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APPROXIMATION OF W'? SOBOLEV HOMEOMORPHISM BY
DIFFEOMORPHISMS AND THE SIGNS OF THE JACOBIAN

DANIEL CAMPBELL, STANISLAV HENCL, AND VILLE TENGVALL

Dedicated to Professor Jan Maly on his 60th birthday

ABSTRACT. Let @ C R™, n > 4, be a domain and 1 < p < [n/2], where [a] stands
for the integer part of a. We construct a homeomorphism f € W1P((—1,1)" R")
such that Jy = det Df > 0 on a set of positive measure and J; < 0 on a set of
positive measure. It follows that there are no diffeomorphisms (or piecewise affine
homeomorphisms) fj such that fi, — f in WhH?.

1. INTRODUCTION

The problem of approximating homeomorphisms f : R" D  — f(2) C R™ with
either diffeomorphisms or piecewise-affine homeomorphisms has proven to be both
very challenging and of great interest in a variety of contexts. As far as we know,
in the simplest non-trivial setting (i.e. n = 2, approximations in the L*>-norm) the
problem was solved by Radé [38]. Due to its fundamental importance in geometric
topology, the problem of finding piecewise affine homeomorphic approximations in
the L*-norm and dimensions n > 2 was deeply investigated in the '50s and ’60s.
In particular, it was solved by Moise [33] and Bing [8] in the case n = 3 (see also
the survey book [34]), while for contractible spaces of dimension n > 5 the result
follows from theorems of Connell [13], Bing [9], Kirby [29] and Kirby, Siebenmann and
Wall [30] (for a proof see, e.g., Rushing [40, Theorem 4.11.1.] or Luukkainen [31]).
Finally, twenty years later, while studying the class of quasi-conformal manifolds,
Donaldson and Sullivan [16] proved that the result is false in dimension 4.

After the L*>-approximation problem had been completely solved, the question of
approximating homeomorphisms revived again in the altogether different context for
variational models in nonlinear elasticity. Let us briefly explain this. Let 2 C R" be a
domain which models a body made out of homogeneous elastic material, and suppose
that a mapping f : 2 — R" is modeling the deformation of this body with prescribed
boundary values. If we want to study the properties of the deformation in the setting
of nonlinear elasticity theory of Antman, Ball and Ciarlet, see e.g. [2, 3, 4, 12], we
are led to study the existence and regularity properties of minimizers of the energy
functionals of the form

1(f) = /Q W(DJ) de,
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2 D. CAMPBELL, S. HENCL, AND V. TENGVALL

where W : R"*" — R is so-called stored-energy functional, and D f is the differential
matrix of a deformation f. In order for this model to be physically relevant we have
to require this model to satisfy the following conditions:

(W1) W(A) — 400 as det A — 0, which prevents too high compression of the
elastic body.
(W2) W(A) = +o0 if det A < 0, which guarantees that the orientation is preserved.

In particular, it follows that if f is an admissible deformation with finite energy, then
we have

Jr(x) :==det Df(z) >0 forae. z€Q.

Using other assumptions one can prove that the mapping with finite energy is con-
tinuous and one-to-one, which corresponds to the non-impenetrability of the matter.
Therefore the natural candidate for a minimizer is in fact a homeomorphism. Hence,
when we study this model it is natural to restrict our attention only on Sobolev
homeomorphisms where the Jacobian does not change sign.

As pointed out by Ball in [5, 6] (who ascribes the question to Evans [18]), an im-
portant issue toward understanding the regularity of the minimizers in this setting
would be to show the existence of minimizing sequences given by piecewise affine
homeomorphisms or by diffeomorphisms. In particular, a first step would be to prove
that any homeomorphism u € W'?(;R"), p € [1,+00), can be approximated in
WP by piecewise affine ones or smooth ones. One very significant reason why this
would be desirable, is that regularity is typically often proven by testing the weak
equation or the variation formulation by the solution itself; but unless one has some
a priori regularity of the solution, such a test may not make sense. In order to solve
this problem it would be possible to test the equation with a smooth test mapping
which is close to the given homeomorphism instead. Here we see the necessity for
the approximations to be homeomorphisms whose image is the same as that of the
approximated map, otherwise this sequence would have nothing in common with our
original problem. Besides non-linear elasticity, an approximation result of homeomor-
phisms with diffeomorphisms would be a very useful tool in and of itself as it would
allow a number of proofs to be significantly simplified and lead to some stronger re-
sults. Let us note that finding diffeomorphisms near a given homeomorphism is not
an easy task, as the usual approximation techniques like mollification or Lipschitz
extension using the maximal operator destroy, in general, injectivity.

Let us describe the results in this direction. The first positive results were achieved
by Mora-Corral [35] on planar homeomorphisms smooth outside a point and by Bel-
lido and Mora-Corral [7] on approximation in Holder continuous maps. Let us also
note that the problem of approximation by smooth or piecewise affine planar home-
omorphisms are in fact equivalent by the result of Mora-Corral and Pratelli [36].
The celebrated breakthrough result in the area which stimulated much interest in
the subject was given by Iwaniec, Kovalev and Onninen in [27], [28], where they
found diffeomorphic approximations to any homeomorphism f € WP(Q,R?), for
any 1 < p < oo in the W' norm. The remaining missing case p = 1 in the plane
has been solved by Hencl and Pratelli in [25] by a different method. This method
was extended by Campbell [10] to give a different proof of the W' p > 1, case and
to prove the result also for Orlicz-Sobolev spaces. The problem of approximating
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homeomorphisms with diffeomorphisms cannot be considered entirely closed even in
the planar case. Another problem mentioned in [27] is to approximate both a map
and its inverse simultaneously in W1, The first results in this area was given by
Daneri and Pratelli in [15] for all 1 < p < oo under the additional assumption that
the mapping is bi-Lipschitz. Recently Pratelli [37] has answered this question for
p = 1 (without any additional assumptions) using the technique of [25]. The cases
p > 1 (especially p = 2) which are even more important in terms of their application
are still open.

And even more interesting open problem is the approximation of Sobolev homeo-
morphism in dimension n = 3 as there are no results in this direction so far. The
only breakthrough result in higher dimension is the result of Hencl and Vejnar in [26]
that there is a homeomorphism in W'l for n > 4 which cannot be approximated
by diffeomorphisms. The main result of this paper is the following extension, which
shows that the problem is not in the special choice of nonreflexive space W11,

Theorem 1.1. Let n > 4 and 1 < p < [n/2]. Then there exists a homeomorphism
f e Wh2((—=1,1)", R") such that there are no diffeomorphisms (or piecewise affine
homeomorphisms) f, : (—1,1)" — R™ such that fi, — f in W P((—1,1)",R").

loc

Here [n/2] denotes the integer part of n/2,ie. 1 <p<2forn=451<p<3
for n = 6,7 and so on. This result is deeply connected with the sign of the Jacobian
of a homeomorphism. As we mentioned before in models of nonlinear elasticity one
usually assumes that Jy > 0 a.e. (or at least J; > 0 a.e.). It is therefore natural to
ask if this condition is automatically satisfied (up to a reflection) in the reasonable
class of mappings. This problem was promoted by Hajlasz, see e.g. Goldstein and
Hajlasz [21]. As each homeomorphism on a domain is either sense-preserving or
sense-reversing (see Preliminaries) we can equivalently ask if the topological (sense-
preserving) and analytical (J; > 0) notion of orientation are the same.

Another reason to study nonnegativity of the Jacobian comes from the well-known
area formula which is one of the most fundamental tools in the area. For a Sobolev
homeomorphism f : Q@ — R" for which the Lusin’s condition (N) (i.e. sets of null
measure are always mapped to sets of null measure) holds we have

(L1) / n(f(2)) |y ()| de = /f RO

for every nonnegative Borel function n : f(2) — [0, o0] (see Federer [19]). If we knew
that Jy > 0 a.e. we could write the formula (1.1) without absolute values.

It is relatively easy to show that every topologically sense-preserving Sobolev home-
omorphism which is differentiable almost everywhere has nonnegative Jacobian almost
everywhere, see [32, Lemma 2.14]. Therefore every sense-preserving planar homeo-
morphism in I/Vlicl (2, R?), and more generally every sense-preserving homeomorphism
in WLP(Q,R") with p > n — 1, satisfies J; > 0 a.e. (see [23, Corollary 2.25 and The-

loc
orem 5.22.]). However, when we study homeomorphisms in W'?(Q, R") with n > 3
and 1 < p <n — 1 it might happen that the mapping is nowhere differentiable even
under some additional assumptions, see e.g. [14]. Thus the previous argument which
heavily uses differentiability of the mapping cannot be used anymore when f € WP,

pe[l,n—1].



4 D. CAMPBELL, S. HENCL, AND V. TENGVALL

In [24] Hencl and Maly were able to overcome the difficulties caused by the lack of
differentiability by giving the first nontrivial positive answer to the question about
the nonnegativity of the Jacobian of Sobolev homeomorphisms. More precisely, they
showed that every sense-preserving Sobolev homeomorphism f &€ VVli’f(Q,]R") with
p > [n/2] has nonnegative Jacobian at almost every point. The proof was based
on the approximative differentiability of Sobolev mappings and on the topological
invariance of the linking number under homeomorphisms. The restriction p > [n/2]
in their proof comes from the linking number argument where one has to require
the mapping to behave geometrically nicely on both “links”. Here we show that
somewhat surprisingly the strange exponent [n/2] is indeed the borderline exponent

for this question.

Theorem 1.2. Let n > 4 and 1 < p < [n/2]. Then there is a homeomorphism
f e Whr((=1,1)",R") such that J; > 0 on a set of positive measure and Jy < 0 on
a set of positive measure.

This result for p = 1 was shown by Hencl and Vejnar in [26] and as in their paper
Theorem 1.1 now follows easily. Indeed, assume on the contrary that f from the
statement can be approximated by diffeomorphisms (or piecewise affine homeomor-
phisms) {fx}72,, then the pointwise limit of a subsequence (which we denote the
same) satisfies

Dfi(x) = Df(x) and Jy(z) — Js(a)

for almost every x € (—1,1)". As f; are locally Lipschitz we know that J; > 0
a.e. in (—1,1)" or Jy, < 0 a.e. in (—1,1)", see e.g. [24] and [23, Theorem 5.22].
The pointwise limit of nonnegative (or nonpositive) functions Jy, cannot change sign
which gives us contradiction.

Let us also recall that the Jacobian of a WP 1 < p < n, Sobolev homeomorphism
may behave strangely as it may vanish a.e. (see [22], [11] and [17]). As mentioned
before the Jacobian of a homeomorphism cannot change sign if p > [n/2] by [24]
and therefore the method of sign-changing Jacobian for providing a counterexample
in Theorem 1.1 cannot be improved to p > [n/2]. On the other hand, there might
be a different way of producing a counterexample to the Ball-Evans approximation
problem or there might be even a positive result in R®, n > 4, for W if p is large
enough (but definitely we must have p > [n/2]). Also the question whether the
Jacobian can have both positive and negative Jacobian in a sets of positive measure
in the borderline case p = [n/2] remains open.

Now we outline the rough idea of our construction. We fix a Cantor type set

Ca C (—1,1) of positive measure and we set
12 Ka:=(CaxCaxCsx[-1,1]) U (CaxCax[-1,1] x Cs)U
‘ U(CAX[—1,1]XCAXCA)U([—l,l]XCAXCAXCA).

We also fix a Cantor type set Cp C (—1,1) of zero measure (in fact its Hausdorff
dimension ¢ is small) and define the set Kp similarly as above. Our first mapping
Sq : R" — R" squeezes K4 onto Kp homeomorphically in a natural way. Then we
find a bi-Lipschitz sense-preserving homeomorphism F' such that

(1.3) F(x1, 29,23, 24) = (21,9, 23, —4) for every x € Kp.
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Indeed, we can find a direction in R* such that the projection of K to the correspond-
ing hyperplane is one-to-one. The rough reason for that is that the set of directions
where the projection is not one-to-one has Hausdorff dimension at most

(starting+ending point of the direction) and this is smaller than 3-the dimension of all
directions. This projection of Kz can be extended to the homeomorphism g : R* — R*
which is bi-Lipschitz. By the turnover of the 3-dimensional hyperplane with respect
to z; direction (which can be done by a sense-preserving homeomorphism of R*) and
the composition with g=! we obtain our mapping F. In view of the turnover of the
hyperplane we obtain the key property (1.3). At last we find a mapping S; : R* — R”
which stretches Cg X Cg X Cg X Cg back to C4 x C4 X C4 X C4 such that lines in g
through the Cantor set are not prolonged too much and that S; is locally Lipschitz
outside of Cg x Cg x Cp x Cp.

We verify that f = S,0 F oS, belongs to W'? by using the ACL property. It is thus
crucial for us that lines parallel to coordinate axes that intersect C4 x C4 X C4 X Cx
are mapped to lines by S,, then to the same lines (with possibly reverse orientation
in x4-direction) by F' (see (1.3)) and to something of reasonable length by S;. To
control the derivative on the lines parallel to coordinate axes that do not intersect
Ca x Cyq x Caq x C4 we use explicit form of mappings S, and S; and it is essential
for us that F' is Lipschitz everywhere and that S; is locally Lipschitz far away from
CBXCBXCBXCB.

Let us compare this result to the methods in [26]. In [26] the authors only showed
that the length of the images of line segments are finite (which is enough for [ |Df| <
o0) but here we need to write explicit formulas for the mappings and to differentiate
them, which requires much more details, precision and a delicate case study. More
importantly there are three new main essential ingredients here. First there is a gap
in the argument of [26] in the construction of the last mapping. During our detailed
estimates we have found this gap and we have repaired it by giving a different last
mapping S; such that lines in g through the Cantor set are not prolonged too much.
Secondly in [26] it was enough to find any bi-Lipschitz extension of the projection to
construct a mapping F'. Here we need to know that line segments close to g but
far away from Cp x Cp X Cp X Cp are mapped to line segments (see Section 3) so that
the partial derivatives corresponding to different directions do not mix (and the big
derivative in one direction is not multiplied by a big derivative in other direction).
This requires a novel construction of the mapping F' in Section 3. The third main
ingredient is the extension to higher dimension as in W! it was enough to extend
simply as f(x) = (f(x1, z2, 3, 24), x5, ..., x,). Here it requires much more work and
it is essential for us to consider not only line segments through C4 x C4 X ... X C4 as
in (1.2) but [n/2] — 1 dimensional planes through the Cantor set (i.e. 2 dimensional
planes for n = 6,7 and so on). Then F reflects not only line segments through
CaxCax...xCx (see (1.3)) but it reflects [n/2] — 1 dimensional planes through the
Cantor set as the analogy of (1.4) is now

dimKp +dimKg =2([n/2] — 1)+ 2(n— [n/2] +1)d <n — 1.

This allows us to control the derivative only on lines that do not belong to this [n/2]—1
dimensional planes and the measure of this set is very small close to the Cantor set.
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2. PRELIMINARIES

2.1. Notation. A point x € R" in coordinates is denoted as (z1,xs,...,2,). We
denote by |z| := /D>, z; the Euclidean norm of a point z € R”, and |z|| =
sup; |z;| will denote the supremum norm of . We also define the distance of two sets
A, B C R" as

dist(A, B) :=inf{|z —y| : x € A and y € B}.
We will denote by
Qa,r) = (a; —71,a1 +7) X -+ X (@, —Tya, +7)

the open cube centered at a € R™ with sidelength 2r > 0. The interior of a set
A C R™ is sometimes denoted also by A°.

We will denote by C' := C(py,...,pr) a positive constant which depends only
on the given parameters py,...p,. The constant C' might change from line to line.
Furthermore, for given functions f and g we denote f < g if there exists a positive
constant C' > 0 such that f(z) < Cg(z) for all points z. If both conditions f < ¢
and g < f are satisfied we denote f ~ g.

2.2. Sobolev spaces and the ACL condition. Let 2 C R” be an open set. We
say that f :  — R™ belongs to the Sobolev space WP(Q,R™), 1 < p < oo, if f
is p-integrable and if the coordinate functions of f have p-integrable distributional
derivatives. We say that f belongs to the space W,oP(Q, R™) if f € W»(Q',R™) for
every subdomain ' CcC €.

Let i € {1,2,...,n} and denote by m; the projection on the given hyperplane
H; = {x € R™ : x; = 0} perpendicular to the z;-axis. We say that a mapping
f € LL.(Q,R™) is absolutely continuous on lines (abbr. f € ACL(Q,R™)) if the
following ACL conditions holds:

(ACL) For every cube Q(a,r) = (a1 —r,a; +7) X -+ X (ap, — 7,0, + 1) CC Q and for
every i € {1,2,...,n} the coordinate functions of the mapping

fitz) = f(or, ., @i, @+ 6 T, )
are absolutely continuous on (a;—r, a;+r) for L !-almost every = € m;(Q(a,r)).
The following characterization of Sobolev spaces is classical and can be found e.g. in

[1, Section 3.11] and [23, Theorem A.15].

Proposition 2.1. Let 1 < p < oo, Q C R" be an open set and f € LP(QQ,R™). Then
fe VVé’f(Q,R") if and only if there is a representative of f which is a ACL(£, R™)
mapping with locally LP-integrable partial derivatives on €2.

2.3. Topological degree. For a given smooth map f from 2 C R" into R"™ we can
define the topological degree as

deg(f,Qu0) = Y sen(Jy(x))
{ze:f(z)=yo}

if Jp(z) # 0 for each z € f~'(yo). This definition can be extended to arbitrary
continuous mappings and each point, see e.g. [20].



A continuous mapping f : Q — R™ is called sense-preserving if

deg(f: le yO) >0

for all subdomains €' CC € and for all yo € f()\ f(O). Similarly we call f
sense-reversing if deg(f, ', yo) < 0 for all Q" and yy € f(2) \ f(0SY). Let us recall
that each homeomorphism on a domain is either sense-preserving or sense-reversing,
see e.g. [39, I1.2.4., Theorem 3].

