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APPROXIMATION OF W 1,p SOBOLEV HOMEOMORPHISM BY
DIFFEOMORPHISMS AND THE SIGNS OF THE JACOBIAN

DANIEL CAMPBELL, STANISLAV HENCL, AND VILLE TENGVALL

Dedicated to Professor Jan Malý on his 60th birthday

Abstract. Let Ω ⊂ Rn, n ≥ 4, be a domain and 1 ≤ p < [n/2], where [a] stands
for the integer part of a. We construct a homeomorphism f ∈ W 1,p((−1, 1)n, Rn)
such that Jf = det Df > 0 on a set of positive measure and Jf < 0 on a set of
positive measure. It follows that there are no diffeomorphisms (or piecewise affine
homeomorphisms) fk such that fk → f in W 1,p.

1. Introduction

The problem of approximating homeomorphisms f : Rn ⊇ Ω −→ f(Ω) ⊆ Rn with
either diffeomorphisms or piecewise-affine homeomorphisms has proven to be both
very challenging and of great interest in a variety of contexts. As far as we know,
in the simplest non-trivial setting (i.e. n = 2, approximations in the L∞-norm) the
problem was solved by Radó [38]. Due to its fundamental importance in geometric
topology, the problem of finding piecewise affine homeomorphic approximations in
the L∞-norm and dimensions n > 2 was deeply investigated in the ’50s and ’60s.
In particular, it was solved by Moise [33] and Bing [8] in the case n = 3 (see also
the survey book [34]), while for contractible spaces of dimension n ≥ 5 the result
follows from theorems of Connell [13], Bing [9], Kirby [29] and Kirby, Siebenmann and
Wall [30] (for a proof see, e.g., Rushing [40, Theorem 4.11.1.] or Luukkainen [31]).
Finally, twenty years later, while studying the class of quasi-conformal manifolds,
Donaldson and Sullivan [16] proved that the result is false in dimension 4.

After the L∞-approximation problem had been completely solved, the question of
approximating homeomorphisms revived again in the altogether different context for
variational models in nonlinear elasticity. Let us briefly explain this. Let Ω ⊂ Rn be a
domain which models a body made out of homogeneous elastic material, and suppose
that a mapping f : Ω→ Rn is modeling the deformation of this body with prescribed
boundary values. If we want to study the properties of the deformation in the setting
of nonlinear elasticity theory of Antman, Ball and Ciarlet, see e.g. [2, 3, 4, 12], we
are led to study the existence and regularity properties of minimizers of the energy
functionals of the form

I(f) =

∫
Ω

W (Df) dx,
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2 D. CAMPBELL, S. HENCL, AND V. TENGVALL

where W : Rn×n → R is so-called stored-energy functional, and Df is the differential
matrix of a deformation f . In order for this model to be physically relevant we have
to require this model to satisfy the following conditions:

(W1) W (A) → +∞ as detA → 0, which prevents too high compression of the
elastic body.

(W2) W (A) = +∞ if detA ≤ 0, which guarantees that the orientation is preserved.

In particular, it follows that if f is an admissible deformation with finite energy, then
we have

Jf (x) := detDf(x) > 0 for a.e. x ∈ Ω.

Using other assumptions one can prove that the mapping with finite energy is con-
tinuous and one-to-one, which corresponds to the non-impenetrability of the matter.
Therefore the natural candidate for a minimizer is in fact a homeomorphism. Hence,
when we study this model it is natural to restrict our attention only on Sobolev
homeomorphisms where the Jacobian does not change sign.

As pointed out by Ball in [5, 6] (who ascribes the question to Evans [18]), an im-
portant issue toward understanding the regularity of the minimizers in this setting
would be to show the existence of minimizing sequences given by piecewise affine
homeomorphisms or by diffeomorphisms. In particular, a first step would be to prove
that any homeomorphism u ∈ W 1,p(Ω; Rn), p ∈ [1,+∞), can be approximated in
W 1,p by piecewise affine ones or smooth ones. One very significant reason why this
would be desirable, is that regularity is typically often proven by testing the weak
equation or the variation formulation by the solution itself; but unless one has some
a priori regularity of the solution, such a test may not make sense. In order to solve
this problem it would be possible to test the equation with a smooth test mapping
which is close to the given homeomorphism instead. Here we see the necessity for
the approximations to be homeomorphisms whose image is the same as that of the
approximated map, otherwise this sequence would have nothing in common with our
original problem. Besides non-linear elasticity, an approximation result of homeomor-
phisms with diffeomorphisms would be a very useful tool in and of itself as it would
allow a number of proofs to be significantly simplified and lead to some stronger re-
sults. Let us note that finding diffeomorphisms near a given homeomorphism is not
an easy task, as the usual approximation techniques like mollification or Lipschitz
extension using the maximal operator destroy, in general, injectivity.

Let us describe the results in this direction. The first positive results were achieved
by Mora-Corral [35] on planar homeomorphisms smooth outside a point and by Bel-
lido and Mora-Corral [7] on approximation in Hölder continuous maps. Let us also
note that the problem of approximation by smooth or piecewise affine planar home-
omorphisms are in fact equivalent by the result of Mora-Corral and Pratelli [36].
The celebrated breakthrough result in the area which stimulated much interest in
the subject was given by Iwaniec, Kovalev and Onninen in [27], [28], where they
found diffeomorphic approximations to any homeomorphism f ∈ W 1,p(Ω,R2), for
any 1 < p < ∞ in the W 1,p norm. The remaining missing case p = 1 in the plane
has been solved by Hencl and Pratelli in [25] by a different method. This method
was extended by Campbell [10] to give a different proof of the W 1,p, p > 1, case and
to prove the result also for Orlicz-Sobolev spaces. The problem of approximating
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homeomorphisms with diffeomorphisms cannot be considered entirely closed even in
the planar case. Another problem mentioned in [27] is to approximate both a map
and its inverse simultaneously in W 1,p. The first results in this area was given by
Daneri and Pratelli in [15] for all 1 ≤ p < ∞ under the additional assumption that
the mapping is bi-Lipschitz. Recently Pratelli [37] has answered this question for
p = 1 (without any additional assumptions) using the technique of [25]. The cases
p > 1 (especially p = 2) which are even more important in terms of their application
are still open.

And even more interesting open problem is the approximation of Sobolev homeo-
morphism in dimension n = 3 as there are no results in this direction so far. The
only breakthrough result in higher dimension is the result of Hencl and Vejnar in [26]
that there is a homeomorphism in W 1,1 for n ≥ 4 which cannot be approximated
by diffeomorphisms. The main result of this paper is the following extension, which
shows that the problem is not in the special choice of nonreflexive space W 1,1.

Theorem 1.1. Let n ≥ 4 and 1 ≤ p < [n/2]. Then there exists a homeomorphism
f ∈ W 1,p((−1, 1)n,Rn) such that there are no diffeomorphisms (or piecewise affine
homeomorphisms) fk : (−1, 1)n → Rn such that fk → f in W 1,p

loc ((−1, 1)n,Rn).

Here [n/2] denotes the integer part of n/2, i.e. 1 ≤ p < 2 for n = 4, 5, 1 ≤ p < 3
for n = 6, 7 and so on. This result is deeply connected with the sign of the Jacobian
of a homeomorphism. As we mentioned before in models of nonlinear elasticity one
usually assumes that Jf > 0 a.e. (or at least Jf ≥ 0 a.e.). It is therefore natural to
ask if this condition is automatically satisfied (up to a reflection) in the reasonable
class of mappings. This problem was promoted by Hajlasz, see e.g. Goldstein and
Hajlasz [21]. As each homeomorphism on a domain is either sense-preserving or
sense-reversing (see Preliminaries) we can equivalently ask if the topological (sense-
preserving) and analytical (Jf ≥ 0) notion of orientation are the same.

Another reason to study nonnegativity of the Jacobian comes from the well-known
area formula which is one of the most fundamental tools in the area. For a Sobolev
homeomorphism f : Ω → Rn for which the Lusin’s condition (N) (i.e. sets of null
measure are always mapped to sets of null measure) holds we have∫

Ω

η(f(x)) |Jf (x)| dx =

∫
f(Ω)

η(y) dy(1.1)

for every nonnegative Borel function η : f(Ω)→ [0,∞] (see Federer [19]). If we knew
that Jf ≥ 0 a.e. we could write the formula (1.1) without absolute values.

It is relatively easy to show that every topologically sense-preserving Sobolev home-
omorphism which is differentiable almost everywhere has nonnegative Jacobian almost
everywhere, see [32, Lemma 2.14]. Therefore every sense-preserving planar homeo-
morphism in W 1,1

loc (Ω,R2), and more generally every sense-preserving homeomorphism

in W 1,p
loc (Ω,Rn) with p > n− 1, satisfies Jf ≥ 0 a.e. (see [23, Corollary 2.25 and The-

orem 5.22.]). However, when we study homeomorphisms in W 1,p
loc (Ω,Rn) with n ≥ 3

and 1 ≤ p ≤ n− 1 it might happen that the mapping is nowhere differentiable even
under some additional assumptions, see e.g. [14]. Thus the previous argument which
heavily uses differentiability of the mapping cannot be used anymore when f ∈ W 1,p,
p ∈ [1, n− 1].
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In [24] Hencl and Malý were able to overcome the difficulties caused by the lack of
differentiability by giving the first nontrivial positive answer to the question about
the nonnegativity of the Jacobian of Sobolev homeomorphisms. More precisely, they
showed that every sense-preserving Sobolev homeomorphism f ∈ W 1,p

loc (Ω,Rn) with
p > [n/2] has nonnegative Jacobian at almost every point. The proof was based
on the approximative differentiability of Sobolev mappings and on the topological
invariance of the linking number under homeomorphisms. The restriction p > [n/2]
in their proof comes from the linking number argument where one has to require
the mapping to behave geometrically nicely on both “links”. Here we show that
somewhat surprisingly the strange exponent [n/2] is indeed the borderline exponent
for this question.

Theorem 1.2. Let n ≥ 4 and 1 ≤ p < [n/2]. Then there is a homeomorphism
f ∈ W 1,p((−1, 1)n,Rn) such that Jf > 0 on a set of positive measure and Jf < 0 on
a set of positive measure.

This result for p = 1 was shown by Hencl and Vejnar in [26] and as in their paper
Theorem 1.1 now follows easily. Indeed, assume on the contrary that f from the
statement can be approximated by diffeomorphisms (or piecewise affine homeomor-
phisms) {fk}∞k=1, then the pointwise limit of a subsequence (which we denote the
same) satisfies

Dfk(x)→ Df(x) and Jfk(x)→ Jf (x)

for almost every x ∈ (−1, 1)n. As fk are locally Lipschitz we know that Jfk ≥ 0
a.e. in (−1, 1)n or Jfk ≤ 0 a.e. in (−1, 1)n, see e.g. [24] and [23, Theorem 5.22].
The pointwise limit of nonnegative (or nonpositive) functions Jfk cannot change sign
which gives us contradiction.

Let us also recall that the Jacobian of a W 1,p, 1 ≤ p < n, Sobolev homeomorphism
may behave strangely as it may vanish a.e. (see [22], [11] and [17]). As mentioned
before the Jacobian of a homeomorphism cannot change sign if p > [n/2] by [24]
and therefore the method of sign-changing Jacobian for providing a counterexample
in Theorem 1.1 cannot be improved to p > [n/2]. On the other hand, there might
be a different way of producing a counterexample to the Ball-Evans approximation
problem or there might be even a positive result in Rn, n ≥ 4, for W 1,p if p is large
enough (but definitely we must have p ≥ [n/2]). Also the question whether the
Jacobian can have both positive and negative Jacobian in a sets of positive measure
in the borderline case p = [n/2] remains open.

Now we outline the rough idea of our construction. We fix a Cantor type set
CA ⊂ (−1, 1) of positive measure and we set

(1.2)
KA :=

(
CA × CA × CA × [−1, 1]

)
∪
(
CA × CA × [−1, 1]× CA

)
∪

∪
(
CA × [−1, 1]× CA × CA

)
∪
(
[−1, 1]× CA × CA × CA

)
.

We also fix a Cantor type set CB ⊂ (−1, 1) of zero measure (in fact its Hausdorff
dimension δ is small) and define the set KB similarly as above. Our first mapping
Sq : Rn → Rn squeezes KA onto KB homeomorphically in a natural way. Then we
find a bi-Lipschitz sense-preserving homeomorphism F such that

(1.3) F (x1, x2, x3, x4) = (x1, x2, x3,−x4) for every x ∈ KB.
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Indeed, we can find a direction in R4 such that the projection of KB to the correspond-
ing hyperplane is one-to-one. The rough reason for that is that the set of directions
where the projection is not one-to-one has Hausdorff dimension at most

(1.4) dimKB + dimKB = 2 + 6δ

(starting+ending point of the direction) and this is smaller than 3-the dimension of all
directions. This projection ofKB can be extended to the homeomorphism g : R4 → R4

which is bi-Lipschitz. By the turnover of the 3-dimensional hyperplane with respect
to x1 direction (which can be done by a sense-preserving homeomorphism of R4) and
the composition with g−1 we obtain our mapping F . In view of the turnover of the
hyperplane we obtain the key property (1.3). At last we find a mapping St : Rn → Rn

which stretches CB × CB × CB × CB back to CA × CA × CA × CA such that lines in KB
through the Cantor set are not prolonged too much and that St is locally Lipschitz
outside of CB × CB × CB × CB.

We verify that f = St◦F ◦Sq belongs to W 1,p by using the ACL property. It is thus
crucial for us that lines parallel to coordinate axes that intersect CA × CA × CA × CA
are mapped to lines by Sq, then to the same lines (with possibly reverse orientation
in x4-direction) by F (see (1.3)) and to something of reasonable length by St. To
control the derivative on the lines parallel to coordinate axes that do not intersect
CA × CA × CA × CA we use explicit form of mappings Sq and St and it is essential
for us that F is Lipschitz everywhere and that St is locally Lipschitz far away from
CB × CB × CB × CB.

Let us compare this result to the methods in [26]. In [26] the authors only showed
that the length of the images of line segments are finite (which is enough for

∫
|Df | <

∞) but here we need to write explicit formulas for the mappings and to differentiate
them, which requires much more details, precision and a delicate case study. More
importantly there are three new main essential ingredients here. First there is a gap
in the argument of [26] in the construction of the last mapping. During our detailed
estimates we have found this gap and we have repaired it by giving a different last
mapping St such that lines in KB through the Cantor set are not prolonged too much.
Secondly in [26] it was enough to find any bi-Lipschitz extension of the projection to
construct a mapping F . Here we need to know that line segments close to KB but
far away from CB×CB×CB×CB are mapped to line segments (see Section 3) so that
the partial derivatives corresponding to different directions do not mix (and the big
derivative in one direction is not multiplied by a big derivative in other direction).
This requires a novel construction of the mapping F in Section 3. The third main
ingredient is the extension to higher dimension as in W 1,1 it was enough to extend
simply as f̃(x) = (f(x1, x2, x3, x4), x5, . . . , xn). Here it requires much more work and
it is essential for us to consider not only line segments through CA×CA× . . .×CA as
in (1.2) but [n/2]− 1 dimensional planes through the Cantor set (i.e. 2 dimensional
planes for n = 6, 7 and so on). Then F reflects not only line segments through
CA×CA× . . .×CA (see (1.3)) but it reflects [n/2]− 1 dimensional planes through the
Cantor set as the analogy of (1.4) is now

dimKB + dimKB = 2([n/2]− 1) + 2(n− [n/2] + 1)δ < n− 1.

This allows us to control the derivative only on lines that do not belong to this [n/2]−1
dimensional planes and the measure of this set is very small close to the Cantor set.
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2. Preliminaries

2.1. Notation. A point x ∈ Rn in coordinates is denoted as (x1, x2, . . . , xn). We

denote by |x| :=
√∑n

i=1 xi the Euclidean norm of a point x ∈ Rn, and ‖x‖ :=
supi|xi| will denote the supremum norm of x. We also define the distance of two sets
A,B ⊂ Rn as

dist(A,B) := inf{|x− y| : x ∈ A and y ∈ B}.

We will denote by

Q(a, r) := (a1 − r, a1 + r)× · · · × (an − r, an + r)

the open cube centered at a ∈ Rn with sidelength 2r > 0. The interior of a set
A ⊂ Rn is sometimes denoted also by A◦.

We will denote by C := C(p1, . . . , pk) a positive constant which depends only
on the given parameters p1, . . . pk. The constant C might change from line to line.
Furthermore, for given functions f and g we denote f . g if there exists a positive
constant C > 0 such that f(x) ≤ Cg(x) for all points x. If both conditions f . g
and g . f are satisfied we denote f ∼ g.

2.2. Sobolev spaces and the ACL condition. Let Ω ⊂ Rn be an open set. We
say that f : Ω → Rm belongs to the Sobolev space W 1,p(Ω,Rm), 1 ≤ p < ∞, if f
is p-integrable and if the coordinate functions of f have p-integrable distributional
derivatives. We say that f belongs to the space W 1,p

loc (Ω,Rm) if f ∈ W 1,p(Ω′,Rm) for
every subdomain Ω′ ⊂⊂ Ω.

Let i ∈ {1, 2, . . . , n} and denote by πi the projection on the given hyperplane
Hi = {x ∈ Rm : xi = 0} perpendicular to the xi-axis. We say that a mapping
f ∈ L1

loc(Ω,Rm) is absolutely continuous on lines (abbr. f ∈ ACL(Ω,Rm)) if the
following ACL conditions holds:

(ACL) For every cube Q(a, r) = (a1− r, a1 + r)× · · · × (an− r, an + r) ⊂⊂ Ω and for
every i ∈ {1, 2, . . . , n} the coordinate functions of the mapping

f i(t;x) := f(x1, . . . , xi−1, xi + t, xi+1, . . . , xn)

are absolutely continuous on (ai−r, ai+r) for Ln−1-almost every x ∈ πi(Q(a, r)).

