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Highlights 

 

 Taller people have higher earnings. 

 We use genetic instruments for height. 

 The OLS models show that 10 cm of extra height increases earnings by 13%. 

 The IV point estimate is lower at 9% and not statistically significant. 

 

Abstract 

 

We use the Young Finns Study (N=~2000) on the measured height linked to register-

based long-term labor market outcomes. The data contain six age cohorts (ages 3, 6, 9, 

12, 15 and 18, in 1980) with the average age of 31.7, in 2001, and with the female share 

of 54.7. We find that taller people earn higher earnings according to the ordinary least 

squares (OLS) estimation. The OLS models show that 10 cm of extra height is associated 

with 13% higher earnings. We use Mendelian randomization, with the genetic score as an 

instrumental variable (IV) for height to account for potential confounders that are related 

to socioeconomic background, early life conditions and parental investments, which are 

otherwise very difficult to fully account for when using covariates in observational 

studies. The IV point estimate is much lower and not statistically significant, suggesting 

that the OLS estimation provides an upward biased estimate for the height premium. Our 

results show the potential value of using genetic information to gain new insights into the 

determinants of long-term labor market success. 

Keywords: Height; Stature; Height premium; Earnings; Employment  
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Introduction 

 

 

Taller people reap higher earnings. This empirical finding has been documented in 

several studies. There are three main explanations for the labor market premium in height 

(e.g., Sargent and Blanchflower, 1994; Judge et al., 2004; Persico et al., 2004; Case and 

Paxson, 2008; Tao, 2014; Sohn, 2015; Yamamura et al., 2015).1 First, height is 

associated with cognitive skills (Case and Paxson, 2008). Second, non-cognitive skills, 

such as social skills, may play a role in the height premium (Persico et al., 2004). Based 

on these two explanations, height is related to other individual qualities, such as 

cognitive or non-cognitive skills. Third, there may also be other social explanations for 

the height premium, such as discrimination against short people in the labor market (e.g., 

Cinnirella and Winter, 2009) as a form of social-perceptual bias by which tall individuals 

are perceived to have more positive qualities irrespective of their true qualities (Hamstra, 

2014).2 

 

Most empirical studies treat height as an exogenous variable when examining the link 

between height and labor market outcomes.3 However, there may be important 

confounders, such as socioeconomic background, early life conditions and parental 

investments, that influence both a person’s height and subsequent labor market outcomes. 

It is challenging to adequately account for the combined effect of these factors when 

                                                 
1 Hübler (2016) summarizes the relevant literature. 

 
2 There are also empirical studies that point to the role of muscular strength as an explanation for the height 

premium (Lundborg et al., 2014). Böckerman et al. (2010) find only limited evidence for this view in the 

Finnish setting. 

3 Case and Paxson (2006), and Vogl (2014) treat height as endogenously determined. Height is influenced 

by childhood nutrition, childhood environment and the prevalence of childhood diseases. 
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using the covariates that are available in observational studies. For example, parental 

investments are notoriously difficult to comprehensively and accurately measure.4 Thus, 

the causal effect of height on earnings and labor market success largely remains an open 

question.  

 

The literature has pursued two approaches to address causal effects between height and 

earnings. First, some empirical studies have used a twin design. With twin data, it is 

possible to eliminate shared environmental factors, such as the family background, 

neighborhood and peer effects, and genetic factors (e.g., Böckerman and Vainiomäki, 

2013). Second, two earlier studies used genetic instruments for height (von Hinke 

Kessler Scholder et al., 2013; Tyrrell et al., 2016).5 Genetic information could be helpful 

because genetic markers that are correlated with height should not directly affect the 

outcome variable of interest (i.e. earnings or employment). The specific instrument used 

in this paper is based on the findings in the genetics literature. There is substantial 

heritability for body height (Silventoinen et al., 2003). However, the contribution of 

individual genetic variants is modest. As a result, we used a genetic score with variants 

that genome-wide association studies (GWASs) have found to be significantly associated 

with height in extensive population samples (Allen et al., 2010), minimizing the weak 

instrument problem.  

                                                 
4 Under the assumption of time-invariant parental investments they can be accounted for using fixed effects 

in panel data if the explanatory variable is time-varying. However, because adult height is time-invariant, 

its effect would also be eliminated by using fixed effects. Nevertheless, twin data can be used as discussed 

in the next paragraph.  

5 The usage of genetic instruments is known as “Mendelian randomization” in the medical literature. The 

basic idea of Mendelian randomization is that genetic factors are distributed randomly in the population so 

that genetic risk factors are independent of potential confounding factors. We explain this idea in detail in 

the next section of the paper. 
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We use administrative information on long-term labor market outcomes (earnings and 

labor market attachment). We chose this approach because cross-sectional measures of 

labor market outcomes are inaccurate proxies for individuals’ lifetime labor market 

attachment and earnings (Böhlmark and Lindquist, 2006). Moreover, the use of the 

comprehensive register-based, long-term measures reduces measurement error from non-

response and reporting biases. 

 

Our contribution to the sparse empirical literature on the effects of height using genetic 

information builds on the fact that von Hinke Kessler Scholder et al. (2013) did not 

examine the labor market outcomes and that Tyrrell et al. (2016) used a self-reported 

categorical annual household income from a single year. In contrast, our paper uses 

linked data with administrative information and focuses on earnings that are a better 

measure of labor market success than annual household income that is confounded by 

social income transfers and spouse’s income. 