2.4. Hausdorff dimension. Let @ > 0. We define a-dimensional Hausdorff measure
of a set £ C R" by

HO(E) = lim HO(E),

e—0t

where for a given € > 0 we define

HI(E) = inf{Z(diamAi)a B C UA“ diam A; < 8}.
i=1 i=1
We define the Hausdorff dimension of a set E as
dimy(E) = sup{a > 0: HY(F) = oo} = inf{a > 0 : H*(E) = 0}.
We point out that Lipschitz mappings do not raise the Hausdorff dimension of a set
and furthermore if E = (J;°, E; then

dimy(E) = sup dimy (E;).

)

2.5. Construction of the Cantor set (4 and the set K£,4. Denote by V the set
of 2% vertices of the cube [—1,1]*. The sets

VE=Vx---xV, keN,

will serve as the set of indices for our construction of Cantor sets.
We will define next the Cantor set 'y with positive measure for our construction.
For this fix a > 0. Let us define the sequence {a;}32, by setting

-3t

Ty = 2_k(lk.

Set zp = 0 and let us define

It follows that Q(zg,79) = (—1,1)* and further we proceed by induction. For v(k) =

(v1,...,v;) € V¥ we denote w(k) = (vy,...,v5_1) and we define
1 1
Zu(k) = Zw(k) + 5 k=1Uk = 20 + 5 Z%‘—l%‘,
j=1

Quiry = Q(Zo(r) 27%a),_1) and Qu) = Q (2o, 2 "ar).

Formally we should write w(v(k)) instead of w(k) but for the simplification of the
notation we will avoid this. Sometimes we may even denote v and w instead of v (k)
and w(k).
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FIGURE 1. Two-dimensional projection of the cubes Q) and Q;(k)
for k =1,2.

Then for the measure of the k-th frame A, := Q;(k) \ Qu(k), kK € N, we have

(2.1) ﬁ%&ﬁgz24ﬁﬂﬁ4—a®=24ﬂ(r+%04—(1+Gi%ﬁ)1.

The number of the cubes in {Qqux) : v(k) € V*} is 2%, Tt is not difficult to find
out that the resulting Cantor set

(1 U Quw = Cal{a}isy) = Ca x Ca x Ca x Ca

k=1 v(k)eVk

is a product of 4 Cantor sets C4 in R. Moreover, the measure of the set C'y can be
calculated as

1 4
2.2 H(Ca) = Jim 2% (2a27)" = Tim (1 ———):1
(2:2) £(Ca) = Jim 272" = lim {1+ 7y
Furthermore, we may write the 1-dimensional Cantor set C4 as

oo 2k

Ca= (UL

k=11i=1

where [;;, are closed intervals of length 2”"’(1 + m), LixNIjy=0fori#j, and

Ii 1 Uy, C I; 1. Throughout this paper we will also denote

2k
Uk = U]i’k’ ./\/lk = UkXUkXUkXUk, Pk = UkXUkXUk,

i=1
and in view (2.2) it is easy to see that
(2.3) 70@@\CA)g2@—%ﬁ+~—¥L—)-—1gfl
(k4 1) ke
Further we denote
Aj, = =(Uy x Uy x U, x R) U (Uy x Uy x R x Uy)
U (Ux x R x Uy, x Up) U (R x Uy x Uy x Uy).



It is easy to see that

CA:CAXCAXCAXCA:ﬂMk.

k=1
Furthermore, we also denote
,CA Z:(CA X CA X CA X [—1, 1}) U (CA X CA X [—1, 1} X CA)
U(Ca X [=1,1] x Ca x Ca) U ([—1,1] x C4 X C4 X Cy),

and then we have

Ka=[-11"n (A
k=1

It is easy to see that £*(K4) > 0. Analogously to (2.3) we can estimate
(2.4)
1

3 ko—k 3 k+1lo—(k+1 ’ ¢
H(Pk\PkH)S(QQ (1+m)> _<2 27 )(1+m)> SW'

2.6. Construction of the Cantor set C'z and the set Kp. Next, we will define
the Cantor set Cg of zero measure for our construction. The definition of the index
set V¥ remains the same as in the subsection 2.5.

To define Cp we fix 0 < § < 1/7. Let us define the sequence {by}32, by setting

by =27,
where (§ = 15;5' Analogously to the previous section we set Z; = 0 and define
P =27 by

Then it follows that Q(2g,7) = (—1,1)* and further we proceed by induction. For
v(k) = (v1,...,v) € V¥ we denote w(k) = (vy,...,v_1) and we define

k

. . 1. o1 .

Zo(k) = Zw(k) + 5 k=10 = 20 + 2 Z . Tj—1Vj,
]:

Q{U(k) = Q(év(k); 2_kbk—1) and Qv(k) = Q(ZA’U(]C), Q_kbk) .

Index w(k) = (vq,...,v,_1) is called as the parent of the index v(k) = (vy,..., k).
For the measure of the k-th frame By := Q;(k) \ Qu(r), k € N, we have

(2.5) LY (By) = 27 W4 (0L, — by = 2 W0k (40 ),

Analogously to the previous section, it is not difficult to find out that the resulting
Cantor set

(N U Quw = Csl{br}io] = Cs x Cs x Cs x C
k=1 v(k)eVk
is a product of n Cantor sets Cg in R. Moreover, the measure of the set Cg can be

calculated as

(2.6) LYCp) = lim 2% (2b,27F)" = lim 247%F = (.

k—o00
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Furthermore, we may write the 1-dimensional Cantor set Cp as

L
Cs= (UL
k=1i=1
where fzk are closed intervals of length 26,27, fzk N fjﬁk = () for 7 # j, and ]AQZ-_L;C U
Iy, C I; x—1. Throughout this paper we denote
2k
(2.7) U, = Uji,kn My =Up x U, x Uy x Uy, P, = U x Uy x Up.
i=1

Furthermore, we also denote
(28) AkZ:(UkXUkXUkXR)U(UkXUkXRXUk)
' U(UkXRXﬁkXUk)U(RXUkXﬁkXUk>,

and

]CB I:(CB X CB X CB X [—1, 1]) U (CB X CB X [—1, 1] X CB)
U(Cp x[—1,1] xCp x Cp) U([-1,1] x Cp x Cp x Cp).

It is easy to see that £(Kg) = 0. Furthermore, we may find out that dimy, Cp = ¢ as
in the k-th step of construction we have 2% intervals of length 2b,27% = 2. 27F=F8 —

2.275, Therefore, as 0 < § < 1/7, we conclude that
3
dimH/CB <1430 < 5

2.7. The mapping S,. Suppose that C'4 and Cp are the Cantor sets in subsections
2.5 and 2.6. Let ¢ : R — R be the natural piecewise linear homeomorphism which
takes each interval in the set Uy \ Ugs1, k € N, onto corresponding interval in Uk\UkH
linearly. Then it is easy to see that ¢ is an odd function, i.e. ¢(—s) = —q(s) for every
s € R. We define the homeomorphism S, : (—1,1)" — (—1,1)" by setting

SQ(:Bla s 75571) = (Q(xl)v Tt 7Q(:En))

It is easy to see that S; maps K4 onto Kp. Moreover, we may notice that S, is a
Lipschitz mapping which takes each line segment parallel to x;-axis to a line segment
parallel to x;-axis for every ¢ = 1,2, 3,4. Furthermore, we also have that:

(1) For each z € (—1,1)* such that z; € Uy \ Ugy1, i = 1,2, 3,4, we have
br — b
(2.9) |D;S, ()] = ——"HL < gpotlafok,
ap — Qg41
where the constant C' = C(«, #) > 0 depends only on parameters o and (3.
(2) For each z € (—1,1)* such that z; € Ca, i = 1,2, 3,4, we have
| D;Sq ()| = 0.

Here and in what follows D;g denotes the derivative of a mapping g along the x;-
direction for ¢ € {1,2,3,4}.
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. Q'

Q H;?

FIGURE 2. The transformation of Q' \ Q° onto Q' \ Q° in two dimensions.

2.8. Frames to frames mapping of (n — 1)-dimensional Cantor sets. Suppose
that n > 3. Analogously to the constructions of Cy and Cpg we can define the
(n — 1)-dimensional Cantor type sets

CB><~~-><CB and CAX--~><CA.
S—— ——

n — 1 times n — 1 times

We will need to find a mapping which maps the first set onto the second and the cor-
responding frames around it to corresponding frames around the second set. Instead
of the index set V¥ we use now the set W* where W denotes the vertices of the cube
[—1,1]""L. Analogously to previous notation we denote w € W* instead of v € V*
and we work with cubes

~

Qi Quoky, Qrp(ry and Quo(k)

defined analogously to subsections 2.3 and 2.4 but now in n — 1 dimensions.

We will find a sequence of homeomorphisms H; ' : (—=1,1)"! — (=1,1)""!. We
set H '(z) = x and we proceed by induction. We will give a mapping F; which
stretches each cube Qw, w € W', homogeneously so that Hf‘l(Qw) equals Q. On
the annulus @;U\Qu” H'! is defined to be an appropriate radial map with respect to
2w and z, in the image in order to make H"' a homeomorphism. The general step
is the following: If £ > 1, H,’j_l is defined as H,?__ll outside the union of all cubes Q’w,
w € WE. Further, H;~' remains equal to H;'"| at the centers of cubes Qu, W € WF.
Then Hl’;_l stretches each cube Qw, w € W¥, homogeneously so that H,’;_l(Qw)
equals (0. On the annulus QQU \ Qw, H"! is defined to be an appropriate radial
map with respect to Z,, in preimage and z,, in image to make H,?’l a homeomorphism
(see Fig. 2). Notice that the Jacobian determinant J Hg_l(x) will be strictly positive
almost everywhere in (—1,1)""1.

In the following definition of H}"~' we use the notation ||z|| for the supremum norm
of x € R"!. The mappings H,?’l, k € N, are formally defined as
(2.10)

H} z) for x ¢ uwew,i Q.
lehl(x) = Hg:ll(éw) + (O‘ka - éwH + Bk) ||£:§:|| for x € qu \ Quw, w € Wk

Hy 7 (20) + (2 = 2a) for € Qu, w € W*
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where the constants oy and [ are given by

Tk—1
5 -

(2.11) afy, + B, = 1y, and aBL 4 By =

It is not difficult to find out that each H,?_l is a homeomorphism and maps

U Qu onto U Quw-

wcWk wcWk

The limit H"~!(x) = limy_., H; "' () is clearly one-to-one and continuous and there-
fore a homeomorphism. Moreover, it is easy to see that H"~! is differentiable almost
everywhere (as £"1(C% ') = 0) and maps Cj ! onto C% 1.

Fix j € N. We claim that the mapping H" ' is Lipschitz on (U;)"'\ (Uj41)""
where the sets Uj are defined analogously to subsection 2.6 (the Lipschitz constant
of course depends on the fixed j). This is in fact easy to see as the mapping is given
by simple formula (2.10) on each Q;D \ Q. for every w € WJ. Analogously to [23,
Lemma 2.1 and proof of Theorem 4.10] we can estimate
(2.12)

\IDH Y (2)| = [DH" ()| ~ max{;—], aj} < C'max{2% 20 j=(+D)} < 989
J

for every z € Q' \ Qw and w € W/, This is because

|D1HJ77_1(3:)\ < f—j < C2% for | # i and
(2.13) P
DH} (@) < 0y < €2

if x; is the direction which realizes the supremum norm distance from the center of
the cube Z,,. From (2.10) it is also easy to see that

(2.14) |DH} ()] ~ <09 for x € Quw and w € W,
T
In our construction we will need to know that for each a € (0,1) and k € N the
mapping

(2.15) Qi (@) + (1 - @)y ()

is a homeomorphisms. Outside of |J,,cyyse-3 Qw both mapping are equal and hence

the mapping is a homeomorphism there. Let us fix Qw for some w € W33, We know
by (2.10) that H;‘k_l is a frame to frame mapping on Qw which maps corresponding
squares with sizes T3x_o (resp. 7s,_1 and 73;) to squares with sizes r3;p_o (resp. rax_1
and 73;). We also know by (2.10) that Hj, ', is a linear mapping

T3k—3

= (l‘ - gw) on Qw

T3k—3

but this can be also viewed as a frame to frame mapping on @,, which maps corre-

sponding squares with sizes 73;_o (resp. T3x_1 and T3;) to squares with sizes ;zZ*z T3k—2
T3

(resp. 2=273,_1 and 2::2 73r). Thus it is not difficult to see that the mapping (2.15)
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on (Qy is a frame to frame mapping which maps corresponding squares with sizes
Tap—2 (resp. Tar_1 and T3;) to squares with sizes

Tap_3 _ T3%_3 _ Tsg—3 -
ars,_o+(1—a) Sk 37’3k_2 ( resp. arg_1+(1—a) 3k 3r3k_1 and arsp+(1—a) 3k 37’3k>.
T'3k—3 T3k—3 T3k—3

Analogously to the fact that each Hj defined by (2.10) is a homeomorphism we can
conclude that the mapping (2.15) given by formula analogous to (2.10) is also a
homeomorphism.

3. A SENSE-PRESERVING BI-LIPSCHITZ MAPPING [’ EQUAL TO A REFLECTION IN
THE LAST VARIABLE ON Kp

This section is dedicated to constructing a bi-Lipschitz mapping which equals the
reflection in the last variable on Kpg. Especially, this means that the mapping will
map lines in Kp to lines in Kp. In fact even more than this the mapping will map
certain line segments close to K to line segments (recall that Kg and Uy, are defined
in subsection 2.5). Also see Fig. 3.

Theorem 3.1. If 3 > 0 s sufficiently large in the definition of the Cantor set Cpg
in subsection 2.6 then there exists a mapping F : (—1,1)* — (=1,1)*, which is a
sense-preserving bi-Lipschitz extension of the map

(3.1) F(xy, 29,23, 14) = (21,22, 73, —74) x € Kp,
and a constant Np € N such that for each j,k € N satisfying Np < 7 < k the image
of the intersection of a line parallel to e; with the set
Aijonp-ping =1 €R 1oy € [1, 1\ Uj_np1, 71 € Uy, | # i}
in the map F is a line segment parallel to e; which lies in the set
Aijop={r €eR 1a; € [~1,1]\ Uj_1, 7, € Uy, 1 # i}
Moreover, the derivative along this segment satisfies

e ifi=1,2,3
DiF(x):{ —e; i{”i:él

for every x € A j_Np—1 k+Np-

The concept of the following type of mapping is key to our proof. We will show
the obvious fact that they are bi-Lipschitz maps.

Definition 3.2. Let n € N, n > 2, and let v € R" be a vector such that v, # 0.
Denote X := R" ! x {0}. Let g : X — R be a Lipschitz function and define a

projection P, of R™ onto X as follows
(3.2) P,(z)=x— Iy,

n

Then we define the spaghetti strand map F,, as follows
Fyu(7) = 2+ vg(Py(2)).
Lemma 3.3. Spaghetti strand maps from Definition 3.2 are bi-Lipschitz maps.
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L3|§ |§L4

FIL)||F(Ly)

FIGURE 3. A sense preserving bi-Lipschitz map that reflects in e4 and
maps certain lines to lines

Proof. Tt is easy to see that every spaghetti strand map is Lipschitz as a composition
of Lipschitz maps. Moreover P,(awv) = 0 for each a € R which implies that

v +vg(Py(x)) —vg(Po(z +vg(Py(2)))) = 2 +vg(Py(x)) —vg(Py(x)) = =

and hence the inverse of a spaghetti strand map is the spaghetti strand map corre-
sponding to —g. This inverse is also Lipschitz and therefore we see that these maps
are bi-Lipschitz. O

Firstly, let us outline our strategy for the rest of the section. We construct F
from the composition of two spaghetti strand maps. Firstly we must choose a vector
v and prove that the projection P, is one-to-one on the set Kp and further there
exists a Lipschitz function g so that F,,(z) = P,(x) for all z € Kp. This step is
contained in Lemma 3.4. If we take u = (—vy, —vg, ..., —v,_1,v,) then we can define
F=F,,oF,, and it is not difficult to deduce that (3.1) holds (this is done in (3.37)
below).

Lemma 3.4. Let v = (%, %, i, 1), u = (—%, —%, —}1, 1). Then there is B > 6 and a
corresponding set KCp given by the subsection 2.6 such that P, is one-to-one on Kg,
and the function g defined on P,(Kg) as g(P,(z)) = —x4 can be extended onto X as
a Lipschitz function. Furthermore, it is possible to find a Lipschitz extension of the
function g which guarantees that

e ifi=1,2,3
(3.3) Di(F,. 0 Fyy)(z) _{ e ifi—4

whenever k € N, z; € [=1,1]\ Uy and x; € Upyo for all j # .
Proof. Let us start by defining some notation we will use throughout the proof. We

will denote v := (%, %, %) Furthermore, if Qu(k) = Q(Zu(k): 1), v(k) € V¥, are the

cubes used in the definition of the Cantor set C'g in subsection 2.6, then we define

These sets are called k-bars.
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\

FIGURE 4. All 1-bars and 2-bars in three dimensions.

By the construction of the Cantor set we have Q(Zy(k—2), Tk—2)Q(Zok—2), Th—2) = 0,
whenever v(k) # v(k). Therefore we have the equality for the so-called “sliced” bar

(3.5) gf;(k) = éi;(k)\ ( U Q(i‘mfk_z)) = Gi;(k)\ ( U Q(%ﬁk-z));

wEVv(k>( i) weVk—2

where
Viig (@) == {w € V72 (Z4) + Re;) N Q (2w, P a) # 0}

It is easy to see that there is (1 > 0 such that for § > (; (in the definition of Cz) we
can replace the index set Vi(_,f) () by much nicer set V*~? in the definition of S},

More precisely, a sliced k-bar S’f,(k) can be considered as a k-bar where we have
removed all the cubes around the Cantor set from the (k — 2)-nd generation of the
construction.