The following characterization of Sobolev spaces is classical and can be found e.g. in
[1, Section 3.11] and [23, Theorem A.15].

Proposition 2.1. Let 1 ≤ p <∞, Ω ⊂ Rn be an open set and f ∈ Lp(Ω,Rm). Then
f ∈ W 1,p

loc (Ω,Rn) if and only if there is a representative of f which is a ACL(Ω,Rm)
mapping with locally Lp-integrable partial derivatives on Ω.

2.3. Topological degree. For a given smooth map f from Ω ⊂ Rn into Rn we can
define the topological degree as

deg(f,Ω, y0) =
∑

{x∈Ω:f(x)=y0}

sgn(Jf (x))

if Jf (x) 6= 0 for each x ∈ f−1(y0). This definition can be extended to arbitrary
continuous mappings and each point, see e.g. [20].
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A continuous mapping f : Ω→ Rn is called sense-preserving if

deg(f,Ω′, y0) > 0

for all subdomains Ω′ ⊂⊂ Ω and for all y0 ∈ f(Ω′) \ f(∂Ω′). Similarly we call f
sense-reversing if deg(f,Ω′, y0) < 0 for all Ω′ and y0 ∈ f(Ω′) \ f(∂Ω′). Let us recall
that each homeomorphism on a domain is either sense-preserving or sense-reversing,
see e.g. [39, II.2.4., Theorem 3].

2.4. Hausdorff dimension. Let α > 0. We define α-dimensional Hausdorff measure
of a set E ⊂ Rn by

Hα(E) = lim
ε→0+

Hα
ε (E),

where for a given ε > 0 we define

Hα
ε (E) = inf

{ ∞∑
i=1

(diamAi)
α : E ⊂

∞⋃
i=1

Ai, diamAi < ε

}
.

We define the Hausdorff dimension of a set E as

dimH(E) = sup{α > 0 : Hα(E) =∞} = inf{α > 0 : Hα(E) = 0}.
We point out that Lipschitz mappings do not raise the Hausdorff dimension of a set
and furthermore if E =

⋃∞
i=1Ei then

dimH(E) = sup
i

dimH(Ei).

2.5. Construction of the Cantor set CA and the set KA. Denote by V the set
of 24 vertices of the cube [−1, 1]4. The sets

Vk = V× · · · × V, k ∈ N,

will serve as the set of indices for our construction of Cantor sets.
We will define next the Cantor set CA with positive measure for our construction.

For this fix α > 0. Let us define the sequence {ak}∞k=0 by setting

ak =
1

2

(
1 +

1

(k + 1)α

)
.

Set z0 = 0 and let us define

rk = 2−kak.

It follows that Q(z0, r0) = (−1, 1)4 and further we proceed by induction. For v(k) =
(v1, . . . , vk) ∈ Vk we denote w(k) = (v1, . . . , vk−1) and we define

zv(k) = zw(k) +
1

2
rk−1vk = z0 +

1

2

k∑
j=1

rj−1vj,

Q′v(k) = Q
(
zv(k), 2

−kak−1

)
and Qv(k) = Q

(
zv(k), 2

−kak
)
.

Formally we should write w(v(k)) instead of w(k) but for the simplification of the
notation we will avoid this. Sometimes we may even denote v and w instead of v(k)
and w(k).
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Figure 1. Two-dimensional projection of the cubes Qv(k) and Q′v(k)

for k = 1, 2.

Then for the measure of the k-th frame Av(k) := Q′v(k) \Qv(k), k ∈ N, we have

L4(Av(k)) = 2−4k+4(a4
k−1 − a4

k) = 2−4k

[(
1 +

1

kα

)4

−
(

1 +
1

(k + 1)α

)4]
.(2.1)

The number of the cubes in {Qv(k) : v(k) ∈ Vk} is 24k. It is not difficult to find
out that the resulting Cantor set

∞⋂
k=1

⋃
v(k)∈Vk

Qv(k) =: CA[{ak}∞k=0] = CA × CA × CA × CA

is a product of 4 Cantor sets CA in R. Moreover, the measure of the set CA can be
calculated as

L4(CA) = lim
k→∞

24k(2ak2
−k)4 = lim

k→∞

(
1 +

1

(k + 1)α

)4

= 1.(2.2)

Furthermore, we may write the 1-dimensional Cantor set CA as

CA =
∞⋂
k=1

2k⋃
i=1

Ii,k

where Ii,k are closed intervals of length 2−k
(
1 + 1

(k+1)α

)
, Ii,k ∩ Ij,k = ∅ for i 6= j, and

I2i−1,k ∪ I2i,k ⊂ Ii,k−1. Throughout this paper we will also denote

Uk :=
2k⋃
i=1

Ii,k, Mk := Uk × Uk × Uk × Uk, Pk := Uk × Uk × Uk,

and in view (2.2) it is easy to see that

(2.3) H1
(
Uk \ CA

)
≤ 2k2−k

(
1 +

1

(k + 1)α

)
− 1 ≤ C

kα
.

Further we denote

Ak :=
(
Uk × Uk × Uk × R

)
∪
(
Uk × Uk × R× Uk

)
∪
(
Uk × R× Uk × Uk

)
∪
(
R× Uk × Uk × Uk

)
.
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It is easy to see that

CA = CA × CA × CA × CA =
∞⋂
k=1

Mk.

Furthermore, we also denote

KA :=(CA × CA × CA × [−1, 1]) ∪ (CA × CA × [−1, 1]× CA)

∪ (CA × [−1, 1]× CA × CA) ∪ ([−1, 1]× CA × CA × CA),

and then we have

KA = [−1, 1]4 ∩
∞⋂
k=1

Ak.

It is easy to see that L4(KA) > 0. Analogously to (2.3) we can estimate
(2.4)

H3(Pk \ Pk+1) ≤
(

2k2−k
(
1 +

1

(k + 1)α
))3

−
(

2k+12−(k+1)
(
1 +

1

(k + 2)α
))3

≤ C

kα+1
.

2.6. Construction of the Cantor set CB and the set KB. Next, we will define
the Cantor set CB of zero measure for our construction. The definition of the index
set Vk remains the same as in the subsection 2.5.

To define CB we fix 0 < δ < 1/7. Let us define the sequence {bk}∞k=0 by setting

bk = 2−kβ,

where β = 1−δ
δ

. Analogously to the previous section we set ẑ0 = 0 and define

r̂k = 2−kbk.

Then it follows that Q(ẑ0, r̂0) = (−1, 1)4 and further we proceed by induction. For
v(k) = (v1, . . . , vk) ∈ Vk we denote w(k) = (v1, . . . , vk−1) and we define

ẑv(k) = ẑw(k) +
1

2
r̂k−1vk = ẑ0 +

1

2

k∑
j=1

r̂j−1vj,

Q̂′v(k) = Q
(
ẑv(k), 2

−kbk−1

)
and Q̂v(k) = Q

(
ẑv(k), 2

−kbk
)
.

Index w(k) = (v1, . . . , vk−1) is called as the parent of the index v(k) = (v1, . . . , vk).

For the measure of the k-th frame Bv(k) := Q̂′v(k) \ Q̂v(k), k ∈ N, we have

L4(Bv(k)) = 2−4k+4(b4
k−1 − b4

k) = 2−4k+4−4βk(24β − 1).(2.5)

Analogously to the previous section, it is not difficult to find out that the resulting
Cantor set

∞⋂
k=1

⋃
v(k)∈Vk

Q̂v(k) =: CB[{bk}∞k=0] = CB × CB × CB × CB

is a product of n Cantor sets CB in R. Moreover, the measure of the set CB can be
calculated as

L4(CB) = lim
k→∞

24k(2bk2
−k)n = lim

k→∞
24−4βk = 0.(2.6)
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Furthermore, we may write the 1-dimensional Cantor set CB as

CB =
∞⋂
k=1

2k⋃
i=1

Îi,k

where Îi,k are closed intervals of length 2bk2
−k, Îi,k ∩ Îj,k = ∅ for i 6= j, and Î2i−1,k ∪

Î2i,k ⊂ Îi,k−1. Throughout this paper we denote

(2.7) Ûk :=
2k⋃
i=1

Îi,k , M̂k := Ûk × Ûk × Ûk × Ûk , P̂k = Ûk × Ûk × Ûk.

Furthermore, we also denote

(2.8)
Âk :=

(
Ûk × Ûk × Ûk × R

)
∪
(
Ûk × Ûk × R× Ûk

)
∪
(
Ûk × R× Ûk × Ûk

)
∪
(
R× Ûk × Ûk × Ûk

)
,

and

KB :=(CB × CB × CB × [−1, 1]) ∪ (CB × CB × [−1, 1]× CB)

∪ (CB × [−1, 1]× CB × CB) ∪ ([−1, 1]× CB × CB × CB).

It is easy to see that L4(KB) = 0. Furthermore, we may find out that dimH CB = δ as
in the k-th step of construction we have 2k intervals of length 2bk2

−k = 2 · 2−k−kβ =

2 · 2− kδ . Therefore, as 0 < δ < 1/7, we conclude that

dimHKB ≤ 1 + 3δ <
3

2
.

2.7. The mapping Sq. Suppose that CA and CB are the Cantor sets in subsections
2.5 and 2.6. Let q : R → R be the natural piecewise linear homeomorphism which
takes each interval in the set Uk\Uk+1, k ∈ N, onto corresponding interval in Ûk\Ûk+1

linearly. Then it is easy to see that q is an odd function, i.e. q(−s) = −q(s) for every
s ∈ R. We define the homeomorphism Sq : (−1, 1)n → (−1, 1)n by setting

Sq(x1, . . . , xn) = (q(x1), . . . , q(xn)).

It is easy to see that Sq maps KA onto KB. Moreover, we may notice that Sq is a
Lipschitz mapping which takes each line segment parallel to xi-axis to a line segment
parallel to xi-axis for every i = 1, 2, 3, 4. Furthermore, we also have that:

(1) For each x ∈ (−1, 1)4 such that xi ∈ Uk \ Uk+1, i = 1, 2, 3, 4, we have

(2.9) |DiSq(x)| = bk − bk+1

ak − ak+1

≤ Ckα+12−βk,

where the constant C = C(α, β) > 0 depends only on parameters α and β.
(2) For each x ∈ (−1, 1)4 such that xi ∈ CA, i = 1, 2, 3, 4, we have

|DiSq(x)| = 0.

Here and in what follows Dig denotes the derivative of a mapping g along the xi-
direction for i ∈ {1, 2, 3, 4}.
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Figure 2. The transformation of Q̂′ \ Q̂◦ onto Q′ \Q◦ in two dimensions.

2.8. Frames to frames mapping of (n− 1)-dimensional Cantor sets. Suppose
that n ≥ 3. Analogously to the constructions of CA and CB we can define the
(n− 1)-dimensional Cantor type sets

CB × · · · × CB︸ ︷︷ ︸
n− 1 times

and CA × · · · × CA︸ ︷︷ ︸
n− 1 times

.

We will need to find a mapping which maps the first set onto the second and the cor-
responding frames around it to corresponding frames around the second set. Instead
of the index set Vk we use now the set Wk where W denotes the vertices of the cube
[−1, 1]n−1. Analogously to previous notation we denote w ∈ Wk instead of v ∈ Vk

and we work with cubes

Q′w(k), Qw(k), Q̂
′
w(k) and Q̂w(k)

defined analogously to subsections 2.3 and 2.4 but now in n− 1 dimensions.
We will find a sequence of homeomorphisms Hn−1

k : (−1, 1)n−1 → (−1, 1)n−1. We
set Hn−1

0 (x) = x and we proceed by induction. We will give a mapping F1 which

stretches each cube Q̂w, w ∈W1, homogeneously so that Hn−1
1 (Q̂w) equals Qw. On

the annulus Q̂′w \Q̂w, Hn−1
1 is defined to be an appropriate radial map with respect to

ẑw and zw in the image in order to make Hn−1
1 a homeomorphism. The general step

is the following: If k > 1, Hn−1
k is defined as Hn−1

k−1 outside the union of all cubes Q̂′w,

w ∈Wk. Further, Hn−1
k remains equal to Hn−1

k−1 at the centers of cubes Q̂w, w ∈Wk.

Then Hn−1
k stretches each cube Q̂w, w ∈ Wk, homogeneously so that Hn−1

k (Q̂w)

equals Qw. On the annulus Q̂′w \ Q̂w, Hn−1
k is defined to be an appropriate radial

map with respect to ẑw in preimage and zw in image to make Hn−1
k a homeomorphism

(see Fig. 2). Notice that the Jacobian determinant JHn−1
k

(x) will be strictly positive

almost everywhere in (−1, 1)n−1.
In the following definition of Hn−1

k we use the notation ‖x‖ for the supremum norm
of x ∈ Rn−1. The mappings Hn−1

k , k ∈ N, are formally defined as
(2.10)

Hn−1
k (x) =


Hn−1
k−1 (x) for x /∈

⋃
w∈Wk Q̂′w

Hn−1
k−1 (ẑw) + (αk‖x− ẑw‖+ βk)

x−ẑw

‖x−ẑw‖ for x ∈ Q̂′w \ Q̂w, w ∈Wk

Hn−1
k−1 (ẑw) + rk

r̃k
(x− ẑw) for x ∈ Q̂w, w ∈Wk
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where the constants αk and βk are given by

(2.11) αkr̂k + βk = rk and αk
r̂k−1

2
+ βk = rk−1

2
.

It is not difficult to find out that each Hn−1
k is a homeomorphism and maps⋃

w∈Wk

Q̂w onto
⋃

w∈Wk

Qw.

The limit Hn−1(x) = limk→∞H
n−1
k (x) is clearly one-to-one and continuous and there-

fore a homeomorphism. Moreover, it is easy to see that Hn−1 is differentiable almost
everywhere (as Ln−1(Cn−1

B ) = 0) and maps Cn−1
B onto Cn−1

A .

Fix j ∈ N. We claim that the mapping Hn−1 is Lipschitz on (Ûj)
n−1 \ (Ûj+1)n−1

where the sets Ûj are defined analogously to subsection 2.6 (the Lipschitz constant
of course depends on the fixed j). This is in fact easy to see as the mapping is given

by simple formula (2.10) on each Q̂′w \ Q̂w for every w ∈ Wj. Analogously to [23,
Lemma 2.1 and proof of Theorem 4.10] we can estimate
(2.12)

|DHn−1
j (x)| = |DHn−1(x)| ∼ max

{rj
r̂j
, αj

}
≤ C max{2βj, 2βjj−(α+1)} ≤ C2βj

for every x ∈ Q̂′w \ Q̂w and w ∈Wj. This is because

(2.13)
|DlH

n−1
j (x)| ≤ rj

r̂j
≤ C2βj for l 6= i and

|DiH
n−1
j (x)| ≤ αj ≤ C2βjj−(α+1)

if xi is the direction which realizes the supremum norm distance from the center of
the cube ẑw. From (2.10) it is also easy to see that

(2.14) |DHn−1
j (x)| ∼ rj

r̂j
≤ C2βj for x ∈ Q̂w and w ∈Wj.

In our construction we will need to know that for each α ∈ (0, 1) and k ∈ N the
mapping

(2.15) αHn−1
3k−3(x) + (1− α)Hn−1

3k (x)

is a homeomorphisms. Outside of
⋃

w∈W3k−3 Q̂w both mapping are equal and hence

the mapping is a homeomorphism there. Let us fix Q̂w for some w ∈W3k−3. We know
by (2.10) that Hn−1

3k is a frame to frame mapping on Q̂w which maps corresponding
squares with sizes r̃3k−2 (resp. r̃3k−1 and r̃3k) to squares with sizes r3k−2 (resp. r3k−1

and r3k). We also know by (2.10) that Hn−1
3k−3 is a linear mapping

r3k−3

r̃3k−3

(x− z̃w) on Q̂w

but this can be also viewed as a frame to frame mapping on Q̂w which maps corre-
sponding squares with sizes r̃3k−2 (resp. r̃3k−1 and r̃3k) to squares with sizes r3k−3

r̃3k−3
r̃3k−2

(resp. r3k−3

r̃3k−3
r̃3k−1 and r3k−3

r̃3k−3
r̃3k). Thus it is not difficult to see that the mapping (2.15)
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on Q̂w is a frame to frame mapping which maps corresponding squares with sizes
r̃3k−2 (resp. r̃3k−1 and r̃3k) to squares with sizes

αr3k−2+(1−α)
r3k−3

r̃3k−3

r̃3k−2 ( resp. αr3k−1+(1−α)
r3k−3

r̃3k−3

r̃3k−1 and αr3k+(1−α)
r3k−3

r̃3k−3

r̃3k).

Analogously to the fact that each Hk defined by (2.10) is a homeomorphism we can
conclude that the mapping (2.15) given by formula analogous to (2.10) is also a
homeomorphism.

3. A sense-preserving bi-Lipschitz mapping F equal to a reflection in
the last variable on KB

This section is dedicated to constructing a bi-Lipschitz mapping which equals the
reflection in the last variable on KB. Especially, this means that the mapping will
map lines in KB to lines in KB. In fact even more than this the mapping will map
certain line segments close to KB to line segments (recall that KB and Ûk are defined
in subsection 2.5). Also see Fig. 3.

Theorem 3.1. If β > 0 is sufficiently large in the definition of the Cantor set CB
in subsection 2.6 then there exists a mapping F : (−1, 1)4 → (−1, 1)4, which is a
sense-preserving bi-Lipschitz extension of the map

(3.1) F (x1, x2, x3, x4) = (x1, x2, x3,−x4) x ∈ KB,
and a constant NF ∈ N such that for each j, k ∈ N satisfying NF < j ≤ k the image
of the intersection of a line parallel to ei with the set

Ai,j−NF−1,k+NF := {x ∈ R4 : xi ∈ [−1, 1] \ Ûj−NF−1, xl ∈ Ûk+NF , l 6= i}
in the map F is a line segment parallel to ei which lies in the set

Ai,j−1,k = {x ∈ R4 : xi ∈ [−1, 1] \ Ûj−1, xl ∈ Ûk, l 6= i}.
Moreover, the derivative along this segment satisfies

DiF (x) =

{
ei if i = 1, 2, 3
−ei if i = 4

for every x ∈ Ai,j−NF−1,k+NF .

The concept of the following type of mapping is key to our proof. We will show
the obvious fact that they are bi-Lipschitz maps.

Definition 3.2. Let n ∈ N, n ≥ 2, and let v ∈ Rn be a vector such that vn 6= 0.
Denote X := Rn−1 × {0}. Let g : X → R be a Lipschitz function and define a
projection Pv of Rn onto X as follows

(3.2) Pv(x) = x− xn
vn
v.

Then we define the spaghetti strand map Fg,v as follows

Fg,v(x) = x+ vg(Pv(x)).

Lemma 3.3. Spaghetti strand maps from Definition 3.2 are bi-Lipschitz maps.



14 D. CAMPBELL, S. HENCL, AND V. TENGVALL

L1

L2

L3 L4

F−→

F (L1)

F (L2)

F (L3) F (L4)

Figure 3. A sense preserving bi-Lipschitz map that reflects in e4 and
maps certain lines to lines

Proof. It is easy to see that every spaghetti strand map is Lipschitz as a composition
of Lipschitz maps. Moreover Pv(αv) = 0 for each α ∈ R which implies that

x+ vg(Pv(x))− vg
(
Pv(x+ vg(Pv(x)))

)
= x+ vg(Pv(x))− vg(Pv(x)) = x

and hence the inverse of a spaghetti strand map is the spaghetti strand map corre-
sponding to −g. This inverse is also Lipschitz and therefore we see that these maps
are bi-Lipschitz. �

Firstly, let us outline our strategy for the rest of the section. We construct F
from the composition of two spaghetti strand maps. Firstly we must choose a vector
v and prove that the projection Pv is one-to-one on the set KB and further there
exists a Lipschitz function g so that Fg,v(x) = Pv(x) for all x ∈ KB. This step is
contained in Lemma 3.4. If we take u = (−v1,−v2, . . . ,−vn−1, vn) then we can define
F = Fg,u ◦Fg,v and it is not difficult to deduce that (3.1) holds (this is done in (3.37)
below).

Lemma 3.4. Let v =
(

1
16
, 1

8
, 1

4
, 1
)
, u =

(
− 1

16
,−1

8
,−1

4
, 1
)
. Then there is β ≥ 6 and a

corresponding set KB given by the subsection 2.6 such that Pv is one-to-one on KB,
and the function g defined on Pv(KB) as g(Pv(x)) = −x4 can be extended onto X as
a Lipschitz function. Furthermore, it is possible to find a Lipschitz extension of the
function g which guarantees that

Di

(
Fg,u ◦ Fg,v

)
(x) =

{
ei if i = 1, 2, 3
−ei if i = 4

(3.3)

whenever k ∈ N, xi ∈ [−1, 1] \ Ûk and xj ∈ Ûk+2 for all j 6= i.

Proof. Let us start by defining some notation we will use throughout the proof. We
will denote ṽ :=

(
1
16
, 1

8
, 1

4

)
. Furthermore, if Q̂v(k) := Q(ẑv(k), r̂k), v(k) ∈ Vk, are the

cubes used in the definition of the Cantor set CB in subsection 2.6, then we define

(3.4) Ĝi
v(k) := Q̂v(k) + Rei.

These sets are called k-bars.
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Figure 4. All 1-bars and 2-bars in three dimensions.

By the construction of the Cantor set we have Q(ẑv(k−2), r̂k−2)∩Q(ẑv̂(k−2), r̂k−2) = ∅,
whenever v(k) 6= v̂(k). Therefore we have the equality for the so-called “sliced” bar

Ŝiv(k) := Ĝi
v(k) \

( ⋃
w∈Vk−2

v(k)
(i)

Q
(
ẑw, r̂k−2

))
= Ĝi

v(k) \
( ⋃

w∈Vk−2

Q
(
ẑw, r̂k−2

))
,(3.5)

where

Vk−2
v(k)(i) :=

{
w ∈ Vk−2 : (ẑv(k) + Rei) ∩Q(ẑw, r̂k−2) 6= ∅

}
.

It is easy to see that there is β1 > 0 such that for β ≥ β1 (in the definition of CB) we

can replace the index set Vk−2
v(k)(i) by much nicer set Vk−2 in the definition of Ŝiv(k).

More precisely, a sliced k-bar Ŝiv(k) can be considered as a k-bar where we have

removed all the cubes around the Cantor set from the (k − 2)-nd generation of the
construction.

In similar fashion we also define

(3.6) Ŝ iv(k) :=
(
Q3
(
Pv(ẑv(k)), qr̂k

)
+ Pv(Rei)

)
\
( ⋃

w∈Vk−1
v(k)

(i)

Q3
(
Pv(ẑw), 7

8
r̂k−1

))
⊂ X,

where Q3(z, r) denotes the 3 dimensional cube in X := R3 × {0} with radius r > 0
and centered at z ∈ X and q ≥ 5

4
is a constant we will determine later. We also

denote “sliced k-pipes” as follows

Ĥ i
v(k) := ∂X

(
Q3
(
Pv(ẑv(k)), qr̂k

)
+ Pv(Rei)

)
\
( ⋃

w∈Vk−1
v(k)

(i)

Q3
(
Pv(ẑw), 7

8
r̂k−1

))
⊂ X,

where ∂XA denotes the relative boundary of a set A in X. We will later see that also
in the definition of the sets Ŝ iv(k) and Ĥ i

v(k) the index sets Vk−1
v(k)(i) can be replaced by

Vk−1 when β > 0 in the definition of CB is just large enough.
Now let us briefly outline the rest of the proof. We prove that our choice of a vector

v gives that Pv is one-to-one on KB. Then we prove that each Ŝiv(k) is projected into
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Figure 5. In the picture on the left we have all sliced 2-bars by 1-st
generation cubes in three dimensions. In the later we slice k genera-
tional bars with k−2 generation cubes. A choice of β guarantees that in
comparison the bars are as thin as required in comparison to the cube.
In the picture on the right we have zoomed in one of the removed cubes
(drawn with dashed line) from the picture on the left.

Ŝ iv(k) which, for fixed k, are pairwise disjoint. This allows us to define a Lipschitz

function g on R3 × {0} such that Fg,v = Pv on KB. A careful extension of g onto
R3 × {0} guarantees (3.3). We divide the proof into several steps.

Step 1: The projection is one-to-one on CB. Our first step is simple, we want to
show that the projection is one-to-one on the set CB = CB ×CB ×CB ×CB. Consider
the first stage of our Cantor construction, i.e. we have the cube Q̂0 = Q(0, 1) and

the set of cubes Q̂v(1) := Q(ẑv(1), r̂1), v(1) ∈ V. We will show that the images of
these 24 cubes in Pv are pairwise disjoint. Then we can use the same calculations to
show that the projections of the next generation of cubes in our construction are also
pairwise disjoint because the construction is self-similar. We can repeat this argument
inductively to get that Pv is one-to-one on CB. Therefore it suffices to show that the
images of Q̂v(1) are pairwise disjoint. Although this step is slightly redundant it aids
the understanding of the reader and so we include it here.

We will deal with two separate cases. The first case is where we are considering
the projections of a pair of boxes Q̂v(1) and Q̂v̂(1), whose centers have the same 4-th
coordinate. The second case is where (ẑv(1))4 6= (ẑv̂(1))4. For any of the first generation

cubes Q̂v(1) we can calculate its image in Pv using (3.2) and v =
(

1
16
, 1

8
, 1

4
, 1
)

as

(3.7) Pv(Q̂v(1)) = Q3
(
Pv(ẑv(1)), r̂1

)
+ (−r̂1, r̂1)

(
1
16
, 1

8
, 1

4

)
⊂ Q3

(
Pv(ẑv(1)), r̂1(1 + 1

4
)
)
,

where
(3.8)
Pv(ẑv(1)) = ẑv(1) − (ẑv(1))4( 1

16
, 1

8
, 1

4
, 1) =

(
(ẑv(1))1, (ẑv(1))2, (ẑv(1))3, 0

)
∓ 1

2
( 1

16
, 1

8
, 1

4
, 0).
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Pv(Q0)

Pv(0)

a b

c d

Figure 6. An illustration of the image of two generations of cubes
in the projection Pv from three dimensions to the plane. For printing
reasons we have now increased significantly r̂1 and changed somewhat
v. The shaded regions (one big and eight smaller ones) describe the
images of the cubes in Pv. The black dot in the middle describes the
point Pv(0) = 0 the center of the large cube. The other four black dots
a, b, c and d describe the centers of the small dashed cubes of radius
1
4

+ 5
4
r̂1 which always contain the image of a pair of cubes symmetrical

about the hyperplane, see Case 2B. In one case we consider a pair of
cubes symmetrical about the hyperplane and the images of their centers
are separated by ṽ. In the other cases the images of cubes are disjoint
because they lie in different dotted cubes, which are disjoint.

Case 1 (Step 1): In the first case we have a distinct pair of centers ẑv(1) and ẑv̂(1)

such that (ẑv(1))4 = (ẑv̂(1))4. Since the pair is distinct we can find at least one
i ∈ {1, 2, 3} such that

|(ẑv(1))i − (ẑv̂(1))i| = 1.

This means that |ẑv(1) − ẑv̂(1)| ≥ 1. But since (ẑv(1))4 = (ẑv̂(1))4 we have

Pv(ẑv(1))− ẑv(1) = Pv(ẑv̂(1))− ẑv̂(1),

and therefore
|Pv(ẑv(1))− Pv(ẑv̂(1))| = |ẑv(1) − ẑv̂(1)| ≥ 1.

This together with (3.7) and the fact that 2r̂1(1 + 1
4
) < 1 (recall that r̂1 = 2−12−β

with β ≥ 6) implies that

Pv(Q̂v(1)) ∩ Pv(Q̂v̂(1)) = ∅.

Case 2A (Step 1): Suppose now that (ẑv(1))4 6= (ẑv̂(1))4. We shall consider first a
pair of boxes, whose centers ẑv(1) and ẑv̂(1) are on a line parallel to e4. To see that
the images of these boxes are disjoint we observe that

Pv(ẑv(1))− Pv(ẑv̂(1)) = Pv(ẑv(1) − ẑv̂(1)) = Pv(±e4) = ∓
(

1
16
, 1

8
, 1

4

)
.(3.9)

Furthermore, as

Pv(Q̂v(1)) ⊂ Q(Pv(ẑv(1)),
5
4
r̂1),(3.10)
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and since 2r̂1
5
4
< 1

16
< ‖Pv(ẑv(1)) − Pv(ẑv̂(1))‖ then the projection of Q̂v(1) and Q̂v̂(1)

must be disjoint. Here ‖x‖ := supi|xi| denotes the supremum norm.

Case 2B (Step 1): We still need to consider the pairs of cubes with centers that
vary from each other in the 4-th variable and in another variable. In other words, let
us suppose that it holds for ẑv(1) and ẑv̂(1) that

(ẑv(1))4 6= (ẑv̂(1))4 and (ẑv(1))i 6= (ẑv̂(1))i for some i ∈ {1, 2, 3},

and let us denote

a := ((ẑv(1))1, (ẑv(1))2, (ẑv(1))3, 0) and b = ((ẑv̂(1))1, ((ẑv̂(1))2, ((ẑv̂(1))3, 0).

By applying (3.7) and (3.8) we get

Pv(Qv(1)) ⊂ Q
(
a, 1

4
+ 5

4
r̂1

)
and Pv(Qv̂(1)) ⊂ Q

(
b, 1

4
+ 5

4
r̂1

)
,

where 1
4

+ 5
4
r̂1 <

9
64
< 1

2
. Thus, it follows from the fact |a− b| ≥ 1 that

dist(Pv(Q̂v(1)), Pv(Q̂v̂(1))) ≥ dist
(
Q
(
a, 1

4
+ 5

4
r̂1

)
, Q
(
b, 1

4
+ 5

4
r̂1

))
≥ |a− b| − 2

(
1
4

+ 5
4
r̂1

)
> 0,

which gives us that the sets Pv(Q̂v(1)) and Pv(Q̂v̂(1)) are disjoint. This implies that
the remaining pairs of cubes to consider (i.e. the pairs of cubes with centers that vary
from each other in the 4-th variable and in another variable) are also disjoint.

It follows now from Cases 1, 2A and 2B that images of the first generation cubes
Q̂v(1) in the projection Pv are pairwise disjoint. The self similarity argument men-
tioned above implies that Pv is one-to-one on CB. The reason why the self similarity
argument works here is because the ratio r̂k−1/r̂k = 2β+1 is not depending on k. Ge-

ometrically this means that if we rescale a cube Q̂v(k−1) and the smaller cubes Q̂v(k)

which lies inside this cube by factor 2k−12β(k−1) we see that there will be as much
space to project the cubes of the k-th step as there was in the first step (see Fig. 7).

Step 2: The projection is one-to-one on KB. We will start this step by showing
that if a and b are any two vertices of Q(0, 1

2
) and ei, ej ∈ R4 are two (possibly

identical) canonical basis vectors of R4, then

(3.11) Pv(a+ Rei) ∩ Pv(b+ Rej) = Pv
(
(a+ Rei) ∩ (b+ Rej)

)
.

This gives us that if ` and ˆ̀ are two distinct lines parallel to coordinate axes through
some vertices a and b of Q(0, 1

2
) then their projections Pv(`) and Pv(ˆ̀) meet at most

at one point which is the image Pv(z) of the intersection point z of ` and ˆ̀. We use
this to show that images of sliced k-bars are disjoint and finally by this observation
and by Step 1 we will conclude that Pv is one-to-one on KB. It is good to remark that
the argument bellow does not work if the dimension of the space is three or smaller.
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−v

Figure 7. An illustration of the idea behind the self similarity argument.

Step 2A: Proving the equation (3.11). To prove (3.11) it suffices to show that

Pv(a+ Rei) ∩ Pv(b+ Rej) ⊂ Pv
(
(a+ Rei) ∩ (b+ Rej)

)
(3.12)

as the opposite inclusion is obvious. To prove (3.12) we recall the following elementary
dimension formula for the linear map Pv : R4 → X:

dim
(
kerPv

)
+ dim

(
imPv

)
= 4,

where kerPv stands for the kernel of the linear map Pv, and imPv equals the image
Pv(R4). It is easy to see that dim

(
imPv

)
= 3 from the definition of Pv and from the

observation that

Pv(el) =

{
el if l = 1, 2, 3
e4 − v if l = 4.

(3.13)

Thus, when v =
(

1
16
, 1

8
, 1

4
, 1
)

we conclude that

kerPv = 〈v〉,

where 〈v〉 stands for the linear span of the vector v. This follows from the fact that
dim kerPv = 1 and v ∈ kerPv.

Next, we may assume that Pv(a+ Rei)∩Pv(b+ Rej) 6= ∅ as otherwise the inclusion
in (3.12) is obvious. Then there exists t ∈ R and s ∈ R such that

Pv(a+ tei − b− sej) = 0,

or equivalently, there exists t, s ∈ R and r ∈ R such that

(a− b) + tei − sej = rv.(3.14)

To prove (3.11) we need to show that the equation (3.14) can have only trivial solu-
tions (i.e. solutions for which r = 0). In other words, we need to show that if the
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intersection
(
(a− b) + Rei ⊕ Rej

)
∩ 〈v〉 is nonempty, then(

(a− b) + Rei ⊕ Rej
)
∩ 〈v〉 = {0}.

Because (a + b) + Rei ⊕ Rej is an affine vector space which is parallel to coordinate
axes, and

dim
(
(a+ b) + Rei ⊕ Rej

)
≤ 2,

it is easy to see that for the vector v =
(

1
16
, 1

8
, 1

4
, 1
)

the intersection
(
(a− b) + Rei ⊕

Rej
)
∩ 〈v〉 can contain at most one point z. Then there are two possible cases we

need to consider:

Case 1: Suppose first that (a + Rei) ∩ (b + Rej) 6= ∅. In this case it follows that
z = 0 and the claim will follow because all the solutions to (3.14) are then trivial.

Case 2: Let us next assume that (a + Rei) ∩ (b + Rej) = ∅. Then, because a and
b were assumed to be vertices of Q(0, 1

2
) it follows that there is an index i1 /∈ {i, j}

such that

(a− b)i1 ∈ {1,−1}.

Moreover, because dim〈ei, ej, ei1〉 < 4 it will follow that there is also an index i2 /∈
{i, j, i1} such that

(a− b)i2 ∈ {1, 0,−1}.

However, this is a contradiction with the fact that the equation (3.14) was assumed
to have a solution. Indeed, otherwise it would follow that there is r ∈ R such that

|rvi1| = 1 and |rvi2| ∈ {1, 0}

which is not the case when v =
(

1
16
, 1

8
, 1

4
, 1
)
.

Step 2B: Proving that the sets Ŝ iv(k) are disjoint. Recall now that

Ŝ iv(k) :=
(
Q3
(
Pv(ẑv(k)), qr̂k

)
+ Pv(Rei)

)
\
( ⋃

w∈Vk−1
v(k)

(i)

Q3
(
Pv(ẑw), 7

8
r̂k−1

))
,

where Vk−1
v(k)(i) :=

{
w ∈ Vk−1 : (ẑv(k) + Rei) ∩Q(ẑw, r̂k−1) 6= ∅

}
. We claim that if we

choose β > 0 sufficiently large in the definition of the Cantor set CB then:

(1) We may replace the index set Vk−1
v(k)(i) in the definition of Ŝ iv(k) by the index

set Vk−1. This will be only a technical detail which helps us to work with sets
Ŝ iv(k) more easily.

(2) The sets Ŝ iv(k) are pairwise disjoint for each fixed k ∈ N (recall that r̂k =

2−k2−βk).
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Proof of (1): We need to show that for every fixed q there exists β2 := β2(q) > 0
such that if we choose β ≥ β2 in the definition of the Cantor set CB then for each
fixed v(k) ∈ Vk we have(

Q3
(
Pv(ẑv(k)), qr̂k

)
+ Pv(Rei)

)
∩Q3

(
Pv(ẑw), 7

8
r̂k−1

)
= ∅,

whenever w ∈ Vk−1 \ Vk−1
v(k)(i). It suffices to prove this for k = 2 because after this

the general case follows from the self similarity of the construction.
First, we may find β1

2(q) > 0 such that if β ≥ β1
2 in the definition of CB then we

have

Q3(Pv(ẑv(2)), qr̂2) + Pv(Rei) ⊂⊂ Q3
(
Pv(ẑw), 7

8
r̂1

)
+ Pv(Rei),

whenever w ∈ V is the parent of a given index v(2) ∈ V2.
Next, by applying (3.11) and continuity of Pv we may find β2

2 > 0 such that if
β ≥ β2

2 in the definition of the Cantor set CB then(
Q3
(
Pv(ẑw), 7

8
r̂1

)
+ Pv(Rei)

)
∩
(
Q3
(
Pv(ẑŵ), 7

8
r̂1

)
+ Pv(Rej)

)
= ∅,

whenever w, ŵ ∈ V are indices for which the intersection of the lines lw = ẑw+Rei and
lŵ = ẑŵ + Rej is empty, i.e. if the intersection of lines is empty then the intersection
of small neighborhoods is also empty.

Suppose now that β ≥ β2 := max{β1
2 , β

2
2}. Let us fix v(2) ∈ V2 and suppose that

w ∈ V is the parent of v(2). Let us also assume that ŵ ∈ V \ V1
v(2)(i). Then it

follows that the lines lw = ẑw + Rei and lŵ = ẑŵ + Rei do not intersect each other,
and therefore(
Q3
(
Pv(ẑv(2)),qr̂2

)
+ Pv(Rei)

)
∩Q3

(
Pv(ẑŵ), 7

8
r̂1

)
⊂
(
Q3
(
Pv(ẑw), 7

8
r̂1

)
+ Pv(Rei)

)
∩
(
Q3
(
Pv(ẑŵ), 7

8
r̂1

)
+ Pv(Rei)

)
= ∅,

and (1) follows and we may write from now on

Ŝ iv(k) =
(
Q3
(
Pv(ẑv(k)), qr̂k

)
+ Pv(Rei)

)
\
( ⋃

w∈Vk−1

Q3
(
Pv(ẑw), 7

8
r̂k−1

))
.

Proof of (2): Again, by the self similarity of the construction it is enough to prove
(2) in the case k = 1. Let us first assume that z is one of the vertices of the cube

Q(0, 1
2
). Then, recalling that the center of the cube Q̂0 is z̃0 = 0, we have that

‖Pv(z)− Pv(ẑ0)‖ = ‖Pv(z)− Pv(0)‖ = ‖z − z4v‖ < 7
8
.(3.15)

This gives us that Pv(z) ∈ Q3(Pv(ẑ0), 7
8
r̂0) for each vertex z of the cube Q(0, 1

2
).

Suppose next that ẑv(1) and ẑv̂(1) are two (possibly identical) vertices of Q(0, 1
2
), and

consider two (nonidentical) lines M1 = ẑv(1) + Rei and M2 = ẑv̂(1) + Rej through the
points ẑv(1) and ẑv̂(1). Then by applying (3.15) to points ẑv(1) and ẑv̂(1), and using
(3.11) we get(

Pv(M1)\Q3
(
Pv(ẑ0), 7

8
r̂0

))
∩
(
Pv(M2)\Q3

(
Pv(ẑ0), 7

8
r̂0

))
= ∅.

Therefore, by linearity and Lipschitz continuity of Pv and by the fact that the lines
Pv(M1) and Pv(M2) intersect at most at one point it is easy to see that there exists



22 D. CAMPBELL, S. HENCL, AND V. TENGVALL

Pv(ẑw)

Q3
(
Pv(ẑw), 7

8
r̂k−1

)

Q3
(
Pv(ẑv(k)),

5
4
r̂k

)

Q3
(
Pv(ẑv(k)),

5
4
r̂k

)
+ Pv(Rei)

Q3
(
Pv(ẑv̂(k)),

5
4
r̂k

)
+ Pv(Rej)

7
8
r̂k−1

2 · 5
4
r̂k

•

Figure 8. When we choose β > 0 large enough the ratio r̂k−1/r̂k =
21+β will be very large. This gives enough space for the lines
Pv(ẑv(k) + Rei) and Pv(ẑv̂(k) + Rej) to recede from each other before
they reach the boundary of the big cube. Especially, it follows from
this and the linearity of the mapping Pv that the intersection of the
sets Q3

(
Pv(ẑv(k)),

5
4
r̂k
)

+ Pv(Rei) and Q3
(
Pv(ẑv̂(k)),

5
4
r̂k
)

+ Pv(Rej) is

empty outside the cubes Q3
(
Pv(ẑw), 7

8
r̂k−1

)
, w ∈ Vk−1.

β3 > 0 such that if we choose β ≥ β3 in the definition of the Cantor set CB then we
get

Ŝ iv(1) ∩ Ŝ
j
v̂(1) =

((
Q3
(
(Pv(ẑv(1)), qr̂1

)
+ Pv(Rei)

)
∩
(
Q3
(
(Pv(ẑv̂(1)), qr̂1

)
+ Pv(Rej)

))
\Q3

(
Pv(ẑ0), 7

8
r̂0

)
= ∅,

see also Fig. 8. By working through all the combinations v(1), v̂(1) ∈ V we may also
assume that β3 > 0 is independent on the pair (v(1), v̂(1)) ∈ V × V. This gives us

that the sets Ŝ iv(k) are pairwise disjoint for k = 1.

To see that Ŝ iv(k) ∩ Ŝ
j
v̂(k) = ∅ for k ≥ 2 one may apply self similarity of the con-

struction together with the previous argument where k = 1. Self similarity argument
applies to this situation as the ratio r̂k−1/r̂k = 21+β stays the same for every k ∈ N
(see also Fig. 8).

Step 2C: Proving the inclusion Pv(Ŝ
i
v(k)) ⊂ Ŝ iv(k). Let us next recall the definition

of k-bars

Ĝi
v(k) := Q̂v(k) + Rei.

We also recall (see the paragraph after (3.5)) that there exists β1 > 0 such that if
we choose β ≥ β1 in the definition of the Cantor set CB, then we may define the
corresponding sliced k-bars for k-bars as

Ŝiv(k) := Ĝi
v(k) \

( ⋃
w∈Vk−2

Q(ẑw, r̂k−2)

)
.
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We want to show that Pv(Ŝ
i
v(k)) ⊂ Ŝ iv(k). For this we first observe that for every

x, y ∈ R4 such that ‖x− y‖ < r̂k, where ‖.‖ denotes the maximum norm, we have by
(3.2)

‖Pv(x)− Pv(y)‖ =
(
x1 − y1 − (x4 − y4)v1, x2 − y2 − (x4 − y4)v2,

x3 − y3 − (x4 − y4)v3, 0
)
≤ 5

4
‖x− y‖ < 5

4
r̂k.

Thus, it follows that

Pv(Ŝ
i
v(k)) ⊂ Q3

(
Pv(ẑv(k)),

5
4
r̂k
)

+ Pv(Rei),(3.16)

and hence the requirement that q ≥ 5
4

in the definition (3.6). Therefore it suffices

now to show that for every x ∈ Ŝiv(k) we have

‖Pv(x)− Pv(ẑw)‖ > 7
8
r̂k−1,(3.17)

whenever w ∈ Vk−1. Actually, by assuming that β ≥ β2 we need to verify (3.17) only

for every w ∈ Vk−1
v(k)(i). For this, let us assume that x ∈ Ŝiv(k) and w ∈ Vk−1

v(k)(i). Then

we have to consider two different cases:

(i) Suppose first that i 6= 4. If we denote y := ẑw we get |x4 − y4| < r̂k−1 and
|xi − yi| ≥ r̂k−2. Thus, it follows that

‖Pv(x)− Pv(y)‖ = ‖x− y − (x4 − y4)v‖ > r̂k−2 − 1
4
r̂k−1 >

7
8
r̂k−1,

simply because we know that β > 2 and (3.17) follows.
(ii) Next we assume that i = 4. If we write y := ẑv(k) − x we get that

|y4| ≥ r̂k−2 and |yi| < r̂k−1 for all i = 1, 2, 3.

These estimates give us

‖Pv(ẑv(k))− Pv(x)‖ = ‖Pv(y)‖ = ‖y − y4v‖ ≥ |14y4 − y3| ≥ 1
4
r̂k−2 − r̂k−1 >

7
8
r̂k−1,

which implies (3.17) by having β > 3.

Therefore, by combining (3.16) and (3.17) together we conclude that Pv(Ŝ
i
v(k)) ⊂ Ŝ iv(k)

as we wanted.

Step 2D: Conclusion of Step 2. In Step 1 we have already showed that Pv is
one-to-one on CB. Thus, it suffices to show that Pv is one-to-one also on KB \CB and
then we can easily see, for example by the linearity of Pv, that Pv is in fact one-to-one
on KB.

To see that Pv is one-to-one on KB \ CB suppose that ` and ˆ̀ are two distinct lines
in KB. It is easy to see that Pv is one-to-one along these lines and thus it suffices to
show that

Pv
(
` \ CB

)
∩ Pv

(
ˆ̀\ CB

)
= ∅.

For this we observe that the intersection of ` and ˆ̀ is either an empty set or one
point which lies in the set CB. Therefore we may find an index N ∈ N, and sequences
{Ŝiv(k)}∞k=N and {Ŝjv̂(k)}∞k=N of sliced k-bars such that {`∩Ŝiv(k)}∞k=N and {ˆ̀∩Ŝjv̂(k)}∞k=N

are two sequences of sets, and it holds that

lim
k→∞

` ∩ Ŝiv(k) = ` \ CB, lim
k→∞

ˆ̀∩ Ŝjv̂(k) = ˆ̀\ CB, and Ŝiv(k) ∩ Ŝ
j
v̂(k) = ∅
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for every k ≥ N . Furthermore, by step 2B and step 2C we have Pv(Ŝ
i
v(k)) ⊂ Ŝ iv(k)

and Pv(Ŝ
j
v̂(k)) ⊂ Ŝ

j
v̂(k) where Ŝ iv(k) ∩ Ŝ

j
v̂(k) = ∅, and therefore

Pv
(
` \ CB

)
∩ Pv

(
ˆ̀\ CB

)
⊂ lim

k→∞
Pv
(
Ŝiv(k)

)
∩ Pv

(
Ŝjv̂(k)

)
⊂ lim

k→∞
Ŝ iv(k) ∩ Ŝ

j
v̂(k) = ∅,

which ends this step.

Step 3: Defining the function g on X. We have that the sets Ŝ iv(k) (recall that

their definition is dependent on a positive parameter q) are disjoint if distinct. There-
fore also the sets, which one could call (punctured) pipes,
(3.18)

Ĥ i
v(k) := Ĥ i

ẑv(k)
:= ∂X

(
Q3(Pv(ẑv(k)), qr̂k) + Pv(Rei)

)
\
( ⋃

w∈Vk−1
v(k)

(i)

Q3(Pv(ẑw), 7
8
r̂k−1)

)
= ∂X

(
Q3(Pv(ẑv(k)), qr̂k) + Pv(Rei)

)
\
( ⋃

w∈Vk−1

Q3(Pv(ẑw), 7
8
r̂k−1)

)
,

are pairwise disjoint sets for distinct bars. Here ∂XA denotes the relative boundary
of a set A in X = R3 × {0}.

It is worth noticing that lines in KB parallel to ei are contained in the interior
of Ĝi

v(k)-type bars and therefore also the projection of the line is contained in the
3-dimensional interior of the projection of the bar. Especially the projection of a line
in KB never intersects a punctured pipe. When we say that the projection of a line
in KB is inside a pipe Ĥ i

ẑv(k)
we mean that the line in KB lies in the bar Ĝi

v(k) from

which we derived the pipe. In fact we can claim not only that the projection of lines
in KB do not intersect pipes, but further we know that the projection of a line in KB
lies inside the projection of some (k + 1)-bar and that means that there are no lines
in KB whose projection intersects the set

(3.19) Liv(k) := Ŝ iv(k) \
( ⋃

v(k+1)∈Vk+1

Ŝ iv(k+1)

)
.

With respect to this fact we will extend our Lipschitz function g in the following
way. We will define g on the projection of lines in KB and on punctured pipes. We
will show that our definition is Lipschitz and then extend it in a Lipschitz way inside
Liv(k). We will take care during the extension to guarantee that (3.3) holds, which
is not difficult. Then there will be some remaining part of X where we can define g
practically arbitrarily as long as we maintain the Lipschitz property.

As mentioned in our outline, we will define

g(Pv(x)) = −xn for x ∈ KB.

We now wish to show that this can be extended in a Lipschitz way onto X. Our
argument will make use of pipes, but for pipes of type Ĥ i

ẑv(k)
, with i = 1, 2, 3 it is

slightly more simple than for i = 4. We will deal with the simpler case first then note
the difference for the case i = 4.
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Step 3A. First we take a pipe Ĥ i
ẑv(k)

, with i = 1, 2, 3 and k ≥ 2. Then we define

g(x) = −(ẑv(k))4 for all x ∈ Ĥ i
ẑv(k)

.

Let us note that this definition is well-defined, if Ĥ i
ẑv(k)

= Ĥ i
ẑṽ(k)

then (ẑv(k))4 =

(ẑṽ(k))4. Now it is very easy to notice that if we have two pipes, one inside another

(that is ẑv(k+1) + Rei intersects Q̂v(k)), then

(3.20) dist(Ĥ i
ẑv(k)

, Ĥ i
ẑv(k+1)

) ≥ Cr̂k for a suitable C > 0 independent of k.

Further considering x ∈ Ĥ i
ẑv(k)

and y ∈ Ĥ i
ẑv(k+1)

we have

|g(x)− g(y)| = | − (ẑv(k))4 + (ẑv(k+1))4| = 1
2
r̂k.

Considering two distinct pipes of the same generation, both inside Ĥ i
ẑv(k)

we see that

dist(Ĥ i
ẑv̂(k+1)

, Ĥ i
ẑv(k+1)

) ≥ Cr̂k for a suitable C > 0 independent of k.

Furthermore, for x ∈ Ĥ i
ẑv̂(k+1)

and y ∈ Ĥ i
ẑv(k+1)

we have

|g(x)− g(y)| = | − (zv̂(k+1))4 + (zv(k+1))4| ≤ r̂k.

This proves that g, thus defined, on the pipes Ĥ i
ẑv(k)

, i = 1, 2, 3, is Lipschitz with

respect to parallel pipes.

Step 3B. Now consider a line l through the Cantor set CB parallel to ei, i ∈ {1, 2, 3},
whose projection lies inside the pipe Ĥ i

ẑv(k)
. For each such line l we define

(3.21) g(Pv(l)) = −x4 where x ∈ l ∩ CB.

Next, we calculate that

dist(Pv(l), Ĥ
i
ẑv(k)

) ≥ Cr̂k for a suitable C independent of k.

On the other hand we may observe that g is constant on each line Pv(l) described

above, and thus by taking z ∈ Pv(l), y ∈ Ĥ i
ẑv(k)

we observe

|g(z)− g(y)| = | − x4 + (ẑv(k+1))4| ≤ 2r̂k.

But this shows that we have defined g Lipschitz on the set of pipes and projection of
lines through the Cantor set for those pipes and lines parallel to ei, i = 1, 2, 3.

Strictly speaking we should check that our definition of g is Lipschitz, when we
compare x ∈ Ĥ i

ẑv(k)
and y ∈ Ĥj

ẑv(k)
for i, j ∈ {1, 2, 3} also for i 6= j but the consider-

ations and calculations from step 1 and step 2 show that the distance between these
pipes is at least Cr̂k and |g(x)− g(y)| ≤ 2r̂k and so this part of the argument is easy.
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Step 3C. Now we define g on Liv(k), i = 1, 2, 3, as follows (recall that Liv(k) are

defined in (3.19)). Choose i ∈ {1, 2, 3} and fix a 2-dimensional hyperplane Yi ⊂⊂ X

perpendicular to ei, such that Yi intersects all of the pipes Ĥ i
ẑv(k)

, k ≥ 2. We may

write

Yi =

{
yiei +

∑
j 6=i

tjej : tj ∈ R for every j 6= i

}
,

where yi ∈ R is fixed. We define a projection πYi from X onto Yi by

(πYi(x))j =

{
xj j 6= i

yi j = i.

We use the McShane extension theorem on the hyperplane Yi to extend g on those
parts of the set Yi∩

(⋃∞
k=2 Ŝ iẑv(k)

)
where we did not define g during the previous steps

(step 3A and 3B) and then we define g at other points x in Ŝ i :=
⋃∞
k=2 Ŝ iẑv(k)

by

simply projecting x onto Yi and then using g. In other words

(3.22) g(x) = g(πYi(x)) for all x ∈ Ŝ i.
Thus defined the function g is constant on the intersection of lines parallel to ei

with the set Ŝ i.

Step 3D. Our argument in the projection of bars parallel to e4 is identical to the
previous, up to the fact that we do not define g as constant equal to −(ẑv(k))4 on

pipes generated by Ĝ4
v(k)-type bars but by using an appropriate affine function. For

this we recall that ṽ =
(

1
16
, 1

8
, 1

4

)
and we denote

Y4 := {w ∈ R3 : 〈w, ṽ〉 = 0}.
Then we may separate R3 into the direct sum Rṽ ⊕ Y4. Now, suppose that λ0 ∈ R
and w0 ∈ Y4 are such that

Pv(ẑv(k)) = w0 + λ0ṽ.(3.23)

Then, if x̃ ∈ Ĥ4
v(k) ∪ Pv(ẑv(k) + Re4) we may find λ ∈ R and w ∈ Y4 such that

x̃ = w + λṽ which leads us to define

(3.24) g(x̃) = λ− λ0 − (ẑv(k))4 for every x̃ ∈ Ĥ4
v(k) ∪ Pv(ẑv(k) + Re4).

We proceed to prove that by defining

g(x̃) = λ− λ0 − (ẑv(k))4 for every x̃ ∈ Ĥ4
v(k) ∪ Pv(ẑv(k) + Re4)

g(Pv(x)) = −x4 for every x ∈ KB

we get a Lipschitz function on Ĥ4
v(k)∪Pv(ẑv(k) + Re4)∪Pv(KB). A first observation is

that for every x ∈ ẑv(k) + Re4 we find α such that x = ẑv(k) + αe4 and then by (3.13)
and (3.23) we get

Pv(x) = Pv(ẑv(k)) + αPv(e4) =
(
w0 + λ0ṽ − αṽ, 0

)
.

Now we will apply (3.24) with x̃ = Pv(x) = w0 + λ0ṽ − αṽ to get

g(Pv(x)) = λ0 − α− λ0 − (ẑv(k))4 = −x4 for all x ∈ ẑv(k) + Re4.
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The rest of the argument will be a case of proving that g has similar values on Ĥ4
v(k)

(up to an error of Cr̂k) and the distance between Pv(CB + Re4) and Ĥ4
v(k) is Cr̂k. Let

us continue to expound.
Our choice of β > 1 guarantees that the Cantor set CB is at a distance of at least

1
4
r̂k from the boundary of the cubes Q̂ẑv(k)

. Now we will take any c ∈ CB ∩ Q̂v(k) and

(recall the definition of k-bars from (3.4)) we will see that

c+ Re4 +Q(0, 1
4
r̂k) ⊂⊂ Ĝ4

ẑv(k)
.

Our projection Pv is continuous onto X and therefore there is a C > 0 such that

Pv(c+ Re4) +Q3(0, Cr̂k) ⊂ Pv(Ĝ
4
ẑv(k)

)

implying that there is C1 > 0 such that

(3.25) dist(Ĥ4
v(k), Pv(c+ Re4)) ≥ C1r̂k

for all v(k), all c and all k. Exactly the same argument gives that

(3.26) dist(Ĥ4
v(k), Pv(ẑv(k) + Re4)) ≥ C1r̂k.

Furthermore we can make the opposite estimates since for some C > 0

c+ Re4 +Q(0, Cr̂k) ⊃ Ĝ4
ẑv(k)

and the continuity of our projection gives

(3.27) dist(x, Pv(c+ Re4)) ≤ C2r̂k

for any x ∈ Ĥ4
v(k) and similarly

(3.28) dist(x, Pv(ẑv(k) + Re4)) ≤ C2r̂k,

for any x ∈ Ĥ4
v(k).

Now we will be able to show that g is a Lipschitz function when restricted to
Ĥ4

v(k)∪Pv(ẑv(k) + Re4). For every point x ∈ Ĥ4
v(k) we find a point w ∈ Pv(ẑv(k) + Re4)

such that g(x) = g(w) and |x− w| is bounded by a constant multiple of r̂k. Finally,
since g is linear on the line Pv(ẑv(k)+Re4) we will be able to prove the desired Lipschitz
quality of g by (3.26), when y is close to x and w, and by |w − y| ≈ |g(w) − g(y)|,
when y is far from x and w.

Now recall that Pv(Re4) = Rṽ (see (3.13)) and Y4 is the linear space perpendicular

to ṽ. We take x ∈ Ĥ4
v(k) and claim that there exists a unique w ∈ Pv(ẑv(k)+Re4)∩(x+

Y4), which is obvious because Pv(ẑv(k) + Re4) and x+ Y4 are a pair of perpendicular
affine spaces in a 3 dimensional space and the sum of their dimensions is 3. Quite
simply because x− w ∈ Y4 and Pv(ẑv(k) + Re4) is perpendicular to Y4 we see that w
is the closest point to x in Pv(ẑv(k) + Re4). Using (3.26) and (3.28) we may estimate

C1r̂k ≤ |w − x| ≤ C2r̂k.

Also, since (3.24) gives that g is constant on the intersection of any affine plane

parallel to Y4 with the set Ĥ4
v(k) ∪ Pv(ẑv(k) + Re4), we have that

g(x) = g(w).
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Now we may take any x ∈ Ĥ4
v(k), its corresponding w ∈ (x+ Y4) ∩ Pv(ẑv(k) + Re4)

and any y ∈ Pv(ẑv(k) + Re4) and calculate

|g(y)− g(x)| = |g(y)− g(w)| = |〈(y − w), ṽ
|ṽ|2 〉| = |ṽ|

−1|y − w|
|y − x| ≥ |y − w| − |w − x| ≥ |y − w| − C2r̂k.

When |y − w| > 2C2r̂k then |y − w| > 2|x− w| and therefore |x− y| > 1
2
|w − y| and

we may estimate

|g(x)− g(y)|
|x− y|

≤ 2|g(w)− g(y)|
|w − y|

≤ 2|w − y|
|ṽ||w − y|

.

When |y − w| ≤ 2C2r̂k we use (3.26)

|g(x)− g(y)|
|x− y|

≤ |w − y|
|ṽ|C1r̂k

≤ 2C2

C1|ṽ|
.

By a very similar argument we will proceed to prove that g is C3-Lipschitz when
restricted to Pv(KB)∪Pv(ẑv(k) +Re4). Take a point c ∈ CB and the unique ẑv(k) such
that c ∈ Qv(k). First we observe that

g(Pv(ẑv(k))) = −(ẑv(k))4 and g(Pv(c)) = −c4

and
|c4 − (ẑv(k))4| < Cr̂k.

If x ∈ Pv(c+ Re4) and y ∈ Pv(ẑv(k) + Re4) then

|g(x)− g(y)| ≤ 〈(x− y), ṽ
|ṽ|2 〉+ Cr̂k.

Further, distance estimates similar to (3.25)−(3.28) hold also for Pv(c + Re4) and
Pv(ẑv(k) + Re4), and therefore

|x− y| ≥ C〈(x− y),
ṽ

|ṽ|2
〉+ Cr̂k.

Hence
|g(x)− g(y)|
|x− y|

≤
〈(x− y), ṽ

|ṽ|2 〉+ Cr̂k

C〈(x− y), ṽ
|ṽ|2 〉+ Cr̂k

< C3.

This means, that g is C3-Lipschitz when restricted to

Pv(KB) ∪ Pv(ẑv(k) + Re4).

Now we can show that the restriction of g to Pv(KB) ∪ Ĥ4
v(k) ∪ Pv(ẑv(k) + Re4) is

Lipschitz. Assume that we have x ∈ Ĥ4
v(k) and y ∈ Pv(KB). If

|g(x)− g(y)| ≤ 2C2C3r̂k

then (3.25) says that g has been defined Lipschitz. Therefore we consider the case

|g(x)− g(y)| > 2C2C3r̂k.

We have a w ∈ (x+ Y4)∩Pv(ẑv(k) + Re4) and |x−w| < C2r̂k. Since g is C3-Lipschitz
when restricted to the set Pv(KB) ∪

⋃
v(k)∈Vk Pv(ẑv(k) + Re4) we have that

|w − y| ≥ |g(w)− g(y)|
C3

=
|g(x)− g(y)|

C3



29

and therefore

|x− y| ≥ |w − y| − |x− w| ≥ |g(x)− g(y)|
C3

− C2r̂k.

We get
|g(x)− g(y)|
|x− y|

≤ C3|g(x)− g(y)|
|g(x)− g(y)| − C3C2r̂k

≤ C3

1− 1
2

.

So we prove that g is 2C3C2C
−1
1 -Lipschitz when restricted to the set

Pv(KB) ∪
⋃

Pv(zv(k) + Re4) ∪
⋃

v(k)∈Vk
Ĥ4
ẑv(k)

.

Of course self-similarity means that 2C3C2C
−1
1 is independent of k.

It is not hard to estimate that

dist(Ĥ4
ẑv(k)

, Ĥ4
ẑṽ(k̃)

) ≈ r̂min{k,k̃}.

Therefore we see that the definition (3.24) is Lipschitz on the collection of all e4 pipes.
We use the construction described before (3.22) to get a Lipschitz extension which
guarantees that

(3.29) g(x+ tṽ) = g(x) + t

everywhere in Ŝ4
v(k), this time by projecting onto Y4.

Where not yet defined we may extend g Lipschitz arbitrarily, for example by the
McShane extension theorem.

Step 3E: verifying the condition (3.3). Now it is quite simple to notice that we
have

DiFg,u ◦ Fg,v(x) = ei, i = 1, 2, 3 and D4Fg,u ◦ Fg,v(x) = −e4

whenever xi ∈ [−1, 1] \ Ûk and xj ∈ Ûk+2 for all j 6= i. This can be seen from the
following arguments. Firstly, it follows from (3.13) that Pv(x+ tei) = Pv(x) + tei for
i = 1, 2, 3. On the other hand, one can see from (3.22) that if Pv(x) and Pv(x) + tei
lies in Ŝ iẑv(k)

, then g(Pv(x)) = g(Pv(x+ tei)). Thus, we have

Fg,v(x+ tei) = x+ tei + vg(Pv(x+ tei)) = Fg,v(x) + tei

and the similar identity holds for Fg,u. It follows that for each i = 1, 2, 3 it holds

(3.30) lim
t→0

Fg,u(Fg,v(x+ tei))− Fg,u(Fg,v(x))

t
= ei whenever Pv(x) ∈ Ŝ iẑv(k)

.

The argument for D4 is similar. We know (see (3.29)) that g has the following
property on a line segment parallel to ṽ e.g. {Pv(x) + tṽ, t ∈ I} which happens to lie

in Ŝ4
ẑv(k)

,

g(Pv(x) + tṽ) = g(Pv(x)) + t.

Now take a line segment in Ŝ4
ẑv(k)

parallel to e4. From (3.13) we know that

Pv(x+ te4) = Pv(x)− tṽ
and therefore

g(Pv(x+ te4)) = g(Pv(x))− t.
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Recalling that v = (ṽ, 1) we get

(3.31)

Fg,v(x+ te4) = x+ te4 + vg(Pv(x+ te4))

= x+ te4 − tv + vg(Pv(x))

= Fg,v(x)− tṽ.

At this point we need to finally choose q in the definition of Ŝ iv(k) (see (3.6)). For

every i ∈ {1, 2, 3} we have defined g in (3.21) on projection of line segments through

ẑv(k) so that g = −(ẑv(k))4 and hence for every x ∈ (ẑv(k) + Rei) ∩ Ŝiv(k) we have

(Fg,v(x))4 = (x+ vg(Pv(x)))4 = x4 + v4(−(ẑv(k))4) = x4 − (ẑv(k))4 = 0

and hence (
Fg,v

(
(ẑv(k) + Rei) ∩ Ŝiv(k)

))
4

= 0.

Analogously for i = 4 we defined g in (3.24) so that(
Fg,v

(
(ẑv(k) + Re4) ∩ Ŝ4

v(k)

))
4

= 0

for all ẑv(k). Since for all x ∈ Ŝiv(k) we find a y ∈ (ẑv(k) + Rei) ∩ Ŝiv(k) such that

‖x− y‖ ≤ r̂k we see that
|Fg,v(y)− Fg,v(x)| < Cr̂k

and so by Lipschitz continuity of Pu,

|Pu(Fg,v(y))− Pu(Fg,v(x))| < Cr̂k.

Therefore we find a q ≥ 5
4

which will now ensure that (note that there is q in the

definition of Ŝ iv(k) but not in the definition of Ŝiv(k))

(3.32) Pu(Fg,v(x)) ∈ Ŝ iv(k) for every x ∈ Ŝiv(k).

Now using (3.31), applying Fg,u and using (3.29) with (3.32) we get

(3.33)

Fg,u ◦ Fg,v(x+ te4) = Fg,v(x)− tṽ + ug(Pu(Fg,v(x))− tṽ)

= Fg,v(x)− tṽ + ug(Pu(Fg,v(x))− tu
= Fg,v(x) + ug(Pu(Fg,v(x))− te4

= Fg,u ◦ Fg,v(x)− te4,

where we used u = (−ṽ, 1). Now (3.33) easily gives us what we wanted to prove, i.e.
D4Fg,u ◦ Fg,v = −e4.

Given this, it suffices to realize that⋃
v(k)∈Vk

Ŝiv(k) = {x ∈ Rn : xi ∈ [−1, 1] \ Ûk−2, xj ∈ Ûk for all j 6= i}

and that Pv(Ŝ
i
v(k)) ⊂ Ŝ iv(k) to see that (3.3) is satisfied. This ends the proof of the

lemma. �

Lemma 3.5. Let F be a C-bi-Lipschitz map defined on Q(0, 1) that maps KB onto KB
and CB onto CB. Then there exists a constant C̃ > 0 such that for every x ∈ Q(0, 1)
we have

(3.34) C̃−1 dist(x,KB) < dist(F (x),KB) < C̃ dist(x,KB)
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and

(3.35) C̃−1 dist(x,CB) < dist(F (x), CB) < C̃ dist(x,CB).

Proof. We prove the first inequality in (3.34) by contradiction. Assume that we have
a sequence {xk}∞k=1 of points with the following property,

dist(F (xk),KB) < 1
k

dist(xk,KB).

Then applying F−1 to the points F (xk) and using the fact that F−1 is Lipschitz map
which maps KB onto KB we get that

dist(xk,KB) = dist
(
F−1(F (xk)), F

−1(KB)
)
≤ C dist(F (xk),KB) < C

1

k
dist(xk,KB)

for all k, which is a contradiction. Therefore we see that there exists some constant
C̃1 > 0 such that

C̃−1
1 dist(x,KB) ≤ dist(F (x),KB) for all x.

The second inequality in (3.34) is implied by the first and the fact that F−1 is a
bi-Lipschitz mapping, which maps KB onto KB. Thus we my find also a constant
C̃2 > 0 such that

dist(F (x),KB) < C̃2 dist(x,KB) for all x.

The proof of the two inequalities in (3.35) goes similarly and thus we may find
constants C̃3, C̃4 > 0 such that

C̃−1
3 dist(x,CB) < dist(F (x), CB) < C̃4 dist(x,CB) for all x.

The claim follows now by taking C̃ = max{C̃1, C̃2, C̃3, C̃4}. �

Proof of Theorem 3.1. First we need to find a suitable Cantor set CB. For this we
need to assume that β ≥ max{6, β1, β2, β3} in the definition of CB in subsection 2.6
where β1, β2, β3 are described in the proof of Lemma 3.4. Taking this Cantor set
CB we may apply Lemma 3.4. From Lemma 3.4 we get a vector v, such that Pv is
one-to-one on the set KB and further the function g(Pv(x)) = −x4 on Pv(KB) has a
Lipschitz extension on X = R3 × {0}, which we have defined in the end of the the
proof of Lemma 3.4. Define the vector u = (−v1,−v2,−v3, v4) and recall that we
have defined Fg,v : R4 → R4 as

(3.36) Fg,v(x) = x+ vg(Pv(x)).

Then consider the image of a point x ∈ KB for the map F := Fg,u ◦ Fg,v. First we
observe that

Fg,v(x) = x+ vg(Pv(x)) = x− x4

v4

v = Pv(x) for every x ∈ KB.

Furthermore, it is easy to see that the projections Pv and Pu are identities when
restricted to X = Pv(R4) = Pu(R4), which gives us

Pu(Fg,v(x)) = Pu(Pv(x)) = Pv(x) for all x ∈ KB.
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Therefore, for each x ∈ KB we can calculate

(3.37)

Fg,u ◦ Fg,v(x) = x+ vg(Pv(x)) + ug(Pu(Fg,v(x)))

= x+ vg(Pv(x)) + ug(Pv(x))

= x− vx4

v4

− ux4

v4

= (x1, x2, x3,−x4).

This means that Fg,u ◦ Fg,v is exactly the reflection in the last coordinate on KB as
in (3.1).

If we redefine g so that it is constant on a small ball B in X then we can find
a point x ∈ R4, which is mapped to the center of B by Fg,v. The projection Pv is
continuous and so V = P−1

v (1
2
B) is open. Now we call

U := {y ∈ V ;Pu(y) ∈ 1
2
B}

which is also an open neighbourhood of Pv(x) = Fg,v(x). Then W = F−g,v(U) is
an open neighbourhood of x mapped by Fg,v onto U . Then Pu(Fg,v(w)) ∈ B for all
w ∈ W . Let us denote by λ the constant value of g on B, then we have

g(Pv(w)) = g(Pu(Fg,v(w))) = λ.

Hereby we see using (3.36) that

Fg,u ◦ Fg,v(w) = w + vg(Pv(w)) + ug(Pu(Fg,v(w))) = w + λv + λu = w + 2λe4

for all w ∈ W which is an open set containing x. Our mapping f = Fg,u ◦ Fg,v is a
translation on V and the translation is obviously sense preserving. Now Fg,u ◦ Fg,v is
a bi-Lipschitz map that can equal a translation everywhere on a ball and therefore
must be sense-preserving. This ends the first part of the proof.

Next, it follows from Lemma 3.4 that if NF ∈ N is arbitrary and NF < j ≤ k then
F maps each line segment Ii parallel to ei which lies in

Ai,j−NF−1,k+NF = {x ∈ R4 : xi ∈ [−1, 1] \ Ûj−NF−1, xl ∈ Ûk+NF for l 6= i}
to a line segments parallel to ei as the derivative along the segment satisfies

DiF (x) =

{
ei if i = 1, 2, 3
−ei if i = 4

for every x ∈ Ai,j−NF−1,k+NF . Therefore it suffices to show that there exists NF ∈ N
such that the image F (Ii) of such a line segment Ii lies always in the set Ai,j−1,k.

Let us start by recalling from (2.7) that Ûk =
⋃
i Îi,k, where by choosing the center

points of the intervals to be ẑi,k we can write Îi,k = [ẑi,k − r̂k, ẑi,k + r̂k]. Thus

Ûk ⊂
⋃
i

[ẑi,k − 2r̂k, ẑi,k + 2r̂k].

This immediately gives that

(3.38) {y ∈ R : dist(y, CB) < r̂k+1} ⊂ Ûk ⊂ {y ∈ R : dist(y, CB) < 2r̂k},
and it follows that

Ai,j−1,k ⊃ {x ∈ R4 : dist(xi, CB) > 2r̂j−1, dist(xl, CB) < r̂k+1 for l 6= i} =: Âi,j−1,k.
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Therefore, it is enough to show that there is NF ∈ N such that F (x) ∈ Âi,j−1,k for
every x ∈ Ai,j−NF−1,k+NF whenever NF < j ≤ k.

Suppose that NF ∈ N and assume that x ∈ Ai,j−NF−1,k+NF where NF < j ≤ k.
Then it follows from (3.38) that

dist(x,CB + Rei) < c1r̂k+NF+1 and dist(x,CB) ≥ c−1
2 r̂j−NF−1,(3.39)

where the constants c1 > 0 and c2 > 0 depend only on the dimension n = 4 and on β.
If we apply the bi-Lipschitz property of F to (3.39), and the fact that F (CB + Rei) =
CB + Rei and F (CB) = CB we get

dist(F (x), CB + Rei) ≤ C dist(x,CB + Rei) < Cc1r̂k+NF+1

and with the help of Lemma 3.5

dist(F (x), CB) ≥ C−1 dist(x,CB) ≥ (Cc2)−1r̂j−NF−1,

where C ≥ 1 stands for the bi-Lipschitz constant of F . Thus, if we choose NF ∈ N
such that r̂NF < min{(Cc1)−1, 1

3
(Cc2)−1} and use the fact that r̂k = 2−k−βk = r̂k1 we

have that

dist(F (x), CB + Rei) < r̂k+1 and dist(F (x), CB) > 3r̂j−1.(3.40)

On the other hand, if we apply the triangle inequality to the point y = F (x) we get

3r̂j−1 < dist(y, CB) ≤ dist(yi, CB) + dist(y, CB + Rei) < dist(yi, CB) + r̂k+1,

where yi is the i-th coordinate of y. Thus, it follows that dist(yi, CB) > 2r̂j−1. Fur-
thermore, as it follows from (3.40) that

dist(yl, CB) ≤ dist(F (x), CB + Rei) < r̂k+1 for each l 6= i,

we get that F (x) ∈ Âi,j−1,k and the claim follows. �

4. The mapping St

The purpose of this section is to define a mapping which stretches CB back onto
CA and has the properties listed in Lemma 4.1. We use the notation Ûk, M̂k and Âk
introduced in (2.7) and (2.8) and we recall that

CB = CB × CB × CB × CB =
∞⋂
k=1

M̂k .

Lemma 4.1. There exists a sense-preserving homeomorphisms St : (−1, 1)4 → (−1, 1)4

such that:

(i) St maps CB onto CA and St = S−1
q on CB.

(ii) Mapping St is locally Lipschitz on (−1, 1)4 \ CB.

(iii) If Li is a line parallel to xi-axis with Li ∩ (Ûk)
4 6= ∅ then

|DiSt(x)| ≤ C
2βk

kα+1

for every x ∈ Li ∩
(
(Ûk−1)4 \ (Ûk)

4
)
.
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(iv) If k ≤ j ≤ 3k + 2 and x ∈ (Ûj \ Ûj+1)×
(
(Ûk)

3 \ (Ûk+1)3
)

then

|DSt(x)| ≤ C2βj.

The same holds for x ∈
(
(Ûk)

3 \ (Ûk+1)3
)
× (Ûj \ Ûj+1) and also for two other

permutations of coordinates.
(v) If x ∈ Û3k+3 ×

(
(Ûk)

3 \ (Ûk+1)3
)

then

|DSt(x)| ≤ C2β(3k+3).

The same holds for x ∈
(
(Ûk)

3 \ (Ûk+1)3
)
× (Û3k+3)3 and also for two other

permutations of coordinates.

Proof. In order to aid our construction, let us first recall and define some notation we
will use. We recall that if CA = CA ×CA ×CA ×CA and CB = CB ×CB ×CB ×CB are
the Cantor sets defined in subsection 2.5 and 2.6 then we may write

CA =
∞⋂
k=1

2k⋃
i=1

Ii,k and CB =
∞⋂
k=1

2k⋃
i=1

Îi,k,(4.1)

where the closed intervals Ii,k and Îi,k have the lengths

`k = L1(Ii,k) = 2−k
(

1 +
1

(k + 1)α

)
and ˆ̀

k = L1(Îi,k) = 2−kβ−k+1.(4.2)

Moreover, we have Ii,k ∩ Ij,k = ∅ for i 6= j, I2i−1,k ∪ I2i,k ⊂ Ii,k−1 and Ii,k lies more to

the left than Ii+1,k (similar properties holds also for the intervals Îi,k).
Then there exists a natural function t : R → R which maps CB onto CA. In fact t

is a uniform limit of functions tk : R→ R, k = 0, 1, 2, . . ., such that

(1) t0(x) = x,

(2) tk maps each Îi,k onto Ii,k linearly,

(3) tk maps each of the three parts of Îi,k−1\(Î2i−1,k∪ Î2i,k) onto the corresponding
parts of Ii,k−1\(I2i−1,k ∪ I2i,k) linearly, and

(4) tk = tk−1 outside
⋃2k

i=1 Îi,k−1.

Note that then we have t = q−1 where q is the function defined in subsection 2.7. It
follows that (t(x1), t(x2), t(x3), t(x4)) = S−1

q (x).
The definition of the mapping St will make use of the standard frame-to-frame

maps H3
k , H

3 and H4
k , H4 described in Section 2.8. In a rough, intuitive sense we

want a map that behaves very much like H4
k on parts of the frame “far away” from

KB, (i.e. in
(
(Ûk−1)4 \ (Ûk)

4
)
\Âk) and on hyperplanes in Âk perpendicular to lines in

KB acts like the higher iterations of the frame-to-frame map H3
3k. Our strategy is to

define a map which equals (up to some isometric rotation) H3
3k on each face of each

cube in (Ûk)
4 =

⋃
v(k)∈Vk Qv(k). We extend this mapping into (Ûk)

4 \ (Ûk+1)4 simply

as the frame to frame mapping H4
k on

(
(Ûk)

4 \ (Ûk+1)4
)
\ Âk. Inside the “tubes” of

type
(
(Ûk)

4 \ (Ûk+1)4
)
∩Âk we use a suitable convex combination of the maps defined

on the faces to extend the map inside the frame.
We refer to the i-th canonical projection πi as the linear map

πi(x) = (x1, . . . , xi−1, 0, xi+1, . . . , x4).
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•
ẑv(k)

Ê2,k

e2

e1

Q̂′v(k)

Q̂v(k)

Figure 9. The part of the set Ê2,k which lies inside the frame Q̂′v(k) \
Q̂v(k) in two dimensions.

Take i ∈ {1, 2, 3, 4}. We will also denote x̃i = (x1, . . . xi−1, xi+1, . . . x4) ∈ R3. Using
this notation we define the linear isomorphic isometry Li : Ri−1 × {0} × R4−i → R3

defined as Li(πi(x)) = x̃i. Furthermore, we define

H3,i
k (x) = L−1

i ◦H3
k ◦ Li ◦ πi(x),

H3,i(x) = L−1
i ◦H3 ◦ Li ◦ πi(x).

For a point x ∈ (Ûk−1)4 \ (Ûk)
4 we will define the functions

di,k(x) =
min{|xi − (ẑv(k))i| : v(k) ∈ Vk} − r̂k

1
2
r̂k−1 − r̂k

.

The set Îi,k−1\(Î2i−1,k∪ Î2i,k) of intervals, whose union is Ûk−1\Ûk, can be decomposed
to four closed (maximal) intervals with disjoint interiors so that each function di,k is

linear in xi on each of these four subintervals. Further, if x ∈ (Ûk−1)4 and xi ∈
Ûk−1 \ Ûk then we have

di,k(x) = 4
dist(xi, Ûk)

ˆ̀
k−1 − 2ˆ̀

k

(4.3)

which takes values between 0 and 1. Using these functions we can divide the frame
into the parts where we are furthest from its center in the direction ei, which are the
sets (see Fig. 9.)

Êi,k =
{
x ∈ (Ûk−1)4 \ (Ûk)

4 : min
v(k)∈Vk

|xi − (ẑv(k))i| ≥ min
v(k)∈Vk

|xj − (ẑv(k))j| for all j 6= i
}

= {x ∈ (Ûk−1)4 \ (Ûk)
4 : di,k(x) ≥ dj,k(x) for all j 6= i}.

For technical reasons it is also convenient to define the corresponding sets Ei,k in the
target, i.e.,

Ei,k =
{
y ∈ (Uk−1)4 \ (Uk)

4 : min
v(k)∈Vk

|yi − (zv(k))i| ≥ min
v(k)∈Vk

|yj − (zv(k))j| for all j 6= i
}
.

We will next use the convex combinations of the maps H3,i
3k−3 and H3,i

3k in the sets Êi,k
together with some correction mapping to define the mapping St.
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We cut the set Êi,k into hyperplane slices with hyperplanes perpendicular to ei,

Êi,k∩{xi = c}. On these planes we apply Li ◦πi, which shifts it onto a corresponding
hyperplane {xi = 0} and then rotates it onto R3. Then we can apply a convex
combination of the 3-dimensional frame-to-frame maps

Ai,k(x) := di,k(x)H3
3k−3(x) + (1− di,k(x))H3

3k(x)

and then reverse the rotation using L−1
i . Now we shift the hyperplane into the right

position by adjusting the i-coordinate so that it corresponds to the i-th coordinate of
the frame-to-frame map, i.e. ((H4

k)(x))i = t(xi). In summary, we define

(4.4) St(x) = di,k(x)H3,i
3k−3(x) + (1− di,k(x))H3,i

3k (x) + t(xi)ei︸ ︷︷ ︸
=Ai,k(x)+t(xi)ei

for x ∈ Êi,k.

We need to show that St defines a homeomorphism which satisfies all the conditions
(i)-(v) in Lemma 4.1.

Step 1: Proving that St is a homeomorphism. First we show that (4.4) yields a

homeomorphism. The first observation in this direction is that St maps (Ûk−1)4\(Ûk)4

onto (Uk)
4 \ (Uk+1)4 for each k ∈ N. To see this we observe that in the expression

St(x) = Ai,k(x) + t(xi)ei for every x ∈ Êi,k

the mapping Ai,k maps each hyperplane in Êi,k perpendicular to ei homeomorphically
to a hyperplane in Ei,k perpendicular to ei. Moreover, at the end of subsection 2.8
we have shown that for each fixed α ∈ (0, 1) the mapping

αH3
3k−3(x) + (1− α)H3

3k(x)

is a homeomorphism in R3 and thus Ai,k(x) on the hyperplane is a homeomorphism.

Furthermore, we have that t(Ûk) = Uk for every k. Thus, it is quite easy to see that

St actually maps each set Êi,k onto Ei,k homeomorphically.

Next we will show that St defines a homeomorphism from (Ûk−1)4 \ (Ûk)
4 onto

(Uk−1)4 \ (Uk)
4. For this it suffices to show that in the critical set

Êi,k ∩ Êj,k =
⋃

v(k)∈Vk

{
x ∈ Q̂′v(k) \ Q̂v(k) : |x− ẑv(k)| = |xi − (ẑv(k))i| = |xj − (ẑv(k))j|

}
the expressions in (4.4) coincide. This gives us that St is continuous in (Ûk−1)4\(Ûk)4.

For this, let us assume that x ∈ Êi,k ∩ Êj,k. Then one can show that

(H3,i
3k−3(x))j = (H3,i

3k (x))j = t(xj) and (H3,i
3k−3(x))i = (H3,i

3k (x))i = t(xi).

Thus, we get that

H3,i
3k−3(x) = H3,j

3k−3(x) + (H3,i
3k−3(x))jej − (H3,j

3k−3(x))iei

= H3,j
3k−3(x) + t(xj)ej − t(xi)ei.

and

H3,i
3k (x) = H3,j

3k (x) + (H3,i
3k (x))jej − (H3,j

3k (x))iei

= H3,j
3k (x) + t(xj)ej − t(xi)ei.
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Thus, it follows that

Ai,k(x) + t(xi)ei = di,k(x)H3,i
3k−3(x) + (1− di,k(x))H3,i

3k (x) + t(xi)ei

= dj,k(x)H3,i
3k−3(x) + (1− dj,k(x))H3,i

3k (x) + t(xi)ei

= dj,k(x)H3,j
3k−3(x) + (1− dj,k(x))H3,j

3k (x) + t(xj)ej

= Aj,k(x) + t(xj)ej,

as we wanted.
We have now shown that St defines a homeomorphism on each set (Ûk−1)4 \ (Ûk)

4.
Next, we will show that St defines a homeomorphism on (−1, 1)4 \CB. Because St is

a homeomorphisms on each set (Ûk−1)4 \ (Ûk)
4 and these sets are pairwise disjoint it

suffices to show that in the critical set

Ck := (Ûk−1)4 \ (Ûk)4 ∩ (Ûk)4 \ (Ûk+1)4

the expressions in (4.4) coincide. For this, it suffices to prove that for every i =
1, 2, 3, 4 these expressions coincide along the lines

liv(k) = ẑv(k) + x̂i + sei, s ∈ R,

where x̂i = (x1, . . . , xi−1, 0, xi+1, . . . , x4) with |xj| < r̂k for every j 6= i. However, this
is clear as

lim
s→r̂+k

St(ẑv(k) + x̂i+sei) = lim
s→r̂+k

( =Ai,k(ẑv(k)+x̂i+sei)︷ ︸︸ ︷(
di,kH

3,i
3k−3 + (1− di,k)H3,i

3k

)
(ẑv(k) + x̂i + sei) +t(s)ei

)
= H3,i

3k

(
ẑv(k) + x̂i + r̂kei

)
+t(r̂k)ei

= lim
s→r̂−k

((
di,k+1H

3,i
3k + (1− di,k+1)H3,i

3k+1

)
(ẑv(k) + x̂i + sei) + t(s)ei

)
= lim

s→r̂−k
St(ẑv(k) + x̂i + sei),

thus we have shown that St defines a homeomorphism on (−1, 1)4 \ CB.
Finally, since St is a homeomorphism on all frames that sends frames to frames, St

is extended homeomorphically as St(x) = S−1
q (x) = (t(x1), t(x2), t(x3), t(x4)) to CB.

Especially, St will then take CB onto CA, and thus (i) follows. It is also easy to see
that for a fixed k the mapping H3

3k is Lipschitz and hence St defined by (4.4) is a
locally Lipschitz mappings on on (−1, 1)4 \ CB which implies (ii).

Step 2: Calculating the derivatives of St. We now calculate the derivative of the
mapping St on Û4

k−1 \ Û4
k . More precisely, we want to verify the conditions (iii)-(v).

In the following calculations we will rely on (2.13) to calculate the derivative.

Step 2A: Proving the condition (iii). Suppose that Li is a line parallel to xi-axis

with Li ∩ (Ûk)
4 6= ∅. Then it follows that Li ∩

(
(Ûk−1)4 \ (Ûk)

4
)
⊂ Êi,k.

(1) Let us first assume that x ∈ Li ∩ Êi,k with xi ∈ Ûk−1 \ Ûk and x̃i ∈ (Ûk−1)3 \
(Û3k−3)3. In this case Ai,k is a constant function in xi-direction and therefore

|DiSt(x)| = |t′(xi)| ≤
ak−1 − ak
bk−1 − bk

≤ C
2kβ

kα+1
.
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(2) Let us next assume that x ∈ Li ∩ Êi,k with xi ∈ Ûk−1 \ Ûk and x̃i ∈ (Û3k−3)3.

We recall that the maps H3,i
3k−3 and H3,i

3k are independent on xi which implies

DiH
3,i
3k−3(x) = 0 and DiH

3,i
3k (x) = 0

and by the construction of mappings H3k we easily obtain

‖H3,i
3k−3 −H

3,i
3k ‖ ≤ 2−3k+4.

On the other hand by applying (4.3) we may conclude that

(4.5) |Didi,k(x)| ≤ 4

ˆ̀
k−1 − 2ˆ̀

k

≤ C
1
2
r̂k−1 − r̂k

.

By combining these facts we get

|DiSt(x)| ≤ |DiAi,k(x)|+ |t′(xi)|
≤ |Didi,k(x)||H3,i

3k−3(x)−H3,i
3k (x)|+ |t′(xi)|

≤ C
‖H3,i

3k−3 −H
3,i
3k ‖

1
2
r̂k−1 − r̂k

+
ak−1 − ak
bk−1 − bk

≤ C
2βk

23k−4
+ C

2kβ

kα+1
≤ C

2kβ

kα+1
,

as we wanted. Now (1) and (2) together will give us (iii).

Step 2B: Proving the condition (iv). Let us next assume that x ∈ (Ûj \ Ûj+1)×(
(Ûk)

3 \ (Ûk+1)3
)

with k ≤ j ≤ 3k + 2. The case j = k is easy to deal with and

therefore we may assume that j > k. In this case we have that x ∈ Êi,k for some
i 6= 1. With the help of (4.5) we easily obtain

|Ddi,k(x)| ≤ C max{2βk, 2βj} and |di,k(x)| ≤ 1 for every x.

Moreover, we also have max{H3,i
3k−2(x), H3,i

3k (x)} ≤ 1 for every x. As x /∈ (Ûj+1)4 we

easily obtain H3,i
3k (x) = H3,i

j+1(x) and thus using (2.12) that

|DH3,i
3k (x)| ≤ C2βj.

Thus, it follows from (4.4) and (2.12) that for every l 6= i

|DlSt(x)| ≤ |Ddi,k(x)|
(
|H3,i

3k−2(x)|+ |H3,i
3k (x)|

)
+ |di,k(x)|

(
|DlH

3,i
3k−2(x)|+ |DlH

3,i
3k (x)|

)
≤ C max{2βk, 2βj}+ |DlH

3,i
3k−2(x)|+ |DlH

3,i
3k (x)|

≤ C max{2βk, 2βj}+ C2βj ≤ C2βj.

On the other hand, it follows from the step 2A that |DiSt(x)| ≤ C 2βk

kα+1 . Thus, because
j > k we may estimate

|DSt(x)| ≤ C2βj.

There is no difference in the proof for x ∈
(
(Ûk)

3 \ (Ûk+1)3
)
× (Ûj \ Ûj+1) and also for

two other permutations of coordinates, and thus this ends the proof of (iv).
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Step 2C: Proving the condition (v). Finally, assume that x ∈ Û3k+3 ×
(
(Ûk)

3 \
(Ûk+1)3

)
. Again, we have that x ∈ Êi,k for some i 6= 1. By applying (4.4) and (2.14)

we have

|DlSt(x)| ≤ C max{2β(3k+3), 2βk} ≤ C2β(3k+3) for every l 6= i.

On the other hand, it follows from the step 2A that |DiSt(x)| ≤ C 2βk

kα+1 , and thus we
conclude

|DSt(x)| ≤ C2β(3k+3).

There is no difference in the proof for the other permutations of coordinates, and thus
this ends the proof of (v).

�

5. Proof of Theorem 1.2 for n = 4

We will now define the mapping f : (−1, 1)4 → (−1, 1)4 by

f = St ◦ F ◦ Sq .

Let us first remark that as a composition of three sense-preserving homeomorphisms
Sq, F and St the mapping f is obviously a sense-preserving homeomorphism.

5.1. The sign of the Jacobian: We need to show that Jf > 0 on a set of positive
measure and Jf < 0 on a set of positive measure. We know that Sq and F are
Lipschitz maps, and by Lemma 4.1 (ii) that St is locally Lipschitz outside the set
CB = (F ◦ Sq)(CA) and hence f is locally Lipschitz outside of CA. Therefore f is a
sense-preserving homeomorphism which is locally Lipschitz there and hence Jf ≥ 0
outside of CA (see e.g. [24]). We may also require that Jf is not identically zero on
{x : Jf ≥ 0} because otherwise by [22] f would not satisfy Lusin’s condition (N) on
this set which cannot happen for a locally Lipschitz map, see e.g. [23, Theorem 4.2].
Hence L4({x : Jf > 0}) > 0.

Now we show that Jf (x) < 0 for almost every x ∈ CA. For this let us fix x ∈ CA.
If q and t are the functions in the definitions of homeomorphisms Sq and St we may
observe that for every x ∈ CA we have

(5.1)

f(x) = (St ◦ F ◦ Sq)(x) = (St ◦ F )(q(x1), q(x2), q(x3), q(x4))

= St
(
q(x1), q(x2), q(x3),−q(x4)

)
= St

(
q(x1), q(x2), q(x3), q(−x4)

)
=
(
t(q(x1)), t(q(x2)), t(q(x3)), t(q(−x4))

)
= (x1, x2, x3,−x4) .

Here we have used the following facts in the given order:

(i) Sq(x) ∈ CB for every x ∈ CA,
(ii) F (z) = (z1, z2, z3,−z4) for every z ∈ CB,
(iii) the function q is odd, i.e. q(−s) = −q(s) for every s ∈ (−1, 1),
(iv) if x4 ∈ CB then also −x4 ∈ CB,
(v) St(x) = (t(x1, t(x2), t(x3), t(x4)) on CB by Lemma 4.1 (i), and
(vi) t = q−1.

It follows that at the points of density of CA we know that the approximative derivate
equals to the reflection in the last coordinate and hence the determinant of this matrix
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is −1. Once we show that f is Sobolev mapping we will know that its distributional
derivative equals to approximative derivative a.e. and hence Jf (x) = −1 a.e. on CA.

5.2. ACL condition: To verify the ACL-condition for f let us suppose that L is a
line segment parallel to xi-axis and consider the following cases:

Case 1: Suppose first that L ∩ CA = ∅. We know that both mappings Sq and F
are Lipschitz maps, and by Lemma 4.1 (ii) that St is locally Lipschitz outside the set
CB = (F ◦ Sq)(CA). Thus, the mapping f = St ◦ F ◦ Sq is locally Lipschitz outside
the set KA. It follows that f is Lipschitz and hence also absolutely continuous on the
segment L.

Case 2: Suppose next that L ∩ CA 6= ∅, which means that L ⊂ KA. The line L
decomposes into the part of L in CA, and segments, which are mapped by f onto
segments. On the parts of lines L intersecting CA we use (5.1) to see that f is in fact
1-Lipschitz continuous on L ∩ CA. Now it remains to consider L \ CA.

We fix k ∈ N and use the fact that

L ∩
(
(Uk)

4 \ (Uk+1)4
)

=
⋃

v(k)∈Vk
L ∩ (Q′v(k) \Qv(k)).

Further, L ∩ (Q′v(k) \ Qv(k)) is either empty or made up of two segments L1
v(k), L

2
v(k)

(recall that we assume now L∩CA 6= ∅). Each of these segments has length 1
2
rk−1−rk,

which is squeezed by Sq into a segment parallel to xi of length 1
2
r̂k−1 − r̂k. We then

apply the mapping F , which merely reflects the segment in the last variable (see (3.1)).
Finally we apply the mapping St which maps each of the segments F (Sq(L

1
v(k))) and

F (Sq(L
2
v(k))) onto a segment. Since Dif is constant on L1

v(k) and L2
v(k), we have that

f maps each segment to a segment at constant speed. Therefore the restriction of f
to each segment is Lipschitz. Then we can estimate the length of the image of the
segment using Lemma 4.1 (iii) as follows

H1(f(L1
v(k))) = H1(f(L2

v(k))) = |DiSt(x)|(1
2
r̂k−1 − r̂k)

≤ C
2βk

kα+1
(2−k2−βk) ≤ C

(
1
2
rk−1 − rk

)
.

The length of each segment has increased by no more than a factor of C. Thus we
see that the restriction of f to L\CA is Lipschitz continuous and hence it is Lipschitz
on the whole L and therefore absolutely continuous on L.

5.3. Sobolev regularity of the mapping: We would like to estimate∫
(−1,1)4

|Df(x)|p dx ≤ C
4∑
i=1

∫
(−1,1)4

|Dif(x)|p dx,

where Dif denotes the derivative with respect to xi coordinate. Without loss of
generality it is enough to estimate∫

(−1,1)4
|D1f(x)|p dx =

∫
(−1,1)3

∫ 1

−1

|D1f(x1, x̃)|p dx1 dx̃,(5.2)

where x̃ = (x2, x3, x4) (derivatives in the other directions can be estimated analo-
gously). For this, let us recall that the Cantor type sets CA and CB were constructed
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as the intersections of the sets⋃
v(k)∈Vk

Qv(k) = Uk × Uk × Uk × Uk and
⋃

v(k)∈Vk
Q̂v(k) = Ûk × Ûk × Ûk × Ûk,

where Uk =
⋃2k

i=1 Ii,k and Ûk =
⋃2k

i=1 Îi,k. Moreover, recall also that

Pk := Uk × Uk × Uk and P̂k := Ûk × Ûk × Ûk.
Then the sets Pk and P̂k are formed by 23k cubes.

Let us consider several possibilities. If x̃ ∈ CA ×CA ×CA then it is easy to see that
f restricted to the line [−1, 1] × {x̃} is in fact Lipschitz as it was explained at the
end of subsection 5.2. It thus remains to estimate the integral (5.2) for x̃ in the sets
Pk \ Pk+1. Because the mapping f is locally Lipschitz on [−1, 1]4 \ CA it suffices to
analyze the mapping only near the set CA, i.e. on the set U4

k0
. For this fix now the

exponent p ∈ [1, 2) and put

α =
2p

2− p
,

and β large enough for Theorem 3.1. Then we may find an index k0 ≥ 4NF +5, where
NF ∈ N is from Theorem 3.1, large enough so that

(5.3) max{2−kpβ/2k(p−1)(α+1), 2−pβ(k+1
k

)α} < 1 for all k ≥ k0.

Let us then fix k ≥ k0 and suppose that x̃ ∈ Pk \ Pk+1. We will define the following
divisions of the segment L(x̃) = L := [−1, 1]× {x̃} according to x1 ∈ [−1, 1] into the
following sets

Lj = {(x1, x̃) : x1 ∈ Uj \ Uj+1} and L0 = {(x1, x̃) : x1 ∈ CA}.
The aim of the following calculations is to prove the estimate (5.16) below.

Case 1: Consider first those parts of the line segment L which are far away from the
set CA. More precisely, suppose that k ≥ k0 and

x ∈ Lj with j = 1, . . . , k − 2NF − 3.

First we observe that Sq maps the line segment Lj which is parallel to x1-axis to a

line segment L1
j which is also parallel to x1-axis and lies inside the set (Ûj \ Ûj+1)×

(P̂k \ P̂k+1). Furthermore, we may estimate the derivative of Sq in the x1-direction as

|D1Sq(x)| ≤ C2−βjjα+1,(5.4)

(see subsection 2.7).
Next we observe that

L1
j ⊂ ([−1, 1] \ Û(j+NF+2)−NF−1)×

(
(Û(k−NF )+NF )3 \ (Û(k−NF+1)+NF )3

)
⊂ A1,(j+NF+2)−NF−1,(k−NF+1)+NF ,

where NF < j +NF + 2 ≤ k−NF + 1, and thus it follows from Theorem 3.1 that the
bi-Lipschitz map F maps L1

j to a line segment L2
j parallel to x1-axis such that

L2
j ⊂ A1,(j+NF+2)−1,k−NF .

Moreover, because F is a bi-Lipschitz map, we have

|D1F (Sq(x))| ≤ Lip(F ) for a.e. x ∈ Lj,(5.5)
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where Lip(F ) stands for the Lipschitz constant of the mapping F .
Finally, because F (Sq(Lj)) = L2

j is a line segment parallel to x1-axis which is

contained in set [−1, 1]4 \ (Ûj+NF+1)4 it follows from Lemma 4.1 (iii) that

|D1St(F (Sq(x)))| ≤ C max
1≤l≤j+NF+1

2βll−(α+1) ≤ C2βjj−(α+1)(5.6)

with C independent of j, k.
If we now put together the estimates (5.4), (5.5) and (5.6) the chain rule gives us

|D1f(x)| ≤ C for a.e. x ∈ Lj,(5.7)

where C is an absolute constant.

Case 2: Let us next assume that

x ∈ Lj with k − 2NF − 3 < j ≤ 3k − 3NF − 3.

Again Sq maps the line segment Lj which is parallel to the x1-axis to a line segment

L1
j which is also parallel to x1-axis and lies inside the set (Ûj \ Ûj+1) × (P̂k \ P̂k+1).

Furthermore, we have

|D1Sq(x)| ≤ C2−βjjα+1,(5.8)

with C independent of j, k.
Next, we recall again that

|D1F (Sq(x))| ≤ Lip(F ) for a.e. x ∈ Lj.(5.9)

Moreover, it follows from the assumption j ≥ k − 2NF − 2 that

L1
j ⊂ {x ∈ [−1, 1]4 : dist(x,KB) > min{r̂j − r̂j+1, r̂k − r̂k+1}

}
⊂
{
x ∈ [−1, 1]4 : dist(x,KB) > min{2−β(j+1)−(j+1), 2−β(k+1)−(k+1)}

}
⊂
{
x ∈ [−1, 1]4 : dist(x,KB) > min{2−β(j+1)−(j+1), 2−β(j+2NF+3)−(j+2NF+3)}

}
⊂
{
x ∈ [−1, 1]4 : dist(x,KB) > 2−β(j+2NF+3)−(j+2NF+3)

}
.

Suppose now that C̃ > 0 is the constant given by Lemma 3.5.
We may assume that NF ∈ N is so large that C̃−1 > 23β+12−βNF−NF . We may

assume this because if Theorem 3.1 holds for a certain NF , then it immediately holds
for any ÑF ≥ NF .

Then it follows from Lemma 3.5 and from the inclusion above that

F (L1
j) b

{
x ∈ [−1, 1]4 : dist(x,KB) > C̃−12−β(j+2NF+3)−(j+2NF+3)

}
⊂
{
x ∈ [−1, 1]4 : dist(x,KB) > 2−β(j+3NF )−(j+3NF )

}
.

Thus, we have that F (L1
j) is contained in the following union of four sets

F (L1
j) ⊂

(
([−1, 1] \ Ûj+3NF )×

(
[−1, 1]3 \ (Ûj+3NF )3

))
∪

· · · ∪
((

[−1, 1]3 \ (Ûj+3NF )3
)
× ([−1, 1] \ Ûj+3NF )

)
.

Without loss of generality suppose that

F (L1
j) ⊂ ([−1, 1] \ Ûj+3NF )×

(
[−1, 1]3 \ (Ûj+3NF )3

)
.
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Then by Lemma 4.1 (iv) it follows that

|DSt(F (Sq(x)))| ≤ C2βj for every x ∈ Lj.(5.10)

If we now combine the estimates (5.8), (5.9) and (5.10) the chain rule gives us

|D1f(x)| ≤ Cjα+1 for a.e. x ∈ Lj.(5.11)

Case 3: Let us now assume that

x ∈ Lj with j > 3k − 3NF − 3.

Also in this case Sq maps the line segment Lj to a line segment L1
j parallel to x1-axis

and inside the set (Ûj \ Ûj+1)× (P̂k \ P̂k+1), and we have

|D1Sq(x)| ≤ C2−βjjα+1.(5.12)

Also the derivative of F can be estimated again by

|D1F (Sq(x))| ≤ Lip(F ) for a.e. x ∈ Lj.(5.13)

Moreover, as x ∈ [−1, 1]4 \ (Ûk+1)4 we have

[−1, 1]4 \ (Ûk+1)4 ⊂ {y ∈ [−1, 1]4 : dist(y, CB) > r̂k+1 − r̂k+2}
⊂ {y ∈ [−1, 1]4 : dist(y, CB) > 2−β(k+2)−(k+2)}.

If we then assume that C̃ > 0 is the constant in Lemma 3.5 we may again assume
that C̃−1 > 2β+12−βNF−NF (see case 2). Then it follows from Lemma 3.5 and from
the inclusion above that

F (Sq(x)) ∈ {z ∈ [−1, 1]4 : dist(z, CB) > C̃−12−β(k+2)+(k+2)}
⊂ {z ∈ [−1, 1]4 : dist(z, CB) > 2−β(k+NF+2)−(k+NF+2)}

⊂ [−1, 1]4 \ (Ûk+NF+2)4.

Thus, it follows from Lemma 4.1 (iv) and (v) that we may estimate

|DSt(F (Sq(x)))| ≤ C2β(3k−3NF−3).(5.14)

If we now combine (5.12), (5.13) and (5.14) the chain rule gives us

|D1f(x)| ≤ Cjα+12−β(j−3k) for a.e. x ∈ Lj.(5.15)

Estimating the Sobolev norm of f : The above estimates (5.7), (5.11) and (5.15)
can be summarized as follows. Suppose that k ≥ k0 and let x ∈ Lj := (Uj\Uj+1)×{x̃}
with x̃ ∈ Pk \ Pk+1. Then

(5.16) |D1f(x)| ≤


C if 1 ≤ j ≤ k − 2NF − 3

Cjα+1 if k − 2NF − 3 < j ≤ 3k − 3NF − 3

Cjα+12−β(j−3k) if j > 3k − 3NF − 3,

where the constant C does not depend on k or j.
Also note that Sq maps CA ×R3 onto CB ×R3 and using |CA| > 0 and |CB| = 0 we

easily obtain |D1Sq| = 0 on CA × R3. As F is just a reflection on CB × R3 and St is
locally Lipschitz on [−1, 1]4 \ CB, we easily obtain that

|D1f | = 0 on (CA × R3) \ CA.
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Therefore, for x̃ ∈ Pk \ Pk+1 we can calculate∫
(−1,1)

|D1f(x1, x̃)|p dx1 =

∫
(−1,1)\CA

|D1f(x1, x̃)|p dx1

=
∞∑
j=1

∫
Uj\Uj+1

|Df(x1, x̃)|p dx1.

We use the fact that f is Lipschitz on [−1, 1]4 \ (Uk0)
4 for every fixed k0 to see that∫

(−1,1)

|D1f(x1, x̃)|p dx1 ≤ C +
∞∑
j=k0

∫
Uj\Uj+1

|D1f(x1, x̃)|p dx1

for every x̃ ∈ U3
k \ U3

k+1 with k ≥ k0.
Let us next estimate the measure of the set {x1 ∈ [−1, 1] : x1 ∈ Uj \ Uj+1}. For

every given j this set contains 2j line segments each having length which can be
approximated above by 2−j

(
1 + 1

(j+1)α
− 1− 1

(j+2)α

)
. Thus the measure of the set can

be approximated as

L1(Uj \ Uj+1) ≤ C2j2−j
(

1 +
1

(j + 1)α
− 1− 1

(j + 2)α

)
≤ C

jα+1
.

Therefore, for the line segment L = [−1, 1]× {x̃} we have using (5.16)∫
L

|D1f |pdx1 = C +
∞∑
j=k0

∫
Lj

|Df(x1, x̃)|pdx1

≤ C

(
1 +

k−2NF−3∑
j=k0

1

jα+1
+

4k−3NF−3∑
j=k−2NF−2

jp(α+1)

jα+1
+

∞∑
j=4k−3NF−2

2−pβ(j−3k) j
p(α+1)

jα+1

)
.

The first sum converges even if we sum to infinity, the second sum will be estimated
simply by taking an estimate of the largest summand and multiplying by an estimate
of the total number of summands. We will use (5.3) to estimate the final sum by
a convergent geometric sum (

∑∞
l=k 2−plβ/2). Continuing the calculation and using

k ≥ 4NF + 5 we have

(5.17)

∫
L

|D1f |p dx1 ≤ C + C4k(4k)(p−1)(α+1) +
C

1− 2−kpβ/2

≤ C + C
kpα+p

kα
.

The estimate (5.17) holds for all lines L = [−1, 1]×{x̃} such that x̃ in Pk \Pk+1 with
k ≥ k0. Furthermore, since f is Lipschitz on [−1, 1]n \ Un

k0
, we may estimate∫

L

|D1f |p dx1 ≤ C for all x̃ ∈ Pk+1 \ Pk with k < k0,

which proves the validity of (5.17) for all k ∈ N (not only for k ≥ k0). If x̃ ∈ C3
A then

we will again use the fact that

(5.18) |D1f(x)| ≤ C for a.e. x ∈ L.
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Now we integrate (5.17) over x̃ ∈ [−1, 1]3. By (2.4) we know that

L3(Pk \ Pk+1) ≤ C

kα+1

and we continue by multiplying this with (5.17) and summing over k plus (5.18)
multiplied by the measure L3(C3

A) = 1. Since α ≥ 2 we have

(5.19)

∫
(−1,1)4

|D1f(x)|pdx ≤
∞∑
k=1

Ck−α−1 + C

∞∑
k=1

kpα+p

k2α+1
+ C

≤ C + C
∞∑
k=1

kp

k(2−p)α = C

∞∑
k=k0

1

kp
<∞

by our choice of α = 2p
2−p at the start of the proof. This ends the proof of Theorem 1.2

when n = 4. Taking our mapping f in 4 dimensions and using it to define a mapping
f ∗ : R5 → R5 as follows

(5.20) f ∗(x1, x2, x3, x4, x5) = (f(x1, x2, x3, x4), x5)

proves Theorem 1.2 when n = 5. �

6. The higher dimensional case n ≥ 6

Let M(o, n) be the set of all linear subspaces of Rn of dimension o, parallel to the
coordinate axes (i.e. M ∈M(o, n) if and only if there exists a basis of M of o vectors
chosen from the canonical basis). Where there is no danger of confusion we will omit
n and write simplyM(o). Previously we defined KA as

⋃
L∈M(1,4)CA +L. From now

on we take n ≥ 6 even, m = n/2− 1 and define

KA =
⋃

L∈M(m,n)

CA + L and KB =
⋃

L∈M(m,n)

CB + L,

where CA =
⋂
k U

n
k and CB =

⋂
k Û

n
k . Of course CB and KB depend on the parameter

β. During our proof we show that if β is large enough then our mapping exists and
we show how to construct the mapping for any β sufficiently large. Let us note that
for n odd we can define our mapping analogously to (5.20) by using identity in the
last coordinate.

We make a further explicitation to the notation used above and that is the sets
Pk = Un−1

k . It is more or less obvious how to generalize the notion from subsections
2.5 and 2.6 to the higher dimensional case, see e.g. [23, Proof of Theorem 4.9]. In
this section we will show that if we fix 1 ≤ p < [n/2] then by choosing the parameters
α > 0 and β > 0 large enough we may construct the mapping f ∈ W 1,p which we
have in mind in Theorem 1.2.

6.1. Mapping F in higher dimensions: We will introduce some sets that will aid
notation for Theorem 6.1. Let L ∈M(o, n), 1 ≤ o ≤ m then call

NL = {ej ∈ Rn : ej ∈ L⊥}
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and let ML be the set of all subsets of NL with n−m elements. Let k, l ∈ N then call
(6.1)

AL,k,l =
⋃

W∈ML

(
{x ∈ Rn : xi ∈ [−1, 1] \ Ûk, ei ∈ L} ∩ {x ∈ Rn : xj ∈ Ûl, ej ∈ W}

)
.

This is the set where informally speaking we are far away from our Cantor set CB in o
directions and close in some n−m directions (perpendicular to the given o directions)
and in the remaining n− o− (n−m) directions xi could be arbitrary.

Theorem 6.1. Let m ∈ N and n = 2m + 2. There exists a mapping F which is a
sense-preserving bi-Lipschitz extension of the map

(6.2) F (x1, x2, . . . , xn−1, xn) = (x1, x2, . . . , xn−1,−xn) x ∈ KB.
There exists an NF ∈ N such that for each k ∈ N, k > NF , 1 ≤ o ≤ m, L ∈ M(o, n)
we have

(6.3) F
(
(x+ L) ∩ AL,j−NF ,k+NF+1

)
⊂
(
F (x) + L

)
∩ AL,j,k+1

for any given x ∈ AL,j−NF ,j+NF+1.

The inclusion (6.3) basically means that the image of those parts of affine spaces
x+L which are much closer to CB in n−m directions from L⊥ than it is in directions
from L in the map F is part of an affine space F (x) +L and the distance of the affine
space from KB is roughly maintained.

The proof of Theorem 6.1 is similar to that of Theorem 3.1. We find vectors v
and u, a Lipschitz extension g onto X = Rn−1 × {0} of g(Pv(x)) = −xn and then
F = Fg,u ◦ Fg,v. The following lemma, corresponds to Lemma 3.4

Lemma 6.2. Let m ∈ N and n = 2m + 2. Let v = (2−n, 21−n, . . . , 1
4
, 1) and u =

(−2−n,−21−n, . . . ,−1
4
, 1). Then there exists β > 0 and a corresponding set KB such

that Pv is one-to-one on KB and the function g defined on Pv(KB) as g(Pv(x)) = −xn
can be extended onto X as a Lipschitz function. Furthermore, it is possible to find a
Lipschitz extension of the function g which guarantees that

(6.4) DiFg,u ◦ Fg,v(x) =

{
ei if i = 1, 2, . . . , n− 1
−ei if i = n

whenever xi ∈ [−1, 1] \ Ûk and we can find a set of n −m indexes {j1, j2, . . . jn−m}
such that xj1 , xj2 , . . . , xjn−m ∈ Ûk+2 and jl 6= i for every l = 1, 2, . . . , n−m.

Proof. With some small modifications the proof will mainly follow the proof of Lemma 3.4.

Step 1: The projection Pv is one-to-one on CB. Step 1 here is the same as
in the previous lemma. The reader can somewhat laboriously but easily check that
Pv(a) 6= Pv(b) whenever a, b are distinct vertices of Q(0, 1

2
). This gives us a set of

2n distinct points and so (using Qn−1 to denote cubes in Rn−1) there exists a d0 > 0
such that Qn−1(Pv(a), d) ∪ Qn−1(b, d) = ∅ whenever a and b are distinct vertices of
Q(0, 1

2
) and 0 < d ≤ d0. By the continuity of Pv there exists a d1 > 0 such that the

sets Pv(Q(a, d)) are pairwise disjoint for distinct vertices a of the cube Q(0, 1
2
) and

0 < d ≤ d1. Thus we have proved that whenever we construct the cantor set CB
using β = log2(d)− 1 for any 0 < d ≤ d1 we have

Pv(Q̂v(1)) ∩ Pv(Q̂v′(1)) = ∅ whenever v(1) 6= v′(1).
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The self-similarity argument applied in Lemma 3.4 applies here too and so we see that
the image of the collection of all k-th generational cubes Q̂v(k) are pairwise disjoint
and this holds for all k. This implies that Pv is one-to-one on CB for β > β0. In fact
this is a special case of the next step for o = 0.

Step 2: The projection Pv is one-to-one on KB. We would like to prove that
Pv is one-to-one on KB. Let v(k) ∈ Vk and let M ∈ M(o, n), 1 ≤ o ≤ m, then we

will prove that the projection of any distinct pair of k-“bars” ŜMv(k) where

(6.5) ŜMv(k) =
(
Q(zv(k), r̂k) +M

)
\
( ⋃

w∈Vk

⋃
L∈M(o−1)

Q(ẑw, r̂k−2) + L
)
,

is disjoint. Similarly to before we achieve this by projecting them into disjoint sets

(6.6)

ŜMv(k) :=

(
Qn−1

(
Pv(ẑv(k)), qr̂k

)
+ Pv(M)

)
\
( ⋃

w∈Vk

⋃
L∈M(o−1)

Qn−1
(
Pv(ẑw), r̂k−1

)
+ Pv(L)

)
.

Let us note that in dimension n = 4 our definition was slightly different as we used
w ∈ Vk−1 (or w ∈ Vk−2) in previous definitions. However, this is not a big change as
the union of cubes over all w ∈ Vk−1 or w ∈ Vk is similar (up to some multiple of
radius) and from technical reasons this is better here.

Step 2A: The projection Pv is one-to-one on every M ∈M(n− 1). Recall the
corresponding notation from Lemma 3.4,

ṽ = (2−n, 21−n, . . . , 1
4
).

The definition of Pv (3.2) immediately yields that

(6.7) Pv(el) =

{
el if 1 ≤ l ≤ n− 1

−ṽ if l = n.

We take M ∈ M(n − 1) and solve Pv(u) = 0, u ∈ M . First we will assume that
en ∈ M⊥. Then (6.7) says that Pv(u) = u for all u ∈ M and the only solution to
Pv(u) = 0 is u = 0 and thus Pv is one-to-one on M . Now we assume that en ∈ M
and we find j such that span{ej} = M⊥. Using (6.7) we obtain

0 = Pv(u) = Pv
( n∑

i=1
i 6=j

λiei
)

=
n−1∑
i=1
i 6=j

λiei − λnṽ.

Thus the j-th coordinate of the last expression must be zero, which implies λnṽj = 0
and hence λn = 0. Thus we have reduced to the first case which has been proved
already.
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Step 2B: Finding β such that ŜMv(k) are disjoint sets. We defined sets ŜMv(k) in

(6.6) and now we would like to show that if one chooses β > β2 that these sets are
pairwise disjoint. Exactly the same arguments from Lemma 3.4, Step 2B, Claim (1)

can be applied here to see that the two contesting definitions from Lemma 3.4 of ŜMv(k)

which we could generalize are equivalent.
Let A denote the set of vertices of Q(0, 1

2
). We define the “sliced” affine sets for

M ∈M(o) and a ∈ A

(6.8) WM
a = (a+M) \

( ⋃
b∈A

⋃
L∈M(o−1)

Q(b, 4
5
) + L

)
.

The sets WM1
a1

and WM2
a2

are equal if and only if M1 = M2 and a1 − a2 ∈M1.
Let us make the following useful observations on Pv. Since ‖ṽ‖ = 1

4
we obtain the

simple observation

(6.9) ‖Pv(x)‖ ≤ x̃+ 1
4
|xn| ≤ 5

4
‖x‖,

recall that ‖ · ‖ denotes the maximum norm. Also we denote the distance with
respect to this norm as dist∞. Further we use the fact that Pv is one-to-one whenever
restricted to any M ∈ M(n − 1) and especially Pv is one-to-one on each a + M for
M ∈ M(o) and a ∈ A. There are a finite number of such affine spaces and Pv is
one-to-one on each of them. This implies that there is a λ > 0 such that whenever we
choose M ∈M(o) and x ∈M that ‖Pv(x)‖ ≥ λ−1‖x‖. The fact that ‖Pv(x)‖ ≤ λ‖x‖
is shown in (6.9) if λ ≥ 5

4
. Now we choose any M ∈M(o), any L ∈M(o− 1), a ∈ A

and any x ∈ WM
a and conclude that

(6.10) λ−1 dist∞(x,WL
a ) ≤ dist∞(Pv(x), Pv(W

L
a )) ≤ λ dist∞(x,WL

a )

as the distance of x to WL
a is attained in some direction in M \ L.

Let us recall that the sets WM
a are defined in (6.8). In the following we will

be interested in pairs of distinct WM
a . Another fact that is clear is if we have a

pair of distinct WM1
a1

and WM2
a2

(with M1,M2 ∈ M(o)) then either M1 = M2 and
(a1 +M1) ∩ (a2 +M2) = ∅ or dim(M1 ∩M2) ≤ o− 1 and there exists an L ∈ M(õ),
õ ≤ o− 1, and an a ∈ A such that

(a1 +M1) ∩ (a2 +M2) ⊂ a+ L ⊂
⋃
b∈A

⋃
L∈M(o−1)

Q(b, 4
5
) + L.

This means that our pair WM1
a1

and WM2
a2

are disjoint if distinct in both cases. We
can easily calculate that

dist∞(WM1
a1
,WM2

a2
) ≥ 4

5

and so (6.10) gives that

(6.11) dist∞
(
Pv(W

M1
a1

), Pv(W
M2
a2

)
)
≥ 4

5λ
.

This however immediately implies that {Pv(WM
a ) +Qn−1(0, 2

5λ
)} is a finite family of

closed pairwise disjoint sets.
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Let δ > 0. Assuming that a ∈ A, M ∈ M(o), v(1) = 2a ∈ V, r̂1 <
δ
q
, it is simple

to observe that

(6.12)
Pv(a+M) +Q(0, δ) = Pv(ẑv(1)) + Pv(M) +Q(0, δ)

⊃ Qn−1(Pv(ẑv(1)), qr̂1) + Pv(M).

We will again use the fact that Pv is one-to-one on all M ∈M(o) to see that

Pv
(
WM
a

)
= Pv

(
a+M

)
\ Pv

(
(a+M) ∩ (

⋃
b∈A

⋃
L∈M(o−1)

Q(b, 4
5
) + L)

)
and so for any L ∈M(o− 1) and for the b ∈ A such that w(1) = 2b ∈ V

(6.13)

Pv
(
(a+M) ∩ (Q(b, 4

5
) + L)

)
⊂ Pv

(
Q(b, 4

5
) + L

)
= Pv

(
Q(b, 4

5
)
)

+ Pv
(
L
)

⊂ Qn−1(Pv(ẑw), 1) + Pv(L).

The definition of ŜMv(1) (6.6) in combination with (6.12) and (6.13) show that

ŜMv(1) ⊂ Pv(W
M
a ) +Qn−1(0, δ), whenever ẑv(1) = a.

Further by applying (6.11) and assuming δ < 1
5λ

(and r̂1 <
δ
q
) we see that the sets

Pv(W
M
a ) +Qn−1(0, δ) are pairwise disjoint and in fact

dist∞(Pv(W
M1
a1

) +Qn−1(0, δ), Pv(W
M2
a2

) +Qn−1(0, δ)) ≥ 1
5λ
,

whenever the pair is distinct. This implies that the sets ŜMv(1) satisfy

dist(ŜM1

v(1), Ŝ
M2

w(1)) ≥
C(n)
5λ
,

whenever distinct. Further by self similarity we get the same for all k, i.e.

dist(ŜM1

v(k), Ŝ
M2

w(k)) ≥
C(n)
5λ
r̂k−1

whenever distinct.

Step 2C: Proving the inclusion Pv(Ŝ
M
v(k)) ⊂ ŜMv(k). We will prove the inclusion

Pv(Ŝ
M
v(2)) ⊂ ŜMv(2) and for other k it will hold by self-similarity. Again we will employ

(6.9) in the following to calculate that

(6.14)
Pv
(
Q(zv(2), r̂2) +M

)
⊂ Qn−1

(
Pv(ẑv(2)),

5
4
r̂2

)
+ Pv(M)

⊂ Qn−1
(
Pv(ẑv(2)), qr̂2

)
+ Pv(M)

whenever q ≥ 5
4
. The remainder of what we need to prove is that for each w(2) ∈ V2

and for each L ∈M(o− 1)

Qn−1
(
Pv(ẑw(2)), r̂1

)
+ Pv(L) ⊂ Pv

(
Q(ẑw(2), r̂0) + L

)
which can easily be achieved by selecting r̂1 small enough (i.e. β large enough) as
r̂0 = 1. This step is analogous to the proof in dimension n = 4 and therefore we skip
the details.
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Step 2D: Conclusion of Step 2. By definition

KB =
⋃

M∈M(m)

CB +M.

Let us consider the sets

Ko =
( ⋃
M∈M(o)

CB +M
)
\
( ⋃
L∈M(o−1)

CB + L
)
.

It is easy to see that

Ko =
⋃
k0≥1

⋂
k≥k0

⋃
M∈M(o)

⋃
v(k)∈Vk

ŜMv(k)

and since KB =
⋃m
o=1Ko we obtain

KB =
⋃

0≤o≤m

⋃
k0≥1

⋂
k≥k0

⋂
k≥1

⋃
M∈M(o)

⋃
v(k)∈Vk

ŜMv(k).

We have proven that for any fixed k the images of ŜMv(k) in Pv are pairwise disjoint,
whenever the pair of sets in question are distinct. Take any pair of distinct points
x, y ∈ KB. If there exists k,M1,v(k) and M2,w(k) such that x ∈ ŜM1

v(k) 6= ŜM2

w(k) 3 y
then Pv maps x and y onto distinct points in X because as we have proven

Pv(Ŝ
M1

v(k)) ∩ Pv(Ŝ
M2

w(k)) = ∅.

If for almost every k we have x, y ∈ ