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We consider a scenario where the inflaton decays to a hidden sector thermally decoupled from the visible
Standard Model sector. A tiny portal coupling between the hidden and the visible sectors later heats the
visible sector so that the Standard Model degrees of freedom come to dominate the energy density of
the Universe before big bang nucleosynthesis. We find that this scenario is viable, although obtaining the
correct dark matter abundance and retaining successful big bang nucleosynthesis is not obvious. We also
show that the isocurvature perturbations constituted by a primordial Higgs condensate are not problematic

for the viability of the scenario.
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I. INTRODUCTION

Despite large observational evidence for the existence of
dark matter (DM) and for the occurrence of cosmic
inflation in the past, their nature and properties remain
to a large extent unknown. While the inflationary dynamics
can be successfully explained within the Standard Model
(SM) of particle physics [1], the large nonbaryonic matter
content of our Universe, i.e. dark matter, cannot (see e.g. [2]
for a recent review). This requires one to extend the SM by
e.g. assuming a hidden sector which might have played an
important role in the early Universe but which has thus far
evaded all current observational bounds.

In principle, there is no reason to expect detecting such a
sector by current experiments. While for example the
750 GeV diphoton excess at the LHC [3,4] was encour-
aging, new physics might remain undetected by all present
and future colliders, or new particles might belong to a
sector which comprises only a part of the correct extension
of the SM.

Depending on interactions between the SM and new
physics, new sectors can provide interesting alternatives for
the thermal history of our Universe. By the standard lore,
soon after the cosmic inflation the SM sector forms an
equilibrium heat bath during a process called reheating,
where the inflaton field decays to SM particles either directly
or via mediator fields [5,6]. For a successful big bang
nucleosynthesis (BBN) the SM has to become the dominant
energy density component before Tgy =4 MeV [7-10].

Usually, all decay products including possible dark
matter candidates are assumed to become part of the same
heat bath. The observed dark matter abundance is then
obtained via the freeze-out mechanism, where dark matter
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particles decouple from the SM bath when their mutual
interaction rate cannot compete with the expansion rate of
the Universe any more. While alternatives for this scenario
exist, such as the freeze-in production of dark matter
[11,12] or asymmetric reheating [13—15], it has become
customary to assume that the SM reaches thermal equi-
librium at a relatively early stage and governs the evolution
of the Universe from that point on. A hidden sector
thermally decoupled from the SM sector is, however, as
plausible a candidate for explaining the whole thermal
history of the Universe down to BBN, including cosmic
inflation, reheating, and production of dark matter.

In this work, we consider a scenario where the inflaton
decays to a hidden sector ultraweakly coupled to the visible
sector. A similar scenario was recently studied in [16],
where the primary goal was to show that even as massive as
PeV-scale particles can comprise the observed dark matter
relic density. We confront this scenario against observa-
tional constraints including not only dark matter abundance
and BBN, but also isocurvature perturbations constituted
by a primordial Higgs condensate. Studying the effect of
the Higgs condensate is crucial in determining the viability
of this scenario as scalar fields are generically known to
acquire large vacuum expectation values during cosmic
inflation [17], possibly enabling large isocurvature modes
between DM and baryon-photon fluid. We find that a
hidden sector thermally decoupled from the SM sector is in
good agreement with all the above constraints.

The paper is organized as follows: in Sec. II we set up the
scenario and discuss how the SM sector was reheated and
the observed DM abundance produced in the early
Universe. In Sec. III we confront this scenario against
the observational bound for primordial isocurvature per-
turbations by considering the inflationary behavior of the
Higgs field. Finally, we present our results in Sec. IV and
conclusions in Sec. V.

© 2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.94.083516
http://dx.doi.org/10.1103/PhysRevD.94.083516
http://dx.doi.org/10.1103/PhysRevD.94.083516
http://dx.doi.org/10.1103/PhysRevD.94.083516

TOMMI TENKANEN and VILLE VASKONEN
II. REHEATING THE STANDARD MODEL

We consider a scenario in which the decay of the inflaton
field populates the hidden sector soon after the cosmic
inflation. We assume the inflaton decays to the visible SM
sector only in negligible amounts so that the SM sector
remains energetically subdominant. The hidden sector very
rapidly thermalizes to a temperature 7', and starts to govern
evolution of the Universe. As the Universe expands,
scattering rates within the hidden sector eventually become
smaller than the Hubble rate. At some point dark matter
freezes out in the hidden sector, and decays and annihi-
lations of hidden sector particles heat up the SM sector.
After this, the standard hot big bang scenario is recovered.