In similar fashion we also define

(3.6) Sty = (@ (Pl i) + PR\ (| @ (Pulzw) I)) € X,

weVy (i)

where Q*(z,r) denotes the 3 dimensional cube in X := R? x {0} with radius r > 0

5

and centered at z € X and ¢ > 3 is a constant we will determine later. We also

denote “sliced k-pipes” as follows

Hy, GX(Q (Po(Zom)): a7k) +Pv(R6i)> \( U @ (P.(uw), I 1)) C X,

weVy ) (i)

where Oy A denotes the relative boundary of aset Ain X. We will later see that also
in the definition of the sets S’f,( and H ) the index sets V ( ) can be replaced by
VA1 when 3 > 0 in the deﬁnitlon of CB is Just large enough

Now let us briefly outline the rest of the proof. We prove that our choice of a vector
v gives that P, is one-to-one on Kpg. Then we prove that each Sf)(k) is projected into
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FIiGURE 5. In the picture on the left we have all sliced 2-bars by 1-st
generation cubes in three dimensions. In the later we slice k£ genera-
tional bars with £—2 generation cubes. A choice of 3 guarantees that in
comparison the bars are as thin as required in comparison to the cube.
In the picture on the right we have zoomed in one of the removed cubes
(drawn with dashed line) from the picture on the left.

Si(k) which, for fixed k, are pairwise disjoint. This allows us to define a Lipschitz

function g on R® x {0} such that F,, = P, on Kp. A careful extension of g onto
R3 x {0} guarantees (3.3). We divide the proof into several steps.

Step 1: The projection is one-to-one on Cg. Our first step is simple, we want to
show that the projection is one-to-one on the set Cz = Cp X Cg X Cg x Cp. Consider
the first stage of our Cantor construction, i.e. we have the cube QO = Q(0,1) and
the set of cubes Quy = Q(%w(1),71), v(1) € V. We will show that the images of
these 2% cubes in P, are pairwise disjoint. Then we can use the same calculations to
show that the projections of the next generation of cubes in our construction are also
pairwise disjoint because the construction is self-similar. We can repeat this argument
inductively to get that P, is one-to-one on Cg. Therefore it suffices to show that the
images of Qv(l) are pairwise disjoint. Although this step is slightly redundant it aids
the understanding of the reader and so we include it here.

We will deal with two separate cases. The first case is where we are considering
the projections of a pair of boxes Qv(l) and Q@(l), whose centers have the same 4-th
coordinate. The second case is where (24(1))1 # (25(1))s- For any of the first generation

cubes Qv(l) we can calculate its image in P, using (3.2) and v = (&, £, 1, 1) as

167 87 4
(3.7) Po(Quy) = Q*(Pu(20n)) 1) + (—F1,71) (&, 3, 1) € Q¥ (Pu(Zoqy), (1 + 1)),
where
(3.9)

) 1) = ((2’0(1))1; (2’0(1))27 (21}(1))37 0) + %(1_167 %7 ia O)

—
c>|’—‘
o=
N

Py (Zo(1)) = Zo) — (Zo))a(
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FIGURE 6. An illustration of the image of two generations of cubes
in the projection P, from three dimensions to the plane. For printing
reasons we have now increased significantly 7; and changed somewhat
v. The shaded regions (one big and eight smaller ones) describe the
images of the cubes in P,. The black dot in the middle describes the
point P,(0) = 0 the center of the large cube. The other four black dots
a,b,c and d describe the centers of the small dashed cubes of radius
% + gfl which always contain the image of a pair of cubes symmetrical
about the hyperplane, see Case 2B. In one case we consider a pair of
cubes symmetrical about the hyperplane and the images of their centers
are separated by 0. In the other cases the images of cubes are disjoint
because they lie in different dotted cubes, which are disjoint.

Case 1 (Step 1): In the first case we have a distinct pair of centers 2,1y and Zy)
such that (Z,1))a = (Z2(1))a. Since the pair is distinct we can find at least one
i € {1,2,3} such that

|(Zo())i — (Zo1))il = 1.
This means that |2y1) — Zp(1y| > 1. But since (2,1))a = (Zp(1))4 we have

~ ~

P, (20(1)) — 2oy = Po(Z(1)) — Za(1)
and therefore
1P (Zo(1) — Po(Zon)| = |20) — Zo] = 1.
This together with (3.7) and the fact that 27 (1 + 1) < 1 (recall that 7 = 271275
with 5 > 6) implies that
Pv(@v(l)) N PU(Q'E:(l)) = @

Case 2A (Step 1): Suppose now that (Z41))s # (25(1))s. We shall consider first a
pair of boxes, whose centers Z,.1) and Z;(;) are on a line parallel to e4. To see that
the images of these boxes are disjoint we observe that

(39) Pv(£v(1)> - Pv(éf)(l)) - Pv(év(l) - éf)(l)) = Pv(:i:eél) = :F(%v %7

Furthermore, as

N

~

(310) Pv(Qv(l)) C Q(Pv(év(l))a %ﬂ),
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and since 27“14 < 15 < [IPy(2001)) — Ps(Ze(1))|| then the projection of Qv(l) and Q{;(l)
must be disjoint. Here ||z|| := sup;|x;| denotes the supremum norm.

Case 2B (Step 1): We still need to consider the pairs of cubes with centers that
vary from each other in the 4-th variable and in another variable. In other words, let
us suppose that it holds for 2,y and Z4) that

(21,(1))4 7é (2{,(1))4 and (’%'U(l)>l 7& (2{,(1))1 for some i € {]., 2, 3},

and let us denote

a = ((2o))1s (2o1))2s (20(1))3,0) and b= ((2601))15 ((Zo(1))2, ((Zo(1))3,0).

By applying (3.7) and (3.8) we get
P,(Quy) C Qa, 1+ 371) and P,(Qsn)) C Q(b, 1+ 271),

where § + 27 < & < 1. Thus, it follows from the fact |a — b] > 1 that
dist( P, (Quiry), Po(Qa)) = dist(Q(a, L + 274),Q(b, 1 + 27y))
> la—bl —2(5 4 37) >0,

which gives us that the sets PU(Q,,(D) and PU(Q@(U) are disjoint. This implies that
the remaining pairs of cubes to consider (i.e. the pairs of cubes with centers that vary
from each other in the 4-th variable and in another variable) are also disjoint.

It follows now from Cases 1, 2A and 2B that images of the first generation cubes
Qv(l) in the projection P, are pairwise disjoint. The self similarity argument men-
tioned above implies that P, is one-to-one on C'g. The reason why the self similarity
argument works here is because the ratio 7y_1 /7 = 2641 is not depending on k. Ge-
ometrically this means that if we rescale a cube Qv(k—l) and the smaller cubes Qv(k)
which lies inside this cube by factor 2¥7128(¢ =1 we see that there will be as much
space to project the cubes of the k-th step as there was in the first step (see Fig. 7).

Step 2: The projection is one-to-one on K. We will start this step by showing
that if @ and b are any two vertices of Q(0, %) and e;,e; € R* are two (possibly
identical) canonical basis vectors of R, then

(311) PU(CL +Rel) N Pv(b + R@j) = Pv((a + Rel) N (b+ R€j)).

This gives us that if £ and { are two distinct lines parallel to coordinate axes through
some vertices a and b of Q(0, 1) then their projections P,(¢) and P,(f) meet at most

at one point which is the image P,(z) of the intersection point z of ¢ and . We use
this to show that images of sliced k-bars are disjoint and finally by this observation
and by Step 1 we will conclude that P, is one-to-one on Kg. It is good to remark that
the argument bellow does not work if the dimension of the space is three or smaller.
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FIGURE 7. An illustration of the idea behind the self similarity argument.

Step 2A: Proving the equation (3.11). To prove (3.11) it suffices to show that
(3.12) P,(a+ Re;) N Py(b+Re;) C Py((a+Re;) N (b+ Rey))

as the opposite inclusion is obvious. To prove (3.12) we recall the following elementary
dimension formula for the linear map P, : R* — X:

dim (ker Pv) + dim (im Pv) =4,

where ker P, stands for the kernel of the linear map P,, and im P, equals the image
P,(R%). Tt is easy to see that dim (im Pv) = 3 from the definition of P, and from the
observation that

e ifl=1,2,3
(3.13) &@0—{ if [ = 4.

€4 — 0
Thus, when v = ( , 1) we conclude that

ker P, = (v),

PN,

11
167 8

where (v) stands for the linear span of the vector v. This follows from the fact that
dimker P, =1 and v € ker P,.

Next, we may assume that P,(a+ Re;) N P,(b+Re;) # () as otherwise the inclusion
in (3.12) is obvious. Then there exists t € R and s € R such that

P,(a+te; —b—se;) =0,
or equivalently, there exists ¢,s € R and r € R such that
(3.14) (a —b) +te; — sej = ru.

To prove (3.11) we need to show that the equation (3.14) can have only trivial solu-
tions (i.e. solutions for which » = 0). In other words, we need to show that if the
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intersection ((a — b) + Re; @ Re;) N (v) is nonempty, then
((a = b) + Re; @ Rej) N (v) = {0}.

Because (a + b) + Re; & Re; is an affine vector space which is parallel to coordinate
axes, and

dim((a + b) + Re; ® Re;) < 2,

it is easy to see that for the vector v = (16, é, }1, 1) the intersection ((a —b) + Re; @

Rej) N (v) can contain at most one point z. Then there are two possible cases we
need to consider:

Case 1: Suppose first that (a + Re;) N (b + Re;) # 0. In this case it follows that
z = 0 and the claim will follow because all the solutions to (3.14) are then trivial.

Case 2: Let us next assume that (a + Re;) N (b + Re;) = 0. Then, because a and
b were assumed to be vertices of Q(0, 1) it follows that there is an index i1 ¢ {i,j}
such that

(a —b);, € {1,—1}.

Moreover, because dim(e;, e;,€;,) < 4 it will follow that there is also an index iy ¢
{4, 7,11} such that

(a—b);, € {1,0,—1}.

However, this is a contradiction with the fact that the equation (3.14) was assumed
to have a solution. Indeed, otherwise it would follow that there is » € R such that

lrv;,| =1 and |rvg,| € {1,0}

1).

u>|>—‘

which is not the case when v = (% %

Step 2B: Proving that the sets Sf;(k) are disjoint. Recall now that

Soiy = (Q(PuCuo)a) + P®e))\ (U Q*(Puu) Taa)).

weVy (i)

where V30 (1) := {w € VF7' 2 (Zy) + Rey) N Q(2u, 741) # 0} We claim that if we
choose 3 > 0 sufﬁmently large in the definition of the Cantor set C'g then:
(1) We may replace the index set Vﬁ(_kl) () in the definition of Sf](k) by the index
set V#=1. This will be only a technical detail which helps us to work with sets
Sfj(k) more easily.
(2) The sets Sf,(k) are pairwise disjoint for each fixed k € N (recall that 7, =
9-kg-Bk).
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Proof of (1): We need to show that for every fixed ¢ there exists (2 := f2(q) > 0
such that if we choose 3 > (5 in the definition of the Cantor set C'gz then for each
fixed v(k) € V¥ we have

(Q3 (Pv(év(k)L qfk) + Pv(Rez)> N QS( (Zw)a grk 1) = @,

whenever w € V-1 \ij(’kl)(z) It suffices to prove this for k = 2 because after this

the general case follows from the self similarity of the construction.
First, we may find 33(q) > 0 such that if 3 > 3} in the definition of Cg then we
have

Qg(Pv(év(Q))a qTA2) + Pv(Rez) CcC QS (Pv(éw)a %TAI) + Pv(Rei)a

whenever w € V is the parent of a given index v(2) € V2
Next, by applying (3.11) and continuity of P, we may find 32 > 0 such that if
3 > [32 in the definition of the Cantor set Cz then

(Q?’(Pv(éw), Ti)) + Pv(Rei)) N <Q3 (P, (2a), Tiy) + Pv(Rej)) =0,

whenever w, w € V are indices for which the intersection of the lines [, = Z,,+Re; and
lgy = Za + Re;j is empty, i.e. if the intersection of lines is empty then the intersection
of small neighborhoods is also empty.

Suppose now that 3 > (3 := max{03;, 35}. Let us fix v(2) € V? and suppose that
w € V is the parent of v(2). Let us also assume that w € V\ V,, (i). Then it
follows that the lines [, = 2, + Re; and I3 = Z4 + Re; do not intersect each other,
and therefore

(@ (Pu(u) i) + Pu(Re) ) N QY (Pu(za). 1)
C (@ (Pu(cw), T) + Po(Re)) 11 (QX(Pulia), 1) + Pu(Rer)) =0,
and (1) follows and we may write from now on

<Q3( (o)), aPr) + Py Re) < U Q*(P, P 1))

weVk—1

Proof of (2): Again, by the self similarity of the construction it is enough to prove
(2) in the case kK = 1. Let us first assume that z is one of the vertices of the cube
Q(0, %) Then, recalling that the center of the cube @)y is zy = 0, we have that

(3.15) 1P,(2) = Pu(20) Il = [1Po(2) — Pu(0)l| = [1z — 29[| < §.

This gives us that P,(z) € Q?’( 2(20), 570) for each vertex z of the cube Q( 3).
Suppose next that 2,1y and 2y are two (possibly identical) vertices of Q(0, ) and
consider two (nonidentical) lines My = Zya) + Re; and My = Zy1) + Re; through the
points 2,1y and Zy1y. Then by applying (3.15) to points Z,i) and Z3(), and using
(3.11) we get

(Po(M\Q* (P(20). §70)) N (Po(M)\Q® (Po(20). §70)) = 0.
Therefore, by linearity and Lipschitz continuity of P, and by the fact that the lines
P,(M;) and P,(Ms;) intersect at most at one point it is easy to see that there exists
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Q3 (Py(2w), ZPu—1)

QS(Pv(év(k))v %fk) + Py (Re;)

Tier Po(Ga) /
Q3 (Po(2u(i)), 37k) T

2'%';1@ ::::::::::::::::::;;2 oIl
T Q3 (Pu(25(x))> 27%) + Pu(Re;)

FIGURE 8. When we choose 3 > 0 large enough the ratio 7_1 /7y =
2!76 will be very large. This gives enough space for the lines
P, (2o + Re;) and P,(Zyx) + Re;) to recede from each other before
they reach the boundary of the big cube. Especially, it follows from
this and the linearity of the mapping P, that the intersection of the
sets Q3 (P (Zok))s 7 5p ) + P,(Re;) and Q? ( P, (Zo(r)) gfk) + P,(Rej) is
empty outside the Cubes Q3 (Py(2w), £P4-1), w € VA1,

(3 > 0 such that if we choose # > 3 in the definition of the Cantor set C'g then we
get

Suy N Siy =((@° (Pulurw).ai) + Pu(Re)N(Q°(PlEaqy). ai) + Po(Re)))

\Q ( (2 ) g7 0) =0,
see also Fig. 8. By working through all the combinations v(1),v(1) € V we may also
assume that 3 > 0 is independent on the pair (v(1),v(1)) € V x V. This gives us
that the sets S’i(k) are pairwise disjoint for k = 1.
To see that Sf,(k) N SAé(k) = () for k > 2 one may apply self similarity of the con-
struction together with the previous argument where £ = 1. Self similarity argument

applies to this situation as the ratio 74_1 /7, = 217 stays the same for every k € N
(see also Fig. 8).

Step 2C: Proving the inclusion P, (Sv(k ) C Sf)(k). Let us next recall the definition
of k-bars

Q'v + Re;.

We also recall (see the paragraph after (3.5)) that there exists §; > 0 such that if
we choose 3 > (31 in the definition of the Cantor set C'g, then we may define the
corresponding sliced k-bars for k-bars as

S = G\ (U Qniica)).

weVk—2
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We want to show that PU(SZ(,C)) C Sf,(k). For this we first observe that for every
z,y € R* such that ||z — y|| < 7, where ||.|| denotes the maximum norm, we have by

(3.2)
1P(x) = Po(y)ll = (21— y1 — (24 — ya)vi, 22 — o — (24 — ya)vn,
T3 —ys — (24 — ya)v3,0) < 2|z — y|| < 274
Thus, it follows that
(3.16) Py(Shy) © Q°(Po(Zuw): 375) + Po(Rey),

and hence the requirement that g > 2 in the definition (3.6). Therefore it suffices
now to show that for every = € gf,(k) we have

(3.17) 1P,(@) = Pu(2)| > Les,

whenever w € VE~1. Actually, by assuming that 3 > 3, we need to verify (3.17) only
for every w € Vi 1( ). For this, let us assume that = € S?  and w € Vk( 1( ). Then
we have to Con81der two different cases:

(i) Suppose first that i # 4. If we denote y := 2, we get |4 — y4| < 7x_1 and
|z; — yi| > 7r_2. Thus, it follows that
[ Po(x) = Po)ll = llz —y — (24 — ya)v[| > Pr—g — %Lfk—l > %@—1,

simply because we know that 5 > 2 and (3.17) follows.
(ii) Next we assume that i = 4. If we write y := Z,4) — = we get that

lys| > 7x—2 and |y;| < 71 for all i = 1,2, 3.
These estimates give us
1Py (Zogy) — Po()]l = [|Ps()]| = lly — yavll > |3ys — ys| > 3Pe—2 — Fom1 > Sk,
which implies (3.17) by having 8 > 3.

Therefore, by combining (3.16) and (3.17) together we conclude that P,,(S’f)(k)) C ‘SA'f)(k)
as we wanted.

Step 2D: Conclusion of Step 2. In Step 1 we have already showed that P, is
one-to-one on C'g. Thus, it suffices to show that P, is one-to-one also on K\ Cp and
then we can easily see, for example by the linearity of P,, that P, is in fact one-to-one
on Kg. R

To see that P, is one-to-one on K\ Cp suppose that ¢ and ¢ are two distinct lines
in Kp. It is easy to see that P, is one-to-one along these lines and thus it suffices to
show that

P,(¢\ Cg) NP, (£\ Cg) = 0.

