps forward, one on 
side and 0 tells that these steps are made on same planar level. 

To make three-dimensional smallchess more playable, our rules also allow 
the possibility of choosing a variant in which the rook (Kn100) and bishop (B110) 
move along long lines and the third officer called knight (Kn111), on the first de-
fense zone, moves only one step at a time. Figure 107 shows the two different 
moves of Kn111. The starting cell is of pink color and the destination cells are 
green. 

The following list concerns the hyperofficers of the first two defense zones. 
The moves of hyperknights and hyperbishops can be determined by vectors on 
the three-dimensional honeycomb boards. 

 
Defense zone I Rook = Knight1 = Kn100: from (0,0,0) to (1,0,0) … (n,0,0),  

Bishop = Bishop1 = B110: from (0,0,0) to (1,1,0) … (n,n,0) 
Knight = Knight2 = Kn111: from (0,0,0) to (1,1,1)… (n,n,n) 
 

Defense zone II Knight3 = Kn210: from (0,0,0) to (2,1,0) … (2n,n.0) 
Bishop2 = B211: from (0,0,0) to (2,1,1) … (2n,n,n) 
Knight4: (2,2,1) = Kn221: from (0,0,0) to (2,2,1)… (2n,2n,n) 

 
The officers of the defense zone II are not included in Figure 108. 
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Figure 106 The moving directions of officers in 3D Chess 

Figure 107 illustrates the movement directions of the first defense zone. The 
bottom of the starting cube is marked with a cross. In the other cubes, the letters 
indicate where the officers (Kn100 = rook, B110 = bishop and Kn111 = knight) can 
move. Thus the rook moves towards the faces, the bishop toward the edges, 
and the knight toward the corners. Figure 108 shows the positions of the offic-
ers on the side of the board. These are all the officers of the first defense zone. 
The second-zone officers are not used in this game example. 
 

 

Figure 107 Three-dimensional chess 

 
 

Figure 108 The officers of the 3D board 
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 Four-dimensional two-person chess 7.2.2

The rules of universal chess can be applied to higher dimensions by using a hy-
percube model. In the previous section, we used cubes with three-dimensional 
chess. 

We define the new types of hyperbishops and hyperknights and their 
moves on four-dimensional hypercube boards when we add new defense zones. 
Naturally, the new defense zones mean larger game boards. When we add the 
first defense zone around the central fortress (central cube), we get a group of 
81 hypercubes forming a 3x3x3x3 hypercube board where the first defense zone 
includes 80 hypercubes. For officers, there are 4 types of moving directions (in 4 
dimensions) from the central cube: 8 are towards the cubes that surround the 
four-dimensional hypercube, 24 towards the two-dimensional faces, 32 towards 
the edges, and finally 16 towards the corners. This means, that the first defense 
zone of the four-dimensional hypercube requires four different officers. 

This can be explained better by a picture. In Figure 109 on the left, there is 
a rook inside a three-dimensional cube or cuboid. The figure shows the direc-
tions where the rook can move. These possible moving directions consist of the 
six faces of the cube: left, right, forward, backward, up, and down. The drawing 
in the center shows the same cube with a rook in a "flattened" form on a plane, 
i.e. projected to a two-dimensional plane, which lacks the space for a three-
dimensional rook. For this reason, the rook is drawn as a gray "shadow image". 
However, it is possible to find those six directions of movement also from this 
image. These directions are the four squares or quadrangles around the rook in 
the center, the square with the grey figure of the rook, and the region outside of 
the figure. The rightmost drawing in Figure 109 is easier to understand after 
examining the two other drawings to the left of it. The drawing on the right in-
troduces a four-dimensional hypercube: each cell in the four-dimensional hy-
per-cuboid board is also this kind of hypercube. Inside the hypercube in this 
drawing, a "shadow" of a rook shows its position in the cell. The moving direc-
tions of the rook are towards the eight three-dimensional cubes that surround 
the rook. These eight cubes are the one inside the hypercube, the six cubes 
touching the inner cube and the large cube in the space outside. 

The rightmost drawing in Figure 109 also shows the number of faces (24), 
edges (32) and corners (16) that surround this hypercube. They determine the 
directions of other officers in the first defense zone. 

The same drawing helps us to see the three-dimensional cubes (8) forming 
this hypercube: the small cube inside, the great cube outside, and the rest six 
cuboids between these two. 
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Figure 109 Rook in a cube and in a hypercube 

If we build a four-dimensional game board and use in it only the first de-
fense zone while applying the same principles as with the three-dimensional 
game, then we would get a hypercube board with 54 = 625 hypercube cells. If 
we follow the principle of the three-dimensional game, namely that all the of-
ficers are at the back, the pawns are in front, and there are two free zones be-
tween the players, then the size of the game board must be at least 64 = 1296 
cells. However, we can build a smaller, yet playable version of this game if we 
do as we did in the case of the three-dimensional small chess and leave one side 
longer than the others. In this way, we get a four-dimensional small chess on a 
4x4x4x6 = 384 -cell game board. In the game, each player has 4x4x4x2 = 128 
chessmen, which are placed in both of the opposite ends of the hyper-cuboid 
board in such a way that on the back in the 4x4x4 = 64 cells there are 64 officers 
and on the next zone 64 pawns. Hence, between the players there are two emp-
ty zones (Figure 110, on the left). 

As in the previous games, the officers on the outermost defense zone 
move only one step at a time in a specified direction. The officers on the inner 
defense zones are able to move as far as they can if there are no other chessmen 
in the way. The directions are given as (x,y,z,q)-coordinates. The hyperofficers 
have the abbreviations Knxyzq and Bxyzq, where Kn is a hyperknight, B a hyper-
bishop and the index xyzq is first step in the xyzq -coordinate system. 
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Figure 110 Four-dimensional smallchess 

Here the traditional rook is Knight1 and the traditional bishop is Bishop1. 
In other words, the traditional rook belongs to the group of hyperknights. 

 
Defense zone I Knight1 = Kn1000: from (0,0,0) to (1,0,0,0) … (n,0,0,0),  

Bishop1 = B1100: from (0,0,0) to (1,1,0,0) … (n,n,0,0), 
 Knight2 = Kn1110: from (0,0,0) to (1,1,1,0) … (n,n,n,0),  

Bishop2 = B1111: from (0,0,0) to (1,1,1,1) … (n,n,n,n). 
 

Defense zone II Knight3 = Kn2100: from (0,0,0) to (2,1,0,0) ... (2n,n,0,0), 
Bishop3 = B2110: from (0,0,0) to (2,1,1,0) ... (2n,n,n,0),  
Knight4 = Kn2111: from (0,0,0) to (2,1,1,1) ... (2n,n,n,n), 

  Knight5 = Kn2210: from (0,0,0) to (2,2,1,0) ... (2n,2n,n,0), 
Bishop5 = B2211: from (0,0,0) to (2,2,1,1) ) ... (2n,2n,n,n), 
Knight6 = Kn2221: from (0,0,0) to (2,2,2,1) ... (2n,2n,2n,n). 

 
If we take a look at the left image of Figure 110, there is Kn1000 - the tradi-

tional rook – that can move to eight different directions on the game board, 
which consists of six three-dimensional "shelves". Each of these shelves has four 
4x4 planar game boards, one upon the other. The directions on a single 4x4 
board are forward/backward, left/right, up/down, and also to the correspond-
ing cells in the neighboring “shelves”. A “shelf” actually is a zone, but it is easi-
er to understand the figure when we use this expression. 

Figure 111 introduces the officers’ positions in the outermost zones, on the 
“shelves” of the game. The highest level is on the left. In the figure, there is also 
an explanation of the game icons, including the previous 3D game. 
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Figure 111 The officers of a 4D board 

The image on the right of Figure 112 shows how Kn1110 moves. Kn1110 is 
placed on the highest level, the 3rd zone or “shelf” (numbered 3), and the green 
squares indicate the locations where it can move. The red lines show the 
squares which can be reached by only one step. These squares are on the same 
3rd zone and also on the 4th zone. The blue lines indicate the 5th zone squares, 
which are in the same direction but need two steps. The two-step moving paths 
to the zones 0, 1 and 2 are not explicitly shown with blue lines, but these direc-
tions to "upwards" are identical to the previous ones. This can be easily seen by 
comparing the 2nd zone with the 4th zone and the 1st zone with the 5th zone. The 
green squares are in the same places. In addition, this knight reaches also one 
square on the 0 zone.  

 

 

Figure 112 Movement directions of B1111 in 4D Chess 
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To gain a better understanding, we can consider the movements of B1111: 
first, it can move on the same 4x4-square planar level one step forward or 
backward, then, on the same planar level, one step left or right, and then one 
step up or down, to the next planar level on the same zone (“shelf”). After these 
three moves, there is still one move to another zone (shelf) to the square which 
has the same coordinate position on that zone. This is just the length of one step 
of B1111. If B1111 moves further than one step, the movement continues in the 
same vector direction. The one-step movement is shown in Figure 112. It starts 
from cube (0,0,0,0), and the final cube is (1,1,1,1). The route between these two 
cubes can go through all the cubes which are marked by a coordinate number in 
Figure 112. Here, A and B are parts of different zones (“shelves”), both being 
three-dimensional projections from the four-dimensional game board. 

 N-dimensional two-person chess 7.2.3

This chapter extends the two-player chess game to the n-dimensional Euclidean 
space by using the same universal chess principles as in the previous chapters, 
where we observed this game in the third and fourth dimensions. The moves of 
hyperbishops and hyperknights are defined on n-dimensional hypercube 
boards by adding a new officer type on every new defense zone, just as we did 
in the lower dimensions. 

When we add the first defense zone around the central hypercube (for-
tress), we get a board which consists of 3n hypercubes. On the first defense zone, 
we have 3n-1 hypercubes. There are n different directions from the central hy-
percube. These directions are (n-1)-dimensional hypercubes that surround the 
n-dimensional hypercube. The number of them is 2n-k . So the number of the 

largest surrounding n-1 hypercubes is 2n-(n-1)  = 2n, and the number of 

smallest “hypercubes”, which in fact are points, is 2n-0  = 2n. (Coxeter 1973) 
Coxeter wrote his formula mainly for an n-dimensional parallelotope. An n-

dimensional hypercube is a special case of an n-dimensional parallelotope. 
When a point is moved along a line from an initial to a final position, it traces 
out a segment. When the segment is translated, but not along its own line, from 
an initial to a final position, it traces out a parallelogram. Similarly a parallelo-
gram traces out a parallelepiped. The n-dimensional generalization is known as 
a parallelotope. (Coxeter 1973) 

Going back to the formula, for example in the case of the four-dimensional 
hypercube the numerical figures are 24-1  = 4*23 = 32 (towards edges), 24-2  

= 6*22 = 24 (towards faces), 24-3  = 4*2 = 8 towards cubes) and 24-0  = 24 = 
16 (towards corner points). Because there are n different moving directions, the 
number of different officer types on the first defense zone is also n. On the 
higher defense zones, it becomes more complicated to estimate the number of 
officer types, just like in the two-dimensional case (see Table 4).  
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In the following, we use the symbol #X for the size or cardinality (the 
number of elements) of set X. Because these sets are finite, size as a term might 
be better, but we use cardinality to avoid confusion with other meanings. For 
example, #{a, b, c} = 3. In the following presentation, #{x} means the number of 
elements x in the index. For example, if #{1} = 1, 3, it means that in the index 
there can be either one number 1 or three consecutive numbers 1. So in this case 
we are given the number of 1s in the index. 

We clarify this notation a bit more. Generally # means the number of units. 
In this case for example #{3} means the number of the units in index 3. If #{3} is 
for example 2, 5 or 8, it means that there are 2, 5 or 8 consecutive pieces of 3 
there. The index tells the position of a chess piece in the xyz…n coordinate sys-
tem. 

To continue with the game, when we apply this notation to the n-
dimensional game board, we have the officers on different defense zones as fol-
lows: 

In defense zone I (the first officers, numbering n), the initial cell is (0,0,0, ..., 
0), where the number of zeros is n. The hyperknights are Kn{#1} #{0}, where #{1} = 
1, 3, 5, ... n, #{1} is an odd number and #{0} = n - {#1}. The hyperbishops are 
B#{1}#{0}, where #{1} = 2, 4, 6, … n, #{1} is an even number and #{0} = n - #{1}. So, 
in this presentation, #{1} gives the number of consecutive 1s and #{0} gives the 
number of consecutive 0s in the index. 

For example, in a four-dimensional game of the previous section, we 
would represent the hyperknights as Kn#{1}#{0}, where #{1} = 1, 3, and #{0} = 4 - 1 
= 3 and 4 - 3 = 1. The hyperknights are Kn1000 and Kn1110. The first hyperknight 
in this defense zone has in its index one number ‘one’ and another hyperknight 
of this zone three ‘ones’. The number of zeros of the first hyperknight of this 
zone is three because 3 = 4-1, and the second hyperknight has one zero because 
1 = 4-3. Similarly, for hyperbishops B#{1}#{0}, #{1} = 2, 4 and #{0} = 2 and 0. The 
hyperbishops are B1100 and B1111. 

The index of the hyperofficer shows to which cells it is able to move. For 
example, if #{1} = 5 and #{0} = 2, then hyperknight Kn#{1}#{0} can move from the 
initial cell (0,0,0,0,0,0,0) to cells (1,1,1,1,1,0,0) ... (n,n,n,n,n,0,0) in a seven-
dimensional game of chess. The number of the digits in the coordinate tells the 
dimension. As an example we can take the previous four-dimensional case 
where #{1} = 1 and #{0} = 3. Here we got hyperknight Kn1000, which can move 
from (0,0,0,0) to cells (1,0,0,0) … (n,0,0,0). 

When we add the second defense zone, we get a hypercube board, which 
consists of 5n hypercubes, where in the second defense zone there are 5n - 3n 
hypercubes. So, if we have, for example, a three-dimensional game and the hy-
percube is an ordinary cube, then on the second defense zone there are 53 – 33 = 
125 – 27 = 98 cubes. This is even easier to see on a two-dimensional board, 
where the “hypercube” is a square. The number of squares on the second de-
fense zone is 52 – 32 = 25 – 9 = 16 squares. This is easy to see for example in Fig-
ure 74. 
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Thus, on the first defense zone, the number of new, and also the first, of-
ficers is n. In traditional two-dimensional chess, where n = 2, the officers on the 
first defense zone are the rook and the bishop. On the second defense zone, 
there is one new officer, the knight. In Sections 7.2.1 and 7.2.2 we showed that 
the number of new officers on the second defense zone is 3 when n = 3, and it is 
6 when n = 4. The first defense zone officers, B#{1}#{0} and Kn{#1}#{0}, correspond 
on the second zone to B#{2}#{0} and Kn#{2}#{0}. All the new officers are again in the 
form of B#{2}#{1}#{0} and Kn#{2}#{1}#{0} or B#{2}#{1} and Kn#{2}#{1}. For example, when n 
= 3, then the “old” officers are Kn200 (the rook), B = B220 (the bishop) and Kn111 
(the knight) and the new officers are Kn210, Kn221, and B211. The length of the 
index is thus n. On the second defense zone, there are no new officers which 
have in their index only the numbers 2 and 0, or only 2. They are the moving 
directions for the officers of the first defense zone. The number of index units 
for 1 and 2 are distributed in such a way that when there is the maximum num-
ber n-1 for 2, then there is only 1 index unit for 1. When the number of the index 
unit 2 is n-2, then the number of the index unit 1 is one or two, ... and when 
there is only one index unit 2, then the number of the index unit 1 is between 1 
and n-1. The number of such combinations is . Therefore, the number of new 

officers at the first level  = n and at the second level  When we get to the 
third level, the determination of the number of new officers will become more 
complicated, as we saw in Section 7.1.1, where n = 2. This would be an interest-
ing issue for further research, but it is not essential for this thesis. 

7.3 Some special cases of Universal chess 

Because the goal of this research is to find a symmetric model for the n-player 
game, a couple of counterexamples of universal chess merit consideration. 
Some of these models might be usable for finding a symmetric, multi-person 
game, and though some of them are useless for that purpose, they also provide 
valuable information. Next, we briefly introduce three games: a boardless three-
handed chess, a triangular chess and a fullerene chess, based on a dodecahedral 
model. 

 Boardless trichess 7.3.1

The rules of this game (Figure 113) are similar to the rules of trichess and the 
movements of the chesspieces are the same as in boardless chess. Because this 
game is played on a two-dimensional planar board, symmetry is not possible 
between more than three players. This lack of symmetry makes it useless to ex-
tend this game model to any n-player game. 
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Figure 113 Boardless trichess 
 

 Triangular chess 7.3.2

Triangular chess was the third game invented by us when we started our re-
search on the universal chess. In Section 6.2.2, we wrote: “we built Trichess and 
traditional chess … the third transformation made on the triangular board was 
quite unique”. Despite of the uniqueness of that transformation, the game 
board can also be converted to three-handed chess. 

The game board was created in the same way as in the hexagonal Trichess, 
as was explained in Section 6.2.1. The difference was in the number of central 
fortresses, which was six (Figure 76). Of these six fortresses, it is possible to 
build not only a six-handed, but also a three-handed game. A three-handed 
game is symmetric unlike a six-handed one, because the game board is planar. 
In Figure 114, on the left, the officers of the first defense zone are marked by 
green and blue circles. 

 

 

Figure 114 Triangular chess 
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The drawing on the right of the figure shows also the officers of the sec-
ond defense zone; the new officers are marked with yellow circles. In this way, 
we can build a game which has similarities with the Trichess. The green circles 
are rooks, the blues circles are bishops and the yellow circles are knights. One 
difference with the Trichess is that the rooks move both towards the corners 
and the sides of the triangles. 

 Fullerene chess 7.3.3

The planar games presented above can be played on triangular, quadrilateral 
and hexagonal cells. In addition to these three, there are also pentagonal cells. 
We will now examine whether it is possible to embed a chesslike game on pen-
tagons. For that we need a dodecahedron, which consists of pentagons. The sur-
face of a two-dimensional dodecahedron is planar, but on a three-dimensional 
dodecahedron it is curving. Therefore, it might be possible to position not only 
three, but four players, in a symmetric configuration with respect to each other. 
A four-color dodecahedron (on the left side of Figure 115, own drawing) is very 
small for a game board, and only some simple game can be played on its sur-
face. However, it is possible to enlarge the surface by adding five hexagons 
around each pentagon. This model has several names, one of them the Gold-
berg polyhedron G (2,0) (Goldberg 1937), but it is best known as a soccer ball. 
The dodecahedron itself is often referred to as Goldberg polyhedron G (1,0). In 
the middle and on the right of Figure 115, we can see soccer balls made by two 
artists, Milan Mikulastik and Gabriele De Santis. These two soccer balls are art 
artifacts and not created to be playable games. 

 

   

Figure 115 A pentagonal game and “chessballs” 

The number of hexagons can be indefinitely increased for they can tile the 
plane and the 12 pentagons of the dodecahedron close the sphere of hexagons. 
This was explained in Sections 3.1 and 3.2. Figure 116 shows an example of a 
polyhedron Goldberg G(7,0) (Goldberg 1937). In chemistry, these structures are 
known as fullerenes. A Goldberg polyhedron G(7,0) is a fullerene C180, while 
the smallest fullerene, C20, is the dodecahedron (Wirz et al. 2016). On this kind 
of fullerene ball it would be easy to embed a chess game with the same kind of 
rules and movements as in trichess. The pentagons – the red cells in Figure 116 - 
would be central fortresses, and the chessmen would be placed around them in 
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circles. To get a four-person game, we just choose four of these twelve penta-
gons. 
 

 

Figure 116 A Goldberg polyhedron G(7,0)46 

But even if we could select four points symmetrical to each other on the 
sphere, four-point symmetry doesn’t work in the Goldberg polyhedra. The ex-
planation for this is the dodecahedron’s independence number, which is three, 
even though its chromatic number is four. The independence number means 
that, on a dodecahedron, there cannot be more than three pentagons which do 
not have a common edge. This can be easily understood by observing the two-
dimensional projection of a dodecahedron on the left of Figure 116. In case of 
the Goldberg polyhedron, this means that it is not possible to select the fourth 
pentagon in such a way that its distance from the other three would be the same 
as the mutual distance between those three. 