For concreteness, we consider a class of models where
the hidden sector couples to the SM only via Higgs portal.
In this section, we discuss the SM heating and DM
production in two parts: first, by considering the simplest
possible scenario where the hidden sector consists of a Z,
symmetric scalar only, and then by allowing for a general
renormalizable scalar potential and a fermionic DM can-
didate in the hidden sector.

A. Scalar dark matter

Let us consider the simplest possible model where the
hidden sector consists only of a Z, symmetric scalar field s,
which couples to the SM Higgs field /& via the portal
Ahss>h?. The annihilations of s to SM particles then heat up
the SM sector. The heating stops as the hidden sector
temperature drops below the mass of the final state particles
(or mass of s if it is heavier than the produced particles),
and finally as the rate of the ssss — ss process becomes
smaller than the Hubble rate, the s abundance freezes out to
comprise the dark matter abundance we observe today. This
kind of dark matter freeze-out via number-changing self-
interactions has been studied in e.g [18-22].

To characterize the evolution of energy densities of the
hidden and visible sectors, we solve the Boltzmann
equations for the s number density n,, and SM energy
density

71'2

Py :%g*T‘S‘M’ (1)

where g, counts for the effective number of relativistic
degrees of freedom in the SM sector at temperature 7'gy;.
The SM energy density can be solved from [23]

. T
p, +4Hp, = ?;;4 ds's'(s' — 4m2)o K (Vs'/Ty),  (2)
assuming that s remains thermal. Here o, = o4, +
Ogsoww + Oss77 + Ogepp + ... 1 the s annihilation
cross section [24], H* = 8z(p, + p;)/(3M3}), and Mp ~
1.22 x 10" GeV is the Planck mass.
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Similar to Ref. [25], we relate the hidden sector temper-
ature T}, to the scale factor a via conservation of entropy,
5a® = const. Note that we need the hidden sector temper-
ature only to calculate the equilibrium distribution of s
particles. Hence, for the entropy density, 5(77},), we can use
the usual equilibrium relation. We normalize a such that
a = 1 when T}, = m,. Before s becomes nonrelativistic the
hidden sector temperature scales as Ty, = mg/a, but after
that 7, drops only logarithmically as a function of a until s
freezes out. We solve the s number density from

1
hs + 3Hns = _47 <v30-ssss—>ss>(n‘s1 - n§<ngq)2)7 (3)

where ng? is the equilibrium number density which we
evaluate numerically, and where in the nonrelativistic limit
(13655545) = A% /md. The generic evolution of the SM and
hidden sector energy densities is depicted in Fig. 1.

The energy density of s particles scales as radiation, a™,
until the temperature of the s bath drops below m,. Then,
the s energy density scales as 1/(a* Ina) until the s freeze-
out, after which it scales as cold dark matter, a=3. The SM
energy density produced via s annihilations is approxi-
mately (see e.g. [18])

nS <U6S>
H

P, = Ps (4)
Because of particle production from s annihilations, the SM
energy density first scales as a~>, as the s annihilation cross
section to SM particles, o, scales as 1/s" ~ a? for large T7,.
After the end of s annihilations p, scales as a=.

To accomplish successful nucleosynthesis and to recover
the observed peak structure of the cosmic microwave
background radiation, the SM energy density should

log,o(a3p/GeV?)
N

logqpa

FIG. 1. Blue and yellow lines show the evolution of the SM and
Z,-symmetric s energy densities, respectively. The dot-dashed
line shows when T}, = 2my,, the solid line shows when s becomes
nonrelativistic, and the dashed line marks the freeze-out of s at
13 (V3 0y550) = H. Here mg = 0.1 GeV, Ay = 1077, and
As = 1.
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dominate the energy density of the Universe from BBN at
Tgq~4MeV to the matter-radiation equality at
Tsmu ~ 0.8 eV. From Eq. (4) it is obvious that obtaining
p, > ps by s annihilations requires ng(vo,) 2 H. Hence,
the only way to get this scenario to work is by having a
large enough portal coupling 4, to thermalize the SM
sector with the s bath. In that case, we end up in the
standard DM freeze-out scenario studied extensively in the
case of a Z, symmetric scalar field [11,26-28].