For this we observe that the intersection of ¢ and / is either an empty set or one
point which lies in the set C's. Therefore we may find an index N € N, and sequences
{S )}y and {S () e of sliced k-bars such that {tns: vk ooy and {KﬂS R heN

are two sequences of sets, and it holds that

kh_{gogmsi(k) =\ Cg, ]}Lrgoﬁﬂsg(k) =/(\ Cp, and Sf,(k) ﬂSé(k) =0
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for every k > N. Furthermore, by step 2B and step 2C we have PU(S‘;(k)) C Si(k)
and PU(SI{(,C)) C Sf,( where SZ )N S ") = = (), and therefore
PL(0\Ca) MBI\ C) € Tim P,(Si) 0 Pu(Sl) € lim Sk 185 =0,

k—o00

which ends this step.

Step 3: Defining the function ¢ on X. We have that the sets Sf;(k) (recall that

their definition is dependent on a positive parameter ¢) are disjoint if distinct. There-
fore also the sets, which one could call (punctured) pipes,

(3.18)
iy =, = 0x (Q*(PuZugo). ain) + PRe))\ (| @U(P(Gw), Tk )
weVy ()
_8X<Q( 0 (Zo(k)): @7k) + Py Rez) ( U Q3P ,Srk 1)>

are pairwise disjoint sets for distinct bars. Here dx A denotes the relative boundary
of aset Ain X =R3 x {0}.

It is worth noticing that lines in Kp parallel to e; are contained in the interior
of G p-type bars and therefore also the projection of the line is contained in the
3- dlmensmnal interior of the projection of the bar. Especially the projection of a line
in Kp never intersects a punctured pipe. When we say that the projection of a line

in Kp is inside a pipe HZ & We mean that the line in Kp lies in the bar G from

which we derived the pipe. In fact we can claim not only that the projection of lines
in g do not intersect pipes, but further we know that the projection of a line in g
lies inside the projection of some (k + 1)-bar and that means that there are no lines
in g whose projection intersects the set

(3.19) Ly = Sh \ ( U Shikin)-

v(k+1)eVk+1

With respect to this fact we will extend our Lipschitz function ¢ in the following
way. We will define g on the projection of lines in g and on punctured pipes. We
will show that our definition is Lipschitz and then extend it in a Lipschitz way inside
L;(k) We will take care during the extension to guarantee that (3.3) holds, which
is not difficult. Then there will be some remaining part of X where we can define g
practically arbitrarily as long as we maintain the Lipschitz property.

As mentioned in our outline, we will define

g(P,(x)) = —x, for x € Kp.

We now wish to show that this can be extended in a Lipschitz way onto X. Our
argument will make use of pipes, but for pipes of type H; . with ¢ = 1,2,3 it is
slightly more simple than for ¢ = 4. We will deal with the simpler case first then note
the difference for the case i = 4.
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Step 3A. First we take a pipe ﬁ;ﬁv(k), with ¢ =1,2,3 and k£ > 2. Then we define

g(x) = —(Zo@r))a forall z € Hi

Zu(k)

Let us note that this definition is well-defined, if Hf = H.  then (Zok))a =

2y (k) 25 (k)
(Zo(k))2- Now it is very easy to notice that if we have two pipes, one inside another

(that is Zyk41) + Re; intersects Qv(k)), then

3.20 dist(H.  H! > CFy, for a suitable C' > 0 independent of k.
2o (k) 2y (k41)

Further considering = € ﬁ;v(k) and y € ﬁngH) we have
l9(2) = 9] = | = (Zow)a + Gotern)al = 575

Considering two distinct pipes of the same generation, both inside ﬁgv(k) we see that

dist(H? H: ) > C7y for a suitable C' > 0 independent of k.

Zo(k+1) " Bu(kt1)
Furthermore, for x € H: and y € H} we have
8 (k+1) v (k+1)
|g(x) - 9(?J)| = | - (Z'i)(k+1))4 + (Zv(k+1))4’ < 7.

This proves that g, thus defined, on the pipes F[gv(m, 1 = 1,2,3, is Lipschitz with
respect to parallel pipes.

Step 3B. Now consider a line [ through the Cantor set Cg parallel to e;, i € {1, 2, 3},
whose projection lies inside the pipe Hgv(k). For each such line [ we define

(3.21) g(P,(l)) = —z4 where z € [N Cp.
Next, we calculate that

dist(P, (1), f];ﬁwk)) > Cry, for a suitable C' independent of k.
On the other hand we may observe that g is constant on each line P,(l) described
above, and thus by taking z € P,(l),y € H;ﬁv(k) we observe

19(2) = 9(W)| = | — 24 + (Zogrs1))a] < 274

But this shows that we have defined g Lipschitz on the set of pipes and projection of
lines through the Cantor set for those pipes and lines parallel to e;, i = 1,2, 3.
Strictly speaking we should check that our definition of g is Lipschitz, when we
compare r € ﬁgv(k) and y € Hgv(k) for i,j € {1,2,3} also for i # j but the consider-
ations and calculations from step 1 and step 2 show that the distance between these
pipes is at least C7y and |g(z) — g(y)| < 27 and so this part of the argument is easy.
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Step 3C. Now we define g on Li)(k), i = 1,2,3, as follows (recall that Li(k) are
defined in (3.19)). Choose i € {1,2,3} and fix a 2-dimensional hyperplane Y; CC X
perpendicular to e;, such that Y; intersects all of the pipes H?! k > 2. We may

) IOk
write

Y, = {yiei + thej :t; € R for every j # Z},
J#i
where y; € R is fixed. We define a projection 7y, from X onto Y; by

x; jFE1
(v (x);=4"7 ="
Yi J =1t
We use the McShane extension theorem on the hyperplane Y; to extend g on those
parts of the set Y; N (UZOZ2 Sév(k)) where we did not define g during the previous steps
(step 3A and 3B) and then we define g at other points x in St = Ures S’gv(k) by
simply projecting x onto Y; and then using g. In other words

(3.22) g(z) = g(my.(z)) forall z € S'.
Thus defined the function g is constant on the intersection of lines parallel to e;

with the set S°.

Step 3D. Our argument in the projection of bars parallel to e4 is identical to the
previous, up to the fact that we do not define g as constant equal to —(Zy))s on

pipes generated by éi(k)—type bars but by using an appropriate affine function. For

this we recall that v = (1—16, %, }1) and we denote
Yy :={w e R*: (w,d) = 0}.

Then we may separate R? into the direct sum R? @ Y;. Now, suppose that \y € R
and wy € Y, are such that

Then, if 2 € ]:If;(k) U P,(Zyk) + Rey) we may find A € R and w € Y such that
Z = w + A\v which leads us to define
(3.24) g(Z) =X = Xo — (Bok))s for every T € ]:[f,(k,) U Py (2o + Rey).
We proceed to prove that by defining
g(Z) =X = Xo — (Zor))s for every 7 € f[ﬁ(k) U P, (2o + Rey)
g(Py(z)) = —x4 for every z € Kp

we get a Lipschitz function on H. 3(/%) U Py (Zok) + Res) U P, (Kp). A first observation is

that for every x € Z,x) + Rey we find a such that o = 2,y + aes and then by (3.13)
and (3.23) we get

Py(z) = Py(Zo)) + aPy(es) = (wo + N0 — av, 0).
Now we will apply (3.24) with & = P,(x) = wy + A0 — a? to get
g(Py(z)) = Ao — a — Ao — (Zu))a = —x4 for all z € Z,) + Rey.



27

The rest of the argument will be a case of proving that g has similar values on H 3(1@)

(up to an error of C'7y) and the distance between P,(Cp + Rey) and ﬁi(k) is C7y. Let
us continue to expound.

Our choice of g > 1 guarantees that the Cantor set C'p is at a distance of at least
ifk: from the boundary of the cubes Qév(k). Now we will take any ¢ € Cg N Qv(k) and
(recall the definition of k-bars from (3.4)) we will see that

c+ Rey + Q(O, %TAk) CcC GAZ}

Zo(k)

Our projection P, is continuous onto X and therefore there is a C' > 0 such that

Py(c+Rey) + Q3(0,Cr) C Py(GE )

Zv (k)

implying that there is C; > 0 such that
(3.25) dist(Hy ), Polc + Rey)) > Chiy

v

for all v(k), all ¢ and all k. Exactly the same argument gives that
(3.26) dist(Hoyy, Po(Zo(e) + Req)) > Chiy.

v

Furthermore we can make the opposite estimates since for some C' > 0

¢+ Rey +Q(0,C) D GE

2y (k)

and the continuity of our projection gives

(3.27) dist(z, Py(c + Rey)) < Cory,
for any = € H f;(k) and similarly

(3.28) dist(z, P,(Zyk) + Rey)) < Coty,

for any x € ﬁf)(k).

Now we will be able to show that ¢ is a Lipschitz function when restricted to
]:Iﬁ(k) U P, (Zo(k) + Rey). For every point & € ]:If,(k) we find a point w € P,(Zyk) +Rey)
such that g(z) = g(w) and |x — w| is bounded by a constant multiple of 7. Finally,
since g is linear on the line P, (Z,)+Res) we will be able to prove the desired Lipschitz
quality of ¢ by (3.26), when y is close to x and w, and by |w — y| = |g(w) — g(y)],
when y is far from x and w.

Now recall that P,(Rey) = Rv (see (3.13)) and Y} is the linear space perpendicular
tov. We take z € ﬁf;(k) and claim that there exists a unique w € P, (Zyx)+Res) N (2 +
Y,), which is obvious because Pv(év(k) + Rey) and = + Y} are a pair of perpendicular
affine spaces in a 3 dimensional space and the sum of their dimensions is 3. Quite
simply because x —w € Y} and P,(Zyx) + Rey) is perpendicular to Y; we see that w
is the closest point to  in P,(Zyx) + Res). Using (3.26) and (3.28) we may estimate

le’k S \w—x| SCQTAk

Also, since (3.24) gives that ¢ is constant on the intersection of any affine plane
parallel to Y; with the set Hﬁ(k) U Py(Zu(k) + Rey), we have that

g(x) = g(w).
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Now we may take any = € H? w(k» its corresponding w € (z + Y1) N Py (Zor) + Rey)
and any y € P,(Zy) + Rey) and calculate

l9(y) = g(2)] = 19(y) — g(w)| = {(y — w), g = 0]y — w|
ly—z| >y —w[—|w—2| > |y —w| — Cory.

When |y — w| > 2C5# then |y — w| > 2|z — w| and therefore |z — y| > |w — y| and
we may estimate

l9(2) — 9| _ 2lg(w) —9(y)l _ 2lw—y|
lz—yl T Jw—yl T [O[lw—y]
When |y — w| < 2Cy7, we use (3.26)

l9(z) —g9()l _ lw—yl _ 20
lz—yl 7 [9|Cie T Gl

By a very similar argument we will proceed to prove that g is Cs-Lipschitz when
restricted to P,(Kp)U P,(Zyx) +Rey). Take a point ¢ € Cp and the unique 2, such
that ¢ € Qyk). First we observe that

Q(Pv<2v(k)>> = _<2v(k))4 and g(P,(c)) = —c4
and
|C4 — (év(k))4| < Cry.
If v € P,(c+Rey) and y € P,(Zyx) + Rey) then

l9() = 9] < {(z = y). g=z) + Ch.
28

Further, distance estimates similar to (3.25)—(3.28) hold also for P,(c + Rey) and

Py(Zy(k) + Rey), and therefore

‘@1

[z =yl = C{(x = y), =) + Cr.

S (=4}

Hence

dx|

l9(2) —g)| _ (@9 5p) O
el S Ol A O
This means, that g is C3-Lipschitz when restricted to
P,(Kg) U P,(Zok) + Rea).
Now we can show that the restriction of g to P,(Kp) U If[f;(k) U Py (Zok) + Rey) is
Lipschitz. Assume that we have z € H yand y € Py(Kp). If
l9(z) — ( )| < 205037
then (3.25) says that g has been defined Lipschitz. Therefore we consider the case
l9(x) = g(y)| > 2C2C57y.

We have a w € (z+ Yy) N Py(Zo;) +Rey) and |z —w| < Cofy. Since g is Cs-Lipschitz
when restricted to the set P,(Kp) U U, evr Po(Zu) + Res) we have that

lg(w) — 9| _ l9(=) — 9(y)|
Cs Cs

3.

v —y| >
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and therefore

> w—y| = |z —w| >
o=l > o =] = o — ] =

We get

9(@) 9|~ Cslglz) —gw)]  _ C5
lz—yl 7 [9(@) = g(y)| — CaCofy — 1 —3
So we prove that g is 2C5C,C; '-Lipschitz when restricted to the set
Fra
P,(Kp) U Pu(zom + Res) U | ZE
v(k)eVk

Of course self-similarity means that 2C5C,C; ! is independent of k.
It is not hard to estimate that

dist(H: H} )=~ Fonin k.7

Zo(k)? T 25 (k)

Therefore we see that the definition (3.24) is Lipschitz on the collection of all e4 pipes.
We use the construction described before (3.22) to get a Lipschitz extension which
guarantees that

(3.29) gz +t0) =g(z) +t

everywhere in Sf;(k), this time by projecting onto Y.
Where not yet defined we may extend g Lipschitz arbitrarily, for example by the
McShane extension theorem.

Step 3E: verifying the condition (3.3). Now it is quite simple to notice that we
have
D;F,,o0F,,(x)=¢€;, i=1,2,3 and DyF,, 0 F,,(x) = —ey

whenever z; € [—1,1] \ Uy and xj € Upyo for all j # 4. This can be seen from the
following arguments. Firstly, it follows from (3.13) that P,(z + te;) = P,(z) + te; for
i =1,2,3. On the other hand, one can see from (3.22) that if P,(x) and P,(z) + te;
lies in S;v(k), then g(P,(z)) = g(P,(x + te;)). Thus, we have

F,o(x+te;) = x +te; +vg(Py(x + te;)) = Fy () + te;
and the similar identity holds for F,,. It follows that for each ¢ = 1,2, 3 it holds
lim Fyu(Fyo(z 4 tei) — Fou(Fyo(@))

t—0 t

=e; whenever P,(x) € S .
(e

(3.30)

The argument for D, is similar. We know (see (3.29)) that ¢ has the following

9(Py(x) +t0) = g(Py(2)) + .
Now take a line segment in ng(k) parallel to e;. From (3.13) we know that
P,(x + tey) = P,(x) — t

and therefore
9(Py(x +tes)) = g(Py(z)) — t.
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Recalling that v = (9, 1) we get
F,o(x +teqg) = x +teg + vg(Py(x + tey))
(3.31) =x +tey — tv +vg(Py(x))
=F,,(x) —to.

At this point we need to finally choose ¢ in the definition of Sf;(k) (see (3.6)). For
every i € {1,2,3} we have defined g in (3.21) on projection of line segments through
Zo(k) 80 that g = —(Z4k))s and hence for every x € (Z,) + Re;) N Si(k) we have

(Fyu(2))s = (2 +vg(Po()))s = 24 + va(—(Zor))1) = T4 — (Zur))a = 0
and hence
(Fg,v(<73'u(k) + Rel) N S’Z(k)));; =0.
Analogously for i = 4 we defined g in (3.24) so that

(Fyo (2o + Req) N Sppy)), =0

for all Z,. Since for all z € S’f,(k) we find a y € (Zy) + Re;) N gi(k) such that
|z — y|| < 7 we see that
| Fyu(y) — Fyu(@)| < CFy,
and so by Lipschitz continuity of P,,
|Pu(Fo(y)) — Pu(Fyu(x))] < Oy

Therefore we find a ¢ > 2 which will now ensure that (note that there is ¢ in the
definition of Sf,(k) but not in the definition of Sf;(k))

(3.32) P,(F,.(z)) € Sf,(k) for every x € gfj(k).
Now using (3.31), applying F, and using (3.29) with (3.32) we get
FyuoF, (x+tey) =F,,(x) —t0+ ug(P,(Fyu(z)) — t0)
= F,(z) = t0 + ug(P,(Fy(z)) — tu
= Fyo(2) + ug(Pu(Fy(2)) — tea
= F,, 0 F,,(x) — tey,

(3.33)

where we used u = (—,1). Now (3.33) easily gives us what we wanted to prove, i.e.
D4F 9] FQW = —ey4.

g’u
Given this, it suffices to realize that

U gf,(k) —{z eR":q; € [-1,1]\ Up_y, x; € Uy, for all j # i}
v(k)eVk

and that Pv(gf)(k)) C S‘f)(k) to see that (3.3) is satisfied. This ends the proof of the
lemma. U

Lemma 3.5. Let F' be a C-bi-Lipschitz map defined on Q(0,1) that maps Kg onto Kg
and Cg onto Cg. Then there exists a constant C' > 0 such that for every x € Q(0,1)
we have

(3.34) Cldist(z, Kp) < dist(F(z),Kp) < C dist(z, Kp)
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and
(3.35) C~dist(z, Cp) < dist(F(z),Cp) < Cdist(z, Cp).

Proof. We prove the first inequality in (3.34) by contradiction. Assume that we have
a sequence {xy}r, of points with the following property,

diSt(F(Ik), ]CB) < % diSt(ﬁk, ]CB)

Then applying F~! to the points F(z;) and using the fact that F~! is Lipschitz map
which maps Kp onto Kp we get that

1
dist(zy, Kp) = dist(F~(F(zy)), F'(Kp)) < Cdist(F(x), Kp) < CE dist(zx, Kp)

for all k, which is a contradiction. Therefore we see that there exists some constant
(1 > 0 such that

Crldist(z, Kp) < dist(F(z),Kp) for all z.

The second inequality in (3.34) is implied by the first and the fact that F~1 is a
bi-Lipschitz mapping, which maps Kp onto Kp. Thus we my find also a constant
Cy > 0 such that

dist(F(z),Kg) < Codist(z,Kp) for all .

The proof of the two inequalities in (3.35) goes similarly and thus we may find
constants C3, Cy > 0 such that

Cyldist(x, Cp) < dist(F(z),Cp) < Cydist(z,Cg) for all z.
The claim follows now by taking C' = max{Cy, Cy, Cs, Cy4}. O

Proof of Theorem 3.1. First we need to find a suitable Cantor set Cz. For this we
need to assume that 5 > max{6, 41, B2, 03} in the definition of C'z in subsection 2.6
where 31, 32, F3 are described in the proof of Lemma 3.4. Taking this Cantor set
Cp we may apply Lemma 3.4. From Lemma 3.4 we get a vector v, such that P, is
one-to-one on the set Kp and further the function g(P,(z)) = —z4 on P,(Kp) has a
Lipschitz extension on X = R?® x {0}, which we have defined in the end of the the
proof of Lemma 3.4. Define the vector u = (—v1, —v9, —v3,v4) and recall that we
have defined F,, : R* — R* as

(3.36) Fy () = 2+ vg(Py(x)).

Then consider the image of a point € Kp for the map F' := F,, o F,,. First we
observe that
Ty

F,o(z) =2 +vg(Py(x)) =2 — U= P,(z) for every z € Kp.
4

Furthermore, it is easy to see that the projections P, and P, are identities when
restricted to X = P,(R*) = P,(R*), which gives us

P,(Fyu(x)) = Py,(Py(x)) = Py(z) forall z € Kp.
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Therefore, for each x € g we can calculate
FyuoFy,(z) =2+ v9(P,(2)) + ug(Pu(Fy.(z)))

=z +vg(Py(z)) + ug(Py(z))
(3.37) Ty Ty
=r—v— —u—
Uy Uy
= (21, T2, T3, —14).
This means that Fy, o F,, is exactly the reflection in the last coordinate on Kp as
in (3.1).
If we redefine g so that it is constant on a small ball B in X then we can find
a point z € R* which is mapped to the center of B by F,,. The projection P, is
continuous and so V = P, !(1B) is open. Now we call

U:={yeV;Puy) € 3B}

which is also an open neighbourhood of P,(z) = F,,(z). Then W = F_, ,(U) is
an open neighbourhood of x mapped by Fj, onto U. Then P,(F, ,(w)) € B for all
w € W. Let us denote by A the constant value of ¢ on B, then we have

9(Py(w)) = g(Pu(Fg,v(w))) = A\
Hereby we see using (3.36) that
FyuoFy(w) =w+vg(P,(w)) +ug(Py,(Fyu(w))) =w+ v+ Au=w + 2Xey

for all w € W which is an open set containing . Our mapping f = F,, 0 F, is a
translation on V' and the translation is obviously sense preserving. Now F, o Fy , is
a bi-Lipschitz map that can equal a translation everywhere on a ball and therefore
must be sense-preserving. This ends the first part of the proof.

Next, it follows from Lemma 3.4 that if Ny € N is arbitrary and Np < j < k then
F maps each line segment I; parallel to e; which lies in

Ai,j—NF—l,k+NF = {LL’ c R* x; € [—1, 1] \ Uvj_NF_l, X € ﬁk—i—NF for { 7A Z}
to a line segments parallel to e; as the derivative along the segment satisfies
e, ifi=1,2,3
DiF(f”)—{ e, ifi=4

for every x € A; j_np—1k+n,. Therefore it suffices to show that there exists Np € N
such that the image F'(I;) of such a line segment [; lies always in the set A, ;_1 .

Let us start by recalling from (2.7) that Uy, = U, fz‘,k, where by choosing the center
points of the intervals to be Z; ;, we can write flk = [Zix — Tk, Zig + 7%). Thus

Uk C U[2Z7k — 272/“ ?:’in —+ 272]9}
%

This immediately gives that
(3.38) {y € R : dist(y,Cp) < fr1} C Uy C {y € R : dist(y,Cp) < 274},
and it follows that
Ai i1k D {x € R : dist(z;,Cp) > 27y, dist(x;,Cp) < Fpyy for [ # i} =: Ai7j_17k.
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Therefore, it is enough to show that there is Np € N such that F(x) € Ai,j_l,k for
every © € A; j_np—1k+N, Whenever Ny < j < k.

Suppose that Np € N and assume that * € A; ;_n,—1,+n, Where Np < j < k.
Then it follows from (3.38) that

(3.39) dist(z,Cp + Re;) < c17pynp+1 and  dist(z,Cp) > cglfj,NF,l,

where the constants ¢; > 0 and ¢y > 0 depend only on the dimension n = 4 and on .
If we apply the bi-Lipschitz property of F' to (3.39), and the fact that F/(Cp+Re;) =
Cp + Re; and F(Cp) = Cp we get

dist(F(z),Cp + Re;) < Cdist(z, Cp + Re;) < CerTrgnpt1
and with the help of Lemma 3.5
diSt(F(l‘), CB) Z C_l diSt(I, CB) Z (OCQ)_lfj_NF_l,

where C' > 1 stands for the bi-Lipschitz constant of F'. Thus, if we choose Np € N
such that 7y, < min{(Cec;)™", $(Ccz)™'} and use the fact that 7, = 277 = 7} we
have that

(3.40) dist(F(z),Cp + Re;) < 7441 and  dist(F(x), Cp) > 37;_1.
On the other hand, if we apply the triangle inequality to the point y = F(x) we get
372]‘_1 < dlSt(y, CB) S dlSt(yZ, CB) + dlSt(y, CB + RGZ) < dlSt(yl, CB) + ’T‘A]H_l,

where y; is the i-th coordinate of y. Thus, it follows that dist(y;,Cp) > 27;_;. Fur-
thermore, as it follows from (3.40) that

dist(y;,Cp) < dist(F(z),Cp + Re;) < 7p1  for each [ # 1,

we get that F(z) € Ai,j—l,k and the claim follows. O

4. THE MAPPING S,

The purpose of this section is to define a mapping which stretches C'z back onto
C4 and has the properties listed in Lemma 4.1. We use the notation U, M, and A,
introduced in (2.7) and (2.8) and we recall that

CB:CBXCBXCBXCB:ka.
k=1

Lemma 4.1. There exists a sense-preserving homeomorphisms Sy : (—1,1)* — (=1,1)*
such that:

(i) S; maps Cp onto Cy and S; = S;l on Cg.
(i) Mapping S; is locally Lipschitz on (—1,1)*\ Cj.
(iii) If L; is a line parallel to x;-axis with L; N (Uy)* # 0 then
k

28
|DiSy ()] < Oy

for every x € L;N ((Uk_1)4 \ (Uk)4)
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(iv) Ifk <j <3k +2 and 2 € (U; \ Ujs1) x (U \ (Uss1)?) then
|DS,(x)] < C2%.
The same holds for x € ((Uk)3 \ ((jkﬂ)s) x (U;\Uj11) and also for two other

permutations of coordinates.

(v) If & € Uspys X ((Uk)?’ \ (Uk+1)3) then
|DS,(z)| < C2°Bk+3),
The same holds for x € ((Uk)3 \ (Uk+1)3) X (Uspss)® and also for two other

permutations of coordinates.

Proof. In order to aid our construction, let us first recall and define some notation we
will use. We recall that if C4 =C4 X C4q XCyq xCq and Cp =Cp xCp x Cp X Cp are
the Cantor sets defined in subsection 2.5 and 2.6 then we may write

co 2k oo 2k
(4.1) Ca= ﬂ U[i’k and Cp = ﬂ Ufi,k,
k=11=1 k=11:=1

where the closed intervals I; ;, and fzk have the lengths

1 . .
4.2 y— ﬁl [1 — 2—k <1 —> d /(.= ,Cl [1 _ 2_]@5_]4;4_1.
(4.2) k (Zix) + k1) an k (Lik)

Moreover, we have I; y N [, = 0 for i # j, Ini—1 U Inip C I -1 and I;x lies more to
the left than I, (similar properties holds also for the intervals ]Alk)

Then there exists a natural function ¢ : R — R which maps Cg onto C4. In fact ¢
is a uniform limit of functions ¢, : R — R, k =0,1,2,..., such that

(1) to(z) =z,
(2) t), maps each I, onto I;x linearly,
(3) tx maps each of the three parts of ji,k—l\(f2i—1,k U IAM) onto the corresponding
parts of I; x—1\(I2i—1x U Iz 1) linearly, and
(4) t. = tr_1 outside Ufil fi,k_l.
Note that then we have t = ¢~! where ¢ is the function defined in subsection 2.7. It
follows that (t(z1), t(x2), t(x3), t(z4)) = S, " ().

The definition of the mapping S; will make use of the standard frame-to-frame
maps HP, H® and H}!, H* described in Section 2.8. In a rough, intuitive sense we
want a map that behaves very much like H{! on parts of the frame “far away” from
Kp, (i.e. in ((Uk ) \( ) ) \Ak) and on hyperplanes in A, perpendicular to lines in
K acts like the higher iterations of the frame-to-frame map Hj,. Our strategy is to
define a map which equals (up to some isometric rotation) H3, on each face of each
cube in (U;)* = Un(ryevr Qu(r)- We extend this mapping into (Ue)*\ (Upy1)* simply
as the frame to frame mapping H} on ((Uk)4 \ (Uk+1)4) \ Aj. Inside the “tubes” of
type ((ﬁk)4 \ (Uk+1)4) N Ay, we use a suitable convex combination of the maps defined
on the faces to extend the map inside the frame.

We refer to the i-th canonical projection 7; as the linear map

7Tz(33) = (.Cl}l, e ,xi,l,O,:cl-H, Ce ,LE4>.
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€2
Y]
év(k) Q'v(k) .
el ¢ EQ,k
Qu(k)

FI1GURE 9. The part of the set Eg,k which lies inside the frame Q;(k) \

Qv(k) in two dimensions.

Take i € {1,2,3,4}. We will also denote 7' = (z1,...%;_1,Tir1,...74) € R3. Using
this notation we define the linear isomorphic isometry L; : R x {0} x R*™% — R3
defined as L;(m;(z)) = . Furthermore, we define

H(x) = L' o H} o L o m;(x),
H*(z) = L;' o H® o L o m().
For a point = € (Uy_1)* \ (Uy)* we will define the functions
min{|z; — (Zo))i| : v(k) € VF} — 7

1A ~
3Tk—1 — Tk

dig(x) =
The set ji,k_l\(jgi_lkajgin) of intervals, whose union is Uk_l\Uk, can be decomposed
to four closed (maximal) intervals with disjoint interiors so that each function d, 4 is
linear in z; on each of these four subintervals. Further, if x € (Up_1)* and z; €
Uk—_1 \ Uk then we have

4dist(a:i, Ur)

T
which takes values between 0 and 1. Using these functions we can divide the frame
into the parts where we are furthest from its center in the direction e;, which are the
sets (see Fig. 9.)

Bip = {z € (Up-1)" \ (Ua)" : v(flgie%,km = (Zow))il 2 v(fgie%ﬁj — (Zu();| for all j # i}

= {z € (Up_1)*\ (Up)* : dig(z) > dj(x) for all j # i}.
For technical reasons it is also convenient to define the corresponding sets E; ;, in the
target, i.e.,

Eir={ye€ U1)"\ (U)": min |y; — (2o)il > min |y; — (zpm));| for all j #i}.
£ =1y € Ue)"\ U0)" . min Jyi — (zogo)il 2 min Jy; — (zugr);| for all j # i}

We will next use the convex combinations of the maps H. 5’1’5_3 and H S,f in the sets Elk
together with some correction mapping to define the mapping .5;.
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We cut the set Eiﬁk into hyperplane slices with hyperplanes perpendicular to e;,
E’m N{z; = c}. On these planes we apply L; om;, which shifts it onto a corresponding
hyperplane {z; = 0} and then rotates it onto R3®. Then we can apply a convex
combination of the 3-dimensional frame-to-frame maps

Aip(x) := di () Hy_y(x) + (1 — d; i (2)) Hyp, (2)

and then reverse the rotation using L;'. Now we shift the hyperplane into the right
position by adjusting the i-coordinate so that it corresponds to the i-th coordinate of
the frame-to-frame map, i.e. ((H})(z)); = t(z;). In summary, we define

(4.4) Si(z) = dip(2)HE o(2) + (1 — dig(z)) Ho () + t(x;)e; for x € Eyy,.

—~
=A; i (x)+t(z;)e;

We need to show that S; defines a homeomorphism which satisfies all the conditions
(7)-(v) in Lemma 4.1.

Step 1: Proving that S; is a homeomorphism. First we show that (4.4) yields a
homeomorphism. The first observation in this direction is that S; maps (Uy_1)*\ (Ug)*
onto (Up)* \ (Ugy1)?* for each k € N. To see this we observe that in the expression

Si(z) = A p(x) + t(z;)e; for every x € Ezk

the mapping A, , maps each hyperplane in E,k perpendicular to e; homeomorphically
to a hyperplane in E;j perpendicular to e;. Moreover, at the end of subsection 2.8
we have shown that for each fixed o € (0,1) the mapping

aH:?k—:a(x) + (1 - a)Hgk(w)

is a homeomorphism in R?® and thus A; x(z) on the hyperplane is a homeomorphism.
Furthermore, we have that t(Uy) = Uy for every k. Thus, it is quite easy to see that
Sy actually maps each set E; ; onto E; ;, homeomorphically.

Next we will show that S defines a homeomorphism from (Uy_1)* \ (Ux)* onto
(Ur_1)*\ (Ug)*. For this it suffices to show that in the critical set

EunEie= |J {2€Quu\Quw : 12— 2w =z — Gow))il = |25 — Gow)sl}
v(k)eVk

A A

the expressions in (4.4) coincide. This gives us that S; is continuous in (Uj,_1)*\ (Ug)*.

For this, let us assume that z € Elk N EAJk Then one can show that
(S y(2)); = (H(0); = te;) and (B3 (2); = (H3 (), = t(a,).
Thus, we get that
Hy! o(w) = Hyy! (x) + (Hgy! g(w)) 65 — (il 5(x))ies
= Hy! y(x) + t(a)e; — t(a:)es.
and
Hy (x) = Hy (x) + (Hyyl (x));¢; — (Ha! ()€
= Hyl () + t(z))e; — t(z:)es.
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Thus, it follows that

as we wanted. R R

We have now shown that S; defines a homeomorphism on each set (Uy_1)*\ (Up,)*.
Next, we will show that S; defines a homeomorphism on (—1,1)*\ Cp. Because S; is
a homeomorphisms on each set (Uy_1)* \ (Ux)* and these sets are pairwise disjoint it
suffices to show that in the critical set

Cy = (Uk—1)4 \ (Uk)4 N (Uk)4 \ (Uk+1)4

the expressions in (4.4) coincide. For this, it suffices to prove that for every ¢ =
1,2, 3,4 these expressions coincide along the lines

Z,Zl)(k) = év(k) + j}’b + s€;, S € R,

where Z; = (z1,...,%i-1,0, 241, ..., 24) with |z;| < 7 for every j # i. However, this
is clear as
=ik (Zy (k) TTitses)

111’11Jr St(év(k) + ii—i-sei) = 111’I1Jr ((dl7kH§g_3 + (1 - dz,k)Hgg> (21,(]@) + .TAJl + Sei) +t(8)€i)

s—F s—FL
= hrp ((dl,k-i-lH??]: + (1 — di7k+1)H§];i+1>(2v(k) + fl + S@i) + t(8)6i>

sy
= lirp St(ﬁ,u(k) + Zﬁl + sei),
sy
thus we have shown that S; defines a homeomorphism on (—1,1)*\ Cp.

Finally, since S; is a homeomorphism on all frames that sends frames to frames, S,
is extended homeomorphically as S;(z) = S, (z) = (t(21), t(x2), t(x3), t(24)) to Cp.
Especially, S; will then take Cz onto C'y, and thus (i) follows. It is also easy to see
that for a fixed k the mapping Hj, is Lipschitz and hence S; defined by (4.4) is a

locally Lipschitz mappings on on (—1,1)* \ Cz which implies (77).

Step 2: Calculating the derivatives of S;. We now calculate the derivative of the
mapping S; on U}l , \ U}. More precisely, we want to verify the conditions (iii)-(v).
In the following calculations we will rely on (2.13) to calculate the derivative.

Step 2A: Proving the condition (iii). Suppose that L; is a line parallel to x;-axis
with L; N (Uy)* # 0. Then it follows that L; N (Ur—1)* \ (Ux)*) C Eip.

(1) Let us first assume that z € L; N E;, with 2; € Uy_y \ Uy, and & € (Up_1)* \

(Usk—3)3. In this case A; . is a constant function in x;-direction and therefore

- ok
D;S, = |¥ Dl < Wk—1 — Ak < )
DiSi(a)] = It ()] < =" < Oy
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(2) Let us next assume that = € L; N B with 2; € Uy_y \ Uy, and & € (Usp_s)>.
We recall that the maps Hg,f_?) and H. g,f are independent on x; which implies
D;H3! ,(x) =0 and D;Hy' (x) = 0
and by the construction of mappings Hs, we easily obtain
| Hgl_y — Hall] < 273544
On the other hand by applying (4.3) we may conclude that

4 C
(45) |Dzdz,k(x)| S = = S - —.
Cp_y — 205 9Tk—1 — Tk

By combining these facts we get
| DiSy(@)| < |DiAig(x)] + [t(x:)]
< | Didi ()| Hyi_s(x) — Hypl ()] + [t (:)]

3, 3,

< CHH%Z—3 - H31;H ap—1 — Qg

N $Tho1 — T br—1 — b
9Pk kB ok

S Csz—4 + Cka—l—l S Cka—l—l’

as we wanted. Now (1) and (2) together will give us (7).

Step 2B: Proving the condition (iv). Let us next assume that z € (U, \ Uj;;) X
(Ur)® \ (Ups1)?) with k < j < 3k + 2. The case j = k is easy to deal with and

therefore we may assume that 7 > k. In this case we have that x € EAZ;C for some
i # 1. With the help of (4.5) we easily obtain

|Dd; . (x)] < Cmax{2°* 2°7} and |d;(z)| <1 for every x.
Moreover, we also have max{H3; ,(x), H3!(z)} < 1 for every . As z ¢ (U;41)* we
easily obtain Hg’,f(x) = Hj’ﬁl(x) and thus using (2.12) that
DHE ()] < 02
Thus, it follows from (4.4) and (2.12) that for every [ # i
| DiSi(@)] < |Ddie(@)| (| Hail_p(@)| + | Hyil (2)]) + |die(@)| (| DeHsyl_o(2)] + | DiHsgl (2)])
< Cmax{2™, 2%} + |DHyjlo(x)| + | DiHy ()|
< C'max{2°% 209} 1 C2P < 029,
On the other hand, it follows from the step 2A that |D;S:(x)| < C % Thus, because
Jj > k we may estimate
|DS;(x)] < C27%.

There is no difference in the proof for z € ((Uk)?’ \ (Uk+1)3) x (U;\ U;41) and also for
two other permutations of coordinates, and thus this ends the proof of (iv).
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Step 2C: Proving the condition (v). Finally, assume that © € Uspys X ((Uk)3\
(ﬁk+1)3). Again, we have that z € Ezk for some i # 1. By applying (4.4) and (2.14)
we have

|D;Si(z)| < C max{2°Gk+3) 98kY < CoPBRH3) for every 1 # i.

On the other hand, it follows from the step 2A that |D;S;(z)| < Ckaﬂ, and thus we
conclude

|DS,(z)| < C2°Gk+3),

There is no difference in the proof for the other permutations of coordinates, and thus
this ends the proof of (v).
O

5. PROOF OF THEOREM 1.2 FOR n =4
We will now define the mapping f : (—1,1)* — (=1,1)* by
f = St oFo Sq .

Let us first remark that as a composition of three sense-preserving homeomorphisms
Sq, I and Sy the mapping f is obviously a sense-preserving homeomorphism.

5.1. The sign of the Jacobian: We need to show that J; > 0 on a set of positive
measure and Jy < 0 on a set of positive measure. We know that S, and F are
Lipschitz maps, and by Lemma 4.1 (i7) that S; is locally Lipschitz outside the set
Cp = (F085,)(Ca) and hence f is locally Lipschitz outside of C'y. Therefore f is a
sense-preserving homeomorphism which is locally Lipschitz there and hence J; > 0
outside of C4 (see e.g. [24]). We may also require that J; is not identically zero on
{z : Jy > 0} because otherwise by [22] f would not satisfy Lusin’s condition (N) on
this set which cannot happen for a locally Lipschitz map, see e.g. [23, Theorem 4.2].
Hence L£*({z : J; > 0}) > 0.

Now we show that J(x) < 0 for almost every & € C4. For this let us fix x € Cjy.
If ¢ and ¢ are the functions in the definitions of homeomorphisms S, and S; we may
observe that for every x € C'y we have

f(@) = (S0 FroSy)(x) = (Sio F)(q(21), q(x2), ¢(w3), q(x4))
(5.1) = St(Q(%),CI(IQ),C](I:s), —Q($4)) = St(Q(xl);Q($2),Q($3)aQ(_$4))
= (t(a(z1)), tla(z2)). ta(s)), ta(—24))) = (w1, 22, 73, —24) -
Here we have used the following facts in the given order:

(i) Sy(x) € Cp for every x € Cly,

(ii) ( ) = (21, 29, 23, —24) for every z € Cp,

(iii) the function ¢ is odd, i.e. ¢(—s) = —¢q(s) for every s € (—1,1),
(iv) if 24 € Cp then also —z4 € Cp,

( ) ( ) ( (x1,t(xs), t(x3),t(xy4)) on Cp by Lemma 4.1 (i), and

It follows that at the points of density of C'y we know that the approximative derivate
equals to the reflection in the last coordinate and hence the determinant of this matrix
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is —1. Once we show that f is Sobolev mapping we will know that its distributional
derivative equals to approximative derivative a.e. and hence J¢(x) = —1 a.e. on Cjy.

5.2. ACL condition: To verify the ACL-condition for f let us suppose that L is a
line segment parallel to z;-axis and consider the following cases:

Case 1: Suppose first that L N Cy = ). We know that both mappings S, and F
are Lipschitz maps, and by Lemma 4.1 (ii) that S; is locally Lipschitz outside the set
Cp = (F05,)(Cy4). Thus, the mapping f = S; o F' 0.5, is locally Lipschitz outside
the set K 4. It follows that f is Lipschitz and hence also absolutely continuous on the
segment L.

Case 2: Suppose next that L N Cy # (), which means that L C 4. The line L
decomposes into the part of L in C'4, and segments, which are mapped by f onto
segments. On the parts of lines L intersecting C'y we use (5.1) to see that f is in fact
1-Lipschitz continuous on L N C4. Now it remains to consider L\ C.

We fix k£ € N and use the fact that

LN ((U)*\ Uen)') = U L0 (Qury \ Quiry)-

v(k)EVk

Further, L N (Q \ Qur)) is either empty or made up of two segments Li(k), Li(k)
(recall that we assume now LNCy # (). Each of these segments has length %rk,l — Tk,
which is squeezed by S, into a segment parallel to z; of length %f’k_l — 7. We then
apply the mapping F', which merely reflects the segment in the last variable (see (3.1)).
Finally we apply the mapping S; which maps each of the segments F’ (Sq(quj(k))) and
F(Sy(L34)) onto a segment. Since D;f is constant on Ly, and L2 ), we have that
f maps each segment to a segment at constant speed. Therefore the restriction of f
to each segment is Lipschitz. Then we can estimate the length of the image of the
segment using Lemma 4.1 (7i7) as follows

H (f(Lowy)) = H' (f(Ly)) = [DiSi(@)|(37-1 — 7x)
2ok
S Cw<2 k2 Bk) S O(%Tk_l - T’k).
The length of each segment has increased by no more than a factor of C. Thus we
see that the restriction of f to L\ C4 is Lipschitz continuous and hence it is Lipschitz
on the whole L and therefore absolutely continuous on L.

5.3. Sobolev regularity of the mapping: We would like to estimate
4

S [, D as

i=1

/ IDf(@) dz < C
(—1,1)4

where D;f denotes the derivative with respect to x; coordinate. Without loss of
generality it is enough to estimate

1
(52) / |D1f([L‘)|p dx :/ / |D1f(l‘1,i’)|p d[[’l df,
(=1,1)4 (-1,1)3 J-1

where T = (xq,x3,24) (derivatives in the other directions can be estimated analo-
gously). For this, let us recall that the Cantor type sets C'y and C'p were constructed
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as the intersections of the sets

U Quviky = Up x Uy, x Uy x U, and U Qv(k):kakakaUk,
v(k)eVF v(k)eVk

where U, = Ufil I; ), and U, = Ufil fzk Moreover, recall also that
PkZ:UkXUkXUk and ka:UkX0kX0k.

Then the sets P, and f’k are formed by 23* cubes.
Let us consider several possibilities. If £ € C4 x C4 x C4 then it is easy to see that
f restricted to the line [—1,1] x {Z} is in fact Lipschitz as it was explained at the
end of subsection 5.2. It thus remains to estimate the integral (5.2) for Z in the sets
Py \ Pyy1. Because the mapping f is locally Lipschitz on [—1,1]*\ Cy4 it suffices to
analyze the mapping only near the set Cy, i.e. on the set U,ﬁo. For this fix now the
exponent p € [1,2) and put
2p
O =,
2—p
and 3 large enough for Theorem 3.1. Then we may find an index kg > 4Np+5, where
Nr € N is from Theorem 3.1, large enough so that

(5.3) max{2 A2 Dletl) p=pB(ktlyed 1 for all k > k.
Let us then fix k > ko and suppose that & € Py \ Pry1. We will define the following
divisions of the segment L(Z) = L := [—1, 1] x {Z} according to z; € [—1, 1] into the

following sets

Lj = {(Il,i’) X € Uj \ Uj+1} and LO = {(.’171,2%) X € CA}
The aim of the following calculations is to prove the estimate (5.16) below.
Case 1: Consider first those parts of the line segment L which are far away from the
set C'4. More precisely, suppose that k& > ky and
First we observe that S, maps the line segment L; which is parallel to z;-axis to a
line segment L; which is also parallel to x;-axis and lies inside the set (U; \ Uji1) x
(ﬁ’k \ pk+1). Furthermore, we may estimate the derivative of S, in the x-direction as
(5-4) D15, (x)| < 27754,

(see subsection 2.7).
Next we observe that

Ly € (-1, 1\ Uganps-np-1) X (Ugmnpysne)* \ Ug-nprnsne)?)

C A1 (j+ Np+2)—- Np—1,(k—Np+1)+ Np
where Np < j+ Np+2 < k— Np—+1, and thus it follows from Theorem 3.1 that the
bi-Lipschitz map F' maps L; to a line segment L7 parallel to z;-axis such that

LJZ C Al,(j+NF+2)—1,k;—NF~
Moreover, because F' is a bi-Lipschitz map, we have

(5.5) |D1F(S,(x))| < Lip(F) forae. x € Lj,
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where Lip(F') stands for the Lipschitz constant of the mapping F'.
Finally, because F(S¢(L;)) = L7 is a line segment parallel to z;-axis which is

contained in set [—1,1]*\ (U, n,11)* it follows from Lemma 4.1 (i) that

(5.6) |D1Sy(F(S,(x)))| < C max 2%~ < ¢9fij=(e+D)

1<I<j+Np+1

with C independent of j, k.
If we now put together the estimates (5.4), (5.5) and (5.6) the chain rule gives us

(5.7) Dy f(z)| < C forae. z€Lj,

where C' is an absolute constant.

Case 2: Let us next assume that
JZGLJ' Wlthk—QNF—3<j§3k?—3NF—3
Again S, maps the line segment L; which is parallel to the z;-axis to a line segment

Lj which is also parallel to z-axis and lies inside the set (U; \ Ujz1) X (P \ Prs).
Furthermore, we have

(5.8) |D1Sy(x)] < G277 ot

with C independent of 7, k.
Next, we recall again that

(5.9) |D1F(S,(x))| < Lip(F) forae. x € Lj.
Moreover, it follows from the assumption j > k — 2N — 2 that
le C {ZL‘ € [—]_, 1 4 dlSt(l’7 ’CB) > min{fj — fj_|_1, f'k - TA’kH_l}}

1*:
C {x € [-1, 1]4 - dist(x, Kp) > min{Q*B(J'Jrl)f(]drl)7 2—5(k+1)7(k+1)}}
C {x € [-1,1]* : dist(2, Kp) > min{2 PUTD=GTD o= BUH2Nr+8)=(H2Nr+3)) 3
C {ZE € [-1, 1]4 s dist(z, Kp) > 2_5(j+2NF+3)—(j+2NF+3)}'

Suppose now that C' > 0 is the constant given by Lemma 3.5.

We may assume that Ny € N is so large that C~' > 23+12-ANr=Nr e may
assume this because if Theorem 3.1 holds for a certain Ng, then it immediately holds
for any NF > Np.

Then it follows from Lemma 3.5 and from the inclusion above that

F(L}) € {z € [-1,1]* : dist(z,Kp) > C‘-l2—5(j+2NF+3)_(j+2NF+3)}
c {z e [-1,1]": dist(z, Kp) > 27PN ~G+3NE) L,

Thus, we have that F(L}) is contained in the following union of four sets
PL) © (=LA D) (-1 19\ (o)) 0

U (11PN @) % (SL AN D) ).
Without loss of generality suppose that
F(L}) € (11N Ujpan ) < ([F 11PN (Ujaang)?).
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Then by Lemma 4.1 (iv) it follows that

(5.10) |DS;(F(S,(z)))] < C2%  for every = € Lj.
If we now combine the estimates (5.8), (5.9) and (5.10) the chain rule gives us
(5.11) |Dyf(z)| < Cj*T for ae. x € L.

Case 3: Let us now assume that

x € L; with j >3k —3Np—3.
Also in this case S, maps the line segment L; to a line segment le- parallel to xq-axis
and inside the set (U; \ Uj41) x (Pg \ Pg+1), and we have

(5.12) |D1S, ()| < C27Pijott,
Also the derivative of F' can be estimated again by
(5.13) |D1F(S,(x))| < Lip(F) for a.e. x € L;.

Moreover, as x € [—1,1]*\ (Uj1)* we have
LU\ (Ukn)* € {y € [=1,1]* 1 dist(y, Cp) > s — o}
C {y e [-1,1)* : dist(y, Cg) > 27 PkE+D-(k+2)1

If we then assume that C > 0 is the constant in Lemma 3.5 we may again assume
that C—! > 20+12=BNr=Nr (see case 2). Then it follows from Lemma 3.5 and from
the inclusion above that

F(S,(x)) € {z € [-1,1]* : dist(z, Cp) > 12 Al+D+(k+2)y
C{z € [~1,1)* : dist(z, Cg) > 27 AkHNrF2)=(k+Nr+2)y
C =L\ (Ukynpra)",

Thus, it follows from Lemma 4.1 (7v) and (v) that we may estimate

(5.14) |DS,(F(S,(x)))| < C2°Bk=3Nr=3),
If we now combine (5.12), (5.13) and (5.14) the chain rule gives us
(5.15) |Dyf(x)| < CjoT127PU=3R for ae. x € L.

Estimating the Sobolev norm of f: The above estimates (5.7), (5.11) and (5.15)
can be summarized as follows. Suppose that k > kg and let z € L; := (U;\U;41) x{Z}
with 7 € P, \ Py Then
C if1<j<k—2Np—3
(5.16)  |Dif(x)| < { Cjot if k—2Np —3 < j <3k —3Np—3
Cjot12-G=3k  if j > 3k — 3Np — 3,
where the constant C' does not depend on k or j.
Also note that S, maps C4 x R? onto Cp x R? and using [C4| > 0 and |Cp| = 0 we

easily obtain |D1S,] = 0 on C4 x R®. As F is just a reflection on Cp x R* and S; is
locally Lipschitz on [—1,1]*\ Cp, we easily obtain that

|D1f‘ =0 on (CA X RS)\CA
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Therefore, for & € Py \ Py.1 we can calculate

/ Dy f (g, 3)P day = / Dy f(20, 2 da
(-1,1) (=1,1)\Ca
_2/ \Df (w1, )| das.
U\UJ+1

We use the fact that f is Lipschitz on [—1,1]*\ (Uy,)* for every fixed ko to see that

| Dt \de1<0+z/ 1D (o0, 5)P day
(-11)

j=ko \UJ-H

for every & € U3\ U2, with k > ko.

Let us next estimate the measure of the set {z; € [-1,1] : xy € U; \ Uj41}. For
every given j this set contains 2’ line segments each having length which can be
approximated above by 277 (1 + ﬁ —-1- (]Jr;?)a) Thus the measure of the set can
be approximated as

o 1 1 C
Ly, . < J9—J 1= < .
LYU;\ Ujsy) < 0272 <1 torTe (j+2)a) < =

Therefore, for the line segment L = [—1,1] x {Z} we have using (5.16)

/ | Dy flPdey = C + Z/ |Df(z1, 2)[Pdzy
L =L

k—2Np—3 4k—3Np—3 . [e'e)
1 gplath) gplat)
pB(j—3k)J
C( Z ja—i—l + Z ja—i—l + Z 2" ja—H :
j=ko j=k—2Np—2 j=4k—3Np—2

The first sum converges even if we sum to infinity, the second sum will be estimated
simply by taking an estimate of the largest summand and multiplying by an estimate
of the total number of summands. We will use (5.3) to estimate the final sum by
a convergent geometric sum (3,2, 27P/%/2).  Continuing the calculation and using
k > 4Np + 5 we have

C
/ |DyfP day < C + Cdk(4k)P—Dl) 4~
I 1 — 2-FkpB/2
(5.17)
fpatp
<C+C :
ka
The estimate (5.17) holds for all lines L = [—1, ] {Z} such that Z in Py \ Py with
k > ko. Furthermore, since f is Lipschitz on [~1,1]" \ U}, we may estimate

/|D1f|p d.ﬁL’l S C forall z S Pk—i—l \ Pk with k£ < ko,
L

which proves the validity of (5.17) for all k € N (not only for k > ko). If Z € C3 then
we will again use the fact that

(5.18) |D1f(x)] < C for ae. x € L.
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Now we integrate (5.17) over Z € [—1,1]>. By (2.4) we know that

C

LB Pe) < 107

and we continue by multiplying this with (5.17) and summing over k plus (5.18)
multiplied by the measure £3(C%) = 1. Since o > 2 we have

kpo +p

/(171) 1Dy f (2 |de<20k o 1+(le€2a+1
§O+c’;k(2_p) Z—<oo

k=kq

(5.19)

by our choice of a = ;Tpp at the start of the proof. This ends the proof of Theorem 1.2

when n = 4. Taking our mapping f in 4 dimensions and using it to define a mapping
f*: R®> — R as follows

(5-20) f*(ifl, Lo, T3, T4, 135) = (f(xl, T, T3, 5104), 935)

proves Theorem 1.2 when n = 5. U

6. THE HIGHER DIMENSIONAL CASE 1 > 6

Let M(o,n) be the set of all linear subspaces of R™ of dimension o, parallel to the
coordinate axes (i.e. M € M(o,n) if and only if there exists a basis of M of o vectors
chosen from the canonical basis). Where there is no danger of confusion we will omit
n and write simply M (o). Previously we defined K4 as ULeM(1,4) Ca+ L. From now

on we take n > 6 even, m = n/2 — 1 and define

Ka= U Cis+L and K= U Cg+ L,

LeM(m,n) LeM(m,n)

where Cy =, Uy and C =, Ur. Of course Cg and K depend on the parameter
(. During our proof we show that if 7 is large enough then our mapping exists and
we show how to construct the mapping for any [ sufficiently large. Let us note that
for n odd we can define our mapping analogously to (5.20) by using identity in the
last coordinate.

We make a further explicitation to the notation used above and that is the sets
P.=U ,?_1. It is more or less obvious how to generalize the notion from subsections
2.5 and 2.6 to the higher dimensional case, see e.g. [23, Proof of Theorem 4.9]. In
this section we will show that if we fix 1 < p < [n/2] then by choosing the parameters
a > 0 and 3 > 0 large enough we may construct the mapping f € W'? which we
have in mind in Theorem 1.2.

6.1. Mapping F' in higher dimensions: We will introduce some sets that will aid
notation for Theorem 6.1. Let L € M(o,n), 1 < o < m then call

Np={e;eR":¢; € L'}



46 D. CAMPBELL, S. HENCL, AND V. TENGVALL

and let My, be the set of all subsets of Ny with n —m elements. Let &k, € N then call
(6.1)
A= | ({x ER" ;€ [~1,1)\Upe; € LYN{z €R" 1z, € Uy € W}).
WeMy,
This is the set where informally speaking we are far away from our Cantor set C'g in o
directions and close in some n—m directions (perpendicular to the given o directions)
and in the remaining n — o — (n — m) directions z; could be arbitrary.

Theorem 6.1. Let m € N and n = 2m + 2. There exists a mapping F' which is a
sense-preserving bi-Lipschitz extension of the map

(6.2) F(xy,z9,. .., Tp1,2y) = (T1, T2, ..., Tp_1,—Tp) T € Kp.

There exists an Np € N such that for each k € N, k > Np, 1 <o<m, L € M(o,n)
we have

(63) F((Ilf + L) N AL,j—NF,k-i-NF—i-l) C (F(JT) + L) N AL,j,kz—i—l
for any given x € A j_Np j+Npt1-

The inclusion (6.3) basically means that the image of those parts of affine spaces
2+ L which are much closer to Cp in n —m directions from L' than it is in directions
from L in the map F is part of an affine space F'(x)+ L and the distance of the affine
space from Kpg is roughly maintained.

The proof of Theorem 6.1 is similar to that of Theorem 3.1. We find vectors v
and u, a Lipschitz extension g onto X = R"™! x {0} of g(P,(x)) = —x, and then
F =F,,oF,,. Thefollowing lemma, corresponds to Lemma 3.4

Lemma 6.2. Let m € N and n = 2m + 2. Let v = (27",2'"", ... 1,1) and u =
(=27, =2t —}l, 1). Then there ezists B > 0 and a corresponding set Kpg such
that P, is one-to-one on Kp and the function g defined on P,(Kp) as g(P,(x)) = —x,
can be extended onto X as a Lipschitz function. Furthermore, it is possible to find a

Lipschitz extension of the function g which guarantees that
e ifi=1,2,...,n—1
(6.4) DiF,, 0 F,,(z) = { e ifien
whenever z; € [—1,1] \ Uy and we can find a set of n — m indezes {J1,J2 - Jn—m}
such that xj,,x,,...,2;, .. € Upro and 5y # 1 for every l =1,2,...,n—m.

Proof. With some small modifications the proof will mainly follow the proof of Lemma 3.4.

Step 1: The projection P, is one-to-one on Cpg. Step 1 here is the same as
in the previous lemma. The reader can somewhat laboriously but easily check that
P,(a) # P,(b) whenever a,b are distinct vertices of Q(0,3). This gives us a set of
2" distinct points and so (using Q™! to denote cubes in R"™!) there exists a dy > 0
such that Q" '(P,(a),d) U Q"' (b,d) = () whenever a and b are distinct vertices of
Q(0, %) and 0 < d < dy. By the continuity of P, there exists a d; > 0 such that the
sets P,(Q(a,d)) are pairwise disjoint for distinct vertices a of the cube Q(0, 3) and
0 < d < d;. Thus we have proved that whenever we construct the cantor set Cp
using (§ = log,(d) — 1 for any 0 < d < d; we have

Py(Qu(1)) N Py(Quy) = 0 whenever v(1) # v'(1).
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The self-similarity argument applied in Lemma 3.4 applies here too and so we see that
the image of the collection of all k-th generational cubes Qv(k) are pairwise disjoint
and this holds for all k. This implies that P, is one-to-one on Cpg for § > (3. In fact
this is a special case of the next step for o = 0.

Step 2: The projection P, is one-to-one on Kz. We would like to prove that
P, is one-to-one on Kp. Let v(k) € V¥ and let M € M(o,n), 1 < o < m, then we
will prove that the projection of any distinct pair of k-“bars” Sﬂ/([k) where

65 Sy = (Quw i+ M)\ (U U QGwiia)+1),
weVk Le M(0—1)

is disjoint. Similarly to before we achieve this by projecting them into disjoint sets
Shlny = (Qn_l(Pu(fv(k)),qfk) + PU(M))

(6.6)
\ ( U U anl (P'U<2'w)7 72]671) + P’U(L)) .

weVk LeM(o—1)

Let us note that in dimension n = 4 our definition was slightly different as we used
w € VF1 (or w € V*72) in previous definitions. However, this is not a big change as
the union of cubes over all w € V¥~! or w € V* is similar (up to some multiple of
radius) and from technical reasons this is better here.

Step 2A: The projection P, is one-to-one on every M € M(n—1). Recall the
corresponding notation from Lemma 3.4,

o= (272" ).
The definition of P, (3.2) immediately yields that

e fl1<li<n-1
(6.7) P,(e;) :{ ! ==

— ifl=n.

We take M € M(n — 1) and solve P,(u) = 0, u € M. First we will assume that
en € M*. Then (6.7) says that P,(u) = u for all u € M and the only solution to
P,(u) = 0is uw = 0 and thus P, is one-to-one on M. Now we assume that e, € M
and we find j such that span{e;} = M*. Using (6.7) we obtain

n n—1
0= Py(u) = Pv(ZAiei) = Z)‘iei — 0.
% %
Thus the j-th coordinate of the last expression must be zero, which implies A, 0; = 0

and hence A\, = 0. Thus we have reduced to the first case which has been proved
already.
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Step 2B: Finding 3 such that S%k) are disjoint sets. We defined sets SAIJ)‘&) in
(6.6) and now we would like to show that if one chooses 5 > 3, that these sets are
pairwise disjoint. Exactly the same arguments from Lemma 3.4, Step 2B, Claim (1)
can be applied here to see that the two contesting definitions from Lemma 3.4 of Sﬂ{k)
which we could generalize are equivalent.

Let A denote the set of vertices of Q(0,3). We define the “sliced” affine sets for
M e M(o) and a € A

(6.8) =@\ (U U ebd+r)

beA Le M(o—1)

The sets W2t and W2 are equal if and only if M; = M, and a; — ag € M.
Let us make the followmg useful observations on P,. Since ||o]| = } we obtain the
simple observation

(6.9) 1Py(z)]| <7+ flwn] < 3],

recall that || - || denotes the maximum norm. Also we denote the distance with
respect to this norm as dist,,. Further we use the fact that P, is one-to-one whenever
restricted to any M € M(n — 1) and especially P, is one-to-one on each a + M for
M € M(o) and a € A. There are a finite number of such affine spaces and P, is
one-to-one on each of them. This implies that there is a A > 0 such that whenever we
choose M € M(0) and z € M that | P,(z)|| > A7!{|z|. The fact that ||P,(z)|| < |z||
is shown in (6.9) if A > 2. Now we choose any M € M(o), any L € M(o—1),a € A
and any z € WM and conclude that

(6.10) A Hdisteo (7, WE) < distoo (P, (2), P,(WE)) < Adisto (x, WE)

as the distance of x to W} is attained in some direction in M \ L.

Let us recall that the sets WM are defined in (6.8). In the following we will
be interested in pairs of distinct WM. Another fact that is clear is if we have a
pair of distinct W2 and W22 (with M;, M, € M(0)) then either M; = M, and
(a1 + M) N (ag + My) = 0 or dim(M; N My) < 0 — 1 and there exists an L € M(d),
0<o0—1,and an a € A such that

(a1 +Mi)N(as+ M) Ca+ L C U U Qb+ L
bEA LeM(o—1)

This means that our pair Wé‘fl and Wé‘fz are disjoint if distinct in both cases. We
can easily calculate that

distoo (W2, W2) >

ai ?

(SR

and so (6.10) gives that

4
(6.11) disteo (Po(W2M), P,(W22)) > 5—A
This however immediately implies that {P,(WM) + Q" (0, %)} is a finite family of

closed pairwise disjoint sets.
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Let 6 > 0. Assuming that a € A, M € M(0), v(1) =2a €V, 7 < g, it is simple
to observe that

Py(a+ M)+ Q(0,8) = P,(241)) + Po(M) + Q(0,0)
D Q" (PulZum), 1) + Po(M).
We will again use the fact that P, is one-to-one on all M € M (o) to see that
P,(WM) =P, (a+ M)\ P,((a+ M) ()] | Q0.2 +1L)
bEA LeM(o-1)

and so for any L € M(o — 1) and for the b € A such that w(l) =2be 'V

Py((a+M)n(Q(b, 2) + L)) C P,(Q(b,3)+ L)
(6.13) Py(Q0,5)) + Pu(L)

C Q" (Puo(2w), 1) + Po(L).

The definition of 3%1) (6.6) in combination with (6.12) and (6.13) show that

(6.12)

31%) C P,(WM)+ Q" 1(0,6), whenever Z,) = a.
Further by applying (6.11) and assuming § < = (and 7 < g) we see that the sets
P,(WM) 4+ Q"1(0, ) are pairwise disjoint and in fact
: M n—1 M: n—1
distoo (P (Way ") +Q"71(0,0), P (Woy,?) +Q"71(0,6)) > 3,
whenever the pair is distinct. This implies that the sets 3%1) satisfy

. S M- S M- C(n
dist(Sy1, Spi)) = <,

whenever distinct. Further by self similarity we get the same for all £, i.e.

. - -~ C A
dlst(S%lg),SﬁQk)) 5(—/\")7“;c 1

whenever distinct.

Step 2C: Proving the inclusion PU(S'U(k ) C S’%k) We will prove the inclusion

(51]}/([2 ) C «Sv(2 and for other k it will hold by self-similarity. Again we will employ
(6.9) in the following to calculate that

P, (Q(zo),72) + M) C Q" (Py(2u)), §72) + Po(M)
C Q" (Py(2u(2)), q72) + Po(M)

whenever ¢ > g. The remainder of what we need to prove is that for each w(2) € V?
and for each L € M(o — 1)

Q" (Pu(Zw@)s 1) + Po(L) C Py(Q(Zw(2), 7o) + L)

which can easily be achieved by selecting 71 small enough (i.e. [ large enough) as
7o = 1. This step is analogous to the proof in dimension n = 4 and therefore we skip
the details.

(6.14)
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Step 2D: Conclusion of Step 2. By definition
Kg= U Cp+ M.
MeM(m)

Let us consider the sets

K=( ) aG+M)\( | Cs+L).

MeM(o) LeM(o-1)
It is easy to see that
-un u U St
ko>1k>ko MeM (o) v(k)EVF

and since Kp = U?_l K, we obtain

=y unnu u s

0<o<m ko>1 k>ko k>1 MeM (o) v(k)eVFk

We have proven that for any fixed k the images of Sv(k) in P, are pairwise disjoint,

whenever the pair of sets in question are distinct. Take any pair of distinct points

x,y € Kp. If there exists k, My, v(k) and My, w(k) such that z € 33{,2) + Sf‘ffk Yy

then P, maps x and y onto distinct points in X because as we have proven

P,(Syih) N Py (Sh,) = 0.

If for almost every k£ we have x,y € 5%)7 then x —y € M and P, is one-to-one on
M and so maps x and y to distinct points.

Step 3: Defining the function g on X. Now we expound how to perform step 3
of the proof, that is how to define g on X. In steps 3A, 3B and 3C we assume always
that e, ¢ M and M € M(o) for some 1 < o < m. The case e, € M is dealt with in
3D. Step 3E then proves that g has the desired properties. We will make use of the
sets

Hyhy = Ox (Q”_l (Po(Zory), k) + Po(M ))

\< J U Q(ﬁw,fk_1)+Pv(L)>

weVk—1 LEM(m—1)
LCM

where Q™! is a cube in R"™! (specifically in X = R""! x {0}) and OxU is the relative
boundary of a set U with respect to X.

Step 3A. First we take a “pipe” I:IM with e, ¢ M and k > 2 and define
g(x) = —(Z k)) for all x € HY, (k)

Again, first we remark that if H]\{) = H~ then (Zo(k))n = (Zo(k))n because e, ¢ M
and therefore g is well-defined at these pomts It is easy to see that if we have two
pipes, both parallel to M, one inside another (that is Zy1) + M intersects Q)
then

dist(H%k), H%cﬂ)) > Oy, for a suitable C' > 0 independent of k.
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O-
O3

dist(A4, C) =~

O1 = UL’eM(o—1) Q(Py(2),7%) + L,

02 = Py(2+ L)\ Uprepmo1) @Po(2),7%) + L for some L € M(o),

Os = (Py(z+ L1) \ Urremeo1y @(Po(2),7x) + L") 4+ Q(0, #x41) for some Ly € M(o).
FIGURE 10. Measuring the distances between sliced projected affine
spaces reduces to the case dealt with in Lemma 3.4 where we measured
the distance between sliced lines. The thickness of the ‘bars’ is 7441

which can be made much smaller than the distance between them which
is comparable to 7.

Further considering x € H %k) and y € H fj\{k +1) e have

9(2) = 9@ = | = (Zo)n + Gotsn))nl = 575
Considering two distinct pipes H é‘fk +1) and H f)‘fk +1) of the same generation, both inside

H %k) we see that

A ~

dist(H%CH), H«%kﬂ)) > C'ry, for a suitable C' > 0 independent of k.
Furthermore, for x € ]:I%kﬂ) and y € I:I%kﬂ) we have

l9(x) —g(y)| = | - (Zf;(k+1))n + (Zv(k+1))n\ < 7.

This proves that g, thus defined, on the pipes ﬁf)‘{k} with e, ¢ M is Lipschitz with
respect to parallel pipes, i.e. pipes given by the same subspace M.

Step 3B. Similarly, for M € M(0), 1 <o <m, and e, ¢ M we define
9(By (Zoty + M)) = =(Zoti) In-

Also for every x € Cp we define
g(Py(x+ M)) = —x,.
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Note that by step 2 we know that these sets are pairwise disjoint whenever distinct
and P, is one-to-one on Kp and therefore this definition is correct. The estimates
from Lemma 3.4, step 3B easily generalize to this setting showing that our definition
of g is Lipschitz on the collection of all pipes, i.e., all sets of type P,(Zyx) + M) and

P,((C N Quy) + M).

Step 3C. Now we will fix k£ > 2, v(k) € V¥, 1 <0 < m and M € M(o) (we still
assume that e, ¢ M) and define g on

M . oM SM
Lv(k) T Sv(k) \ U S’u(k+1)'
v(k+1)eVk+i

Call Yy = M+ N X and denote 7y,, the orthogonal projection onto this subspace.
In general one can only claim that the projection of a pair of sets does not increase
the distance between them. Here however we consider sets parallel to a given vector
space M and project them onto Yj,, which is perpendicular to M. In this case the
projection does not decrease the distance between the sets either. That is to say (in
the following we use P,(M) = M, see (6.7))

diSt(WYM(H%k))a WYA/[(HJ\{IC—&-I))) = dist(Hf,\?[k), H%kﬂ))-

v

Similarly
dist(my,, (Hp(xy), Ty, (Zog) + M) = dist(H),,, 2oy + M)
and

diSt(?TyM(I:I%k)), Tyy (. + M)) = dist([i.i%k), x+ M)
for z € P,(Cp N Qv(k)). We defined ¢ as constant on sets H %k), therefore we may

define a function § on Yu, as §(my,,(z)) = g(z) for any = € I:I%f) and this definition
is correct. The above estimates on the distances of the sets projected onto Y;, shows
that ¢ is Lipschitz with respect to the projection of those sets. Therefore we may use
the McShane extension theorem to get a Lipschitz g defined on Y),. For x € Lﬁ\f(k) we
define g(x) = g(my,,(z)) and so get a function g, which is constant on the intersection
of any affine space parallel to M with the set Li‘f(k).

Once we have defined g on all Sﬁfk) for all k,v(k) and M we still need to fill in

certain “gaps”, where we transition from M € M(o) to L € M(o — 1). Considering
Figure 10 we need to define g on sets corresponding to Os. Specifically, for M € M(o)
we need to define g on

\ ( U <Qn71(PU(Z’U(k))7f.k*1) +PU(L>> US%]C)).
Le{vl(o—Q)
LCM
These gaps were necessary as they made the sets Sf)‘/([k) disjoint (whenever distinct)
and this made the definition of ¢ in step 3A and 3B correct. Note that it was not
possible to define g as constant on entire m-dimensional subspaces (without removing
m — 1 dimensional subspaces) because they intersect other m-dimensional subspaces
where g has a different value. Informally speaking, in each o — 1 dimensional gap we
project onto a corresponding perpendicular n — 1 — (o — 1) dimensional subspace on
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which, ¢ is already defined in some points by step 3A and 3B. We keep those values
and extend them as a Lipschitz function on the perpendicular subspace and then, by
projecting along the o — 1 dimensional subspace we define g everywhere in the gap.

IfxeT é‘f[k) and o > 2 then there exists exactly one coordinate, let us say the i-th

coordinate where e; € M,

’xi - (Pv(zv(k)))zl < 72kfl
but for all j # ¢ such that e; € M we have

|25 = (Po(zo)) ;] > Fri.