 

Methods 

 

Mendelian randomization 

 

Mendelian randomization refers to empirical studies that use genetic instruments to 

estimate the causal effects of exposure variables or traits in non-experimental 

(observational) data because it is often difficult or impossible to use randomized 

controlled trials (Tyrrell et al., 2016). The need for instrumentation arises from the 

presence of confounding factors that correlate with both the exposure and the outcome 

variable. This leads to bias in OLS estimation.   
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Figure 1 depicts the various effects and estimators in this setting. The IV or Wald 

estimator avoids the bias if the following conditions are fulfilled: (1) the genetic 

instrument (G) must correlate with the exposure variable (X), i.e. it must be informative; 

(2) the genetic instrument (G) must affect the outcome (Y) only through its effect on the 

exposure (X), i.e. the instrument must be exogenous; and (3) the instrument (G) and 

confounder (Z) must be independent, i.e. the genotype should not be associated with the 

confounding relations between (X) and (Y). The first condition is justified based on 

genome-wide association studies that provide evidence for the correlations between 

genotypes and exposure variables that in our research design is the height of persons, 

which we discuss in greater detail below. The second condition is essentially an 

assumption, which is strictly untestable, but some indirect evidence for its validity is 

provided below. The validity of the third condition is based on Mendel’s second law 

(independent assortment), which states that genotypes are assigned randomly when 

passed across generations. This implies that in the population, or a representative sample 

of the population, genotypes are distributed independently of any confounding factors, 

which is what gives the method its name. It achieves the randomization of the exposure 

via “nature” rather than controlled trial.   

 

Data sources and the sample 

 

We use a longitudinal research design based on linked data. The data on height and 

genetic markers are from the Cardiovascular Young Finns Study (YFS).6 The YFS began 

in 1980, when 4,320 participants in six age cohorts (ages 3, 6, 9, 12, 15 and 18 years) 

were randomly chosen from five Finnish university regions using the national population 

                                                 
6 The YFS is described at http://youngfinnsstudy.utu.fi/studydesign.html 

http://youngfinnsstudy.utu.fi/studydesign.html
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register (Raitakari et al., 2008). A total of 3,596 people participated in the study in 1980, 

and seven follow-up studies have been conducted; the most recent was in 2011/12.7    

 

To obtain register information on labor market outcomes, we linked the YFS to the 

Finnish Longitudinal Employer-Employee Data (FLEED) of Statistics Finland (SF) using 

unique personal identifiers. The matching was exact, and there were no misreported ID 

codes. FLEED includes information on individuals’ earnings and labor market 

attachment, which is taken directly from comprehensive administrative registers that are 

maintained by SF.  

 

To account for key observable differences in the parental background, we linked the YFS 

to the Longitudinal Population Census (LPC) of SF from the year 1980. We used 

indicators for the parents’ university-level education as family background variables. 

 

Measures 

 

We used both earnings and labor market attachment as labor market outcomes. Register-

based, long-term earnings were measured as the average wage and salary earnings over 

the period 2001-2012. Labor market attachment was measured as the average 

employment years over the period 2001-2012.  

 

                                                 
7 Written informed consent was obtained from participants who were at least 9 years old and from the 

parents of younger participants. The research plan and data collection procedures were accepted by the 

participating universities review boards, and data collection was conducted according to WHO standards as 

well as the Helsinki Declaration. 
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Height was measured in 2001, when the participants were 24 to 39 years old. Height was 

collected in professional health examinations that were conducted at local health centers. 

Thus, the measure contains a minimal amount of measurement error.  

 

We used the genetic score as an instrument for height. The score was calculated from 

data for the 180 single nucleotide polymorphisms (SNPs) that are significantly (p<5 x 10-

8) associated with height on the genome wide level according to Allen et al. (2010). A 

non-weighted genetic risk was calculated as the sum of genotyped risk alleles or imputed 

allele dosages carried by an individual.8 A Kernel density plot of the genetic score that is 

used in the IV estimations is presented in Appendix A2. 

 

Genotyping was performed using a custom-made Illumina Human 670K BeadChip. 

Genotypes were called using the Illumina clustering algorithm (Teo et al., 2007). After 

quality control, there were 2442 samples and 546677 genotyped SNPs available for 

further analysis. Imputation was performed with MACH software and HapMap release 

22 as a reference panel. 

 

The genetic score has two major advantages. First, it is more powerful than any of the 

individual SNPs because it explains more variation in height. Second, it is more valid 

because it reduces the risk that any individual single nucleotide polymorphism will bias 

                                                 
8 More information on the SNPs and alleles used in calculating the risk score is presented in Appendix A1. 

We also used a weighted score in a robustness check below. A weighted genetic score was calculated as a 

sum of imputed allele dosages carried by an individual each multiplied by the effect size reported by Allen 

(2010). The weighted sum of effect alleles was divided by the mean effect size and transformed to the z-

score. Effect alleles, effect sizes and the imputation quality of each variant used in the gene score 

calculation are reported in Appendix A1. 
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the IV estimates via an alternative biological pathway (pleiotropy) (Palmer et al., 2012). 

An alternative method to mitigate the bias caused by pleiotropy is to use individual SNPs 

with the Egger method (Bowden et al., 2015).9  

 

A genetic risk score for blood pressure was calculated using 29 SNPs associated with 

systolic and/or diastolic blood pressure in a genome-wide association study (International 

Consortium for Blood Pressure Genome-Wide Association Studies, 2011). In another 

genome-wide association study, genetic risk scores for total cholesterol and triglycerides 

were calculated with 25 SNPs associated with the total cholesterol concentration and 24 

SNPs associated with the triglyceride concentration (Teslovich et al., 2010). All genetic 

scores were calculated as the sum of genotyped risk alleles or imputed allele dosages 

carried by an individual.  

 

A computerized cognitive testing battery (CANTAB®) was used to assess cognitive 

performance in 2026 participants in the latest YFS follow-up study in 2011. The 

cognitive test battery included the following five tests: 1) the motor screening test 

(MOT), which was used as a training/screening tool to indicate difficulties in test 

execution; 2) the paired associates learning test (PAL), which measures visual and 

episodic memory and visuospatial associative learning; 3) the spatial working memory 

test (SWM), which measures short-term and spatial working memory as well as problem 

solving; 4) the reaction time test (RTI), which measures reaction, movement speed and 

attention; and 5) the rapid visual information test (RVP), which measures visual 

processing, recognition and sustained attention. Each test produced several variables. 

                                                 
9 We use the standard econometric methods of economics because the relevant literature (in economics) 

has used similar methods also. Otherwise it would be difficult to compare our estimation results to the 

earlier ones. 
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Principal component analysis was conducted to identify components accounting for the 

majority of the variation of the dataset (see Appendix A3).10 Principal component 

analyses were also performed separately for all individual tests. The first components 

resulting from these analyses were considered to represent cognitive performance related 

to the particular cognitive domain. The component for the motor screening test was 

excluded from further analysis, as it did not discriminate the subjects, which indicated a 

ceiling effect. Other components were normalized using the rank order normalization 

procedure, resulting in four variables, each with a mean of 0 and standard deviation (SD) 

of 1. All available data for each cognitive test were used in the analyses; therefore, the 

number of participants varied between the models (data on PAL and RTI tests were 

excluded for N=177 participants due to technical problems with the test equipment, while 

N=51 refused to participate in all or some of the tests). Detailed descriptions and 

validation of the cognitive data have been reported previously (Rovio et al., 2016).  

 

Personality characteristics were assessed in 1983 for the four oldest cohorts using the 

Hunter-Wolf A-B Rating Scale (Wolf et al., 1982).11 The Hunter-Wolf Rating scale 

consists of four components (Aggression, Leadership, Responsibility and Eagerness-

Energy) that were measured with 3-8 items. Responses to the items were given on a 7-

point scale (1=‘totally disagree’ and 7=‘totally agree’) (Jokela and Keltikangas-Järvinen, 

2009; Hintsa et al., 2014). 

 

 

                                                 
10 We used SAS and the PROC FACTOR command in the analysis. 

11 The Young Finns Study does not contain information on Big Five personality traits that started to gain 

popularity in the later part of the 1980s. The Hunter-Wolf rating scale was designed to measure behavior. 

Thus, instead of intrinsic tendencies, our personality characteristics measure an individual’s typical 

behavioral patterns that arguably have a significant role as a determinant of labor market success. 
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Statistical methods 

 

There are two main elements in our analyses. First, we run OLS models to replicate 

standard observational studies.12 Second, we estimate instrumental variable models 

wherein height, in 2001, is instrumented using the genetic score, providing the causal 

effects of height on the long-term labor market outcomes. We control for birth month, 

birth year effects and gender. These factors potentially impact earnings and employment, 

but they are predetermined with respect to our outcome variables and independent of the 

height risk factor.  

 

We also include the parental education level to control for any intergenerational 

correlation of socioeconomic status (cf. Öberg, 2014). This accounts for possible omitted 

variable bias from the socioeconomic status of parents, which could affect the genetic 

risk factors, such as through assortative mating within educational groups. This would 

violate the independence assumption of the IV design, as argued in von Hinke et al. 

(2016). The problem can be corrected by conditioning on parental education, particularly 

the mother’s education level, which varies significantly between high and low risk factor 

individuals (Table 3).  

 

Results 

 

Descriptive evidence indicates that taller people have substantially higher earnings 

(Table 1). The baseline OLS estimates (Table 2, Panel A) show that height is statistically 

and economically significantly associated with average earnings over the period 2001-

                                                 
12 We use Stata 14.1 (College Station, Texas) in all our analyses. The instrumental variables results are 

obtained using the IVREG2 command. 
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2012. The quantitative size of the estimate is considerable. The coefficient for height 

implies that 10 cm of extra height is associated with 13% higher earnings. The estimate is 

roughly comparable to the earlier estimates that have been reported using Finnish data 

(Böckerman et al., 2010; Böckerman and Vainiomäki, 2013). The OLS estimate for labor 

market attachment is also statistically significant. The quantitative size of the effect 

corresponds to four months of additional employment during the twelve years covered by 

the data.  

 

Next, we turn to the preferred IV estimates (Table 2, Panel B). The genetic score is a 

powerful instrument for height. In the first stage of IV, the F statistic on the instrument is 

188 in the earnings regression, which exceeds the minimum standard of F=10 suggested 

in Staiger and Stock (1997) by a wide margin. Based on McClellan et al. (1994), we 

divide our estimating sample into those with an above-average value and those with a 

below-average value for genetic score and evaluate whether the two groups significantly 

differ in their observable characteristics that conceivably correlate with the second-stage 

outcome (Table 3). It is impossible to prove the null hypothesis that the instrument is 

uncorrelated with the second-stage error term. However, the lack of correlation between 

the instrument and observed variables, as shown in Table 3, is consistent with the 

exclusion restriction.13  

                                                 
13 We also tested the exclusion restriction by dividing the sample into three ranges based on the gender-

specific risk score. Analogously to the Goldfeld and Quandt (1965) test for homoscedasticity, we omitted a 

quarter of the central observations and used the individuals in the remaining lowest 3/8 and highest 3/8 to 

evaluate whether these groups significantly differed in their observable characteristics. We found 

significant differences (at least at the 10% level) in the following characteristics: height in 2001, visual and 

episodic memory, leadership, annual income (father), high education (mother) and blood pressure. Note 

that we control for these additional characteristics in Table 4.  
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The IV point estimate (Table 2, Panel B) for the effect of height on earnings is 9% per 10 

cm of extra height, and the estimate is no longer statistically significant. The effect of 

height on average employment years over the period 2001-2012 is also much lower and 

insignificant in the IV estimation. The earlier Finnish evidence on the amount of the 

height premium is very limited. Böckerman and Vainiomäki (2013) report a 3.3% 

earnings effect per 1 cm for men and a 1.4% effect for women, but the effect remains 

significant only for women when using twin-differences and IV estimation. Using 

genetic instrument, Tyrrell et al. (2016, p. 6) report that “… a genetically determined 1 

SD (6.3 cm) greater height was associated with a 0.05 (0.03 to 0.07) SD increase in 

annual household income.” Comparing this effect to our result is difficult because their 

annual household income is measured using five categories and because they do not 

report the SD for it. 

 

An important finding of our research setting is that the IV estimates suggest that the OLS 

estimates are potentially upward biased. For example, specific early life conditions and 

parental investments that are not accounted for in the OLS models may lead to both 

greater height through differences in the children’s nutrition and health and thereby to 

better long-term labor market outcomes later in life. This unaccounted confounder may 

explain the higher point estimates for height in the OLS estimation.    

 

A caveat to the finding of a null effect for height in the IV setting is that it may be a 

symptom of low power due to an insufficient sample size. Freeman et al. (2013) show 

that the sample size needed in Mendelian randomization study is inversely proportional 

to two factors: the variation in the exposure or observable trait explained by the genetic 

instrument, and the square of the true effect size. Genome-wide association studies 

usually report low shares of explained variation for genotypes; therefore, the minimum 



14 

 

sample size required for detecting effects, with given levels of significance and power, 

becomes much larger than that in a randomized controlled trial. Alternatively, the power 

to detect an effect with a given sample size becomes low.  

 

Brion et al. (2013) show that the power for the Mendelian randomization study with one 

instrument (one SNP or multiple SNP predictor) can be expressed as a function of the 

non-centrality parameter (NCP) of the test for the 2SLS regression coefficient to be zero. 

They further show that the NCP depends on a number of parameters: the causal effect of 

X on Y, the OLS estimate of it, the proportion of the exposure variable explained by the 

genetic predictor, and the variances of the X and Y variables. They provide an online tool 

to perform such power calculations, which we have utilized.14 Using the OLS and IV 

estimates obtained above, the observed variances of the X and Y variables, and the 

explanatory power of a genetic instrument in our data (0.048, i.e. ~5%), the required 

sample size for a test of no causal relationship with 0.05 type I error and 0.7 power is 

approximately N=13500. Therefore, our result of no causal effect should be interpreted 

with caution, as it may reflect our inability to reject the null hypothesis due to the 

relatively small sample size.15 On the other hand, the nature of our outcome measure, 

register-based long-term earnings, should substantially decrease the measurement error 

and thereby improve the precision of estimation compared to e.g., Tyrrell et al. (2016). 

 

Table 4 contains additional estimation results after controlling for other genetic risk 

scores and observable differences in cognitive skills and personality characteristics. Allen 

                                                 
14 The web tool is available at http://glimmer.rstudio.com/kn3in/mRnd/  

 
15 There is an earlier study that uses IV design with the same data that reports statistically significant 

effects of obesity on labor market outcomes (Böckerman et al., 2016). This suggests that the sample size is 

not an important issue per se. 

http://glimmer.rstudio.com/kn3in/mRnd/
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et al. (2010) identified five loci for which the height-associated variant was also 

correlated with variants associated with other traits and diseases, particularly bone 

mineral density, rheumatoid arthritis, type 1 diabetes, psoriasis and obesity. Although the 

use of the genetic risk score significantly reduces the risk that an individual gene variant 

will bias the results (Palmer et al., 2012), we also added the genetic risk scores for blood 

pressure, total cholesterol, and triglycerides to control for potential pleiotropy. The 

results remain intact after this adjustment. 

 

The most interesting finding from Table 4 is that the relationship between height and 

labor market outcomes is not statistically significant in the OLS estimation after adding 

the measures for cognitive skills to the set of covariates. Although the decline in the point 

estimate is partly attributed to the reduction in the sample size, this result suggests that 

physical height may be a marker of beneficial circumstances for developing higher 

cognitive skills (cf. Case and Paxson, 2008). However, the measures of cognitive skills 

are only available for a subsample of the original YFS data, implying that we have to 

consider these results with caution. Accounting for personality characteristics does not 

significantly impact on the estimates of how height influences earnings and 

employment.16  

 

The YFS dataset is quite small for estimating separate results for subsamples, but we 

estimated models by gender to identify potential differences. The OLS estimates for both 

men and women are almost identical (not reported). The IV estimates are not statistically 

significant. In particular, the estimate for men is also very close to zero. There is earlier 

empirical evidence from other countries showing that the height premium is larger for 

                                                 
16 Hübler (2013) has shown using German panel data that the height premium disappears after controlling 

for personality traits because tall persons are relatively risk tolerant compared to their shorter peers. 
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men (Hübler, 2016). Using a self-reported categorical annual household income from a 

single year and a genetic instrument, Tyrrell et al. (2016) report that the effect of height 

on annual household income is approximately twice as strong in men as in women. The 

previous Finnish OLS estimates also give larger effects for men, but they are available 

from data that contain a different age cohort (Böckerman et al., 2010; Böckerman and 

Vainiomäki, 2013). The institutional setting of the labor market is also potentially 

important. In particular, wage compression and women’s high labor force participation 

rate in Finland in the six age cohorts that we examine may contribute to the small 

difference in the height premium between women and men.  

 

We additionally estimated separate models for the recession years (2009-2012) and pre-

recession period (2001-2008) to account for the possible business cycle variation in the 

height effects, as reported in Böckerman and Vainiomäki (2013). Our OLS estimates (not 

reported) show that the point estimate for the height effect almost doubles in the 

recession compared to the pre-recession period, but the IV estimates remain insignificant 

in both periods.    

 

Our baseline IV estimates used non-weighted genetic score based on 180 SNPs. As a 

final robustness check, we use alternative genetic scores. First, the IV estimates based on 

the weighted genetic score based on 180 SNPs reported in Appendix A4 are similar 

compared to the ones that used non-weighted genetic score in Table 2. Second, there is 

empirical literature that identifies more relevant SNPs for height (Wood et al., 2014) 

compared with the 10% explained by the 180 SNPs included in the genetic score used in 

the baseline estimates of this study. A more recent GWAS identified altogether 697 SNPs 

at a genome-wide significant level that explained 16% of phenotypic variance. The effect 

sizes of the weighted height scores for these are 1.97 cm/SD(GRS) for 180 SNPs and 
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2.80 cm/SD(GRS) for 697 SNPs in the entire YFS population. For this reason, we have 

also used information on 697 SNPs to construct the genetic score.17 Genotype imputation 

was performed using SHAPEIT v1 (Delaneau, 2011) and IMPUTE2 (Howie, 2009) 

software and the 1000G Phase I Integrated Release Version 3 as a reference panel (1000 

Genomes Project Consortium, 2010). The results using non-weighted and weighted score 

based on 697 SNPs are reported in Appendix A5. The IV estimates using the alternative 

genetic score are similar to our baseline estimates in Table 2.    

 

Discussion 

 

Using the genetic score as an instrument for measured height, we find that the IV point 

estimate for the height premium is lower than the OLS estimate and is not significantly 

different from zero. Taken at face value, this suggests that the OLS estimates for the 

quantitative size of the height premium in the literature may be upward biased. The use 

of the genetic score as an instrument for height accounts for potential confounders that 

are related to socioeconomic background, early life conditions and parental investments 

that have not been systematically accounted for in previously reported empirical 

literature. 

 

                                                 
17 The use of the 180 SNPs is not an important limitation per se because the most important SNPs with 

largest effect sizes are usually identified first. This implies that the use of additional SNPs would most 

likely not improve the power of the first stage of the IV regressions much. Because our data is relatively 

small additional SNPs with smaller effect size can even produce results that have the wrong signs 

compared to GWAS. A large set of genetic instrumental variables would also increase the possibility that 

some of the instruments are invalid due to pleiotropy (Bowden et al., 2015). 
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As the genetic score (used as an instrument for height) was not associated with earnings 

or employment while true height was, the associations between height and labor market 

outcomes are not causal effects. Instead, our results suggest that physical height is a 

marker of beneficial circumstances for developing higher cognitive skills during 

childhood or adolescence due to family background. The disappearance of the height 

effect by inclusion of cognitive skills as an explanatory variable supports this 

interpretation.  

 

Our results are broadly consistent with those reported in a twin design for monozygotic 

(identical) twins by Böckerman and Vainiomäki (2013). The authors found an 

insignificant height premium for men after controlling for genetic differences between 

twins, which supports that the cross-sectional OLS results are driven by unobserved 

differences such as cognitive skills. For women, they found that the height premium 

prevails in earned income, but not in capital income, for identical twins. This suggests 

that discrimination is a potential explanation.  

 

Our study has two limitations. First, the number of observations in the baseline 

estimations is ~2,000. A larger data set would be needed to provide more power in order 

to obtain more tightly estimated effects. Second, the Young Finns Study that we use in 

the estimations is not nationally representative with respect to the total population in 

Finland, which consists also of the older age cohorts. The data are representative only for 

the selected six age cohorts in 1980. Further studies are needed to confirm that the 

patterns prevail in all age cohorts and other institutional settings. 
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Figure 1. Illustration of Mendelian randomization. 
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Appendix A2. Kernel density plot of the genetic score. 
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Table 1. Sample characteristics. 

 Height 

below 

gender 

specific 

mean 

Height 

above 

gender 

specific 

mean 

Difference 

t-

statistics N  Mean (SD) Mean (SD) 

Average earnings 2001-

2012 (euros per year) 

23391.17 

(13185.86) 

25663.80 

(16405.44) 

-2272.627 -3.399*** 1982 

Share of years employed, 

2001-2012 

0.858 

(0.240) 

0.878 

(0.211) 

-0.020 -1.979** 1982 

Genetic score for height 177.836 

(0.268) 

181.816 

(0.269) 

-3.980 -

10.474*** 

1982 

Married (2001) 0.438 

(0.496) 

0.458 

(0.498) 

-0.020 -0.903 1982 

Cognitive skills (2011)      

Overall cognitive 

performance 

-0.029 

(1.012) 

0.034 

(0.973) 

-0.063 -1.142 1302 

Visual and episodic 

memory and visuospatial 

associative learning 

0.001 

(1.013) 

0.019 

(0.951) 

-0.018 -0.335 1302 

Reaction time -0.019 

(0.995) 

0.064 

(0.994) 

-0.083 -1.511 1302 

Rapid visual information 

processing 

-0.013 

(1.003) 

0.087 

(0.964) 

-0.100 -1.829* 1302 

Spatial working memory -0.014 

(0.970) 

0.003 

(0.980) 

-0.017 -0.315 1302 

Personality 

characteristics (1983) 

     

Aggression  3.850 

(0.912) 

3.806 

(0.876) 

0.044 0.803 1042 

Leadership 4.221 

(0.910) 

4.322 

(0.862) 

-0.100 -1.830* 1042 

Responsibility 4.861 

(1.027) 

4.846 

(1.075) 

0.015 0.227 1042 

Eagerness-Energy 4.686 

(0.705) 

4.757 

(0.706) 

-0.071 -1.629 1042 

Family background 

(1980) 

     

Annual income, mother  

(euros) 

4497.34 

(3519.50) 

4771.26 

(3481.42) 

-273.91 -1.691* 1868 

Annual income, father 

(euros) 

8525.22 

(5061.18) 

9010.45 

(6437.12) 

-485.23 -1.811* 1868 

High education, mother 0.068 

(0.251) 

0.078 

(0.268) 

-0.010 -0.865 1982 

High education, father 0.094 

(0.292) 

0.111 

(0.314) 

-0.017 -1.259 1982 

Other genetic risk 

scores 

     

Blood pressure 30.638 30.267 0.371 2.568** 1957 
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(3.139) (3.247) 

Total cholesterol 27.460 

(3.123) 

27.414 

(3.057) 

0.046 0.327 1957 

Triglycerides 26.301 

(2.860) 

25.958 

(2.900) 

0.343 2.634*** 1957 
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Table 2. Baseline results. 

 

 Panel A: OLS Panel B: IV 

 Coefficient 

(95% CI) t-statistics 

Coefficient 

(95% CI) t-statistics 

Log of average 

earnings, 2001-

2012 

    

Height 0.013 

(0.006, 0.020)*** 

3.91 0.009  

(-0.012, 0.030) 

0.84 

F-statistics ..  187.71  

Mean outcome 9.867  9.867  

N 1982  1982  

Share of years 

employed, 2001-

2012 

    

Height 0.003 

(0.001, 0.004)*** 

3.12 0.001 

(-0.004, 0.006) 

0.33 

F-statistics ..  187.71  

Mean outcome 0.868  0.868  

N 1982  1982  

 

Notes: Earnings are measured as the log of average earnings over the period of 2001-

2012. Employment is measured as the average share of employment years over the 

period of 2001-2012. The mean values for the dependent variables are reported. Height 

was measured in 2001. All models include controls for the birth month, birth year effects, 

gender and parental education (1980). The instrument used in the IV models is the 

genetic score for height based on genetic markers. Angrist-Pischke multivariate F-tests of 

the excluded instrument are reported for the IV models. 95% confidence intervals based 

on heteroscedasticity-robust standard errors are reported in parentheses: significant at 

*10% **5% and ***1% levels. 
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Table 3. Comparison of observables by instrument value.  

 Below gender 

specific average 

height score 

Above gender 

specific average 

height score Difference 

t-

statistics N 

Average earnings 2001-

2012 (euros per year) 

24389.03 

(14468.18) 

24661.27 

(15354.84) 

-272.239 -0.406 1982 

Share of years employed 

2001-2012 

0.862 

(0.239) 

0.875 

(0.213) 

-0.013 -1.306 1982 

Height in cm (2001) 170.684 

(8.901) 

173.661 

(9.061) 

-2.977 -7.375*** 1982 

Married (2001) 0.436 

(0.496) 

0.459 

(0.499) 

-0.023 -1.028 1982 

Cognitive skills (2011)      

Overall cognitive 

performance 

-0.029 

(1.014) 

0.034 

(0.972) 

-0.064 -1.154 1302 

Visual and episodic 

memory and visuospatial 

associative learning 

-0.034 

(1.011) 

0.053 

(0.951) 

-0.087 -1.606 1302 

Reaction time 0.001 

(0.999) 

0.045 

(0.992) 

-0.043 -0.787 1302 

Rapid visual information 

processing 

0.049 

(0.976) 

0.027 

(0.993) 

0.022 0.395 1302 

Spatial working memory -0.017 

(0.977) 

0.007 

(0.974) 

-0.025 -0.453 1302 

Personality 

characteristics (1983) 

     

Aggression  3.826 

(0.900) 

3.830 

(0.889) 

-0.004 -0.075 1042 

Leadership 4.253 

(0.914) 

4.289 

(0.862) 

-0.036 -0.655 1042 

Responsibility 4.826 

(1.060) 

4.879 

(1.043) 

-0.053 -0.809 1042 

Eagerness-Energy 4.733 

(0.712) 

4.711 

(0.701) 

0.022 0.500 1042 

Family background 

(1980) 

     

Annual income, mother 

(euros) 

4599.33 

(3601.71) 

4667.80 

(3404.99) 

-68.467 -0.422 1868 

Annual income, father 

(euros) 

8548.13 

(5873.54) 

8979.62 

(5709.11) 

-431.495 -1.610 1868 

High education, mother 0.061 

(0.239) 

0.084 

(0.278) 

-0.024 -2.043** 1982 

High education, father 0.099 

(0.298) 

0.106 

(0.308) 

  -0.008 -0.557 1982 

Other genetic risk scores      

Blood pressure 30.537 

(3.192) 

30.371 

(3.203) 

0.165 1.144 1957 

Total cholesterol 27.498 

(3.137) 

27.379 

(3.043) 

0.119 0.849 1957 

Triglycerides 26.168 

(2.879) 

26.094 

(2.892) 

0.074 0.570 1957 
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Notes: Significant at *10% **5% and ***1% levels. 

 

Table 4. Additional results, controlling for cognitive skills and personality characteristics. 

 
 Panel A: OLS Panel B: IV 

 

Adding 

other genetic 

risk scores 

as a control 

Adding 

cognitive 

skills as a 

control 

Adding 

personality 

characteristics 

as a control 

Adding 

other 

genetic 

risk scores 

Adding 

cognitive 

skills as a 

control 

Adding 

personality 

characteristics 

as a control 

 Coef 

(95% CI) 

Coef 

(95% CI) 

Coef  

(95% CI) 

Coef 

(95% CI) 

Coef 

(95% CI) 

Coef 

(95% CI) 

Log of 

average 

earnings, 

2001-2012       

Height 0.013 

(0.007, 

0.020)*** 

0.004 

(-0.004, 

0.011) 

0.014  

(0.005, 

0.023)*** 

0.009  

(-0.012, 

0.030) 

0.007 

(-0.017, 

0.030) 

0.007 

(-0.019,  

0.033) 

F-statistics .. .. .. 180.54 135.69 114.97 

N 1957 1302 1042 1957 1302 1042 

Share of 

years 

employed, 

2001-2012 

      

Height 0.003 

(0.001, 

0.005)*** 

0.000 

(-0.002, 

0.002) 

0.003 

(0.001, 

0.006)*** 

0.001 

(-0.004, 

0.007) 

0.000 

(-0.006, 

0.006) 

0.001 

(-0.006,  

0.007) 

F-statistics .. .. .. 180.54 135.69 114.97 

N 1957 1302 1042 1957 1302 1042 

 

Notes: The effects of additional controls are not reported. Earnings are measured as the 

log of average earnings over the period of 2001-2012. Employment is measured as the 

average share of employment years over the period of 2001-2012. Height was measured 

in 2001. All models include controls for the birth month, birth year effects, gender and 

parental education (1980). The instrument used in the IV models is the genetic score for 

height based on genetic markers. Angrist-Pischke multivariate F-tests of the excluded 

instrument are reported for the IV models. 95% confidence intervals based on 

heteroscedasticity-robust standard errors are reported in parentheses: Significant at *10% 

**5% and ***1% levels. 
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Appendix A1. SNPs and the genotyped risk alleles used for the genetic score of height. 

 

SNP id Effect allele Beta Imputation quality (info) 

rs425277 T 0.022 0.996 

rs2284746 C -0.04 0.9859 

rs1738475 C 0.025 0.9987 

rs4601530 T -0.028 1 

rs7532866 A 0.021 0.9793 

rs2154319 T -0.03 0.9161 

rs17391694 T 0.042 0.995 

rs6699417 T 0.021 1 

rs10874746 T -0.024 0.9969 

rs9428104 A -0.041 0.9886 

rs11205277 A -0.046 0.9939 

rs17346452 T -0.04 0.9861 

rs1325598 A -0.022 0.9968 

rs1046934 A -0.044 1 

rs10863936 A -0.021 1 

rs6684205 A -0.028 0.9937 

rs11118346 T -0.025 0.9893 

rs10799445 A 0.032 0.9863 

rs4665736 T 0.029 0.9337 

rs6714546 A -0.026 0.9911 

rs17511102 A -0.06 0.9565 

rs2341459 T 0.025 0.9998 

rs12474201 A 0.028 0.9939 

rs3791675 T -0.053 0.9959 

rs11684404 T -0.028 0.9987 

rs7567288 T -0.032 0.9832 

rs7567851 C 0.037 1 

rs1351164 T 0.034 0.995 

rs12470505 T 0.041 0.9975 

rs2629046 T 0.024 0.9991 

rs2580816 T -0.045 0.9983 

rs12694997 A -0.024 0.9997 

rs2597513 T -0.036 0.9998 

rs13088462 T -0.052 0.9976 

rs2336725 T -0.027 0.9906 

rs9835332 C -0.026 1 

rs17806888 T 0.036 0.9641 

rs9863706 T -0.031 0.9944 

rs6439167 T -0.034 0.9978 

rs9844666 A -0.024 0.9985 

rs724016 A -0.07 0.9984 

rs572169 T 0.033 0.9989 
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rs720390 A 0.029 0.9953 

rs2247341 A 0.025 0.991 

rs6449353 T 0.075 0.9553 

rs17081935 T 0.03 0.9986 

rs7697556 T 0.028 0.9835 

rs788867 T -0.043 0.987 

rs10010325 A 0.024 0.9998 

rs7689420 T -0.073 0.9995 

rs955748 A -0.023 1 

rs1173727 T 0.034 0.999 

rs11958779 A -0.027 0.9997 

rs10037512 T 0.032 0.9976 

rs13177718 T -0.04 0.9998 

rs1582931 A -0.023 0.8666 

rs274546 A -0.029 0.9986 

rs526896 T 0.03 0.9177 

rs4282339 A -0.036 0.9956 

rs12153391 A -0.03 0.9429 

rs889014 T -0.03 0.9858 

rs422421 T -0.031 0.9362 

rs6879260 T -0.022 0.9283 

rs3812163 A -0.036 0.9722 

rs1047014 T -0.032 0.996 

rs806794 A 0.052 0.9911 

rs3129109 T -0.032 0.9701 

rs2256183 A 0.04 0.9995 

rs6457620 C -0.029 0.9991 

rs2780226 T -0.076 0.9876 

rs6457821 A -0.104 0.9181 

rs9472414 A -0.026 1 

rs9360921 T -0.042 0.9999 

rs310405 A 0.026 0.9897 

rs7759938 T -0.045 0.9878 

rs1046943 A 0.02 0.9972 

rs961764 C -0.024 0.9725 

rs1490384 T 0.034 0.9748 

rs6569648 T -0.04 0.9992 

rs7763064 A -0.048 0.9938 

rs543650 T -0.034 0.9978 

rs9456307 A -0.048 0.8046 

rs798489 T -0.048 0.9921 

rs4470914 T 0.029 0.9998 

rs12534093 A -0.034 0.9638 

rs1708299 A 0.04 0.9873 

rs6959212 T -0.024 0.9834 

rs42235 T 0.057 0.966 

rs822552 C -0.025 0.8303 
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rs2110001 C -0.031 0.9028 

rs1013209 T -0.025 0.9704 

rs7460090 T 0.058 0.993 

rs6473015 A -0.029 0.9998 

rs6470764 T -0.05 0.9929 

rs12680655 C 0.028 0.9998 

rs7864648 T 0.022 0.9983 

rs11144688 A -0.049 0.4495 

rs7853377 A -0.024 0.9623 

rs8181166 C 0.026 0.9772 

rs2778031 T 0.031 0.9584 

rs9969804 A 0.03 1 

rs1257763 A 0.069 0.5821 

rs473902 T 0.065 0.5173 

rs7027110 A 0.031 1 

rs1468758 T -0.026 0.9938 

rs751543 T 0.026 0.8534 

rs7466269 A 0.032 0.9997 

rs7849585 T 0.029 0.9933 

rs7909670 T -0.021 0.9985 

rs2145998 A -0.026 0.9997 

rs11599750 T -0.028 0.9997 

rs2237886 T 0.046 0.9947 

rs7926971 A -0.023 0.9948 

rs1330 T 0.022 0.9995 

rs10838801 A -0.027 0.9935 

rs1814175 T 0.022 0.9703 

rs5017948 A 0.027 0.8788 

rs3782089 T -0.058 0.9562 

rs7112925 T -0.023 0.9955 

rs634552 T 0.039 0.9934 

rs494459 T 0.02 1 

rs654723 A 0.025 0.8502 

rs2856321 A -0.029 0.9993 

rs10770705 A 0.033 0.9998 

rs2638953 C 0.032 1 

rs2066807 C -0.054 0.8978 

rs1351394 T 0.06 0.9851 

rs10748128 T 0.038 0.9985 

rs11107116 T 0.052 1 

rs7971536 A -0.028 0.924 

rs11830103 A -0.035 0.9901 

rs7332115 T -0.023 1 

rs3118905 A -0.056 0.9996 

rs7319045 A 0.025 0.9681 

rs1950500 T 0.034 0.9999 

rs2093210 T -0.032 0.9512 
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rs1570106 T -0.026 0.9985 

rs862034 A -0.028 0.9888 

rs7155279 T -0.024 0.9621 

rs16964211 A -0.05 0.9998 

rs7178424 T -0.021 0.9999 

rs10152591 A 0.041 0.9997 

rs12902421 T -0.062 0.9962 

rs5742915 T -0.031 0.9325 

rs11259936 A -0.044 1 

rs16942341 T -0.13 0.968 

rs2871865 C 0.057 0.9402 

rs4965598 T -0.028 0.989 

rs11648796 A -0.034 0.9535 

rs26868 A 0.034 0.9899 

rs1659127 A 0.027 0.9533 

rs8052560 A 0.029 0.7692 

rs4640244 A 0.024 0.9952 

rs3110496 A -0.022 0.9939 

rs3764419 A -0.035 0.9994 

rs17780086 A 0.028 0.9857 

rs1043515 A -0.023 0.9968 

rs4986172 T -0.032 0.9763 

rs2072153 C 0.021 1 

rs4605213 C 0.021 0.9571 

rs227724 A -0.03 0.9471 

rs2079795 T 0.04 0.9995 

rs2665838 C -0.042 0.9712 

rs11867479 T 0.025 0.9982 

rs4800452 T 0.051 0.9995 

rs9967417 C -0.038 0.9695 

rs17782313 T -0.028 0.9995 

rs12982744 C -0.03 0.9753 

rs7507204 C 0.036 0.9457 

rs891088 A -0.029 1 

rs4072910 C -0.031 0.7501 

rs2279008 T 0.025 0.9958 

rs17318596 A 0.032 0.9993 

rs1741344 T -0.023 0.997 

rs2145272 A -0.039 0.9976 

rs7274811 T -0.041 0.9961 

rs143384 A -0.063 0.8833 

rs237743 A 0.041 1 

rs2834442 A 0.026 0.9829 

rs4821083 T 0.031 0.9997 

 
Note: All SNPs are imputed with MACH software and HapMap release 22 as a reference panel. 
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Appendix A3. Eigenvalues and proportions of variance explained by principal 

components for cognitive performance used in the study.  

 

 Eigenvalue Explained 

variance 

Component for Paired Associates Learning test (PAL) 7.72 0.55 

Component for Spatial Working Memory test (SWM) 5.06 0.42 

Component for Reaction Time test (RTI) 2.29 0.38 

Component for Rapid Visual Information test (RVP) 5.19 0.74 

 

Notes: Principal component analyses were performed separately for all individual tests. 

The first components resulting from these analyses were considered to represent 

cognitive performance related to the particular cognitive domain. 
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Appendix A4. IV results; weighted genetic score based on 180 SNPs. 

 

 Coefficient 

(95% CI) t-statistics 

Log of average 

earnings, 2001-2012 

  

Height 0.006  

(-0.013, 0.024) 

0.59 

F-statistics 212.82  

Mean outcome 9.867  

N 1981  

Share of years 

employed, 2001-2012 

  

Height 0.000 

(-0.005, 0.005) 

-0.02 

F-statistics 212.82  

Mean outcome 0.868  

N 1981  

 

Notes: The effects of additional controls are not reported. Earnings are measured as the 

log of average earnings over the period of 2001-2012. Employment is measured as the 

average share of employment years over the period of 2001-2012. Height was measured 

in 2001. All models include controls for the birth month, birth year effects, gender and 

parental education (1980). The instrument used in the IV models is the genetic score for 

height based on genetic markers. Angrist-Pischke multivariate F-tests of the excluded 

instrument are reported for the IV models. 95% confidence intervals based on 

heteroscedasticity-robust standard errors are reported in parentheses: Significant at *10% 

**5% and ***1% levels. 
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Appendix A5. IV results; genetic score based on 697 SNPs. 

 

 Panel A: IV, non-weighted score Panel B: IV, weighted score 

 Coefficient 

(95% CI) t-statistics 

Coefficient 

(95% CI) t-statistics 

Log of average 

earnings, 2001-

2012 

    

Height 0.006 

(-0.007, 0.019) 

0.94 0.003 

(-0.009, 0.015) 

0.50 

F-statistics 453.57  488.91  

Mean outcome 9.867  9.867  

N 1982  1982  

Share of years 

employed, 2001-

2012 

    

Height 0.001 

(-0.003, 0.004) 

0.52 -0.000 

(-0.004, 0.003) 

-0.20 

F-statistics 453.57  488.91  

Mean outcome 0.868  0.868  

N 1982  1982  

 

Notes: The effects of additional controls are not reported. Earnings are measured as the 

log of average earnings over the period of 2001-2012. Employment is measured as the 

average share of employment years over the period of 2001-2012. Height was measured 

in 2001. All models include controls for the birth month, birth year effects, gender and 

parental education (1980). The instrument used in the IV models is the genetic score for 

height based on genetic markers. Angrist-Pischke multivariate F-tests of the excluded 

instrument are reported for the IV models. 95% confidence intervals based on 

heteroscedasticity-robust standard errors are reported in parentheses: Significant at *10% 

**5% and ***1% levels. 
 


