
251
J Y V Ä S K Y L Ä  S T U D I E S  I N  C O M P U T I N G

Anomaly-Based Online Intrusion  
Detection System as a Sensor for  

Cyber Security Situational  
Awareness System

Tero Kokkonen



JYVÄSKYLÄ STUDIES IN COMPUTING 251

Tero Kokkonen

Anomaly-Based Online Intrusion  
Detection System as a Sensor for  

Cyber Security Situational  
Awareness System

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen Lea Pulkkisen salissa

joulukuun 15. päivänä 2016 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in building Agora, Lea Pulkkinen hall, on December 15, 2016 at 12 o’clock noon.

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2016



Anomaly-Based Online Intrusion  
Detection System as a Sensor for  

Cyber Security Situational  
Awareness System



JYVÄSKYLÄ STUDIES IN COMPUTING 251

Tero Kokkonen

Anomaly-Based Online Intrusion  
Detection System as a Sensor for  

Cyber Security Situational  
Awareness System

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2016



Editors
Timo Männikkö
Department of Mathematical Information Technology, University of Jyväskylä
Pekka Olsbo, Ville Korkiakangas
Publishing Unit, University Library of Jyväskylä

URN:ISBN:978-951-39-6832-8
ISBN 978-951-39-6832-8 (PDF)

ISBN 978-951-39-6831-1 (nid.)
ISSN 1456-5390

Copyright © 2016, by University of Jyväskylä

Jyväskylä University Printing House, Jyväskylä 2016



ABSTRACT

Kokkonen, Tero
Anomaly-Based Online Intrusion Detection System as a Sensor for Cyber Security
Situational Awareness System
Jyväskylä: University of Jyväskylä, 2016, 82 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 1456-5390; 251)
ISBN 978-951-39-6831-1 (nid.)
ISBN 978-951-39-6832-8 (PDF)
Finnish summary
Diss.

Almost all the organisations and even individuals rely on complex structures of
data networks and networked computer systems. That complex data ensemble,
the cyber domain, provides great opportunities, but at the same time it offers
many possible attack vectors that can be abused for cyber vandalism, cyber crime,
cyber espionage or cyber terrorism. Those threats produce requirements for cy-
ber security situational awareness and intrusion detection capability. This dis-
sertation concentrates on research and development of anomaly-based network
intrusion detection system as a sensor for a situational awareness system. In this
dissertation, several models of intrusion detection systems are developed using
clustering-based data-mining algorithms for creating a model of normal user be-
haviour and finding similarities and dissimilarities compared to that model. That
information can be used as a sensor feed in a situational awareness system in cy-
ber security. A model of cyber security situational awareness system with multi-
sensor fusion capability is presented in this thesis. Also a model for exchanging
the information of cyber security situational awareness is generated. The con-
structed intrusion detection system schemes are tested with different scenarios
even in online mode with real user data.

Keywords: Anomaly Detection, Clustering, Cyber Security, Early Warning, Infor-
mation Sharing, Intrusion Detection System, Network Security, Situa-
tional Awareness
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1 INTRODUCTION

Research motivation, and the research question and approach are explained in
this chapter. The overall structure of the dissertation is covered, as well as the
included articles and contribution of the author in the included articles.

1.1 Research motivation

Almost all the software systems are connected to data networks. According to
the Finland’s Cyber Security Strategy (2013), that versatile environment for data
processing is called the cyber domain. Societies and organisations rely on that
cyber domain which offers great possibilities but also poses serious threats.

Cyber threats pose risks for all the levels of modern societies from indi-
viduals to big corporations or even countries. United Kingdom National Crime
Agency (2016) determines cyber crime as a serious and growing threat for busi-
nesses. Situational awareness is required for achieving understanding of the sit-
uation of one’s own assets and for making decisions related to a business or mis-
sion. One extremely important input for Situational Awareness (SA) in cyber
security is sensor information originating from the Intrusion Detection System
(IDS).

IDS consist of a network located or host located sensors which are analysing
data and reporting detected intrusions (Gollmann, 2011). Intrusion detection of
network traffic can be divided into two basic solutions: anomaly detection and
misuse detection, also known as anomaly based detection and signature based
detection. With signature based misuse detection, intrusions are detected by com-
paring samples with known predefined signatures or attack patterns. Misuse de-
tection is accurate and effective for detecting known attacks, but it cannot detect
state-of-the-art attacks with novel, unknown signatures or attack patterns. Also
mistakes in the signature definition will prejudice the intrusion detection. With
anomaly detection, the normal behaviour profile is established. The differences
from that norm with the threshold are indicated as anomalies and detected as in-
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trusions. The advantage of anomaly detection approach is its capability to detect
novel zero-day attacks with unknown attack patterns (Jabez and Muthukumar,
2015; Gollmann, 2011; Kaushik and Deshmukh, 2011; Ghorbani et al., 2010; Ku-
mar et al., 2010; Hernández-Pereira et al., 2009; Kruegel et al., 2005; Asaka et al.,
2003; Kruegel et al., 2003; Mukkamala and Sung, 2003).

Online processing of network data for intrusion detection is required as
a sensor information for situational awareness in cyber domain. A systematic
literature review by Franke and Brynielsson (2014) substantiates the fact that
there are several high level national strategies that indicate the importance of
situational awareness in cyber security. For example, requirement for real-time
situational awareness is expressed in Finland’s Cyber Security Strategy (2013),
and early warning information is described in Cybersecurity Strategy of the Eu-
ropean Union (2013). US International Strategy For Cyberspace (2011) details
shared situational awareness between government organisations and companies,
and also states co-operation between countries in global situational awareness
and incident response capability. The cyber domain is extremely complicated
and includes the complex structures of networks and dynamic interactions of
networked computer systems added with growing amount of data which is po-
tentially encrypted. Anomaly-detection-based online analysis of network traffic
gives effective sensor information feed for cyber security situational awareness. It
might even give an early warning indication of an occurring zero-day attack. For
achieving such capability, the research questions are formulated in the following
chapter.

1.2 Research questions

The research objective of this dissertation is to research and develop anomaly-
detection-based online intrusion detection system that can be used as a sensor
for situational awareness system in cyber security. The dissertation includes sev-
eral case studies of situational awareness and anomaly-detection-based intrusion
detection solutions. Those case studies combine to answer the following main
research question of the study:

– How to develop an anomaly-detection-based online IDS that can be used as
a sensor for a cyber security SA system? The main research question can be
divided into the following sub-questions:

– How to generate realistic user traffic for research and development of
anomaly-detection-based intrusion detection system?

– How to detect intrusions from HTTP requests by using anomaly de-
tection?

– How to detect intrusions from encrypted network traffic by using anomaly
detection?

– How to detect intrusions from encrypted online traffic with near-real-
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time capability?
– What are the architecture requirements for a cyber security situational

awareness system?
– How to exchange information between different organisations on sit-

uational awareness in cyber security?

1.3 Research approach

Constructive research approach is used in this dissertation to answer the research
question of the study. When using the constructive research approach, innovative
constructions or artefacts, e.g. processes, practices or tools, are created as solu-
tions for domain-specific real world problems. (Kasanen et al., 1993; Crnkovic,
2010; Piirainen and Gonzalez, 2013; Lehtiranta et al., 2015)

Both, theoretical and practical component should be considered for con-
structive research. The problem and the solution should be tied with the theo-
retical comprehension. The four elements that should be included for problem-
solving constructs of constructive research are practical relevance, practical func-
tioning, theory connection and theoretical contribution. (Kasanen et al., 1993;
Lehtiranta et al., 2015)

The problem of using the online network anomaly-detection-based intru-
sion detection system as a sensor for cyber security situational awareness system
with real encrypted network data is studied. The proposed solution is the cyber
security situational awareness system utilising an anomaly-detection-based net-
work intrusion detection system as the online sensor. Differently constructed the-
oretical methods are always tested in practice by using generated network traf-
fic in a realistic test environment or with real user-traffic and real environment.
The model for sharing the cyber security situational awareness information is
also tested using realistic scenario, and architecture for cyber security situational
awareness system is evaluated by an example use case. The above-mentioned
four elements of constructive problem-solving are applied in every included ar-
ticle of the thesis. All the included articles describe practical relevance in their
introduction part; practical functioning is considered when testing the construc-
tions with realistic simulations or with real environment; and theory connection
and theoretical contribution are described as a theoretical part of the included
articles and also when analysing the test results. The overall structure of the dis-
sertation includes both practical and theoretical considerations of the research
question.
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1.4 Structure of the work

The dissertation is structured as follows. The theoretical background of situa-
tional awareness in cyber security as well as theoretical background of anomaly-
detection-based intrusion detection and realistic Internet network data genera-
tion for testing the intrusion detection systems is introduced. Results achieved
on the included research articles and theoretical background of those articles are
represented and summarised. Also unpublished results of online analysis are
represented. Discussion about research directions for future work is included
and conclusion summarises the dissertation.

Theoretical background for intrusions and intrusion detection systems is ex-
plained in the chapter 2. Because realistic data is extremely important for testing
the intrusion detection systems, implementation of realistic Internet data gener-
ation application is also summarised. When constructing and testing the model
for intrusion detection system and situational awareness system, there is require-
ment for realistic test environment with realistic network data generation, be-
cause when testing IDSs there should be real attacks jeopardizing the target sys-
tem. That causes the fact that real production environments should not be used
for research and testing of the intrusion detection system, thus there shall be re-
alistic environments that can be jeopardized.

Information about anomaly-detection-based intrusion detection approach
is presented in chapter 3. It covers implementation of anomaly-detection-based
intrusion detection system using several anomaly detection and data mining al-
gorithms with generated network traffic and real attacks. Analysis of HTTP re-
quests and analysis of network flows with generated traffic are explained and
summarised. Especially analysis of encrypted network traffic is also covered.

Near-real-time anomaly detection, where both the training phase and de-
tection phase are done online with real network data, is covered in chapter 4.
Analysis of encrypted network data is also included with the capability of imple-
mented near-real-time intrusion detection system.

Chapter 5 presents how to utilise the sensor information explained in the
previous chapters for the situational awareness system, and the importance of
situational awareness in decision making and the special features with complex-
ity of situational awareness in the cyber domain compared to the kinetic world.
One specific and severe requirement, exchange of the situational awareness in-
formation is also covered. There is also presented discussion about proposed
architecture for cyber security situational awareness system.

Finally results of the dissertation and future work as guidelines for future
research activities are concluded in chapter 6.
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1.5 Research contribution

The contribution of the author to the included articles consists of the design, im-
plementation and practical demonstrations of the studies with co-authors, and
construction of the architecture for the situational awareness system in cyber se-
curity. Figure 1 illustrates the total scheme of the study with the included articles.
The articles form an ensemble for dissertation. Article PII describes an Internet
data generation application that is utilized for simulation-based test scenarios in
many of the other articles. Articles PI, PIII, PIV, PVI, PVIII and PIX focus on
anomaly-detection-based network IDS with different algorithms implemented
and then proceed towards near-real-time online analysis. Articles PV and PVII
describe special features of the cyber security situational awareness system.

FIGURE 1 Relationship of included articles.

Article PI presents network intrusion detection utilizing the analysis of HTTP
requests. A theoretical model is presented. In the experimental part, there is a
demonstration where the construction is tested with the real attacks. First there is
a training set of HTTP requests with legitimate traffic. Several different anomaly
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detection algorithms have been used for solving the behaviour model of normal
legitimate users, which is used for labelling deviations from that normal mode as
attacks. This early face of implementation uses HTTP log data for analysis. The
author’s contribution in the article consist of organising the experimental part of
the research and taking part in the writing of the theoretical background.

Article PII describes the analysis of Internet data generation for cyber secu-
rity research and exercise purposes. The paper discusses different approaches for
Internet data generation. The requirements for data generation are determined
and also existing solutions are analysed. Because no suitable existing solution
were found, an Internet data generation software is implemented and the per-
formance of implemented solution is studied. The author’s contribution in the
article consist of the planning and implementation of the study, taking part of
writing the theoretical parts and organising the evaluation of the solution.

Article PIII proposes an anomaly-detection-based algorithm for detecting
the Denial of Service (DoS) or Distributed Denial of Service (DDoS) attacks utiliz-
ing encrypted Secure Sockets Layer / Transport Layer Security (SSL/TLS) proto-
cols. When using such protocols, the data is encrypted in the application-layer,
and it is unthinkable to analyse activity based on the payload of the packets.
Our model focuses on statistics extracted from the packet headers and by using
anomaly-detection algorithms: normal user behaviour is analysed and deviations
from that norm are detected as attacks. Model is tested with simulation with the
realistic data generated. The author’s contribution in the article concerns organ-
ising the experimental part of the research and taking part to the data analysis.

Article PIV describes the anomaly-detection-based analysis of network flows
with soft clustering. Line speeds of data networks have increased, and at the
same time the amount of network traffic in those lines has increased; that re-
quires heavy computational power for packet payload analysis. For this reason,
study concentrates on flow-based network traffic analysis. First the traffic is con-
sidered as a time series, and for each time interval in that time series, per-flow
information is extracted. Feature vectors of the time intervals are divided into
clusters and the distributions of the resulting clusters are analysed for finding
anomalous time intervals with anomalous network traffic. After that, traffic in
the anomalous time intervals is analysed and the flows characterized as attacks
are detected. The constructed model is tested in the simulation environment. The
author’s contribution in the article consist of organising the experimental part of
the research and taking part in the writing of the theoretical background.

Article PV proposes a model for creating topologies for exchanging infor-
mation of cyber security situational awareness between different organisations.
The article has a discussion about situational awareness in cyber security, and the
requirement for cyber security information sharing is rationalized. The proposed
model for information sharing is based on the risk level estimation of shared sen-
sitive information and the organisation attached. Dijkstra’s shortest path algo-
rithm with those risk level estimations is utilized for the proposed model for cre-
ating the information sharing topologies, and model is tested with an example
scenario. The author’s contribution in the article consist of writing the theoret-
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ical background, taking part of the implementation of the proposed model and
demonstration of the model.

Article PVI proposes a model for detecting application-layer DoS/DDoS at-
tacks in encrypted traffic. The proposed scheme is based on the analysis of con-
versations between the server and the client, and the model is suitable for en-
crypted traffic without decryption. Conversations are divided into clusters by
feature vectors, and conversations deviating from normal user behaviour are de-
tected as attacks. For more complex attacks where the attacker is capable for
mimicking normal user behaviour stacked auto-encoder is used. The constructed
model is tested with the simulation environment with realistic user traffic and
attack data. The author’s contribution in the article concerns organising the ex-
perimental part, implementing the attack scenario of the research and taking part
in the writing of the theoretical background.

Article PVII presents the architecture for the cyber security situational aware-
ness system with an example use case of threat mitigation process. The paper
describes multi-sensor data fusion in a cyber domain, the required interfaces for
situational awareness system in cyber security and the Human Machine Inter-
face (HMI) with suggestions for solving the visualisation problem. Finally, the
proposed architecture and next steps for the study are dealt with. The author
implemented the whole study by himself.

Article PVIII proposes an anomaly detection construct based on weighted
fuzzy clustering for application-layer DoS/DDoS attacks with encrypted traffic.
There are two different versions for normal user behaviour: the offline training
algorithm and the online training algorithm. The concept is also tested with a
simulation environment. The author’s contribution in the article concerns organ-
ising the experimental part, implementing the attack scenario of the research and
taking part in the writing of the theoretical background.

Journal PIX widens the analysis of the near-real-time implementation of
DoS/DDoS attack detection in high-speed encrypted networks: theoretical back-
ground and implementation are described along with algorithm evaluation in-
cluding a description of the test environment, data set and evaluated perfor-
mance metrics. The author’s contribution concerns taking part in the writing
of the theoretical parts of the journal.

In addition, the author’s contribution in the online analysis described in
section 4.2 consist of organising the live tests, analysing the test data and taking
part in testing and optimising the Python implementation of the application.



2 IMPLEMENTING THE INTRUSION DETECTION
SYSTEM

The concept of intrusion detection system and data generation for developing
and testing the intrusion detection system is discussed in this chapter.

2.1 Intrusion detection system

Already in the 1980s, a model of a real-time intrusion-detection expert system
had been introduced by Denning for identifying security violations (Paliwal and
Gupta, 2012; Botha and von Solms, 2004; Denning, 1987, 1986). The informa-
tion security covers three standard security goals, the triple of confidentiality-
integrity-availability, also known as the CIA triad (Amoli, 2015; Juvonen, 2014;
Gollmann, 2011; National Institute of Standards and Technology NIST, 2007).
Any set of activities attempting to compromise one or more element of that triad
can be considered as an intrusion, and intrusion detection tries to recognize those
violations (Juvonen, 2014; Hernández-Pereira et al., 2009). According to National
Institute of Standards and Technology NIST (2007) intrusion detection in a com-
puter system or network is the process that itemizes events by the characteristics
of possible incident, and incident is defined as violation against standard secu-
rity practices, acceptable use policies, or computer security policies, covering also
impending threat of violation. A violation to compromise a computer system or
network may be referred to an intrusion (Amoli, 2015).

One often-used classification divides intrusions or attacks into four main
categories, as in DARPA 1998 and KDD Cup 1999 intrusion detection datasets:
Probe (explore information about target network, system or service), Denial of
Service (Deny the usage of a system or service), Remote to Local (R2L, achieve
unauthorized access to the target system), User to Roor (U2R, achieve unautho-
rized access to Root/Super User privileges by using local user access) (Jabez and
Muthukumar, 2015; Gifty Jeya et al., 2012; Paliwal and Gupta, 2012; Kumar et al.,
2010; Lippmann et al., 2000; Hernández-Pereira et al., 2009).
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Saber et al. (2010) states that multiple different studies for the classification
of the intrusions or attacks can be found. Very often an attack is a chain of events
or chain of individual attacks starting for example with a reconnaissance or prob-
ing phase to get information in order to achieve access to a system or a computer
and use that access as a route to another system or computer for gaining the mis-
sion objectives. That chain of events, or possible different chains of events, can
be illustrated with Attack Trees (Gollmann, 2011). As an example, one of the top
criminal threats in Europe is ransomware (Europol, 2015). Ransomware takes
control of the system or files and demands ransom to be paid for releasing the
control back to the user, and in some cases the ransomware will encrypt the sys-
tem or files. Ransomware can be distributed e.g. in a payload of an exploit kit,
by attachment of e-mail or by botnet that have access to the vulnerable system
(F-Secure, s. a.).

Advanced Persistent Threat (APT) attacks are targeted, very sophisticated
and stealthy network attacks with a selection of attack vectors. The attacker with
ample resources and skills strives to establish a long-lasting and undetected per-
sistent threat with the Command and Control (C2) communication channel in a
system to achieve the objectives of the attack mission. A special feature of APT
is the ability to stay undetected for long periods of time, concealed within the
normal legitimate network traffic. The mission objectives may be for example to
get access to sensitive data or disturb processes. Because APT attacks require am-
ple resources and skills, their targets are so called high-value targets, for example
governmental organisations. (Li et al., 2016; Kao, 2015; Zhao et al., 2015; Tankard,
2011)

For example, network of Ministry for Foreign Affairs of Finland has been
compromised through an APT attack (Computer Emergency Readiness Team of
Finland CERT-FI, 2013).

As stated earlier in a section 1.1, intrusion detection can be divided into two
basic solutions: anomaly detection and misuse detection. Intrusion detection sys-
tems can also be divided according to the location: Network Intrusion Detection
System (NIDS) and Host Intrusion Detection System (HIDS). Network intrusion
detection systems are located in essential points of a certain network or segment
of a network, where they monitor and analyse traffic for the benefit of intrusion
detection. Host intrusion detection systems are located in a specific system or
host, where they analyse the characteristics of e.g. incoming and outgoing pack-
ets, audit trails or software calls in terms of intrusion detection (Mokarian et al.,
2013; Kaushik and Deshmukh, 2011; Gollmann, 2011; National Institute of Stan-
dards and Technology NIST, 2007; Tian et al., 2005; Zhou et al., 2003). There is
one widely recognised problem with anomaly-based IDSs, namely that of gen-
erating a large amount of false positives (Mokarian et al., 2013; Gollmann, 2011;
Kumar et al., 2011; Spathoulas and Katsikas, 2010; Tian et al., 2005). For example,
a sudden burst of high volume service calls might be a legitimate attempt to use
that service or an indication of an ongoing attack, and there is a high probability
of alert in that case.

This dissertation focuses on the anomaly-detection-based network intrusion
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detection system, which offers the near-real-time online sensor feed for situa-
tional awareness system in cyber security.

2.2 Realistic network traffic generation for testing the IDSs (PII)

In the article PII, presented and summarised here, the Internet data generation
application is implemented and evaluated for testing the IDSs. Anomaly-based
network intrusion detection system has a potential for detecting novel attacks.
However, research and development of IDS requires a lot of testing with realistic
network traffic data. The availability of such data sets is weak. Some public data
sets are available, but often these are anonymized, there is lack of realistic statisti-
cal characteristics or there are no modern attack patterns available (Shiravi et al.,
2012). Saber et al. (2012) has introduced research about scenarios of attacks when
testing IDS, and Luo and Marin (2005) states that the main challenge for simu-
lation environment in IDS testing is to have realistic Internet background traffic
generation, because there is a requirement to generate attack-free legitimate In-
ternet traffic and intentionally mix it with illegal attack traffic.

JAMK University of Applied Sciences has developed an Internet-like Cyber
Range called Realistic Global Cyber Environment (RGCE). RGCE was developed
to mimic the structures of real Internet. For example, RGCE Cyber Range contains
realistic Internet Service Providers (ISPs) and numerous different web services as
in the real Internet. RGCE is an isolated environment offering the possibility to
use public IP addresses with real GeoIP locations and generate scenarios where
attackers are scattered globally around various locations of the world. Isolation
also allows the use of malicious software, attacks or vulnerabilities, without jeop-
ardizing real networks or systems. (JAMK University of Applied Sciences, Insti-
tute of Information Technology, JYVSECTEC, s. a.)

Because RGCE is isolated from production networks and more widely iso-
lated from the Internet there is a problem of how to conduct a scenario with mixed
legitimate user traffic and attack traffic. For generating the traffic, there are two
different approaches: trace-based replaying of traffic and analytic model-based
generation of traffic (Botta et al., 2012; Hong and Wu, 2006). Realistic analytic
model-based generation is hard because of the random variables of the traffic
characteristics (Luo and Marin, 2005). Floyd and Paxson (2001) and Luo and
Marin (2005) prefer source-level simulation where traffic is simulated on applica-
tion level instead of packet level.

2.2.1 Requirements for traffic generation (PII)

As described in PII, the main objective is to generate Internet traffic data for RGCE
Cyber Range by fulfilling the following requirements:

– system shall be capable for centralized control,
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– system shall be capable for generating legitimate traffic according to a gen-
erated protocol,

– system shall be capable for generating verifiable traffic on OSI layers 3-6,
– system shall be capable for generating realistic traffic of various attacks,
– system shall be capable for generating traffic indistinguishable for a ma-

chine and human being,
– system shall be capable for generating traffic from globally scattered loca-

tions and IP addresses,
– system shall be capable for model-based traffic generation, not trace-based

replaying,
– system shall be capable for generating traffic applicable with existing servers

and services, e.g. generation of requests to a specified HTTP server shall
have variable HTTP headers and variable intervals,

– system shall be capable for autonomous traffic generation for long time pe-
riods and with an automatic error recovery capability.

To achieve the capability that fulfils the above-mentioned requirements, several
existing solutions and different approaches were analysed. The overall result was
to implement our own Internet data generation application that simulates clients.
The chosen approach requires substantial exertion for create an application that
can generate traffic from multiple clients with multiple protocols while allow-
ing generation of a specific kind of traffic, for example broken TCP traffic, from
certain clients like in the real Internet.

2.2.2 Implemented solution (PII)

A hierarchical tree-like network structure, bot-net, is implemented. Traffic-gener-
ating bots can be globally scattered within RGCE Cyber Range while generating
traffic by using various services and protocols, each capable of acting according
to a different profile. For example HTTP-protocol profiles are employed by fol-
lowing traffic generations: users browsing in the Internet, Slowloris DoS attack,
Slowpost DoS attack, repeatedly HTTP basic authentication and volumetric DoS
with continuous HTTP requests.

The implementation of the Internet traffic generation application is done
using the Go programming language for GNU/Linux platform with the HMI as
shown in Figure 2. The scalability of the implemented solution was evaluated
in three different networks: Localhost, Local Area Network (LAN) and Internet.
The Internet scenario was utilized in real Internet between a server in Nether-
lands and clients in Finland. The LAN scenario was carried out within the JAMK
University of Applied Sciences.
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FIGURE 2 HMI of Internet data generation application (PII).

A constructed system was used as a traffic generator for several articles in-
cluded to this dissertation. All except one of the anomaly-detection-based intru-
sion detection system demonstrations in this dissertation that were conducted
using simulated network data utilized the implemented Internet data generation
application. It is also worth of mentioning that the application developed is used
as a main component of Internet data generation in the National Cyber Exercise
(The Finnish Defence Forces, 2016).



3 ANOMALY-DETECTION-BASED IDS WITH
CAPTURED NETWORK DATA

This chapter presents research and development of anomaly-detection-based in-
trusion detection system. First the analysis of HTTP logs is described for the
detection of network intrusions. Mukkamala and Sung (2003) regards overhead
as one of the main problems of the IDSs. In this study, the HTTP log analysis is
done afterwards from the HTTP logs with a delay. This is considered here as the
first step towards online analysis with lower overhead. As the next step, the cap-
tured network traffic is analysed for identifying intrusions. Analysis of anoma-
lous network flows and analysis of encrypted network traffic, the latter being ex-
tremely important feature of modern network traffic and modern network-based
intrusions, are considered. Both of those analysis were done afterwards using
captured incoming and outgoing network data.

3.1 Analysing HTTP requests (PI)

Web servers offer wide variety of most common services in the Internet. Clients
request and send information to web servers with the help of HTTP requests. If
an attacker is capable of producing or manipulating these string-based queries
or parameters of these queries as applicable requests, there is a possibility to
compromise the server to get access for interacting with its resources. (Kumar
and Pateriya, 2013; Nguyen-Tuong et al., 2005). In article PI, presented and sum-
marised here, the model for analysis of HTTP requests for anomaly detection is
implemented and evaluated using realistic test environment.

3.1.1 Feature extraction (PI)

HTTP logs can include lot of information about client and client interaction with
the web server. According to The Apache Software Foundation (s. a.), a combined
format of Apache server log can be used as follows:
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LogFormat "%h %l %u %t \"%r\" %>s %b
\"%{Referer}i\" \"%{User-agent}i\"" combined
This produces the following example log (The Apache Software Foundation, s. a.),
127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700]
"GET /apache_pb.gif HTTP/1.0" 200 2326
"http://www.example.com/start.html"
"Mozilla/4.08 [en] (Win98; I ;Nav)"
indicating the requesting client’s IP address, the client’s identity (RFC 1413), user
id as determined by HTTP authentication, time stamp of the request received,
the client’s request line, the server status code to the client, returned object’s size,
referrer site that the client reports being referred from, and User-Agent header as
the identifying information by the browser.

When detecting attacks from HTTP logs, two types of statistics are analysed:
statistics based on requests and statistic based on time intervals.

3.1.1.1 Statistics based on requests (PI)

A n-gram model is used for the following parameters of lines in the HTTP log:
web resource requested, query attributes of the request and user agent. N-gram
is a sequence’s sub-sequence of n overlapping items. N-gram models are used for
analysing texts and languages for example for speech recognition (Hirsimaki et
al., 2009), handwriting recognition (Schall et al., 2016) and understanding of natu-
ral language (Suen, 1979). Non-alphanumeric symbol combinations are a subject
of interest when analysing injections of code. Thus in the model used, letters and
numbers are considered equal for focusing on the non-alphanumeric symbols
and allowing shrinking the dimensionality without losing essential information.
Feature vectors from each of the three textual parameters are assembled using
unique n-grams and the number of all possible n-grams included in the training
set determines the size of each feature vector.

– Model 1: the i-th feature vector’s j-th feature xij equals the i-th line’s j-th
n-gram’s occurrence frequency f n

ij :

xij = f n
ij . (1)

– Model 2: the i-th feature vector’s j-th feature xij equals the ratio between
i-th line’s j-th n-gram’s occurrence frequency f n

ij and the j-th n-gram in the
whole training set occurrence frequency Fn

j :

xij =
f n
ij

Fn
j

. (2)

– Model 3: the i-th feature vector’s j-th feature xij equals the ratio between
i-th line’s j-th n-gram’s occurrence frequency f n

ij and the product of symbol
frequencies contained in current n-gram for the whole training set, where
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j-th n-gram’s k-th symbol’s occurrence frequency is F1
jk:

xij =
f n
ij

∏n
k=1 F1

jk
. (3)

3.1.1.2 Statistics based on time intervals (PI)

Time period of HTTP logs under analysis is divided into overlapping time inter-
vals, and from each of those time intervals the following parameters are extracted:
IP address of the client, web resource requested with query attributes, server sta-
tus code and returned object’s size. Also the number of HTTP requests in time
interval is considered.

For measuring the uncertainty of the parameters’ distribution, the entropy
is calculated (Ozcelik and Brooks, 2016). For each time interval, a sample entropy
of every extracted parameter is produced and the entropy value matrix is used
as an extracted feature matrix. The j-th parameter of the i-th time interval has Nij

unique values occurring with frequencies p1
ij, . . . , p

Nj
ij . Sample entropy Eij for the

the j-th parameter of the i-th time interval:

Eij = −
Nij

∑
k=1

pk
ij log2 pk

ij. (4)

If all values of the j-th parameter are the same, sample entropy Eij is zero and if

p1
ij = p2

ij = . . . = p
Nij
ij , sample entropy Eij has a maximal value log2 Nij.

3.1.2 Analysis (PI)

The feature vectors of normal users’ behaviour model are constructed using HTTP
logs of legitimate user traffic generated during the training period.

3.1.2.1 Analysis of requested web resource (PI)

Principal Component Analysis (PCA) is used for reducing the dimensionality of
web resources feature vector. PCA is a widely employed transformation tech-
nique used for example for feature extraction, data compression and characteri-
sation in pattern recognition, image processing and signal processing (Karhunen
and Joutsensalo, 1995). PCA converts data to a new coordinate system. Here,
in this model, the transformation is done using the principal components cor-
responding to the covariance matrix’s non-zero eigenvalues. The transformed
vectors of the training set are analysed using Support Vector Data Description
(SVDD). SVDD constructs a hypersphere around the data belonging to one cate-
gory (Tax and Duin, 2004).

Requested web resources of the training set corresponds to the q number of
transformed feature vectors x1, x2, . . . , xq. There exists SVDD hypersphere (c, R)
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with radius R > 0 and centre c = ∑
q
i=1 αixi, where parameter α = (α1, . . . , αq) can

be defined using the optimisation:

max
α

q

∑
i=1

αi(φ(xi)
Tφ(xi))−

q

∑
i=1

q

∑
j=1

αiαjφ(xi)
Tφ(xj),

subject to

{
∑

q
i=1 αi = 1,

0 ≤ αi ≤ C, ∀i ∈ {1, . . . , q},

(5)

where C is the parameter controlling the balance of the hypersphere volume and
classification errors and function φ(x) maps x to a higher-dimensional space.
Here, in this analysis, parameter C is defined to be one and φ(x) = x. For any
vector xk from a dataset where αk < C, radius R of SVDD hypersphere (c, R) can
be defined as:

R2 = φ(xk)
Tφ(xk)− 2 ∑

i:αi<C
αiφ(xi)

Tφ(xk)+

∑
i:αi<C

∑
j:αj<C

αiαjφ(xi)
Tφ(xj).

(6)

After the hypersphere is optimised for the training set, the HTTP request’s
feature vector x under analysis is labelled anomalous if:

R2 − (φ(x)Tφ(x)− 2
q

∑
i=1

αi(φ(x)Tφ(xi))+

q

∑
i=1

q

∑
j=1

αiαjφ(xi)
Tφ(xj)) < 0.

(7)

3.1.2.2 Analysis of query attribute values (PI)

Iterative refinement technique is used for the k-means clustering algorithm for
anomaly detection of query attribute values. This technique was proposed by
Lloyd for pulse-code modulation already in 1957 and published in 1982 (Lloyd,
1982). K-means allocates instances to k clusters, where k is a predefined number.
At the beginning, a set of k instances are e.g. randomly set as centres of the
clusters. After that, every instance of data set is assigned to the nearest cluster
and new cluster centres are calculated. The process is iterated until there are no
more changes. (Syarif et al., 2012; Munz et al., 2007)

K-means is used to find the clusters of the query attributes of the training
set. Let there be vector x corresponding to the query attribute of the HTTP re-
quest. Let d(xi, xj) be the distance function for two feature vectors xi and xj and
Ci is the i-th cluster. Centre of Ci corresponds to the mean value mi of the vectors
in Ci. Radius ri is defined as follows:

ri =
|Ci|+ 1
|Ci|

·max
x∈Ci

d(mi, x). (8)
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If d(x, mi) > ri, ∀i ∈ {1, 2, . . . , k}, vector x is labelled anomalous because it does
not belong to any of the training set clusters (mi, ri), and the whole request is
considered as an attack if any attribute of an HTTP request is labelled anomalous.

3.1.2.3 Analysis of user agent values (PI)

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is used
for anomaly detection of user agent values. For creating clusters, DBSCAN re-
trieves all points which are density-reachable from arbitrary starting point (Ester
et al. (1996)). For DBSCAN, parameters ε (size of ε-neighbourhood) and Nmin (the
minimum number of cluster points) are defined before the algorithm starts with
randomly selected feature vector x. To check, whether x is in a cluster or consid-
ered as noise, is done by comparing the number of feature vectors Nε(x) in the
ε-neighbourhood of x and Nmin as follows:

{
If Nε(x) < Nmin, then x is considered as noise,
If Nε(x) ≥ Nmin, then x is in cluster.

(9)

Vectors considered as noise in this comparison might later be in the ε-environment
of another vector and a part of a cluster. If vector x is a part of a cluster, also its
ε-neighbourhood is part of that cluster. Density-reachability of all y of that ε-
neighbourhood is checked: y is density-reached from x and y is added to the
cluster if there exists a chain of points x1, x2, . . . , xm, where x1 = x and xm = y,
such that ∀i ∈ {1, 2, . . . , m − 1} the Euclidean distance dE(xi, xi+1) between xi
and xi+1 is smaller than predefined size of ε-neighbourhood dE(xi, xi+1) ≤ ε and
Nε(xi) ≥ Nmin. After that, the new vector is analysed and finally all the remaining
points without a cluster are considered as anomalies. Basic equation for calcula-
tion of Euclidean distance is presented for example in the studies by Bouhmala
(2016) and Munz et al. (2007).

In this study, the size of the ε-neighbourhood is determined as the maxi-
mal pair distance between feature vectors ε = maxxi,xj∈X dE(xi, xj) of the training
set X. By considering that ε, the minimum number of cluster points Nmin is de-
termined as a minimal value of neighbours of each training set’s feature vector
Nmin = minx∈X Nε(x).

The normal user behaviour model, according to the training set, is created
using all the feature vectors extracted from user agent values of the training set.
When analysing the user agent of a new HTTP request, DBSCAN is applied to
the new feature vector of HTTP request under analysis and all the feature vectors
from the training set. If the new feature vector is without cluster it is labelled as
anomaly.

3.1.2.4 Analysis of time intervals (PI)

Training set’s entropy vectors are standardized by z-score normalisation, also
known as zero mean normalisation, where the data normalisation is done based
on the mean and standard deviation of the data (Saranya and Manikandan, 2013).
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Mean value, µj, of j-th entropy values and standard deviation, σj, of j-th entropy
values are applied for the normalisation of entropy values Eij for the j-th param-
eter of the i-th time interval:

Ez
ij =

Eij − µj

σj
. (10)

With a new time interval, an entropy vector is extracted and normalized
using the training set’s mean value and standard deviation. Anomaly detection
is done by comparing the euclidean norm of the vectors. Normalized vector ez of
HTTP request in the new time interval is classified as an anomaly if

||ez||2 > max
i∈T
||Ez

i ||2, (11)

where T is the set of training phase time intervals.

3.1.3 Testing the model (PI)

The implemented model was tested using RGCE Cyber Range and Internet traffic
generation application described in section 2.2. In the RGCE Cyber Range, there
was a web server with known vulnerabilities installed, and during a five-day time
period there was legitimate user traffic mixed with traffic of intrusions. During
the first day, only legitimate traffic was generated for training purposes. The
next four days included legitimate user traffic mixed with illegal attack traffic,
e.g. DoS/DDoS attacks, bruteforce attacks, scanning attacks and several targeted
attacks using known vulnerabilities in the server software. The HTTP logs of the
web server were gathered and analysed using the implemented model.

For the evaluation of the performance metrics of the model, the following
characteristics of anomaly detection are defined (Mokarian et al., 2013; Fawcett,
2006):

– True Positives, TP - the number of anomaly instances correctly classified as
anomaly,

– True Negatives, TN - the number of normal instances correctly classified as
normal,

– False Positives, FP - the number of normal instances incorrectly classified as
anomaly,

– False Negatives, FN - the number of anomaly instances incorrectly classified
as normal,

– True Positive Rate (also called Recall), TPR =
TP

TP + FN
- the ratio between

TP and the total number of anomaly instances,

– False Positive Rate, FPR =
FP

TN + FP
- the ratio between FP and the total

number of normal instances,

– Detection Accuracy =
TN + TP

TN + FP + TP + FN
- the ratio between correctly clas-

sified instances and the total number of instances,
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– Receiver Operating Characteristic curve, ROC curve - curve that is plotting the
TPR against the FPR.

For the anomaly detection of the requested web resource, SVDD is performed
as described in section 3.1.2.1. Feature vectors are extracted applying models in-
troduced in equation 1, equation 2 and equation 3, with n-gram modes 1-gram,
2-gram, and 3-gram (Figure 3). With carefully chosen best parameters, the intro-
duced model detects intrusion performance metrics of TPR (97.96%), FPR (0.52%)
and Detection Accuracy (99.20%).
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FIGURE 3 ROC curves of anomalous web resources by SVDD (PI).

For the anomaly detection of the query attribute values, the k-means is per-
formed as described in section 3.1.2.2. Feature vectors are extracted by applying
the models introduced in equation 1, equation 2 and equation 3, with n-gram
modes 1-gram, 2-gram, and 3-gram (Figure 4). The introduced model is capable
for detecting all intrusions with 1-gram and models described with equation 2
and equation 3.
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FIGURE 4 ROC curves of anomalous query attributes by k-means (PI).

For the anomaly detection of the user agent values, DBSCAN is performed
as described in section 3.1.2.3. Feature vectors are extracted by applying the mod-
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els introduced in equation 1, equation 2 and equation 3, with n-gram modes 1-
gram, 2-gram, and 3-gram (Figure 5). Using the introduced IDS model, anoma-
lous user agent values are detected with the Detection Accuracy of 97.5% when
using 1-gram with equation 2.
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FIGURE 5 ROC curves of anomalous user agents by DBSCAN (PI).

Also time series consideration is applied as described in section 3.1.2.4. Fig-
ure 6 shows the normalized entropy values during the first and the fourth day.
During the fourth day, there are intrusions mixed with legitimate traffic (Table 1).
If the size of the time window is big enough, all intrusions are detected (Table 2).
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FIGURE 6 Normalized entropy values with 60-second time window and 10-second
time steps (PI).

The introduced model for the analysis of HTTP requests’ log data, demon-
strates that there are potential for research and development of online IDS. It was
also shown that RGCE Cyber Range and Internet data generation application are
suitable for IDS research and development. The next step for the implementation
of IDS is focusing on network flows instead of server log level or network packet
level considerations.
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TABLE 1 Day four, scans and bruteforce attacks (PI).

Attack Time
Password bruteforce by Hydra 08:57 - 09:11
Password bruteforce by Hydra 09:28 - 09:41
Database takeover by Sqlmap 09:58 - 12:21
Active scan by Owasp 12:07 - 12:21
Forced browse by Owasp (dirbuster) 13.06 - 13:14

TABLE 2 Detection Accuracy of the time interval analysis applying the entropy-based
method (PI).

Time window Time step Attacks
detected

Detection Accuracy
in the time step

10 minutes 1 minute 5 of 5 98.35 %
10 minutes 10 seconds 5 of 5 98.76 %
10 minutes 1 second 5 of 5 98.29 %
1 minute 10 seconds 5 of 5 99.24 %
1 minute 1 second 5 of 5 98.70 %

3.2 Analysing network flows (PIV)

In article PIV, presented and summarised here, the model for flow-based anal-
ysis of internet traffic for anomaly detection is implemented and evaluated us-
ing realistic test environment. There are lot of research interests for flow-based
anomaly detection. Elrawy et al. (2016) introduces a flow-based IDS for mobile
traffic, whereas AlEroud and Karabatis (2016) proposes an approach for flow-
based intrusion detection. Dong et al. (2016) introduces flow-based detection
of DDoS against Software-Defined Networking (SDN) controllers. Saboor and
Aslam (2015) analyses and evaluates flow-based DDoS detection systems and
Sheikhan and Jadidi (2014) presents flow-based anomaly detection in high-speed
networks.

3.2.1 Feature extraction (PIV)

In the proposed method, network traffic is recognized as a time series and anal-
ysed period of time [Ts, Te] is allocated to overlapping time intervals with length
of ∆T with points Ts +

t
w ∆T, where t = {w, w + 1, . . . , w Te−Ts

∆T − 1}. The intru-
sion detection is applied based on the analysis of network flows. Flow, as defined
in RFC3917 (The Internet Society Network Working Group, 2004), is in a speci-
fied time interval, a group of IP packets with some common properties passing
a monitoring point. Here those common properties are assumed to be source
and destination IP addresses and ports, and time interval is the above-defined
time interval with length ∆T. To simplify and compile network data to be anal-
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ysed, packets with the same source and destination IP addresses and ports are
measured as a flow. At each time interval with length ∆T, following per-flow
information is extracted:

1. Source IP address (Isrc,t
i )

2. Source port (Psrc,t
i )

3. Destination IP address (Idst,t
i )

4. Destination port (Pdst,t
i )

5. Number of packets (Nt
i )

6. Maximal packet size (Bmax,t
i )

7. Minimal packet size (Bmin,t
i )

8. Average packet size (Bavg,t
i )

9. Flow duration (Dt
i )

Total amount of flows nt in the t-th time interval is also required for analysis.
Extracted features from the i-th flow at the t-th time interval are compiled as
vectors xt

i , yt
i , and f t

i , where

xt
i = (Isrc,t

i , Psrc,t
i , Idst,t

i , Pdst,t
i ),

yt
i = (Nt

i , Bmax,t
i , Bmin,t

i , Bavg,t
i , Dt

i ),

f t
i = (xt

i , yt
i).

(12)

3.2.2 Analysis (PIV)

As earlier, the introduced model requires a training set of data with only legit-
imate traffic included for the construction of normal user behaviour. Network
flows included in all time intervals are clustered with soft clustering approach
and cluster distributions are analysed for finding anomalous time intervals. Traf-
fic included in those anomalous time intervals is analysed for finding intrusive
flows.

3.2.2.1 Clustering flows (PIV)

When using soft clustering, each data sample is associated with a set of mem-
bership level that indicates the probability of a data sample belonging to a clus-
ter. The clustering technique here is based on the Expectation Maximisation -
algorithm (EM) (Syarif et al., 2012; Lu and Tong, 2009; Bilmes, 1998). Distribution
of feature vectors Yt = {yt

i}nt

i=1 are according to the probability density function
p(yt

i |Θt) of distribution parameters Θt = (αt
1, . . . , αt

M, µt
1, . . . , µt

M, Σt
1, . . . , Σt

M):

p(yt
i |Θt) =

M

∑
k=1

αt
k pt

k(y
t
i |µt

k, Σt
k), (13)

where Bayesian Information Criterion (Fraley and Raftery, 1998) can be used for
number of Gaussians M, αt

1, . . . , αt
M are parameters where ∑M

k=1 αt
k = 1, pt

k(y
t
i |µt

k, Σt
k)
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is the density function of the k-th Gaussian using covariance matrix Σt
k and mean

value µt
k.

Iterative expectation and maximisation steps are used for finding appropri-
ate values of distribution parameters Θt and Expectation Maximisation -algorithm
defines the probability p(k, yt

i , Θt) for data sample yt
i belonging to the k-th distri-

bution according to parameters Θt. Probability Pt
ij that flow f t

i = (xt
i , yt

i) and flow
f t
j = (xt

j , yt
j) are in the same cluster, where dH(xt

i , xt
j) is the Hamming distance of

xt
i and xt

j , is as follows:

Pt
ij = (1− dH(xt

i , xt
j))

M

∑
k=1

p(k, yt
i , Θt)× p(k, yt

j, Θt). (14)

Hamming distance is introduced by Hamming (1950), and it defines the number
of elements where two inputs of the distance function are different.

Hierarchical clustering method namely a single-linkage clustering algorithm
(Rafsanjani et al., 2012; Laskov et al., 2005) is used for achieving nC number of
clusters for all the time intervals. When algorithm starts, each vector forms a
cluster. Until the defined nC number of clusters is achieved, the clusters Cl and
Ck with the shortest distance d(Cl, Ck) are combined iteratively, where distance
d(Cl, Ck) is:

d(Cl, Ck) = min
f t
i ∈Cl , f t

j∈Ck

(Pt
ij). (15)

3.2.2.2 Finding anomalous time intervals (PIV)

Flows of every time interval t in the training set Ω are clustered, and for each
cluster, the number of feature vectors is defined. The histogram vectors ht =
(ht

1, ht
2, . . . , ht

nC
) consisting, in descending order, numbers of feature vectors in

clusters are used for constructing matrix H with rows Ht = (ht
1, ht

2, . . . , ht
nC
).

The Mahalanobis distance measures the number of standard deviations that
certain point is away from mean of the cluster (Li et al., 2016; Xie et al., 2014). The
Mahalanobis distance dM(Ht, H) between the t-th row Ht and matrix H is defined
for each row Ht:

dM(Ht, H) =
√
(Ht − µH)TCH(Ht − µH), (16)

where µH = (µH
1 , µH

1 , . . . , µH
nC
) is the mean of H and CHis the covariance matrix

of H.
In the training set, there is |Ω| amount of time intervals. For the anomaly

detection of the new time interval, the feature vectors are extracted and clustered
for achieving histogram vector h. Mahalanobis distance dM(h, H) between his-
togram vector h and training matrix H is defined. Histogram vector h is classified
as an anomaly if

dM(h, H) >
|Ω|+ 1
|Ω| max

t∈Ω
dM(Ht, H). (17)
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3.2.2.3 Finding intrusive flows (PIV)

Clusters {c1, . . . , cnC} found from anomalous time interval and clusters from the
training phase are compared for finding intrusive flows. The mean values of yt

i ,
i ∈ Ct

k are defined as the centre of cluster Ct
k. Distance d(Ct

j , Ct
k) is the distance

between the cluster centre of cluster Ct
j and the cluster centre of cluster Ct

k. Num-
ber of flows in cluster cj is |cj|, in which case the flows of cluster cj are labelled
intrusive if any of following is true:

min
t∈Ω, 1≤k≤nC

d(cj, Ct
k) >

|Ω|+ 1
|Ω| max

τ,t∈Ω, 1≤l,k≤nC
d(Cτ

l , Ct
k),

|cj| >
|Ω|+ 1
|Ω| max

t∈Ω
|Ct

kt∗ |, kt∗ = arg min
1≤k≤nC

d(cj, Ct
k).

(18)

3.2.3 Testing the model (PIV)

The implemented model was tested using the RGCE Cyber Range and Internet
traffic generation application described in section 2.2. In the RGCE Cyber Range,
there was a web server with known vulnerabilities installed, and during a four-
day time period there was legitimate user traffic mixed with anomalous attack
traffic. During the first day, there was only legitimate traffic, and the rest of the
period had legitimate user traffic mixed with illegal attack traffic including brute-
force attempts, illegal scanning, and targeted attacks. For the numerical param-
eters of the model, one-minute time interval ∆T was selected, and parameter w
was set to 60. TPR, FPR and Detection Accuracy were defined for estimating the
performance of the proposed model.

The proposed method was tested with different values of parameter nC (Fig-
ure 7). All the values exhibited good detection accuracy: if the value of nC is be-
tween 10 and 15, the Detection Accuracy is better than 99% with the used data
set.
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FIGURE 7 Detection Accuracy with different nC values (PIV).

First phase of the proposed method, with nC value of 10, was also compared
against other well-known flow-based IDS techniques such as Flow Anomaly De-
tection System (FADS) (Chapple et al., 2006), Exponentially Weighted Moving
Average (EWMA) (Cisar et al., 2010) and Chi-square Detection Mechanism (Mu-
raleedharan et al., 2010) (Figure 8 and Table 3).



37

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

False Positive Rate, %

T
ru

e 
P

o
si

ti
v

e 
R

at
e,

 %

 

 
FADS (mean and std. deviation)

FADS (interquartile range)

EWMA

Chi−square

EM + hierarchical clustering

FIGURE 8 ROC curves of compared algorithms (PIV).

TABLE 3 Performance metrics of compared algorithms (PIV).

Method TPR FPR Detection
Accuracy

FADS (mean and standard devi-
ation)

97.84 % 0.48 % 99.10 %

FADS (interquartile range) 97.31 % 0.33 % 99.08 %
EWMA 22.17 % 0.55 % 79.94 %
Chi-square 14.65 % 0.59 % 76.99 %
EM + hierarchical clustering 98.39 % 0.39 % 99.32 %

The second part of the proposed method for detecting intrusive flows was
tested, and also compared against other well-known clustering techniques, achiev-
ing the best Detection Accuracy (99.88%). Other clustering techniques were: single-
linkage clustering (see section 3.2.2.1), k-means (see section 3.1.2.2), K-Nearest
Neighbors (KNN) (Farooqi and Munir, 2008) and Self Organizing Map (SOM)
(Kohonen, 1990).

As a result, the performance of the proposed method was good, but the
model could not detect password brute force attempts when the number of the
attempts included in the time interval was low. The proposed method performed
with a higher rate of detection accuracy than compared well-known anomaly de-
tection methods. The proposed model is one step forward for the implementation
of online intrusion detection capability with encrypted traffic.

3.3 Analysing encrypted traffic, first model (PIII)

Various systems are nowadays using encrypted traffic, so intrusion detection can-
not be done by analysing packet payloads. According to Stevanovic and Vlajic
(2014), HTTP-based DDoS attacks can be divided into three main categories: triv-
ial (stand-alone HTTP requests from each bot), intermediate (semi-random HTTP
requests from each bot that appear to origin from a legitimate web browser) and
advanced (HTTP requests from each bot that appear to origin from a legitimate
web browser and mimic sequences of human interaction). In article PIII, pre-
sented and summarised here, the model for analysis of encrypted network traffic
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for anomaly detection is implemented and evaluated using realistic test environ-
ment. The presented algorithm can be divided into two steps: anomaly detection
for finding time intervals during attacks, and detection of attack flows during
those time intervals.

3.3.1 Feature extraction (PIII)

As in section 3.2.1, network traffic is recognized as a time series, and analysed
period of time [Ts, Te] is allocated into overlapping time intervals with length of
∆T with points Ts +

t
w ∆T, where t = {w, w + 1, . . . , w Te−Ts

∆T − 1}. The intrusion
detection is applied based on the analysis of network flows with common prop-
erties as source IP address and port and destination IP address and port. The
length of time interval ∆T should be big enough for containing suitable infor-
mation for anomaly detection and parameter w should be adequate for detecting
attacks early enough.

For finding intrusive time intervals, following features are calculated for
each time interval, where the entropy can be calculated according to equation 4:

1. Sample entropy of source IP address,
2. Sample entropy of source port,
3. Sample entropy of destination IP address,
4. Sample entropy of destination port,
5. Total number of flows,
6. Average duration of flow,
7. Average number of packets in one flow from source to destination,
8. Average number of packets in one flow from destination to source,
9. Average size of packets from source to destination,

10. Average size of packets from destination to source,
11. Average size of TCP window for packets from source to destination,
12. Average size of TCP window for packets from destination to source.

Element xt
i of an extracted feature vector is the t-th time interval’s i-th feature

value.
For finding intrusive flows, the following information is extracted sepa-

rately from source to destination and from destination to source for each flow:

1. Size of packets (average, minimal and maximal),
2. Size of TCP window (average, minimal and maximal),
3. Time from the previous packet (average, minimal and maximal),
4. Time to live (average, minimal and maximal),
5. Percentage of packets with TCP flag SYN,
6. Percentage of packets with TCP flag ACK,
7. Percentage of packets with TCP flag PSH,
8. Percentage of packets with TCP flag RST,
9. Percentage of packets with TCP flag FIN.
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Elements of the extracted feature vector yi of length n = 34 consist of feature
values of the i-th flow normalized for range [0, 1] applying the max-min normal-
isation.

3.3.2 Analysis (PIII)

Similarly as in the section 3.2, the model for detecting anomalous time intervals
is applied and secondly the intrusive flows are detected.

3.3.2.1 Finding anomalous time intervals (PIII)

Chi-square values are used for calculating the model of legitimate normal user
behaviour. Chi-square test is used to determine the difference between the dis-
tribution’s expected values and observed values (Vardasbi et al., 2011; Muraleed-
haran et al., 2010; Ye et al., 2003). For the nx number of features, the t-th time
interval’s chi-square χ2

t can be defined as:

χ2
t =

nx

∑
i=1

(xt
i − µi)

2

µi
, (19)

where xt
i is the t-th time interval’s i-th feature value and µi is the i-th feature’s

mean value in [Ts, Te]. Distance d(χ2
t1

, χ2
t2
) between two patterns can be calculated

using probability p(x is normal), which determines the probability value for x
being normal (Corona and Giacinto, 2010)

d(χ2
t1

, χ2
t2
) = p(χ2

t1
is normal)− p(χ2

t2
is normal). (20)

Similarly to section 3.2.2.1, a single-linkage clustering algorithm (Rafsanjani
et al., 2012; Laskov et al., 2005) is used. A single-linkage clustering algorithm is
applied for dividing chi-square values into two clusters, cluster of normal val-
ues Cn and cluster of outlier values Co, using distance d, where the minimum
distance between two chi-square values of clusters defines the distance between
clusters. Now all the outliers can be removed, and only normal values are used
for anomaly detection. According to the Central Limit Theorem (CLT), the χ2

statistic of a sequences of independent signals approximately follow a normal
distribution (Dehay et al., 2013), and, according to the classical 68-95-99.7, rule,
approximately 99.7% of all values from normal distribution are within three stan-
dard deviations σ from mean value µ (Gallego et al., 2013). At the current time
interval, network traffic is considered anomalous if

χ2 > µ̄χ2 + ασ̄χ2 , (21)

where µ̄χ2 is the mean of chi-square values and σ̄χ2 is the standard deviation of
chi-square values from cluster of normal values Cn, and parameter α ≥ 3.

3.3.2.2 Finding intrusive flows (PIII)

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is used
as in section 3.1.2.3. Once the feature vectors of the flows of the legitimate training
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set are extracted, normalised and clustered. The maximal pairwise Euclidean
distance, mi, is defined for the i-th cluster Ci:

mi = max
zj,zk∈Ci

d(zj, zk). (22)

In a case of each cluster-less point, mi is assigned as minimal mi,min of all clusters’
elements.

In a current time interval, for the intrusion detection of a new flow, all the
earlier-mentioned features of the flow are extracted to the feature vector z, and
the cluster or cluster-less point, with least distant vector from z is discovered:

i∗ = arg min
zj∈Ci

d(z, zj). (23)

If the distance between vector z under analysis and the found least distant vector
is bigger than the maximal pairwise distance, mi∗ , of that cluster, then the current
flow is labelled as an intrusion:

min
zj∈Ci∗

(d(z, zj)) > mi∗ . (24)

3.3.3 Testing the model (PIII)

Tests were conducted in the RGCE Cyber Range with Internet data generation
software as described in section 2.2. As part of the RGCE, there is a web server
with a static main page through HTTPS (SSL/TLS) implemented. Mixed legit-
imate traffic and DoS/DDoS traffic was generated to that web server. All the
traffic was captured as PCAP-files (Packet CAPture) containing mainly HTTPS
-traffic, a minimal amount of HTTP -traffic are being made of client-server hand-
shakes before the creation of encrypted channel. The analysed PCAP-file con-
tained 429202 traffic flows with a total length of 80 minutes. The training set with
only legitimate traffic was 8 minutes long. ∆T was assigned to five seconds and
parameter w to 5 as a result of iterative testing for achieving reasonable detection
capability.

For plotting the behaviour of chi-square values based on seconds, features
were extracted from the data set and chi-square values were calculated (Figure
9). For finding the time intervals with anomalous traffic, parameter α of equation
21 was assigned to 5.

For evaluation of the performance of introduced method TPR, FPR and De-
tection Accuracy were defined and ROC curves plotted. Performance of DB-
SCAN was compared against other well-known clustering techniques, which
are already introduced in this thesis, with different parameters: K-means, K-
Nearest Neighbours (KNN), Support Vector Data Description (SVDD) and Self-
Organizing Map (SOM) (Figure 10 and Table 4).

All intrusive conversations were detected with all of those algorithms, but
DBSCAN had the best results with other performance metrics (Table 4). Accord-
ing to the results, it can be said that the proposed model had good performance
metrics. The next steps of the development consist of improvement of the algo-
rithm for online capability and testing it online with more complex data sets.
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FIGURE 9 Chi-square values of extracted features of time intervals (PIII).
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FIGURE 10 ROC curves of compared detection algorithms (PIII).

TABLE 4 Performance metrics of compared detection algorithms (PIII).

Algorithm TPR FPR Detection
Accuracy

K-means 100 % 0.4878 % 99.9951 %
KNN 100 % 0.2091 % 99.9979 %
SVDD 100 % 6.0627 % 99.9390 %
SOM 100 % 0.4878 % 99.9951 %
DBSCAN 100 % 0.0697 % 99.9993 %

3.4 The implemented general model for analysing encrypted traf-
fic (PVI)

In article PVI, presented and summarised here, the model for analysis of en-
crypted network traffic for the detection of application-layer DoS/DDoS attacks
is implemented and evaluated using realistic test environment. The payload of
the network packet information is unreachable because of traffic encryption, thus
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the introduced model implements the anomaly-detection-based approach, focus-
ing to the statistics of the headers of the packet. In this study, the basic assumption
is that there is a web server providing several services with HTTP and HTTPS
protocols, and the implemented IDS is analysing incoming and outgoing traffic
of that web server. The intrusion detection consists of the following phases: form-
ing the normal user behaviour model, finding the conversations which are seg-
regating from that normal user behaviour model for detecting trivial DoS/DDoS
attacks, and analysing the distribution of feature vectors in the clusters for detect-
ing more sophisticated DoS/DDoS attacks.

3.4.1 Feature extraction (PVI)

All inbound and outbound traffic during time period [Ts, Te] is captured and di-
vided into equal non-overlapping time intervals ∆T. The intrusion detection is
applied based on the analysis of network flows with common source IP address
and port and destination IP address and port. Every flow found on time interval
[Ts + i∆T, Ts + (i + 1)∆T], and packets transferred in earlier time intervals be-
longing to that flow are found and grouped [Ts + (i− 1)∆T, Ts + i∆T], [Ts + (i−
2)∆T, Ts +(i− 1)∆T], etc. In addition, flow with equal source IP address and port
as another flow’s destination IP address and port and vice versa, are grouped as
conversations. For each conversation at each time interval, the following infor-
mation is extracted and normalized using max-min normalisation:

1. duration of that conversation
2. during 1 second, number of packets sent from client to server
3. during 1 second, number of packets sent from server to client
4. during 1 second, number of bytes from client to server
5. during 1 second, number of bytes from server to client
6. from client to server, maximal, minimal and average size of packet
7. from server to client, maximal, minimal and average size of packet
8. from client to server, maximal, minimal and average size of TCP window
9. from server to client, maximal, minimal and average size of TCP window

10. from client to server, maximal, minimal and average time to live (TTL)
11. from server to client, maximal, minimal and average time to live (TTL)
12. from client to server, percentage of packets with different TCP flags: FIN,

SYN, RST, PSH, ACK and URG
13. from server to client, percentage of packets with different TCP flags: FIN,

SYN, RST, PSH, ACK and URG
14. from client to server, percentage of encrypted packets with different prop-

erties: handshake, alert, etc
15. from server to client, percentage of encrypted packets with different prop-

erties: handshake, alert, etc
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3.4.2 Analysis (PVI)

Features extracted during the training phase are assumed to be legitimate and
can be used for the determination of normal user behaviour by using cluster-
ing for finding similarities from the patterns of vector data. For detecting trivial
DoS/DDoS attacks, the feature vector of a new conversation under analysis is cre-
ated. If the vector differs from the clusters created from the legitimate traffic in
training phase, the conversation is identified as intrusive. The most popular cate-
gories for clustering algorithms are hierarchical clustering algorithm (Rafsanjani
et al., 2012), centroid-based clustering algorithms (Uppada, 2014) and density-
based clustering algorithms (Loh and Park, 2014), which can be used for analysis
whether the new vector belongs to the cluster extracted in the training phase or
not. In the numerical tests of the introduced model, different clustering algo-
rithms are used.

If the attacker is capable for interactions in accordance with to normal user
behaviour, there is a need for more efficient analysis; thus conversations related
to the attack might be included into the normal behaviour model. Because of
that, the feature vectors’ distribution across clusters are noticed. Xu et al. (2014),
Stevanovic et al. (2013), Chwalinski et al. (2013), Ye et al. (2012), Stevanovic et al.
(2011) and Ranjan et al. (2009) have been analysing HTTP sessions for intrusion
identification. When analysing encrypted traffic, session ID is not available, thus
in this introduced method conversations from a certain client to a certain server
at the same time interval are grouped and those groups are approximated as user
sessions (the same source IP address, and the same destination IP address and
destination port).

As in section 3.2.2.2 histogram vector is constructed from the training set.
Here, in this method, for user sessions, the percentage of feature vectors in each
nC number of clusters is defined for histogram vector hit = (hit

1 , hit
2 , . . . , hit

nC
). At

the t-th time interval and j-th cluster, hit
j is calculated as the ratio between the

number of feature vectors of the training set’s i-th conversation group and the
total number of the feature vectors of the i-th conversation group. Histogram
vector (hit

1 , hit
2 , . . . , hit

nC
) is the t-th row of matrix Hit = (Hit

1 , . . . , Hit
nC
).

Anomaly detection of histogram vectors is done by using Stacked Auto-
Encoders (SAE), which can be applied for dimensionality reduction (Sakurada
and Yairi, 2014; Chen et al., 2014). There is a an assumption, when using di-
mensionality reduction for anomaly detection, that data can be projected into
lower dimensional space because the data variables correlate with each other,
and, when projected to a lower dimensional space, anomaly and normal data
perform disparate (Sakurada and Yairi, 2014). In the proposed model, the t-th
row Hit of histogram matrix Hi is reconstructed to Ĥit and reconstruction error
Eit =

√
∑nC

j=1(Hit
j − Ĥit

j )
2 is defined. For feature vectors of the i-th conversation

group of the training set, the mean value µE
i and the standard deviation σE

i of the
reconstruction errors are used for the threshold TE = µE

i + ωσE
i , where ω is the

tuning parameter of the threshold value.
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An Auto-Encoder (AE) consist of an input layer, hidden layer, reconstruc-
tion layer, and activation function f . First the input is mapped using the encoder
to the hidden layer. Then the units of hidden layer are mapped using the decoder
to the reconstruction layer as the output. The size of the input layer equals that
of the reconstruction layer. The error between input vector h and its reconstruc-
tion ĥ is minimized during the training of the algorithm. If the encoder-decoder
reconstructs the original input perfectly, it means that hidden layer of AE con-
serves enough information of the input: that is, during the reconstruction, the
decoder uses only the information of hidden layer encoded from the input. In-
formation loss is minimized by stacking the encoders with the help of method
called Stacked Auto-Encoder (SAE). SAE is trained as follows: first AE is trained
as described previously and the following AE layers are trained by the output of
the earlier layer. Since all the layers are trained, fine-tuning for improving results
can be applied by using back-propagation to tune the parameters of all layers at
the same time. (Chen et al., 2014)

During the current time interval, histogram vector h can be reconstructed
for a client with user session of type i. By using SAE, the reconstruction error Eit

can be calculated. If reconstruction error Eit is bigger than threshold TE, vector h
is labelled anomalous and the user session of the current client can be labelled as
intrusion.

3.4.3 Testing the model (PVI)

RGCE Cyber Range is utilised for the test simulation of proposed method. There
was a fictitious service provider hosting and defending the web shop service im-
plemented in RGCE Cyber Range. Communication to the web shop service is
provided through encrypted HTTPS protocol. There is a total of 55 web shop
users scattered with different global GeoIP locations within an roughly 2-hour-
long scenario. All web shop users generate legitimate traffic, but some of them
are also attackers who scan the target and use Slowloris, Slowpost and advanced
DDoS attacks. The first 12 minutes of the dataset are only legitimate traffic used
as the training set. The time step size is defined as 1 second.

To evaluate the performance of the proposed method for detecting trivial at-
tacks as Slowloris and Slowpost, a single-linkage clustering algorithm, k-means,
fuzzy c-means (Duan et al., 2016), self-organizing map and DBSCAN are used
for clustering. TPR, FPR and Detection Accuracy are calculated and ROC curves
plotted (Figure 11, Figure 12, Table 5 and Table 6).

Trivial Slowpost and Slowloris attacks can be detected with extremely good
performance metrics, and still the number of false alarms remains very low.
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FIGURE 11 ROC curves of Slowloris detection (PVI).
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FIGURE 12 ROC curves of Slowpost detection (PVI).

TABLE 5 Performance metrics of Slowloris detection (PVI).

Method TPR FPR Detection
Accuracy

Single-linkage 100 % 0.0356 % 99.9644 %
K-means 100 % 0.0043 % 99.9957 %
Fuzzy c-means 100 % 0.0043 % 99.9957 %
SOM 100 % 0.0043 % 99.9957 %
DBSCAN 100 % 0.0045 % 99.9955 %

TABLE 6 Performance metrics of Slowpost detection (PVI).

Method TPR FPR Detection
Accuracy

Single-linkage 98.587 % 0.0356 % 99.9619 %
K-means 98.587 % 0.0043 % 99.9931 %
Fuzzy c-means 98.587 % 0.0043 % 99.9931 %
SOM 98.587 % 0.0043 % 99.9931 %
DBSCAN 98.587 % 0.0045 % 99.9929 %
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To detect the more advanced attacks where attacker can mimic normal user
behaviour, a SAE based method is tested. K-means, fuzzy c-means and SOM are
applied for clustering the conversations, because those gave the best performance
metrics with Slowloris and Slowpost attacks above. Between 1 and 5 of the hid-
den layers for SAE are selected and a dimension of each hidden layer is smaller
than on the earlier layer (Figure 13 and Table 7).
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FIGURE 13 ROC curves of intermediate DDoS attack detection (PVI).

TABLE 7 Performance metrics of intermediate DDoS attack detection (PVI).

Method TPR FPR Detection
Accuracy

K-means 93.5569 % 1.3261 % 96.1058 %
Fuzzy c-means 95.051 % 1.475 % 96.7815 %
SOM 94.9906 % 1.3633 % 96.8068 %

Also these attacks can be detected with rather good performance values.
The overall method was good and has potential for near-real-time implementa-
tion with online data, thus such method is considered as a general model for
future IDS constructions in this dissertation.



4 ANOMALY-DETECTION-BASED IDS WITH
ONLINE NETWORK DATA

This chapter introduces the construction of an online anomaly-detection-based
IDS. First the training phase is implemented as online version and after that the
general model, described in section 3.4, is implemented as online version and
tested in a military exercise in co-operation with the Finnish Defence Forces. Fi-
nally, the performance of the IDS model is improved for high-speed networks.

4.1 Online training (PVIII)

In article PVIII, presented and summarised here, the model for online anomaly
detection is implemented and evaluated using realistic test environment. The
online approach is based on the general IDS model as described in section 3.4.
Feature extraction, normalisation and the basic idea of anomaly detection model
is similar in both. However, the training algorithm is constructed to use fuzzy
clustering which is tailored for online traffic instead of captured traffic. When us-
ing captured network data, the whole training data set can be saved to memory
for analysis, which is not possible when analysing online training data. With on-
line data, a model of normal user behaviour is reconstructed when new network
traffic is available.

From the training set, standardized feature vectors of conversations X =
{x1, . . . , xn} are defined. During the standardisation, vectors with minimal and
maximal feature value are found as xmin and xmax. The cluster centroids Vx =
{vx

1 , . . . , vx
c} and partition matrix Ux = {ux

ij} are calculated by using fuzzy c-
means clustering. Reconstruction criterion can be used for determining how sim-
ilar a feature vector is to the discovered normal user behaviour patterns or their
combination (Izakian and Pedrycz, 2013). The reconstruction x̄j and reconstruc-
tion error, E, can be calculated for vector xj, where that reconstruction error can be
considered as an anomaly score. The average value µx and the standard deviation
σx of the reconstruction errors of the training set’s feature vectors are calculated.
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Similar approximation for the user session, S = {s1, . . . , sN}, as introduced
in the general model (section 3.4), is used here. With user sessions, earlier in-
troduced general model considered percentage of feature vectors in each clus-
ter for vector distribution, here with this improved model, that consideration is
changed. By using fuzzy clustering, the membership matrix A = {aij}, with
i ∈ {1, . . . , N} and j ∈ {1, . . . , n}, and new feature matrix Y are defined, where
the average probability that the j-th cluster of conversations includes a conversa-
tion from the i-th user session corresponds to the element yij of matrix Y:

aij =

{
1, if xj ∈ si,
0, if xj 6∈ si

(25)

Y = A(Ux)T. (26)

Similarly, cluster centroids Vy = {vy
1, . . . , vy

C} and partition matrix Uy =

{uy
ij}, can be defined for user session’s feature vectors in matrix Y with the help

of the fuzzy c-means clustering. Reconstruction errors of new feature vectors,
with average value µy and standard deviation σy of reconstruction errors, are
calculated. As a result of the offline training period, the model of normal user
behaviour is:

Mo f f line = {xmin, xmax, Vx, µx, σx, Vy, µy, σy}. (27)

This offline method requires improvements for online use, which is done
by changing the model so that network traffic is captured in short time intervals,
where feature vectors of conversations are extracted. For the calculation of xmin,
xmax, Vx, µx, σx, Vy, µy and σy, the previous offline version of training can be
used to the vectors of the first time interval. Matrix H is then calculated:

H = Vy(eTwx)−1, (28)

where partition matrices Ux and Uy are used for calculation of weights of cluster
centroids wx = (wx

1 , . . . , wx
c ) and wy = (wy

1, . . . , wy
C). Vector e has length c, with

each element having value of 1. After the first time interval, when there exists a νx

conversations and νy user sessions, the model of normal user behaviour Monline
is defined:

Monline = {xmin, xmax, Vx, wx, νx, µx, σx, H, Vy, wy, νy, µy, σy}. (29)

For the traffic captured during the second time interval, features from con-
versations are extracted: X = {x1, . . . , xn}. Vectors xmin and xmax analysed during
the previous time interval are marked by xold

min and xold
max. New xmin and xmax are

found by comparing new vector values and previous xold
min and xold

max for finding
new vectors xmin and xmax. New cluster centroids Vx are found with a help of
new and old values xmin, xmax, xold

min and xold
max :

vx
ij =

(xold
max,j − xold

min,j)v
x
ij + xold

min,j − xmin,j

xmax,j − xmin,j
. (30)
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Weighted fuzzy c-means is used for vectors in X, using centroids Vx and
weights wx; also new reconstruction error for vectors in X is calculated with mean
value µ̄x and standard deviation σ̄x of reconstruction errors. Now the total num-
ber of conversations νx = νx,old + n.

For the user sessions, the new cluster centroids Vy = Hwx and the new
feature matrix Y = {y1, . . . , yN} are defined. Definition of the new feature matrix
is done according to equation 26. Fuzzy c-means is used for Y with recalculated
centroids Vy and weights wy for the resulting new cluster centroids with updated
weights. For vectors in matrix Y, reconstruction errors are calculated with the
mean value of reconstruction errors µy and standard deviation of reconstruction
errors σy. Total number of user sessions is updated νy = νy,old + N, and new
matrix H is defined.

Until all traffic of the training set is analysed, the user behaviour model is
reconstructed upon new vectors.

4.1.1 Anomaly detection (PVIII)

Anomaly detection based on conversations and user sessions is carried out. Con-
versation based analysis can be applied for detection of trivial DoS/DDoS attacks
by defining reconstruction error ex for new conversation’s feature vector x by us-
ing centroids Vx. If ex > µx + αxσx, the conversation is labelled as anomaly.

Similarly, user session based analysis can be applied for detection of more
sophisticated attacks by defining reconstruction error ey for the user session’s
feature vector y by using centroids Vy. If ey > µy + αyσy, the user session is
labelled as anomaly.

In both cases, parameters αx and αy shall be tuned during testing and opti-
mising the IDS.

4.1.2 Testing the model (PVIII)

The presented IDS model is implemented with Python programming language.
RGCE Cyber Range was utilized for testing the model. A web shop server was
installed to RGCE where several global users (both bots and humans) use the web
shop through encrypted HTTPS-protocol. Three DoS/DDoS attack models were
used by multiple attackers against that web shop. The model was tested with
the offline and online training modes with legitimate user traffic. For the perfor-
mance evaluation of the implemented model, TPR, FPR and Detection Accuracy
were calculated, using both online and offline modes of training, and ROC curves
were plotted (Figure 14 and Table 8).

Good performance metrics can be achieved, with Slowloris and Sslsqueeze.
With more advanced DDoS attacks, the second part of the analysis, based on user
sessions, performs quite well. Table 8 shows the detection accuracy with optimal
αx and αy values for achieving maximal detection accuracy. The results proofed
that the proposed weighted fuzzy clustering could be applied for the construction
of normal user behaviour. Also online training, in particular, allows rebuilding
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FIGURE 14 ROC curves of DDoS attack detection (PVIII).

TABLE 8 Detection Accuracy of DDoS attacks (PVIII).

Training algorithm Slowloris Sslsqueeze Advanced
DDoS

Offline 99.113 % 100 % 68.619 %
Online 99.223 % 100 % 71.837 %

of behavioural with a new set of network traffic.

4.2 Online analysis

This online approach is based on the general online IDS model as described in sec-
tion 3.4. The programming language for the implemented application is Python
(Version 2.7) and the hardware platform is normal office PC with the Ubuntu
Linux (Version 14.04) operating system. The implementation is called a near-real-
time system, which in this context is defined as following: application is buffer-
ing analysed traffic and indicates anomalies within a time interval that equals to 1
second for timely detection of attacks. That 1-second buffering is chosen because
it is quick enough for incident response and risk mitigation activities. It must be
mentioned, that even for achieving that 1-second interval, with large volumes of
online traffic data, considerable amount of optimisation was required.

Feature extraction and anomaly detection is based on the earlier introduced
general model (see section 3.4). In the training period, the network data is buffered
and clustered at the end of the training period. Clustering and analysis of the fea-
ture vectors of conversations is implemented using k-means algorithm (see sec-
tion 3.1.2.2). The number of clusters is implemented to be equal to the number of
unique clients, however the maximum value is defined as a threshold parameter.
Instead of using SAE, as in general model, the histogram vectors are clustered us-
ing k-means clustering. When detecting anomalous user sessions, the histogram
vector is defined. If this vector does not belong to any of the conversation distri-
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bution clusters extracted during the training, then it is classified as an anomaly
and the user session as an attack.

4.2.1 Testing the model

Tests were conducted in a live scenario as part of the military exercise in a co-
operation with the Finnish Defence Forces. During the tests, the workstation
network with an unknown number of workstations was implemented and all
network traffic was mirrored to the implemented IDS (Figure 15). The implemen-
tation was parametrised so that the number of clusters was equal to the number
of unique clients. During the iterative implementation and tuning of the applica-
tion, the maximum number of clusters was defined as equal to 20.

FIGURE 15 Setup of live scenario.

Legitimate traffic during the training phase consist of traffic of typical end-
point applications such as web browsers. The length of the training phase was 10
minutes with 105 unique and active source IP-addresses. In the detection phase
there were also illegitimate traffic of the ongoing attack campaigns mixed with
legitimate network traffic. Illegitimate intrusive traffic included command and
control traffic using application-layer protocols such as HTTPS, and, as in the
training phase, legitimate traffic consisted typical endpoint applications such as
web browsers. It shall be mentioned, that trivial volumetric DoS/DDoS was not
generated during the scenario. Length of detection phase was approximately 2
hours with total number of 279 unique and active source IP addresses. Because
of the classified nature of the military exercise, any other information concerning
the network, computers or traffic was not released: for example, the amount of
network traffic was not released. Generally, it can be stated that those character-
istics were extremely realistic and it was a privilege to have that opportunity for
testing implemented IDS in such realistic and unique environment.

As a result, the analysis identified 14 source IP addresses as anomalous and
all the rest as legitimate. Afterwards, the number of intrusive source IP addresses
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released was equal to 2. The performance metrics of the conducted test scenario
are presented in Table 9 and Table 10. In addition to the characteristics of anomaly
detection presented in section 3.1.3, also Precision and F-measure are defined
(Mokarian et al., 2013; Fawcett, 2006):

– Precision =
TP

TP + FP
- the ratio between TP and all instances classified as

anomaly,

– F-measure =
2× Precision× Recal

Precision + Recall
=

2× TP
2× TP + FP + FN

- combines Preci-

sion and Recall.

ROC curves couldn’t be plotted because only the information of intrusive IPs
were released afterwards. A confusion matrix (Figure 16) that forms the basis for
common performance metrics was constructed (Fawcett, 2006).

FIGURE 16 Confusion matrix.

TABLE 9 Confusion matrix of a live scenario.

TP=2 FP=12
FN=0 TN=265

TABLE 10 Performance metrics of live scenario.

True Positive Rate, TPR 1
False Positive Rate, FPR 0,043321
Detection Accuracy 0,956989
Precision 0,142857
F-measure 0,25

The implemented application analysed, quite successfully, intrusions in a
complicated live scenario. All the performance metrics values were good; how-
ever, there were quite a few false positives. One practical result is that a 10-minute
training period is long enough for achieving good performance metrics with the
implemented method. That training result is highly dependable of the variety
of legitimate traffic included in the training data set. Identified future research
will be on anomaly-detection-based IDS for a real-time high-capacity encrypted
networks.
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4.3 Online analysis in high-speed networks (PIX)

In article PIX, presented and summarised here, the model for online anomaly de-
tection in high-speed networks is implemented and evaluated. Network traffic
flows are analysed, and flows are combined together as conversations. Feature
extraction and normalisation are carried out the way it is done in the generated
general model introduced in section 3.4. In the training phase, consisting only
of legitimate traffic, a clustering algorithm is applied for dividing feature vec-
tors of conversations into clusters to create a model of normal user behaviour.
Conversations from certain time interval with equal source and destination IP
addresses and destination port are grouped as an approximation of user sessions
and conversations of the user session are clustered. After that, the labels of those
clusters are obtained as sequence of label numbers. Using the n-gram model
that sequence is transformed to a sequence of n-labels. Frequency vector is im-
plemented by counting the number of n-labels in the user session. Similarly, a
clustering algorithm is used for clustering those new feature vectors as normal
user behaviour.

4.3.1 Clustering (PIX)

In high-speed networks there exists large amount of network data, and it requires
lot of memory resources to analyse such amount of data. Analysis shall be done
sequentially. The implemented model uses following scheme for clustering the
conversations. Let there be τ sequential time windows t ∈ {1, . . . , τ}. There exists
nt

c number of conversations during the t-th time window and non-standardised
raw feature vectors Xt = {xt

1, . . . , xt
nt

c
} are extracted from training set during that

t-th time window. Those raw vectors Xt are standardised applying max-min stan-
dardisation with values xt

min,j and xt
max,j, for achieving standardised feature vec-

tors Zt = {zt
1, . . . , zt

nt
c
}. Arthur and Vassilvitskii (2007) introduced the kmeans++

algorithm, which can be applied for defining clusters pt
i and k number of cen-

troids mt
i from standardised feature vectors Zt. Standardised feature vectors are

used for this clustering, but statistics are calculated using non-standardised raw
feature vectors. For the clusters pt

i , raw feature vectors x(z) included in the clus-
ters are used for calculating the new centroids µt

i and the sum of squared features
ζ(pt

i). In addition, the number of feature vectors in cluster pt
i , w(pt

i), is defined.

For all the τ sequential time windows t ∈ {1, . . . , τ}, the τ × k clusters,
considered as partitions, are determined. It should be noticed that, when imple-
menting the application according to presented scheme, value τ is parametrised
in compliance with the usable memory resource of the computing environment.
Those τ × k partitions shall be compiled to k new clusters. Minimal x̄τ

min,j and
maximal x̄τ

max,j feature values of all the τ sequential time windows are found
and used for standardising τ × k centroids µt

i to mt
i , where t ∈ {1, . . . , τ} and

i ∈ {1, . . . , k}. New k centroids are obtained similarly as previously but consider-
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ing previously saved values of w(pt
i). For new k clusters, p̄τ

i , its centroid µ̄τ
i , the

number of feature vectors w( p̄τ
i ) and the sum of squared features in all of these

vectors ζ( p̄τ
i ) are defined. Values xt

min,j and xt
min,j for t ∈ {1, . . . , τ} are assigned

to values x̄τ
min,j and x̄τ

max,j.
After the new k clusters, p̄τ

i , are compiled from τ × k partitions pt
i , imple-

mentation is capable to delete information of previous partitions, and continues
defining partitions for the next τ − 1 sequential time windows. New k clusters
are compiled using clusters p̄τ

i and partitions from next τ− 1 sequential time win-
dows. Finally, at the end of the training phase, k conversation clusters p1, . . . , pk
are achieved. As detailed in PIX, from the implementation perspective, reduc-
ing the computational power required for the above procedure, clustering can be
replaced with the use of the streaming k-means introduced by Braverman et al.
(2011).

The implemented model uses following scheme for clustering the user ses-
sions. At the time window t, after all the conversations are divided into the k
clusters, an n-gram vector of size kn is defined for all the sessions. Let nt

s be the
number of user sessions at time window t, and feature matrix Yt = {yt

1, . . . , yt
nt

s
}.

The same method for clustering is applied for achieving K number of session clus-
ters. Also for each cluster Pt

i , centroid Mt
i and number of feature vectors w(Pt

i )
are defined. With user sessions, sum of squared features is used, but here it is
replaced by kn × kn size matrix S(Pt

i ), where j, l ∈ {1, . . . , kn} and the elements of
the matrix are Sjl(Pt

i ) = ∑y∈Pt
i

yjyl.
When considering τ sequential time windows t ∈ {1, . . . , τ}, updates of

the connection clusters induce modifications in the n-gram vectors. Let there be
function f (j, pt

l , p̄τ
i ) where j ∈ {1, . . . , kn}. That function f (j, pt

l , p̄τ
i ) returns the

index of the n-gram which is achieved from the j-th gram by replacing label l
with label i, if label l is in the j-th n-gram and a partition pt

l is associated with the
new cluster p̄τ

i . It is assumed that q number of partitions pt
i1

, . . . , pt
iq of the time

window τ are included in the cluster p̄τ
i from conversations. The i-th session

centroid’s j-th component, Mt
ij, and both Sjl(Pt

i ) and Sl j(Pt
i ) elements of matrix

S(Pt
i ), where l ∈ {1, . . . , kn}, are modified using function f , if label i is in the j-th

gram. However Mt
i and both elements Sjl(Pt

i ) and Sl j(Pt
i ) are assigned to zero if

label ia ∈ {1, . . . , iq} is in the j-th gram and label i is not in that j-th gram.
New K clusters are defined similarly to those with conversations: after the

updating of τ × K session partitions Pt
i , where t ∈ {1, . . . , τ} and i ∈ {1, . . . , K},

these partitions are compressed to K number of clusters, P̄τ
i , and for each resulting

cluster P̄τ
i , centroid m(P̄τ

i ), the number of the feature vectors w(P̄τ
i ) and matrix

S(P̄τ
i ) are defined, where Sjl(P̄τ

i ) = ∑m(x)∈P̄τ
i

Sjl(x). Finally, at the end of the
training phase, K session clusters P1, . . . , Pk are achieved.

As a summary, after the training phase with legitimate network traffic, the
normal user behaviour model consists of:

– For the final k conversation clusters p1, . . . , pk:

– minimal and maximal feature values xmin,j and xmax,j ,
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– centroids µi = m(pi) ,
– amount of associated feature vectors wi = w(pi) ,
– sums of squared feature values ζi = ζ(pi) .

– For the final K user session clusters P1, . . . PK:

– centroids Mi = m(Pi) ,
– amount of associated vectors Wi = w(Pi) ,
– matrices Si = S(Pi) .

4.3.2 Anomaly detection (PIX)

For anomaly detection of the conversations, new centroids mij and the sums of
the squared feature values sij of the j-th feature, where i ∈ {1, . . . , k} are defined
according to values xmin,j and xmax,j:

mij =
µij − xmin,j

xmax,j − xmin,j
,

sij =
ζij + wi(x2

min,j − 2xmin,jµij)

(xmax,j − xmin,j)2 .
(31)

Radius ri and diameter ψi are defined for clusters pi by using values of si, wi
and mi. Similarly radius Ri and diameter Ψi are defined for clusters Pi by using
values of Mi, Wi and Si.

When detecting attacks from conversations, new feature vector x is extracted
and standardised. The conversation is identified as an attack if:

d(x, mi(x)) > ri(x) + αψi(x), (32)

where d(x, mi(x)) is the distance between vector x and the nearest centroid mi(x),
and α > 0 is a tuning parameter which is tuned during the testing and optimising
period of the algorithm’s implementation.

Correspondingly, when detecting attacks from user sessions, new feature
vector y is extracted from the user session. The user session is identified as an
attack if:

d(y, Mi(y)) > Ri(y) + βΨi(y), (33)

where d(y, Mi(y)) is the distance between vector y and the nearest centroid Mi(y),
and β > 0 is a tuning parameter which is tuned during the testing and optimising
period of the algorithm’s implementation.

4.3.3 Testing the model (PIX)

The IDS implementation according to clustering and attack detection algorithms
described in sections 4.3.1 and 4.3.2 is implemented using Python programming
language. A virtual test environment with a web-bank server is established. Le-
gitimate traffic that mimics human user behaviour is generated and mixed with
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three types of DoS/DDoS attack traffic. As with earlier models, those three se-
lected attack types are Sslsqueeze, Slowloris and advanced DDoS.

First the clustering is evaluated with a legitimate user traffic, with a dura-
tion of 10 minutes and generated by 45 user bots using web-bank services with 15-
45 second delay between sequential sessions. The chosen time window is 5 sec-
onds, and partitions to new cluster centroids are defined every 10 time windows.
For evaluating the clustering of conversations and clustering of user sessions us-
ing offline mode and online mode, the average cost C = 1

|X| ∑x∈X miny∈md(x, y)
is calculated, where X is the set of vectors and m is cluster centres (Figure 17 and
Figure 18).
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FIGURE 17 Average costs of conversation clustering (PIX).
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FIGURE 18 Average costs of user session clustering (PIX).

For evaluating the anomaly detection performance metrics of the introduced
algorithm FPR, TPR and Detection Accuracy are calculated, and ROC curves plot-
ted. With Sslsqueeze and Slowloris attacks, results of the online mode are com-
pared with the results of the offline mode (Figure 19 and Figure 20). The offline
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mode is implemented by using k-means combined with k-means++. The 1 sec-
ond time window is selected and different values of parameter α and number of
clusters k are used when plotting TPR against FPR for ROC curves.
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FIGURE 19 ROC curves of Sslsqueeze detection for different clustering parameters
(PIX).
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FIGURE 20 ROC curves of Slowloris detection for different clustering parameters (PIX).

For evaluating performance metrics with advanced DDoS attacks, 2-gram
model is used with different sizes of time window (Figure 21). In calculation of
Detection Accuracy, clustering parameters are selected with tuned optimal values
(Table 11).
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FIGURE 21 ROC curves of advanced DDoS attack detection for different time window
sizes and clustering parameters (PIX).

TABLE 11 Detection Accuracy of DDoS attacks (PIX).

Attack
Time window size

1 second 2 seconds 4 seconds 8 seconds
Sslsqueeze 99.89%
Slowloris 99.77%
Intermediate DDoS 63.29% 85.21% 98.52% 99.34%

As it can be seen, performance metrics are good with Sslsqueeze and Slowloris
attacks, and also with more advanced DoS attacks when the size of time window
is increased. With Sslsqueeze attacks, the algorithm is capable for detecting TPR
(98.5%) without false alarms, and TPR (99.9%) with FPR (0.8%). When consider-
ing Slowloris attacks, the algorithm is capable for detecting anomalous conversa-
tions without false alarms. With more advanced DDoS attacks, analysis of user
session’s n-gram vectors achieved TPR (97%) with the 4-second time window and
with 8-second time window all the intrusive sessions are detected, but with the
1-second time window, it is impossible to detect intrusions from user sessions.

The introduced intrusion detection capability depends highly on the se-
lected clustering parameters and requires tuning and optimisation of those pa-
rameters during the implementation. With correctly chosen parameters, model
does not require lot of resources from the platform and is capable for detecting
intrusions with quite a good performance metrics. As a future work, the model
will be tested with bigger data sets generated by real human-made end-user traf-
fic.



5 SITUATIONAL AWARENESS IN CYBER SECURITY

Because almost all the business areas are using networked systems or services,
cyber threats, cyber attacks, or more commonly intrusions, might affect to the
continuity of business. Organisations sharing or exchanging information related
to those intrusions would use it as an early warning information for immedi-
ate intrusion mitigation and threat response activities. Information related to cy-
ber threat is often sensitive and might be classified, so when that information is
shared with other organisations, there is a risk of being compromised.

5.1 Situational awareness for decision making (PV; PVII)

Situation awareness and situational awareness are mixed in a literature and in
this dissertation the term situational awareness is used. When considering dy-
namic environments and decision making, SA has an important role. One of the
most used definition of SA is written by Endsley (1995): "Situation awareness is
the perception of the elements in the environment within a volume of time and space, the
comprehension of their meaning, and the projection of their status in the near future". He
also states that even highly trained decision makers will make mistake decisions
if they use improper SA for decision making.

Cyber SA can be defined as awareness of own cyber domain for assistance
of decision making for defensive or reactive actions, one special feature of rela-
tive new concept of Cyber SA is that it focuses on awareness of data networks
for attack or intrusion identification of cyber defence (Tadda, 2008). SA is a state
of knowledge depending on the person’s competence in a specific task and on
events related to that task (Tadda and Salerno, 2010; Kuusisto et al., 2005; End-
sley, 1995). Common Operational Picture (COP) is a production of information
available related to the task, as a source for construct the SA (Kuusisto et al.,
2005). In military, even if cyber domain is widely appreciated as an operational
domain (and in kinetic environments it is common to use COP for decision mak-
ing) it is still stated that there is no versatile Cyber Common Operational Picture
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(CCOP) available (Conti et al., 2013). Cyber domain and physical domain have
fundamental differences concerning censors, and consideration of the time and
location information (Conti et al., 2013; Barford et al., 2010; Tadda and Salerno,
2010). For example, a cyber attack from the other side of the world is just as sud-
den as a cyber attack originated nearby, which is not true with the kinetic world.
Censor information from IDS is quite different from censor information of kinetic
environment e.g. obtained from surveillance radar.

FIGURE 22 Modified OODA-loop, quoted from Brehmer (2005).

An often used model for decision making in Command and Control (C2)
is the OODA-loop by Boyd, which in its basic form is Observation-Orientation-
Decision-Action phases cycle originally implemented for decision making in air
operations (Fusano et al., 2011; Brehmer, 2005). When thinking about the OODA-
loop and especially of the two first phases of the loop, it can be clearly seen that
SA depends on person’s competence, and the total decision making loop illus-
trates that proper cyber security SA is required for making decisions related to
cyber domain (Figure 22). The OODA-model in cyber defence works in phases:
during the observation phase, sensor information concerning the infrastructure
and assets is gathered; during the orientation phase, that information is analysed
to find out what is happening; during the decision phase, the countermeasures,
incident response, mitigation or recovery activities are chosen; and during the
action phase, those chosen activities are employed (Figure 23). After that the new
loop starts with the observation.

FIGURE 23 OODA-loop in cyber defence.
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5.2 Sharing the cyber security situational awareness (PV)

In article PV, presented and summarised here, the model for creating the informa-
tion sharing communities for the cyber security situational awareness informa-
tion is implemented and evaluated. Development of proper cyber SA is impor-
tant for decision making, and sharing that information is the key element of cyber
security (Davies and Patel, 2016). In the United States, two laws about sharing
the information on cyber SA were recently signed (The United States Gongress,
2015b,a). The Cybersecurity Information Sharing Act requires the parties to de-
velop procedures for sharing threat information of cyber security between dif-
ferent stakeholders, whereas the Cyber Intelligence Sharing and Protection Act
obliges the parties to provide sharing of situational information of cyber threats
in real-time between nominated stakeholders.

Among the globally developed standards for sharing the information of cy-
ber security required in cyber SA, the most popular technical standards are Struc-
tured Cyber Observable eXpression (CybOXTM), Threat Information eXpression
(STIXTM), and Trusted Automated eXchange of Indicator Information (TAXIITM).
CybOXTM is a language for standardized structured information of cyber observ-
ables, STIXTM is a language for standardized structured communication of cyber
threat information for improving interoperability and cyber security situational
awareness, and TAXIITM is a framework for exchanging cyber threat information
that determines the set of messages, protocols, and services (The MITRE Corpora-
tion, s. a.; Barnum, 2014; Connolly et al., 2014). For example, The U.S Department
of Homeland Security has been using a system called Automated Indicator Shar-
ing for providing the bidirectional sharing of the cyber security threat indicator
information utilizing TAXIITM capability and STIXTMprofile (The United States
Computer Emergency Readiness Team, US-CERT, s. a.).

As seen in Figure 24, TAXIITM supports following information sharing mod-
els: hub-and-spoke, peer-to-peer and source-subscriber (Connolly et al., 2014).
The STIXTM architecture consists of eight constructs (Figure 25), which are uti-
lized to the XML schema: Observable, Indicator, Incident, TTP (tactics, tech-
niques, and procedures), ExploitTarget, CourseOfAction, Campaign and Threat-
Actor (Barnum, 2014). Figure 26 demonstrates STIXTM use cases where also cy-
ber security information sharing between organisations is implemented (Barnum,
2014).

FIGURE 24 Threat sharing models of TAXIITM, quoted from Connolly et al. (2014).
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FIGURE 25 Architecture of STIXTM, quoted from Barnum (2014).

FIGURE 26 Example of STIXTM use cases, quoted from Barnum (2014).

The basic assumption when sharing cyber security information is that infor-
mation might be classified. There is recognised risk of being compromised when
sharing classified information; thus information sharing requires trusted relation-
ships (Davies and Patel, 2016). The model developed is used for constructing the
topology of the information sharing community. The model is based on the as-
sumption that there is a predefined risk level for sharing the information between
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organisations. The TAXIITM peer-to-peer information sharing model is used with
STIXTM architecture; risk level values are required to have the same scale and or-
ganisations are sharing information only to trusted partners. Constructing such
topology is similar to find the shortest paths between nodes. For constructing in-
formation sharing community with minimum risk levels, the implemented model
utilizes Dijkstra’s shortest path algorithm (Dijkstra, 1959), presented as pseudo
code by Li et al. (2009, 2010).

Let there be a real life scenario with three different national CERTs as the
highest national authority, the national and international Internet Service Providers
(ISPs) as the next level and various national and international enterprises, as seen
in Figure 27. Every peer-to-peer TAXIITM link has risk level value of [1, 20], where
the risk values are defined as 1 = min-risk and 20 = max-risk.

FIGURE 27 Cyber security information sharing community (PV).

Information sharing topology with a minimum risk level implementation
can be achieved by applying Dikstra’s shortest path algorithm, as shown in Fig-
ure 28. Even if there are no direct connections between all the organisations, the
data flow still goes to every organisation in that community. It is assumed that in-
formation might be anonymized, according to the company policies for example
the origin of the information shall not be shared to the whole community.

The implemented model can be used for creating a minimum risk topology
in order for share classified cyber security information between organisations in
an information sharing community. It should be realised that even if there is a
topology of minimum risk, filters should be implemented in outbound interfaces
to filter out the information that is not allowed to be shared. As a future under-
taking, the model will be implemented with one-way source-subscriber links and
risk levels instead of peer-to-peer links and risk levels. The model shall be tested
with shortest path algorithms other than Dikstra’s algorithm and numerical pa-
rameters will be added to describe the weight of the path, e.g. latency of the link,
reliability of the information or accuracy of the information.

The Forum of Incident Response and Security Teams (FIRST) has released
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FIGURE 28 Cyber security information sharing topology with a minimum risk level
implementation (PV).

version 1.0 of the consolidated Traffic Light Protocol (TLP), which facilitates a
four-colour category for information sharing (red, amber, green, white): for ex-
ample the meaning of TLP:RED is "Not for disclosure, restricted to participants only"
and the meaning of TLP:WHITE is "Disclosure is not limited" (Forum of Incident
Response and Security Teams FIRST, 2016; Forum of Incident Response and Se-
curity Teams, FIRST, 2016). The TLP categories can be applied as a part of infor-
mation sharing rules and topology construction for filtering data between organ-
isations.

5.3 Cyber security situational awareness system (PVII)

In article PVII, presented and summarised here, the model for cyber security SA
system is created and evaluated. When developing a system for cyber security
SA, it should be kept in mind that in modern networks there is a wide and in-
creasing repertoire of systems and devices generating information to be analysed
and visualised as part of the cyber security SA. The increasing amount of data re-
quires high computational resources (Yu et al., 2013). Data fusion or multi-sensor
data fusion refers to a process that uses overlapping information from multiple
sources and merges it to refine a fused projection of environment to get a better
understanding of what is happening (Azimirad and Haddadnia, 2015; Khaleghi
et al., 2013; Giacobe, 2010; Liu et al., 2007a,b; Bass, 2000; Steinberg et al., 1999; Hall
and Llinas, 1997).

5.3.1 Multi-sensor data fusion (PVII)

Research and development of data fusion is originating from military applica-
tions such as surveillance systems, battle management systems and target or
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threat recognition systems. Besides military applications, there is a wide range of
non-military applications such as applications for medical diagnosis (Bass, 2000;
Hall and Llinas, 1997). One of the commonly employed model of data fusion is
the JDL model implemented by the Joint Directors of Laboratories. The JDL fu-
sion model is divided in different levels 0-6 (originally there were levels 0-4), each
level enabling merging and refining information. At each level, there is possibili-
ties to draw conclusions for achieving a better SA. The JDL levels in the cyber se-
curity context are (Swart et al., 2015; Azimirad and Haddadnia, 2015; Castanedo,
2013; Blasch et al., 2013; Khaleghi et al., 2013; Giacobe, 2010; Bass, 2000; Steinberg
et al., 1999):

0. Data Assessment -level: Sensor information feed to the cyber security SA
system.

1. Object Assessment -level: Identification of entities in the cyber domain, thus
physical connections of network, devices, services or data flows.

2. Situation Assessment -level: Evaluation of the state of the systems in the
cyber domain, e.g. information of software versions or patches, and infor-
mation of known vulnerabilities, risks or threats.

3. Impact Assessment -level: Information about an ongoing attack or a threat
combined with information about possible damage, incident response ac-
tivities ongoing or already done.

4. Process Refinement/Resource Management -level: Cyber security sensor
management, including configuration of individual sensors with settings
and definition of the sensors’ reliability score and selection of sensors in
use.

5. User Refinement/Knowledge Management -level: Access to control each
layer of fusion by using Human Machine Interface (HMI), and visualisation
of information to the user.

6. Mission Management -level: Set of policies and mission objectives that should
be known in decision making.

In a kinetic environment, the sensor feed has a spatio-temporal nature: thus data
correlation and data association can be done based on time and physical location.
This differs from cyber security sensor data, where correlation can be done using
IP-addresses or other characteristics of network behaviour (Bass, 2000). Zhang et
al. (2011), Zhao et al. (2009) and Tian et al. (2005) are using the Dempster-Shafer
theory for data fusion of IDS sensor data while Fessi et al. (2011) apply clustering
method for data fusion of IDS and Beheshti and Wasniowski (2007) merge IDS
data with equal time stamps.

5.3.2 Required Interfaces (PVII)

The SA system for supporting decision making in cyber domain requires different
input and output interfaces. The main categories of interfaces are as follows:

– Sensor information interfaces. The system implements interfaces for input
of cyber security sensor information.
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– Interfaces for status information. The system implements interfaces for in-
putting the status information of all the known cyber entities. Information
of systems, devices and sensors with their status and configuration infor-
mation, but also the spare parts of physical devices are relevant information
for a cyber security SA system. Also information about the status of saved
data and the status of information flows should be reported. Some of that
information can be automatically generated using data interfaces and some
should be user generated by using HMI.

– Interfaces for analysis information. The system implements interfaces for
information based on analysis. That kind of information includes analysed
impact assessment information, Indicator Of Compromise (IOC) informa-
tion and early warning information from open source intelligence using
e.g. social media or CERT-bulletins. Also required policies and objectives
should be input to the system.

– Interfaces for information exchange. The system implements interfaces for
cyber security information exchange with trusted companions, as described
in section 5.2.

– HMI. The system implements HMI for effective visualisation of the current
status of the cyber domain under control and for input of information that
cannot be entered automatically. HMI is also used for controlling the data
fusion process. HMI should implement different visualisations for different
levels of users: e.g. technical user who requires detailed technical informa-
tion, whereas a decision maker needs totally different visualisation. As in
the study of Laaperi and Vankka (2015), HMI also implements filters for
data allowed for different users.

5.3.3 High level architecture (PVII)

Cyber security SA system includes the data fusion engine, information interfaces
and the HMI providing an effective visualisation layer. The functionalities de-
scribed above should be as automatic as possible without human interaction;
however, there should be an operator for controlling the sensors and data fusion
algorithms and inputting information to the system. The high level architecture
of the cyber security SA system can be seen in Figure 29, and there is an example
use case of such system in Figure 30. It should be noticed that there should also be
normalisation layer for feature extraction and normalisation of input information
before inputting it to the fusion engine.



67

FIGURE 29 High level architecture (PVII).

FIGURE 30 Use case example of cyber security SA system (PVII).

For the development of such cyber security SA system, the system require-
ments in detailed level, can be produced by using the proposed high-level ar-
chitecture, which utilises both the multi-sensor data fusion process and the in-
formation exchange process; both are required for achieving cyber resilience and
continuity for a business or mission using decisions based on SA.



6 CONCLUSION

In modern societies almost all organisations and individuals depend on networks
and networked systems and services. The amount and complexity of networks,
systems and users are constantly increasing, which enables the use of multitudi-
nous attack vectors. The dilemma of digitalisation poses the requirement for
comprehensive situational awareness in cyber security as a backbone for deci-
sion making. SA in cyber security helps us to understand the current situation of
cyber domain and make predictions about what will happen in a near future.

This dissertation approaches the above-described challenge from the view-
point of intrusion detection system as a sensor for cyber security situational aware-
ness system. Different approaches for constructing an intrusion detection system
are described in order to achieve an online intrusion detection system for modern
encrypted high-speed networks. Also a model for a situational awareness system
is constructed as is a model for creating topologies for changing the cyber security
SA information between organisations to enhance situational awareness.

When creating constructions like those above, the theoretical background of
the chosen method is described. The mathematical model of the current construc-
tion is described, and finally the construction created is tested in a realistic (or
real) environment. Also, the results are discussed and analysed. The described
models and approach can be used as a basic models of an intrusion detection sys-
tem which can be utilised for a system of situational awareness. The produced
model for information sharing can be utilised by different commercial or govern-
mental organisations inside the country or between different countries as early
warning information of a possible threat. Future research can be carried out to
achieve better performance metrics and visualisation about intrusions in complex
networked systems - actually a basic implementation of cyber security situational
awareness system.
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YHTEENVETO (FINNISH SUMMARY)

Tietoverkoissa tapahtuvien poikkeamien havainnointiin perustu-
va tunkeutumisen havainnointijärjestelmä sensorina kyberturval-
lisuuden tilannekuvajärjestelmälle

Nykyaikana lähes kaikki organisaatiot ja ihmiset ovat riippuvaisia tietoverkoista
ja tietoverkkopohjaisista järjestelmistä. Tietoverkkojen ja verkotettujen järjestel-
mien, sekä verkossa liikkuvan tiedon määrä kasvaa jatkuvasti ja muodostaa en-
tistä monimutkaisempia riippuvuussuhteita, tarjoten enenevissä määrin mahdol-
lisuuksia tietoverkkorikollisuudelle. Tämä väitöskirja käsittelee tunkeutumisten
havainnointijärjestelmän kehittämistä poikkeamien havainnointiin perustuen.

Poikkeamien havainnointiin perustuvassa tunkeutumisen tunnistamisessa
hyödynnetään klustereihin perustuvia tiedonlouhinta-algoritmeja, joiden avul-
la järjestelmän opetusvaiheessa verkkoliikenteestä määritellään malli normaalil-
le käyttäytymiselle ja tunnistamisvaiheessa pyritään löytämään poikkeamia tästä
määritellystä normaalimallista. Löydetyt poikkeamat havainnoidaan tunkeutu-
misiksi. Tällä tavalla kyetään havainnoimaan myös ennalta tuntemattomia hyök-
käyksiä salatusta verkkoliikenteestä. Tätä tunkeutumisen havainnointitietoa voi-
daan käyttää yhtenä sensoritietona kyberturvallisuuden tilannekuvajärjestelmäl-
le, jolla mahdollistetaan tilannetietoisuus päätöksenteon tukena. Tätä kybertilan-
netietoisuutta ja sen mukaista päätöksentekokykyä tarvitaan liiketoiminnan jat-
kuvuuden ylläpidossa kyberpoikkeamatilanteissa.

Aluksi väitöskirjassa esitellään tunkeutumisen havainnointijärjestelmän pe-
rusteet ja tunkeutumisen havainnointijärjestelmien kehittämisessä ja testauksessa
tarvittavan verkkoliikennetiedon tuottamisjärjestelmä. Tämän jälkeen esitellään
vaiheittain eri lähestymistapoja tunkeutumisen havainnointijärjestelmän kehit-
tämiselle. Aluksi malleissa käytetään generoitua ja tallennettua verkkoliikenne-
tietoa, ja myöhemmin mallin kehityksen edetessä, havainnointi tapahtuu lähes
reaaliaikaisesti salattua verkkoliikennetietoa käyttäen. Kehitettyjen mallien teo-
reettinen viitekehys ja suoritetut testitulokset esitellään tapauskohtaisesti. Osana
väitöskirjaa esitellään testiskenaario, joka on suoritettu yhteistyössä Puolustus-
voimien kanssa, osana harjoitustoimintaa. Väitöskirja esittelee mallin kybertur-
vallisuuden tilannekuvajärjestelmälle, joka käyttää edellä mainittua tunkeutumi-
sen tunnistamisjärjestelmän sensoritietoa tilannekuvan muodostamiseen sensori-
fuusioon perustuen. Tämän lisäksi esitellään malli kyberturvallisuuspoikkeama-
tiedon jakamiselle eri organisaatioiden välillä. Myös jatkotutkimuskohteet esi-
tellään aihealueittain. Tärkeimpänä jatkotutkimuskohteena mainittakoon algo-
ritmien tehokkuuden kehittäminen suurilla verkkoliikenne- ja käyttäjämäärillä,
sekä tunkeutumisten visualisointi monimutkaisten järjestelmäkokonaisuuksien
yhteydessä. Kehitettyä mallia voidaan hyödyntää ja käyttää perustana kybertur-
vallisuuden tilannekuvajärjestelmäkehitykselle.
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Abstract—Attacks against web servers and web-based applica-
tions remain a serious global network security threat. Attackers
are able to compromise web services, collect confidential infor-
mation from web data bases, interrupt or completely paralyze
web servers. In this study, we consider the analysis of HTTP logs
for the detection of network intrusions. First, a training set of
HTTP requests which does not contain any attacks is analyzed.
When all relevant information has been extracted from the logs,
several clustering and anomaly detection algorithms are employed
to describe the model of normal users behavior. This model is
then used to detect network attacks as deviations from the norms
in an online mode. The simulation results presented show that,
compared to other data mining algorithms, the method results in
a higher accuracy rate.

I. INTRODUCTION

In modern society, the use of computer technologies, both
for work and personal use, is growing with time. Unfortunately,
with the growing number and size of computer networks
and systems their vulnerability is also increasing. One of the
most popular attack targets are web-servers and web-based
applications. Usually, the users of web-servers and web-based
applications request and send information using queries, which
in HTTP traffic are strings containing a set of parameters
having some values. Attackers are able to manipulate these
queries and create requests which can corrupt the server or
collect confidential information [1], [2]. In addition, certain
types of intrusions such as scanning and probing attacks are
able to identify running services on a web server with the view
to compromise it. Finally, password brute-force attacks aim to
give an attacker administrators privileges for the web server,
whereas Denial of Service (DoS) allows attackers to interrupt
or completely paralyze the server. To ensure the security of
web-servers and web-based applications Intrusion Detection
Systems (IDSs) can be used. As a rule, IDS gathers data
from the system under inspection, analyzes this data to detect
suspicious activities and determines suitable responses to these
activities [3].

There are two basic approaches for detecting intrusions
from the network data: misuse detection and anomaly detec-
tion [4]. The misuse detection approach allows us to detect
attacks by searching for predefined attack signatures. Since
this approach is usually accurate, it is successfully used in
commercial intrusion detection. However, misuse detection
approach cannot detect attacks for which it has not been
programmed. Therefore, it is prone to ignore all new types
of attack if the system is not kept up to date with the latest

intrusions. The anomaly detection approach learns the normal
behavior of users and detects intrusions by observing patterns
that deviate from established norms. Thus, systems which use
the anomaly detection approach are able to detect zero-day
attacks. However, the number of false alerts will probably
increase because not all anomalies are intrusions.

Nowadays, many studies concentrate on approaches that
are based on to be able to detect network intrusions that
probably have never been seen before. Study [5] considers
a method of detecting web attacks which is based on di-
mensionality reduction by applying diffusion maps and on
subsequent application of spectral clustering. Paper [6] intro-
duces an adaptive anomaly detection approach for web attacks
that utilizes hidden Markov models to adaptively identify
normal HTTP requests. Application of growing hierarchical
self-organizing maps for finding intrusive HTTP queries is
investigated in [7]. In study [8], a novel anomaly-based HTTP-
flooding detection approach based on a density-based cluster
algorithm is proposed.

In this study, we consider the analysis of HTTP logs for the
detection of network intrusions. Normal user behavior is ana-
lyzed with the help of a training set of HTTP requests which
does not contain any attacks. After all relevant information is
extracted from these logs, several data mining techniques are
employed to describe the model of legitimate user behavior.
These techniques are based on unsupervised machine learning
and, therefore, allow one to build the model without a priori
knowledge about the structure of the data in the training set.
Furthermore, all parameters are calculated beforehand so that
the system administrator is not supposed to adjust them during
the training phase. The model is then used to detect network
intrusions within recent HTTP requests in an online mode.
Finally, the proposed framework is tested with the help of
a web server installed in a realistic cyber environment that
enables one to construct real attack vectors against this server.

The remainder of this paper is organized as follows.
Section II describes the process of data acquisition and feature
extraction from network logs. In Section III, a method that is
based on a data mining approach for detecting intrusions is
described. Results of the application of a proposed algorithm
to logs of a real web server are presented in Section IV. Section
V concludes this paper and outlines future work.



II. FEATURE EXTRACTION

In order to detect attacks against a web server, two types of
statistics are extracted from HTTP logs. HTTP logs can include
information about a user’s IP address, time and timezone,
the HTTP request including HTTP method used, requested
resource with several attributes, server response code, amount
of data transferred, referer and browser software used. Here is
an example of a single line from an Apache server log file in
which information is stored in a combined log format [9]:

127.0.0.1 - frank [10/Oct/2000:13:55:36
-0700] "GET /resource?parameter1=value1&
parameter2=value2 HTTP/1.0" 200 2326
"http://www.example.com/start.html"
"Mozilla/4.08 [en] (Win98; I ;Nav)"

A. Statistics per request

First, we concentrate on analyzing HTTP queries which
can include the requested web resources with several attributes
and the user’s browser agents. A requested web resource
and its attributes can be used by an attacker to perform
such dangerous attacks as SQL injections, buffer overflow
and directory traversal attacks. The attacker can also inject
malicious code to the user agent field to construct various
kinds of attacks based on HTTP response splitting or malicious
redirecting [10]. For this reason, for each HTTP request the
following parameters are extracted: the resource requested,
values of the query’s attributes and the user agent. The analysis
of each of these parameters is considered separately.

To extract features from all of these parameters n-
gram models are applied. An n-gram is a sub-sequence
of n overlapping items (characters, letters, words, etc)
from a given sequence. N-gram models are widely
used in statistical natural language processing [11] and
speech recognition [12]. For example, for the line:
/wp-content/lapland2-529x320.jpg 2-grams are:
’/w’, ’wp’, ’p-’, ’-c’, ’co’, ’on’, ’nt’ ’.j’, ’jp’, ’pg’. Since, when
making code injections, attackers use specific combinations
of non-alphanumeric symbols, the usage of those symbols
is of the most interest. To deal with them, all numbers and
Latin letters are considered as the same character. In other
words, for a 2-gram model there is no difference between ’/w’
and ’/r’ and between ’d2’ and ’x3’. It allows us to reduce
the dimensionality of the problem significantly without losing
relevant information needed for intrusion detection. All unique
n-grams are counted to calculate feature vectors. A size of each
feature vector is equal to the number of all possible n-grams
used in the training set.

In this study, three types of feature vectors are extracted
from each of the mentioned textual parameters.

1) Model 1: the j-th feature of the i-th feature vector
xij is equal to the frequency of occurrences of j-th
n-gram in the i-th line fn

ij :

xij = fn
ij . (1)

2) Model 2: the j-th feature of the i-th feature vector
xij is calculated as the ratio of the frequency of
occurrences of j-th n-gram in the i-th line fn

ij and

the frequency of occurrences of the j-th n-gram in
the whole training set Fn

j :

xij =
fn
ij

Fn
j

. (2)

3) Model 3: the j-th feature of the i-th feature vector xij

is defined as the ratio of the frequency of occurrences
of j-th n-gram in the i-th line fn

ij and the product
of frequencies of symbols contained in this n-gram
calculated for the whole training set:

xij =
fn
ij∏n

k=1
F 1
jk

, (3)

where F 1
jk is the frequency of occurrences of the k-th

symbol of the j-th n-gram in the training set.

B. Statistics per time bin

As a rule, the detection of attacks such as scanning and
bruteforcing requires consideration of network traffic as time
series. For this reason, the analyzed time period is divided
into overlapping time bins. First, for each HTTP request in
each time bin we extract the following parameters: user’s IP
address, requested web resource with its attributes, the amount
of transferred bytes and server’s response code. In addition, the
total number of HTTP requests sent into each time bin is taken
into account.

Per-request statistics is then reduced into aggregated time-
bin based statistics. For this purpose, a sample entropy of every
extracted parameter is calculated for each time bin. Let us
assume that in the i-th time bin the j-th parameter has Nij

unique values which appear with frequencies p1ij , . . . , p
Nj

ij . In
this case, sample entropy Eij for the j-th parameter in the i-th
time bin is defined as follows:

Eij = −

Nij∑
k=1

pkij log2 p
k
ij . (4)

Sample entropy allows one to capture the degree of dispersal
or concentration of the parameter’s distribution. Eij is equal
to zero when all values of the j-th parameter are the same,
and it takes on its maximal value log2 Nij when p1ij = p2ij =

. . . = p
Nij

ij . The matrix of entropy values is used as a feature
matrix for the detection of several web attacks.

III. METHOD

When all relevant features have been extracted from net-
work logs, several data mining techniques are applied to
feature matrices obtained to construct a model of normal users
behavior. For different HTTP request parameters, different
techniques are used, because they allow us to extract a model
of normal users behavior more accurately (see Section IV).
All these techniques employ an unsupervised machine learn-
ing approach which allows one to build the model without
a priori knowledge about the structure of the data in the
training set. All the feature vectors extracted from the training
set correspond to legitimate HTTP requests. In addition, all
algorithm parameters are calculated beforehand so that the
system administrator is not supposed to adjust them during the
training phase. Once the normal user behavior model is found,
it can be further used to classify new HTTP connections.



A. Web resource

The construction of a normal users behavior model starts
with the analysis of requested web resources. First, the dimen-
sionality of feature vectors corresponding to web resources is
reduced with the help of Principal Component Analysis (PCA).
PCA is an unsupervised dimensionality reduction technique
that maps the data to a new coordinate system where the
axis directions contain maximal variance [19]. These axes
are ordered in such a way that the greatest variance by any
projection of the data lies on the first coordinate, which is
known as the first principal component, the second greatest
variance is on the second coordinate, and so on. This mapping
is performed by analyzing the eigenvectors of the covariance
matrix calculated for extracted feature vectors. In this study,
the principal components which correspond to the non-zero
eigenvalues of the covariance matrix are used for the transfor-
mation.

After that, Support Vector Data Description (SVDD) is
applied to the transformed vectors of the training set. By
constructing a hypersphere which contains all data in one
category, an SVDD finds a closed boundary around the data
belonging to that category [19]. This sphere is characterized
by center c and radius R > 0.

Let us assume that there are q transformed feature vectors
x1, x2, . . . , xq which correspond to the requested web re-
sources of the training set. The center c of SVDD hypersphere
(c,R) for these vectors can be defined as c =

∑q

i=1
αixi. Here

α = (α1, . . . , αq) is the solution of the following optimization
problem:

max
α

q∑
i=1

αi(φ(xi)
Tφ(xi))−

q∑
i=1

q∑
j=1

αiαjφ(xi)
Tφ(xj),

subject to

{∑q
i=1

αi = 1,

0 ≤ αi ≤ C, ∀i ∈ {1, . . . , q},

(5)

where function φ(x) maps x to a higher dimensional space
and C is the penalty parameter which controls the trade-off
between the hypersphere volume and classification errors. In
this study, parameter C is equal to one and a linear kernel φ
is used, i.e. φ(x) = x. Radius R of sphere (c,R) is calculated
as follows:

R = φ(xk)
Tφ(xk)− 2

∑
i:αi<C

αiφ(xi)
Tφ(xk)+

+
∑

i:αi<C

∑
j:αj<C

αiαjφ(xi)
Tφ(xj),

(6)

where xk is any vector from a dataset such as αk < C.

Once optimal hypersphere (c,R) is found, a vector x
corresponding to the resource parameter of a new HTTP
request is classified as an attack if

R2 − (φ(x)Tφ(x)− 2

q∑
i=1

αi(φ(x)
Tφ(xi))+

q∑
i=1

q∑
j=1

αiαjφ(xi)
Tφ(xj)) < 0.

(7)

B. Query attributes

To detect anomalies within values of queries attributes,
the well-known k-means technique is applied. K-means is a
unsupervised partitioning technique which classifies a dataset
of objects into k clusters. As a rule, the number of clusters k
is given beforehand. This algorithm tries to minimize the sum
of distances between each feature vector and the mean value
of the cluster this vector belongs to.

The most common of these algorithms uses an iterative
refinement technique [13]. First, k means m1, . . . ,mk are
initiated, e.g. by randomly choosing k feature vectors from
the dataset. After that, each feature vector x is assigned to the
cluster corresponding to the least distant mean. Thus, the i-th
cluster Ci is formed as follows:

Ci =
{
xj : d(xj ,mi)

2 ≤ d(xj ,ml)
2 ∀l, 1 ≤ l ≤ k

}
, (8)

where d is the distance function. For recently-built clusters,
new means are calculated:

mnew
i =

1

|Ci|

∑
xj∈Ci

xj . (9)

These two steps, the assignment of feature vectors to clusters
and the calculation of new means, are repeated until there are
no longer changes in clusters during the assignment step

The clustering result strongly depends on the number of
clusters. In this study, we select this number based on study
[14]. Furthermore, the distance function for two feature vectors
xi and xj of length l is defined as one minus the linear
correlation between these vectors:

d(xi, xj) =

∑l

k=1

(
xik(xjk − x

μ
j )− x

μ
i (xjk − x

μ
j )
)

√(∑l

k=1
(xik − x

μ
i )

2

)(∑l

k=1
(xjk − x

μ
j )

2

) ,

(10)
where

x
μ
i =

∑l

k=1
xik

l
, x

μ
j =

∑l

k=1
xjk

l
. (11)

After the number of clusters is selected, k-means is applied
to feature vectors of the training set to find the optimal clusters
of web resources. For each such cluster its center and radius
are defined. The center of the i-th cluster corresponds to mean
value mi of vectors belonging to the cluster Ci. Radius ri is
calculated as

ri =
|Ci|+ 1

|Ci|
·max
x∈Ci

d(mi, x). (12)

Vector x corresponding to a value of an attribute of a new
HTTP request is classified as anomalous if it does not belong
to any of the spheres (mi, ri) obtained in the training phase,
i.e d(x,mi) > ri, ∀i ∈ {1, 2, . . . , k}. If at least one attribute
of a new HTTP request is anomalous then the whole request
is classified as an attack.

C. User Agent

The detection of intrusions within user agent values is
carried out with the help of Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN). DBSCAN is a
powerful density-based clustering algorithm, which is often



used for detecting outliers. It discovers clusters in the training
dataset, starting from the estimated density distribution of
feature vectors [15]. All cluster-less vectors are classified as
anomalies. DBSCAN requires two parameters: the size of
neighborhood ε and the minimum number of points required
to form a cluster Nmin.

The algorithm starts with an arbitrary feature vector x that
has not been checked. The number of feature vectors Nε(x)
contained in the ε-neighborhood of x is found and compared
to Nmin:

{
If Nε(x) < Nmin, then x is labeled as noise,
If Nε(x) ≥ Nmin, then x is a part of a cluster.

(13)

Vectors marked as noise might later be discovered as a part
of another vector ε-environment and hence be made a part of
a cluster. If a vector is found to be a part of a cluster, its ε-
neighborhood is also part of that cluster. After that, each point
y contained in the ε-neighborhood is checked. If y is density-
reached from x with respect to ε and Nmin, it is added to the
cluster. Vector y is density-reachable from x with respect to ε
and Nmin, if there is a chain of points x1, x2, . . . , xm, where
x1 = x and xm = y, such that ∀i ∈ {1, 2, . . . ,m− 1} the two
following conditions are satisfied:

{
dE(xi, xi+1) ≤ ε,

Nε(xi) ≥ Nmin,
(14)

where dE(xi, xi+1) is the Euclidean distance between xi and
xi+1. The cluster is built when all vectors density-reachable
from x have been found. Then, a new unvisited vector is
processed, leading to a discovery of a further cluster or noise.
All points which remain cluster-less after the algorithm is
finished are classified as anomalies.

In addition to the discovered anomalies, DBSCAN can find
arbitrarily-shaped clusters and does not require to know the
number of clusters in the dataset a priori. DBSCAN requires
just two parameters that should be optimally chosen. There are
several studies devoted to this problem [16], [17]. In this study,
ε is defined as the maximal value of pair distance between
feature vectors of the training set X:

ε = max
xi,xj∈X

dE(xi, xj). (15)

After that, Nmin is calculated as a minimal value of neighbors
of each feature vector of the training set taking into account
that the size of the neighborhood ε is defined by (15):

Nmin = min
x∈X

Nε(x). (16)

DBSCAN parameters calculated according to (15) and (16)
guarantee that all feature vectors extracted from user agents
of the training set participate in the model of normal user
behavior. In order to classify feature vector x corresponding
to a user agent of a new HTTP request, DBSCAN with selected
parameters is applied to the data set consisting of x and all
feature vectors of the training set. If x remains cluster-less
after DBSCAN has been applied, it is classified as anomaly.
In other words, if x is not density-reached from any point of
the training set, it corresponds to an intrusive HTTP request.

D. Aggregated time bin statistics

Entropy values of different parameter distributions can have
different scales. In order to standardize the entropy vectors of
the training set z-score normalization is used [20]. Using this
approach entropy values of the j-th parameter are normalized
based on their mean μj and standard deviation σj :

Ez
ij =

Eij − μj

σj

, (17)

where Ez
ij is the new value of Eij . These new values are

distributed with standard normal distribution, with zero mean
and unit standard deviation.

In order to analyze HTTP requests in a new time bin an
entropy vector is extracted and normalized by using the mean
and standard deviation values found in the training phase. This
normalized vector ez is classified as an anomaly if

||ez||2 > max
i∈T

||Ez
i ||2, (18)

where T is the set of time bins analyzed in the training set. In
this case, requests received during this new bin are supposed
to be analyzed further.

IV. EXPERIMENTAL RESULTS

The demonstration of the proposed intrusion detection ap-
proach is carried out using Realistic Global Cyber Environment
(RGCE) which has been created to be equivalent to the Internet
meaning that the structures are as similar as possible. RGCE
contains a network operator and the Internet Service Providers
(ISPs) with their core services. These structures enable re-
alistic organization and ISP environments and therefore real
threats and attack vectors. RGCE is isolated from production
networks, which allows one to use vulnerabilities and attacks
without a risk of contaminating production networks. Within
RGCE, traffic is automatically generated based on realistic
traffic patterns that simulate or replicate end user traffic.

In this research, a web server has been installed in the
RGCE environment. In order to test the proposed methods of
intrusion detection, normal network traffic and special attacks
against the web server have been generated. The traffic has
been generated during a five-day time period. On the first day,
there is only legitimate traffic, whereas the traffic gathered for
the next four days consists of legitimate traffic mixed with
several attacks against the web server. These attacks include
scanning attacks, DoS attacks, bruteforce attacks and various
targeted attacks. The web server’s HTTP logs gathered during
these five days are then used to evaluate the performance of
the proposed detection scheme.

First, the search for anomalous HTTP requests is carried
out. For this purpose, we form three training and three testing
datasets which include feature vectors extracted from requested
web resources, values of HTTP queries attributes and user
agents, respectively. Each training set is generated based on
HTTP requests gathered on the first day and, therefore, does
not contain any intrusions. The testing sets include several
vectors corresponding to anomalous HTTP requests. These
anomalies are caused by attacks such as SQL injections,
directory traversals, cross-site scripting attempts and double
encoding attacks.



The detection of HTTP requests which contain injections
into web resource parameters is performed with the help
of SVDD. Feature vectors from these parameters are ex-
tracted by using n-gram models described in Section II when
n ∈ {1, 2, 3}. Figure 1 shows the dependence between false
positive and true positive rates for different n-gram models. As
one can see, for low values of false positive rate, SVDD shows
the best results in terms of true positive rate when 1-gram
model is applied and feature vectors are calculated by using
(2). When the method parameters are chosen optimally, 97.96
percent of intrusive requests are detected while the number of
false alarms is 0.52 percent. Resulting from this, anomalous
web resources in HTTP requests are detected with the accuracy
rate equal to 99.20 percent.
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Fig. 1. The dependence between false positive and true positive rates of the
detection of anomalous web resources by SVDD for different n-gram models.

After this, k-means is applied to feature vectors extracted
from attribute values. As previously, three n-gram models with
different values of n have been used to extract these vectors.
The dependence between false positive and true positive rates
is shown in Figure 2. It can be noticed that the application of
1-gram and either equation (2) or (3) for the features extraction
allows one to detect all (100 %) injections into HTTP attribute
values. Thus, even such simple technique as k-means can be
successfully used for HTTP attacks detection if the features
extraction and the parameters selection are carried out in a
proper way.

Anomalies within user agent values are classified by DB-
SCAN. In Figure 3, dependencies between false positive and
true positive rates for different n-gram models are compared.
As one can notice, for zero false positive rate the best results in
terms of true positive rate (95.45%) are provided when 1-gram
model is applied and feature vectors are calculated by using
(2). Such approach allows us to classify user agent values with
the accuracy equal to 97.5. Although the detection accuracy is
still high, it is much less than in cases of other HTTP request
parameters. This can be explained by the fact that the traffic
gathered on the first day contains only 9 unique user agent
values, which is not enough for the construction of a normal
user behavior model.

We compared the performance of the discussed methods
with other outlier detection techniques: Self-Organizing Map
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Fig. 2. The dependence between false positive and true positive rates of the
detection of anomalous attributes by k-means for different n-gram models.
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Fig. 3. The dependence between false positive and true positive rates of the
detection of anomalous user agents by DBSCAN for different n-gram models.

(SOM) and Local Outlier Factor (LOF). In order to extract fea-
tures, different n-gram models are applied. Those models for
which the detection accuracy is the highest are selected. The
comparison results are shown in Table I, where these highest
accuracy values are listed. As one can see, the methods based
on SVDD, k-means and DBSCAN show better results and
outperform other techniques in terms of detection accuracy.
We can also see that the calculation of feature vectors by (2)
allows us to reach the highest or one of the highest accuracy
rates. Furthermore, 1-gram model is supposed to be applied if
the aim is to minimize the number of false alarms.

TABLE I. DETECTION ACCURACY OF DIFFERENT ANOMALY

DETECTION METHODS FOR DETECTING INTRUSIVE HTTP REQUESTS.

Algorithm Web resources Attribute values User agents
SVDD 99.2 % 98 % 90 %
K-means 99.15 % 100 % 77.5 %
DBSCAN 98.75 % 98 % 97.5 %
SOM 98.7 % 99 % 87.5 %
LOF 98.2 % 95 % 97.5 %

Finally, the traffic gathered is considered as a time series.
A sliding time window is used to define the overlapping time
bins. For each time bin, the required parameters are extracted



and entropy vectors are calculated and normalized. Figure IV
shows normalized entropy values for the traffic gathered during
the first and the fourth days.
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Fig. 4. Normalized entropy values calculated with the time window of 60

seconds sliding with the step equal to 10 seconds.

The first day contains only legitimate traffic, whereas dur-
ing the fourth day, several active scans and password bruteforce
attempts are carried out by attackers (see Table II).

TABLE II. SCANS AND PASSWORD BRUTEFORCE ATTEMPTS DURING

THE FOURTH DAY.

Attack Time
Password bruteforce by Hydra 08:57 - 09:11
Password bruteforce by Hydra 09:28 - 09:41
Database takeover by Sqlmap 09:58 - 12:21
Active scan by Owasp 12:07 - 12:21
Forced browse by Owasp (dirbuster) 13.06 - 13:14

The detection of these attacks is tested for different sliding
time windows. The values of the detection accuracy are
compared in Table III.

TABLE III. DETECTION ACCURACY OF THE ENTROPY-BASED METHOD

FOR DIFFERENT TIME WINDOWS.

Time window Time step Attacks detected Detection accuracy
in the time step

10 minutes 1 minute 5 of 5 98.35 %
10 minutes 10 seconds 5 of 5 98.76 %
10 minutes 1 second 5 of 5 98.29 %
1 minute 10 seconds 5 of 5 99.24 %
1 minute 1 second 5 of 5 98.70 %

As one can see, when the size of the window is big enough,
all scans and bruteforce attacks can be detected with the help
of the proposed mechanism. The value of time step is supposed
to be selected as short as possible for the earlier detection of
attacks.

V. CONCLUSION

In this study, we consider the use of the analysis of HTTP
logs in the detection of network intrusions. First, a training
set of HTTP requests which does not contain any attacks is
analyzed. Once all relevant information has been extracted
from the logs, several anomaly detection schemes are applied
to describe the model of normal user behavior. This model
is then used to detect network attacks as deviations from the
norms. Data generated in a demonstration phase using RGCE
environment was extremely suitable for the study modeling
real Internet traffic that contains legitimate traffic mixed with
several attacks. The simulations based on this data show that
the method results in a higher accuracy rate compared to

other data mining techniques. In the future, we are planning
to continue the use of the anomaly-detection approaches to
detect web intrusions. We are going to concentrate on the
improvement of the performance of methods in terms of the
detection accuracy and real time detection of more complicated
web-based attacks.
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Abstract. Because of the severe global security threat of malwares, vulnerabili-
ties and attacks against networked systems cyber-security research, training and 
exercises are required for achieving cyber resilience of organizations. Especial-
ly requirement for organizing cyber security exercises has become more and 
more relevant for companies or government agencies. Cyber security research, 
training and exercise require closed Internet like environment and generated  
Internet traffic. JAMK University of Applied Sciences has built a closed Inter-
net-like network called Realistic Global Cyber Environment (RGCE). The  
traffic generation software for the RGCE is introduced in this paper. This paper 
describes different approaches and use cases to Internet traffic generation.  
Specific software for traffic generation is created, to which no existing traffic 
generation solutions were suitable. 

Keywords: Internet traffic generation · Cyber security research and exercise · 
Cyber security · Network security 

1 Introduction 

The JAMK University of Applied Sciences has built a closed Internet-like network 
called Realistic Global Cyber Environment (RGCE). RGCE mimics the real Internet 
as closely as possible and contains most services found within the real Internet, from 
tier 1 Internet Service Providers (ISP) to small local ISPs and even individual home 
and corporate ISP clients. The fact that RGCE is completely isolated from the Internet 
allows RGCE to use accurate GeoIP information for all IP addresses within RGCE. 
This allows the creation of exercises or research cases where the attackers and the 
defenders are seemingly in different parts of the world and any device (real or virtual) 
will assume that it is actually operating within the real Internet. RGCE also contains 
various web services found in the real Internet [1, 2]. 
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Due to the fact that RGCE is isolated from the real Internet, RGCE does not 
contain background user traffic of its own. This poses a problem: how can you 
realistically train for a scenario where your public services are being attacked by an 
unknown party, and the attack traffic is concealed within normal user traffic if there is 
no normal user traffic? This is the basic problem to be solved in order to efficiently 
use RGCE for cyber security exercises or research. 

Traffic generation has an important role when characterizing behaviour of the 
Internet. Behaviour of the real Internet consists of the rapid changes of the network, 
network traffic and user behaviour as well as the variables of characterization vary 
from the traffic links and protocols to different users or applications [3]. In addition 
changing nature of connections in Internet is influenced by the behaviour of the users, 
which determines the page level, and the connection level correlation that should be 
included to the traffic generation models [4]. According to the study [4] this is 
neglected by the scientific literature. 

There are two fundamental approaches to Internet-like traffic generation, trace-
based generation and analytical model-based generation. In trace-based generation the 
content and the timings of the captured real traffic are retransmitted and in analytical 
model-based generation the traffic is generated based on the statistical models [5, 6]. 

Due to increasing amount of traffic, applications and users deep analysis of real 
Internet traffic is essential for planning and managing networks [7]. Deep analysis of 
real Internet traffic also gives an efficient viewpoint for realizing the extensive 
processes of the Internet [8]. Thus the deep analysis of the real network traffic can be 
used for developing Internet traffic generation software using realistic traffic patterns 
from both humans and machines. 

In this paper the Internet traffic generation software is introduced. First, the 
requirements, existing solutions and different approaches for traffic generation are 
presented. Then the developed solution is introduced and evaluated. 

2 Found Requirements 

The main purpose of developed Internet traffic generation software is to generate user 
traffic for the cyber security exercises conducted within RGCE. To meet the 
requirements for cyber security exercises the Internet traffic generation software was 
implemented according to the following self-generated requirements: 

• Centralized control; the system shall have a single point of control and the control 
mechanism shall enable the generation of a large volume of traffic with minimal 
user interaction. 

• Ability to generate legitimate traffic; the generated traffic shall adhere to the 
generated protocol. 

• Ability to generate meaningful traffic on several layers of the OSI model; the 
system shall be able to generate meaningful traffic on OSI layers 3-6. This shall 
include IP, TCP, HTTP and other application layer protocols. 
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• Ability to generate attack traffic; the system shall be able to generate traffic for 
various attacks commonly encountered on the Internet. Examples of such attacks 
include SYN flood, NTP and DNS amplification DDoS attacks. 

• Generated traffic shall look like real Internet traffic; the traffic shall be as 
indistinguishable as possible from real traffic for both humans and machines. 

• Ability to make the traffic look like it is coming from anywhere within RGCE; it 
shall be possible to deploy parts of the system to various parts of RGCE to make 
the geolocation information look realistic. 

• Generated traffic shall not be a replay; replaying previously recorded traffic would 
make it easy to distinguish generated traffic from normal user traffic, unless the 
recorded captures are of significant length. 

• Generated traffic shall work with existing servers; the system shall be able to use 
normal, non-modified servers as targets for traffic generation. A simple example 
would be HTTP: the system shall be able to generate legitimate non-identical 
requests to a given HTTP server, with varying HTTP headers and make those 
requests at human-like intervals. 

• The system shall be highly autonomous; the system shall be able to recover from 
errors without human intervention as much as possible. The system shall be able to 
generate traffic without human intervention for extended periods of time. 

3 Existing Solutions for Traffic Generation 

There are a number of proprietary and open source tools available for Internet-like 
traffic generation, such as TG Traffic Generator [9], NetSpec [10], Netperf [11], 
Packet Shell [12] and D-ITG [13, 14]. A detailed listing and analysis of available 
tools can be found from the study [5]. Those mentioned tools approach the problem 
from the viewpoint of workload generation through statistical models. Their goal is to 
generate repeatable workloads for networks and monitoring tools. 

Such tools suffer from the fact that they are often implemented on top of non-real-
time operating systems (OS). This causes their behaviour to be un-deterministic due 
to various scheduling decisions made by the OS as introduced in study [15]. 
Performance of D-ITG is also analysed in [14]. Netbed has a different viewpoint, it is 
a tool for integrating three experimental environments: network emulator, network 
simulator and real networks [16]. 

Developed Internet traffic generation software avoids many of above-mentioned 
problems, mainly because the goal is not in the generation of realistic workloads, but 
rather in meaningful payloads and good integration with existing off-the-shelf 
products with minimal customization. 

4 Approaches 

There are different approaches to Internet traffic generation with their pros and cons. 
These described approaches were analysed for the development of Internet traffic 
generation software. 
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4.1 Network Layer Traffic Generation 

Generating traffic on the network layer is a simple approach to traffic generation. It is 
trivial to implement using, for example, Linux raw sockets [17], and can be 
implemented for both IPv4 and IPv6. 

This approach works by generating a large number of IP packets with randomized 
payloads. The use of Linux raw sockets also allows the source IP address of the 
packet to be spoofed, which allows a single machine to simulate a huge number of 
individual hosts. The machine sending the IP packets could be considered to be the 
default gateway for a large organization, such as university or a company. 

An example system could work by requiring a definition of a range of source IP 
addresses to use (e.g. 10.0.0.1-10.0.0.255 for IPv4) and then generating a large 
number of IP packets with the source field set to one of the IP addresses within the 
source range. 

The generated packets are only meaningful when analysed on the IP layer. If the 
requirements for the generated traffic are such that the traffic has to be meaningful on 
higher layers (e.g. TCP), this approach is not suitable without a considerable amount 
of effort. This means that implementing a custom TCP stack on top of Linux raw 
sockets is required. The only benefit over regular Linux TCP sockets [18] is the 
ability to spoof source IP addresses for individual TCP segments [19]. 

Various analytical model-based network traffic generation tools utilize this 
approach. Such tools put emphasis on IP traffic characteristics (e.g. packet size and 
timing), rather than the transmitted data itself [13, 9, 10]. 

This is not feasible for the purposes of Internet traffic generation within RGCE 
(see Section 2). But it is relevant for testing various other aspects of network 
performance. 

4.2 Transport Layer Traffic Generation 

Using existing TCP stacks found in operating systems to handle the TCP connections 
significantly reduces the complexity of the implementation but makes IP spoofing 
[20] difficult. It is still possible to use a single machine to simulate a larger amount of 
hosts by using IP aliasing. 

An elementary approach to traffic generation on the transport layer would be to 
utilize TCP stack provided by the operating system. This greatly simplifies the 
implementation of the traffic generator, as the OS TCP stack will take care of 
retransmission and other TCP details. As a downside, this approach does not allow for 
much control over the generated traffic characteristics. 

As with the network layer approach (Section 4.1) this method works as long as 
meaningful exchanges on higher layers of the OSI model are not required (e.g. HTTP). 
It is possible to overcome this problem for the simplest of cases, such as creating 
multiple identical HTTP requests and always expecting an identical reply. More 
complex transmissions are also possible to implement but in most cases it would be 
more straightforward to just implement the approach described in Section 4.6 
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4.3 Replaying Traffic 

When considering approaches to Internet traffic generation, replaying PCAP files [21] 
is a rather natural option. Typically, traffic replay aims to generate repeatable 
workloads for systems under test [6]. This is achieved by replaying recorded data [22] 
or synthesizing [23] traffic traces and then replaying them through the network. 
Tcpreplay [22] is existing software solution that is able to replay captured TCP traffic 
from files. 

 

Fig. 1. Simple traffic replaying environment 

It is necessary to use Out of band communication channel (Fig. 1) if the 
orchestration should not interfere with the system under test. Orchestration could 
include communicating the roles, timing, and bandwidth quotas associated with the 
replay [5]. 

In order to make this approach work, some processing is required for the PCAP 
file: 

• Filtering out all unnecessary data streams. Unless the PCAP file is captured with 
the intention of replaying it, it is likely that the file contains a lot of unnecessary 
packets. 

• Compiling the payload bytes from the TCP segments. Sending individual TCP 
segments from the PCAP file is not a feasible approach because network 
conditions are very likely to differ between the recording environment and the 
replaying environment. When the bytes are properly extracted and sent over the 
operating system’s TCP stack the implementation does not have to concern itself 
with TCP details. It also makes it easier to detect and handle networking problems 
in the replaying environment. 

• Constructing an intermediate presentation of the PCAP file that describes what to 
send and what to receive for each participant of the conversation. 

It is worth noting that replaying PCAP files is only feasible for reliable transport layer 
protocols (e.g. TCP and SCTP). While it is possible to just extract the sent UDP (or 
other unreliable transport level protocols) packets and resend them, it will require 
extra steps to ensure that the packets get to their destination due to the nature of UDP 
[24]. There are two approaches to overcome this problem: 
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• Protocol awareness. The system needs to be aware of the protocol it is replaying 
and in case of lost packets mimic the simulated protocol’s behaviour in such 
situations (if any). This requires considerable effort to duplicate the protocol’s 
functionality and the solution starts to resemble the approach detailed in section 
4.4. 

• Out of band communication channel. An out of band communication could be 
utilized to transfer information about sent and received packets between 
participants. While this approach makes sure that all packets get delivered, it does 
not reliably reproduce the simulated protocol, because it is acceptable to lose 
packets in some UDP based protocols. 

The following subsections will detail the out of band communication channel 
approach and its limitations. It is worth noting that the out of band communication 
channel must use a reliable transport layer protocol, such as TCP. The out of band 
communication channel also introduces additional latency to the replaying caused by 
TCP. 

4.4 Replaying in a Reliable Network 

It is assumed in Fig. 2 that the replaying environment does not suffer from packet 
loss, thus introducing no unexpected side effects. 

 

Fig. 2. No network problems 

Replaying in a reliable network is processed as follows: client notifies Server 
through the OOB channel that it is about to send a request, client sends the actual 
request, server notifies client that it received the request, server notifies client that it is 
about to send a response, server sends the response and finally client notifies server 
that it received the response successfully. 

This scenario works as expected and does not introduce any additional side effects; 
the observer sees a single request and a single response and thus cannot tell the traffic 
apart from the real traffic. 
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4.5 Replaying in an Unreliable Network 

The fact that the out of band communication channel introduces some reliability 
features to the system can cause the observer to see responses without requests, this 
can be seen from Fig. 3. 

 

Fig. 3. Network problems 

Replaying in an unreliable network is processed as follows: client notifies server 
through the OOB channel that it is about to send a request, client sends the actual 
request, server notifies client that it received the request, server notifies client that it is 
about to send a response, server sends the response, router 1 fails to deliver the 
packet, client notifies Server that it did not receive a response, server resends the 
response and Client notifies the server that it received the response successfully. 

In the case of a network failure the observer observes multiple identical responses 
without corresponding requests. This allows an observer familiar with the protocol in 
question, to conclude that this traffic is not authentic. 

Even though replaying PCAP files is problematic for protocols that are 
implemented on top of unreliable transport protocols, it is still robust for protocols 
utilizing reliable transport protocols. But still this approach cannot be used with 
existing servers and will end up repeating the same conversation over and over again, 
thus not fulfilling the requirements listed in section 2. 

4.6 Simulating Clients 

Simulating full clients for Internet traffic generation offers a flexible solution to 
traffic generation, as it allows fine-grained control over the generated traffic and the 
depth of simulation. This approach does not allow precise traffic generation on packet 
level or control of the various packet characteristics that are available in other traffic 
generation solutions, such as Inter Departure Time (IDT) and Packet Size (PS). 

This approach can fulfil the requirements listed in section 2; it can be used with 
any server and the generated traffic is sufficiently diverse. It is also possible to 
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implement very specific types of traffic (e.g. deliberately broken TCP traffic). If the 
client simulation is sufficiently sophisticated, it is very difficult for the server and 
observers to distinguish it from the realistic clients. 

It is worth noting, that this approach requires a significant amount of effort, as it is 
difficult to create a single solution that could simulate multiple clients and protocols 
in a convincing manner. This means that the system will require multiple protocol 
specific modules. 

5 Implemented Solution 

Implemented solution aims to generate traffic that looks meaningful to a human 
observer. It was decided to implement Internet traffic generation software using the 
full client simulation approach. Solution consists of a hierarchical network of nodes. 
The network forms a tree like structure. The network forms an opt-in botnet, where 
each individual node is a host. 

5.1 Terminology 

The network consists of three different node types: King, Slavemaster and Botmaster. 
Bots are not nodes (hosts), but are run on the same host as the Botmaster. 

King is the root node of the tree. King acts as a bridge between the UI and the rest 
of the network. The UI is running on a webserver on this node. Both Slavemasters and 
Botmasters can connect to King. Every message sent into the network by the user 
passes through King. 

Slavemaster connects to the King or another Slavemaster and acts as a router 
between nodes. Slavemasters can connect to other Slavemasters and thus the depth of 
the tree representing the network can be arbitrary. Slavemasters have full knowledge 
of the tree underneath themselves. When a Slavemaster receives a message it checks 
the message recipient. If the recipient is the Slavemaster it broadcasts that message to 
all of its children, who then broadcast it to their children and so on. If the recipient is 
one of the descendants of the Slavemaster message is forwarded towards it. 

Botmaster is a leaf node of the tree. Botmasters are charged with performing the 
actual traffic generation. Botmasters run one or more Bots. Multiple Bots can be 
running simultaneously. Botmaster receives messages and status updates from its Bots 
and forwards them to King, which will then update the UI accordingly. In the current 
implementation Bots are ran in the same process as the Botmaster. 

Bot handles the actual traffic generation. Each Bot is tasked with generating traffic 
of a certain type (e.g. HTTPBot generates HTTP traffic). If a Bot encounters an error 
it sends a notification to the UI about it. 

5.2 Implementation 

Current implementation of the system contains traffic generation profiles for various 
protocols and services, such as HTTP, SMTP, DNS, FTP, NTP, IRC, Telnet, SSH, 
CHARGEN and ICMP. Each protocol or service is capable of containing different 
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5.3 Evaluation 

The evaluation for the developed solution is studied as follows. There were three 
different networks and three different amount of data generation Botmasters chosen. 
The different networks chosen were Localhost, Local Area Network (LAN) and 
Internet. The webserver with webpage including text pictures and links to 30 sub-
pages was installed and HTTPBots browsed the contents of that webserver on each 
network cases. The LAN was in the JAMK University of Applied Sciences and the 
Internet scenario was between Netherlands and Finland (the webserver located in the 
Netherlands). The amount of Botmasters was 5, 25 and 125. The network data was 
captured on both sides, server side and client side. Time period of every single 
capture is 30 minutes long. 

 

Fig. 5. Left: Internet 25 Botmasters, average delta time (s) and packet loss (%) Right: LAN 25 
Botmasters, average delta time (s) and packet loss (%) 



264 T. Kokkonen et al. 

Evaluation data was generated using the HTTPBot, which mimics a browser by 
first downloading an HTML page from the targeted HTTP server. HTTPBot 
downloads all images, JavaScripts and CSS files referenced in the HTML document. 
Once all of the files are downloaded, the HTTPBot searches for a link to another page 
within the same domain or another domain. A link is chosen at random and the same 
process is repeated again. 

The network traffic (PCAP data) was captured from the client and server side of 
the connection and also log data from the server was collected. 

 

Fig. 6. Average throughput for generated traffic 

Fig. 5 shows packet loss (%) and average delta time for 25 Botmasters in Internet 
and LAN. Average delta time in those figures is an average time difference between 
sent packets from the same source during the same conversation. Fig. 6 shows 
average throughput from all clients to server in all measured cases captured in client 
sides of the connections. 

Evaluation shows that developed system is scalable and capable of producing 
significant amount of traffic. Scalability was proofed using different amount of 
Botmasters and different network topologies. In all tested network topologies the 
generated traffic behaves as expected based on the calculated characteristics. 

Since Internet traffic generation software is designed for conducting research in 
network security and cyber attack detection, it is also capable to produce different 
sorts of attacks e.g. Denial of Service DoS/DDoS attacks based on volumetric traffic, 
resource exhausting or exploits and also bruteforce attacks. 

Developed solution is also tested in the National Cyber Security Exercises 
organized by Finnish Defence Forces [28, 29]. Initial version of Internet traffic 
generation software is also being used for Internet traffic generation in an anomaly 
detection study [2]. 

All of those experiments show that developed traffic generation solution can be 
used to generate different kind of data patterns, and it is appropriate for different kind 
of cyber security analysis for example for big scale National cyber security exercises. 
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5.4 Lessons Learned 

The generation of the Internet traffic is extremely important for research and 
development of cyber security. For example research and development of Anomaly 
Detection algorithms or Intrusion Detection Systems requires an environment with 
realistic legitimate background traffic and design made attacks [30, 2]. Generation of 
Internet traffic has an important role in cyber security exercises and training. 

There were some lessons learned from the use cases that caused extra development 
for the data generation software. OOB communication for control traffic is very 
important when generating lot of traffic (e.g. HTTPDDoSBot). Generated data might 
block the outgoing data and if the command communication data uses the same 
interface it is also blocked. That causes situation where one Bot blocks the Botmaster 
out from the network. Another lessons learned that required changes for development 
was CPU bound meaning that if there is Bot doing resource intensive processing it 
might harm the whole process and block the Botmaster out of communication. Bots 
that are CPU resource intensive (e.g. SYN flood Bot) cannot have permission to 
generate traffic as fast as they are capable of processing, thus there must be a limit 
e.g. 5000 packets/second/Bot. 

6 Conclusion 

In this study, approaches to realistic Internet traffic generation for cyber security 
research and exercise were considered. First requirements for traffic generation were 
analysed. After that different solutions and approaches were described. Finally 
suitable approach was chosen and developed Internet traffic generation software was 
introduced. As a conclusion it can be said that the developed Internet traffic 
generation software met the requirements and it is suitable for modelling the Internet 
traffic as a part of the cyber security research and exercise. Requirements for next 
phase were found and in future the development of those requirements are planned to 
execute. The deployment of the several Botmasters shall be automated and replaying 
of PCAP data (limited only for TCP) between Botmasters shall also be developed. 
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Antti Niemelä2, and Jarmo Siltanen2

1 Department of Mathematical Information Technology, University of Jyväskylä,
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Abstract. Denial of Service attacks remain one of the most serious
threats to the Internet nowadays. In this study, we propose an algorithm
for detection of Denial of Service attacks that utilize SSL/TLS protocol.
These protocols encrypt the data of network connections on the applica-
tion layer which makes it impossible to detect attackers activity based on
the analysis of packet payload. For this reason, we concentrate on statis-
tics that can be extracted from packet headers. Based on these statistics,
we build a model of normal user behavior by using several data min-
ing algorithms. Once the model has been built, it is used to detect DoS
attacks. The proposed framework is tested on the data obtained with the
help of a realistic cyber environment that enables one to construct real
attack vectors. The simulations show that the proposed method results
in a higher accuracy rate when compared to other intrusion detection
techniques.

Keywords: Network security · Intrusion detection · DoS attack · Data
mining · Anomaly detection

1 Introduction

Due to the fact that Internet has become the major universal communication
infrastructure, it is also subject to attacks in growing numbers and varieties.
One of the most serious threats to the Internet nowadays is Denial of Service
(DoS) attacks [2]. This kind of attack disables the network servers using lots of
messages which need response and consumes the bandwidth of the network or
the resource of the system. Because it is difficult for an attacker to overload the
targets resources from a single computer, modern DoS attacks are launched via
a large number of distributed attacking hosts in the Internet. Such distributed
DoS (DDoS) attacks can force the victim to significantly downgrade its service
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performance or even stop delivering any service [1]. Moreover, DDoS attacks are
more complex and harder to prevent compared to conventional DoS attacks.

Traditional DDoS attacks are carried out at the network layer, e.g. ICMP
flooding, SYN flooding, and UDP flooding. The purpose of these attacks is to
consume the network bandwidth and deny service to legitimate users of the vic-
tim systems. This type of attack has been well studied recently and different
schemes have been proposed to protect the network and equipment from such
bandwidth attacks [3–7]. For this reason, attackers shift their offensive strate-
gies to application-layer attacks. Application-layer DoS attacks may focus on
exhausting the server resources such as Sockets, CPU, memory, disk bandwidth,
and I/O bandwidth. Unlike network-layer DoS attacks, application-layer attacks
do not necessarily rely on inadequacies in the underlying protocols or operating
systems. They can be performed by using legitimate requests from legitimately
connected network machines. The most popular application-layer DoS attacks
are HTTP page flooding and low-rate DoS attacks [1].

The problem of application-layer DoS and DDoS attacks detection is of great
interest nowadays. For example, in [8], an anomaly detector based on hidden
semi-Markov model is proposed to describe the spatial-temporal patterns of
normal users and to detect application-layer DDoS attacks for popular websites.
Study [9] proposes an advanced entropy-based scheme, which divides variable
rate DDOS attacks into different fields and treats each field with different meth-
ods. Paper [10] considers detection of slow DoS attacks by analyzing specific
spectral features of network traffic over small time horizons. In [11], authors
detect application-layer DDoS attacks by constructing a random walk graph
based on sequences of web pages requested by each user. Paper [12] shows a
novel detection technique against HTTP-GET attacks, based on Bayes factor
analysis and using entropy-minimization for clustering.

Despite the rising interest to the detection of application DDoS attacks,
most of the current researches concentrate on various HTTP DDoS attacks. In
this study, we propose an algorithm for the detection of DDoS attacks utilizing
SSL/TLS protocol [13]. These protocols encrypt the data of network connections
in the application layer which makes it impossible to detect attacker’s activity
based on the analysis of packet’s payload. For this reason, we concentrate on
statistics that can be extracted from packet headers. Based on these statistics, we
build a model of normal user behavior by using several data mining algorithms.
Once the model has been built, it is used to detect DoS attacks.

The rest of the paper is organized as follows. Extraction of feature vectors
from network packets is considered in Section 2. Section 3 introduces a scheme
that uses data mining techniques to build a model of normal user behavior
and subsequently detects DoS attacks. In Section 4, we present some numerical
results to evaluate the algorithm proposed and compare it with certain analogues.
Finally, Section 5 draws the conclusions and outlines future work.
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2 Problem Formulation

We consider a web server that provides several services working in two appli-
cation layer protocols: HTTP and HTTPS. Outgoing and incoming traffic of
this server is captured during some time period [Ts, Te]. There is no guarantee
that the traffic captured is free of attacks. For this reason, we aim to investigate
captured traffic and discover behavior patterns of normal users. In this study, it
is assumed that the most part of the traffic captured is normal. In real world,
this can be achieved by filtering the traffic with the help of a signature-based
intrusion detection system [14]. Once normal behavior patterns have been dis-
covered, these patterns can be used to analyze network traffic and detect DoS
and DDoS attacks against the web server in online mode.

We concentrate on attack detection based on the analysis of statistics that can
be extracted from packet headers. For this purpose, for each packet, we extract
the following information: time stamp, IP address and port of the source, IP
address and port of the destination, protocol, packet size, window size, sequence
number, acknowledgment number, time to live and TCP flags.

Packets with some common properties passing a monitoring point in a speci-
fied time interval can be combined into flows. As a rule, these common properties
include IP address and port of the source and IP address and port of the des-
tination. Thus, for each packet we also extract the index of the network traffic
flow this packet belongs to.

3 Algorithm

In order to detect network flows related to DoS and DDoS attacks we apply an
algorithm that can be divided into two main steps. First, we apply an anomaly
detection algorithm in order to find time intervals when an attack takes place.
After that, the traffic sent during these time intervals is analyzed in more details
to detect flows related to the attack.

3.1 Detection of Network Anomalies

In order to find time intervals which contain traffic anomalies we consider the
network traffic as time series. For this reason, the analyzed time period [Ts, Te]
is divided into equal overlapping time bins of length ΔT by points Ts + t

wΔT ,

where t = {w,w+1, . . . , w Te−Ts

ΔT −1}. The length of each time bin ΔT should be
picked in such a way that it contains enough information to detect anomalies.
Moreover, the value of w should be big enough for the earlier detection of attacks.

For each resulting time interval the following features are calculated:

1. Source IP address sample entropy,
2. Source port sample entropy,
3. Destination IP address sample entropy,
4. Destination port sample entropy,
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5. Total number of flows,
6. Average flow duration,
7. Average number of packets in one flow,
8. Average size of packets,
9. Average size of TCP window for packets.

Features 7 − 9 are extracted separately for packets sent from source to the des-
tination and packets sent from the destination to the source.

Sample entropy allows one to capture the degree of dispersal or concentration
of the parameter’s distribution. Let us assume that in the t-th time interval the
i-th parameter has nt

i unique values which appear with frequencies pt
i1, . . . , p

t
int

i
.

In this case, sample entropy Et
i for the i-th parameter in the t-th time interval

is defined as follows:

Et
i = −

nt
i∑

k=1

pt
ik log2 pt

ik. (1)

The model of normal user behavior is built by calculating chi-square values.
Chi-square values are used to find out how much the observed values of a par-
ticular given sample are different from the expected values of the distribution
[15,16]. Chi-square value for the t-th time interval is calculated as follows:

χ2
t =

nx∑

i=1

(xt
i − μi)

2

μi
, (2)

where nx is the number of features (in our case it is equal to 12), xt
i is the value

of the i-th feature for the t-th time interval and μi is the mean value of the
i-th feature during the analyzed time period [Ts, Te]. Chi-square value in (2) is
similar to the traditional chi-square statistic for independence tests.

Once chi-square values have been calculated, some filtering can be applied
to remove outliers and noise to build the model of normal user behavior. As
proposed in study [17], we define the following distance function:

d(χ2
t1 , χ

2
t2) = p(χ2

t1 is normal) − p(χ2
t2 is normal), (3)

where p(x is normal) is the probability that value x is normal and can be found
as follows:

p(x is normal) =

⎧
⎨
⎩

σ2
χ2

(x−μχ2 )2 , if x ≥ μχ2 + σχ2 ,

1, if x < μχ2 + σχ2 ,
(4)

where μχ2 and σ2
χ2 are the mean and the variance of chi-square values, respec-

tively. In this case, the distance d between a normal pattern and an outlier pat-
tern is expected to be higher than the distance d between two normal patterns
or two outlier patterns.

It is easy to divide all the chi-square values into two clusters, i.e. normal
values and outliers, by using single-linkage clustering algorithm. This algorithm
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belongs to a class of agglomerative hierarchical clustering methods. In the begin-
ning of the algorithm, each chi-square value forms a cluster, i.e. the number of
clusters is equal to the number of chi-square values, and every cluster consists of
only one element. At each iteration, the algorithm combines those two clusters
which are the least distant from each other. The distance d(Ci, Cj) between two
clusters Ci and Cj is defined as the minimal distance between two chi-square
values of these clusters, such that one value is taken from each cluster:

d(Ci, Cj) = min
χ2

t ∈Ci,χ2
τ ∈Cj

(d(χ2
t , χ

2
τ )). (5)

The algorithm stops when the required number of clusters is formed. In our case,
this number is equal to two: one cluster for normal values Cn and another one
for outliers Co. All outliers are removed from the model and all normal values
are used for detecting anomalies.

The χ2 statistic approximately follows a normal distribution according to
the central limit theorem [18], regardless of the distribution that each of the
extracted features follows. If we make the assumption that values of cluster Cn

resemble a normal distribution, approximately 99.7% of all chi-square values
should fall within three standard deviations of the mean value of cluster Cn.

In order to classify network traffic during the recent time interval, we dis-
cover necessary features for this time interval and calculate chi-square value χ2.
Network traffic at this time interval is classified as anomalous if

χ2 > μ̄χ2 + ασ̄χ2 , (6)

where μ̄χ2 and σ̄χ2 are the mean and the standard deviation of chi-square values
from cluster Cn, and parameter α ≥ 3. Thus, we can find the time interval when
an attack takes place.

3.2 Detection of Intrusive Flows

In order to build a model for detection of network flows related to a DDoS attack
we consider time intervals during which traffic is classified as normal. For each
flow in these time intervals, the following information is extracted:

1. Average, minimal and maximal size of packets,
2. Average, minimal and maximal size of TCP window,
3. Average, minimal and maximal time since the previous packet,
4. Average, minimal and maximal time to live,
5. Percentage of packets that have TCP flag SYN,
6. Percentage of packets that have TCP flag ACK,
7. Percentage of packets that have TCP flag PSH,
8. Percentage of packets that have TCP flag RST,
9. Percentage of packets that have TCP flag FIN.

We extract these features separately for both directions: from the source to
the destination and from the destination to the source. Thus, the i-th flow is
presented as as a feature vector yi of length n = 34.
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Values of vectors yi can have different scales. In order to standardize the
feature vectors of the training set max-min normalization is used. Max-min nor-
malization performs a linear alteration on the original data so that the values
are normalized within the given range [19]. In this paper, we map vectors yi

to range [0, 1]. To map a value yij of an attribute (y1j , y2j , . . . , ynj) from range
[min1≤i≤nt yij ,max1≤i≤n yij ] to range [0, 1], the computation is carried out as
follows

zij =

yij − min
1≤i≤n

yij

max
1≤i≤n

yij − min
1≤i≤n

yij
, (7)

where zij is the new value of yij in the required range.
The model of normal behavior can be found with the help of density-based

spatial clustering of applications with noise (DBSCAN). DBSCAN is a powerful
density-based clustering algorithm, which is often used for detecting outliers.
It discovers clusters in the training dataset starting from the estimated density
distribution of feature vectors [20].

DBSCAN requires two parameters: the size of neighborhood ε and the min-
imum number of points required to form a cluster Nmin. The algorithm starts
with an arbitrary feature vector z that has not been checked. The number of fea-
ture vectors Nε(z) contained in the ε-neighborhood of z is found and compared
to Nmin:

{
If Nε(x) < Nmin, then z is labeled as noise,

If Nε(x) ≥ Nmin, then z is a part of a cluster.
(8)

Vectors marked as noise might later be discovered as a part of another vector
ε-environment and hence be made a part of a cluster. If a vector is found to
be a part of a cluster, its ε-neighborhood is also part of that cluster. After
that, each point z̄ contained in the ε-neighborhood is checked. If z̄ is density-
reached from z with respect to ε and Nmin, it is added to the cluster. Vector
z̄ is density-reachable from z with respect to ε and Nmin, if there is a chain of
points z1, z2, . . . , zm, where z1 = z and zm = z̄, such that ∀i ∈ {1, 2, . . . ,m − 1}
the two following conditions are satisfied:

{
d(zi, zi+1) ≤ ε,

Nε(zi) ≥ Nmin,
(9)

where d(zi, zi+1) is the Euclidean distance between zi and zi+1. The cluster is
built when all vectors density-reachable from z have been found. Then, a new
unvisited vector is processed, leading to a discovery of a further cluster or noise.
As a rule, all points which remain cluster-less after the algorithm is finished
are classified as anomalies. Since, we assume that all flows in time intervals
considered are normal we consider all cluster-less points as clusters which contain
only one point. Figure 1 shows an example of the application of DBSCAN, with
Nmin = 3 and ε = 0.25 (radius of each circle).
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Fig. 1. An example of the application of DBSCAN

Thus, DBSCAN can find arbitrarily-shaped clusters and does not require
to know the number of clusters in the dataset a priori. DBSCAN requires just
two parameters that should be optimally chosen: the size of neighborhood ε
and the minimum number of points required to form a cluster Nmin. There are
several studies devoted to this problem [21,22]. In this study, Nmin is selected
to be equal to 10% of the total number of flows in time intervals that have been
classified as normal, and ε is equal to the average Euclidean distance between
feature vectors corresponding to these flows.

Once the clustering has been completed, the maximal pairwise Euclidean dis-
tance is calculated for each cluster. Let us denote the maximal pairwise distance
of elements of the i-th cluster Ci as mi:

mi = max
zj ,zk∈Ci

d(zj , zk). (10)

For each cluster-less point, mi is selected to be equal to the minimal value of
maximal pairwise distances of elements of all clusters. In order to classify a new
flow in the recent time interval, all necessary features are extracted from this
flow into vector z. After this, the cluster (or cluster-less point) which contains
the vector which is the least distant from z is found:

i∗ = arg min
zj∈Ci

d(z, zj). (11)

This flow is classified as an attack if the distance between z and the least distant
vector is greater than the corresponding maximal pairwise distance:

min
zj∈Ci∗

(d(z, zj)) > mi∗ . (12)
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After this, the traffic that corresponds to intrusive flows can be blocked to pre-
vent the development of the attack.

4 Numerical Simulations

Realistic Global Cyber Environment (RGCE) was used for the DoS/DDoS data
generation. RGCE is closed Internet-like environment developed and hosted by
JAMK University of Applied Sciences. As one of the main features, RGCE
executes real IP-addresses and geolocations [23,24]. A web server serving a
static main page with some text and a picture through HTTPS (SSL/TLS)
was installed as a part of the RGCE infrastructure. After that, RGCE was used
to generate both legitimate user traffic and DoS/DDoS traffic to this web server.
RGCE data generation software uses botnet architecture where the bots are
controlled by botmasters [23]. The bots were distributed in RGCE with differ-
ent global IP-addresses that also simulates global geological distribution inside
the RGCE. Two different types of bots were used for the data generation: bots
that generated legitimate HTTPS traffic and bots that generated non-legitimate
HTTPS traffic (DOS/DDoS) to the test web server. The bot that generated
legitimate traffic crawled through the targeted web-site and generated requests
for found content and followed found links. The bot that generated the non-
legitimate traffic created multiple requests to the targeted single web-site page.
The resulting data set contains mainly HTTPS traffic as the test web server com-
municated with the clients only through encrypted protocol. The non-encrypted
traffic (HTTP) in the dataset are the initial handshakes between the clients
(bots) and the test web server before the encrypted channel was created. All the
traffic was captured as PCAP-files [25] for the numerical analysis.

To test attack detection algorithms we consider one of such PCAP-files. This
file contains 80 minutes of traffic or 429202 traffic flows. To build a model of
normal user behavior we use the training set which contains 8 minutes or 10%
of traffic. This traffic is free of attacks but it contains few outliers. The testing
set contains remaining 72 minutes or 90% of the traffic. This set contains DDoS
attack from two different subnets. The attack starts at 8:53.19 and ends at
68:37.2. The length of time bin ΔT was selected to be equal to five seconds,
whereas parameter w is equal to 5. In this case, each time interval contained
enough information to detect anomalies every second.

Figure 4 shows features extracted for each second of the time period con-
sidered. On this figure, blue line represents normal traffic whereas red line cor-
responds to the DDoS attack. Chi-square values calculated for each second for
the features extracted are presented on Figure 4. As one can see, chi-square val-
ues corresponding to time intervals when the attack takes place are higher. In
order to find time intervals that contain anomalous traffic we apply the method
described in the previous section. Parameter α is selected to be equal to 5. As a
result, time of the start and time of the end of the attack can be defined up to
the size of time window which is equal to 1 second in our simulation.

We compare the performance of DBSCAN with other clustering and outlier
detection techniques: K-means, K-Nearest Neighbors (KNN), Support Vector
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Fig. 2. Features extracted for each time interval to find anomalous network traffic (blue
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Data Description (SVDD) and Self-organizing Map (SOM). To evaluate the per-
formance of each algorithm, the following characteristics are calculated in our
tests:

– True positive rate – the ratio of the number of correctly detected anomalous
samples to the total number of anomalous samples in the testing set

– False positive rate – the ratio of the number of normal samples classified as
anomalous to the total number of normal samples in the testing set

– Detection accuracy – the ratio of the total number of normal samples
detected as normal and anomalies detected as anomalies to the total number
of samples in the testing set.

Figure 4 shows the dependence between false positive and true positive rates
for different detection methods and different parameters. To compare the accu-
racy of the methods, we select optimal parameters of the methods based on the
training set. The comparison results are listed in Table 1 As one can notice, all
methods are able to detect all intrusive conversations (TPR = 100 %). However,
SVDD gives the worst results with the highest number of false alarms (FPR =
6.0627 %). DBSCAN outperforms other methods in terms of accuracy (Accuracy
= 99.9993 %) and number of false alarms (FPR = 0.0697 %). DBSCAN’s FPR
equal to 0.0697 % corresponds to only one flow in the testing set which is normal
but is classified as an attack. This false alarm can be explained by the fact that
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Fig. 4. Dependence between false positive and true positive rates for different detection
methods and different parameters.
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Table 1. Intrusion detection accuracy of different detection methods.

Algorithm TPR FPR Accuracy

K-means 100 % 0.4878 % 99.9951 %

KNN 100 % 0.2091 % 99.9979 %

SVDD 100 % 6.0627 % 99.9390 %

SOM 100 % 0.4878 % 99.9951 %

DBSCAN 100 % 0.0697 % 99.9993 %

the number of conversations in the training set is very low and probably not
enough for building the accurate model of normal user behavior.

5 Conclusion

In this paper, the scheme for detection of Denial of Service attacks that utilize
SSL/TLS protocol is proposed. The scheme is based on the analysis of statistics
extracted from packet headers. Based on these statistics, we build a model of
normal user behavior by calculating Chi-square values and clustering flows with
DBSCAN. Once the model has been built, it is used to detect DDoS attacks.
The method is tested on the data obtained with the help of a realistic cyber
environment. The simulation results show that the scheme proposed allows to
detect all intrusive flows with very low number of false alarms. In the future, we
are planning to improve the algorithm in terms of the detection accuracy, and
test it with a dataset which contains traffic captured during several days.
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Department of Mathematical Information Technology

University of Jyväskylä, Jyväskylä, Finland
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Abstract—In this study, we apply an anomaly-based approach
to analyze traffic flows transferred over a network to detect
the flows related to different types of attacks. Based on the
information extracted from network flows a model of normal
user behavior is discovered with the help of several clustering
techniques. This model is then used to detect anomalies within
recent time intervals. Since this approach is based on normal user
behavior, it can potentially detect zero-day intrusions. Moreover,
such a flow-based intrusion detection approach can be used in
high speeds since it is based on information in packet headers,
and, therefore, has to handle a considerably lesser amount of
data. The proposed framework is tested on the data obtained with
the help of a realistic cyber environment (RGCE) that enables
one to construct real attack vectors. The simulations show that
the proposed method results in a higher accuracy rate when
compared to other intrusion detection techniques.

I. INTRODUCTION

While the number of the Internet users and high-bandwidth
services offered to them is growing, the number of observed
network attacks are increasing exponentially [1]. The research
community, aiming to timely detection of intruders and pre-
vention of damage, has developed a growing interest in intru-
sion detection [2]. Despite of the rapid development of new
tools and strategies to detect network attacks, signature-based
detection remains the most popular approach in commercial
intrusion detection [3]. This approach is based on comparing
new data with a knowledge base of known intrusions and,
consequently, cannot recognize new attacks. On the other hand,
an anomaly-based intrusion detection system (IDS) compares
input data with a model of normal user behavior and marks a
significant deviation from this model as an anomaly [4], [5],
[6], [7], [8], [9]. As a result, such systems can potentially also
detect attacks that have never been seen before.

A traditional IDS inspects every packet received by the
computer or detected in the network in which the system has
been deployed. The recent rise in the amount of traffic and
the increase in line speed put a heavy computational load and
resource consumption on such traditional payload-based IDSs
[10]. For this reason, nowadays, researchers try to solve the
problem of intrusion detection in high-speed networks by flow-
based traffic analysis [6], [10], [2]. A flow is a group of IP
packets, with some common properties, passing a monitoring
point in a specified time interval [7]. Flow-based monitoring
is based on information in packet headers, and, compared
to payload-based IDSs, flow-based IDSs have to handle a
considerably lower amount of data [6]. However, since flow
measurements provide only an aggregated view of the data

transferred over the network and between hosts in terms of
number of packets and bytes, they cannot reach the accuracy
of the payload-based approach. Thus, a flow-based IDS is
not expected to completely substitute a payload-based system,
but can be used along with it to allow early detection in
environments in which payload-based inspection is not scalable
[6].

The problem of flow-based network anomaly detection
is of great interest nowadays. For example, [7] proposes a
flow-based anomaly detection system, which is based on a
Multi-Layer Perceptron and Gravitational Search Algorithm
for optimizing interconnection weights between the layers. The
system, having been trained with a flow-based data set, can
classify benign and malicious flows and do it with very high
accuracy rate. In [8], the proposed IDS operates on network
flows and uses one-class support vector machine for their
analysis. In contrast to traditional anomaly detection systems,
the system is trained with malicious rather than with benign
network data. Systems proposed in [7] and [8] consider the
network traffic as a set of non-interconnected flows and, there-
fore, cannot manage to detect types of attacks that are only
visible when the network traffic is analyzed over time. For this
reason, researchers consider traffic as time series, which are
a powerful tool to describe network traffic evolution patterns.
For example, [11] describes the creation of an anomaly-based
intrusion detection system that analyzes flow data through
a firewall protecting a controlled network environment. The
study suggests the use of statistical measures, such as standard
deviation and interquartile range, to develop traffic forecasts
based upon this flow data. Paper [12] presents a functional
extension for both NetFlow and IPFIX flow exporters. This
extension allows for timely intrusion detection and mitigation
of large flooding attacks. Study [13] proposes a novel approach
of network anomaly detection method based on chi-square
mechanism through transport layer protocol behavior analysis.
In [14], the authors present an anomaly detection system using
a seven-dimensional flow analysis based on the improved Holt-
Winters forecasting method on the traffic characterization of
each one of the different analyzed dimensions.

This study combines these two approaches together. First,
we consider network traffic as a time series. For each time
interval in a series, we extract various per-flow information.
Based on this information, flows transferred during each time
interval are divided into clusters. After that, distributions of the
resulting clusters are compared against each other to find time
bins which contain anomalous network traffic. Finally, traffic



transferred during ”anomalous” time bins is analyzed and the
flows related to the attack are discovered.

In order to cluster flows inside each time bin, we apply a
soft clustering approach. In soft clustering, a set of member-
ship levels is associated with each data sample. These levels
indicate the probability that the data sample belongs to a
particular cluster. Various soft clustering methods are used by
researchers for flow-based intrusion detection. For example,
[15] proposes to detect anomalous network flows based on a
fuzzy c-means clustering algorithm. In [16], an adaptive flow
clustering method based on fuzzy logic is introduced, and it
is demonstrated that this method prevents memory and CPU
resources from becoming exhausted during various flooding
attacks. Paper [17] presents an intrusion detection technique
based on fuzzy-neural networks and used with a k-means
clustering algorithm and radial support vector machine.

The rest of the paper is organized as follows. Extraction of
feature vectors from network flows is considered in Section
II. Section III introduces a scheme that uses data mining
techniques to build a model of normal user behavior and
subsequently detects intrusive flows. In Section IV, we present
some numerical results to evaluate the algorithm proposed and
compare it with certain analogues. Finally, Section V draws the
conclusions and outlines future work.

II. FEATURE EXTRACTION

We consider the network traffic as time series. For this
reason, the analyzed time period [Ts, Te] is divided into equal
overlapping time bins of length ΔT by points Ts + t

w
ΔT ,

where t = {w,w + 1, . . . , wTe−Ts

ΔT
− 1}. The length of each

time bin ΔT should be picked in such a way that it contains
enough information to detect anomalies. Moreover, the value
of w should be big enough for the earlier detection of attacks.

We concentrate on the intrusion detection based on the
analysis of network traffic flows. A flow is a group of IP
packets with some common properties passing a monitoring
point in a specified time interval. In this study, we assume
that these common properties include the IP address and port
of the source and IP address and port of the destination,
while the time interval corresponds to one of the bins defined
above. Thus, all packets which have the same source’s and
destination’s IP address and port are considered as one network
traffic flow. Flow measurements provides an aggregated view
of traffic information and drastically reduce the amount of data
to be analyzed.

For each flow at each time bin we extract the following
per-flow information: time of the start, IP address and port of
the source, IP address and port of the destination, the number
of packets transferred from the source to the destination, the
flow duration in seconds, the maximal, minimal and average
size of packets transferred during this flow (see Table I). We
divide vector f t

i of features extracted from the i-th traffic flow
at the t-th time bin into two parts:

f t
i = (xt

i, y
t
i), (1)

where

xt
i = (Isrc,ti , P

src,t
i , I

dst,t
i , P

dst,t
i ),

yti = (N t
i , B

max,t
i , B

min,t
i , B

avg,t
i , Dt

i).
(2)

TABLE I. FEATURES EXTRACTED FROM THE i-TH TRAFFIC FLOW AT

THE t-TH TIME BIN

Feature Description

I
src,t

i
IP address of the source

P
src,t

i
Source port

I
dst,t

i
IP address of the destination

P
dst,t

i
Destination port

Nt
i Number of packets

B
max,t

i
Maximal packet size

B
min,t

i
Minimal packet size

B
avg,t

i
Average packet size

Dt
i Flow duration

In addition, the total number of flows nt presented at the t-th
time bin is taken into account.

III. ALGORITHM

Let us assume that there is a special data set of which it
is known that it contains only legitimate network traffic. We
can use this data as a training set in order to build a model
of normal user behavior. This model is then applied to find
attacks in online mode.

In order to detect network flows related to different types
of attacks, we apply a clustering algorithm to flows transferred
during each time bin. After that, distributions of clusters are
compared to find time bins which contain network traffic
anomalies caused by an attack. Finally, traffic transferred
during anomalous time bins is analyzed and flows related to
the attack are discovered.

A. Flow clustering

The clustering technique we applied in this study is
based on Expectation Maximization (EM) algorithm for the
Gaussian mixture-density parameter estimation problem [18].
We assume that the second parts of flow feature vectors

Y t = {yti}
nt

i=1 are distributed according to the following
probabilistic model:

p(yti |Θ
t) =

M∑
k=1

αt
kp

t
k(y

t
i |μ

t
k,Σ

t
k), (3)

where M is the number of Gaussians which can be
determined by the Bayesian Information Criterion
[19], p(yti |Θ

t) is probability density function of
Θt = (αt

1, . . . , α
t
M , μt

1, . . . , μ
t
M ,Σt

1, . . . ,Σ
t
M ), αt

1, . . . , α
t
M

are parameters such as
∑M

k=1
αt
k = 1, and ptk(y

t
i |μ

t
k,Σ

t
k) is

the density function of the k-th Gaussian with mean value
μt
k and covariance matrix Σt

k, which can be calculated as
follows:

ptk(y
t
i |μ

t
k,Σ

t
k) =

e−
1

2
(x−μt

k)
T
(Σ

t
k)

−1
(x−μt

k)

(2π)5/2|Σt
k|

1/2
. (4)

It is assumed that there are unobserved data items Ȳ t =
{ȳti}

nt

i=1 whose values inform us which component density
generates each data sample yti . For each i ∈ (1, . . . , nt),
ȳti ∈ (1, . . . ,M) and ȳti = k if the i-th sample was generated
by the k-th mixture component.

To find the optimal distribution parameters Θt, the EM
algorithm applies iteratively the expectation and maximization



steps. During the expectation step of iteration j, the following
function is introduced:

Q(Θt, (Θt)(j−1)) = E(log p(Y t, Ȳ t|Θt)|Y t, (Θt)(j−1)), (5)

which is the expected value of the complete-data log-
likelihood log(p(Y t, Ȳ t|Θt)) with respect to the unknown
data Ȳ t given the observed data Y t and the current pa-
rameter estimates (Θt)(j−1) = ((αt

1)
(j−1), . . . , (αt

M )(j−1),

(μt
1)

(j−1), . . . , (μt
M )(j−1) and (Σt

1)
(j−1), . . . , (Σt

M )(j−1)). It

is assumed that (Θt)(0) is a random vector. Function
Q(Θt, (Θt)(j−1)) can be reduced to the following form:

Q(Θt, (Θt)(j−1)) =

M∑
k=1

nt∑
i=1

log(αt
k)p(k|y

t
i , (Θ

t)(j−1))+

+
M∑
k=1

nt∑
i=1

log(ptk(y
t
i |μ

t
k,Σ

t
k))p(k|y

t
i , (Θ

t)(j−1)),

(6)

where p(k|yti , (Θ
t)(j−1)) is the probability that the value of

the Gaussian-selector is k, given the observation yti , and the

mixture parameters are (Θt)(j−1). This probability can be
estimated as follows:

p(k|yti , (Θ
t)(j−1)) =

=
(αt

k)
(j−1)ptk(y

t
i |(μ

t
k)

(j−1), (Σt
k)

(j−1))∑M

k=1
(αt

k)
(j−1)ptk(y

t
i |(μ

t
k)

(j−1), (Σt
k)

(j−1))
.

(7)

During the maximization step of the j-th iteration, the
expectation function Q(Θt, (Θt)(j−1)) is maximized to find
the next estimation (Θt)(j) of distribution Θt:

(Θt)(j) = argmax
Θt

(Q(Θt, (Θt)(j−1))). (8)

This maximization is carried out by introducing Lagrangian
multipliers and calculating partial derivatives. As a result, es-
timates of distribution parameters can be calculated as follows:

(αt
k)

(j) =
1

nt

nt∑
i=1

p(k|yti , (Θ
t)(j−1)),

(μt
k)

(j) =

∑nt

i=1
ytip(k|y

t
i , (Θ

t)(j−1))∑nt

i=1
p(k|yti , (Θ

t)(j−1))
,

(Σt
k)

(j) =

=

∑nt

i=1
p(k|yti , (Θ

t)(j−1))(yti − (μt
k)

(j))(yti − (μt
k)

(j))T∑nt

i=1
p(k|yti , (Θ

t)(j−1))
.

(9)

The algorithm proceeds by using the newly-derived parameters
as the estimation for the next iteration. These two steps are
repeated as necessary. Each iteration is guaranteed to increase
the log-likelihood, and the algorithm is guaranteed to converge
to a local maximum of the likelihood function.

Thus, for data sample yti the EM algorithm calculates the
probability p(k, yti ,Θ

t) that the sample belongs to the k-th
distribution under model Θt. We define the probability P t

ij of

flows f t
i = (xt

i, y
t
i) and f t

j = (xt
j , y

t
j) belonging to the same

cluster as follows:

P t
ij = (1− dH(xt

i, x
t
j))

M∑
k=1

p(k, yti ,Θ
t)× p(k, ytj,Θ

t), (10)

where dH(xt
i, x

t
j) is the Hamming distance between vectors

xt
i and xt

j , which is defined as the percentage of elements that
differ. Thus, if two flows have the same source or destination
IP or port, the probability that these flows belong to the same
cluster increases.

Finally, in order to obtain flow clusters, we apply a single-
linkage clustering algorithm [20]. This algorithm belongs to
a class of agglomerative hierarchical clustering methods. In
the beginning of the algorithm, each feature vector in the
training dataset forms a cluster, i.e. the number of clusters
is equal to the number of feature vectors, and every cluster
consists of only one element. During the algorithm iterations,
these clusters are sequentially combined into larger clusters. At
each iteration, the algorithm combines those two clusters which
are the least distant from each other. The distance d(Cl, Ck)
between two clusters Cl and Ck is defined as follows:

d(Cl, Ck) = min
ft
i
∈Cl,f

t
j
∈Ck

(P t
ij). (11)

The algorithm stops when the required number of clusters nC

is formed. We form the same number of clusters for all time
bins.

B. Detection of network anomalies

The way feature vectors are distributed across clusters
during an attack differs markedly from the vector distribu-
tion corresponding to legitimate traffic. Thus, we can define
whether a computer or network system is under attack during
the current time interval.

Let us consider training set Ω which contains only le-
gitimate network traffic. For each time bin in the training
set, the proposed flow clustering algorithm is applied. After
that, for each resulting cluster the number of feature vectors
contained in the cluster is counted. We introduce histogram
vector ht = (ht

1, h
t
2, . . . , h

t
nC

) which consists of these num-

bers sorted in descending order. Once histogram vector ht

has been calculated for each time bin t from the training
set Ω, matrix H is built using these vectors. The t-th row
Ht = (Ht1, . . . , HtnC

) of this matrix corresponds to the
histogram vector calculated for the t-th time bin:

Ht = (ht
1, h

t
2, . . . , h

t
nC

). (12)

After that, for each row Ht, we calculate the Mahalanobis
distance dM (Ht, H) between this row and matrix H . The
Mahalanobis distance measures how many standard deviations
away Ht is from the mean of H . This distance is zero if Ht is
at the mean of H , and grows as Ht moves away from the mean.
If we denote the mean of H as μH = (μH

1 , μH
1 , . . . , μH

nC
) and

covariance matrix of H as CH , then dM (Ht, H) can be defined
as follows:

dM (Ht, H) =
√

(Ht − μH)TCH(Ht − μH). (13)

Once the training has been completed and histogram matrix
H has been defined, the model can be used to classify the
network traffic during the recent time bin. As previously, for
each flow in this time bin, we extract the necessary features.
After that, the clustering algorithm is used and histogram
vector h which represents the distribution of feature vectors
is obtained. In order to classify network traffic in this time



bin, Mahalanobis distance dM (h,H) between h and training
matrix H is calculated. Histogram vector h is classified as an
anomaly if

dM (h,H) >
|Ω|+ 1

|Ω|
max
t∈Ω

dM (Ht, H), (14)

where |Ω| is the number of time bins in the training set. If
an anomaly is detected during the time bin considered, traffic
transferred at this time bin is analyzed to detect intrusive flows.

C. Detection of intrusive flows

In order to find clusters that contain flows related to attacks
during the recent time bin, we compare clusters {c1, . . . , cnC

}
obtained during this time bin and clusters obtained during the
training phase. Let us denote the distance d(Ct

j , C
t
k) between

clusters Ct
j and Ct

k as the distance between centers of these

clusters. The center of cluster Ct
k is calculated as mean values

of yti , i ∈ Ct
k. Flows of cluster cj are classified as intrusive if

one of the following conditions is met:

min
t∈Ω, 1≤k≤nC

d(cj , C
t
k) >

|Ω|+ 1

|Ω|
max

τ,t∈Ω, 1≤l,k≤nC

d(Cτ
l , C

t
k),

|cj | >
|Ω|+ 1

|Ω|
max
t∈Ω

|Ct
kt∗ |, kt∗ = arg min

1≤k≤nC

d(cj , C
t
k).

(15)

where |cj | is the number of flows in cluster cj .

IV. NUMERICAL SIMULATIONS

The experimental part of the research was done using
an isolated Realistic Global Cyber Environment (RGCE) and
Internet data generation software developed by JAMK Univer-
sity of Applied Sciences. RGCE is an Internet-like network
comprising Internet Service Providers and main web services
such as Domain Name Service, social media sites, news
sites and search engines. RGCE is isolated from the Internet,
allowing the user to practice with accurate GeoIP information,
malware and attacks, without threat of contamination [21],
[22]. Also, because of the isolation, the traffic within RGCE
is automatically generated using special software which relies
on the same functional principles as botnets and allows one to
generate realistic traffic patterns of end users [21]. RGCE was
used for National Cyber Security Exercises by Finnish Defense
Forces [23]. RGCE has shown its capability for being a
realistic Internet-like environment. It offers very sophisticated
and realistic but isolated capability for training, exercise and
research.

A web server with known vulnerabilities was installed in
the RGCE environment. Outgoing and incoming traffic of this
server was captured in order to test the proposed algorithm.
The traffic was captured during four days. There was only
legitimate traffic generated during the first day. However, the
traffic generated during the next three days contained legiti-
mate traffic as well as various forms of network intrusions,
including scanning, brute-force attempts and targeted attacks.

All network packets gathered during these four days were
combined into traffic flows. The length of time bin ΔT was
selected to be equal to one minute, whereas parameter w is
equal to 60. In this case each time bin contained enough

information to detect anomalies every second. The network
traffic generated during the first day was used to build a
model of normal user behavior. This model was then applied
to the data corresponding to the next three days. To evaluate
the performance of the proposed technique, the following
characteristics were calculated in our tests: True Positive Rate
(TPR), False Positive Rate (FPR) and detection accuracy.

At the first stage, time bins that contain anomalous network
traffic are detected. For this reason, the clustering algorithm
proposed in Section III is applied to each time bin and
cluster histogram vectors are calculated. The feature vector
distribution corresponding to the legitimate traffic differs from
distributions obtained for various sorts of attack. As a result,
the Mahalanobis distance for the histogram vector correspond-
ing to a time bin which contains intrusive flows will be greater
than distances corresponding to normal time bins.

Figure 1 shows the detection accuracy of the proposed
algorithm calculated for different values of parameter nC . As
one can see, for any value of this parameter, the algorithm
shows good results in terms of accuracy. However, in our
simulations, when the value of parameter nC is between 10
and 15, the detection accuracy of the method is maximal and
exceeds 99%. This can be explained by the fact that in the
dataset used the number of different tuples source-destination
in the majority of time bins lies in this interval.
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Fig. 1. Detection accuracy of the algorithm proposed for different values of
parameter nC .

We compared the performance of the proposed technique
for the detection of ”anomalous” time bins with other flow-
based intrusion detection schemes: Flow Anomaly Detection
System (FADS) [11], Exponentially Weighted Moving Average
(EWMA) [12] and Chi-square Detection Mechanism [13].
Figure IV shows the dependence between false positive and
true positive rates for different flow-based intrusion detection
methods and different parameters. The detection accuracies
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Fig. 2. The dependence between false positive and true positive rates for the
first step of the algorithm compared to analogues.



of the methods are listed in Table II. Here we compared the
method proposed when parameter nC is equal to 10. As one

TABLE II. INTRUSION DETECTION ACCURACY OF THE PROPOSED

ALGORITHM COMPARED TO ANALOGUES.

Method TPR FPR Accuracy

FADS (mean and standard deviation) 97.84 % 0.48 % 99.10 %

FADS (interquartile range) 97.31 % 0.33 % 99.08 %

EWMA 22.17 % 0.55 % 79.94 %

Chi-square 14.65 % 0.59 % 76.99 %

EM + hierarchical clustering 98.39 % 0.39 % 99.32 %

can notice, the proposed algorithm based on soft clustering and
analysis of histograms outperforms the analogues. However,
detection accuracy of the proposed algorithm is not equal to
100%. It is caused by the fact that the method could not detect
several password brute-force attempts when the number of
these attempts during the time interval considered was low. On
the other hand, in this case, it would be very difficult for the
attacker to guess the password and get administrator privileges.

Finally, the algorithm for the detection of intrusive flows
proposed in this study was compared with other clustering
techniques: single linkage clustering, K-means, K-Nearest
Neighbors (KNN) and Self Organizing Map (SOM). For this
comparison, only time bins that contain anomalous traffic were
used. The sum of Euclidean and Hamming distances was
selected as a similarity metric. The comparison results are
presented in Table III.

TABLE III. INTRUSION DETECTION ACCURACY OF THE PROPOSED

ALGORITHM COMPARED TO OTHER CLUSTERING TECHNIQUES.

Method TPR FPR Accuracy

KNN 99.56 % 11.19 % 98.48 %

Single linkage clustering 99.10 % 9.45 % 98.93 %

K-means 99.80 % 5.72 % 99.65 %

SOM 99.92 % 3.21 % 99.84 %

EM + hierarchical clustering 99.88 % 0 % 99.88 %

V. CONCLUSION

In this study, we apply an anomaly-based detection ap-
proach to find network traffic flows which are related to
different types of attacks. We consider network traffic as a time
series and extract various per-flow information for each time
interval in a series. Based on this information, flows transferred
during each time interval are divided into groups based on
the EM algorithm and hierarchical clustering. After that, the
distributions of resulting clusters are compared against each
other to find the time bins that contain anomalous network
traffic. Finally, traffic transferred during these time bins is
analyzed and flows related to the attack are discovered. The
proposed framework is tested on the data obtained with the
help of a realistic cyber environment that enables one to
construct real attack vectors. The simulations show that the
proposed method results in a higher accuracy rate than other
intrusion detection techniques. In the future, we are planning to
focus on improving the accuracy of the method and developing
algorithms for the detection of more sophisticated attacks.
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Abstract—Exchanging of Situation Awareness information is 
extremely important for organizations in order to survive as part 
of the cyber domain. The situation Awareness is required for 
decision making and for an early warning of upcoming threats. 
Situation Awareness and the security information in the cyber 
domain differ from the kinetic domain. Because of that, Situation 
Awareness has different requirements and use cases, for example 
when considering time or geographical distances. There is always 
a risk when sharing security information due to the classified 
nature of the information. It might contain information of 
weaknesses or vulnerabilities of the organization, and if used 
wrongly it jeopardizes the continuity of the business or mission. 
The model introduced in this paper for creating information 
sharing topologies enables sharing of classified security related 
information between multiple organizations with the lowest 
possible risks levels. 

Keywords—Cyber Security; Situation Awareness; Common 
Operational Picture; Sharing Situation Awareness; STIX; TAXII 

I. INTRODUCTION 

Nowadays almost all systems and data are digitalized and 
connected using data networks forming so-called cyber 
domain. Thus it is very important to know the situation and risk 
level of your own assets both in civilian and military domains 
and also both in public and independent organizations or 
individuals. There exist plenty of different cyber threats or 
attacks that are able to affect business continuity or an ongoing 
mission. If the awareness of those threats is shared between 
organizations it could be used as an early warning and 
preparation for new threats. In this study, the model for sharing 
the cyber security situation information between organizations 
based on the risk level of sharing this kind of sensitive 
information is developed and demonstrated. 

Firstly this paper describes the situation awareness and 
decision making definitions and concentrates on cyber security 
related situation awareness. After that the requirements for 
sharing the situation awareness information and the common 
standards are described. Finally, the developed model for 
sharing cyber security situation awareness information is 
described and analysed and also the future work is discussed. 

II. SITUATION AWARENESS AND DECISION MAKING 

Situation Awareness (SA) has an important role in decision 
making in dynamic environments. Civil, commercial and 
especially military aviation has the longest tradition of using 
SA in decision making; however, accurate SA is extremely 
important in many other domains also. In fact, with 
inappropriate SA even the trained decision maker will make 
the wrong decisions. [1] 

As described in [2] and [3] there are plenty of different 
definitions for SA. Endsley states that “Situation awareness is 
the perception of the elements in the environment within a 
volume of time and space, the comprehension of their meaning, 
and the projection of their status in the near future” [1]. 

SA depends on the person's competence and understanding 
of the specific task related events and phenomena [1], [3], [4] 
and the situation picture such as Common Operational Picture 
(COP) is a presentation of all the task related information 
available for the person [4]. In many cases the information 
originates from a large amount of data and multiple sensor 
feeds which are automatically fused using multi-sensor data 
fusion processed, for example according to JDL model by the 
US Joint Directors of Laboratories Data Fusion Sub-Group [3], 
[5], [6], [7]. 

The dominant model for command and control (C2) is the 
OODA-loop of John Boyd [8]. The OODA-loop model is 
originally generated for fighter combats; however, it has later 
been developed for general model of decision making for 
winning and losing [8]. OODA decision making loop is a 
process of Observation-Orientation-Decision-Action. SA is 
about having an understanding of what is happening and what 
will happen in the near future and it includes three processes: 
Perception (perceive, gather data) – Comprehension 
(understand, create mental model) – Projection (think ahead, 
update the model) [1], [3], [9].  

SA has a temporal nature and SA is almost always related 
to time (past, current and future). It can be said that relevant 
SA improves efficiency or effectiveness of decision-making. 



III. SITUATION AWARENESS IN CYBER SECURITY 

Finland’s Cyber Security Strategy defines cyber domain as 
interdependent, multipurpose electronic data processing 
environment and according to EU’s Cyber Security Strategy 
Cyber Security includes safeguards and actions used to protect 
both the civilian and military cyber domains. [10], [11] 

It is extremely important to achieve appropriate SA about 
own cyber domain and perceive possible security issues, 
indicators of compromises (IOC) or risk statuses. With 
appropriate cyber SA the decision makers are able to make the 
right decisions for achieving cyber resilience and ensure 
continuity of their operation or business. 

The strategic guidelines of Finland’s Cyber Security 
Strategy state one goal to improve the situation awareness of 
different actors by sharing information of vulnerabilities, 
disturbances and their effects. There is also threat assessment 
and prediction of cyber domain included requiring an analysis 
of the different statuses for example political, military, social or 
economic [10]. 

US-CERT provides document Cybersecurity Questions for 
CEOs to instruct leadership collaboration about cyber security 
risk management with essential cyber security risk 
management concepts where one of those concepts is 
“Maintain situational awareness of cyber threats” including 
timely detection of cyber incidents, awareness of organization 
specific threats and vulnerabilities and relevant impacts for 
business [12]. 

Military commanders are used to have COP for decision 
making in the kinetic environment; however, even if the cyber 
domain is realized as an operational domain there is no 
versatile Cyber Common Operating picture (CCOP) [13]. The 
cyber domain and physical world are different, for example, 
time and location diverge between physical world and cyber 
space [3], [13], [14]. In physical world there are plenty of 
specific sensors and signal processing but in the cyber space 
sensors and processing techniques are different. Sensors in 
cyber domain are for example intrusion detection systems 
(IDS), log file analysis or antivirus/malware protection systems 
and SA is achieved at the lower (technical) levels; however, 
higher level SA analysis is non-automated manpowered work 
[14]. For example, for making decisions for cognitive networks 
there must be awareness of previous states, current 
configuration and resources available [15]. 

IV. SHARING OF SITUATIONAL AWARENESS 

As stated in [12] identifying and responding to incidents is 
more efficient if organization is sharing threat information with 
partners. In military there are standards for sharing information 
of kinetic environment between different stakeholders for 
example Tactical Data Links. One example of Tactical Data 
Links is The Joint Tactical Information Distribution System 
(JTIDS) Link16 the high-capacity, ECM-resistant, secure data 
link for voice and data [16]. In C2 systems the shared 
information can be owned by different stakeholders with 
different geographical locations, different missions or even 

different security clearances [5]. Good real life example of that 
is the usage of Air Situation Data Exchange (ASDE) during the 
Euro Championship 2012 where NATO Programming Centre 
(NPC) supported Poland in the air situation data exchange with 
national organizations [17]. 

In the foreword of [18] it is stated that “information 
sharing is one of the most heard suggested solutions for 
increasing cyber resilience”. In many cases there are noticed 
requirements for collaboration and changing of the cyber 
security information between organizations for achieving better 
cyber resiliency, maintaining business continuity or cyber-
incident response capability [18], [19], [20], [21]. 

The information exchange should be done between devices 
in a machine-to-machine (M2M) level according to four 
phases: information collection, transmission of filtered 
information, analysis of information and operations executed 
based on the analysis [22]. 

The building blocks for cyber security information sharing 
are introduced in [18]. NATO Communications and 
Information Agency has developed Cyber Security Data 
Exchange and Collaboration Infrastructure (CDXI) concept and 
the high level requirements of the CDXI concept have been 
identified in [19]. Also the Center for Strategic and 
International Studies (CSIS) outline recommendations for 
future policy and legislation about sharing the cyber threat 
information [20]. 

Even though the security information sharing architectures 
have been implemented it is also important to train, test and 
evaluate processes. Cyber security exercises contain complex 
information sharing requirements between exercise teams [23]. 
JAMK University of Applied Sciences has developed Cyber 
Range called Realistic Global Cyber Environment (RGCE) for 
utilizing cyber security research and exercises in realistic 
Internet-like environment [24], [25], [26]. RGCE environment 
and the Cyber Security exercises can be used for testing the 
models in realistic environments. 

Mitre Corporation has developed standards called 
Structured Threat Information eXpression (STIX™) and 
Trusted Automated eXchange of Indicator Information 
(TAXII™) for describing and collaborating cyber threat 
information in a standardized and structured manner [21], [27], 
[28], [29]. STIX ontology based situation assessment 
framework is presented in [27] and as a result it has been 
mentioned that the mechanism performed well; however, it has 
some limitations that will be improved in the future. Both 
STIX and TAXII have been transitioned to OASIS Advanced 
open standards for the information society [30]. 

V. STIX AND TAXII 

STIX allows structured expression for threat information 
and supports following cyber threat management use cases 
(Fig. 1): analysing cyber threats, specifying indicator patterns, 
managing response activities and sharing the information of 
cyber threat. [28]  



Fig. 1. STIX use cases, quoted from [28] 

The STIX architecture consists of eight constructs and all 
of those constructs have been utilized for the XML schema. 
The constructs are: Observable, Indicator, Incident, TTP 
(Tactics, Techniques, and Procedures), ExploitTarget, 
CourseOfAction, Campaign and ThreatActor. [28]  

Batch of services and message exchanges enabling sharing 
of cyber threat information between organizations are defined 
in TAXII and are intended to be used by information 
producers, consumers and developers. TAXII supports three 
different threat information sharing architectures (Fig. 2) hub-
and-spoke, peer-to-peer, and source-subscriber without being 
bound to any specific format or protocol. [29]  

Fig. 2. TAXII threat sharing models, quoted from [29] 

Security information sharing is one of the most critical 
issues for organizations to increase the defence capability 
against security threats [29]. As seen on Fig. 2, TAXII allows 
construction of complex information sharing topologies 
between different actors, whereas cyber threat information can 
be shared efficiently and formalized using STIX data 
structures. 

VI. DEVELOPED MODEL AND DEMONSTRATION 

STIX and TAXII were decided to be used in this study 
because those are reasonable new standards and emerging to be 
widely used. We developed a minimum risk model for sharing 
cyber security threat information between organizations for 
achieving better SA in cyber domain. 

Information sharing requires secure, high capacity 
infrastructure that supports large set of use cases, policies and 
practices to common use [29]. 

Organizations are assumed to share processed security 
information which could be classified. There is always a risk 
for sharing this kind of information that the shared information 
is abused. Information sharing requires trusted relationship 
between organizations or parties, and a trusted relationship can 
be accessed several ways. This research implements a model 
for STIX structured information sharing using TAXII service 
topology definition based on the risk level of sharing 
information between organizations. Using this model direct 
connections with higher risk levels can be reduced and safer 
information sharing communities produced. In this research it 
is assumed that all organizations are responsible for defining 
the risk level for the sharing based on shared information and 
connected organization. The risk level values are required to 
have the same scale. Organization is not required to share 
information to all the other organizations; only to the trusted 
ones with the risk level estimation. 

There are similar challenges if the purpose is to find the 
shortest paths between nodes in a graph. Zhao and White 
describes new framework for security information sharing 
based on defining threat alert levels of community [31]. 
Hernandez-Ardieta, Tapiador and Suarez-Tangil proposes a 
model of information sharing communities as directed graphs 
where nodes representing community members and edges 
modelling sharing relationships among them [32]. 

Edsger Dijkstra has invented a way to find the shortest path 
within a graph. In this study the shortest path tree method 
called Dijkstra algorithm is used for finding the lowest risks for 
information sharing between organizations [33]. 

Let’s assume a real life scenario of security information 
sharing community according to Fig. 3. In this scenario there 
are three different countries where the national CERT acts as 
the highest security information sharing authority. The next 
level security information sharing organizations are Internet 
Service Providers (ISP) and the lowest level of information 
sharing organizations are enterprises. In this scenario two ISPs 
operate in the country 1 and one ISP in the country 2. Every 
node represents an organization with individual TAXII service 
for information sharing in STIX data structures. Every link 
between nodes has a risk level value based on the risk 
estimation of shared sensitive information and the organization 
attached and risk level values between [1 (minimum risk), 20 
(high risk)]. If the risk level is unacceptable there is no link 
between nodes. For example, sharing information from an 
enterprise to another in a different country comes with a higher 
risk level defined. There are also cases that enterprises do not 
share information to enterprises in another country but shared 
information shall flow through ISP or CERT level to 
enterprises in another country. 



Fig. 3. Security information sharing community with risk values 

The topology of information sharing community with the 
lowest risk level has been calculated with Dijkstra’s algorithm 
[33]. According to [34] Dijkstra’s algorithm presented as 
pseudo code for network G with N nodes and distances (risk 
values) Dij for edges (i,j∈N). Where S is a start node and P is 
labelled set of nodes. The shortest path from S to other nodes j can be found as follows: 

• Start P = {S}, DS=0 and Dj=dSj for j∉N (j≠S) 

• Phase 1, find the closest node i∉P where Di=minDj and 
j∉P. Set P=P∪{i}, if P contains all nodes stop, else go 
to Phase 2 

• Phase 2, update labels for j∉P, set Dj=min[Dj, Di+dij], 
go to Phase 1 

Now the information sharing topology for the real life 
scenario can be implemented as in Fig. 4. 

Fig. 4. The calculated topology with the lowest risk level 

Using Fig. 4 it can be seen that even if there are no direct 
connections between all the enterprises and there is a high risk 
level between enterprises in different countries, the security 
information flow goes from every node to another with 

minimum risk implementation. Based on this topology security 
information sharing community is able to configure TAXII 
services with minimum risk. 

VII. CONCLUSION 

Using our model for creating information sharing topology 
for STIX and TAXII based infrastructure it is possible to share 
classified security related information between multiple 
organizations with minimum risks. The model could be used 
inside one country or internationally between different 
organization levels. Both STIX and TAXII have libraries 
available with different programming languages e.g. Python. It 
is easy to develop different information sharing scenarios and 
test this topology model in different use cases or scenarios. The 
most difficult part of the information sharing in real life will be 
gaining the trust between different organizations for sharing 
sensitive security information with classified nature. As a next 
step the model shall be tested in a real environment and 
scenario. As a future work the model is planned to be 
implemented and tested as a part of cyber security exercise in 
RGCE. There is also the requirement to formulate the 
definition for risk level calculation and improve the model to 
have one-way links instead of bidirectional links between 
nodes. Besides of using Dijkstra’s algorithm, there could also 
be comparison of different algorithms for example Genetic 
Algorithm (GA) or A* for creating of complex information 
sharing topologies. With the current model there is only risk 
level as a parameter for weight of the link, as a future work 
there should be research on using more parameters, for 
example, information validity or latency. 
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Abstract—Nowadays, zero-day Denial-of-Service (DoS) attacks
become frighteningly common in high-speed networks due to
constantly increasing number of vulnerabilities. Moreover, these
attacks become more sophisticated, and, therefore, they are
hard to detect before they damage several networks and hosts.
Due to these reasons, real-time monitoring, processing and
network anomaly detection must be among key features of a
modern DoS prevention system. In this paper, we present a
method which allows us to timely detect various denial-of-service
attacks against a computer or a network system. We focus on
detection of application-layer DoS attacks that utilize encrypted
protocols by applying an anomaly-detection-based approach to
statistics extracted from network packets. Since network traffic
decryption can violate ethical norms and regulations on privacy,
the detection scheme proposed analyzes network traffic without
its decryption. The scheme includes the analysis of conversations
between a web server and its clients, the construction of a model
of normal user behavior by dividing these conversations into
clusters and the examination of distribution of these conversations
among the resulting clusters with the help of the stacked auto-
encoder which belongs to a class of deep learning algorithms.
Conversations of clients that deviate from those normal patterns
are classified as anomalous. The proposed technique is tested on
the data obtained with the help of a realistic cyber environment.

I. INTRODUCTION

Denial-of-Service (DoS) attacks are one of the most serious
threats to the Internet nowadays. According to the report
published by Kaspersky Lab [1], in the first quarter of 2015,
there were 23 095 large DDoS attacks targeting 12 281 unique
web resources in 76 countries. DoS attacks aim to disable a
computer or network system using lots of messages which
need responses consuming the bandwidth or other resources
of the system. Since it is difficult for an attacker to overload the
targets resources from a single computer, modern DoS attacks
are launched via a large number of distributed attacking hosts
in the Internet. Such distributed DoS (DDoS) attacks can force
the victim to significantly downgrade its service performance
or even stop delivering any service [2]. Designed to elude

This work was partially funded by the Regional Council of Central
Finland/Council of Tampere Region and European Regional Development
Fund/Leverage from the EU 2014–2020 as part of the JYVSECTEC Center
project of JAMK University of Applied Sciences Institute of Information
Technology.

detection by today’s most popular cyber security tools, these
attacks can quickly incapacitate a targeted business, costing
victims millions of dollars in lost revenue and productivity.

The purpose of traditional DDoS attacks carried out at the
network layer is to consume the network bandwidth and deny
service to legitimate users of the victim systems. This type
of attack has been well studied recently and different schemes
have been proposed to protect the network and equipment from
such bandwidth attacks [3], [4], [5]. Nowadays, application-
layer DDoS attacks are becoming more and more widespread
[2], [7], [10]. Such attacks may focus on exhausting the server
resources such as Sockets, CPU, memory, disk bandwidth, and
I/O bandwidth. Unlike network-layer DoS attacks, application-
layer attacks do not necessarily rely on inadequacies in the
underlying protocols or operating systems. They can be per-
formed by using legitimate requests from legitimately con-
nected network machines. This makes application-layer DDoS
attacks undetectable for signature-based intrusion detection
systems (IDSs).

Anomaly-based approach is a promising solution for de-
tecting and preventing application-layer DDoS attacks. Such
approach learns the features of event patterns which form
normal user behavior, and, by observing patterns that deviate
from the established norms detects when an intrusion has
occurred. Thus, systems which use the anomaly detection
approach are modeled according to normal user behavior and,
therefore, are able to detect behavior-based denial-of-service
attacks.

Attacks that involve the use of HTTP protocol is the most
prevalent application-layer denial-of-service attack type nowa-
days. Depending on the level of their sophistication HTTP-
based DDoS attacks can be grouped into the following three
major categories: trivial, intermediate and advanced [10]. Dur-
ing a trivial DDoS attack, each bot participating in the attack
sends one or a limited number of unrelated HTTP attacks
towards the target site. This type of attacks includes such
well-known attacks as Slowread and Slowpost [8]. In the case
of an intermediate attack, bots generate random sequences of
browser-like requests of web-pages with all of their embedded
content making the attack traffic indistinguishable from the



regular human traffic. It is predicted that advanced DoS attacks
will rise in popularity in the future. These attacks will consist
of sequences of HTTP requests which are carefully chosen so
as to better mimic the browsing behavior of regular human
users.

The problem of anomaly-based detection of application-
layer DoS and DDoS attacks that utilize HTTP protocol is
of great interest nowadays. For example, paper [6] analyzes
application-layer DDoS attacks against a HTTP server with
the help of hierarchical clustering of user sessions. Study
[7] shows a novel detection technique against HTTP-GET
attacks, based on Bayes factor analysis and using entropy-
minimization for clustering. In study [8], detection of slow
HTTP attacks is carried out by analyzing specific spectral
features of network traffic over small time horizons. In [9],
authors detect application-layer DDoS attacks by constructing
a random walk graph based on sequences of web pages
requested by each user. Finally, study [10] proposes the next-
generation system for application-layer DDoS defense by
modeling network traffic to dynamic web-domains as a data
stream with concept drift.

Most of the current studies devoted to HTTP-based DDoS
attack detection concentrate on the analysis of information
extracted from network packets’ payload which includes web
resource requested, HTTP request method, session ID and
other parameters. However, it remains unclear how to detect
DDoS attacks utilizing protocols that encrypt the data of
network connections in the application layer. In this case, it is
impossible to detect attackers’ activity based on the analysis of
packets’ payload without decrypting it [12]. However, in most
of the cases, network traffic decryption violates complex sets
of laws and regulations on privacy, along with a high risk of
conflict with web service users. For this reason, the detection
of DDoS attacks is supposed to be carried out with the help
of statistics that can be extracted mostly from network packet
headers.

In this research, we concentrate on timely detection of trivial
and intermediate DoS and DDoS attacks against a computer
or network system. We design an algorithm that allows us
to detect application-layer DDoS threats that utilize encrypted
protocols. For this purpose, we focus on anomaly-detection-
based approach applied to statistics mostly extracted from
network packet headers. The algorithm includes analysis of
conversations between a web server and its clients, dividing
them into groups by applying several clustering techniques and
defining the model of normal user behavior. Conversations of
clients that deviate from those normal patterns are classified
as anomalous. In addition, groups of conversations initiated by
one client to the same destination socket during some short
time interval are classified based on the reconstruction error
generated by the stacked auto-encoder. The proposed method
is tested on the data obtained with the help of a realistic cyber
environment that enables one to construct real attack vectors.

The rest of the paper is organized as follows. Extraction of
feature vectors from network flows is considered in Section II.
Section III introduces a scheme that uses clustering techniques

to build a model of normal user behavior and sheds light on
detection of trivial and more complicated intermediate DoS
attacks. In Section IV, we present some numerical results to
evaluate the algorithm proposed. Finally, Section V draws the
conclusions and outlines future work.

II. FEATURE EXTRACTION AND STANDARDIZATION

Let us consider a web server that provides several services
working in two application layer protocols: HTTP and HTTPS.
Outgoing and incoming traffic of this server is captured during
some time period [Ts, Te]. In this study, it is assumed that
the traffic captured during this time period is free of attack.
We aim to investigate captured traffic and discover behavior
patterns of normal users. Once normal behavior patterns have
been discovered, these patterns can be used to analyze network
traffic and detect DoS and DDoS attacks against the web server
in online mode. For this purpose, the analyzed time period
[Ts, Te] is divided into equal non-overlapping time intervals
of length ∆T . The length of each time interval ∆T should be
picked in such a way that allows one to detect attacks timely.

We concentrate on the intrusion detection based on the
analysis of network traffic flows. A flow is a group of IP
packets with some common properties passing a monitoring
point in a specified time interval. In this study, we assume
that these common properties include the IP address and port
of the source and IP address and port of the destination.
The time interval in this case is considered to be [Ts, Te]. In
other words, when analyzing a traffic flow extracted in time
interval [Ts + i∆T, Ts + (i+ 1)∆T ], we take into account all
packets of this flow transfered during previous time intervals:
[Ts+(i−1)∆T, Ts+(i)∆T ], [Ts+(i−2)∆T, Ts+(i−1)∆T ],
etc. Resulting flow measurements provide us an aggregated
view of traffic information and drastically reduce the amount
of data to be analyzed. After that, two flows such as the
source socket of one of these flows is equal to the destination
socket of another flow and vice versa are found and combined
together. This combination is considered as one conversation
between a client and the server.

A conversation can be characterized by following four
parameters: source IP address, source port, destination IP
address and destination port. For each such conversation at
each time interval, we extract the following information:

1) duration of the conversation
2) number of packets sent in 1 second
3) number of bytes sent in 1 second
4) maximal, minimal and average packet size
5) maximal, minimal and average size of TCP window
6) maximal, minimal and average time to live (TTL)
7) percentage of packets with different TCP flags: FIN,

SYN, RST, PSH, ACK and URG
8) percentage of encrypted packets with different proper-

ties: handshake, alert, etc
Features of types 2–8 are extracted separately for packets sent
from the client to the server and from the server to the client. It
is worth to mention that here we do not take into account time
intervals between subsequent packets of the same flow. Despite



the fact, that increasing of these time intervals is a good sign
of a DDoS attack, taking them into consideration leads to
the significant increasing of the number of false alarms. It
is caused by the fact, that when the server is under attack it
cannot reply to legitimate clients timely as well, and, therefore,
legitimate clients look like attackers from this point of view.

Values of the extracted feature vectors can have different
scales. In order to standardize the feature vectors, max-min
normalization is used. Since all network traffic captured in
the time interval considered is assumed to be legitimate, all
the resulting normalized feature vectors can be used to reveal
normal user behavior patterns and detect behavioral anomalies.

III. ALGORITHM

The detection algorithm proposed in this study includes
three steps. First, a model of normal user behavior is built
by dividing extracted feature vectors into clusters. Recent
conversations that deviate from extracted normal patterns are
found in order to discover trivial DoS attacks. Finally, the
examination of distributions of the conversations among the
resulting clusters allows us to classify more advanced attacks.

A. Conversation Clustering

Once all relevant features have been extracted and normal-
ized, the resulting feature vectors can be used to determine the
model of normal user behavior. For this purpose, we divide
these vectors into several groups by applying a clustering algo-
rithm. Each such group is supposed to consist of objects that
are in some way similar between themselves and dissimilar
to objects of other groups. Clustering allows us to discover
hidden patterns presented in the dataset to represent a data
structure in a unsupervised way. There are many different
clustering algorithms which can be categorized based on the
notation of a cluster. The most popular categories include hier-
archical clustering algorithms [13], centroid-based clustering
algorithms [16] and density-based clustering algorithms [17].

Each cluster calculated represents a specific class of traffic
in the network system under inspection. For example, one such
class can include conversations between a web server and its
clients which use one of web resources of the server. Since the
traffic is encrypted it is impossible to define what web resource
these clients request. However, since it is assumed that traffic
being clustered is legitimate, we can state that each cluster
describes a normal user behavior pattern.

B. Detection of Trivial DoS Attacks

To detect trivial DoS attacks we extract necessary features
from a new conversation and classify the resulting feature
vector according to the clusters found. If this vector does not
belong to any of the clusters, the corresponding conversation
is labeled as intrusive and it is supposed to be blocked by the
server.

For hierarchical clustering algorithms, to define whether
a new vector belongs to a cluster or not, we calculate the
minimal distance between this vector and vectors-members of
the cluster. If this minimal distance is greater than a predefined

threshold, this vector does not belong to the cluster. This
threshold Ti for the i-th cluster is calculated based on vectors
of the training set which belong to this cluster: Ti = µn

i +γσn
i ,

where µn
i is the average distance between two neighboring

vectors of this cluster and σn
i is the standard deviation of

these distance values.
For centroid-based clustering methods, to define whether

a new vector belongs to a cluster or not, we calculate the
distance between this vector and the cluster center. If the
distance between the new vector and the cluster center is
greater than a predefined threshold, this vector does not belong
to the cluster. This threshold Ti for the i-th cluster is calculated
based on vectors of the training set which belong to this
cluster: Ti = µc

i + ασc
i , where µc

i is the average distance
between the center and vectors of this cluster and σc

i is the
standard deviation of these distance values.

For density-based clustering algorithms, one option to define
whether a new vector belongs to a cluster or not is based
on the density-reachability of this vector from a point of the
cluster. Vector z is density-reachable from y with respect to ε
and Nmin, if there is a chain of points y1, y2, . . . , ym, where
y1 = y and ym = z, such that ∀i ∈ {1, 2, . . . ,m − 1},
dE(yi, yi+1) ≤ ε and Nε(yi) ≥ Nmin, where dE(yi, yi+1)
is distance between yi and yi+1. Parameters ε and Nmin can
be selected based on vectors of the training set as follows: ε is
the average distance between vectors of the cluster and Nmin

is the minimal number of points such that each point of the
cluster is density-reachable from another point of the cluster.

C. Detection of Intermediate DoS Attacks

The technique proposed in Section III-B can help to detect
trivial DoS attacks when conversations between an attacker
and the web server deviate from normal user behavior patterns.
However, if the attacker is able to mimic properly the browsing
behavior of a regular human user, conversations related to
this attack might belong to one of the clusters of the normal
behavior model and, therefore, remain undetected. In this case,
the way how feature vectors are distributed across clusters
should be taken into consideration. This vector distribution
during an attack can differ markedly from the vector dis-
tribution corresponding to legitimate traffic. Thus, we can
define whether a computer or network system is under attack
during the current time interval, and, moreover, find clients
responsible for initiating conversations related to the attack.

For this purpose, we group all conversations which have the
same source IP address, destination IP address and destination
port together and analyze each such group separately. Such
approach is in-line with studies [6], [7], [9] mentioned in
Section I. Those studies analyze sequences of conversations
(requests) belonging to one HTTP session. In our case, since
the session ID cannot be extracted from encrypted payload, we
focus on conversations initiated by one client to the destination
socket during some short time interval. We can interpret a
group of such conversations as a rough approximation of the
user session.



For each such group, the percentage of feature vectors
contained in each cluster is counted. We introduce histogram
vector hit = (hit1 , h

it
2 , . . . , h

it
nC

) which consists of these
percentage values. Here nC is the number of clusters revealed
and hitj is the number of feature vectors of the i-th group
(source IP address, destination IP address, destination port)
in the training set belonging to the j-th cluster at the t-th
time interval divided by the total number vectors of the i-
th group at this time interval. Once histogram vector hit has
been calculated for each conversation group i and each time
interval t, matrices Hi are built using these vectors. The t-
th row Hit = (Hit

1 , . . . ,H
it
nC

) of matrix Hit corresponds to
the histogram vector (hit1 , h

it
2 , . . . , h

it
nC

) calculated for the i-th
conversation group at t-th time interval.

In this study, we propose a method for analyzing the
resulting histogram vectors based on stacked auto-encoder
[18] belonging to a class of deep learning algorithms [19].
Deep learning involves models which try to hierarchically
learn deep features of input data with neural networks which
are deeper than three layers. First, the network is initialized
via unsupervised training and then tuned in a supervised
manner. This approach allows us to learn high-level features
from low-level ones and formulate proper features for pattern
classification. As a result, the model allows to generate more
abstract features that are invariant to local changes of the input.

A standard Auto-Encoder (AE) consists of one visible input
layer, one hidden layer and one reconstruction layer. The
reconstruction layer has the same size as the input layer. The
objective of the AE to learn how to reproduce input vectors
as outputs. This process includes two steps: encoding and
decoding. The i-th value of vector h encoded as he can be
calculated as hei = f(

∑ninput

j=1 we
ijhj + bei ), where f is an

activation function, ninput is the number of neurons on the
input layer, we

ij is the weight of the connection between the
i-th neuron of the hidden layer and the j-th neuron of the
input layer and bei is the i-th value of the bias vector on the
input layer. Similarly, the i-th value of decoded vector hd can
be defined as hdi = f(

∑nhidden

j=1 wd
ijh

e
j + bdi ), where nhidden is

the number of neurons on the hidden layer, wd
ij is the weight

of the connection between the i-th neuron of the output layer
and the j-th neuron of the hidden layer and bdi is the i-th value
of the bias vector on the hidden layer.

The goal of training is to minimize the mean square error
Eh = 1

2

∑n
i=1(hi − hdi )2 between input vector h and its

reconstruction hd. For training the network, AE can utilize
a supervised learning technique called back-propagation. This
technique implies changing connection weights after process-
ing each feature vector h based on the amount of error Eh in
the output. Using the gradient descent algorithm, changes in
each weight ∆wl

ij and bias ∆bli (l ∈ {e, d}) can be found as
follows:

∆wl
ij = −η ∂Eh

∂wl
ij

, ∆bli = −η ∂Eh

∂bli
, (1)

where η is a parameter defining the learning rate and partial
derivatives ∂Eh

∂wl
ij

and ∂Eh

∂bli
for l ∈ {e, d} are calculated as

follows:
∂Eh

∂wl
ij

= hejδ
l
i,

∂Eh

∂bli
= δli. (2)

Here parameters δei and δdi measure how much the i-th neuron
is responsible for an error in the output, and they can be
obtained as

δdi = (hdi − hi)f ′, δei =

nhidden∑
j=1

wd
ijδ

d
i

 f ′. (3)

If an AE can reconstruct original input perfectly, it means
that hidden layer stores enough information of the input.
In order to minimize information loss, auto-encoders can be
stacked. Stacked auto-encoder can be trained in a greedy layer-
wise fashion. The training of a SAE starts with the training
of the first layer AE on raw input vectors. Once the first layer
AE has been trained, we can calculate vectors which consist of
activation of the hidden neurons of the first AE. These vectors
can be used to train the second layer AE. This procedure is
repeated for subsequent layers by using the output of each
layer as input for the subsequent layer. Thus, parameters of
each layer are trained individually while freezing parameters
for the remainder of the model. Once all AEs have been
trained, fine-tuning using back-propagation can be applied to
improve the results by tuning the parameters of all layers at
the same time.

Detection of anomalous histogram vectors described above
is based on the assumption that data has variables corre-
lated with each other and can be embedded into a lower
dimensional subspace in which normal samples and anomalous
samples appear significantly different [20]. For this purpose, a
stacked auto-encoder is trained and fine-tuned with vectors
of histogram matrix Hi. After this, for the t-th row Hit

of this matrix we calculate its reconstruction error Eit =√∑nC

j=1(Hit
j − Ĥit

j )2, where Ĥit is the reconstruction of Hit

when applying the SAE. These reconstruction error values are
used to calculate threshold TE = µE

i + ωσE
i , where µE

i is
the mean value of reconstruction error values calculated for
feature vectors of the i-th group contained in the training set,
and σE

i is the standard deviation of these values.
Let us consider a client which initiates several connections

of type i during the recent time interval. After we classify
these connections according to clusters obtained during the
training, histogram vector h is calculated. Finally, this vector
is encoded and decoded with the corresponding SAE and its
reconstruction error E is found. If E is greater than threshold
TE
i , vector h is classified as an anomaly and connections of the

client are considered as an attack. As one can see, the scheme
proposed cannot define which connections of the client are
normal and which connections have bad intent. However, this
scheme allows one to find the attacker and what web service
he attempts to attack.

IV. NUMERICAL SIMULATIONS

Our simulation examples are implemented with the help of
Realistic Global Cyber Environment (RGCE) [14]. RGCE is



a closed environment, which mimics the structures and the
user traffic of the real Internet that allow one to use real
IP addresses and GeoIP information. Traffic within RGCE is
automatically generated using special software which relies
on the same functional principles as botnets. RGCE allows
us to generate realistic traffic patterns of end users. Thus,
this environment is capable to simulate very sophisticated and
realistic scenarios that can be used for training, exercise and
research [15], [14].

For this research, we model a fictitious service provider
in RGCE. This provider hosts and defends a web server
providing several web shop services. Communication between
the web shop server and its clients is carried out with encrypted
HTTPS protocol. Traffic of web shop clients is generated by
both human users and automated user bots. Length of the
simulation scenario is approximately 2 hours. In the scenario,
there are 55 web shop users with different IP addresses and
GeoIP locations. Several users have the web shop as a target
for their attacks. The attackers use different sorts of DDoS
attacks, including Slowloris, Slowpost and more advanced
types of DDoS attacks. As in the real world, attackers scan the
target beforehand in order to select suitable offensive methods.
Moreover, attackers can perform different attack types during
the same time period to increase their chances of success.

First 12 minutes of the dataset (or 10% of the traffic) are
considered as the training set since there are no attacks during
that period of time. We find all conversations initiated by the
web shop clients during this training period. The size of time
step is selected to be equal to 1 second for timely detection
of attacks. Once the necessary features are extracted from the
conversations, we divide them into clusters. In our simulations,
we used the following clustering algorithms: single-linkage
clustering algorithm, k-means, fuzzy c-means, self-organizing
map (SOM) and DBSCAN.

After that, we look for anomalous conversations in the rest
of the dataset as it is described in Section III-B. Figures
1 and 2 show how True Positive Rate depends on False
Positive Rate when detecting Slowloris and Slowpost attacks
correspondingly with the help of different clustering algo-
rithms with different parameters. As one can notice, four
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Fig. 1. ROC curve for detection of Slowloris.

clustering methods are able to detect all conversations related
to Slowloris (TPR = 100%) with extremely low number of
false alarms varying from 0.004% to 0.005%. However, single-

0 1 2 3 4 5 6
97

97.5

98

98.5

99

99.5

100

False Positive Rate, %

T
ru

e 
P

o
si

ti
v
e 

R
at

e,
 %

 

 
Single−linkage

K−means

Fuzzy c−means

SOM

DBSCAN

Fig. 2. ROC curve for detection of Slowpost.

linkage clustering algorithm gives the worst results with the
highest number of false alarms (FPR = 0.0356%). In the case
of Slowpost attack detection, when false positive rate is below
0.036% true positive rate is very high (TPR ≈ 98%) for all
methods tested. For bigger FPR values (FPR < 1%), fuzzy
c-means and SOM outperform other methods in terms of true
positive rate. If the false positive rate is allowed to be high
(≈ 6%), all conversations related to Slowpost can be detected
(TPR = 100%).

Tables I and II show TPR, FPR and the accuracy of
detection of these trivial DoS attacks for the cases when
clustering parameters are selected in an optimal way, i.e. when
the detection accuracy is maximal. As one can see, almost all
conversations related to slow HTTP/HTTPS attacks can be
properly detected, while the number of false alarms remains
very low.

TABLE I
SLOWLORIS DETECTION ACCURACY

Method TPR FPR Accuracy
Single-linkage 100 % 0.0356 % 99.9644 %
K-means 100 % 0.0043 % 99.9957 %
Fuzzy c-means 100 % 0.0043 % 99.9957 %
SOM 100 % 0.0043 % 99.9957 %
DBSCAN 100 % 0.0045 % 99.9955 %

TABLE II
SLOWPOST DETECTION ACCURACY

Method TPR FPR Accuracy
Single-linkage 98.587 % 0.0356 % 99.9619 %
K-means 98.587 % 0.0043 % 99.9931 %
Fuzzy c-means 98.587 % 0.0043 % 99.9931 %
SOM 98.587 % 0.0043 % 99.9931 %
DBSCAN 98.587 % 0.0045 % 99.9929 %

In order to detect attackers who are able to mimic properly
the browsing behavior of a regular human user, the method
described in Section III-C is applied. As it was mentioned
above, the method cannot define which connections of the
attacker are normal and which connections have bad intent.
Therefore, we focus on detection of the attacker, its target and
time interval when the attack takes place. In order to evaluate
the technique proposed, we apply k-means, fuzzy c-means
and SOM for clustering conversations. These algorithms are



selected since they allow us to obtain the best results in terms
of trivial DoS attack detection as it is shown in Tables I and II.
The number of hidden layers for the SAE is selected between 1
and 5. The number of neurons on each hidden layer is selected
in such a way that it is less than the number of neurons on
the previous layer.

Figure 3 shows how True Positive Rate depends on False
Positive Rate when detecting intermediate DDoS attacks with
the scheme proposed in this research. As one can notice, when
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Fig. 3. ROC curve for detection of intermediate DDoS attacks.

FPR is 0, the SAE can detect more than 80% of conversation
groups initiated by an attacker during some short time interval.
For bigger FPR values (FPR > 1%), the SAE which analyzes
histogram matrices calculated by SOM outperforms other
methods in terms of true positive rate.

Table III shows TPR, FPR and the accuracy of intermediate
DDoS attacks detection. As one can see, these attacks can be
properly detected. To decrease the FPR, instead of analyzing
raw reconstruction error, we can consider its moving average
over several recent time intervals. This allows us to reduce
the amount of false alarms, but at the same time, this will
most likely increase the delay between the time moment when
a DDoS attack starts and time moment when this attack is
detected. Thus, we have to choose between a low level of the
false positive rate and timely detection of the attack.

TABLE III
INTERMEDIATE DDOS ATTACK DETECTION ACCURACY

Method TPR FPR Accuracy
K-means 93.5569 % 1.3261 % 96.1058 %
Fuzzy c-means 95.051 % 1.475 % 96.7815 %
SOM 94.9906 % 1.3633 % 96.8068 %

V. CONCLUSION AND FUTURE WORK

In this research, we aimed to timely detect trivial and inter-
mediate application-layer DoS attacks in encrypted network
traffic by applying an anomaly-detection-based approach to
statistics extracted from network packets. The scheme included
the separation of conversations between a web server and its
clients into clusters and the analysis of how conversations
initiated by one client to the server during some short time
interval are distributed among these clusters. The proposed
technique was tested on the data obtained with the help of
RGCE, a realistic cyber environment that generated realistic

traffic patterns of end users. As a result, almost all conversa-
tions related to DoS attacks were properly detected, while the
number of false alarms remained very low. In the future, we
are planning to improve the algorithm in terms of the detection
accuracy, and test it with a bigger dataset which contains traffic
captured during several days. In addition, we will focus on the
simulation of advanced DDoS attacks in RGCE and detection
of these attacks by applying anomaly-based approach.
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[14] T. Kokkonen, T. Hämäläinen, M. Silokunnas, J. Siltanen, M. Neijonen.
Analysis of Approaches to Internet Traffic Generation for Cyber Security
Research and Exercise. Proc. of the 15th Int. Conference on Next
Generation Wired/Wireless Networking (NEW2AN), pp. 254–267, 2015.
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Abstract. Networked software systems have a remarkable and critical role in
the modern society. There are critical software systems in every business area.
At the same time, the amount of cyber-attacks against those critical networked
software systems has increased in large measures. Because of that, the cyber
security situational awareness of the own assets plays an important role in the
business continuity. It should be known what is the current status of the cyber
security infrastructure and own assets and what it will be in the near future. For
achieving such cyber security situational awareness there is need for the Cyber
Security Situational Awareness System. This study presents the novel archi-
tecture of the Cyber Security Situational Awareness System. The study also
presents the use case of threat mitigation process for such Cyber Security Sit-
uational Awareness System.

Keywords: Cyber security � Situational awareness � Multi sensor data fusion �
Situational awareness information sharing � Early warning

1 Introduction

Situational awareness and early warning capability is extremely important for com-
mand and control of the own assets or making decisions related to the mission or
business. Military aviation has a long history of using command and control systems
with situational awareness generated by multi sensor information that could also be
shared from the systems of other organisations. There are similar requirements for
situational awareness in the cyber domain. Sensor feed from multiple different sensors
should be fused automatically and visualised for the decision maker. Additionally, the
information of known cyber threats should be shared with other organisations.

The terms situational awareness and situation awareness are mixed in the literature
and used for describing the same phenomenon. In this paper the term situational
awareness is used because situational awareness is considered to describe the phe-
nomenon more accurately.

As stated in [1] real time cyber security situational awareness and data exchange are
required in several strategic guidelines of different countries, for example in Finland’s
Cyber Security Strategy [1, 2]. A systematic literature review [1] indicates that there are
several studies related to situational awareness in cyber domain; however, it is still
stated in [3] that there is no solution for Cyber Common Operating Picture (CCOP).
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This paper proposes state of the art architecture for the Cyber Security Situational
Awareness System including a multi sensor data fusion component and data exchange
with trusted partner organisations. The paper also presents the use case process for the
Cyber Security Situational Awareness System and threat mitigation. The paper consists
of a comprehensive set of reference literature and research papers as the background of
the study. First, the Cyber Security Situational Awareness is discussed and the Data
Fusion process is described. Also, the interfaces are presented, and the requirements for
Human Machine Interface and data visualisation are analysed, followed by the
description of the proposed architecture and finally, the conclusion with proposed items
for further work is presented.

2 Cyber Security Situational Awareness

Endsley specifies one of the most used definitions of situational awareness (or as stated
in the original reference situation awareness) as in the volume of time and space gath-
ering information and elaborating understanding of what is happening and prediction of
what will happen in the near future [1, 4]. From the point of view of Cyber Security
Situational Awareness System, it means that there is multi sensor information available
indicating what is happening, there is the capability for analysing such information, and
there is also capability for making predictions what will happen in the near future.

As stated in [5] there are three types of information needed for situational aware-
ness in cyber security: information of computing and network components (own
assets), threat information, and information of mission dependencies. According to [6]
there are four components of situational awareness: Identity (organisation’s goals,
structure, decisions making processes and capabilities), Inventory (hardware and
software components), Activity (past and present activity of own cyber assets), and
Sharing (both inbound and outbound). Paper [7] proposes a framework that consists of
real-time monitoring, anomaly detection, impact analysis, and mitigation strategies
(RAIM). The U. S. Army Innovation Challenge for Cyber Situational Awareness
covers analytics, data storage, and visualisation of networks, assets, open-source
information, user activity, and threats [8].

It is important to notice that there is a large and increasing number of systems,
devices and cyber security applications or sensors in the organisation network pro-
viding data to be analysed. Analysing that increasing amount of information requires
high computational power [9]. Data fusion is a recognised technique in surveillance
and the security systems used for merging the scattered surveillance and status infor-
mation as integrated totality. For example, paper [10] introduces data fusion for
intrusion detection information.

3 Multi Sensor Data Fusion

The data fusion is defined as “the process of combining data to refine state estimates
and predictions” [11]. The dominant data fusion model is JDL model by the US Joint
Directors of Laboratories Data Fusion Sub-Group. In the JDL model the fusion process
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is divided into different levels. Originally, there were levels 0–4. Nowadays, there are
levels 0–6 which can be described for the cyber domain as follows [11–16]:

• Level 0 (Data Assessment). Cyber security sensor feed to the system.
• Level 1 (Object Assessment). Identification of cyber entities for example services,

devices, physical network connections or information flows and the properties of
those entities.

• Level 2 (Situation Assessment). State of the systems in cyber domain. Combining,
for example information of software versions, vulnerabilities or patches installed.

• Level 3 (Impact Assessment). Information related to an ongoing attack or threat,
indicating the damage and mitigation actions or incident response required or
already done.

• Level 4 (Process Refinement/Resource Management). Management of cyber sen-
sors. Selection of used sensors, configuration of sensor settings and definition of the
reliability score of each sensor.

• Level 5 (User Refinement/Knowledge Management). Human Machine Interface
(HMI) providing access to control each layer of fusion. An important part of that
level is effective visualisation of information to the user.

• Level 6 (Mission Management). Determination of mission objectives and policy for
supporting decision making.

Giacobe presents an application of the JDL data fusion process model for cyber
security utilising JDL levels 0–5 [14], and paper [15] introduces adapted national level
JDL data fusion model for levels 0–5.

Paper [16] divides multi sensor data fusion algorithms under four main categories:
Fusion of imperfect data, Fusion of correlated data, Fusion of inconsistent data, and
Fusion of disparate data. There are several mathematical algorithms under those four
categories. For example, [17] utilises Support Vector Machines (SVMs) as the fusion
algorithm for network security situational awareness, and paper [18] proposes a
Hierarchical Network Security Situation Assessment Model (HNSSAM) with DS data
fusion for cyber security. Spatiotemporal event correlation is used for anomaly
detection and for network forensics in study [19].

4 Interfaces

The proposed architecture includes several types of input information for data fusion
supporting all the levels of JDL Data Fusion process. Because of that, the data fusion
engine should implement several different data fusion algorithms chosen to support
data fusion of such data. Following interfaces are proposed for the architecture.

4.1 Sensor Information

Input interfaces for the information from the cyber security sensor feeds such as
information from anomaly based or signature based Intrusion Detection Systems (IDS),
Intrusion Prevention Systems (IPS), firewalls, antivirus systems, log file analyser,
authentication alarms etc.
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4.2 Own Assets Status Information

Input interfaces for the information of the systems in the cyber domain. All the entities
and their properties should be identified as well as their status and configuration
information. Includes also the information of the sensors with their status and con-
figuration information. Some of the systems are able to automatically inform their
status and configuration information. Otherwise, the user will update the status infor-
mation using HMI. If the service is under attack, the impact assessment status infor-
mation is most likely input to the system by user. Additionally, the spare parts of the
physical devices should be input to the system.

4.3 Analysis Information

The analysed impact assessment information about an ongoing attack or threat; caused
damage, information of attacker, what are the used attack methods, what are the
countermeasures, present and past mitigation activities or incident response activities,
and the result of those activities. The analysis information also consists of Indicators Of
Compromise (IOC) information and open source intelligence information originated,
for example from social media, news or CERT-bulletins concerning systems in the use
or the business area represented. Such open source intelligence information might offer
early warning information about incoming threats or information needed for incident
response. Paper [20] states that pure technical data is just a part of bigger situational
awareness fused with intelligence information.

Certain policies or objectives that should be noticed as part of the Situational
Awareness and decision-making information are input as part of the analysis informa-
tion. The analysis information is input to the system both automatically and using HMI.

4.4 Sharing the Information

Information sharing is one of the most critical elements in cyber security. If there is a
trusted network of other organisations and there is the capability to share information
with those organisations, there is much more information available for the data fusion.
With shared information there are requirements for filtering the information before
sharing it according to the company policy. All the information cannot be shared
because of the confidentiality of the security information. Inbound data should also be
analysed and the reliability score assigned.

In the case of simultaneously ongoing data fusion and data sharing processed the
origin of the information should be indicated because of the data-loops. If the infor-
mation is shared (outbound) to any organisation of the information sharing community
and after while the same information is shared back (inbound) from any organisation of
the information sharing community, there is a data-loop. Data-loops produce problems
with the data fusion algorithms. If the origin of the information is indicated and data
fusion algorithm notices that inbound information originates from itself, such infor-
mation should be perceived in the fusion process.

There are standards called Structured Threat Information eXpression (STIX™) [21]
and Trusted Automated eXchange of Indicator Information (TAXII™) [22] for
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exchanging cyber threat information. The information sharing community using such
standards could be formed as described in paper [23].

5 HMI and Visualisation Layer

HMI should propose access to modify and add information for all the layers of fused
data as described earlier in 3 and 4. It should also visualise the information efficiently
for the user to obtain the scattered information more understandable format.

The visualisation part of the Cyber Security Situational Awareness System offers
the Cyber Common Operating Picture to the user. The required data is in the system,
the question is how to visualise that data to the user, especially for the decision maker
who might not have deep technical background and knowhow. Many tools in cyber
security are only for special purpose and certain data, not for integration of several
types of data and without interoperability with other tools [24]. The authors of paper
[25] used attack graphs for visualisation and ArcSight was used for visualisation in
[26]. The paper [27] focuses on visualisation of threat and impact assessment.

The cyber domain is complex and there is plenty of different information available.
The main conclusion for the visualisation problem is that there should be different
visualisation tools and techniques for different purposes and for different user roles.
Visualisation tools for high level decision makers are totally different to the tools for
the analyst. Using case studies, the authors of paper [28] emphasise the potential for
several different visualisation tools.

A solution for visualisation problem would be the usage of common symbols.
Paper [29] suggests usage of military symbols, for example defined in standard
MIL-STD-2525 [30]. Such standards should be extended for cyber domain, for
example a military symbol for pending identity could mean a new incident in cyber
domain. The common symbols should be defined and adopted as global standard for
cyber security.

6 Proposed Architecture

The proposed novel architecture for the Cyber Security Situational Awareness System
includes data fusion engine according to 3, interfaces described in 4, as well as HMI
and Visualisation layer described in 5. Because there is plenty of different information
from different sources the information needs to be normalised. The blog diagram of the
proposed architecture is presented in Fig. 1.

The ultimate goal for such systems is that described functionalities are as automatic
as possible; however, there is analyst operator required for controlling the data fusion,
controlling the sensors, and adding analysis information to the system. For example,
cyber security sensors might produce false alarms and the data fusion might help with
the false alarms by fusing the information from multiple sources; however, the analyst
operator is required to analyse the sensor feed and maybe configure the sensors or
indicating to the system that false alarms are occurring. Also, if there is a real incident
ongoing, the analyst operator is capable of inputting the case related additional
information to the system. The possible process for situational awareness and threat
mitigation using the proposed architecture is presented in Fig. 2.
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Fig. 1. Blog diagram of proposed architecture

Fig. 2. Use case process for the cyber security situational awareness system
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The proposed architecture represents the state of the art system in the domain of
cyber security situational awareness systems utilising both data fusion engine and data
exchange mechanisms at the same time. It also provides capability for implementation
of all the levels of JDL data fusion process. Even the highest levels could be imple-
mented and input to the system as a part of the Situational Awareness. The Visuali-
sation could be deployed in layers for supporting the totally different requirements of
different user roles, for example decision maker compared to analyst.

Detailed system requirements for the Cyber Security Situational Awareness System
can be derived using proposed architecture. There are requirements for the data fusion
engine according to 3, interfaces according to 4, HMI and Visualisation layer according
to 5 and use case process presented in Fig. 2.

Developing such a system as product for the operational use requires detailed
design and a great deal of software development. There are plenty of technical diffi-
culties for developing such a system. Data models of the input information might be
one of those. Some devices and sensors use standardised data models and protocols and
some might use proprietary models. Some information is human made and some is
automatically generated, the problem comes with the human made information, is it
always without errors and structured correctly. Similar problems exist with many other
integrated systems and can be solved using standardisation and structured data formats.
Initial versions should be implemented with certain sensors and data feeds and
extended gradually.

Processing a large amount of data could require lot of computational power;
however, during the exact design of the system it could be divided into different nodes.
The visualisation should be tested deeply with different user roles. There is a global
requirement for common standardisation of visualisation symbols in cyber domain.
Visualisation should be implemented layer by layer for different users and use cases.

7 Conclusion

The study proposes novel architecture for the Cyber Security Situational Awareness
System. It includes the process for using such a system for achieving the cyber resi-
lience of the business or mission. The proposed architecture includes both multi sensor
fusion process and information exchange process which both are required for achieving
proper situational awareness of the cyber security infrastructure and own assets. The
architecture utilises all the levels of JDL data fusion model. Pure technical situational
awareness could be enriched, for example using open source intelligence information,
impact analysis information, information of incident response actions and certain
polices of the organisation. The proposed architecture could be used both in govern-
ment and industry organisations for state of the art Cyber Security Situational
Awareness System.

The next steps for the study are developing a proof of concept system using the
proposed architecture, testing different multi sensor data fusion algorithms for the
proposed architecture and visualising the situational awareness of a complex distributed
network system. Developed proof of concept system could be used for functional
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evaluation of the theoretical architecture proposed in this study. Additionally, auto-
matic threat mitigation based on situational awareness would be an interesting domain
of research and development.
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Jyväskylä, Finland

{mikhail.m.zolotukhin,timo.t.hamalainen}@jyu.fi
2 Institute of Information Technology, JAMK University of Applied Sciences,
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Abstract. Distributed denial-of-service (DDoS) attacks are one of the
most serious threats to today’s high-speed networks. These attacks
can quickly incapacitate a targeted business, costing victims millions
of dollars in lost revenue and productivity. In this paper, we present a
novel method which allows us to timely detect application-layer DDoS
attacks that utilize encrypted protocols by applying an anomaly-based
approach to statistics extracted from network packets. The method
involves construction of a model of normal user behavior with the help
of weighted fuzzy clustering. The construction algorithm is self-adaptive
and allows one to update the model every time when a new portion of
network traffic data is available for the analysis. The proposed technique
is tested with realistic end user network traffic generated in the RGCE
Cyber Range.

Keywords: Network security · Intrusion detection · Denial-of-service ·
Anomaly detection · Fuzzy clustering

1 Introduction

Distributed denial-of-service (DDoS) attacks have become frighteningly common
in modern high-speed networks. These attacks can force the victim to signif-
icantly downgrade its service performance or even stop delivering any service
by using lots of messages which need responses consuming the bandwidth or
other resources of the system [1]. Since it is difficult for an attacker to overload
the target’s resources from a single computer, DDoS attacks are launched via a
large number of attacking hosts distributed in the Internet. Although traditional
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network-based DDoS attacks have been well studied recently [2–4], there is an
emerging issue of detection of DDoS attacks that are carried out on the applica-
tion layer [5–9]. Unlike network-layer DDoS attacks, application-layer attacks can
be performed by using legitimate requests from legitimately connected network
machines which makes these attacks undetectable for signature-based intrusion
detection systems (IDSs). Moreover, DDoS attacks may utilize protocols that
encrypt the data of network connections in the application layer. In this case, it
is hard to detect attacker’s activity without decrypting web users network traffic
and, therefore, violating their privacy.

Anomaly-based approach is probably the most promising solution for detect-
ing and preventing application-layer DDoS attacks because this approach is
based on discovering normal user behavioral patterns and allows one to detect
even zero-day attacks. Attacks that involve the use of HTTP protocol is the
most prevalent application-layer DDoS attack type nowadays [7] due to the pro-
tocol popularity and high number of vulnerabilities in this protocol. For these
reasons, many recent studies have been devoted to the problem of anomaly-
based detection of application-layer DDoS attacks that utilize HTTP protocol.
For example, paper [5] analyzes application-layer DDoS attacks against a HTTP
server with the help of hierarchical clustering of user sessions. Study [6] shows
a novel detection technique against HTTP-GET attacks, based on Bayes factor
analysis and using entropy-minimization for clustering. In [7], authors propose
the next-generation application-layer DDoS defense system based on modeling
network traffic to dynamic web-domains as a data stream with concept drift.
In [8], authors detect application-layer DDoS attacks by constructing a random
walk graph based on sequences of web pages requested by each user. In [13],
we propose an algorithm for detection of trivial and intermediate application-
layer DoS attacks in encrypted network traffic based on clustering conversations
between a web server and its clients and analysis of how conversations initi-
ated by one client during some short time interval are distributed among these
clusters.

In this study, we improve our technique for anomaly-based detection of
application-layer DDoS attacks that utilize encrypted protocols proposed in [13].
The technique relies on the extraction of normal behavioral patterns and detec-
tion of samples that significantly deviate from these patterns. For this purpose,
we analyze the traffic captured in the network under inspection. It is assumed
that the most part of the traffic captured during the system training is legitimate.
This can be achieved by filtering the traffic with the help of a signature-based
intrusion detection system. Unfortunately, the method presented in [13] requires
the entire training dataset to be stored in memory, and, therefore, it cannot be
applied when the amount of network traffic is really huge. The improvement pro-
posed in this study allows one to update the normal user behavior model every
time when a new portion of network traffic is available for the analysis. As a
result, it requires significantly less amounts of computing and memory resources
and can be successfully employed for prevention of DDoS attacks in high-speed
networks.
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The rest of the paper is organized as follows. Extraction of the most relevant
feature vectors from network traffic is considered in Sect. 2. Fuzzy clustering
algorithms are presented in Sect. 3. Section 4 describes the DDoS attack detec-
tion technique based on weighted fuzzy clustering. In Sect. 5, we evaluate the
performance of the technique proposed. Finally, Sect. 6 draws the conclusions
and outlines future work.

2 Feature Extraction

We concentrate on the analysis of network traffic flows in SSl/TLS traffic trans-
ferred over TCP protocol as the most popular reliable stream transport protocol.
A flow is a group of IP packets with some common properties passing a monitor-
ing point in a specified time interval. In this study, we assume that these common
properties include IP address and port of the source and IP address and port
of the destination. The length of each such time interval should be picked in
such a way that allows one to detect attacks timely. When analyzing a traffic
flow extracted in some time interval, we also take into account all packets of
this flow transfered during previous time intervals. Resulting flow measurements
provide us an aggregated view of traffic information and drastically reduce the
amount of data to be analyzed. After that, two flows such as the source socket
of one of these flows is equal to the destination socket of another flow and vice
versa are found and combined together. This combination is considered as one
conversation between a client and a server.

A conversation can be characterized by following four parameters: source IP
address, source port, destination IP address and destination port. For each such
conversation at each time interval, we extract the following information:

1. duration of the conversation
2. number of packets sent in 1 second
3. number of bytes sent in 1 second
4. maximal, minimal and average packet size
5. maximal, minimal and average size of TCP window
6. maximal, minimal and average time to live (TTL)
7. percentage of packets with different TCP flags: FIN, SYN, RST, etc.

Features of types 2–7 are extracted separately for packets sent from the client
to the server and from the server to the client. It is worth to mention that here
we do not take into account time intervals between subsequent packets of the
same flow. Despite the fact, that increasing of these time intervals is a good
sign of a DDoS attack, taking them into consideration leads to the significant
increasing of the number of false alarms. It is caused by the fact, that when the
server is under attack it cannot reply to legitimate clients timely as well, and,
therefore, legitimate clients look like attackers from this point of view.
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Values of the extracted feature vectors can have different scales. In order
to standardize the feature vectors, max-min normalization is used. Extracted
feature vectors are recalculated as follows:

xij =

xij − min
1≤i≤n

xij

max
1≤i≤n

xij − min
1≤i≤n

xij
. (1)

As a result, new value of feature xij is in range [0, 1]. We denote vectors that
contain minimum and maximum feature values as xmin and xmax respectively.

3 Theoretical Background

In this section, we present theoretical background for the DDoS attack detection
algorithm presented in the next section.

3.1 Fuzzy C-Means

Let us consider data set X = {x1, x2, . . . , xn} where xj is a feature vector of
length d. We are aiming to divide these vectors into c clusters. Fuzzy c-means
is a method of clustering which allows one vector xj to belong to two or more
clusters [10]. It is based on minimization of the following objective function:

J =

c∑

i=1

n∑

j=1

um
ij ||vi − xj ||2, (2)

where m > 1 is a fuzzification coefficient, uij is the degree of membership of
the j-th feature vector xj to the i-th cluster and vi is the center of this cluster.
This objective function can be minimized by iteratively calculating the cluster
centers as follows:

vi =

∑n
j=1 um

ij xj∑n
j=1 um

ij

, (3)

where

uij =
1

∑c
k=1

(
||vi−xj ||
||vk−xj ||

)2/(m−1)
. (4)

The clustering algorithm can be described as follows:

1. Initialize the membership matrix U = {uij} in such a way that uij ∈ (0, 1)
for ∀i ∈ {1, . . . , c} and ∀j ∈ {1, . . . , n} and

∑c
i=1 uij = 1.

2. Calculate fuzzy cluster centers vi for i ∈ {1, . . . , c} using (3).
3. Compute the objective function with (2).
4. Compute new U using (4) and go back to step 2.

The algorithm stops if at some iteration the improvement of the objective
function over previous iteration is below a certain threshold, or the maximum
number of iterations is reached.
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3.2 Weighted Fuzzy C-Means

One of the biggest drawbacks of the fuzzy c-means algorithm is that it requires
to store all feature vectors in memory before the clustering algorithm starts. For
this reason, this algorithm cannot be applied in the case when the dataset to
be clustered is huge. One solution of this problem is dividing the dataset into
subsets of data so that the size of each subset does not exceed the amount of
memory resources of the processing system. In this case, the clustering result
of the first subset can be summarized as weighted centroids. These centroids
can be then used as weighted points when clustering vectors of the second and
subsequent subsets. This technique is often used for clustering data streams. In
this case, each subset consists of data vectors that have arrived for processing
at the recent time window.

Weighted fuzzy c-means [11,12] relies on the principle described above. Let
us consider data set X = {x1, x2, . . . , xn}. In addition, there is a set of weighted
centroids {v1, . . . , vc} defined based on previous subsets. We are aiming to update
these centroids based on vectors of subset X. The objective function minimized
by the weighted fuzzy c-means can be defined as follows:

J =

c∑

i=1

c+n∑

j=1

um
ij wj ||vi − xj ||2. (5)

where wj is the weight of the j-th point. Cluster centers can be found as

vi =

∑c+n
j=1 wju

m
ij xj∑c+n

j=1 wjum
ij

. (6)

Thus, the weighted fuzzy c-means algorithm for clustering a dataset that
consists of T subsets Xt, t ∈ {1, . . . , T} can be formulated as follows:

1. Apply fuzzy c-means to vectors of the first subset X1 to find centroids vi and
calculate weights for the resulting centroids:

wi =

n∑

j=1

uij (7)

2. Import vectors of the next subset and calculate membership matrix U = {uij}
where i ∈ {1, . . . , c} and j ∈ {1, . . . , c + n} as follows:

uij =

⎧
⎪⎪⎨
⎪⎪⎩

1, if i = j,

0, if i �= j and j ∈ {1, . . . , c},
1

∑c
k=1

( ||vi−xj ||
||vk−xj ||

)2/(m−1) , if j ∈ {c + 1, . . . , c + n}.
(8)

3. For each vector xj of the new subset, assign weight equal to 1 and recalculate
centroid weights as follows:

w′
i =

{∑c+n
j=1uijwj , if i ∈ {1, . . . , c},

1, if i ∈ {c + 1, . . . , c + n}.
(9)

where wj = 1, ∀j ∈ {c + 1, . . . , n}.
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4. Update cluster centroids vi, i ∈ {1, . . . , c} by substituting weight values wi

in (6) with new weights w′
i.

5. Compute the objective function by substituting new weights and centroids in
(5).

6. Compute new U using (4) and go back to step 3.
7. If, at some iteration, the improvement of the objective function (5) over pre-

vious iteration is below a certain threshold, or the maximum number of iter-
ations is reached, stop modifying centroids and move to step 2.

The algorithm stops once all subsets have been imported and analyzed.

4 DDoS Attack Detection Algorithm

In this section, we formulate our DDoS attack anomaly-based detection algo-
rithm. The algorithm relies on constructing a normal user behavior model and
detecting patterns that deviate from the expected norms. We consider two ver-
sions of obtaining the normal user behavior model: offline and online. Offline
training algorithm can only be applied to a small training dataset that can be
stored in memory with the resulting model that cannot be modified afterwards.
Online version of the training algorithm allows one to rebuild the normal user
behavior model based on feature vectors arrived in the recent time interval. As
a result, it requires significantly less amounts of memory since there is no need
to store all feature vectors extracted.

4.1 Offline Training Algorithm

In study [13], we presented the general description of our DDoS attack detec-
tion approach. This approach relies on the training stage that can be divided
into two main parts. First, all conversations extracted from the network traffic
are clustered. After that, for each particular user, distributions of conversations
among the resulting clusters are analyzed. In this subsection, we formulate the
training algorithm for the case of fuzzy clustering in more details.

Let us consider the set of standardized feature vectors X = {x1, . . . , xn}
extracted from a training set of network traffic conversations. We apply fuzzy
c-means clustering algorithm to obtain cluster centroids V x = {vx

1 , . . . , vx
c } and

partition matrix Ux = {ux
ij}. Clustering allows us to discover hidden patterns

presented in the dataset to represent a data structure in a unsupervised way.
Each cluster centroid calculated represents a specific class of traffic in the net-
work system under inspection. For example, one such class can include conver-
sations between a web server and clients which request some web page of this
server. Since the traffic may be encrypted it is not always possible to define what
web page these clients request. However, since it is assumed that traffic being
clustered is mostly legitimate, we can state that each cluster centroid describes
a normal user behavior pattern.
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To evaluate how much a feature vector is similar to the revealed normal
patterns or their combination a reconstruction criterion can be considered [14].
The reconstruction of xj is defined as follows:

x̄j =

∑c
i=1(u

x
ij)

mvx
i∑c

i=1(u
x
ij)

m
. (10)

We can calculate the reconstruction error E of this vector as

E(xj) = ||xj − x̄j ||2. (11)

For the detection purposes, we store the average value μx of reconstruction
errors calculated for feature vectors contained in the training set X as well as
the standard deviation of these error values σx.

After that, we group all conversations which are extracted in certain time
interval and have the same source IP address, destination IP address and destina-
tion port together and analyze each such group separately. Such approach is in-
line with other studies devoted to the problem of application-based DDoS attacks
detection [5,6,8]. Those studies analyze sequences of conversations (requests)
belonging to one HTTP session. In our case, since the session ID cannot be
extracted from encrypted payload, we focus on conversations initiated by one
client to the destination socket during some short time interval. We can interpret
a group of such conversations as a rough approximation of the user session.

Let us consider these user session approximations S = {s1, . . . , sN} found
in the training set. In [13], we introduced histogram vectors each element of
which was equal to the percentage of feature vectors contained in each partic-
ular conversation cluster. In this study, we extend this approach for the case
of fuzzy clustering by introducing session membership matrix A = {aij} with
i ∈ {1, . . . , N} and j ∈ {1, . . . , n} such that

aij =

{
1, if xj ∈ si,

0, if xj �∈ si

(12)

We consider new feature matrix

Y = A(Ux)T . (13)

Element yij of this matrix is directly proportional to the average probability that
a conversation from the i-th “session” belongs to the j-th cluster of conversations.

Once new feature vectors have been extracted, fuzzy c-means clustering algo-
rithm is applied to obtain cluster centroids V y = {vy

1 , . . . , vy
C} and partition

matrix Uy = {uy
ij}. Similarly to the clusters of conversations, each new cluster

centroid represents a specific class of traffic in the network under inspection. For
example, one such centroid can relate to clients that use some web service in
similar manner. As previously, we consider each resulting cluster centroid as a
normal user behavior pattern, because it is assumed that traffic captured dur-
ing the training is mostly legitimate. We calculate the reconstruction error for
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each of these new feature vectors and store its average value μy and standard
deviation σy.

As a result, once the training has been completed, the following model of
normal user behavior is obtained:

Moffline = {xmin, xmax, V x, μx, σx, V y, μy, σy}. (14)

4.2 Online Training Algorithm

The biggest drawback of the algorithm described above is that it requires to
store all feature vectors X and Y in memory until the moment the clustering is
completed. In this subsection, we improve our technique by proposing an online
training algorithm that allows to rebuild the model of normal user behavior
every time when a new portion of network traffic is available for the analysis.

Let us assume that the network traffic is captured during several short time
intervals and, for each time interval, there is a set of feature vectors extracted
from conversations between users. We are aiming to build the model of normal
user behavior under the condition that there is only room for storing one such
set of vectors in memory. For this purpose, we consider feature vectors extracted
during the first time interval. The offline version of the training algorithm can
be applied to these vectors to obtain xmin, xmax, V x, μx, σx, V y, μy and σy.
In addition, we calculate weights wx = (wx

1 , . . . , wx
c ) and wy = (wy

1 , . . . , wy
C) of

cluster centroids V x and V y by using partition matrices Ux and Uy respectively
as shown in (7). Moreover, we calculate the following matrix H:

H = V y(eT wx)−1, (15)

where e is vector of length c each element of which is equal to 1. The following
model of normal user behavior is obtained after the traffic captured during the
first time interval is analyzed:

Monline = {xmin, xmax, V x, wx, νx, μx, σx,H, V y, wy, νy, μy, σy}, (16)

where νx and νy are correspondingly the total number of conversations and the
total number of user sessions analyzed.

Once a new portion of network traffic has been captured, we extract necessary
features from conversations to form new set X = {x1, . . . , xn}. Let us denote
vectors xmin and xmax obtained during the previous training iteration as xold

min

and xold
max. New vectors xmin and xmax can be found as follows:

xmin,j = min {xold
min,j , min

1≤i≤n
xij},

xmax,j = max {xold
max,j , max

1≤i≤n
xij}.

(17)

After that, cluster centroids V x are recalculated:

vx
ij =

(xold
max,j − xold

min,j)v
x
ij + xold

min,j − xmin,j

xmax,j − xmin,j
. (18)
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Next, we apply weighted fuzzy c-means (starting from step 2) to vectors from
X taking into consideration recalculated cluster centroids V x and their weights
wx. Once new cluster centroids and their weights have been defined, we calculate
reconstruction error for each vector in X as shown in (11) and find its mean value
μ̄x and standard deviation σ̄x. New values of μx and σx can be found as follows:

μx =
νxμ̄x + nμx,old

νx + n
,

σx =

√
νx(σ̄x)2 + n(σx,old)2 + νx(μx,old − μx)2 + n(μx,old − μx)2

νx + n
.

(19)

After that, new value νx is recalculated as

νx = νx,old + n. (20)

The second part of the model is also updated. First, new cluster centroids
V y are obtained as

V y = Hwx. (21)

After that, feature matrix Y = {y1, . . . , yN} for user session approximations is
found (13). Weighted fuzzy c-means is applied to matrix Y taking into account
recalculated centroids V y and their weights wy. As a result, new cluster centroids
with updated weights are obtained. Average value μy and standard deviation σy

of reconstruction errors for vectors in Y are recalculated in the same manner as
it is shown in (19). The total number of user sessions is updated as

νy = νy,old + N. (22)

Finally, new matrix H is calculated as shown in (15).
As a result, the entire model of normal user behavior is updated based on

new vectors from X. The training is finished, once the traffic captured during
each time interval has been taken into account.

4.3 Attack Detection

To detect a trivial DoS attack we extract necessary features from a new conver-
sation and calculate the reconstruction error ex for the resulting feature vector
x according to centroids V x. We classify this conversation as an intrusion if

ex > μx + αxσx, (23)

where αx is the parameter that is configured during tunning the detection
system.

If a client initiates several connections during the recent time interval, we
calculate a partition matrix for these connections and find the corresponding
vector y. After that, the reconstruction error ey is defined based on centroids
V y. This client is classified as an attacker if

ey > μy + αyσy. (24)
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As previously, parameter αy is supposed to be configured during the system
validation. Although, in this case, we cannot define which connections of the
client are normal and which connections have bad intent, we are able to find the
attacker and what web service he attempts to attack. Moreover, this technique
allows one to detect more sophisticated types of DDoS attacks.

5 Numerical Simulations

The proposed technique is tested with network traffic generated in Realistic
Global Cyber Environment (RGCE) [15]. A web shop server is implemented
in RGCE to serve as a target of three different DDoS attacks carried out by
several attackers. Communication between the server and its clients is carried out
with encrypted HTTPS protocol. An IDS prototype that relies on the proposed
technique is implemented in Python. The resulting program analyzes arriving
raw packets, combines them to conversations, extracts necessary features from
them, adds the resulting feature vectors to the model in the training mode and
classifies those vectors in the detection mode. The IDS is trained with the traffic
that does not contain attacks by using offline and online training algorithms
proposed. Once the training has been completed, several attacks are performed
to evaluate true positive rate (TPR), false positive rate (FPR) and accuracy of
the algorithms.
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Fig. 1. ROC curves for detection of different DDoS attacks.

First DDoS attack tested is Slowloris that is usually classified as a trivial
application-layer DDoS attack. During this attack, each attacker tries to hold
its connections with the server open as long as possible by periodically sending
subsequent HTTP headers, adding to-but never completing-the requests. As a
result, the web server keeps these connections open, filling its maximum concur-
rent connection pool, eventually denying additional connection attempts from
clients. Figure 1(a) shows how TPR depends on FPR when detecting Slowloris
for different values of parameter αx. As one can notice, for low values of FPR
both variants of the algorithm are able to detect almost all conversations related
to Slowloris (TPR ≈ 99%).
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However, if conversations related to a DDoS attack are close enough to the
cluster centroids V x of the normal behavior model, they will remain undetected.
In this case, vectors of feature matrix Y should be taken into consideration. In
order to test the second part of the model, Sslsqueeze attack is performed. In
this case, attackers send some bogus data to the server instead of encrypted
client key exchange messages. By the moment the server completes the decryp-
tion of the bogus data and understands that the data decrypted is not a valid
key exchange message, the purpose of overloading the server with the crypto-
graphically expensive decryption has been already achieved. As can be seen at
Fig. 1(b) this attack is detected with 100% accuracy.

Finally, we carry out a more advanced DDoS attack with the attackers that
try to mimic the browsing behavior of a regular human user. During this attack
several bots request a random sequence of web resources from the server. Since
all those requests are legitimate, the corresponding conversations are classified
as normal. However, the analysis of feature vectors Y calculated for user sessions
allow us to detect the most part of the attacking attempts. Figure 1(c) shows
how TPR depends on FPR for different values of parameter αy when we try to
detect this advanced DDoS attack. As one can see, for low values of FPR about
70% of attacking attempts can be detected.

Table 1 shows the accuracy of detection of these three DDoS attacks for the
cases when parameters αx and αy are selected in an optimal way, i.e. when the
detection accuracy is maximal. As one can see, almost all attacks can be properly
detected, while the number of false alarms remains very low.

Table 1. Detection accuracy

Training algorithm Slowloris Sslsqueeze Advanced DDoS

Offline 99.113 % 100 % 68.619%

Online 99.223 % 100 % 71.837%

6 Conclusion

In this research, we aimed to timely detect different sorts of application-layer
DDoS attacks in encrypted network traffic by applying an anomaly-detection-
based approach to statistics extracted from network packets. Our method relies
on the construction of the normal user behavior model by applying weighted
fuzzy clustering. The proposed online training algorithm allows one to rebuild
this model every time when a new portion of network traffic is available for
the analysis. Moreover, it does not require a lot of computing and memory
resources to be able to work even in the case of high-speed networks. We tested
our technique on the data obtained with the help of RGCE Cyber Range that
generated realistic traffic patterns of end users. As a result, almost all DDoS
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attacks were properly detected, while the number of false alarms remained very
low. In the future, we are planning to improve the algorithm in terms of the
detection accuracy, and test it with a bigger dataset which contains real end user
traffic captured during several days. In addition, we will focus on the simulation
of more advanced DDoS attacks and detection of these attacks by applying our
anomaly-based approach.
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Abstract 
Application-layer denial-of-service attacks have become a serious threat to modern high-speed 

computer networks and systems. Unlike network-layer attacks, application-layer attacks can be 
performed by using legitimate requests from legitimately connected network machines which makes 
these attacks undetectable for signature-based intrusion detection systems. Moreover, the attacks may 
utilize protocols that encrypt the data of network connections in the application layer making it even 
harder to detect attacker’s activity without decrypting users network traffic and violating their privacy. 
In this paper, we present a method which allows us to timely detect various application-layer attacks 
against a computer network. We focus on detection of the attacks that utilize encrypted protocols by 
applying an anomaly-detection-based approach to statistics extracted from network packets. Since 
network traffic decryption can violate ethical norms and regulations on privacy, the detection method 
proposed analyzes network traffic without decryption. The method involves construction of a model of 
normal user behavior by analyzing conversations between a server and clients. The algorithm is self-
adaptive and allows one to update the model every time when a new portion of network traffic data is 
available. Once the model has been built, it can be applied to detect various types of application-layer 
denial-of- service attacks. The proposed technique is evaluated with realistic end user network traffic 
generated in our virtual network environment. Evaluation results show that these attacks can be 
properly detected, while the number of false alarms remains very low. 

 
Keywords: Network Security, Intrusion Detection, Denial of Service, Anomaly Detection, Traffic 

Clustering 
 
 

1 Introduction 
 
The Internet has become the major universal communication infrastructure. Unfortunately, it is also 

subject to cyber-attacks in growing numbers and varieties. Denial-of-service (DoS) attacks have 
become frighteningly common in modern high- speed networks. On a daily basis, hundreds of websites 
are hit by networks of infected machines which flood them with junk data making them inaccessible 
for regular users [1] [2] [3]. In general, DoS attacks aim to disable a computer or network system using 
lots of messages which need responses consuming the bandwidth or other resources of the system. 

Since it is difficult for an attacker to overload the targets resources from a single computer, DoS 
attacks are often launched via a large number of distributed attacking hosts in the Internet. Such 
distributed DoS (DDoS) attacks can force the victim to significantly downgrade its service performance 
or even stop delivering any service [4]. Designed to elude detection by today’s most popular tools, 
these attacks can quickly incapacitate a targeted business, costing victims in lost revenue and 
productivity. 

Traditional DDoS attacks such as ICMP flooding and SYN flooding are carried out at the network 
layer. The purpose of these attacks is to consume the network bandwidth and deny service to legitimate 



users of the victim systems. This type of attack has been well studied recently and different schemes 
have been proposed to protect the network and equipment from such bandwidth attacks [5][6][7]. For 
this reason, attackers shift their offensive strategies to application-layer attacks. Application-layer 
DDoS attacks may focus on exhausting the server resources such as Sockets, CPU, memory, disk 
bandwidth, and I/O bandwidth. Unlike network-layer DoS attacks, application-layer attacks do not 
necessarily rely on inadequacies in the underlying protocols or operating systems. They can be 
performed by using legitimate requests from legitimately connected network machines. This makes 
application- layer DDoS attacks so difficult to detect and prevent. 

Anomaly-based approach is a promising solution for detecting and preventing application-layer 
DDoS attacks. Such approach learns the features of event patterns which form normal behavior, and, 
by observing patterns that deviate from the established norms (anomalies), detects when an intrusion 
has occurred. Thus, systems which use the anomaly detection approach are modeled according to 
normal user-behavior and, therefore, are able to detect zero-day attacks, i.e. intrusions unseen 
previously. The problem of anomaly-based detection of application-layer DoS and DDoS attacks is of 
great interest nowadays [8][9][10][11][12][13][14][15] [16] [17]. 

In this study, we focus on the detection of the attacks that involve the use of HTTP protocol since it 
is the most prevalent application-layer denial-of-service attack type nowadays [2]. Study [10] divides 
HTTP-based DDoS attacks into three categories based on the level of their sophistication. The first 
category is trivial DDoS attacks, during which each bot participating in the attack sends one or a limited 
number of unrelated HTTP attacks towards the target site. This type of at- tacks includes such well-
known attacks as Sslsqueeze [18] and Slowloris [8]. The second category includes attacks that are 
carried out by bots generating random sequences of browser- like requests of web-pages with all of 
their embedded content making the attack traffic indistinguishable from the regular human traffic. The 
last category contains more advanced DoS attacks that are predicted to rise in popularity in the future. 
These advanced attacks will consist of sequences of HTTP requests which are carefully chosen so as 
to better mimic the browsing behavior of regular human users. 

Despite the rising interest to the detection of application- layer DDoS attacks utilizing HTTP 
protocol, most of the current researches concentrate on the analysis of information extracted from 
network packet payload which includes web resource requested, request method, session ID and other 
parameters. However, nowadays many DDoS attacks are utilizing secure protocols such as SSL/TLS 
that encrypt the data of network connections in the application layer which makes it impossible to 
detect attacker activity based on the analysis of packets’ payload without decrypting it [19]. For this 
reason, the detection of DDoS attacks is supposed to be carried out with the help of statistics that can 
be extracted mostly from network packet headers. 

Another challenge in the problem of application-layer DDoS attacks detection is distinguishing 
these attacks from flash crowds. Flash crowds are large surges of legitimate traffic which occur on 
popular web sites when thousands of requests access to the web servers over the relatively short period 
of time. Flash crowds are quite similar with DDoS attacks in terms of network anomaly and traffic 
phenomenon. They even can cause a web site or target to slow down its service for users or even 
temporarily shut down due to the significant increase of traffic [20]. 

It is also critical to implement a DDoS detection system which is capable to function effectively in 
computer networks that have high traffic and high-speed connectivity [21]. Moreover, since the 
mitigation of damage from a DDoS attack relies on its timely detection, the detection process is 
supposed to take place in an online mode. Nowadays, high-speed computer networks and systems deal 
with thousands traffic flows per second resulting in the data rate of several Gbps. For this reason, the 
construction of the normal user behavior model and the detection of an anomalous activity in a high-
speed network requires considerable amounts of memory and computing resources. Thus, the problem 
of proper management of these resources is one of the most important challenges when designing a 
DDoS detection and prevention system. 

In this study, we propose an application-layer DDoS attack detection scheme that meets the 
requirements discussed above. First, our method relies on the extraction of normal user behavior 
patterns and detection of anomalies that significantly deviate from these patterns. This allows us to 
detect even attacks that are carried out with legitimate requests from legitimately connected network 
machines. Moreover, the scheme proposed operates with information extracted from packet headers 
and therefore can be applied in secure protocols that encrypt the data of network connections without 
its decrypting. Finally, the normal user behavior model is obtained with the help of a data stream 



clustering algorithm that allows us to continuously update the model within memory and time 
restrictions. In order to evaluate our scheme, we implement a DDoS detection system prototype that 
employs the algorithm proposed. In addition, we create a virtual network environment that allows us 
to generate some realistic end user network traffic and different sorts of DDoS attacks. Simulation 
results show that these attacks can be properly detected, while the number of false alarms remains very 
low. 

The rest of the paper is organized as follows. Problem formulation and related work are discussed 
in Section 2. Extraction of the most relevant features from network traffic is considered in Section 3. 
Section 4 describes our approach of DDoS attacks detection in encrypted network traffic. The 
implementation of this approach in the context of high-speed networks is presented in Section 5. In 
Section 6, we evaluate the performance of the technique proposed. Finally, Section 7 draws the 
conclusions and outlines future work. 

 
2 Problem formulation 

 
We concentrate on the detection of application-layer DDoS attacks in SSL/TLS traffic transferred 

over TCP protocol as the most popular reliable stream transport protocol. We consider a network 
system that consists of several web servers that provide various services to their end users by utilizing 
this protocol. Outgoing and incoming traffic of these servers is captured and analyzed in order to detect 
and prevent potential attacks. The analysis process can be divided into two main phases: training and 
detection. During the training phase, we aim to investigate the traffic and discover behavior patterns of 
normal users. It is assumed that the most part of the traffic captured during this training phase is 
legitimate. In real world, this can be achieved by filtering the traffic with the help of a signature-based 
intrusion detection system. Once normal user behavior patterns have been discovered, these patterns 
can be used to analyze network traffic and detect DDoS attacks against the servers in online mode. 

 
3 Related work 

 
The anomaly-based detection approach is often applied for the application-layer DDoS attack 

detection. Study [15] proposes an advanced entropy-based scheme, that analyzes the distribution of 
captured packets among network flows. The method allows to detect variable rate DDoS attacks, divide 
them into different fields and treat each field with different methods. Paper [14] proposes to cluster 
user sessions based on number of requests in the session, request rate, average popularity of objects in 
the session and average transition probability of objects in the session. Hierarchical clustering is applied 
to separate attack sessions from normal ones. Paper [9] shows a novel detection technique against 
HTTP-GET attacks that relies on clustering of user sessions based on minimizing entropy of requests 
in the sessions belonging to the same cluster. Bayes factor analysis is then used to detect attacking 
hosts. Paper [8] considers detection of slow DoS attacks by analyzing numbers of packets received by 
a web server over small time horizons. The detection is carried out by using two spectral metrics: 
average of these packet numbers and the mutual information of the fast Fourier transform applied to 
the number of packets received at the current time horizon and at the previous one. In [11], authors 
model a normal user browsing behavior by constructing a random walk graph based on sequences of 
web pages requested by each user. Once the random walk model has been trained, the users subsequent 
page request sequence is predicted based on page transition probabilities calculated. After this, an 
attacker can be detected by calculating the similarity between the predicted page request sequence and 
observed sequence in the subsequent observation period. Study [10] proposes the next-generation 
system for application-layer DDoS defense by modeling network traffic to dynamic web-domains as a 
data stream with concept drift. An outlier detection is carried out by using the normalized length of the 
longest common subsequence similarity metric applied to chronological browsing sequences visited 
Web pages during a user session. In [12], different features are constructed for each user session to 
differentiate between an attacker and a normal user. These features include the number of HTTP 
requests made by a user in a particular time slot, the number of unique URL requests, numbers of 
successful, redirected and invalid requests, and several others. Once all necessary features are 
calculated, logistic regression is used for modeling a normal user browsing behavior for detecting the 
application layer DDoS attack traffic. Study [13] proposes to search for abstract features for each user 



session with the help of a stacked auto encoder. After that, a logistic regression classifier is used to find 
network traffic related to a DDoS attack.  

As one can notice, all of these studies propose to detect application-layer DDoS attacks by 
monitoring network packet payload. However, it remains unclear how to detect attacks in encrypted 
traffic. In this study, this problem is solved by modeling normal user behavior based on clustering 
feature vectors extracted from packet headers. Traffic clustering without using packet payload 
information is a crucial domain of research nowadays due to the rise in applications that are either 
encrypted or tend to change port consecutively. For example, study [22] uses k-means and model-based 
hierarchical clustering based on the maximum likelihood in order to group together network flows with 
similar characteristics. In [23], authors classify encrypted traffic with supervised learning algorithm 
C4.5 that generates a decision tree using information gain, semi-supervised k-means and unsupervised 
multi-objective genetic algorithm (MOGA).  

In modern high-speed networks, large amounts of flow data are generated continuously at an 
extremely rapid rate. For this reason, it is not possible to store all the data in memory, which makes 
algorithms such as k-means and other batch clustering algorithms inapplicable to the problem of traffic 
flow clustering [24]. 

Data stream clustering algorithms is probably the most promising solution for this problem. Most 
stream clustering algorithms summarize the data stream using special data structures: cluster features, 
core sets, or grids. After performing the data summarization step, data stream clustering algorithms 
obtain a data partition via an offline clustering step [25]. Cluster feature trees and micro-cluster trees 
are employed to summarize the data in such algorithms as BIRCH [26], CluStream [27] and ClusTree 
[28]. The StreamKM++ algorithm [29] summarizes the data stream into a tree of coresets that are 
weighted subsets of points that approximate the input data. Grid-based algorithms such as DStream 
[30] and DGClust [31] partition the feature space into grid cells, each of which is representing a cluster. 
Approximate clustering algorithms such as streaming k-means [32] first choose a subset of the points 
from the stream, ensuring that the selected points are as distant from each other as possible, and then 
execute k-means on the data subset. Approximate stream kernel k-means algorithm [24] uses 
importance sampling to sample a subset of the data stream, and clusters the entire stream based on each 
data points similarity to the sampled data points in real-time. 

 
4 Feature extraction 

 
In order to extract features that are necessary for building a normal user behavior model and 

detecting outliers, we consider a portion of network traffic transferred in the computer system under 
inspection in some very short time window. The length of this time window should be picked in such 
a way that allows one to detect attacks timely. 

The method proposed in this study is based on the analysis of network traffic flows. A flow is a 
group of IP packets with some common properties passing a monitoring point in a specified time 
interval. These common properties include transport protocol, the IP address and port of the source and 
IP address and port of the destination. As it was mentioned in the previous section, in this study, we 
concentrate on the traffic transferred over TCP. The time interval is considered to be equal to the time 
window defined previously. Moreover, when analyzing a traffic flow extracted in the current time 
window, we take into account all packets of this flow transferred during previous time windows. 
Resulting flow measurements provide us an aggregated view of traffic information and drastically 
reduce the amount of data to be analyzed. After that, two flows such as the source socket of one of 
these flows is equal to the destination socket of another flow and vice versa are found and combined 
together. This combination is considered as one conversation between a client and a server.  

A conversation can be characterized by following four parameters: source IP address, source port, 
destination IP address and destination port. For each such conversation at each time interval, we extract 
the following information: 

1) duration of the conversation 
2) number of packets sent in 1 second 
3) number of bytes sent in 1 second 
4) maximal, minimal and average packet size 
5) maximal, minimal and average size of TCP window 
6) maximal, minimal and average time to live (TTL) 



7) percentage of packets with different TCP flags: URG, ACK, PSH, RST, SYN and FIN 
8) percentage of encrypted packets with different properties: handshake, alert, etc. 
 
Features of types 2–8 are extracted separately for packets sent from the client to the server and from 

the server to the client. Features of types 2–7 are extracted from packet headers whereas a value of 
feature 8 can be found in packet payload even though it is encrypted.  

It is worth to mention that here we do not take into account time intervals between subsequent 
packets of the same flow. Despite the fact, that increasing of these time intervals is a good sign of a 
DDoS attack, taking them into consideration leads to the significant increasing of the number of false 
alarms. It is caused by the fact, that when the server is under attack it cannot reply to legitimate clients 
timely as well, and, therefore, legitimate clients look like attackers from this point of view. 

Values of the extracted feature vectors can have different scales. In order to standardize the feature 
vectors, max-min normalization is used. Max-min normalization performs a linear alteration on the 
original data so that the values are normalized within the given range. For the sake of simplicity, we 
map vectors to range [0,1]. Since all network traffic captured during the training stage is assumed to 
be legitimate, all the resulting standardized feature vectors can be used to reveal normal user behavior 
patterns and detect behavioral anomalies.  

To map a value 𝑥"# of the 𝑗-th attribute with values 𝑥%#, 𝑥'#, …  from range 𝑥"# ∈ [𝑥+",,#𝑥+-.,#] to 
range 𝑧"# ∈ 0, 1  the computation is carried out as follows: 

	 𝑧"# =
𝑥"# − 𝑥+",,#

𝑥+-.,# − 𝑥+",,#
.	 (1)	

 
5 Detection approach 

 
In order to be able to classify application-layer DDoS attacks, we propose an anomaly-detection-

based system that relies on the extraction of normal behavioral patterns during the training followed 
by the detection of samples that significantly deviate from these patterns. For this purpose, we analyze 
the traffic captured in the network under inspection with the help of several data mining techniques. 

 
5.1 Training 

 
Once all relevant features have been extracted and standardized, we divide resulting feature vectors 

into several groups by applying a clustering algorithm. Each such group is supposed to consist of 
objects that are in some way similar between themselves and dissimilar to objects of other groups. 
Clustering allows us to discover hidden patterns presented in the dataset to represent a data structure 
in an unsupervised way. There are many different clustering algorithms including hierarchical 
clustering algorithms, centroid-based clustering algorithms and density-based clustering algorithms. 
Each cluster calculated represents a specific class of traffic in the network system under inspection. 
For example, one such class can include conversations between a web server and clients which request 
the same web page of this server. Since the traffic may be encrypted it is not always possible to define 
what web page these clients request. However, since it is assumed that traffic being clustered is mostly 
legitimate, we can state that each cluster describes a normal user behavior pattern.  

After that, we group all conversations which are extracted in certain time interval and have the same 
source IP address, destination IP address and destination port together and analyze each such group 
separately. Such approach is in-line with other studies devoted to the problem of application-based 
DDoS attacks detection [9][11][14]. Those studies analyze sequences of conversations (requests) 
belonging to one HTTP session. In our case, since the session ID cannot be extracted from encrypted 
payload, we focus on conversations initiated by one client to the destination socket during some short 
time interval. We can interpret a group of such conversations as a rough approximation of the user 
session.  

For each such group of conversations, we obtain a sequence of numbers that are labels of the clusters 
found to which these conversations belong. An 𝑛-gram model is applied to extract new features from 
each such sequence. An 𝑛-gram is a sub-sequence of n overlapping items (characters, letters, words, 
etc.) from a given sequence. The 𝑛-gram models are used in speech recognition [33] and language 



processing [34]. Thus, the 𝑛-gram model transforms each user session to a sequence of n-labels. Then 
the frequency vector is built by counting the number of occurrences of each n-label in the analyzed 
session. The length of the frequency vector is 𝑘,, where 𝑘 is the number of conversation clusters. 

Once new feature vectors have been extracted, a clustering algorithm can be applied to divide these 
vectors into groups. Similarly, to the clusters of conversations, each cluster of 𝑛-gram vectors 
represents a specific class of traffic in the network under inspection. For example, one such cluster can 
include clients that use some web service in similar manner. As previously, we consider each resulting 
cluster as a normal user behavior pattern, because it is assumed that traffic captured during the training 
is mostly legitimate. Thus, the normal user behavior model consists of the clusters of two types: clusters 
of conversations and clusters of user sessions, that directly depend on the conversation clusters. 

 
5.2 Detection 

 
Once the training has been completed, the system is able to detect network intrusions. To detect a 

trivial DoS attack we extract necessary features from a new conversation and classify the resulting 
feature vector according to the clusters found. If this vector does not belong to any of the clusters, the 
corresponding conversation is labeled as intrusive and it is supposed to be blocked by the server.  

For example, for centroid-based clustering methods, to define whether a new vector belongs to a 
cluster or not, we calculate the distance between this vector and the cluster center. If the distance 
between the new vector and the cluster center is greater than a predefined threshold, this vector does 
not belong to the cluster. This threshold 𝑇 for some cluster can be calculated based on vectors of the 
training set which belong to this cluster: 𝑇 = 𝜇 + 	𝛾𝜎, where 𝜇 is the average distance between the 
center and vectors of this cluster, 𝜎 is the standard deviation of these distance values and 𝛾 is some 
numeric parameter tuned during the detection system validation. 

The anomalous conversations found allow us to detect trivial DDoS attacks. However, if the attacker 
is able to mimic the browsing behavior of a regular human user, conversations related to this attack 
might belong to one of the clusters of the normal behavior model and, therefore, remain undetected. In 
this case, 𝑛-gram statistics should be taken into consideration. Vectors obtained with 𝑛-gram model 
during an attack can differ markedly from vectors corresponding to legitimate traffic. Thus, we can 
define whether a computer or network system is under attack during the current time interval, and, 
moreover, find clients responsible for initiating conversations related to the attack. 

Let us consider a client which initiates several connections of certain type during the recent time 
interval. After we classify these connections according to clusters of conversations obtained during the 
training, the 𝑛-gram model is applied to transform this client session into new feature vector. If this 
vector does not belong to any of the session clusters extracted during the training, then this new vector 
is classified as an anomaly and all connections of the client are considered as an attack. As one can see, 
in this case, we cannot define which connections of the client are normal and which connections have 
bad intent. However, this scheme allows us to find the attacker and what web service he attempts to 
attack. After that, the attacker can be black-listed and a more sophisticated approach can be applied to 
analyze the conversations initiated by this attacker in more details. 

 
6 Implementation 

 
In this section, we discuss how the approach described above can be implemented to protect a web 

service in a high-speed encrypted network. The most challenging part of the implementation is related 
to the training stage, since there can be huge volumes of network traffic generated continuously at an 
extremely rapid rate and there is no possibility to store all features extracted from this traffic in memory. 
For this reason, a data stream clustering algorithm can be applied to conversations between users and 
the web service. However, in this case, conversation clusters may change every time a new portion of 
traffic has arrived. In turn, this leads to modifications of 𝑛-gram vectors representing user sessions 
calculated during previous time windows. These modifications are supposed to be made before session 
clusters are updated with new data extracted from this portion of the traffic. 

 
6.1 Clustering conversations 

 



Let us consider conversations between clients and the web service that take place in the current time 
window. We propose to cluster feature vectors extracted from these conversations by constructing an 
array of centroids that summarizes the data partition [35] [36]. 

We consider feature vectors 𝑋A = 𝑥%A, … , 𝑥BA  extracted from 𝑛BA  conversations during the 𝑡-th time 
window and standardized vectors 𝑍A = 𝑧%A, … , 𝑧BA 	that are obtained from raw vectors 𝑋A with the help 
of max-min standardization using values 𝑥+-.,#A  and 𝑥+",,#A .In order to find 𝑘 centroids for these vectors, 
we can apply standard iterative refinement technique. First, 𝑘 centroids are supposed to be initiated. It 
can be carried out by randomly choosing 𝑘 feature vectors from 𝑍A. However, there is a more efficient 
way to select initial centroids by following kmeans++ procedure [37] [38]: 

1) Choose an initial center 𝑚%
A  centroid uniformly at random from 𝑍A. 

2) Choose the next center 𝑚"
A, selecting 𝑚"

A = 𝑧#A ∈ 𝑍A with probability 𝑣#A: 

	 𝑣#A =
𝑚𝑖𝑛H∈ %,…,"I% 𝑑(𝑚H

A, 𝑧#A)

𝑚𝑖𝑛H∈{%,…,"I%}𝑑(𝑚H
A, 𝑧MA )

,NO
MP%

,	 (2)	

where 𝑗 = {1, … , 𝑛BA}. 
3) Repeat the previous step 𝑘	 − 	1 times to select 𝑘 initial centroids. 
 
Once initial centroids 𝑚%

A , … ,𝑚R
A 	have been selected, we iteratively update the centroids as follows: 

1) Assign each feature vector to the nearest centroid: 

	 𝑝"A = {𝑧 ∈ 𝑍A: 𝑑 𝑧,𝑚"
A = min

H
𝑑(𝑧,𝑚H

A)}.	 (3)	

2) For each partition 𝑝"A, find a new centroid: 

	 𝑚"
A =

1
𝑝"A

𝑧
Y∈Z[

O

.	 (4)	

 
These two steps are repeated until there are no longer changes in partitions during the assignment 

step. 
Let us denote the raw vector that corresponds to standardized vector 𝑧 as 𝑥(𝑧). For each resulting 

partition 𝑝"A, we store in memory its centroid 

	 𝜇"A =
1

𝑝"A(𝑧)
𝑥(𝑧)

Y∈Z[
O(Y)

,	 (5)	

the number of feature vectors contained in partition 𝑝"A 

	 𝑤 	𝑝"A = 	𝑝"A ,	 (6)	

and sum of squared features in these vectors 

	 𝜍 𝑝"A = 𝑥'(𝑧)
Y∈Z[

O

,	 (7)	

where 𝑥' 𝑧 = (𝑥' 𝑧% , 𝑥' 𝑧' , …). It is worth noting that despite we use standardized vectors for 
clustering, we store statistics calculated for raw vectors. In addition, we store vectors 𝑥+",,#A  and 𝑥+-.,#A  
used for the standardization. 

We calculate all the partitions for 𝜏 consecutive time windows 𝑡 ∈ {1, 2, … , 𝜏}, where value of 𝜏 is 
defined by the memory constraints. In order to compress 𝜏×	𝑘 resulting partitions into new 𝑘 clusters. 
first, we calculate minimal 𝑥+",,#d  and maximal 𝑥+-.,#d  feature values: 

	
𝑥+",,#d = min

Ae{%,',…,d}
𝑥+",,#A ,

𝑥+-.,#d = max
Ae{%,',…,d}

𝑥+",,#A .
	 (8)	

These values are used to standardize centroids 𝜇"A	 into vectors 𝑚"
A	 for 𝑡 ∈ 1,2, … , 𝜏  and 𝑖𝜖{1,2, … , 𝑘}. 

We obtain new 𝑘 centroids with the technique similar to the one described above. The only 
difference is that we take into account the numbers of feature vectors assigned with each centroid: 



1) Choose an initial center 𝑚%
d centroid uniformly at random from 𝑚#

A where 𝑡 ∈ {1,2, … , 𝜏} and 
𝑗𝜖{1,2, … , 𝑘}. 

2) Choose the next center 𝑚#
d, selecting 𝑚#

d = 𝑚#
A with probability 𝑣#A: 

	 𝑣#A =
𝑤(𝑝#A)𝑚𝑖𝑛H∈{%,..,"I%}𝑑(𝑚H

d, 𝑚#
A)

𝑤 𝑝MA 𝑚𝑖𝑛He{%,…,"I%}𝑑(𝑚H
d, 𝑚M

A )R
MP%

d
AP%

.	 (9)	

3) Repeat the previous step 𝑘 − 1 times to select 𝑘 initial centroids. 
 
After that, new centroids are updated as follows: 
1) Assign each old centroid 𝑚#

A to the nearest new centroid 𝑚"
d: 

	 𝑝"d = {𝑚#
A: 𝑑 𝑚#

A, 𝑚"
d = min

H
𝑑(𝑚#

A, 𝑚H
d)}.	 (10)	

2) For each partition 𝑝"d, find a new centroid: 

	 𝑚"
d =

1
𝑤 𝑧+(Y)∈Z[

k
𝑤 𝑧 𝑧.

+(Y)∈Z[
k

	 (11)	

These two steps are again repeated until there are no longer changes in partitions during the assignment 
step. 

For each resulting partition 𝑝"d, we store in memory its centroid 

	 𝜇"d =
1
𝑤 𝑧+(Y)∈Zk

𝑤 𝑧 𝑥 𝑧 ,
+(Y)∈Z[

k

	 (12)	

the number of feature vectors associated with this centroid 

	 𝑤 𝑝"d = 𝑤(𝑥)
+(.)∈Z[

k

,	 (13)	

and sum of squared features in these vectors 

	 𝜍 𝑝"d = 𝜍(𝑥)
+(.)∈Z[

k

.	 (14)	

In addition, we substitute values 𝑥+",,#A  and 𝑥+-.,#A  for 𝑡	 ∈ {1,2, . . . , 𝜏} with vectors	𝑥+",,#d  and 𝑥+-.,#d  
used for the standardization. 

Once 𝜏×𝑘 partitions 𝑝"A have been compressed to new 𝑘 partitions 𝑝"d, information about the old 
partitions can be removed from the memory. After that, the algorithm continues in the same manner 
with finding partitions for the next 𝜏 − 1 time windows 𝑡 ∈ {𝜏 + 1, 𝜏 + 2, … , 2𝜏 − 1} and combining 
them with partitions 𝑝"d to obtain new 𝑘 partitions. 

In order to reduce the amount of computing resources required, this clustering procedure can be 
substituted with streaming 𝑘-means approximation proposed in [38]. However, from our numerical 
simulations, we notice, that the clustering algorithm used converges in just few iterations. To guarantee 
that the clustering is completed during the current time window, the number of iterations is 
recommended to be artificially limited. 

 
6.2 Clustering sessions 

 
We consider a group of conversations that are extracted at time window t and have the same source 

IP address, destination IP address and destination port. As mentioned in the Section 4 we interpret this 
group as a rough approximation of the user session. Once all connections at this time window have 
been divided into 𝑘 partitions, for each user session, we obtain an 𝑛-gram vector of size 𝑘,. Let us 
denote the new feature matrix as 𝑌A = {𝑦%A, … , 𝑦,nO

A }, where 𝑛oA is the number of different sessions at 
time window 𝑡. 

We apply the same partition algorithm to new feature vectors in order to obtain 𝐾 session centroids. 
As previously, for each resulting partition 𝑃"A, in addition to its centroid 𝑀"

A = 𝑚(𝑃"A	), we store in 
memory the number of feature vectors associated with this centroid: 



	 𝑤 𝑃"A = 𝑃"A .	 (15)	

However, instead of just sums of squared features in vectors assigned to a centroid, we calculate 
and store matrix 𝑆(𝑃"A) of size 𝑘,×𝑘,, the (𝑗, 𝑙)-th element 𝑆#H(𝑃"A) of which is calculated as follows: 

	 𝑆#H 𝑃"A = 𝑦#𝑦H
u∈v[

O

,	 (16)	

where 𝑗, 𝑙 ∈ {1, … , 𝑘,}. 
Once connection partitions for 𝜏 consecutive time windows 𝑡 ∈ 1, 2, … , 𝜏  have been calculated 

and 𝜏×𝑘 resulting partitions 𝑝"A have been compressed to new 𝑘 connection clusters 𝑝"d, information 
stored for each session partition 𝑃"A is supposed to be updated. It is caused by the fact that connection 
clusters have been changed which leads to the modifications in all the 𝑛-gram vectors. For this purpose, 
we introduce function 𝑓(𝑗, 𝑝HA, 𝑝"d) with 𝑗 ∈ 1, … , 𝑘, , such that if the 𝑗-th 𝑛-gram contains label 𝑙 and 
partition 𝑝HA is assigned to new partition 𝑝"d, the function returns the index that corresponds to the 𝑛-
gram which is obtained from the 𝑗-th gram by substituting label 𝑙 with label 𝑖. 

Let us assume that conversation partition 𝑝"d contains some of the partitions obtained at time window 
𝜏: 

	 𝑝"x
A , … , 𝑝"y

A ∈ 𝑝"d.	 (17)	

It is worth noting that partition 𝑝"d can also contain partitions from other time windows, but they do not 
affect vectors 𝑌A at this point. 

If the 𝑗-th gram contains label 𝑖, the 𝑗-th component of the 𝑖-th session centroid 𝑀"
A is modified as 

follows: 

	 𝑀"#
A = 𝑀

",z #,Z[{
O ,Z[

k
A

|

-P%

.	 (18)	

Similarly, elements of matrix 𝑆(𝑃"A) are modified: 

	

𝑆#H(𝑃"A) = 𝑆z #,Z[{
O ,Z[

k ,H 𝑃"
A , 𝑙 ∈ 1, … , 𝑘, ,

|

-P%

𝑆H#(𝑃"A) = 𝑆H,z #,Z[{
O ,Z[

k 𝑃"A , 𝑙 ∈ 1, … , 𝑘, .
|

-P%

	 (19)	

If the 𝑗-th gram contains label 𝑖- ∈ {1, … , 𝑖|} and does not contain label 𝑖, the 𝑗-th component of the 
𝑖-th session centroid 𝑀"

A and elements of matrix 𝑆(𝑃"A) become equal to zero: 

	 𝑀"#
A = 0	 (20)	

and 

	
𝑆#H 𝑃"A = 0, 𝑙 ∈ 1, … , 𝑘, ,
𝑆H# 𝑃"A = 0, 𝑙 ∈ 1, … , 𝑘, .

	 (21)	

The rest of the components do not change. Thus, we update information about session partitions to 
represent modifications in 𝑛-grams caused by the compression of connection clusters. 

Once session partitions 𝑃"A, where 𝑡 ∈ 	 {1, . . . , 𝜏} and 𝑖 ∈ {1, . . . , 𝐾}, have been updated, these 𝜏	×	𝐾 
partitions are compressed to new 𝐾 clusters with the same technique as the one was applied for 
connections. For each resulting partition 𝑃"d, we store in memory its centroid 

	 	𝑚 𝑃"d = 𝑀"
d,	 (22)	

the number of feature vectors associated with this centroid 



	 𝑤 𝑃"d = 𝑤(𝑥)
+(.)∈v[

k

,	 (23)	

and matrix 𝑆 𝑃"d , the (𝑗, 𝑙)-th elements 𝑆#H 𝑃"d  of which is defined as follows: 

	 𝑆#H 𝑃"d = 𝑆#H(𝑥)
+(.)∈v[

k

.	 (24)	

 
6.3 Attack detection 

 
The final model of normal user behavior consists of minimal 𝑥+",,# and maximal 𝑥+-.,# feature 

values, centroids 𝜇" = 𝑚(𝑝"), numbers of vectors assigned 𝑤" = 	𝑤(𝑃") and sums of squared feature 
values 𝜍" = 𝜍(𝑃") for 𝑘 connection partitions 𝑝%, . . . , 𝑝R and centroids 𝑀" = 𝑚 𝑃" 	, numbers of vectors 
assigned 𝑊" = 𝑤(𝑃") and matrices 𝑆" = 𝑆(𝑃") for 𝐾 session partitions 𝑃%, … , 𝑃~. 

First, we recalculate conversation centroids and sums of squared feature values according to values 
𝑥+",,# and 𝑥+-.,# used for the standardization: 

	

𝑚"# =
𝜇"# − 𝑥+",,#

𝑥+-.,# − 𝑥+",,#
,

𝑠"# =
𝜍"# + 𝑤"(𝑥+",,#' − 2𝑥+",,#𝜇"#)

(𝑥+-.,# − 𝑥+",,#)'
,
	 (25)	

where 𝑖 ∈ 1, … , 𝑘 . 
For each partition 𝑝" we calculate radius 𝑟" and diameter 𝜓" in a similar manner they are calculated 

for cluster features in [26]: 

	

𝑟" =
𝑒�𝑠"
𝑤"

− 𝑚"
�𝑚"	,

𝜓" =
2𝑤"𝑒�𝑠" − 2𝑤"'𝑚"

�𝑚"

𝑤"(𝑤" − 1)
	 ,

	 (26)	

where 𝑒 is vector of the same length as 𝑠" each element of which is equal to 1. 
Similarly, for each partition 𝑃" we calculate radius 𝑅" and diameter Ψ"as follows: 

	
𝑅" =

𝐸�𝑆"
�"-�

𝑊"
− 𝑀"

�𝑀"	,

Ψ" =
2𝑊"𝐸�𝑆"

�"-� − 2𝑊"
'𝑀"

�𝑀"

𝑊"(𝑊" − 1)
	 ,

	 (27)	

where 𝑆"
�"-� is the vector which consists of diagonal elements of matrix 𝑆" and 𝐸 is vector of the same 

length as 𝑆"
�"-� each element of which is equal to 1. 

If the distance 𝑑 between standardized feature vector 𝑥 extracted from a new connection and the 
closest centroid 𝑚"(.) is greater than the following linear combination of 𝑟"(.)	and 𝜓"(.): 

	 𝑑 𝑥,𝑚" . > 	 𝑟" . + 𝛼𝜓"(.),	 (28)	

then this connection is classified as an attack. 
Similarly, if the distance 𝑑 between feature vector 𝑦 extracted from a new session and the closest 

centroid 𝑀"(u) is such that: 

	 𝑑 𝑦,𝑀" u > 𝑅"(u) + 𝛽Ψ"(u),	 (29)	

then this user session is classified as an attack. Parameters 𝛼 > 0 and 𝛽 > 0 are supposed to be tuned 
during the model validation stage in order to guarantee the highest detection accuracy. 

 



7 Algorithm evaluation 
 
In order to evaluate the detection approach proposed, first, we briefly overview our virtual network 

environment used to generate some realistic end user network traffic and various DDoS attacks. Then, 
we evaluate the cost of the clustering on the training data. Finally, we present results of the detection 
of three different DDoS attacks. 

 
7.1 Test environment and data set 

 
To test the DDoS detection scheme proposed in this study, a simple virtual network environment is 

designed. The environment botnet consists of a command and control (C2) center, a web server, and 
several virtual bots. C2 stores all necessary information about bots in a data base and allows to control 
bots by specifying the traffic type, the pause between two adjacent sessions and the delay between 
connections in one session. The web server has several services including a web bank website, file 
storage, video streaming service and few others. Each bot is a virtual machine with running a special 
program implemented in Java that allows the bot to receive commands from C2 and generate some 
traffic to the web server. It is worth noting that all the traffic is transferred by using encrypted SSL/TLS 
protocol. 

In this research, we concentrate on the analysis of incoming and outgoing traffic of the bank web 
site that allows a client to log in and do some bank operations, see Figure 1. In order to generate a 
normal bank user traffic, we specify several scenarios that each bot follows when using the site. Each 
scenario consists of several actions following each other. These actions include logging in to the system 
by using the corresponding user account, checking the account balance, transferring some money to 
another account, checking the result of the transaction, logging out of the system, and some other 
actions. Each action corresponds to requesting a certain page of the bank service with all of its 
embedded content. Pauses between two adjacent actions are selected in a way similar to a human user 
behavior. For example, checking the account’s balance usually takes only a couple of seconds, whereas 
filling in information to transfer money to another account may take much longer time. 

 

 
Figure 1. Test setup 

 
In addition to the normal traffic, several attacks are performed against the bank web service. First 

DDoS attack tested is Sslsqueeze. During this attack, attackers send some bogus data to the server 
instead of encrypted client key exchange messages. By the moment the server completes the decryption 
of the bogus data and understands that the data decrypted is not a valid key exchange message, the 
purpose of overloading the server with the cryptographically expensive decryption has been already 
achieved. 



The second attack is Slowloris. In the case of this attack, each attacker tries to hold its connections 
with the server open as long as possible by periodically sending subsequent HTTP headers, adding to-
but never completing-the requests. As a result, the web server keeps these connections open, filling its 
maximum concurrent connection pool, eventually denying additional connection attempts from clients. 
Moreover, we carry out a more advanced DDoS attack with the attackers that try to mimic the browsing 
behavior of a regular human user. During this attack several bots request sequences of web pages with 
all of their embedded content from the service. Unlike the normal user behavior, these sequences are 
not related to each other by any logic but generated randomly. 

Finally, an intrusion detection system (IDS) prototype that relies on the proposed technique is 
implemented in Python. The resulting program analyzes arriving raw packets, combines them to 
conversations, extracts necessary features from them, implants the resulting feature vectors to the 
model in the training mode and classifies those vectors in the detection mode. The IDS is trained with 
the traffic that does not contain attacks by using the online training algorithm proposed. After that, the 
system tries to find conversations and clients that are related to the attacks specified above. 

The resulting program analyses arriving raw packets, combines them to conversations, extracts 
necessary features from them, implants the resulting feature vectors to the model in the training mode 
(Figure 2) and classifies those vectors in the detection mode (Figure 3). 

 

 
Figure 2. IDS in the training mode 

 



 
Figure 3. IDS in the detection mode 

 
7.2 Clustering evaluation 

 
In order to evaluate the clustering scheme, we generate a portion of normal user traffic as described 

above. The duration of the simulation is 10 minutes, during which 45 bots communicate with the web 
bank server. The pause between two adjacent sessions varies from 15 to 45 seconds. To train the system 
we use the time window of length 5 seconds. Cluster centroids in the model are compressed every 10 
time windows. 

In order to evaluate the clustering scheme, we calculate the average cost 𝐶 of dividing the resulting 
set of vectors 𝑋 into clusters with centers m as follows: 

	 𝐶 =
1
𝑋

𝑚𝑖𝑛ue+𝑑 𝑥, 𝑦
.e�

.	 (30)	

First, we compare the cost of clustering vectors that represent conversations by offline and online 
approaches. The comparison results for different numbers of clusters are presented in Figure 4. As one 
can see, the cost of clustering these vectors online is comparable with the cost in the offline case and 
the difference between costs reduces when the number of clusters grows. When the number of clusters 
is equal or greater than 15, the difference between costs is only about 1.4%. 

 



 
Figure 4. Average cost of clustering conversations 

 
Similar results are obtained for 𝑛-gram vectors that represent normal user session approximations. 

It is worth noticing that, for session clusters built in the online mode, 𝑛-grams are constructed based 
on the clustering conversation vectors in online mode, and correspondingly, for session clusters 
obtained in offline mode, 𝑛-grams are constructed based on the clustering conversation vectors in 
offline mode. The comparison results for different numbers of clusters are presented in Figure 5. As 
one can notice, the cost of clustering in the online case is again comparable with the offline approach. 

 

 
Figure 5. Average cost of clustering ”sessions” 

 
7.3 Detection accuracy 

 
In order to evaluate attack detection accuracy, we employ the training dataset described above. The 

IDS is trained with the traffic that does not contain attacks by using the training algorithm proposed. 
Once the training has been completed, several attacks are performed to evaluate true positive rate 



(TPR), false positive rate (FPR) and accuracy of the algorithms. Since one of the most important 
drawbacks of an anomaly-based detection system is high numbers of false alarms, we are only 
interested in results when the false positive rate is below 1%. 

We expect that trivial DDoS attacks such as Sslsqueeze and Slowloris can be detected by analyzing 
feature vectors extracted from conversations. Since almost every conversation between a client and the 
web server takes few milliseconds, the time window size is selected to be 1 second. Since, we could 
not find any other anomaly-based attack detection method for the encrypted network traffic, we 
compare our results with the offline version of the algorithm proposed in this study. In [17], we 
compared several well-known batch clustering algorithms for the problem of trivial DDoS attack 
detection. It turned out, that such algorithms as k-means, self-organizing maps and fuzzy c-means allow 
one to detect slow HTTP attacks with high accuracy. In this study, we use k-means combined with k-
means++ as the offline version of our approach. 

Figure 6 shows how TPR depends on FPR when detecting Sslsqueeze for different numbers of 
conversation clusters in the model of normal user behavior and different values of parameter 𝛼. As one 
can notice, for low values of FPR both variants of the algorithm are able to detect almost all 
conversations related to the attack. In particular, we are able to detect 98.5% of intrusive conversations 
with no false alarms and 99.9% of such conversations with FPR equal to 0.8%. 

 

 
Figure 6. Dependence of true positive rate on false positive rate of Sslsqueeze detection for different 

clustering parameters 
 
Dependency of TPR on FPR when detecting Slowloris is presented in Figure 7. As previously, 

different numbers of conversation clusters in the model of normal user behavior and different values 
of parameter 𝛼 are used to obtain the results. As one can see, both variants of the algorithm are able to 
detect almost all conversations related to the attack (TPR > 99%) without false alarms. 

 



 
Figure 7. Dependence of true positive rate on false positive rate of Slowloris detection for different 

clustering parameters 
 
Finally, we carry out a more advanced DDoS attack with the attackers that try to mimic the browsing 

behavior of a regular human user. During this attack several bots request a random sequence of web 
resources from the server. Since all those requests are legitimate, the corresponding conversations are 
classified as normal. However, the analysis of 𝑛-gram vectors that represent approximations of user 
sessions allow us to detect the most part of the attacking attempts. In this simulation, 2-gram model is 
applied. Figure 8 shows how TPR depends on FPR for different values of the time window size. When 
the time window duration is only 1 second, there is no possibility to detect the attack since the number 
of conversations in all user sessions is not enough to distinguish a legitimate user’s sessions from 
attacker’s ones. However, when the size of the time window grows, normal user sessions become more 
and more distinguishable from the sessions related to the attack. As one can see, when the time window 
size is 4 seconds, almost all intrusive sessions can be detected (TPR = 97%) without false alarms. When 
the time window size is 8 seconds, all sessions related to the attack can be detected (TPR = 100%) with 
few false alarms (FPR = 0.93%). 

 



 
Figure 8. Dependence of true positive rate on false positive rate of more advanced DDoS attack 

detection for different time window sizes and clustering parameters 
 
Table 1 shows the accuracy of detection of these three DDoS attacks for the cases when clustering 

parameters are selected in an optimal way, i.e. when the detection accuracy is maximal. 
 

Table 1. Detection accuracy 
Attack Time window size 

1 second 2 seconds 4 seconds 8 seconds 
Sslsqueeze 99,89 % 
Slowloris 99,77 % 

Intermediate 
DDoS 

63,29 % 85,21 % 98,52 % 99,34 % 

 
7.4 Discussion 

 
The detection approach proposed in this study allows us to detect trivial as well as more advanced 

DDoS attacks. However, the detection accuracy strongly depends on the clustering parameters selected 
for the model of normal user behavior. For this reason, these parameters should be carefully selected. 
For example, the number of conversation clusters should depend on the number of web pages of the 
web service considered. For completely different pages there should be different clusters whereas 
similar pages can be combined to the same cluster. Moreover, since clustering vectors that represent 
user sessions requires analysis of matrices of size 𝑘,	×	𝑘,, where 𝑘 is the number of conversation 
clusters and 𝑛 is the number of grams in the 𝑛-gram model, value of k should be limited depending on 
available memory. For the same reason, number of grams in the 𝑛-gram model should be small. As we 
can see from the results presented above, 2-gram model allows us to detect almost all intrusions. The 
number of ”session” clusters should depend on the number of different scenarios how the web service 
can be used by some user. Parameters 𝛼	and 𝛽 are recommended to lie between 0 and 1. If these 
parameters are close to zero, the number of true positives is the highest. When these parameters grow, 
the number of false alarms decreases. Finally, the size of time window should depend on the average 
duration of a normal user session in order to increase the accuracy of the detection of intermediate 
DDoS attacks. 

It is also worth to notice, that despite our approach allows us to distinguish attacks from the normal 
user traffic with high accuracy, the traffic we label as normal would be classified as an advanced DDoS 



attack by [10], because this traffic consists of sequences of HTTPS requests which are carefully chosen 
so as to better mimic the browsing behavior of regular human users. For this reason, in the future, we 
are going to test our method on some real end user traffic. 

 
8 Conclusion 

 
In this research, we considered the problem of timely detection of different sorts of application-

layer DDoS attacks in encrypted high-speed network traffic by applying an anomaly detection-based 
approach to statistics extracted from network packets. Our method relies on the construction of the 
normal user behavior model by applying a data stream clustering algorithm. The online training scheme 
proposed allows one to rebuild this model every time when a new portion of network traffic is available 
for the analysis. Moreover, it does not require a lot of computing and memory resources to be able to 
work even in the case of high-speed networks. In addition, an IDS prototype that relies on the proposed 
technique was implemented. This prototype was used to test our technique on the data obtained with 
the help of our virtual network environment that generated realistic traffic patterns of end users. As a 
result, almost all DDoS attacks were properly detected, while the number of false alarms remained very 
low. 

In the future, we are planning to improve the algorithm in terms of the detection accuracy, and test 
it with a bigger dataset which contains real end user traffic captured during several days. In addition, 
we will focus on the simulation of more advanced DDoS attacks and detection of these attacks by 
applying our anomaly-based approach. 
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