So, set M € M(o0), L € M(o— 1) and e; such that span{L,e;} = M. Recall that

M C X and P, is identity on X to see that a point x € T%g) can be expressed as

& = Py(zor)) + Z Aje; + te; + Z e

€j eL eléMJ'mX
where \; > 7,1, 5\1 < qrg, t < 7x_1. We project Té‘{k) onto Y; = L+ N X. Since g is
constant on affine subsets contained in S %C) parallel to L it is also constant on affine
subsets of OT%C) N 85’%@ parallel to L (note that these affine sets on boundaries have
dimension o — 1). Thus the following definition is correct
§(y) = g(x) whenever y = my, ()
and z € (9T%,€
onto Y7 by the McShane Theorem. For x € T%C) we define
g9(x) = g(my, (z)).

In this manner we extend g for all M, L, Z,) and all k in the case where e,, & M.

y N 8311)‘{k). The function g is Lipschitz and can be Lipschitz extended

~

Step 3D. Next we will define g on pipes Hf)‘/([k) with e, € M and k£ > 2. For this, let

us next denote o := (27",2'™",..., 1) and define

Y, = {weR"": (w,v) =0}

Then we separate R™! into the direct sum Ro @ Y,,. Suppose now that \g € R and
wo € Y, are such that

Then, if T € f[ﬁ{k) U P, (Zoky + M) we may find A € R such that £ = w + A0 with
w €Y, which leads us to define

(6.16) g(T) = X = Ao — (Zok))n  for every & € ]:I%C) U P, (Zom) + M).

This means that g has been defined as constant on the intersections of the sets in
question with hyperplanes in X parallel to o.

We claim that the definition in (6.16) and the definition g(P,(x)) = —z,, for x € Kp
gives us a ¢ Lipschitz on the collection of sets Hf)‘{k), P,(Zyky + M) and P,(Kp). The
proof of this is just a repetition of step 3D from Lemma 3.4. Once again we extend
our map by creating a Lipschitz extension on Yy, and by using g(z) = §(my,, (x)).
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Where not yet defined we may extend g Lipschitz arbitrarily, for example by the
McShane extension theorem.

Step 3E: verifying the condition (6.4). Now we define the spaghetti strand map
F

g0 Again as

Fyo(z) =2 +vg(Py(x)).

Analogously to the proof in dimension n = 4 it is possible to show that

e, ifi=1,2,...,n—1

Di(Fyuo0 Fyo)(z) = {

whenever z; € [—1,1] \ Uy and we can find a set of n — m indexes {1, jo, .- jn_m}
such that z;,, xj,,...,z;,_ . € Upyo. There are two possibilities. Either i # n and g is
constant on P,(x+Re;) or i = n and g(P,(x+te,)) = c—t. This is true because all =
such that z; € [—}, 1\ Uy and zj,, 25, . .. L € Upyo belong to some S’f]‘/([k) which
is projected into S%k) and we defined g on Sﬂ{k) to have precisely these qualities. The
rest of the calculations are just a repetition of step 3E of Lemma 3.4. U

Proof of Theorem 6.1. It suffices to repeat the proof from Theorem 3.1 to show that
the mapping F' = F,,, o F,, with ¢g,v,u from Lemma 6.2 satisfies (6.2). Also we see
that F'is sense preserving for the same reason as before. The proof of the behavior of
F on m-dimensional planes close to Kp is the same as it was for lines in the previous
too. The choice of Np follows from the same arguments as in Theorem 3.1 and
an adaption of Lemma 3.5, where we replace lines with affine spaces and the proof
remains the same. U

6.2. Mapping f in higher dimensions. We define our mapping in much the same
way as in the 4-dimensional case. We set

f=S80FoS,

where S, = (q(x1),q(z2),...,q(z,)), F is the mapping from Theorem 6.1 and S, is
defined exactly as before. More precisely, we define S; by

(6.17)  Sy(z) = di7k(x)H§k:1§i(:c) +(1- dlk(x))Hg,;“(x) + t(x;)e; for x € EAi,k,

where the mappings Hg,:éi and H;k_l’i are the obvious higher dimensional general-

izations of the mappings Hg’,i?) and Hg’,f in Section 4, and

Eip={z € (Up)"\ (U)" : din(z) > djl), j # i}.

By following the arguments in Section 4 the reader may generalize Lemma 4.1 in all
dimensions:

Lemma 6.3. Suppose that Sy : (—1,1)" — (—=1,1)" is defined as in (6.17) where
n > 4. Then S; is a sense-preserving homeomorphisms which satisfies the following
conditions:

(i) S; maps Cp onto Cy and S; = S on Cp.
(ii) Mapping S is locally Lipschitz on (—1,1)"\ Cp.
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(i) If L; is a line parallel to x;-axis with L; N (Ux)"™ # 0 then

20k
DiSi(a)| < Oy

for every x € L;N ((Uk_l)" \ (Uk)")
(iv) If k < j <3k +2 and 2z € (U; \ Ujp1) x ((U)" "\ (Ugy1)" ") then

|DS;(x)] < C27%.

The same holds for x € ((Uy)" *\ (Ups1)" 1) x (U;\ Uj11) and also for n—2
other permutations of coordinates.

(v) If 2 € Uspyz x (UR)" 1\ (Up1)™ 1) then
|DS,(z)| < C2°Gk+3),

The same holds for z € ((Uk)"_l \ (Uk+1)"_l) X (Useys) and also for n — 2

other permutations of coordinates.

Sobolev regularity of f. Just as before f, as the composition of homeomorphisms,
is a homeomorphism. Our aim is to prove that if 1 < p < [§] then for an aptly
chosen o > 0 in the definition of C4 the corresponding mapping f belongs to W1ir.
Therefore we are interested in calculating the integral

/ / ‘le($1,.i'>’p dmldfc
(1,H)n=1 J(=1,1)

The integrals over lines in other directions can all be estimated in the same way as
the reader may easily check. Recall that n is even and we start by fixing the exponent
1 <p<[n/2] and
_ %
T /2—1p
and the index kg > 4Np + 5, where Np € N is from Lemma 3.5, large enough so that

(6.18) max {2 A2 Dletl) p=pB(ktlyer 1 for all k > k.

The reasoning in the arguments in section 5 for the ACL condition and the use of
the chain rule hold here too. Both S, and F' are Lipschitz maps. By Lemma 6.3 (i)
we see that S; is C'(kg)-Lipschitz on [—1,1]™ \ U,?O +np- Therefore it follows that f is
Lipschitz on [~1,1]"\ U}, and it remains to consider the set U .

We use the ACL property of f to make the following estimates on the derivatives
of |Dif|. For convenience sake we will denote x = (x1,%). Now we will fix £ € N
with k > kg > 4Np + 5 and in the further we assume that 7 € (Ug)" '\ (Ugy1)" L.
We define the following divisions of a segment L = [—1,1] x {Z}:

Lj(%) = Lj = {(21,%) : 21 € (U; \ Uj1) }-

In the following we use the simpler notation L; to aid readability. The aim of the
following calculations is to prove the estimate (6.31) below.
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Case 1: Let us first assume that k& > kg and
xel; withj=1,...,k—2Np—3.
Then S, maps the line segment L, to a line segment L} which is parallel to z;-axis
and lies inside the set (U; \ Uj41) X (P \ Pg+1). Furthermore, we have
(6.19) |D1Sy(x)] < G277 ot

with C' independent of j, k.
Recall that the sets Ay ; are defined in (6.1). Observe that

1
Lj C AR@,(j+NF+2)—NF—1,(k:—NF+1)+NF7

where Np < j+ Np+2 < k— Ng-+1, and thus it follows from Theorem 6.1 that the
bi-Lipschitz map F' maps le- to a line segment L? parallel to x;-axis and such that

2
L5 C ARey (j+Np+2)—1,k—Np+1-
Moreover, we have

(6.20) |DF(S,(x))| < Lip(#) for ae. z € L;.

Finally, because L? is a line segment parallel to the x;-axis which is contained in
[—1,1] \ (U;snp41)" it follows from Lemma 6.3 (i) that

(6.21) [DLSH(F(S, ()| < €257+,

with C' independent of j, k.
If we now combine (6.19), (6.20) and (6.21) we get

(6.22) |Dif(x)] < C forae xe€ Ly,
with C' independent of j, k.

Case 2: Let us next assume that
xe€L; withk—2Np—-3<j<3k—-3Np—3.
Again S, maps the line segment L; to a line segment le. which is parallel to z;-axis
and lies inside the set (U; \ Uj41) X (P \ Pg+1). Furthermore, we have
(6.23) |D1Sy(z)| < 27 jo,

with C' independent of j, k.
Next, we recall that

(6.24) |D1F(Sy(z))| < Lip(F) for ae. z € L,
Moreover, it follows from the assumption j > k — 2N — 2 that

L C{z e [-1,1]" : dist(x,Kp) > min{f; — #j41, 7 — Pes1}}
C {z € [-1,1]* : dist(z, Kp) > min{27 P0G+ o=+ =13y
C {SU € [_1, 1]4 : diSt(l’,’CB) > mln{Q BU+1)—(+1) 2 5(j+2NF+3)*(j+2NF+3)}}
C {x €[-1, 1]4 dist(z, Kp) > 2~ B(j+2Np+3)— (j+2NF+3)}
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Suppose now that C >0 is the constant given by Lemma 3.5. Then we may choose
Nr € N to be so large that C~1 > 238432=8Ne=Nr - Then it follows from Lemma 3.5
and from the inclusion above that

F(le) C {z e [-1,1]* : dist(z,Kp) > C’-l2—6(j+2NF+3)—(j+2NF+3)}
C {J" € [~1,1]* : dist(z, Kp) > 2_B(j+3NF)_(j+3NF)}.

Thus, we have that F (L;) is contained in the following union of n sets

Filly) € <([_1’ U\ Ugpane) x (=117 (0j+3NF)n_l))U

0 (17 Grae)™) (11 Dy, ).
Without loss of generality suppose that
PLY) € (LN Oy )% (2L 17 D)™ ).
Then by Lemma 6.3 (iv) it follows that
(6.25) |DS,(F(S,(x)))] < C2% for ae. x € L;.
If we now combine the estimates (6.23), (6.24) and (6.25) the chain rule gives us
(6.26) |D, f(z)] < Cj*T for ae. x € Lj,
with C' independent of j, k.

Case 3: Let us now assume that
x € L; with j >3k —3Np—3.
Also in this case S; maps the line segment L; to a line segment le. parallel to x;-axis
and inside the set (U; \ Uj+1) X (P; \ Pgy1), and we have
(6.27) |D1Sy(z)| < C27P7jott,

with C' independent of j, k. Furthermore, also the derivative of F' can be estimated
again by

(6.28) |D1F(S,(z))| < Lip(F) for ae. z € L,

A

Moreover, as x € [—1,1]" \ (Ug41)™ we have

(11" \ (Ue)" C {y € [-1,1]" : dist(y, C) > Frp1 — Frea}
c {y e [-1,1]" : dist(y, C) > 27 Pk+2=(:+2)1
If we then assume that C' > 0 is the constant in Lemma 3.5 we may again assume

that C~1 > 20+12-ANr=Nr (see case 2). Then it follows from Lemma 3.5 and from
the inclusion above that

F(S,(z)) € {z € [-1,1)" : dist(z, Cp) > C~ 12 A+ +(42)}
C {z € [-1,1]" : dist(z, Cp) > 2 PF+Nr+2) (bt Np+2)y
C =1, 1"\ (Upsnps2)™
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(iv) and (v) that we may estimate
(6.29) DS (F(Sy(x)))| < C27CH3N=9),

with C' independent of j, k.
If we now combine (6.27), (6.28) and (6.29) the chain rule gives us

(6.30) |Dy f(2)] < CjoF127PU=30 for ae. x € L,
with C independent of 7, k.

Thus, it follows from Lemma 6.3

Estimating the Sobolev norm of f: The above estimates (6.22), (6.26) and (6.30)
can be summarized as follows. Suppose that k > kg and let v € L; := (U;\Uj;1) x {7}
with z € P, \ Pk—o—l‘ Then
C if1<j<k—2Np—3
(6.31) |Dyf(x)] < ¢ Cjott if k—2Np —3<j<3k—3Ng—3
Cjot12-8G=3k  if j > 3k — 3Np — 3,
where the constant C':= C(n, a, 3, Ng, Lip(F’)) does not depend on k or j.
Also note that S, maps C4 x R"™! onto Cp x R"! and using |C4| > 0 and |Cg| =0

we easily obtain |D.S,;] = 0 on Cx X R™" 1. As Fis just a reflection on Cg x R*~! and
S; is locally Lipschitz on [—1,1]" \ Cp, we easily obtain that

|D1f| =0 on (CA X Rn_l) \ CA.

Therefore, for & € Py \ Py1 we can calculate

/ |D1 f(x1,2) P day :/ |D1 f(z1,2)|P day
(—1,1) (—1,1\Ca

—Z/ D (w1, 8)P da.
Ui\Uj+1

We use the fact that f is C-Lipschitz on [—1,1]" \ (Ug,)™ (ko fixed in (6.18)) to see
that

/ |D1f(l‘1,i’)|p dl‘l S C?
(71’1)

for every & € [—1,1]"71\ (Ug, )" "
Therefore we may now restrict to the case that & € Py \ Py for k > ko. By the
same reasoning as in Section 5 we have

C

ja+1 '

LU\ Uj) <

Therefore, for the line segment L = [—1,1] x {Z} we have using (6.31)

/’D1f|pdl’1 C+ Z/ |Df T1,T | dl’l

Jj=ko

k—2Np—3 4k—3Np—-3 . o]
1 jp(a—l-l) pBli— 3k)j pla+1)
soiv 3 m+ ¥ Loee > amewllo)

j=ko j=k—2Np—2 j=4k—3Np—2
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The first sum converges even if we sum to infinity, the second sum will be estimated
simply by taking an estimate of the largest summand and multiplying by an estimate
of the total number of summands. We will use (6.18) to estimate the final sum by
a convergent geometric sum ()%, 27718/2) " Continuing the calculation and using
k > 4Nr + 5 we have

C
/ |DyfP day < C + Cdk(4k)P—D) o~
I 1 — 2-FkpB/2
(6.32)
fpatp
<C+C .
ka
The estimate (6.32) holds for all lines L = [—1, ] {Z} such that Z in Py \ P41 with
k > ko. Furthermore, since f is Lipschitz on [—~1,1]" \ U, we may estimate
(6.33) /|D1f\p dzy < C forall Z € P, \ Py with k < ko,
L

which proves the validity of (6.32) for all £ € N (not only for k > ky). We will use
the estimate (6.32) on those lines which are not entirely contained in K4 and on lines
which are entirely contained in K4 we will use again the fact that

(6.34) |Dyf(z)] < C for a.e. x € L.

Now we integrate the above estimates over € [—1,1]""!. Calling K4 the set of
those Z such that L(Z) is contained entirely in K4 we claim that

(6.35) LY U\ (U UK) < £ U\ Ka) < CFme

where m := § — 1. Once we will have established this estimate the rest of the proof
follows quickly from the following calculations. We continue by multiplying (6.32) by
the measure estimate (6.35) and summing over & plus (6.34) multiplied by the measure
LY [=1,1"Y) > £ YKp N [-1,1]"1). Assuming (6.35) we have (it holds that
am > 1)

kp (a+1)

/(1’ D f(x |de<20k ”wé+czkm+1

<C+Cka+1p CZ@<OO

k=ko

(6.36)

by our choice o = /2 at the beginning of the proof.

Therefore it remains to prove (6.35). We notice that a line segment L := [—1, 1] x
{Z} parallel to zj-axis is contained in K, if and only if L C Cy + M for some
M € M(m) containing e;. We write all such subspaces M as Re; + M for some
M € M(m — 1,n — 1). Hereby we see that

L C K4 if and only if FeEK, = U (Cﬁ_l-i—]\;./).
MeM(m—1,n—1)
Next, we estimate

LY UpN\UR UKA)) < L7 UR T\ Ka)

(6.37) » i
= 25D (27K (14 k)" — L7 (U N K.
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and therefore it suffices to calculate £"~1 ((Uk)"_1 NK A). We do this by decomposing
the set U~' N K4 into the disjoint union of m sets EY, E¥, ... Ef | and each Ef is
the disjoint union of (";1) measurable rectangles. For simplicity of the notation call

G = Ui \ C4. We denote
B =c5!
EY = (G xC U (Cax G x C3)YU--- U (Ch? x G, x Ca) U (C2 x Gy)

EE = (G X O U U (O x G,

m

So each E]k is a union of (”;1) sets Fi(j,k), | = 1,2,...,(";1). Each Fi(j,k) is a
measurable rectangle and Gy appears in its product j times and the set C4 appears
n —1—j times. Each Fj(j, k) is uniquely determined by the sequence of sets in its
product. So if Fj(j, k) # Fy(j', k') then there is a direction such that one of the sets
is projected onto C4 and the other is projected onto Gy, and C4 NGy = 0.

Now simple calculation gives

1

L£YC4) =1 and Ll(Gk):m

and so by definition
n—1

£ (B = ( J )”‘%(GW’ X (Ca)")

_ (” ; 1) [ @] (£ e = (” ; 1) e

for each 7 =0,1,...,m — 1. Therefore, we see that
(6.38)
m—1 m—1 m—1 n 1 1
LN (U 'NKa) = zn—l( E’?) =) LB = ( R )—
(( k) A) jL_JO J ]ZO ( J) JZO j (k: + 1)&]

When we now combine (6.37) and (6.38) we get
LU\ (U UR)
1\ &1y 1 C
<(14+—— — , < :
() L mm e

which is exactly what we claimed in (6.35). As shown in (6.36) This ends the proof
of Theorem 1.2 for all n > 4. O
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