A set X ⊆ V(G) is independent if there are no edges between vertices in X. 
The cardinality of a largest independent set in G is called the independence num-
ber of G. A vertex-coloring of a graph G is a function from its vertex-set Vg ver-
tices to a set C whose elements are called colors. A graph is c-colorable if it has a 
proper vertex-coloring with c or fewer colors. The chromatic number of a graph G 
is the smallest number c of colors such that G is c-colorable. (Gross et al. 2004) 

The dual graph of dodecahedron is an icosahedral graph, which has a 
chromatic number four and an independence number three. 

7.4 Summary 

In this chapter, as well as in the chapter 6, we examined some extensions of 
universal chess that we had constructed already before this thesis. Their differ-

                                                 
46 

https://commons.wikimedia.org/wiki/File:Goldberg_polyhedron_7_0.png#/media
/File:Goldberg_polyhedron_7_0.png 
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ence to the games in this chapter is that the games in this chapter belong to the 
second, later phase of development. In this chapter, we continued extending the 
game boards with more officers and with more dimensions. However, these 
games used only square, cube, and hypercube models as boards. The exception 
was Boardless chess, where the movements of the chessmen were encoded in 
the pieces themselves. This game was also patented, but not published in other 
ways. 

In Section 7.1, we first enlarged the board size and increased the number 
of officers. After that, we developed chesslike games, smaller than chess. All 
these games followed the basic design of universal chess. In Section 7.2 we con-
tinued with higher dimensions. We extended the games, which were built of 
cubes and hypercubes, to n dimension. The number of players was two. Also 
two concrete models of these games were made, both of them four-dimensional 
hypercube chessgames. One of them was placed in the Science Park of the City 
of Oulu (Figure 111, left).  

In Section 7.3 we briefly introduced two unfinished game models and a 
dodecahedral model. The motive for the dodecahedral model was to allow us to 
increase the number of players from three to four. However, this failed, and 
hence we continue in Chapter 8, with a slightly different concept. 



 

8 SYMMETRIC N-PERSON CHESS 

In the beginning of this study, our goal was to find out whether it is possible to 
create a strategy game in which n players are positioned in a symmetric posi-
tion. On a two-dimensional plane, only two or three points can be completely 
symmetric with respect to each other. If there are more points, then we have to 
increase the number of dimensions. When we increase the number of dimen-
sions, we also have to choose the shape of the board, which is probably a poly-
tope of some kind as discussed in Section 3.4.1. In this thesis, we refer to this 
shape as the outer structure. Next, we must find a tessellation of the board. This 
we call the inner structure. The problem is to find a workable solution between 
these two structures. In the game, the number of players is equal to the number 
of symmetric points, and the inner structure must be regular to allow it to be 
generalized and expanded to higher Euclidean dimensions.  

In Section 8.1, we present three alternate solutions. One of them, which 
provides an answer to the symmetry problem and a solution to it, is presented 
in sub-section 8.2. In Section 8.3, we place a chesslike game on a board which is 
based on this solution, and, in Section 8.4, we discuss its impact on the rules of 
chess.  

8.1 Different models for symmetric n-person chess 

 When we construct a board game with pieces, moved on the basis of certain 
rules, a clear way to define the movements of the pieces is to place the game on 
a surface where the positions of the pieces and their directions of movement can 
be clearly defined. This is how the traditional chess board was constructed: it is 
made up of squares, which act as coordinates. In the game, there are 8x8 = 64 
squares on which 16 black and 16 white pieces are placed. There are altogether 
32 pieces, covering exactly 50% of the board. There are six kinds of pieces, each 
with a defined system for moving on this grid-shaped board.  
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The reason why the chess board has 64 squares is hidden in the darkness 
of history. Alternate explanations were presented in Section 6.1.2. In the same 
section, we also presented our own theory, the territorial model, about the dawn 
of chess. 

The territorial model can be used quite consistently to explain the moving 
directions of the chess officers. If we place each officer in turn in the center of 
the black square in Figure 117, then the rook covers 8 (letter A in the figure) of 
the 24 squares and the bishop covers 8 as well (the squares with letters B and F 
in the figure). After these operations, there will still be 8 uncovered squares on 
the board. As shown in Section 6.1.2, these squares can be covered by the knight. 
With this hypothesis, the knight’s peculiar movements have a logical explana-
tion. This theory gets support from the ancient games of chaturanga (Section 
4.2.1), whose bishop, fil, moved only one step at a time (Figure 117, piece B) 
(Eales 1985). A bishop moving like the ancient fil of chaturanga would have 
covered only 4 squares, namely the ones in the corners, on the territory of the 
first two defense zones. The 4 corner squares of the inner defense zone were 
covered by the queen's predecessor, firzan (Figure 117, piece F), which moved 
only one step diagonally.  

 
 

 

Figure 117 Fil and firzan of the chaturanga 

By using this game architecture, it is possible to transfer chess with its 
rules to a different environment and to different game boards, as was done in 
Chapters 6 and 7. A plane can be evenly divided by regular polygons exactly in 
three different ways, as pointed out in Chapter 3: by squares, triangles and hex-
agons. When the game board is built from hexagons, with the same fortress 
principle, we get three fortresses as mentioned in Section 6.2.1 (see Figure 81). 
In case the number of zones in the territory is two, as above, the number of hex-
agons in the chess board will be 46. However, two officers, the rook and the 
bishop, are enough to cover a territory of two zones on a board built of hexa-
gons. To introduce a knight to this game model, we must add a third defense 
zone, which will enlarge the board to 87 hexagons. When the pieces are placed 
at the corners of the board, we get a symmetric, genuinely three-handed chess 
game with the same rules as those in traditional chess. Symmetry refers to the 
fact that all three players are positioned symmetrically in their positions relative 
to each other. The only asymmetry is in the order the players move their pieces. 



173 
 
If three players, a, b and c, make their moves in order a - b - c - a ..., player a will 
be in a different position in relation to the other two players when we compare 
this order with the order of b - a - c - b ... It is also possible to remove this 
asymmetry if we use randomness or some other rule to change the order during 
the game. 

On the planar plane, it is not possible to construct a symmetrical game 
board for more than three players. Because of this, we will examine next, what 
kinds of game boards it is possible to build if the number of dimensions is n> 2. 
And an even more complicated investigation is required to figure out whether 
there can be boards of more than three players that can be placed symmetrically 
in relation to each other.  

 The Hypercube model 8.1.1

When we begin to build a game board in higher Euclidean dimensions, the 
problem will be how to tessellate (tile) it. The plane can be tiled in three differ-
ent ways, but a three-dimensional space only in one way, by using cubes. It will 
be the same with higher dimensions, where tessellation can be done only by 
hypercubes. A two-dimensional square has 4 corner points and 4 one-
dimensional edges which border a two-dimensional plane. A three-dimensional 
cube is bordered by 8 points, 12 edges and 6 rectangles. In general, an n-
dimensional hypercube is enclosed by k-dimensional hypercubes, where k = 
0, ..., n-1 and the number of these hypercubes is 2n-k , where  = n!/k!(n-k)! 
(Coxeter 1973). For example, a four-dimensional hypercube is bordered by 24-0 

 = 24 = 16 corner points, 24-1  = 32 edges, 24-2  = 24 squares and 24-3  
= 8 cubes. 
 

Table 5 shows the number of k-dimensional hypercubes (k = 0, …, n-1) 
that border an n-dimensional hypercube.  

Table 5 The number k-dimensional cells of n-dimensional hypercubes 

  k = 0 1 2 3 4 5 
n  
1 2 1 
2 4 4 1 
3 8 12 6 1 
4 16 32 24 8 1 
5 32 80 80 40 10 
6  64 192 240 160 60 12 
… 

 
It is extremely complicated to place more than two players symmetrically 

in this hypecube model. To do that in different dimensions requires different 
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approaches, which means that a general rule cannot be found. As an easy ex-
ample, let’s consider a cube. On a square board, there are two players facing 
each other on opposite sides. In the three-dimensional space, it is possible to 
place four points in symmetrical positions with respect to each other. 

When the number of k-dimensional cells that border an n-dimensional 
hypercube is divided by the number of the players, the result is an integer 
number only when the dimension is n-1. However, in this dimension there are 
only two border cells that are disjoint from each other. 
 

 The Tetrahedral Model 8.1.2

Another way to naturally tile a three-dimensional space to build a game board 
is to use tetrahedra. This method could be compared with using triangles on the 
plane. A tetrahedron has a structure with which the space can be tiled and 
hence filled by similar regular objects, therefore tessellating it.  

Also Aristotle (384 -322 BC.) came to this conclusion in his book "De Cae-
lo", which when translated in English means "In the heavens". He concluded 
that a plane can be tiled only by three polygons (a triangle, a square and a hex-
agon) but the space only by two (a cube and a pyramid). By a pyramid he 
meant a tetrahedral pyramid, the tetrahedron, in which all faces are equilateral 
triangles. However his deduction failed. Aristotle's error was definitively dis-
proved 1800 years later by Paulus van Middelburg (1445-1534), a professor of 
astrology (!) in 1478–1481, in Padua, Italy. (Lagarias & Zong 2012) 

In the drawing on the left of Figure 118, there are five tetrahedra connect-
ed to each other by one edge.  

 

 

Figure 118 Three different tetrahedral packings 47 

The outermost two tetrahedra do not touch each other and hence leave a 
gap in between them. The size of this gap is 7° 21', because the angle between 
the two faces of these is 70° 32’ and 360° - 5*7° 32’ = 7° 21’. So if five tetrahedra 
are fitted around an edge, then there remains a small gap whose angular meas-

                                                 
47  Lagarias & Zong 2012 
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ure satisfies 360° - 5*7° 32’ = 7° 21’. We conclude that regular tetrahedra cannot 
fill the space when arranged face-to-face. (Lagarias & Zong 2012).  

In the drawing in the middle, 6 tetrahedra are packed inside of the cube. 
Because the cube tiles the three-dimensional space, it might be possible to use 
this kind of cube/tetrahedron combination to build a three-dimensional game 
board. However, its internal structure would be quite complicated and tricky. 
We seriously considered this design in the early stages of this study. 

In the rightmost drawing, 20 tetrahedra have been packed inside the ico-
sahedron. The structure is interesting because more tetrahedra have been pack-
aged in a single space than in the other two models. The problem of this model 
is that tetrahedra, unlike cubes, do not tile the space. (Lagarias & Zong 2012). 

There is also a possibility to form combinations with tetrahedra and other 
polyhedra. For example, regular tetrahedra do not tessellate space, but with 
regular octahedra they form a cubic honeycomb, which is a tessellation in three-
dimensional space. Also in this model the inside structure is problematic when 
we want embed a chesslike game into it. 

It seems that the tetrahedral model could be used for a three-dimensional 
game board. However, this model would have a construction which would 
make it hard to find a clear continuum with the previous two-dimensional 
games in order to define the rules. In higher dimensions, it will be even more 
complicated. As a conclusion, it seems that the tetrahedral model is not a solu-
tion for our problem. 

 The Kissing number model 8.1.3

A planar game board consisting of hexagons could be replaced by a game board 
made of circles, each circle touching six other circles just like a hexagon touches 
six hexagons (Figure 94). In a three-dimensional Euclidean space, the circles 
could be replaced by spheres and placed in a tetrahedron, around which four 
players could be arranged in symmetrical positions with respect to one another. 
Around one sphere, 12 other spheres can be placed. They are the neighboring 
cells in a game. However, the generalization to higher dimensions creates a 
problem: we must deal with the so-called Kissing number problem, which we in-
troduced in Chapter 4. On a two-dimensional plane, a circle can be touched by 
exactly six circles of the same size. This means that its kissing number is 6. 
Thus, on the plane it is possible to form, by using circles, the same kind of game 
board as was created by using hexagons. When we expand this to a three-
dimensional space, then the number of balls will be exactly 12, as we mentioned 
earlier. Similarly, a four-dimensional sphere can be covered by using exactly 24 
four-dimensional spheres. However, a mathematical proof for this has been 
very difficult to formulate. The kissing number for three-dimensional Euclidean 
space was proved as late as 1953, and for four-dimensional space in 2003 
(Musin 2003). Apart from these, the exact value of the kissing number was 
proven only in 8- and 24-dimensional spaces, as mentioned in Chapter 4. These 
proofs were based on the four-dimensional space case. In all the other dimen-
sions, we know only the largest and the smallest possible value of the kissing 
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number. Because of this, the use of this kind structure in n-simplexes is prob-
lematic.  

 A model based on the multinomial formula 8.1.4

As we have already stated, it is possible to position four players symmetrically 
with respect to each other in a three-dimensional space. So the game board 
should be transformed to multiple dimensions if we want to raise the number 
of players and at same time preserve the symmetry. The four corner vertices of 
a three-dimensional tetrahedron are in symmetrical positions to each other. If 
there are five players around a symmetrical game board, we need a four-
dimensional tetrahedron, the pentachoron, where all five corner points are lo-
cated symmetrically in relation to each other. 

This model can also be represented by using the simplex. A simplex is a 
generalization of the notion of a triangle or tetrahedron for different dimensions 
in geometry. A point is 0-simplex, a line is a 1-simplex, a triangle a 2-simplex, a 
tetrahedron a 3-simplex, a pentachoron a 4-simplex, and a k-dimensional poly-
tope is a k-simplex. When the number of dimensions increases by one, so does 
also the number of simplex vertices. This means that, if we place n players 
symmetrically in relation to each other, it can be done with the (n-1)-simplex 
structure, for which we need an (n-1)-dimensional polytope.  

This same thing was considered with the tetrahedral model in Section 
8.1.2. In that section, the problem was the inner structure of the model. The next 
step was to find a better inner structure by using other tools. Finally, we did 
find one. This happened at a kind of ”eureka” moment one Monday morning 
during the research project. The solution is a generalization of the binomial 
formula, known as the multinomial formula, and its geometrical visualization.  

 Summary 8.1.5

In this Section 8.1, we introduced four different candidate models for a game 
board in which we could embed a symmetric multiplayer game, a symmetric 
multiplayer chess-like game in particular. The problem was to find a good inner 
and outer structure. The outer structure here refers to a model in which more 
than two players are in the same symmetrical position. Because this is possible 
only in higher dimensions, we must know the structure in those dimensions. If 
the number of players is n, we need a polytope the structure of which is known 
to us at least in Euclidean dimension n-1. The inner structure in turn requires 
that we can find a regular tessellation in all different dimensions. 

When we observe these models, we find that the one which consists of 
hypercubes has a clear outer structure and a good inner structure as well; thus 
it is possible to tessellate it also by hypercubes. For this model, it is easy to gen-
eralize the movements of chess pieces, and it works well as a two-player game 
board. However, a multi-player format is very difficult to embed in this model 
in a reasonable way. 
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As a second model, we introduced the tetrahedral structure, which is, in a 
way, an opposite of the hypercube model. The outer structure of a tetrahedron 
is suitable for a symmetrical multi-player implementation, but the problem is its 
inner structure. 

The kissing number model was investigated as the third model. It has both 
good outer and inner structure, but its generalization to higher dimensions is 
not working because exact data about the kissing number doesn’t exist in it. 

As the fourth and the last model, we presented one based on the multi-
nomial formula. This formula can solve the inner structure of the tetrahedral 
model, and therefore we continue with it in Section 8.2, which follows.  

8.2 Embedding chess in the simplex platform 

The arithmetical triangle has a long history from ancient China to the time of 
Blaise Pascal and his binomial formula. (Edwards 1987)  

The Pascal's arithmetical triangle can be generalized as three-dimensional 
“Pascal's” arithmetical tetrahedron and as four-dimensional arithmetical pentacho-
ron. In general, we refer to these extensions as the arithmetic of three- and four-
polytopes. 

Multinomial coefficients are coefficients in the multinomial formula, 
which is an extension of the binomial formula. The coefficients of the binomial 
formula can be represented by the Pascal's triangle. In same way we can also 
represent multinomial coefficients by arithmetical n-polytopes.  

 Pascal’s rule 8.2.1

The binomial coefficients of Pascal's triangle are arranged as follows:  
 
 1  
 1, 1  
 1, 2, 1  
 1, 3, 3, 1  
 1, 4, 6, 4, 1  
 1, 5, 10, 10, 5, 1  
 ...  

 
Above are the first lines of Pascal’s triangle, and it is easy to see the well-

known Pascal’s rule (Edwards 1987). According to which, the sum of two 
neighboring numbers on the same row can be found below them on the next 
row. Thus, for example, 1 + 2 = 3 and 4 + 6 = 10 in the pictured triangle. 

The binomial coefficients are k-combinations C(p,k) = p!/k!(p-k)!, where p 
is one of the natural numbers {0, 1, 2, 3, ...} and k ∈ {0, 1, 2, ..., p}. The Pascal's 
triangle presented by these coefficients is as follows:  
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 C(0,0)  
 C(1,0) C(1,1)  
 C(2,0) C(2,1) C(2,2)  
 C(3,0) C(3,1) C(3,2) C(3,3)  
 C(4,0) C(4,1) C(4,2), C4,3), C(4,4)  
 C(5,0) C(5,1) C(5,2) C(5,3) C(5,4) C(5,5)  
 ...  

 
In general, we notice that C(p+1, k+1) = C(p, k) + C(p, k+1), where p (∈ N) 

is the number of the row and k (k∈ N, k = 0, … p+1) is the kth coefficient of that 
row.  

 

 Three person game embedded on Pascal’s triangle 8.2.2

We can actually use Pascal's arithmetical triangle when solving the inner struc-
ture problem. Pascal's triangle can also be embedded in a hexagonal model, 
where within each hexagon there is one binomial coefficient. When the shape of 
three-handed chess, which we introduced in Chapter 6, is slightly changed, it 
can be embedded in Pascal's triangle so that the game itself remains unchanged. 
Figure 119 shows how the traditional chess board is transformed to a hexagonal 
board and how the hexagonal board is transformed to Pascal's triangle.  
 

 

 

Figure 119 Transforming chess board into Pascal’s arithmetical triangle 

Since the location of each binomial coefficient of Pascal’s triangle can be 
determined on the basis of the binomial formula, then, respectively, also the 
locations of the multinomial coefficients of the “Pascal's” n-dimensional tetra-
hedrons can be exactly defined on the basis of the multinomial formula. Thus, 
the multinomial coefficients form the coordinates of the game board, and there-
fore the movements of game pieces can be exactly represented on gaming 
boards of different dimensions. Next, we examine in more detail the structure 
of the game boards, starting from the simplest one, which can be accommodat-
ed on a two-dimensional plane. 

As explained in Section 8.2.1, the coefficients on the row are sums of the 
two coefficients above them. Because of this, every coefficient number in Pas-
cal’s triangle can be determined by its neighbouring numbers: by its neighbor-
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ing numbers on same row or by the sum of two numbers on the row above. For 
example, on the fifth row coefficient 6 has two neighbors on the row above. 
Both numbers have the value of 3 on that row, and 3 + 3 = 6. In addition, the 
neighbors include both numbers 4 on the same row. On the row below these, 
the neighbors both have the value of 10, because 4 + 6 = 10 and 6 + 4 = 10. There 
are six neighbors all in all close together. This is easy to see in Figure 120, where 
Pascal’s triangle is drawn as a triangular graph. These six numbers also form 
the first defense zone for number 6, if we think of this model as a game board.  

 

 

Figure 120 The first defense zone in Pascal’s triangle 

Represented as a combination, binomial coefficient 6 is marked as C(4,2). Its 
neighbors are C(3,1) and C(3,2) on the upper row, C(5,2) and C(5,3) on the low-
er row and both C(4,1) and C(4,3) on the same row. In general, we notice that 
coefficient C(p,k) has C(p-1,k-1) and C(p-1,k) as neighboring coefficients on the 
upper row, C(p+1,k) and C(p+1, k+1) on the lower row and both C(p,k-1) and 
C(p,k+1) on the same row. 

Here we have used a shorter notation for this combination. When using a 
longer notation, C(4,2) becomes C(4,2,2) and C(4,1) becomes C(4,1,3), where the 
first variable is the sum of the other numbers following it. The added extra 
number has been obtained by subtracting the second number from the first one. 
Later on we are going to use only this longer notation. The first rows of Pascal's 
arithmetical triangle using the longer notation are shown below.  
 

 C(0,0,0)  
 C(1,0,1), C(1,1,0)  
 C(2,0,2), C(2,1,1), C(2,2,0)  
 C(3,0,3), C(3,1,2), C(3,2,1), C(3,3,0)  
 C(4,0,4), C(4,1,3), C(4,2,2), C(4,3,1), C 4,4,0)  
 C(5,0,5), C(5,1,4), C(5,2,3), C(5,3,2), C(5,4,1), C(5,5,0)  
 ...  
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 Multinomial formula and n-simplex 8.2.3

Just as the binomial coefficients can be represented by Pascal's triangle, we can 
represent the trinomial coefficients by “Pascal's pyramid", which is also known 
as “Pascal's tetrahedron”. As a geometrical object, the triangle is a 2-simplex 
and tetrahedron a 3-simplex. In the same way, quadratic coefficients can be rep-
resented as a four-dimensional simplex, the 4-simplex, which is also known as 
pentachoron or pentatope. In general, the multinomial coefficients can be repre-
sented in an n-dimensional simplex model.  

 We can determine also the other coefficients in the n-simplex game board 
model by using the sums of higher level coefficients in the way we did in Pas-
cal’s triangle. Every level of a simplex is one dimension smaller than the simplex 
itself, and hence the levels of an n-simplex are (n-1)-dimensional. In our two-
dimensional Pascal’s triangle, a level is a one-dimensional row. In Pascal’s tri-
angle, the value of any coefficient or example is the sum of the two coefficients 
on the row above it; in same way, the value of any coefficient of Pascal's tetra-
hedron is the sum of the three coefficients on the level above it. Similarly, in the 
pentachoron every coefficient is the sum of the four coefficients on the level 
immediately above it. 

Next we will examine in more detail how this method works in dimen-
sions three, four and five.  

 The Symmetric 4-players model on 3-simplex board 8.2.4

The coefficients of the trinomial formula are C(p,k1,k2,k3), where k1 + k2+ k3 = p. 
For example the trinomial coefficients with exponents 0-3 are as follows: 

Table 6 The first four trinoms  

Trinom Coefficients 
  
(x+y+z)0 = 1  1 
(x+y+z)1 = x+y+z  1, 1, 1 
(x+y+z)2 = x2 + y2 + z2 + 2xy + 2xz + 2yz  1, 1, 1, 2, 2, 2 
(x+y+z)3 = x3 + y3 + z3 + 3xy2 + 3xz2 + 3yx2 + 3yz2 + 3zx2 + 
3zy2 + 6xyz  

1, 1, 1, 3, 3, 3, 3, 3, 
3,6 

 
Combination C(p,k1,k2,k3) Coefficients 
x+y+z)0 = 1 C(0,0,0,0) 
(x+y+z)1 = x+y+z  C(1,1,0,0), C(1,0,1,0), C(1,0,0,1) 
(x+y+z)2 = x2 + y2 + z2 + 2xy + 
2xz + 2yz 

C(2,2,0,0), C(2,0,2,0), C(2,0,0,2), C(2,1,1,0), 
C(2,1,0,1), C(2,0,1,1) 

(x+y+z)3 = x3 + y3 + z3 + 3xy2 + 
3xz2 + 3yx2 + 3yz2 + 3zx2 + 3zy2 + 
6xyz 

C(3,3,0,0), C(3,0,3,0), C(3,0,0,3), C(3,2,1,0), 
C(3,2,0,1), C(3,1,2,0), C(3,0,2,1), C(3,1,0,2), 
C(3,0,1,2), C(3,1,1,1) 
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 The trinomial coefficients can be placed in a 3-simplex (tetrahedron) in exact 
positions as shown in Figure 121. The top vertex is a trinom (x+y+z)0, which has 
the value of 1. Under the top vertex on the next level, the exponent of the tri-
nom is 1, and we get three coefficients, which all have the value of 1 (see the 
second equation on Table 6). This value labels the three nodes on this level (see 
the graph of three nodes in Figure 121). On the third level, which is numbered 
level 2 (the numbering of the levels starting from 0), the exponent of the trinom 
is 2 and there are six coefficients, three of which have the value of 1 and another 
three which have the value of 2. These coefficients are placed in such a way that 
those with the value of 1 are in corner nodes and those with the value of 2 in the 
center (see the graph of six nodes in Figure 121). We also make an observation 
that on the sides of this triangle, which is a slice of a tetrahedron, there is the 
third row, 1, 2, 1, of the Pascal’s arithmetical triangle. When we examine Figure 
121, we see that a two-dimensional Pascal’s arithmetical triangle can be found 
on all the faces of this tetrahedron.  

Generally speaking, we place the coefficients on the triangle of the level k 
in the tetrahedron in the following way. On the corners we place the coefficients 
which have the value of 1 and a variable which has the k exponent. On the sides 
of the triangle, we place the coefficients which have the variables with exponent 
k-1. We will continue by placing coefficients on the sides of the triangle in ac-
cordance with the highest (decreasing) exponent of the variables. If two coeffi-
cients have the greatest exponent of equal size, then the order is determined by 
the next highest exponent. The trinom has three variables, and all of them have 
exponents. This is easier to figure out with the help of the last equation in Table 
6 and by comparing it with the triangular graph of ten nodes in Figure 121.  

When all the sides of one triangular graph have the coefficient values, then 
we move to the next inner triangle on the same level and repeat the same pro-
cess. We continue until we are at the center of the triangle. There the exponents 
of the variables are at their smallest, whereas the coefficients are at their great-
est. In Figure 121, the positions of the trinomial coefficients are shown for levels 
0–6 in the tetrahedron. These positions are more exactly determined by combi-
nations in Section 8.2.6. 
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Figure 121 The coefficients of the trinomial formula in Pascal’s Tetrahedron 

If we consider the relationship between the coefficients in this three-
dimensional model in the same way as in the two-dimensional case, we will 
find that the coefficients on the lower level can also be obtained from the sum of 
the coefficients on the upper level. In the two-dimensional model, the sum was 
that of two coefficients, but, in the three-dimensional model, this sum is the 
sum of three coefficients. This is shown in Figure 122. The upper level is 
marked by red nodes, and at the center of three red nodes (the triangles with 
two nodes above and one below) there is the sum of the numbers of these nodes 
in a white node. In the tetrahedron, the white nodes are on a level that is lower 
than that of the red nodes. The 0-nodes on the left outside the triangles were 
added to the figure to show that the same method works also with edge nodes. 
All these sums consist of triangles which have two red nodes above and one 
below. The highest triangle at the top is the one with nodes 0, 0, 1. 

The triangles, which have two red nodes below and one on top, do not 
matter in this research. However, we may note that the sums of these triangles, 
starting from the top and from right to left are 1, 1, 3, 7, 3, 3, 12, 12, 3, 1, 7, 12, 7 
and 1. Also these sums might have significance in some other contexts.  
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Figure 122 The summation of coefficients in Pascal’s Tetrahedron 

Also the neighbors in the three-dimensional model can be defined by this 
same method. We refer to Figure 123, which shows the inner sums on some of 
the first seven levels. As in Pascal's triangle, and also in (Pascal's) arithmetical 
tetrahedron neighboring coefficients can be defined for a coefficient, depending 
on whether the coefficient is a part of the sum of other coefficients or if its 
neighboring nodes on the same level. For example, the node on level six with 
coefficient 30 has upper level neighbors 6, 12 and 12, because 6 + 12 + 12 = 30. 
On the lower level, the neighbors are 60, 60 and 90, because 30 + 10 + 20 = 60 
and 30 + 30 + 30 = 90. Here 30 is one of the factors in these sums. The adjacent 
neighbors on the same level are 10, 20, 30, 30, 20 and 10. So the total number of 
the neighbors is 12.  

As combinations, the neighbors of the trinom coefficient 30 = 5!/2!2!1! = 
C(5,2,2,1) can be defined more exactly: on the upper level, 6 = C(4,2,2,0), 12 = 
C(4,2,1,1), and 12 = C(4,1,2,1); on the lower level, 90 = C(6,2,2,2), 60 = C(6,2,3,1), 
and 60 = C(6,3,2,1); on the same level, 10 = C(5,3,2,0), 10 = C(5,0,2,3), 20 = 
C(5,3,1,1), 20 = C(5,1,3,1), 30 = C(5,2,1,2) and 30 = C(5,1,2,2). See Figure 123.  

In general, the neighbours of the coefficient C(p,k1,k2,k3) are on the upper 
level C(p-1,k1,k2,k3-1), C(p-1,k1,k2-1,k3) and C(p-1,k1-1,k2,k3), on the lower level 
C(p+1,k1,k2,k3+1), C(p+1,k1,k2+1,k3) and C(p+1,k1+1,k2,k3), and on the same lev-
el C(p,k1+1,k2,k3-1), C(p,k1-2,k2,k3+2), C(p,k1+1,k2-1,k3), C(p,k1-1,k2+1,k3), 
C(p,k1,k2-1,k3+1) and C(p,k1-1,k2,k3+1). 
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Figure 123 Summation on levels 1-6 in Pascal’s Tetrahedron 
 

 The Game platform and variety of hyperofficers 8.2.5

A symmetrical game platform for four players can also be implemented con-
cretely in the real world by a game board shown in Figure 124. The levels from 
left to right run from 1 to 9. 
 

 

 

Figure 124 A Game board model for four-person symmetric chess game 

As it can be seen, we use six different colors to get the neighboring cells 
colored by different colors. A tetrahedral game board is six-colorable, which can 
be easily verified by Figure 124. As an example we can take the node with coef-
ficient number 6 in the center on level 3. If that node is marked by color A, then 
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its neighboring nodes on the same level, level 3, can be colored by two colors, B 
and C, which makes a chain B - C - B - C - B – C around the central node. Two 
colors is enough because the number of nodes is even. If it were odd, then we 
would need three colors. The neighboring nodes of node 6 on the lower level, 
level 4, are the three nodes with coefficient number 12. Each of these three 
nodes is also a neighbor to the two (with coefficient 3) adjoining nodes of 6. 
Therefore, none of them can have any of the colors A, B or C. Since the nodes 
with the value of 12 are also neighbors to each other and have different colors, 
there is a need for additional colors D, E and F. Since for one level, three colors 
are sufficient, no more colors are required on that level. Because level 2 above 
level 3 is not in contact with level 4, these two levels can use the same colors. 

In Chapter 7, we generalized the officers into two types, hyperknights and 
hyperbishops, depending on whether they stay or not on the same colored cells 
during their moves. Hyperknights and hyperbishops are generally called hy-
perofficers. On the extended, two-dimensional, hexagonal board and on multi-
dimensional simplex boards, the number of colors grows, which means that 
hyperknights can move to cells of several different colors. So there will be dif-
ferent kinds of combinations. This is not essential to this thesis, nevertheless it 
provides an interesting field for future research. 

 Defining the coordinates on a simplex board 8.2.6

In the following, we explore how the position of an individual vertex is deter-
mined on a simplex board in different dimensions.  

 On a two-dimensional (2-simplex) board embedded on the Pascal's arith-
metical triangle, the combinations were placed as follows:  

 
 C(0,0,0)  
 C(1,0,1), C(1,1,0)  
 C(2,0,2), C(2,1,1), C(2,2,0)  
 C(3,0,3), C(3,1,2), C(3,2,1), C(3,3,0)  
 ...  

 
In combination C(p,k1,k2), variable p indicates the row. Parameter k1 tells the 
location of the combination, starting from the left, and k2, starting from the 
right. The locations are k1+1 and k2+1. So, for example, C(3,1,2) = 3 is located in 
the Pascal's triangle on the 3rd row as the second number starting from left and 
as the third number starting from right. Naturally, this numbering system dif-
fers from the system we used in the earlier chapters with trichess, but it can be 
easily converted to it. This numbering is derived from the arithmetic triangle 
and Pascal's binomial formula, while in trichess we wanted to find a numbering 
system similar to the one used in the traditional chess.  

Next we refer Figure 125. In the three-dimensional model, which can be 
referred to as 3-simplex or a tetrahedron, the combinations have the form 
C(p,k1,k2,k3). The positions of combinations C(p,k1,k2,k3) are determined such 
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that in one corner of the tetrahedron all the variables p, k1, k2 and k3 get the val-
ue of 0 and so C(0,0,0,0) = 1.  

 

 

Figure 125 Position of coefficients in the trinomial formula  

To make this numbering system easier to understand, let us assume that 
C(0,0,0,0) is the top vertex of a tetrahedron, a three-sided pyramid. After this, 
we continue onto the next levels, and next triangles, under the top vertex. The 
value of p increases from 0 to 2 during the process. On the lowest triangle level, 
the combinations are in the form of C(2,k1,k2,k3). In the combinations on each 
side of this triangle, one of the k1, k2 or k3 variables gets a value of 0, and the 
same variable gets a value 2 in the corner vertex opposite to the side. In the ver-
tices that are between the side and the corner vertex, the variable value is in-
creased from 0 to 2. This is illustrated in Figure 125. The coefficients of the tri-
nomial formula are placed in “Pascal’s” arithmetical tetrahedron. In the figure, 
k3 gets the value of 0 on the right, k2 is 0 on the left and k1 is 0 on the bottom. On 
this lowest level triangle (on the right in Figure 125), the values of the variables 
in combinations increase from 1 to 2 when moving from a side towards the cor-
ner vertex. 

In the four-dimensional model (Figure 126), which can be referred to as a 
four-simplex or a pentachoron, the combinations have the form C(p,k1,k2,k3,k4). 
In one of the five corners of the pentachoron, we place a vertex with combina-
tion C(0,0,0,0,0) = 1. This top vertex determines also the 0 level, which is repre-
sented by the first parameter in the combination. The next levels of this pen-
tachoron consist of tetrahedra, of which the smallest is on level 1. This tetrahe-
dron has only four vertices, which are its corner vertices. Their coordinates are 
C(1,1,0,0,0) = 1, C(1,0,1,0,0) = 1, C(1,0,0,1,0) = 1 and C(1,0,0,0,1) = 1.  
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Figure 126 The position of coefficients in quadrinomial formula 

Generally, in an n-dimensional simplex, where combinations are of the 
form of C(p,k1,k2,…,kn) and p = , the location for each combination is de-
termined in the following way.  

In one of the corners, there is always a combination of C(0,0,0,0 , ... 0) 
when the number of variables (here zeros) is n + 1. On the opposite side of this 
combination vertex, there is one of the border levels of the n-simplex. This bor-
der level is an (n-1)-dimensional simplex, and in its combination vertices p = s - 
1. Here s is the “size” of the simplex, which is the number of vertices on its edg-
es. 

The first variable p of C(p,k1,k2,…,kn), p ∈ [0, s-1], indicates on which (n-
1)-level in the n-simplex the combination is located when the starting vertex is 
the combination of C(0,0,0,0, ... 0). Parameter k1 indicates the distance from the 
(n-2)-simplex, starting from one border level, where k1 = 0. Parameter k2 indi-
cates the distance from another border level, where k2 = 0. And so on, until pa-
rameter kn indicates the distance from some border level where kn = 0. For the 
parameters, ki ∈ [0, s] and i ∈ [0, n]. 

Parameter p differs from the other parameters: its starting level (zero level) 
is a corner vertex, whereas the other parameters use some of the (n-1)-
dimensional border simplexes of the n-simplex as their starting level. The rea-
son for this is illustrative, but, in algorithms, p can always be replaced by pa-
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rameter k0 = s – p. The starting level of k0 also starts from an (n-1)-simplex on 
the border. 

Figure 126 clarifies the method above and shows how the combinations 
are located in the pentachoron. In the four-dimensional 4-simplex (pentacho-
ron), where the combinations have the form of C(p,k1,k2,k3,k4), the location of 
each combination is determined in the following way. 

One of the vertices of the simplex always has the form of C (0,0,0,0,0), 
where the number of variables, in this case zeros, is 4 + 1 = 5. On the opposite 
side of this corner vertex, there is a three-dimensional border level, a tetrahe-
dron, where p = s – 1. As mentioned, here the size of s is that of the size of the 
simplex, which is the number of vertices on its edges. In Figure 126, parameter 
p is 4. 

The first variable, p ∈ [0, 3], of combination C(p,k1,k2,k3,k4), determines on 
which three-dimensional tetrahedral level in the pentachoron (4-simplex) the 
combination is located, when the staring vertex is combination C(0,0,0,0,0). Pa-
rameter k1 tells the distance to one 2-simplex on one of the border levels, in this 
case, to one triangular face inside the tetrahedron, where k1 = 0. Parameter k2 
indicates the distance to another 2-simplex, which is another triangular border 
face. In the same way, k3 and k4 indicate the distances to the triangles, where 
their value is 0. 

 Symmetric 5-players model on 4-simplex board 8.2.7

We continue the review started in Section 8.2.4 by taking yet one more dimen-
sion under consideration. The object is now the four-dimensional pentachoron. 
In a pentachoron (a 4-simplex), the quadrinomial coefficients are placed so that 
each level is a tetrahedron, and the size of the tetrahedra increases on higher 
levels. Figure 127 presents the first four levels. The level-2 tetrahedron is shown 
separately as a three-dimensional model as well. It is the rightmost graph with 
four vertices. Level 4 is on the right in the figure. 

 

 

Figure 127 Levels 1-4 on Pascal’s Pentachoron 
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Also in this dimension, the coefficients are derived from the sums of the previ-
ous levels. On the 2-dimensional level, the sum consists of two coefficients on 
the upper row; and in the 3-dimensional space it consists of the coefficients of 
the corner vertices of a triangle with three vertices on the upper level. In a 4-
dimensional pentachoron, the sum is derived from the coefficients in the corner 
vertices of an upper level tetrahedron with four vertices. This is illustrated in 
Figure 128, where a part of the fourth level tetrahedron of the pentachoron is on 
the left and a part of the fifth level tetrahedron is on the right. Colors show 
which fourth level coefficients are factors of the fifth level coefficients with a 
value of 60.  

 
 

 

Figure 128 Summation of coefficients on level 5 in “Pascal’s” pentachoron 

In the pentachoron, the number of neighboring coefficients on the same level is 
12, which is exactly same as the number of all the neighboring coefficients in a 
tetrahedron. This means that in the 4-dimensional pentachoron, the total num-
ber of neighboring coefficients is 4 + 12 + 4 = 20. Figure 129 shows the positions 
of the players in the 4-simplex model. Four of the players have their starting 
positions in the corners of the three big tetrahedra on the right: Player 1 is on 
the top and players 2, 3 and 5 on the bottom corners. The fifth player (number 4) 
has the three small black tetrahedra on the left. 

In this model, the exact places of the chessmen have not yet been deter-
mined, but their locations are on three levels in the corners. The corner vertex 
doesn’t form a part of the game board. Thus there is one free level between all 
the players. 
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Figure 129 Five players in the corners of a pentachoron 

The previous four-dimensional projection figure might be easier to under-
stand with a description similar to the two-dimensional Pascal's triangle model 
(a projection to one-dimensional space from two-dimensional space in Figure 
130). Compare this with Figure 119, where the same model shown as two-
dimensional is on the right.  

 

 

Figure 130 Pascal’s Arithmetical triangle as a projection on dimension 1 
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 The Symmetric 6-player model on 5-simplex board 8.2.8

Our last example is a model embedded in a five-dimensional hexateron (Figure 
131). In the Pascal’s arithmetical triangle, the coefficients of the binomial formu-
la were placed on rows, which got longer when going from a higher level to a 
lower level. In the same way, in the hexateron, or 5-simplex, the coefficients of 
the pentanomial formula are placed on pentachoron levels, the size of which 
gets greater when going from higher levels to lower levels. In this example, we 
have a game board model, which has 8 levels. 

 

 

Figure 131 Six-player symmetric game on hexateron 

A hexateron is a regular, 5-dimensional manifold which is defined by 6 
pentachorons, 15 tetrahedra, 20 triangles, 15 edges and 6 vertices.  

Just like in previous cases, we get the coefficients of the sums of the lower-
level coefficients. The levels are 4-dimensional pentachorons, and the sum con-
sists of five coefficients, which are in the corner vertices of a pentachoron. In 
this game board model, we have 8 levels. 

Figure 131 illustrates the idea of how the coefficients are placed in a hex-
ateron. The two drawings framed by red lines are the two highest pentachoron 
levels, and below them, in red rectangles, are the coefficients (the number of 
each in brackets). On the first level, there are five coefficient vertices, with nu-
merical values C(1,1,0,0,0) = 1. On the second level, the five coefficient vertices 
in the corners of the pentachoron also have the value of 1, for C(2,2,0,0,0) = 1. In 
pentachoron, there are 10 edges and for the central vertices of these edges we 
have C(2,1,1,0,0,0) = 2. And indeed, the number of combinations C(2,1,1,0,0,0) is 
also 5!/2!3! = 10.  

 So this hexateron has 8 levels, which are all pentachorons, and six corners, 
which all have pentachorons as game levels. From each corner, there are 8 lev-
els to the opposite side border level of the hexateron.  
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The previous explanation is easier to understand if we apply it to the Pas-
cal’s triangle in Figure 119 on the right. The Pascal’s arithmetical triangle here 
has 13 levels, which are all rows, and three corners, which all have rows as 
game levels. From each corner, there are 13 levels to the opposite side border 
level of the triangle. 

In Figure 131, the red vertex shows the top corner and, “under” it, 5 bot-
tom corners. The bottom corners are shown in Figure 131 as drawings in the 
green squares. One of the smaller pentachoron’s five corner vertices gets C 
(8,8,0,0,0) = 1 as its value, and the four others get the value C(8,7,1,0,0) = 8. In 
the figure, the numbers in brackets mean the number of combinations in all five 
corners. In the greater pentachoron, the combinations are C(7,7,0,0,0,0) = 1 in 
one corner, and in four other corners, C(7,6,1,0,0,0) = 7. A pentachoron has 10 
edges, and the vertices in the middle of them have C(7,5,2,0,0,0) = 21 combina-
tions on four edges and C(7,5,1,1,0,0) = 42 on six edges. 

 Symmetric n-players model on (n-1)-simplex board 8.2.9

In this section, we define the symmetrical multi-player model in a general level. 
A general formula to count the upper level coefficient from the sum of lower 
level coefficients is C(p,k1,k2,…,kn) = C(p-1,k1-1,k2, …,kn) + C(p-1,k1,k2-1, …, kn) 
+ … C(p-1,k1,k2, …,kn-1), where k1 + k2 + … kn = p, and ki  0 ∀ i ∈ N. 

 
Proof: 
C(p-1,k1-1,k2, …,kn) + C(p-1,k1,k2-1, …, kn) + C(p-1,k1,k2, …,kn-1) 
= (p-1)!/(k1-1)!k2! … kn! + (p-1)!/k1!(k2-1)!…kn! … + (p-1)!/k1!k2! …(kn-1)! 
= (p-1)! k1/k1!k2! … kn! + (p-1)! k2/k1!k2!…kn! … + (p-1)!kn/k1!k2! …kn! 
= (p-1)!( k1 + k2 + … kn)/k1!k2! … kn! = (p-1)!p/k1!k2! … kn! = p!/k1!k2! … kn! 
= C(p,k1,k2,…,kn) q.e.d. 
 
In the text corresponding to Figure 123, we listed the neighbors of a single coef-
ficient vertex on the sixth level in a three-dimensional model. Their number 
(#n) is 12. In the four-dimensional model, #n = 20. Moving from a two-
dimensional model to higher-dimensional models, from an n-simplex to an 
(n+1)-simplex, the number of neighbors increases, and on the upper and lower 
levels the number of neighboring vertices will always be one more than on the 
previous level. On the same level, the number of neighboring vertices is the 
same as the total number of neighboring vertices in a lower dimension. We can 
explain this in a simple way. On a one-dimensional row, a vertex has two 
neighboring vertices. On a two-dimensional plane, one vertex has two neigh-
boring vertices on the same level as well as on the upper and the lower levels, 
and thus the total number 2 + 2 + 2 = 6. In a three-dimensional space, there are 
six neighboring vertices on the same level, the same number as the total number 
of neighboring vertices on the two-dimensional plane; in addition, there are 
three neighboring vertices both on the upper and lower levels. So the total 
number 6 + 3 + 3 = 12. In a four-dimensional space, there are 12 neighboring 
vertices on the same level, the same number as the total number of neighboring 
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vertices in the three-dimensional space; in addition, there are four neighboring 
vertices both on the upper and lower levels. So the total number here 12 + 4 + 4 
= 20. 

The number of neighboring vertices is always equals to 2 × (the third term 
on Pascal's arithmetical triangle on row n+1), where n is the dimension. So the 
number of the neighboring vertices #n = 2×C(n+1, n-1). We note that #n = 
n×(number of players). The number, #n, grows from a two-dimensional plane 
to higher dimensions: 6, 12, 20, 30, 42, 56, 72, etc. We also should note that the 
first two numbers are the same as the kissing numbers (see Table 1) in the same 
dimensions. However, after that the kissing numbers grow faster. 

8.3 Extension of Pascal’s rule 

Pascal's rule can also be seen as a part of a more general rule, where each coeffi-
cient can be counted not only by the coefficients of the previous level, but by the 
coefficients of all the previous upper levels. 

 Extension in traditional Pascal’s triangle 8.3.1

Figure 132 shows an example of how the fourth coefficient (10) on the fifth row 
and the fourth coefficient (20) on the sixth row can be counted by using a reverse 
Pascal's triangle (red numbers) and its product sums on the preceding rows.  

 

 

Figure 132 Extension of Pascal’s rule 

In Figure 132, the triangle on the left results in: C(5,3) = C(4,2) + C(4,3) = 
1*C(3,0) + 2*C(3,1) + 1*C(3,2) = 1*0 + 3*C(2,0) + 3*C(2,1) + 1*C(2,2) = 1*0 + 3*0 + 
6*C(1,0) + 4*C(1,1) + 1*0 = 10.  

When we write also the coefficients of the reverse triangle as combinations, 
we will get:  

C(5,3) = C(1,0)C(4,2) + C(1,1)C(4,3)  
= C(2,0)C(3,0) + C(2,1)C(3,1) + C(2,2)C(3,2)  
= C(3,0)*0 + C(3,1)C(2,0) + C(3,2)C(2,1) + C(3,3)C(2,2)  
= C(4,0)*0 + C(4,1)*0 + C(4,2)C(1,0) + C(4,3)C(1,1) + C(4,4)*0 = 10. 
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Thus, the Pascal’s rule C(p+1, k+1) = C(p,k) + C(p, k+1), can be extended 
in the following way:  

C(p+1, k+1) = C(1,0)C(p,k) + C(1,1)C(p, k+1)  
= C(2,0)C(p-1,k-1) + C(2,1)C(p-1,k) + C(2,2)C(p-1,k+1)  
= C(3,0)C(p-2,k-2) + C(3,1)C(p-2,k-1) + C(3,2)C(p-2,k) + C(3,3)C(p-2,k+1)  
… 
= C(p,0)C(1,k-p+1) + C(p,1)C(1,k-p+2) + … + C(p,p)C(1,k+1),  
where C(x,y) = 0 if y < 0 or y > x. 
 
As another example, we may consider the right-hand triangle of Figure 

133. There we use a longer notation for combinations: We get:  
C(6,3,3) = C(5,2,3) + C(5,3,2) = C(4,1,3) + 2*C(4,2,2) + C(4,3,1) = C(3,0,3) + 
3*C(3,1,2) + 3*C(3,2,1) + C(3,3,0) = C(2,-1,3) + 4*C(2,0,2) + 6*C(2,1,1) + 4*C(2,2,0) 
+ C(2,3,-1) = C(1,-2,3) + 5*C(1,-1,2) + 10*C(1,0,1) + 10*C(1,1,0) + 5*C(1,2,-1) + 
C(1,3,-2) = 20. 

When this extended rule is generalized from the binomial formula to a 
multinomial formula, we get a generalized extended Pascal's rule that can be 
used to calculate a single coefficient by using the sums more distant than on the 
previous level. This will be useful later when we define the movements of the 
officers.  

 Extension of Pascal’s rule for 3D simplex model 8.3.2

 In Section 8.2.6, for the determination of coordinates, we defined the neighbor-
ing vertices of a single coefficient vertex. Using the extension of Pascal's rule 
and its generalization for a trinom, we can directly define also the neighboring 
vertices on the levels at the distance of two or more steps. 

Let's start again with an example. In Section 8.2.4, coefficient vertex 30 = 
C(5,2,2,1) (Figure 123). Its neighbors on the upper level were vertices 6, 12 and 
12, as combinations C(4,2,2,0), C(4,2,1,1) and C(4,1,2,1). The extension of Pas-
cal’s rule in a three-dimensional model gives 30 = 6 + 12 + 12. The coefficient, 
30, is on level 5, and thus the rule was applied on level 4. Next we apply this 
extension on level 3. In Figure 133, on level 3, we select the vertices whose sums 
on level 4 give the above-mentioned combination vertices, 6, 12 and 12, that is, 
their neighboring vertices. Of these, we get 6 by using 0, 3 and 3. Here 0 is the 
vertex outside the triangle (Figure 133). The second vertex, 12, is obtained from 
3, 3 and 6 and another, 12, from 3, 6, and 3. As combinations, these vertices 
translate to 6 = C (3,2,1,0) + C(3,1,2,0) + 0, 12 = C(3,2,1,0) + C(3,2,0,1) + C(3,1,1,1) 
and 12 = C(3,1,1,1) + C(3, 1,2,0) + C(3,0,2,1). Consequently, vertex C( 5,2,2,1) on 
level 5 can be calculated already on level 3 with the help of five vertices: 
C(3,2,1,0), C(3,2,0,1), C(3,1,2,0), C(3,0,2,1), and C(3,1,1,1). So we can calculate 
vertex C(5,2,2,1) over two levels : C(5,2,2,1) = C(3,2,1,0) + C(3,1,2,0) + 0 + 
C(3,2,1,0) + C(3,2,0,1) + C(3,1,1,1) + C(3,1,1,1) + C(3,1,2,0) + C(3,0,2,1). 
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Figure 133 The extension of Pascal’s rule and trinom 

8.4 The effect on rules, when there are n players 

The n-player symmetric game model deals with the structure formed on the 
game board, the coordinates of positions, the types of game pieces and the di-
rections of their movements. When the number of players increases, then defini-
tions and rules about game strategy are needed outside of the game model. One 
of the major issues is how the game is finished. In an n-player game of chess, 
this requires definitions of check and checkmate. In a chess game involving 
more than two players, some rules must be clarified, including those needed for 
check and checkmate situations that cannot occur in two-player chess.  Two of 
these situations have been dealt with in the original rules, and a couple of oth-
ers have come up in concrete game-playing situations. The same rules must 
work logically in all the multiplayer chess games introduced in this research. In 
the following, we consider ten specific cases. Six of these concern the 3-player 
game. 
 
Three players  
 
The game rotation sequence is A, B, C, A, B, C, … and so on.  
 
1. Player A checkmates C. The result: A is the winner of the game since B is not 
allowed to terminate the checkmate. In general (also applicable for two-person 
chess), a checkmate is done immediately when the move is made, not after C's 
theoretical next move. So B is not allowed to undo the checkmate. 
2. Player A puts C in check, and Player B complets it with a checkmate. The first 
one making a check, in this case A, is the winner.  
3. Player A makes an open checkmate to C, that is, A reveals one of B’s chess 
pieces in such a way that B will threaten C’s king, and a checkmate is made. 
Here, the winner is B. 
4. Player A makes an open check to C: that is, A reveals one of B’s chess pieces 
in such a way that B threatens C’s king, and a check is made. Also this is a 
checkmate, even though C could undo the check during its own turn. The rea-



196 
 
son for this is that B could capture C’s king, which is not allowed in chess. Just 
like in case 3, the winner is B.  
5. Player A makes an open checkmate both to B and C. Interpretation: A is the 
winner even though also B has a checkmate over C, and the other way round. In 
order to avoid a conflict with the case 3, we establish a definition: a player is the 
winner only if its own king is not threatened during the checkmate.  
6. Player A makes an open check both to B and C: that is, A reveals one of play-
er’s B chess pieces in such a way that it will threaten C’s king and create a 
check, revealing at the same time some player’s C chess piece in such a way that 
it will threaten B’s king, which also creates a check. Interpretation: the game 
continues as B cannot capture C’s king because it has to undo its own check. It 
doesn’t seem to be possible to do this and at same time capture C’s king. 
 
Four players  
 
The game rotation sequence is A, B, C, D, A, B, C, D, … and so on. 
 
7. Player A makes an open checkmate to all the other players. A is the winner. 
8. Player A makes an open checkmate to B and C. D doesn’t threaten anyone. A 
is the winner. 
9. Player A makes an open checkmate to B and C so that both A and D are 
checking after A’s move. A is the winner.  
10. Player A makes an open checkmate to B and C so that only D is checking. 
On the basis of case 3, D is the winner.  
 
N players 
 
Here we discuss a general case where the number of players is n > 2. Player X 
who has made the move that leads to a checkmate is the winner if some of X’s 
pieces is checking the king in the checkmate and X’s own king is not in check. If 
Player X does not threaten the king, which is in the checkmate, then the winner 
is the next player whose piece threatens that king and whose own king is not 
threatened. If all the players who are threatening the king in checkmate have 
their own kings also threatened, Player X who caused the checkmate can be the 
winner even when none of X’s pieces is threatening the king who has been 
checkmated.  
 
Some notes about transfer order 
 
Although the players' positions in relation to each other are symmetrical, some 
asymmetry is left in the order of moves. Also this could be avoided by defining 
a transfer order that takes place randomly. The checkmate rules would work 
also in that case, but naturally the nature of the game would be totally different, 
as chance would play part in the game. 
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8.5 Multi-simplex chess  

Next, we have a look at the three first defense zones and their officers on an n-
simplex game board. This gives the elements and rules which will later make it 
easy to build on the algorithm for the simulation model. 

 First defense zone in varying dimensions 8.5.1

The combinations of neighboring vertices of C(p, k1, k2,…, kn) in an n-
dimensional simplex are the following.  
 

Upper level: C(p-1, k1-1, k2, …, kn), C(p-1, k1, k2-1, …, kn), …,C(p-1, k1, 
k2, …, kn-1). 
Same level: C(p, k1+1, k2, …, kn-1), C(p, k1-1, k2, …, kn+1), C(p, k1+1, k2, … kn-1-1, 
kn), C(p, k1-1, k2, … kn-1+1, kn), …, C(p, k1+1, k2-1, …, kn), C(p, k1-1, k2+1, …, 
kn), …,C(p, k1, k2+1, …, kn-1), C(p, k1, k2-1, …, kn+1), …, C(p, k1, k2, … kn-1+1, kn-
1), C(p,k1, k2, … kn-1-1, kn+1).  
Lower level: C(p+1, k1+1, k2, …, kn), C(p+1, k1, k2+1, …, kn), …,C(p+1, k1, k2, …, 
kn+1). 

We can explain this by a simple example, where n = 2. In this case, the 
neighboring vertices of C(p, k1, k2) are C(p-1, k1-1, k2) and C(p-1, k1, k2-1) on the 
upper level, C(p, k1+1, k2-1) and C(p, k1-1, k2+1) on the same level and C(p+1, 
k1+1, k2) and C(p+1, k1, k2+1) on the lower level. In Figure 121 of Section 8.2.2, 
there is an example in which p = 4 and k1 = 2. In that case, for vertex C(4,2,2) or 
C(4,2) when using the short notation, the neighbors are C(3,1,2) and C(3,2,1) 
(upper level), C(5,2,3) and C(5,3,2) (lower level), and C(4,1,3) and C(4,3,1) (same 
level).  

 How do rooks move on an n-simplex board? 8.5.2

If there are no other pieces on the way, the rook can move to every position in 
the first dense zone. It can then continue moving a maximum of q steps (q ∈ 
(0,r) and r is the number of levels). The number of directions available, #n, is 
explained in Section 8.2.9. When the rook starts from cell C(p, k1, k2,…, kn), we 
get the following directions:  
 
Upper level : C(p-q, k1-q, k2, …,kn), C(p-q, k1, k2-q, …, kn), …,C(p-q, k1, k2, …, 
kn-q).  
Same level: C(p, k1+q, k2, …, kn-q), C(p, k1-q, k2, …, kn+q), C(p, k1+q, k2, … kn-1-
q, kn), C(p, k1-q, k2, … kn-1+q, kn), …, C(p, k1+q, k2-q, …, kn), C(p, k1-q, k2+q, …, 
kn), …, C(p, k1, k2+q, …, kn-q), C(p, k1, k2-q, …, kn+q), …, C(p, k1, k2, … kn-1+q, 
kn-q), C(p, k1, k2, … kn-1-q, kn+q).  
Lower level: C(p+q, k1+q, k2, …, kn), C(p+q, k1, k2+q, …, kn), …,C(p+q, k1, k2, …, 
kn+q). 
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As an example, we choose again the simplest two-dimensional case on a 
plane, where n = 2, and #n = 2 x C(n+2, n+2-2)  #2 = 2 x C(4,2) = 6. Thus the 
rook moves to the upper level to the vertices in directions C(p-q, k1-q, k2) and 
C(p-q, k1, k2-q), to the lower level to the vertices in directions C(p+q, k1+q, k2) 
and C(p+q, k1, k2+q) and on the same level to vertices in directions C(p, k1+q, 
k2-q) and C(p, k1-q, k2+q). If we again take the vertex C(4,2) = 6 in Figure 121 as 
the starting point, then p = 4, and k1 = k2 = 2. So the rook moves on the upper 
level to vertices C(4-q, 2-q, 2) and C(4-q, 2, 2-q), on the lower level to vertices 
C(4+q 2+q, 2) and C(4+q, 2, 2+q) and on the same level to vertices C(4, 2+q, 2-q) 
and C(4, 2-q, 2+q). When moving to the upper level, q can have the values of 1 
or 2; so in the direction of the upper left, we have vertices C(3,1,2) and C(2,0,2), 
and in the upper right, the vertices C(3,2,0) and C(2,2,0). Moving to the lower 
level, q can only have the value of 1 and the vertices are C(5,2,3) and C(5,3,2). 
Also the sums for q on the same level can have the values of 1 and 2. When 
moving to the left, the vertices are C(4,1,3) and C(4,0,4), and, when moving to 
the right, they are C(4,3,0) and C(4,4,0).  

In general, when the rook moves upwards or on the same level, in the last 
vertex, k1=p or k2 =p. When it moves downwards, then in the last vertex, p = r. 
Figure 134 describes how the rook moves in a four-dimensional simplex, a pen-
tachoron. The starting point is in vertex 24 (in the orange square). 
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Figure 134 Directions of the rook’s move in a 4-simplex 

 Second zone officers on n-simplex board 8.5.3

In all dimensions, there is exactly one officer, the rook, which holds all the cells 
of the first defense zone. On the second defense zone, we add new officers on 
those cells, which the rook cannot reach. In Section, 8.5.1, we presented the 
game cells as vertices and mapped the neighboring vertices for a single vertex 
on a first defense zone in an n-dimensional space. After that, in Section 8.5.2, we 
examined the directions of the rook’s movements in an n-dimensional space. 
On the second defense zone, there will be new officers filling the directions that 
are between the rook’s directions. We use the following notation. In the 
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C(p,k1,k2, …, kn) combination, variable p indicates the level of the combination 
on a single n-1 dimensional level. In the combination, p ∈ N, where N is a natu-
ral number or 0. Variables m ∈ N and km ∈ N, km = 0, … p+1 tell the location of 
the combination in an n-simplex. The number of steps that officers can move to 
every direction is not more than q, where q ∈ (0,r) and r is the number of the 
levels, if there are no other pieces blocking the way. 

We start our observation from lower dimensions. When dimension n = 2, 
then the cells that remain between the rook’s directions on the second defense 
zone are: C(p-2, k1-1, k2-1), C(p-1, k1+1, k2-2), C(p+1, k1+2, k2 -1), C(p+2, k1+1, k2 

+1), C(p+1, k1-1, k2 +2) and C(p-1, k1-2, k2 +1). This can be seen in Figure 123 by 
setting values p = 4 and k1 = 2  k2 = 2. From this it follows that the second de-
fense zone of vertex C(4,2,2) = 6 in the center is clockwise and starting from the 
top: C(2,1,1) = 2, C(3,3,0) = 1, C(5,4,1) = 5, C(6,3,3)= 20, C(5,1,4) = 5 and C(3,0,3) 
= 1. The moving directions are: C(p-2q, k1+q, k2), C(p-q, k1+q, k2-2q), C(p+q, 
k1+2q, k2 -q), C(p+2q, k1+q, k2 +q), C(p+q, k1-q, k2 +2q) and C(p-q, k1-2q, k2 +q). 

 The next steps 8.5.4

When the size of the game board is extended, new officers must be added. This 
process doesn’t depend on the number of dimensions. The new officers will be 
added on the sectors, which are between the sectors where the officers on the 
lower dense zones are able to move. The system is similar that which we were 
discussing in the Section 7.1.1. and is easy to count and generalize.  

So what is next? We will discuss the simulation program and its applica-
tions in the real world. 

8.6 Summary 

Figure 135 explains, better than words the basic idea and evolution of this simu-
lation model. 
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Figure 135 The Game model idea in one picture 

The ideas about 4-player chess led us to 3-player chess. It was possible to em-
bed Trichess on Pascal’s triangle, which was our 3rd step. The 4th step was to 
enlarge the game to higher dimensions by using the multinomial formula, 
which is an extension of the binomial formula. 

 
 



 

9 CONCLUDING REMARKS 

In this chapter we present additional results obtained during this research. 

9.1 The Number of a Graph 

The results of this chapter are based on a joint work by the author and Professor Frank 
Harary. References have been added where results of others have been used.  

In the following, we introduce a method for representing any graph by a 
unique number and any number as a unique graph. 

A graph G of order n consists of a finite nonempty set, V=V(G), of n 
vertices together with specified set X of unordered pairs of distinct vertices. 
There are several ways to present the structure of G, which is an abstract graph. 
One of the ways is by drawing G and labeling the vertices of G with the integers 
1 to n. The adjacency matrix of G is another form of representing a graph, as is 
the set of unordered pairs of adjacent vertices. We propose to assign a unique 
positive integer to G. The examples are displayed for labeling of the graphs of 
order 4 and size 5. After obtaining the numbers of all the connected graphs of 
order 4, we continue with a list of open questions and possible applications. 

 Labelling a graph 9.1.1

A simple graph, which is a graph without loops and multiple edges and is of 
order p, is a finite non-empty set of V = V (G) with p vertices and set X of unor-
dered pairs. A pair x = {u,v} ∈ X, is called an edge of graph G, which connects 
vertices u and v. We can take the following graph G with set V of vertices as an 
example, where V = {v1, v2, v3, v4}, and X = {{v1, v2}, {v2, v3}, {v3, v4}, {v1, v4}, {v1, 
v3}}. In this labelled graph (Figure 136, b), the order is p = 4 and the integers 
from 1 to 4 are associated with the vertices.  This graph can be labelled in six 
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different ways, which are shown in Figure 137. In general, a graph with p verti-
ces and k edges has n possible labeled graphs where for p = 4 and k = 5,  

 
n =  
 

 Connected undirected graphs 9.1.2

There are several ways of presenting the structure of abstract graph G (Figure 
136). The first (1) is drawing G, and labeling G adds the numbers 1 to n at its 
vertices. The list presentation (2) of a labeled graph has the vertex number 1 
plus the ordered labels of its adjacent vertices, and vertices 2 and 3 have only 
the larger labels of its adjacent vertices. The adjacency matrix (3) of G is another 
kind of presentation formed from the set of unordered pairs of adjacent vertices. 
All these are displayed for a labeling of a graph of order 4 and size 5.  

Once the graph has been labeled, its adjacency matrix A(G) can be created 
and the sequence of 0s and 1s formed by the rows of this matrix may be written. 
For an undirected graph, a shorter code can be constructed by taking only the 
elements above the diagonal. Such a code can be regarded as a binary integer. 
One way of coding an unlabeled graph would be by considering all possible 
labeling and the corresponding codes (Read & Corneil 1977, Nagle 1966). 

 
(1) Figure 136 (a) shows a drawing of G 
(2) The adjancency list presentation of the labeled graph of Figure 137 (b) 
is 
1: 2, 3, 4 
2: 4 
3: 4 
(3) Its adjacency matrix is A, on the right. 
 

  

Figure 136 A graph of order 4 and size 5, with the adjancency matrix A 

The upper diagonal matrix of A is 1  1  1 
     0 1

      1 
 

When written as a binary number, 111011 is obtained, which is 59 = 32 + 16 + 8 
+ 2 + 1 in binary notation. Harary and Read, as well as Harary, Palmer and 
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Read, proved that a graph with s automorphisms has exactly n!/s different la-
belings (Harary & Palmer 1973). One of them must have the largest number. 
This is called the number of the graph, written #H (H stands for Harary). We 
note that 59 is not the canonical number since its labeling in Figure 137 does not 
produce the maximum number. 

 
The corresponding numbers are: 
 
Binary  Decimal 
111 011 = 59 (G1) 
101 111 =  47 (G2) 
111 110 =  62 (G3) 
011 111 =  31 (G4) 
111 101 =  61 (G5) 
110 111 =  55 (G6) 
 
 
 

 

Figure 137 All the labelings of graph G 

It should be mentioned that each decimal number determines the same abstract 
graph, but we prefer the biggest number for uniqueness. Hence #H(G) = 62. 

Generally, every binary number (n,2) can be represented as a unique 
graph of order n. We refer to these numbers as graphical numbers. 
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Figure 138 Five other graphs with order 4 

The binary numbers of the upper diagonal matrices are: K4 = 111111, C4 = 
110011, K3K2 = 111100, K1,3 = 111000 and P4 = 110011. The decimal numbers are: 
K4 = 63, C4 = 51, K3K2 = 60, K1,3 = 56 and P4 = 50. See Figure 138. 

 

 A Directed graph 9.1.3

A directed graph, also called a digraph, G = (V, E), consists of a set of vertices V 
and a set of directed edges E, also known as arrows. The vertices represent the 
basic elements of a graph, and the relations between the vertices are given by 
the directed edges. A directed edge is located between the two vertices u and v 
(an ordered pair of (u,v)). For the presentation of directed graphs, we can use 
the same data structures we used with undirected graphs. In this context, we 
use an adjacency matrix.  

 
The canonical number of a digraph 

 
The adjacency matrix of a directed graph is not always symmetrical on both 
sides of the diagonal axis as is the case with an undirected graph. Also loops 
and multiple edges are allowed for directed graphs we discuss here. Because 
multiple edges and loops are allowed in pseudographs (Harary 1969), we will 
also consider pseudodigraphs. The diagonal elements in the matrix are not nec-
essarily zeros. Figure 139, is an example of digraph G and its adjacency matrix. 

 

Figure 139 A digraph with a loop, and its adjacency matrix 
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For the numbers of digraphs we use notation #K. The graph in Figure 139 
provides a binary number 0111100100100100 => #K(G) = 31012 for this labeling. 

 
The graph of a number 

 
Each number can be presented uniquely as a directed graph with loops allowed, 
so that, if the digraph has 1 ... n vertices, then all the numbers from 1 to ... 2n2 – 1 
can be represented. 

The digraphs in Figure 140 provide binary numbers 011000000, 011101110 
and 111111111. The corresponding decimal numbers are 192, 238 and 511. 
In Figure 141, digraph H can be represented by the matrix on the right. The ma-
trix gives a binary number 1100100010010000000100010, and the corresponding 
decimal number is 26 288 162. 

 
 

 

Figure 140 The digraphs of numbers 192, 238 and 511 

 

Figure 141 Number 26288162 as a digraph and an adjacency matrix 

 
Very large numbers 
 
Very large numbers can be presented uniquely as directed and labelled pseu-
dodigraphs. Figures 142 and 143 present numbers up to the size of 18 trillion by 
digraphs of only eight vertices. A well-known Edward Kasner’s playfully in-
vented fictional large number "googol" = 10100, can be represented by a directed 
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pseudograph of 330 vertices. This means that the classification of directed 
graphs is practical only if the graphs are not large. 

 

 

Figure 142 18 A trillion as a digraph and an adjacency matrix 

 

Figure 143 Numbers 18x1018+1 and 18x1018+2 as digraphs 

Coding a number graph in other ways 
 
Naturally, a binary number placed in an adjacency matrix can be represented in 
many ways other than as a graph. One way is to use hand signals. As an exam-
ple, we take number 21 122 012, which as a binary number is 
1010000100100101111011100. Since this binary number has 25 digits, it can be 
represented by a 5x5 adjacency matrix and, further, as a digraph of five vertices. 
Hence, this number can be represented also by using the fingers of one hand. In 
this system, the first vertex, the vertex number one, which is the first row in the 
matrix, is displayed by the first finger (the thumb). After that we display those 



208 
 
other vertices which are the end vertices of the directed edges from the first ver-
tex. This process is continued until all the five vertices are shown. In Figure 144, 
the given number is presented as a matrix, as a digraph and by hand signals. 

 

 

 

Figure 144 Number 21 122 012 as digraph and finger code 

When we use hand signals, the place of the finger shows the row of a ma-
trix (the hands above) and the place of the digit one on every row (the hands 
below). In practice, the hands that are uppermost are not even needed, because 
the order of signals tells us the row. We added this hand signal example in the 
end of this chapter just to illustrate how simple codes can show quite large 
numbers and hence other kinds of complex information. 

 
Short Summary 
 
This is a continuing work. We don’t know yet, if it leads to any useful results. In 
1977 Read was quite skeptical. Another way of representing graphs is by means 
of an algebraic concept of some kind, such as an adjacency matrix; but a graph 
can have as many adjacency matrices as there are ways of labelling its vertices. 
(Read & Corneil 1977) 
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9.2 Strategy networks of small chesslike games48 

The main focus of this chapter is to examine some of the winning strategies of 
small board games. Game flow, the strategy network, is modeled using directed 
graphs, and the situation in every move is presented as a code in vertices. Here 
we present only a shortened version of the idea, this being just a spin-off of this 
thesis. The basic idea was to develop as simple chesslike game as possible, ex-
pand it to larger ones by a logic rule. The smallest one is a “chessboard”, the 
size of which is 2x3 = 6 squares. The motive for these games was to teach very 
young children to play and to allow the monitoring of their learning. We call 
these games Primitive Chessgames (or “Babychess”). In the two smallest ver-
sions, there is one significant difference from the rules of traditional chess, 
namely, there are several kings. This study is aimed at exploring winning strat-
egies of small board games which have been developed from chess. The pro-
gress of the games is modeled by means of digraphs, and the information about 
the game situations is depicted by the codes in vertices. The possibilities of gen-
eralizing the results and applying them for more complicated games were in-
vestigated. The coding system, introduced here, was designed especially for 
small games. By means of this system, the position of chess pieces on the chess 
board as well as the players’ moves may be monitored directly from the vertex 
codes. 

Figure 145 is a complete representation of a strategy network for 2x3 size 
primitive chess. In the starting position of this game, both players have two 
pawns (see Figure 104, in Section 7.1). All pawns can be coronated to kings if 
they reach the opposite side of the board. 

 

                                                 
48  This topic emerged when developing the games in Chapter 7, where not only larger square 

board chess games but also smaller ones were created. 
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Figure 145 A digraph depicting different moves in 2x3 chess 

Every vertex on the graph is coded in such a way that the code perfectly 
displays the overall situation as well as next moves on the chess board. Both the 
winning and drawn games are depicted by the coloredl boxes on the graph. The 
code in a vertex determines the place of the chess pieces on the board. Figure 
146 shows the idea of the coding system. 
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Figure 146 The Coding system of vertices 

Two vertices of the digraph in Figure 145 are presented. Every code has as 
many digits as there are squares on the board (six in this case), and the numbers 
tell the contents of a square in the moment of observation. In the vertex, which 
has the code of 100235, the digits are read line by line from top to left down so 
that 1 = black pawn, 2 = white pawn, 3 = black king and 0 = empty square. If 
there were also a white king, then its number would be 4. If white is next to 
move, then, in the last empty square, 0 is replaced by 5, as in this case. To avoid 
misunderstandings, we note that, in the digraph, the root vertex tells the start-
ing position, the last empty square and hence the number 5 is the fourth digit. 
The case on the right with the code of 102000 is a checkmate for white, because 
black cannot make any moves. This is shown in Figure 145 by a green box 
around the vertex. 

When the number of squares increases by three, then each player has two 
pawns and a king. Also the digraph grows enormously greater, how much, that 
we do not know yet exactly. Figure 147 shows the beginning of the graph and 
the coding of vertices. The letter E means a checkmate.  

 

 

Figure 147 Part of the strategy network of a 3x3 primitive chesslike game 

The digraph in Figure 148 is larger subgraph of the graph which compris-
es all the strategies of this game. It must be noted that the game is very simple 
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and, though all the moves are taken into account, only few of them are reasona-
ble for an intelligent player. The optimal winning strategy for this game on the 
3x3 board is represented by the red vertices.  

 
 

 

Figure 148 A larger part of the strategy network of Figure 146 

The main purpose in developing these games was to research cognitive 
learning in small children. The games are played by computers and information 
of the moves is saved. Once data has been collected from a large number of 
players, its classification will be easy on the basis of the numerical coding, and 
it will be possible to find different player types and different developments in 
learning.  

9.3 Generalization of Euler-Poincare characteristic49 

 Background 9.3.1

The Study of polyhedra can be traced back four thousand years to Ancient 
Egypt and later to Ancient Greece. The Greeks were interested in the mathemat-
ical properties of regular polyhedra, and they discovered five solids, which be-
came later known as the Platonic solids: the cube, tetrahedron, octahedron, ico-

                                                 
49  This subject came out in Chapter 8, where we determined the moving directions of officers on 

an N-simplex game board. The research has connections with the author’s earlier works in the 
field topological graph theory (Kyppö 1994, Kyppö 1993). 
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sahedron and dodecahedron. In 1750 - 1752, Leonhard Euler discovered and 
published a formula which could be used to prove that the number of these sol-
ids was five. In 1811, the first generalizations of Euler's formula were published 
by Simon Lhuilier and Augustin-Louis Cauchy. (Biggs, Lloyd & Wilson 1986). 

Finally, in 1899, Henri Poincaré generalized Euler's formula to the higher 
dimensions. (Alama 2009a, Alama 2009b, Dufourd 2008, Sachs 1970) 

There is less information about the genus of higher-dimensional solids. 
Gagliardi made in 1981 a proposition and two corollaries about a four-
dimensional genus. He also claimed that the same result could be generalized to 
higher dimensions (Gagliardi 1981). 

 
Euler's polyhedral formula is: 
  V - E + F = 2   (1) 
 
where V is the number of vertices, E is the number of edges, and F is the 

number of faces. Cauchy connected the study of polyhedra to planar graphs 
(Alama 2009a). 

Euler's polyhedral formula generalizations, by Euler-Lhuilier-Cauchy are: 
 
  V - E + F = 2 - 2g and V - E + F - C =1,  (2) 
 
where g is a given genus and C is the number of components. 
 
So the Euler characteristic of a closed orientable surface can be calculated 

from its genus g or, intuitively, from the number of its "handles" or "holes". Eu-
ler’s polyhedral formula was generalized by Schläfli to higher dimensions 
(Coxeter 1973). It was also known as the Euler- Poincaré formula, because of 
Poincaré’s role in it (Alama 2009a). 

 
Euler-Poincaré formula: 
 

  N0 – N1 + N2 – N3 +... ± Nk =  (3) 
 

Euler-Poincaré characteristic: 
 
For every simply connected polyhedron p of dimension k+1, we have 
 

  χ(E) =  =   (4) 
 
where Ni is the number of polytopes p of dimension i. (Alama 2009b) 
 
A polytope is a finite region of n-dimensional space bounded by hyper-

planes, the geometrical entity represented by the general term of the infinite 
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sequence: point (node), line (edge), polygon (face), polyhedron (cell), polycho-
ron (4-facet), polyteron (5-facet), etc. 

Euler's polyhedral formula (Eq. 1) was originally defined for polyhedra by 
Leonhard Euler, and it was used to prove the classification of the Platonic solids, 
the five regular convex polyhedra. This formula has also been widely used in 
graph theory: for example, the proof of the famous Four Color Theorem’s solu-
tion was based on the applications of Euler's formula. Euler’s polyhedral for-
mula is defined on the sphere, and the value of Euler characteristic is χ= 2. On 
the closed orientable surface, the Euler characteristic generally corresponds to 
χ= 2 – 2g, where g is the genus, the number of holes or handles of the surface. 
(Biggs, Lloyd & Wilson 1986) 
For example, in case of a torus, g = 1 and the Euler characteristic χ= 0. If there 
are C components, it can be shown that V - E + F - C = 1. These are the first gen-
eralizations (Eq. 2) of Euler’s characteristic (Sachs 1970).  

The third generalization of Euler’s characteristic is the Euler-Poincare for-
mula (Eq. 3) and the Euler-Poincare characteristic (Eq. 4), which is also defined 
on dimensions higher than three. The Euler-Poincare characteristic χ(E) is an 
alternating sum, and it is always equal to zero on any closed even-dimensional 
manifold; it is two on any closed odd-dimensional manifold if genus g = 0 
(Alama 2009a, Alama 2009b, Sachs 1970). 

The value of the genus cannot be seen in case of an even-dimensional 
manifold. This may be proved in two-dimensional Euclidean space, where the 
manifolds are perceived as polygons. The formula in that case is V - E = 0. A 
two-dimensional hole into the polygon cannot be made without dividing the 
polygon into two components, unlike the case of a three-dimensional polyhe-
dron, where it is possible to make a three-dimensional hole. In the four-
dimensional Euclidean space, we have V - E + F - C = 0. And, as can be seen, 
there is no genus in this formula either. Also Carlo H. Séquin did write about 
this topic in his article Generalized Euler-Poincaré Theorem: “I normally deal with 
more complex objects that also may have holes or tunnels, and sometimes the 
data file contains a description of several objects. Thus I need a more general 
formula that can accommodate all these cases” (Séquin 2008). 

We introduce the Euler-Poincare generalization (Eq. 5), where the value of 
the characteristic χ(E) may be other than zero on the closed odd-dimensional, n-
dimensional manifolds, if genus gi, where i  n and gi ∉gj, when i < j. When gi ∈ 
gj and i < j, the result will be different! The notation gi ∈ gj means, that in a j-
dimensional hole there is an i-dimensional sub-hole50. To serve as an example of the 
five-dimensional manifold (Eq. 6), we may have the five-dimensional holes 
(handles) g4 and three-dimensional pseudoholes g2, which may change the val-
ue of χ(E), unlike the four-dimensional pseudohole g3, which does not display 
any changes. As a conclusion, it seems that the holes of the manifolds differ from each 
other, depending on whether the dimension N is odd or even.  
 
                                                 
50  For example if we remove one of the three faces from the hole, which has in Figure 

150  a shape of a triangular prism. 
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 Generalizing genus in the Euler-Poincare characteristic 9.3.2

We can generalize the Euler-Poincaré characteristic by adding, in the formula of 
an n-polytope, holes which have a dimension smaller than n. We call these 
kinds of holes pseudoholes. 

For every simply connected polyhedron p of dimension k, we have 
 
 χ(E) =  = 1 + (-1)k -  ]gi  (5) 
  
where Ni is the number of polytopes of p of dimension i and where gi is 

the genus – intuitively, the number of "handles" or "holes” of dimension i. Ge-
nus gi tells us the number of holes (handles) of the manifold. If i < k, we say that 
the hole is a pseudohole. The same word is used also in operator theory with a 
slightly different meaning ()(Bosch et al. 1982, Jung, Ko & Pearcy 2001). 

The boundary of a two-dimensional hole is a compound of vertices and 
edges. The boundary of a three-dimensional hole is a compound of vertices, 
edges and faces. The boundary of a four-dimensional hole is a compound of 
vertices, edges, faces, and three-dimensional cells. In general: The boundary of 
an N-dimension hole is a compound of 0,..., N-1-cells. 

 
Considering the problem in 5D: 
 
  N0 – N1 + N2 – N3 + N4 = 2 - 2g2 - 2g4  (6) 

 
Some examples may be demonstrated with a cube (Example 1), where χ(E) 

= N0 – N1 + N2 = 2 – 2g2, and with a four-dimensional pentachoron (Examples 2 
and 3), where χ(E) = N0 – N1 + N2 – N3 = 2 – 2g2 + 0g3. As can be seen from the 
formula, a four-dimensional genus g3 does not display any changes, but a three-
dimensional genus g2 does. 

 
Example 1. A cube with genus g2 = 1. 
 
A cube consists of 8 points, 12 edges and 6 faces. Hence V = N0 = 8, E = N1 

= 12, and F = N2 = 6 => χ(E) = 8 – 12 + 6 = 2. If a two-dimensional triangle is 
added to the two opposite two-dimensional faces and both triangles are con-
nected to one corner by edges (Figure 149), the following results are obtained: 
2*3 = 6 more points, 2*4 = 8 more edges and 2*1 = 2 more faces. For Euler’s 
characteristic, the value is χ(E) = 14 – 20 + 8 = 2. 
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Figure 149 A Three-dimensional hole in cube 

If the triangle points are connected through the cube, it may be seen that 
the cube is penetrated by a triangular prism. If the prism is removed, a hole will 
remain in the cube and a polyhedron with genus g = g2 = 1 => χ(E) = 0 will be 
obtained. To verify this result, the number of elements is calculated. The num-
ber of faces has increased from 8 to 9. That is, while the three faces of the trian-
gular prism inside the cube have been added, the two triangle ends have been 
removed from the number of faces of the cube => F = 8 – 2 + 3 = 9. The number 
of edges has grown by three, due to the three edges of the prism inside the cube. 
The number of points remains the same. Now we get the value for Euler’s char-
acteristic χ(E) = 14 – 23 + 9 = 0. 

 
Example 2. A Pentachoron with genus g3 = 1.  
  
A pentachoron is covered by 5 points, 10 edges, 10 faces and 5 tetrahe-

drons. Hence N0 = 5, N1 = 10, N2 = 10 and N3 = 5 => χ(E) = 5 – 10 + 10 - 5 = 0. If 
a three-dimensional tetrahedron is added to two opposite three-dimensional 
tetrahedrons of the pentachoron (compare with the triangles in the previous exam-
ple), which are connected by an edge to one corner, the following values are ob-
tained: 2*4 = 8 more points, 2*(6+1) = 14 more edges, 2*4 = 8 more faces and 2*1 
= 2 more tetrahedrons. We get the value of Euler’s characteristic χ(E) = 13 – 24 + 
18 - 7 = 0. 

If the points of the two added tetrahedrons are connected through the 
pentachoron, it may be seen that the pentachoron is penetrated by a tetrahedral 
prism (Figure 150, edited by the author using some public figures)51. The tetra-
hedral prism consists of 8 points, 16 edges, 14 faces, and 6 three-dimensional 
cells consisting of 2 tetrahedrons and 4 triangular prisms. If the tetrahedral 
prism is removed, a hole in the pentachoron is made and thus a 4-polytope with 
the genus g = g3 = 1 is obtained. Because genus g3 does not exist in χ(E), when N 
= 4, the formula is to be checked by counting the number of the elements. The 
number of three-dimensional cells has increased from 7 to 9. Inside the pen-
tachoron, four triangular prisms have been added. However, two tetrahedron 
ends were removed from the tetrahedral prism => N3 = 7 – 2 + 4 = 9. Inside the 
pentachoron, six more faces of the four triangular prisms have been added. All 
of them form a part of the two triangular prisms. Due to the four edges of the 
                                                 
51  Attribution must be given to Robert Webb's Stella software as the creator of this im-

age along with a link to the website: http://www.software3d.com/Stella.php. 
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prism inside the pentachoron, the number of edges has increased by four. The 
number of points remains the same. Now we get the value for Euler’s character-
istic χ(E) = 13 – 28 + 24 - 9 = 0. This result is expected, as the four-dimensional 
genus g3 does not display any changes. 

 
Example 3. A Pentachoron with genus g2 = 1. 
 

The same pentachoron χ(E) = 5 – 10 + 10 - 5 = 0, as in Example 2, is used. If 
two triangular faces which are connected by an edge to one corner of a tetrahe-
dron are added on two opposite tetrahedrons of the pentachoron, we shall get 
the following values: 2*3 = 6 more points, 2*(3+1) = 8 more edges and 2*1 = 2 
more faces. The value of Euler’s characteristics is χ(E) = 11 – 18 + 12 - 5 = 0. 

 

 

Figure 150 A Pentachoron with genus g2 = 1 

If we connect the points of the two triangles through the pentachoron, we 
can see that there is a triangular prism (Figure 151) inside the pentachoron. If 
we remove this prism, the pentachoron will be penetrated by the triangular 
prism and we shall get a 4-polytope with a three-dimensional pseudohole and 
genus g2 = 1. To verify this result, we may count the number of elements. The 
number of three-dimensional cells remains the same. Inside the pentachoron 
three faces of the triangular prism have been added while two triangle ends of 
the prism have been removed => N2 = 12 – 2 + 3 = 13. Three more edges of the 
triangular prism have also been added. The number of points remains the same. 
Now we shall get the value for Euler’s characteristic χ(E) = 11 – (18 + 3) + (12 - 2 
+ 3) – 5 = 11 – 21 + 13 – 5 = -2 = -2g2. 
 

 

    

Figure 151 A three-dimensional pseudohole in tetrahedron 
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Thus, if a 4-dimensional polytope has a 3-dimensional genus of value 1, 
then => χ(E) = -2. Finally, to understand Example 3, we may consider a simple 
case demonstrated by a cube and a 2-dimensional genus. 

 
Example 4. A Cube with genus g1 = 1. 
 
A cube is a three-dimensional object, and hence we can apply the original 

Euler’s polyhedral formula χ(E) = N0 – N1 + N2 = 2. We add in the formula one 
parameter, genus g1, which is the number of two-dimensional pseudoholes. 
Now we get the following formula: χ(E) = N0 – N1 + N2 = 2 – 0g1. 

  
A cube consists of 8 points, 12 edges and 6 faces. Hence V = N0 = 8, E = N1 

= 12 and F = N2 = 6  χ(E) = 8 – 12 + 6 = 2. If one-dimensional edges (a,b) and 
(c,d) are added on two opposite two-dimensional faces which are connected to 
two corners (10) by an edge, we get the following values: 2*2 = 4 more points, 
2*3 = 6 more edges and 2*1 = 2 more faces. For Euler’s characteristic we get the 
result χ(E) = 12 – 18 + 8 = 2. 

If the end points of the edges (a,b) and (c,d) are connected through the cu-
be with the opposite edge, it may be seen that the cube is penetrated by a two-
dimensional plane (Figure 152). 

 
 

  

Figure 152 A two-dimensional pseudohole in cube 

If the plane is reduced, a two-dimensional "hole", a pseudohole, in the cu-
be will be made and a polyhedron will have the genus g1 = 1. This is a hole 
which cannot be penetrated by any three-dimensional object as it has the width 
but its thickness equals to zero. The number of faces on the cube remain the 
same. Two edges (a,c) and (b,d) inside the cube have been added, and edges 
(a,b) and (c,d) have been removed from the faces of the cube. The number of 
points remains the same. The value for Euler’s characteristic is then χ(E) = 12 – 
(18 - 2 +2) + 8 = 12 – 18 + 8 = 2. 

We can see that, even though the thickness of the two-dimensional hole 
(a,c,d,b) is zero, it separates the faces, which are inside the cube, on its both 
sides. 
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 Determining holes in a k-simplex 9.3.3

As an example, we take a pentachoron, where Euler’s characteristic has the fol-
lowing form: χ(E) = N0 – N1 + N2 – N3 = 5 – 10 + 10 – 5 = 0. 

The pentachoron is surrounded by five tetrahedra. Inside two of them, we 
add a smaller tetrahedron (N3), and then we add an edge from one corner of 
these small tetrahedra to one corner of the greater tetrahedron. In this way, the 
edges of the pentachoron will stay connected. Thus the number of tetrahedra of 
the pentachoron is increased by two, the number of faces by eight, the number 
of edges by 14 and the number of vertices by eight. Figure 154 in the next Sec-
tion 9.4 illustrates how the hole is built. Figure 153 illustrates a bit simplier 3D 
hole in a pentachoron. 

The formula will now have the following form: 
χ(E) = (5 + 8) – (10 + 14) + (10 + 8) – (5 + 2) = 13 – 24 + 18 – 7 = 0 
 
 
 

 

Figure 153 A 3D-hole in a pentachoron 

More about holes and their building can be found in Section 9.4. 
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 Conclusions 9.3.4

In general, when we make an i-dimensional hole, Mi, on a k-dimensional object, 
Nk (i  k), we get the following: N0 – N1 + N2 – N3 +... ± Nk – M1 + M2 – M3 +... ± 
(Mi-1 – 2). Here in short are the results of examples 1 – 4. 

 
Result of example 1: V - E + F - e + (f-2) = 14 - 20 + 8 - 3 + (3-2) = 14 - 23 + 9 = 0. 
Result of example 2: N0 – N1 + N2 – N3 – M1 + M2 – (M3 – 2) = 13 - 24 + 18 - 7 - 4 
+ 6 - (4-2) = 13 - 28 + 24 - 9 = 0. 
Result of example 3: N0 – N1 + N2 – N3 – M1 + (M2 – 2) = 11 – 18 + 12 - 5 - 3 + (3-2)  
= 11 - 21 + 13 - 5 = -2 
Result of example 4: V - E + F - (e-2) = 12 - 18 + 8 - (2 - 2) = 12 – 18 + 8 = 2. 

 
For genus gi: i < n and gi ∉gj, when i < j. 

9.4 Odd and even Euclidean dimensions52 

In Section 9.3, it was possible to see the different values of the Euler characteris-
tic, depending on whether the dimension of the Euclidean space was odd or 
even. The Euler characteristic is null when the dimension is even but two if the 
dimension is odd. For every simply connected polyhedron p of dimension k+1, 
we have 
 

χ(E) =  =   
 

The same variability can be seen also when we observe the generalizations 
of the Euler characteristic and pseudo-holes: 

 
χ(E) = N0 – N1 + N2 – N3 + N4 - … + Nk= 2 - 2g2 - 2g4 … - 2gk, if k is even, 
χ(E) = N0 – N1 + N2 – N3 + N4 - … - Nk= - 2g2 - 2g4 … - 2gk-1, if k is odd. 
 
Why is this? Let's see what happens in the Euler characteristic if we add 

one hole into the N-simplex, when N = 2, 3 and 4. Thus we explain what hap-
pens in the formula in cases of a triangle, tetrahedron and pentachoron.  
 
Triangle: χ(E) = N0 – N1 = 3 – 3 = 0 

Tetrahedron: χ(E) = N0 – N1 + N2 = 4 – 6 + 4 = 2 
Pentachoron: χ(E) = N0 – N1 + N2 – N3 = 5 – 10 + 10 – 5 = 0 
 

                                                 
52  This topic emerged when writing Section 9.3 describing the generalization of the Euler char-

acteristic. 



221 
 
Next, on the outer edge of each of these we add the borders of the hole. On the 
two edges of the triangle, we add two points (N0), which means that the number 
of edges (N1) increases by two. On the two faces of the tetrahedron, we add tri-
angles (N2). This operation increases both the number of points and edges by six. 
In addition, both triangles are connected from one corner point to one corner of 
the corresponding face. In this way, all the edges on the tetrahedron are linked 
to each other, and the corresponding graph stays connected. The pentachoron is 
surrounded by five tetrahedra. Inside two of them, we add a smaller tetrahe-
dron (N3), and then we add an edge from one corner of these small tetrahedra to 
one corner of the greater tetrahedron. In this way, the edges of the pentachoron 
will stay connected. Thus, the number of tetrahedra of the pentachoron is in-
creased by two, the number of faces by eight, the number of edges by 14 and the 
number of vertices by eight. The formulas will now have the following form:  
 
Triangle: χ(E) = (3 + 4) – (3 + 4) = 7 - 7 = 0 

Tetrahedron: χ(E) = (4 +6) – (6 + 8) + (4 + 2) = 10 – 14 + 6 = 2 
Pentachoron: χ(E) = (5 + 8) – (10 + 14) + (10 + 8) – (5 + 2) = 13 – 24 + 18 – 7 = 0 
 

After this, we make a hole or opening in each of the above items. In the 
case of the triangle, we connect the points on the opposite sides by edges (Fig-
ure 154, center). In the tetrahedron, we connect the triangles on the opposing 
faces by the edges from the corner points of the triangles (Figure 154, right). In 
the pentachoron, we connect the four corner vertices of the two smaller tetrahe-
dra placed on opposite tetrahedral sides (Figure 154, left).  

 

 

Figure 154 Holes in dimensions 4, 2, and 3. 

Next we add the new elements to the above formulas, which present new char-
acteristics for these manifolds, and then we “open” the holes. This is done with 
the triangle by removing the two edges from the both sides. In Figure 154 (cen-
ter), these are the red edges on the left and right. The points of these edges are 
not removed. In case of the tetrahedron, we remove the two triangles in the cen-
ter of faces. The corner points and edges are not removed. Inside the tetrahe-
dron there will be three rectangular faces, which surround the hole that has the 
shape of a triangular prism. From the pentachoron, we remove “the inner 
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space”, which means that the corner points, edges, and faces of the tetrahedron 
are not removed. As with the tetrahedron and the triangle, the manifolds, bor-
ders of a hole. In this way, we have made through the pentachoron a hole, 
which has a shape of tetrahedral prism. The structure of the tetrahedral prism is 
explained in Section 9.3 referring to Figure 150. In this way, the formulas will 
have the following forms:  

 
Triangle: χ(E) = 7 – (7- 2 + 2) = 7 - 7 = 0 

Tetrahedron: χ(E) = 10 – (14 + 3) + (6 – 2 + 3) = 10 - 17 + 7 = 0 
Pentachoron: χ(E) = 13 – (24 + 4) + (18 – 8 + 14) – (7 – 2 + 4) = 13 – 28 + 24 - 9 = 0 
 
We notice, as previously, that in case of the three-dimensional tetrahedron, the 
value of the Euler-Poincare characteristic is changed from 2 to 0, but in two- and 
four-dimensional Euclidean spaces, which are even, the value remains the same. 
In the even dimensions, the Euler-Poincare formula doesn’t give a specified ge-
nus, and the value of the characteristic remains the same. In the two-
dimensional Euclidean space “a hole” in practice splits the plane into two parts 
(Figure 154, in center). But does this also happen in other even dimensions? 
Next, we consider the pentachoron to see how the formula works in four-
dimensional space. Figure 155 shows the four-dimensional hole referred to in 
the Euler-Poincare formula above. In this figure, the hole is described with the 
help of the coordinates of the multinomial formula. On the left, the red and blue 
lines show the tetrahedra, which form the openings into a hole. On the right, 
black lines connect the corner points of the red and blue tetrahedra. As a result, 
we get a tetrahedral prism, which pierces the pentachoron and hence creates a 
hole through it.  
 
 

    

Figure 155 The structure of 4D-hole in pentachoron 

We can examine the structure of the hole with the help of its coordinates. There 
are two openings to the hole, two three-dimensional tetrahedra, as shown in 
Figure 155 in blue and red colors. Below are the coordinates of the corner points 
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and the coordinates of the edges that connect these corner points through the 
pentachoron.  
 
Blue tetrahedron : C(8,2,3,3,0) = 560, C(7,2,0,2,3) = 210, C(7,2,0,3,2) = 210 and 
C(7,1,0,3,3) = 140. 
Red tetrahedron: C(8,2,3,0,3) = 560, C(7,2,2,0,3) = 210, C(7,2,3,0,2) = 210 and 
C(7,1,3,0,3) = 140.  
 
The edges that connect tetrahedra are:  
C(8,2,3,0,3) - C(8,2,3,1,2) - C(8,2,3,2,1) - C(8,2,3,3,0) in Figure 155 from red to 
blue on the 8th level 560 – 1680 – 1680 – 560; C(7,2,0,2,3) – C(7,2,1,1,3) – 
C(7,2,2,0,3) from blue to red on the 7th level 210 – 420 – 210; C(7,2,0,3,2) – 
C(7,2,1,2,2) – C(7,2,2,1,2) – C(7,2,3,0,2) from blue to red on the 7th level 210 – 630 
– 630 – 210; and C(7,1,0,3,3) – C(7,1,1,2,3) – C(7,1,2,1,3) – C(7,1,3,0,3) from blue to 
red on the 7th level 140 – 420 – 420 – 140. 
 
If, in the case of a pentachoron, we also removed the faces of the tetrahedra, 
then the Euler-Poincare formula would not work, because the result would be 
 
χ(E) = 13 – (24 + 4) + (18 – 8 + 6) – (7 – 2 + 4) = 13 – 28 + 24 - 9 = -8 
 
This means, that the opening of the four-dimensional hole is a three-
dimensional tetrahedron which is closed by four faces just the same as the 
three-dimensional opening in Figure 153 is a triangle, which is closed by three 
edges. Further, we note that the hole in the pentachoron does not split it the 
way the hole in the two-dimensional triangle does. It remains as a single piece, 
for all the vertices are connected to each other, which can be seen in Figure 155. 
The hole is a tetrahedral prism, all the coordinates of which were given above.  

 Generalized Pi 9.4.1

Surprisingly, we can also see the same alteration in case of Pi’s ratios. In two-
dimensional Euclidean space, the ratio of a circumference to its diameter in a 
circle is π. In other words, when the radius is r, the diameter H1 = 2r and the 
circumference K2 = 2πr, where index 2 is a dimension. In the same way, we can 
see that the ratio of a three-dimensional sphere, K3, to its two-dimensional cir-
cle-diameter is 4 (K3/H2 = 4πr2/πr2 = 4). In general we get the following formu-
las for Vn and Sn (Weisstein 2002, Huang & He 2008, Lasserre 2001): 
 

Vn = Cnrn = rn, where Γ is the gamma function and Γ(n) = (n-1)! (1) 

 
We can compute the n-dimensional volume Vn of the unit n-ball in n-
dimensional Euclidean space also without the gamma function (Parks 2013). 
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When n is even, volume Vn = Cnrn =  rn   (2) 

 

and the area of sphere Sn = nDnrn-1 = n  rn-1 => Sn+1 = (n+1)  rn (3) 

 

In this case, the ratio Sn+1/Vn =  (McDonald 2003). 
 
When n is odd, we can use the property Γ(1/2) =  of the gamma function and 
the formula Γ(x+1) = (x+1) Γ(x). Now we have Γ(1+ ) = ( )! =      …  =… = 

 . When we replace the gamma function with this formula, we finally 

get the volume Vn =  rn of the n-ball, (4) 
 

and the area of sphere Sn =  rn-1 => Sn+1 =  rn 

(McDonald 2003).     (5) 
 

In this case the ratio Sn+1/Vn =  

 
It is possible to evaluate the factorial function n! by using the Stirling approxi-
mation (Parks 2013, Marsaglia & Marsaglia 1990), which gives n! ≈ 

Next we insert the Stirling approximation to the ratio when n is even:  

Sn+1/Vn =  ≈ =  =  =  =  

. 
 
Stirling approximation, when n is odd, is as follows:  
 

Sn+1/Vn =     

 
Generalized Pi converges towards , when even n →  and towards 

 , when odd n → . In Table 7, the values are given with two deci-

mals. The Stirling approximations are compared with Sn+1/Vn. The schema of 
even numbers is used also in case of odd numbers, and the result is written in 
cursive within brackets. The decimal number, Sn+1/Vn, is a rational number in all 
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even dimensions n, and it is an irrational number in all odd dimensions n. The 
irrational number in odd dimensions is kπ, where k is a rational number. In the 
fourth column, there is the coefficient Cn of volume Vn and, in the fifth column, 
there is the coefficient Dn of the area Sn. The values of Cn and Dn are irrational 
when n > 1, while Cn grows until n= 5 and then gets smaller. The value of Dn 
grows until n = 7, and after that it gets smaller. It is remarkable, and interesting 
as well, that the volume of the unit n-ball approaches 0 as n →  (Parks 2013). 
This is obvious when we observe the formula of Vn (1), where the numerator is 
the power function of π and the denominator is a factorial function that grows 
faster than the nominator. In the table, also Sn+1/Vn = Dn+1/Cn. 

Table 7 The growth of generalized Pi 

n  Sn+1/Vn  Cn Dn  

0 0 2  1  
1 2.50 3.14 (π)  2 2 
2 3.5 4  3.14 (π) 6.28 
3 (4.34) 4.71 5.21 4.19 12.57 
4 5.01 5.33  4.93 19.74 
5 (5.60) 5.89 6.22 5.26 26.32 
6 6.14 6.40  5.16 31.01 
7 (6.63) 6.87 7.14 4.72 33.07 
8 7.09 7.31  4.06 32.47 
9 (7.52) 7.73 7.96 3.39 29.69 
10 7.93 8.13  2.55 25.50 
11 (8.31) 8.50 8.71 1.88 20.73 
12 8.68 8.87  1.34 16.02 
13 (9.04) 9.21 9.39 0.91 11.84 
14 9.38 9.55  0.59 8.39 
15 (9.71) 9.87 10.04 0.38 5.72 
16 10.03 10.18  0.24 3.77 
… 
30 13.73 13.84  0.00… 0.003 
… 
75 (21.71) 21.78 21.85 0.00… 0.00… 
 

The ratio Sn+1/Vn, which includes π, is a rational number when n is even, 
and is irrational when n is odd. This is a natural result from the schemas (2) – (5) 
of the volume and surface area, where the denominator of π is 2. Because of this, 
π has the same exponent always in two dimensions. Because the dimension of 
the surface area is always one dimension higher, π disappears in every second 
dimension. Figure 156 shows the variation given in Table 7. 
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Figure 156 N-ball’s volume and surface area 

The N-ball includes several special features, one of them being the N-ball’s ratio 
with a hypercube with same diameter and in the same dimension. If a circle 
with radius r is embedded in a square so that it touches all the four sides of a 
square, it follows that this circle, which has the area of size πr2, takes 79% of the 
area of the square. In the same way, a ball in a cube fills 52% of the cube. In 
general, when the growth of n from 1 to , the ratio of N-hypercube/N-ball 
grows as follows: 
 
n = 1 2 3 4 5 6 7 … 
    100% 79% 52% 31% 16% 8% 4%  
 
We now take a brief look at the growth of the N-ball’s volume and surface area 
when N is growing. Cn of the volume grows to dimension five, and Dn of the 
surface area grows to dimension seven. From this it follows that, between di-
mensions 5 and 7, Cn gets smaller and Dn becomes larger. After observing the 
volumes of the n-sphere and the hypercube in different dimensions, we take a 
look at the volume of an n-simplex, because this polytope has been playing a 
central role in this research. The general schema for n-simplexes is Vn = 
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 (Buchholz & Smith 1996, Buchholz 1992), where a is the length of an 

edge in the simplex. For example, if n = 2, then V2 =  a2 and V2 is the area of a 

triangle. If n = 3, then V3 = a3 and V3 is the volume of a tetrahedron. If a = 1, 
we get following values for Vn: 
 
 
n =  1 2 3 4 5 6 ... 
Vn =     0.500 0.433 0.118 0.023 0.004 0.0004 
 

 Pi and Napier’s number 9.4.2

Pi and Napier’s number 
 

Sn+1/Vn =     

 
Next we approximate Pi in relation with the Napier’s number by using the Stir-
ling formula: n! ≈  . 
 
This gives n! ≈   π ≈ , where with small values of n we get 
for π the next approximations (π) and the distance ( ) Pi: 
 
n =  1 2 3 4 5 6 … 
π      3.694 3.412 3.320 3.275 3.248 3.230 

  0.552 0.270 0.178 0.133 0.106 0.088 
 
If we approximate the Napier’s number by π, it is easier by using another for-
mula, namely the one we used earlier with odd numbers:  
 

Sn+1/Vn =      e = . 

 
e  2.718281…, and this formula when n = 3, 5, and 7 gives the approximations 
e ≈ 3.009..., 2.871… and 2.827… 
 

 Summary 9.4.3

The ratio of a circumference to its diameter in a circle is Pi. The ratio of the area 
of sphere to its diameter circle (the great circle) is four. Generally the ratio of an 
N-sphere to its (N-1)-diameter grows with N, but very slowly. This ratio as N 
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increases partly resembles the logarithm function (Figure 157). Interestingly, Pi 
occurs in the ratio only if N is even. If N is odd, the ratio is a rational number. 
This may be connected with the fact that in the higher-dimensional, generalized 
Euler-Poincare formula the characteristic is 0 if N is even. 

In other words, Pi exists in the N-sphere when N = 2, 4, 6, 8, …, and the 
genus in the Euler-Poincare formula does not exist if N = 2, 4, 6, 8, … In the N-
sphere, both the volume and the surface area schemes are especially interesting 
in dimensions from 5 to 7. Between these dimensions, the volume gets smaller, 
even though the surface area grows when radius r = 1. Naturally we are dealing 
here only with Euclidean dimensions, but as a curiosity we may recall that in 
quantum physics the fifth dimension has a connection, via Kaluza-Klein’s theo-
ry, to gravitation theory (Pope 2002).  

The intermediary theory was developed in 1919 by Theodor Kaluza, and 
later, in the 1920’s, it was made more complete by Oskar Klein. The same theory 
was presented even earlier, in 1914, by Finnish Gunnar Nordström, who dis-
cussed his results with Albert Einstein, as did also Kaluza. Einstein seized 
Nordström’s theory, but was not able to apply it and hence tried to find some 
other kind of solution, but without success. However, Nordström’s ideas are 
still relevant, because the Great Unified Theory (GUT) and the Theory of Every-
thing (ToE) are not complete, and the higher dimensions play a central role in 
their possible solution. (Norton 1993, Ravndal 2004) 

9.5 Generalizations of the Fibonacci sequence 

This issue was raised in Section 8.2 when defining the n-simplex game board coordi-
nates.  

 
In defining how the pieces of the simplex model move, we were able to show 
that the Fibonacci numbers can also be found in Pascal's triangle. These can also 
be traced by the movement directions of the bishop in the hexagonal trichess 
game.  

 Planar generalizations 9.5.1

A question arises concerning the knight’s movement directions, which results in 
another number sequence. This particular sequence, which is called Fibonacci 2-
numbers, was published by Stakhov and Roz in 2005 and forms a special case 
among Fibonacci p-numbers. For example, Fibonacci 4-numbers can be pro-
duced by a ”hyper knight” on a hexagonal trichess board (Section 6.2.2), the 
hyper knight being the next new officer on the 4th defense zone. It moves on a 
hexagonal board one step, like a bishop, and then two steps, like a rook. Fibo-
nacci-2 numbers are created by the sums to the right top direction. (Stakhov & 
Rozin 2006) 
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Generalized Fibonacci numbers are the sums of the elements found on 
successive diagonals of Pascal's triangle, written in a left-justified form, begin-
ning in the left-most column and moving up (c-1) and right throughout the ar-
ray (Bicknell-Johnson & Spears 1996). 

Modern natural science requires the development of a new mathematical 
apparatus. The generalized Fibonacci numbers, or Fibonacci p-numbers, (p = 
0,1,2,3, . .), which appear in the ‘‘diagonal sums’’ of Pascal’s triangle and are 
assigned in the recurrent form, are a new mathematical discovery. The aim is to 
derive analytical formulas for the Fibonacci p-numbers. We can use the deriva-
tion of the Binet formula in order to calculate the Fibonacci 2-numbers. If p=2, 
the recurrence relation takes the following form: F2(n) = F2(n-1) + F2(n-3); Fp(0) = 
0, Fp(1) = Fp(2) = 1. For p = 4, the formula takes the following form: F4(n) = F4(n-
1) + F4(n-4); F4(0) = 0, F4(1) = F4(2) = F4(3) = F4(4) = 1. (Stakhov & Rozin 2006) 

The famous Binet formula is used to count the nth Fibonacci number, and 
the previous sequences, where p= 2 and p= 4, give the numbers 1, 2, 3, 4, 6, 9, 13, 
19, 28, 41, … and 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, … Several sequences of these kinds, 
made of generalized Fibonacci numbers from the Pascal’s triangle, can be found. 
For example, the knight’s move on a hexagonal board placed on Pascal’s trian-
gle gives also the sequence Kn(n) = Kn(n-1) + Kn(n-2) + Kn(n-4) = 1, 1, 1, 2, 4, 7, 
12, 21, 37, 65, 114, 200, … This sequence, among many others, can be found in 
several publications, formulated in slightly different ways (Sharp 2000, Krcadi-
nac 2006). For these sequences, see Figure 157. 

This division has been named High-Phi by Martin Gardner to match the 
often-used symbol for the Golden Section whose logical child it is. The associat-
ed recurrence sequence, like the Fibonacci sequence for the Golden Section, is un 
= 2un-1 – un-2 + un-3 = 0, 1, 1, 1, 2, 4, 7, 12, 21, 37, 65, 114, 200, 351, … (Sharp 2000) 

By the binomial theorem we get, for the kth upper Fibonacci sequence,  
= (-1)i+1 + . Of course, sequence  is just a sequence of Fibo-

nacci numbers. The second, upper Fibonacci sequence is  = 1, 1, 1, 2, 4, 7, 12, 
21, 37, 65, 114, … 114, … (Krcadinac 2006) 
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Figure 157 Some generalized Fibonacci sequences 

Figure 157 shows two of the mentioned sequences on Pascal’s triangle. The red 
lines stand for Fibonacci sequence and the green lines for Gardner’s High-Phi. 

 

 N-dimensional generalizations 9.5.2

After extending the game into multidimensional game boards, it seemed rea-
sonable to see what happens to the sequences there. An interesting case was the 
rook in a three-dimensional space. The related sequence was discovered in 1965 
by a German mathematician Ernst Jacobsthal, and it was named after him. 

Microcontrollers, which are small computers used by embedded systems 
in different home appliances, and other computers use conditional instructions 
to change the flow of execution of a program. In addition to branch instructions, 
some microcontrollers use skip instructions which conditionally bypass the next 
instruction. This turns out to be useful for one case out of the four possibilities 
on 2 bits, 3 cases on 3 bits, 5 cases on 4 bits, 11 on 5 bits, 21 on 6 bits, 43 on 7 bits, 
85 on 8 bits, ..., which are exactly the Jacobsthal numbers. (by Hirst, C. "Hop-
scotch--Multiple Bit Testing." May 15, 2006). (Weisstein 2015)  

We continued our research into dimensions higher than three to see what 
could be found after the Jacobsthal numbers. Our next result was the sequence 
F(n) = F(n-1) + 3F(n-2) = 1, 4, 7, 19, 40… This sequence was counted from a 4-
dimensional Pascal’s Pyramid from the same inclination as the Fibonacci num-
bers from Pascal’s triangle and Jacobsthal numbers from Pascal’s pyramid. Mar-
tin Erik Horn published that same sequence in 2007 after writing in 2003 about 
Pascal’s Pyramids (which we discussed in Chapter 8).  

The Pascal Plane, which consists of binomial coefficients, can be general-
ized into the Pascal Space by using trinomial coefficients. Then the Pascal’s Pyr-
amid can be constructed by adding up three appropriate neighboring numbers 
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and writing the result beneath them. The next step is to increase the dimension 
again by using quatronomial coefficients, which fill the four-dimensional Pascal 
Hyper-Space. Five Pascal’s Hyper-Pyramids can be found. The three-
dimensional hyper-surfaces of these four-dimensional hyper-pyramids consist 
of Pascal’s Pyramids. This procedure can be continued infinitely many times. 
The multinomial coefficients live in an n-dimensional Pascal Hyper-Space, and, 
with the help of n + 1, Pascal’s Hyper-Pyramids can be constructed. These n-
dimensional hyper-pyramids possess (n–1)-dimensional hyper-surfaces which 
look like Pascal’s Pyramids minus one dimension. (Horn 2003) 

Mathematics is an astonishing subject. It is hard to know what the basis of 
mathematics is. And yet, there are mathematical constructions, which are fasci-
natingly beautiful and deeply impressive. They seem to reflect something of the 
hidden truth. This also applies to Fibonacci numbers of higher orders. They can 
be constructed by adding appropriate numbers of Fibonacci hyper-pyramids 
corresponding to the appropriate multinomial coefficients. For example, in 
four-dimensional Pascal space there is  

 
 = 1, 4, 7, 19, 40, 97, 217, etc. (Horn 2007)  

 
Our next step, in future research, is to combine the two previous generaliza-
tions. This means changing, also in the n-dimensional simplexes, the directions 
where the sequences are counted. 

 Fibonacci polynomials and some of their extensions 9.5.3

The Fibonacci polynomials are a polynomial sequence which can be considered 
as a generalization of the Fibonacci numbers. The first Fibonacci polynomials 
are: 
 
F0(x) = 0 
F1(x) = 1 
F2(x) = x 
F3(x) = x2 + 1 
F4(x) = x3 + 2x 
F5(x) = x4 + 3x2 + 1 
F6(x) = x5 + 4x3 + 3x  
… 
In general, when x = 1: Fn =  (Benjamin & Quinn 1999). 
 
If x = 1, we get the basic Fibonacci sequence. If x = 2, we get the above-
mentioned Gardner’s High-Phi sequence (green lines in Figure 157). The num-
bers of the Jacobsthal sequence have been constructed from Pascal’s pyramid in 
the same way as the Fibonacci numbers from Pascal’s triangle. If the operation 
that Martin Horn carried out above is repeated in the four-dimensional Pascal’s 
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pyramid, we get the sequence he presented: 1, 4, 7, 19, 40, 97, … In this research, 
we continued this process to higher dimensions, and Table 8 lists these “n-
Fibonacci” numbers up to the dimension of n = 11. 

Table 8 The first eleven “n-Fibonacci” sequences 

 
These sequences have been known earlier. For example, Sburlati wrote 

about some of them in 2002 and in 2016, and J.V. Leyendekkers and A.G. Shan-
non presented a table similar to ours above. There exists very extensive litera-
ture on generalized Fibonacci sequences, with interesting applications to num-
ber theory, where such sequences are treated as a particular case of a more gen-
eral class of sequences of numbers. (Sburlati 2002)  

Various characteristics of the ordinary Fibonacci and Lucas sequences, 
many known for centuries, have been compared and associated with general-
ized sequences related to the Golden Ratio. German mathematician Johannes 
Kepler showed that the ratio of consecutive Fibonacci numbers converges to the 
Golden Ratio. This is also the case for the members of the Golden Ratio Family 
associated with generalized Fibonacci sequences. We have sought an analogue 
for the other Golden Ratio Fibonacci numbers, Fn(a). (Leyendekkers & Shannon 
2016)  

We wrote those sequences above for the following polynomials: 
F(0) = 1 
F(1) = 1 
F(2) = 1 + x 
F(3) = 1 + 2x 
F(4) = 1 + 3x + x2 
F(5) = 1 + 4x + 3x2 
F(6) = 1 + 5x +6x2 +x3 
F(7) = 1 + 6x + 10x2 + 4x3 
F(8) = 1 + 7x + 15x2 + 10x3 + x4 
F(9) = 1 + 8x +21x2 + 20 x3 + 5x4 
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In general: F(k) = xi, where k is the level in Pascal’s multi-simplex. 

There might also be some connections with the primes to be found. That 
was the reason for coloring primes in red in Table 8. For example, F(5) and F(7) 
can never be primes because F(5) = 1 + 4x + 3x2 = (3n+1)(n+1) and F(7) = = 1 + 
6x + 10x2 + 4x3 = (2n+1)(2n2+4n+1). 

 Summary 9.5.4

The next step is to combine the two above-mentioned generalizations. The sim-
plest way is to calculate the Jacobsthal numbers in a three-dimensional model. 
This sequence begins with 1, 1, 1, 5, 13, 25, 57, 111, ... We have not yet found this 
sequence in the literature, so it might be a new one. The next Jacobsthal se-
quence can be found in a four-dimensional Pascal’s pyramid, and its first num-
bers are 1, 1, 1, 10, 28, 55, 172, ... 

9.6 Other concluding remarks 

In this chapter we present two two topics, in which we have made less research. 
However, they might open totally new fields to find new results. 

 Induced cycles on Pascal’s polytopes 9.6.1

This section provides some highlights on the induced cycles of Pascal's Poly-
topes. The issue came out in connection with Section 8.2. "Induced Cycles of the 
Pascal's Polytopes" was presented by us in the 21th Workshop on Cycles and 
Colourings (2012). 

The extension of Pascal's arithmetical triangle to dimension N is called 
Pascal's Tetrahedron or Pascal's Pyramid and the extension to the fourth di-
mension is known as Pascal's pentachoron. In general, we refer to them as Pas-
cal’s polytopes. The concept of an induced or chordless cycle means an induced 
subgraph in an undirected graph G, where no two non-consecutive vertices of 
which are adjacent. Induced cycles are also called chordless cycles or graph 
holes. The problem of monitoring long induced cycles in hypercubes is known 
as the coil-in-the-box problem and the problem of monitoring the long induced 
paths in hypercubes is known as the snake-in-the-box problem. Our aim is to 
extend this research to simplex-models. In Figure 158, there are a few examples 
of induced cycles in 2-, and 3-simplex models. 
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Figure 158 Some induced cycles on Pascal’s triangle and pyramid 
 

 Notes on a domination number with some chess variations 9.6.2

Domination problems and independent sets is another field where a lot more 
research on various chess boards could be done. We clarify this with some 
background. The study of domination in graphs originated around 1850 with 
problems of placing the minimum number of queens or other chess pieces on an 
n x n chess board so as to cover/dominate every square. Nearly all of the earli-
est domination citations concern problems of placing various chess pieces on a 
board. The earliest theorems concerning dominating sets were given by Berge, 
in 1958. (Hedetniemi & Laskar 1988) 

However, at least on planar chess boards – not only on rectangular, but al-
so hexagonal and triangular boards – there are already lots of results. In a hex-
agonal tessellation of the plane, a knight attacks 12 hexagons and every free 
hexagon is attacked by at most 6 independent knights. Thus an independent set 
of knights can cover at most one-third of the plane. Several chess pieces are 
proposed. The independence numbers for almost all pieces have been consid-
ered now (Figure 159). Some small gaps are still open, however, the queens 
keeping their independence numbers secret. The queens independence num-
bers are not known. (Bode, Harborth & Harborth 2003, Bode, Harborth & Kul-
tan 2006, Bode & Harborth 2002)  
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Figure 159 Domination on hexagonal and triangular boards 

Previous research has mostly been made on planar chess boards and traditional 
chess pieces. It seems to be possible to generalize these to problems on different 
chess boards with different pieces. 
 



 

10 SUMMARY 

In this research a mathematical, symmetric n-player game model, based on chess, was 
discussed in Chapter 8. Before the creation of the model, several basic issues, 
such as the game theory (Chapter 2) and tiling (Chapter 3) had to be explored. 
Due to the earlier results mentioned in Chapter 6 and Chapter 7, the evolution 
of board games and chess (Chapters 4 and Chapter 5) is also included. During 
this research a number of spin-off results and observations were discovered. 
Some of them may be found in Chapter 9 and are meant to be used in further 
research. These topics include a generalization of the Euler-Poincare characteristic, 
concerning the genus (number of holes) in different Euclidean dimensions (9.3), 
the differences between the even and odd Euclidean dimensions (9.4) and generaliza-
tions of Fibonacci sequences (9.5). In addition to these topics, notes on various 
themes are included. For example, the number of a graph, started by Frank Ha-
rary (9.1), is not a new idea, however, to our knowledge, it has not been pre-
sented in detail so far. Strategy networks for small games (9.2) with its leaning to-
wards cognitive science were primarily introduced to explore decision-making 
processes of different people. Its extension to traditional chess is hardly possible. 
The topics of the last two sub-sections, induced cycles (9.6.1) and domination 
(9.6.2), serve as a basis for expanding this research to new areas. In addition, the 
main chapters offer some new observations. The chapter aimed at the early his-
tory of gaming offers two different hypotheses related to the birth of the Hawai-
ian game konane (4.1.5.1). Was the game created locally or imported?  Either an-
swer is interesting. If the game was imported, then the genesis of such games 
dates back thousands of years. If the game was invented locally, it is telling us 
about our way of thinking and about the creation of the same type of game 
structures in different parts of the world. The second comment in the same 
chapter is related to the famous Cretan Phaistos disc (4.3.2). This study supports 
the theory that this was a game. The theory is based on an ancient Iranian game, 
which seems to be the missing link between two other ancient games in Egypt 
and Mesopotamia. A minor observation concerns an extension of Pascal's rule 
(8.3), which is so simple that it is difficult to believe it is a new rule. Neverthe-
less, it has not been found in the literature. 
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YHTEENVETO (FINNISH SUMMARY) 

Tutkimuksessa on rakennettu matemaattinen, shakkiin pohjautuva n-pelaajan sym-
metrinen pelimalli. Mallia käsitellään 8. luvussa. Symmetrisyydellä tarkoitetaan 
tässä pelaajien asemaa toisiinsa nähden. Siirtojärjestys luonnollisesti rikkoo 
symmetrisyyden, mutta siihenkin on löydettävissä ratkaisu. Motiivi pelimallin 
rakentamiseen lähti siitä, että monen pelaajan pelien kohdalla on muuttuvia 
tekijöitä niin paljon, että niiden kohdalla optimaalisten strategioiden löytämi-
nen matemaattisesti on liki mahdotonta. Paras tapa löytää parhaat toimintata-
vat on simulointi. Tämän vuoksi oli mielekästä kehittää malli, jota voi hyödyn-
tää peliteoreettisissa asetelmissa simuloimalla. Kun malli on kerran rakennettu, 
niin sitä voidaan soveltaa monella tavalla malliin pohjautuvien laskennallisten 
algoritmien avulla. Shakki on tässä vain perusrakenne, joka antaa selkeän poh-
jan. Eri pelaajien painotusarvoa voidaan muuttaa samoin kuin pelaajien nappu-
loiden painotusarvoja, jolloin mallilla voi peilata erilaisia tosielämän tilanteita. 
Peli, ja erityisesti shakki, antaa mielikuvan lautapelistä, mutta pelien kohdalla 
on kyse useiden eri toimijoiden keskinäisestä vuorovaikutuksesta. Peli, voi olla 
osa politiikan pelikenttää, metsän ekologiaa tai sään ennustamista. 

Ennen mallin luomista oli kuitenkin selvitettävä sen taustalla olevia teki-
jöitä, joista peliteorian (luku 2) läpikäynti oli luonnollista. Tilan jakamista osiin 
(luku 3) eri tavoin oli tarpeen käsitellä pelimallin rakenteen vuoksi. Lautapelien 
ja shakin evoluutiovaiheet (luvut 4 ja 5) toimivat pohjana tekijän omille kehi-
telmille luvuissa 6 ja 7. 

Tutkimuksen aikana syntyi lukuisia huomioita ja sivutuloksia, joista suu-
rin osa on selkeyden vuoksi siirretty 9. lukuun työn loppuun jatkotutkimusai-
heiksi. Tällaisia ovat Eulerin-Poincaren kaavan yleistys aukkojen määriä eri eukli-
disissa ulottuvuuksissa kuvaavan genus-muuttujan osalta (9.3), huomio parillis-
ten ja parittomien ulottuvuuksien eroista (9.4), Fibonaccin sarjojen yleistykset (9.5.) 

Näiden lisäksi on erilaisia huomioita. Aikanaan Frank Hararyn kanssa 
aloitettu verkkojen nimeäminen yksikäsitteisesti lukujen avulla (9.1) on ollut esillä 
muuallakin aiemmin lähinnä mainintana, mutta vastaavaa konkreettista esitys-
tä on ollut vaikea löytää. Pienten pelien strategiaverkot (9.2) on tämän tutkielman 
aikana syntynyt kehitelmä, joka on suunnattu ensisijaisesti kognitiivisen tieteen 
puolelle tavoitteena tutkia eri ihmisten päätöksentekoprosesseja. Sen laajenta-
minen perinteisen shakin tasolle tuskin on mahdollista. Kahdessa viimeisessä 
aliluvussa esitellyt aiheet, virittävät kehät (9.6.1) ja hallitsevuusluku (9.6.2), antavat 
pohjan näiden alueiden tutkimuksen viemiselle uusille alueille. 
Edellisten lisäksi on päätekstin luvuissa myös joitain uusia huomioita. Pelien 
varhaishistoriaa käsittelevässä luvussa on käsitelty havaijilaisen Konanepelin syn-
tyä (4.1.5.1). Onko peli syntynyt paikallisesti vai onko tullut asutuksen mukana? 
Kumpikin vastaus on kiehtova. Jos peli on tuotu, niin se kertoo siitä, että tällais-
ten pelien synty juontaa tuhansien vuosien päähän. Jos peli on keksitty paikalli-
sesti, niin se kertoo ajattelutapamme sisällä olevasta ominaisuudesta luoda sa-
mantyyppisiä pelirakenteita eri puolilla maailmaa. Toinen tähän lukuun liittyvä 
huomio perustuu kuuluisaan kreetalaiseen Faistoksen kiekkoon (4.3.2). Tässä tut-
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kielmassa esitetään teoria, että kyseessä on peli ja huomio pohjautuu Iranista 
löytyneeseen muinaiseen peliin, joka näyttäisi olevan yhdistävä lenkki kahden 
muun muinaisen pelin, egyptiläisen ja mesopotamialaisen, välillä. Pienempi 
havainto on Pascalin säännön laajennus (8.3), joka on niin yksinkertainen, että se 
ei voi olla uusi. Yrityksistä huolimatta sitä ei kuitenkaan löytynyt kirjallisuudes-
ta. 

Koko tutkimuksen päätavoite ja tulos oli kuitenkin luoda symmetrinen n-pelaajan 
strategiapeli, koska tiettävästi ei ole olemassa yhtään yksinkertaista matemaattista rat-
kaisua, jolla voisi mallintaa n-pelaajan strategiapelejä. 
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APPENDIX 1 – EMAILS ABOUT TRICHESS 

This is how the whole process did start with Frank Harary. 
 
1. 
From fnh@NMSU.Edu Sat May 15 22:48:54 1993 
Subject: Re: Golden Knight 
------------------------------------------ 
and another perhaps fascinating chessy problem, not a game: 
 
On a bxb board, what is the largest no. of squares that a knight can 
visit without any square occurring more than once? 
 
i.e. What is the longest path length in the Kt(b)-graph ?? 
ooooops, not length but 1 + length = no. of vertices 1L in a longest path. 
 
 b: 3 4 5 6 7 8 9 ............ 
 
1L: 8 15 25 ?? ?? 64 ?? 
 
This one question MIGHT be fully solvable. 
 
2. 
Dear Frank, 
 
Yet some comments about the Hamiltonian Knights. 
 
Here you got 35. 
 
"22 25 34 16 32 27 
 35 15 23 26 06 17 
 24 21 07 33 28 31 
 14 01 29 18 10 05 
 20 08 03 12 30 xx 
 02 13 19 09 04 11" 
 
Did you get my fax on Monday (24th)? There was drawn 
a hamiltonian path in KT6. It was made by computer. 
When I compared that solution to your one, it seems 
that you missed in sixth step, which should have gone 
where now is 34th. The best strategy seems to be such 
that it is not good to go in the centre if not necessary. 
 
Here is the "fax"-solution: 
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25 18 07 32 23 16 
08 31 24 17 06 33 
19 26 09 30 15 22 
10 01 12 21 34 05 
27 20 03 36 29 14 
02 11 28 13 04 35 
 
I also counted with same strategy an hour ago another solution: 
 
01 16 29 22 07 14 
28 21 08 15 32 23 
09 02 17 30 13 06 
18 27 20 33 24 31 
03 10 38 26 05 12 
36 19 04 11 34 25 
 
"For b=7, I can only get 47 do I'm missing 2 squares." 
 
I also got only 47. Very interesting. I try tomorrow also 
a computer solution for my homeputer b=7 is too much, (s)he 
doesn't stop counting. 
 
By the way I found again a funny small result. The number of 
edges in KTb-graphs, when b=3,4,5,6,7,8 is 8,24,48,80,120,168, 
which means that e(KTb) = e(8xe(K(b-1)) or in other words: the 
number of edges in KTb is the number of edges in complete graph 
of b-1 vertice multiplied by 8. 
 
It was also funny to see that the number of edges in KT8 is same 
like the number of vertices in that chessboard I told you in the 
morning. 
 
3. 
Subject: 48 and other stories 
 
Dear Frank, 
 
You were right in KT7 I got 48 vertice. I counted by hand 
for the silly program didn't stop counting if there were 
no Hamiltonian path! 
 
Here: 
 
01 32 13 22 03 24 47 
12 21 02 xx 48 15 04 
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31 38 33 14 23 46 25 
20 11 30 45 26 05 16 
37 34 39 08 29 42 27 
10 19 36 41 44 17 06 
35 40 09 18 07 28 43 
 
Hope it is right,  
bye, Jorma 
 
4. 
From fnh@NMSU.Edu Mon May 31 20:22:53 1993 
Subject: Re: 48 and other stories 
 
DJ, 
 I believe 48 is correct; interesting! This is a nice question for 
'mathematical recreation'. 
 
5. 
palikka:/home/tukki/tko/jaek% mail fnh@NMSU.Edu 
Subject: KT9, etc. 
 
Dear Frank, 
 
" Conjecture; On Kt-bxb-board, there is always a Kt path either on all b^2 
squares or on b^2 - 1 squares. Do you agree? " 
 
Interesting. It would also be interesting to find out the order when 
there are all the squares and when -1 squares. 
 
Now it is like this: 
4: -1 
5: all 
6: all 
7: -1 
8: all 
9: all, for 
 
The path of KT9: 
 
 01 30 17 44 03 32 19 46 05 
 56 43 02 31 18 45 04 33 20 
 29 16 57 80 75 70 59 06 47 
 42 55 74 69 58 65 76 21 34 
 15 28 79 64 81 60 71 48 07 
 54 41 68 73 62 77 66 35 22 
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 27 14 63 78 67 72 61 08 49 
 40 53 12 25 38 51 10 23 36 
 13 26 39 52 11 24 37 50 09 
 
This is very nice and easy path, you just follow the outer circle. 
 
And also KT13 has all the squares, for the chessboard with a hole 
KT13-KT9 has a path! And because of the same reason the KTKTK 
KT9 is solvable for KT9-KT5 has a path and KT5 is solvable. 
 
Now I got one common result, which I explain tomorrow,  
 
Result: All the KTb, when b 4n+1 and n = 1,2,3,... have a path 
where are all the squares and just once. 
 
6. 
From fnh@NMSU.Edu Tue Jun 1 20:19:05 1993 
Subject: Re: KT9, etc. 
 
DJ, 
 I greatly enjoyed your KT9 path! 
 
7. 
From fnh@NMSU.Edu Tue Jun 1 20:34 EET 1993 
Date: Tue, 1 Jun 93 11:30:42 MDT 
 
DJ, 
------------------------------------------------------- 
Here is some important information from Schwenk: 
Subject: RE: Knight-hamiltonian square boards 
 
For the square bxb boards, only b=2 and 4 (for even b's) fail to have a 
ham cycle. Of course all the odd boards cannot have a ham cycle since 
the graph is bipartite and the order is odd. I haven't cataloged the 
ham paths. 
 
For rectangular boards, ham cycles on an mxn board, with m <= n, exist 
unless: 
(1) m and n are both odd 
(2) m = 1 or 2 or 4 
(3) m = 3 and n = 4 or 6 or 8. 
------------------------------------------------------- 
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8. 
Thu Jun 3 00:40 EET 1993 
 
Dear Frank, 
 
Yesterday I told you that it is always possible to make 
the Knight's Tour on bxb -board, in such way that Knight 
visits exactly once in every square, if b = 4n+1, where 
n = 1, 2, 3,... 
 
A. Schwenk, told in his mail, that on bxb -board there can always be found the 
Hamiltonian path if b is even number except the cases when b = 2 or 4. 
This follows that also if b = 4n or 4n+2 the result above is 
valid. So there is left only one case: b = 4n-1, n=1,2,3,... 
(So these b = 4n + {-1,0,1,2} cover the boards b = 3,4,5,6,..) 
 
Your conjecture said that if it was not possible to get all the 
squares then there should be left more than 1 square in any case. 
Since yesterday there were three 1 square cases, namely b=3, 4 and 7. 
 
 Now I would like to change this conjecture to a theorem, which says 
that on every bxb -board there can be found a path (every square just 
once), except if b = 3 and 4 (and of course b = 2). The case b = 3 
is trivial and also the case b = 4 (which you counted to 15) is not 
difficult to prove. This can be seen clearly for example in that 
picture, I sent you by fax, where the hexagonal faced version of KT4 
was embedded in the torus. 
 
Here I give you KT7 with a path of 49 squares: 
(so it slowly grew from 47 to 48 and 49) 
 
 31 42 21 02 33 44 23 
 20 01 32 43 22 03 34 
 41 30 09 12 15 24 45 
 08 19 14 47 10 35 04 
 29 40 11 16 13 46 25 
 18 07 38 27 48 05 36 
 39 28 17 06 37 26 49 
 
And here yet the case b=11 (I've on same paper also KT15, but 
my fingers denied to type when they saw it) 
 
  1 20 39 112  3 22 41 14  5 24 43 
  38 111  2 21 40 113  4 23 42 115  6 
  19 56 87 88 77 58 89 100 79 44 25 
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 110 37 76 57 88 99 78 59 90  7 116 
  55 18 97 86 65 68 71 80 101 26 45 
  36 109 64 75 70 103 66 91 60 117  8 
  17 54 85 96 67 72 69 102 81 46 27 
 108 35 74 63 94 83 104 61 92  9 118 
  53 16 95 84 73 62 93 82 121 28 47 
  34 107 14 51 32 105 12 49 30 119 10 
  15 52 33 106 13 50 31 120 11 48 29 
 
When you make KT15 you only has to change 121 to 119 then change 
the labelling by adding 24 to each number and then change 225 
where originally was 119. Start from B2 and after one circle 
you are in KT11. 
 
Some explanations: 
 
I only explain some main ideas of the proof. If you have a 
"chessroad" bx2 and b>=2 then you need 4 different paths to 
fill all the squares. If you make a "holy" chessboard: 
(b+2)x(b+2) - bxb it consists four this kind of chessroads 
with four paths. In every corner there are squares, that 
belong to some of these paths. And as a graph the NW-corner 
looks like this: 
 
Path I:  east <--- B4 --- A2 --- C1 ---> south 
          |       | 
          |       | 
Path II: south <-- C2 --- A1 --- B3 ---> east 
          |       | 
          |       | 
Path III: east <--- A3 --- B1 --- D2 ---> south 
 
 
Path IV: south <-- D1 --- B2 --- A4 ---> east 
 
The idea of the proof is to follow these circular chessroads 
from outer circle towards the centre. In case b= 4m+1 this is 
enough, but in case b=4m-1 you start from the outer circle, go to the 
centre and then back to outer circle. In this second period you have 
to jump back to the inner circle always once. For example in KT11: 
103 and 121. 
The reason why it is necessary to follow the paths on chessroads 
like I've done can be explained in natural way. Paradoxal is only 
the fact that the to find the system how to follow the paths is 
most complicated in cases where b is even and such already proved! 



253 
 
 
Perhaps my explanation was a bit messy, but it is made too fast 
and it is pretty difficult to draw good pictures in e-mail. 
 
9. 
Date: Fri, 23 Jul 93 00:25:28 +0200 
 
Hello Frank, 
 
I hope to send you the Knight-draft on the beginning of 
next week, perhaps Tuesday. I did like your fascinating 
way to remind about it. 
 
Tomorrow more. By the way I'm now developing a new idea 
(yes, yes, I leave it now for few days), a chess without 
board! 
 
10. 
From fnh@NMSU.Edu Fri Jul 23 02:41 EET 1993 
Subject: bored-less chess 
 
dj, 

I lk fwd to hearing about this nu type of chess, to see if it extends to other 
games! Such a paper wd not be boring. 

 
11. 
Subject: Alichess and ironwheels 
 
Dear Frank, 
 
About hexagonal tri-chess. Now I know at least 3 of them, all invented 
 individually in different times and almost all on hexagonal boards: 

a) Austrian Siegmund Wellisch in 1912 on 91-hexagonal board 
(no bishops). In this game horse is moving like in my first 46-chess, 
which I found wrong and then developed 87-chess.  
b) Polish Glinski in 1949 made on same board a 2-person chess (they 
have started to play world championships from the year 1983! it is 
called simply "hexagonal chess" or Polish chess). Glinski had got exact-
ly the same movements with buttons like I have!  
c) Russian Safran made (in 50's?) a 2-person hexagonal chess on 70-
board. This game didn't come popular,  
d) Hexagonal trichess on 96-board (who?, when? where? don't know, 
only I know the reference) 
e) In German was sold in 60's some trichess on triagonal board! By my 
opinion that game isn't anymore chess. I don't know more about it, and 
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f) Australian Englishman Patton made in 1975 a hexagonal trichess on 
217 board!! He had same movements like Glinski (and me). By the way 
it is not difficult to find out where these boards have got their sights: 

 
 

If a hexagon is surrounded by 5 levels of hexagons then we have 91 board, if a 
hexagon is surrounded by 8 levels of hexagons then we have 217-board. I also 
know how to develope the 96-board. 
  But I belive that it takes for a while to find out how I got to 87-board. 
  And this is what makes by my opinion my chess different. It is the only 
  hexagonal chess which is created on same basis like traditional 64-chess. 
  I didn't try to invent a strange game; it came out in natural way! 
 
12. 
Date: Thu, 5 Aug 93 16:05:36 +0200 
 
Dear Frank, 
 
I didn't yet send the chess-draft, but I send it soon. 
Then I send the Slovak-abstract. 
And after these two I send trichess to M.G., in spite 
of the fact that I would like to do it at first. This 
is what they call self-discipline. 
I've played now one 2 hours game with two amateur players 
trichess. In two weeks also with the chessmaster. By my 
opinion it seems, that the difference between t.ch. and 
ordinary chess is something like between Canadian and 
European icehockey. In trichess the situations change 
very fast. 
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APPENDIX 2 - THE RULES OF THE ASYMMETRIC FOUR-
HANDED CHESS 

Chess pieces. At the beginning of the game, each player has nine either black, 
white, red or yellow pieces. Each has one king, one queen, one rook, one knight, 
one bishop, and four pawns.  
  
Aim. The game's aim, opening procedure, and rules for moves are the same as 
in normal chess, except for the modifications described later. 
 
A. The player who makes the first checkmate, to one of the opponents, will be 
the winner ("first checkmate to win").  
B. The player whose king has been checkmated, will be out from the game, and 
the last player left on the board is the winner ("the last checkmate wins"). The 
player whose king is threatened and has no way to escape, can also resign and 
finish the game. 
  
If method B is used in tournaments, then the game can be re-activated by giving 
two points to the winner, namely the last one to effect a checkmate, and one 
point to the players who made the first checkmates before it. If both of these are 
checkmates made by the same player, then that player gets four points. If one of 
the players resigns, then the winner gets all three points. Hence the game can 
end with the points distributed as: (4, 0, 0, 0), (3, 1, 0, 0), (2, 1, 1, 0) or (1, 1, 1, 1) 
among the players. The last one is the case, when all four players end up with a 
draw. 
 
The Moves. Each piece can move from the point of departure, within the 
framework of the predetermined rules. A piece cannot move to a position that 
is in the area of another piece on its own side nor to a place that belongs to the 
area of one of the opponent's pieces. If the area of the moved piece intersects the 
area of one of the opponent's pieces, the latter is 'taken' and removed from the 
area of the game. Only the knight and the bishop may move over the areas of 
other pieces. The area of a piece may not intersect the boundary of the area of 
the game. 
Because there are three opponents instead of one, the pawn can move to differ-
ent directions against other opponents and capture in three directions. The 
pawn is coronated at the two opposite sides of the board. 
 
Defeat. This rule is relevant only if the game has been agreed to be played with 
method B, as discussed earlier in this section. The players whose kings have 
been checkmated, have lost the game. Similarly, in case of resignation, the re-
signed player has lost the game. The player who has lost first is eliminated from 
the game, and that player’s pieces will remain “powerless” on the board. "Power-
less" means that they are not threatening any other piece but that they, includ-
ing the king, can be captured from the board. So the game can end in two dif-
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ferent ways, but the players must agree about this before they start the game. 
This rule is necessary to avoid a situation where the strategic positions would 
change on the board.  
 
Victory. The last player left on board wins the game. 
 
Draw between two players. If only two players are left, then the game between 
these players ends to a draw just like in traditional chess. 
 
Draw between three or four players. The game can end in a draw also between 
all four players if the king of the player who has to do the next move, is not in 
check but this player cannot make any acceptable move. The game can end in a 
draw (stalemate) also between three players if one player is already in check-
mate. 

 
Bridge chess. The game can be played the way Trichess is played: all the play-
ers against each other. The game works well as a social game. Another way is to 
play it in two-person teams, either adjacent or opposing players on the same 
side. In this case, communication is prohibited during the game. This kind of 
game can be referred to as bridge chess after bridge, a well-known card game. 
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