B. Fermionic dark matter

As the simplest model inevitably leads to thermalization
of the visible and hidden sectors, in the remainder of this
paper we consider a model where in addition to the new
scalar field s the hidden sector contains a fermion y which
comprises the dark matter abundance we observe today.
A similar model has been studied in the standard DM
freeze-out and freeze-in scenarios, in e.g [29-36].

The Lagrangian of the model is

A A
os g2 (P ap2 P33 4 Isa ) yspy.  (5)

Lo 4 35T

If the SM thermalizes with the hidden sector before y
freezes out, we end up at the standard freeze-out scenario.
We neglect the 4, coupling assuming that the yu;,, domi-
nates the SM heating, and take sufficiently small py,, to
prevent the SM sector from thermalizing with the hidden
sector. Further, we assume m, < 2m,, so that s decays only
to SM particles. Decays to SM particles occur via mixing of
s and h, and if mg > 2my, s can also decay directly to Higgs
bosons. The mixing angle below Tgy ~ 150 GeV is

2oppg
tan(2p) = ﬁ (6)
h S

where v = 246 GeV is the vacuum expectation value of the
Higgs field. The decay width of s is given by

2 2
_ His 4mh :
Iy = - 1- = + sin® ()T, (my), ()

where T'j,(my) is the off-shell Higgs boson decay width,
which we evaluate similar to Ref. [28].

The y abundance freezes out when the annihilation rate
1, (v6,,5_s) becomes smaller than the Hubble rate H. The
annihilation cross section in the nonrelativistic limit for
mi < mj, is given by

s 1287m3,

(8)

After the y freeze-out, s may still remain in thermal
equilibrium with itself until the rates of processes
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sss — ss and ssss — ss drop below H. Nonrelativistic
cross sections for these processes are given by

(o ) = 25V/5u%(94m?2 — 2u2)?
S§5—>S8 15367[1’)’!;1

9)
and

<U36 > _ \/5/13(9/15m3 - 2/"%)2
§SS§—>SS 32”m12

(10)

In the limit mj, > m? other number-changing processes

such as yyw — ss ssy — sy and syy — yy can be
neglected because the number density of y is very small
compared to the number density of s when the latter freezes
out. In numerical calculations we check that the processes
sss — ss and ssss — ss indeed dominate over other
processes, and that the freeze-outs occur in the nonrela-
tivistic region.

The SM sector becomes dominant when I'y ~ H, which
may occur before or after the s freeze-out, depending on the
strength of the portal coupling and the rate of processes
which hold s in thermal equilibrium. Here we concentrate
only on the latter case and comment on the former
in Sec. IV.

Given the relevant annihilation and decay rates, we
numerically solve the evolution of the SM energy density
py» and number densities of s and y from the Boltzmann
equations

,by + 4pr =Tps.
1

’;ls =+ 3Hns = _ans - y <1726sss—>ss>(ng - ngngq)
1
- E <036ssss—>ss> (ﬂf - nsz' (HEQ)Z)’
Ay + 3Hny, = = (06,5 _5) (ny, — (ny')?), (11)

as a function of the scale factor @ which we again normalize
such that @ = 1 when T}, = m,. Similar to Sec. IT A, we use
entropy conservation in the s bath to express the hidden
sector temperature 7}, as a function of the scale factor a.
This approximation is valid if I'y < H during the s
freeze-out.

First, we solve only the Boltzmann equation for p, until s
becomes nonrelativistic assuming that s and yw are in
thermal equilibrium. Here we use

v [8zp, +po+
H:g: _7[/)}/ psz py/. (12)
a 3 Mg

Then, we neglect the y energy density in H and solve
simultaneously the Boltzmann equations for p, and n
using nonrelativistic approximation for the s energy density

083516-3
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in thermal equilibrium, ps? = (m, + 3T},/2)ns’. Finally,
we solve the evolution of n,, using the results obtained for
p, and n,. This treatment is justified because after y has
become nonrelativistic its energy density is negligible
compared to energy densities p; and p,. Note that this
does not mean that y freeze-out could not occur before s
becomes nonrelativistic.

Figure 2 depicts generic features of evolution of the
hidden sector population and the SM heating for param-
eters which give the correct DM abundance and for which
the SM dominates the evolution of the Universe at the time
of BBN at Tgy =4 MeV. The lower panel shows the
scaling of different components. In the region left from the
solid vertical line where s is relativistic the SM energy
density scales as p, ~ a2, and after the s freeze-out as

p, ~a~>/? until the decay of s. After this, the SM energy
density dominates the Universe and scales down as

. " T T T T T
Or —
-2 |

5 | -

E& —4r ' ms=400GeV,

8‘)0_ : E . mw=4000GeV,

o _Gf ) ph5=10_8'7GeV, ]

: /,13=10GeV,
—8: . I As=0.1,y=0.8
0 P 4 6 8 10

10\

~ [

3 [

8 b

3 5

(]

(“ F

< |

6-,_ L

g 0/
5L,

logyoa

FIG. 2. Relative energy densities as a function of the SM
temperature, and scaling of different components as a function of
the scale factor for parameter values shown in the upper panel.
Blue, yellow, and green lines show the evolution of the SM, s, and
y energy densities, respectively. The solid line shows when
T, = mg, the dashed line marks the DM freeze-out at

1, (v6,5_) = 3H, the dot-dashed line marks the s freeze-out
at $;n(v*0y) =3H, and the dotted line shows when

T, = 3H.
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radiation, p},Na“‘. The SM scaling can be related to
scaling of s energy density, by writing the Boltzmann
equation (11) for the SM energy density as

Hd
;@(a‘lpy) = Lp;. (13)
We see that the SM energy density scales as p, ~ /2, if s
particles dominate the Universe and their energy density
scales as p, ~ a~*.

The SM temperature at the time the SM sector finally
becomes the dominant energy density component can be
estimated analytically. The SM energy density produced
via s decays is given by

Ly

=p 5 14
Py =psgg (14)

Hence, the moment p, = pg occurs when

r 872p
—=H=,|—=L 15
4 3 M3 (13)

Combining then Egs. (1) and (15), the resulting SM
temperature can be solved. For the parameters used in
Fig. 2, the temperature at p, = p; is Tgy # 16 MeV, which
is in reasonable agreement with the numerical
result Tgy =~ 19 MeV.

III. ISOCURVATURE PERTURBATIONS

Next, we confront our scenario against observational
limits on isocurvature perturbations constituted by a pri-
mordial Higgs condensate. The existence of such a con-
densate is expected, as scalar fields which are light,
d*V(¢)/d¢* < H?, and energetically subdominant,
Py < Pins> during cosmic inflation typically acquire large
fluctuations proportional to the inflationary scale H, [17].
This is the case especially for the SM Higgs field [37-39]
(for a possible caveat considering the Higgs vacuum
instability or a large nonminimal coupling to gravity, see
[40-44] and [45,46], respectively).

Assuming vacuum stability up to H, and the absence of
nonminimal coupling to gravity, the resulting displacement
of the Higgs field from its vacuum creates an effective

condensate with a typical field value h, =/(h?) =

0.363H 4, 174 [37], where 4, is the Higgs boson quartic
self-coupling. On top of the homogeneous condensate the
Higgs field acquires perturbations which are a priori
uncorrelated with perturbations in the hidden sector.
Therefore, the Higgs generates an isocurvature perturbation
between cold dark matter and radiation,

083516-4
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1) 39
§ =P 2% (16)

pe 4p,’

strongly constrained by observations of the Planck satellite.

To utilize these constraints, we divide the energy density
of the baryon-photon fluid, p,, into a part which was
sourced by the Higgs condensate, p,}f", and to a part which
was sourced by the hidden sector, pf , and which inherited
its perturbation spectrum from the hidden sector,
8pe/pe = (3/4)5pk [pi = =3¢, Here { is the curvature
perturbation. The spectrum of isocurvature perturbations,
Ps = (S?)P;/(?), can thus be written as

h 2
Py’ 3\ Pa
SRV 4) P)t

=7, (17)

=P

where we used <5pff°5pc> = 0 and denoted 6hy = 6pp,/pp, -
Using then Py, = (9/4)(H./(2x))?/h% =0.44> [36],
and the Planck result P, = 2.2 x 1070 [47], we get

ho
Py

o A Lo
p}’ + py

—23 %107 LN

(18)

for the ratio between the energy density comprising an
isocurvature perturbation and the total energy density in
the SM sector at the time of photon decoupling at
T4ec ~ 0.3 eV. The Planck satellite constrains £ < 0.05
[47], so that the isocurvature perturbations have only a
negligible effect on the evolution of adiabatic perturbations.

The postinflationary evolution of the Higgs condensate
has been studied in detail [37,39,48-51]. The homo-
geneous Higgs field begins to oscillate about its minimum
after it becomes massive at 31,42 = H?, and decays into
SM particles after O(10) oscillations. The produced par-
ticles form a heat bath whose energy density scales down as
radiation, a=*. The evolution of a is governed by the hidden
sector until the s particles decay into SM. After this, the SM
starts to dominate the total energy density of the Universe,
as discussed in Sec. II.

Even though most of the final SM heat bath consists of
modes adiabatic with the hidden sector, the isocurvature
perturbation sourced by the Higgs condensate persists.
Their ratio at the formation of the final SM heat bath at a4,
when the SM sector starts to dominate the energy density of
the Universe is given by

h A
P _ah (a" >4, (19)

p?” + pfl py(adom) Adom

PHYSICAL REVIEW D 94, 083516 (2016)

where ag = 1.6gt11/ N V8, //H.Mp denotes the time
when the Higgs condensate begins to oscillate. Here gy
counts the number of relativistic degrees of freedom in the
hidden sector, and p, is given by (11). The evolution of a is
determined by different components at different times, as
given by (12). Because after heating of the SM the energy
densities of both the adiabatic and the isocurvature pertur-
bation scale similarly, the ratio (19) holds true also at the
time of photon decoupling. While this ratio depends on
details of inflaton decay (see e.g. [16,52]), Eq. (19)
provides an absolute upper bound on the contribution of
the primordial Higgs condensate (for a possible caveat
considering the inflaton undergoing a kination phase, see
e.g. [52]).
By then combining Eq. (19) with Eq. (18), we can
express the isocurvature parameter as
7.8 x 107 Agy (ay)? H, 4
= ( 14 > ’ (20)
N/ 10" GeV

where the inflationary scale is bounded above by the
nonobservation of primordial tensor modes to H,<
8 x 1013 GeV [47], and

m? >2
A=(—" ) (21)
<ﬂ}/(ad0m)a§0m

which can be calculated by numerically integrating the
Boltzmann equation (11). Here p, is the total energy
density in the SM sector, which we approximate as
Py R p;{, as the energy density from the Higgs condensate
is always very small. For the parameters in Fig. 2 we
get A =15.5x1078,

IV. RESULTS

The dark matter, BBN, and isocurvature bounds for two
parameter sets are depicted in Fig. 3. We see that the
perturbations constituted by a primordial Higgs condensate
are typically negligibly small compared to the current upper
limit. We also note that because we have neglected the
Higgs field’s nonminimal coupling to gravity and its
possible couplings to other fields during inflation, the
bounds shown are strict upper limits on the isocurvature
generated in this scenario.

In Fig. 3 the correct DM abundance is obtained on the
black solid line, and successful BBN is retained above the
purple region. The moment when the SM sector starts to
dominate the Universe is solely determined by the s decay
width (7) via Eq. (15). The steep change at mg ~ my, in the
purple contours, showing the SM temperature at the time
the SM energy density starts to dominate the Universe, is
caused by cancellation of m? and m; in the denominator of
Eq. (6). The other jumps in the contours as a function of m
are due to the opening of different decay channels.
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my/ms=10, u3=10GeV, A 4=0.1
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FIG. 3. The light and dark blue regions are ruled out by the
overproduction of DM for two different values of y shown in the
plot. The purple region is excluded by the BBN constraint,
Tsm <4 MeV, and the dashed purple lines show where Ty =
20 MeV (thick) and T'gy; = 100 MeV (thin) at the time the SM
sector becomes the dominant energy density component. In the
green region Iy > 3H already before the freeze-out of s, and there
our approximations are not applicable. Left (right) from the
vertical yellow dot-dashed line in the lower (upper) panel the
ssss—ss processes determine the s freeze-out instead of
sss — ss. Thin contours show log;y A; see Eq. (21).

The shape of the blue region in Fig. 3, showing where
too large DM abundance is obtained, can be understood as
follows: First, if u5 is sufficiently small for the yy — ss
cross section to be determined solely by 7- and u-channel

PHYSICAL REVIEW D 94, 083516 (2016)

processes, then decreasing p; decreases also the DM
abundance relative to radiation as the freeze-out of s occurs
earlier. However, in the lower panel left from the vertical
yellow line the s freeze-out is determined by ssss — ss
which is (almost) independent of 5. Second, if p5 is large
enough for the s-channel diagram to dominate the yy — ss
scattering, then increasing y; decreases the DM abundance
since in that case y remains longer in thermal equilibrium
before it freezes out. Increasing ;s increases DM abun-
dance because it increases the SM temperature when
the SM sector becomes dominant, thus extending the
radiation dominated era. Decreasing the Yukawa-coupling
y increases the region where DM is overproduced, as is
standard for the freeze-out mechanism. Finally, steep
changes in the isocurvature and DM contours in the lower
panel are due to cancellation of terms in Eqs. (9) and (10).

In Fig. 3 we have shown a region where the methods
used in solving the Boltzmann equations (11) are appli-
cable. If the s freeze-out occurs when I'y < H, we can
approximate that during the s freeze-out entropy is con-
served in the s bath. In the green region in Fig. 3, where
I’y ~ H already before the s freeze-out, one should consider
entropy conservation not only in the s bath but together in
the SM and s baths, which is numerically stiff. However, as
our purpose has been to illustrate the viability of the model,
we leave the detailed investigation of the region where
I'y ~ H already before the freeze-out of s for future work.

V. CONCLUSIONS

In this work, we have considered cosmological
constraints on a scenario where the Standard Model is
thermally decoupled from a hidden sector which sources
the SM heat bath. Concretely, we considered a hidden
sector interacting with the SM fields only through a Higgs
portal.

First, we showed how the simplest scenario, where the
hidden sector consists of a Z,-symmetric scalar s only,
cannot heat up the SM sector without thermalizing the
visible sector with the hidden sector. Then, we extended the
model with a singlet fermion y and allowed for a general
renormalizable scalar potential. We demonstrated how the
SM heat bath is generated by scalar decays prior to the big
bang nucleosynthesis and how, already prior to this, the y
abundance freezes out from the hidden sector bath to
comprise the observed DM abundance.

We tested our scenario against cosmological constraints
and found it is well in line with bounds for the dark matter
abundance, BBN, and primordial isocurvature perturba-
tions constituted by a Higgs condensate. For the first time,
we computed the isocurvature bound in this scenario and
showed it is not problematic for the viability of the model.

However, requiring the SM sector to remain thermally
decoupled from the hidden sector causes the SM to acquire
a relatively small temperature at the time it becomes the
dominant component; in parts of the parameter space the
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reheating temperature can be considerably low, Tgy =
O(10) MeV. While this is not a problem for retaining a
successful BBN, work remains to be done in e.g. consid-
ering the viability of models for baryogenesis in these kinds
of scenarios. Earlier studies have, however, shown that
baryogenesis may be much less difficult than expected with
a low reheating temperature [53-55].

A low reheating temperature may also allow scenarios
where the amplitude of dark matter density perturbations
becomes enhanced, for example by virtue of an early matter
dominated era before SM reheating. This can lead to
observable deviations from the standard predictions for
the abundance of Earth-mass or smaller dark matter micro-
halos [56]. Because in this work we concentrated on a
scenario where the SM sector becomes dominant only after
the s freeze-out, there indeed is an era of matter dominance
before SM reheating, as shown in the lower panel of Fig. 2.
Moreover, in this kind of a scenario the dark matter freeze-
out can occur much earlier than in the standard weakly
interacting massive particle scenario, which also enhances
the amplitude of dark matter density perturbations.

Hence, it would be interesting to further investigate
scenarios where hidden sector dynamics lead to a nontrivial

PHYSICAL REVIEW D 94, 083516 (2016)

thermal history of the Universe. Probing different baryo-
genesis scenarios and effects of low reheating temperatures
on structure formation would be of particular interest. Also,
one can realize a first order phase transition in the hidden
sector, which could produce an observable gravitational
wave signal, as has recently been studied in e.g. [S7-59].
For example, it could be that decay of the hidden sector
scalar field to SM particles was possible only after it
obtained a nonzero vacuum expectation value. These
prospects demonstrate how detailed studies on dynamics
of new physics in the early Universe and its imprints on
cosmological and astrophysical observables can provide a
valuable resource in testing different SM extensions—even
in the case where their observable signatures are out of
reach of current or near-future direct detection experiments
or particle colliders.
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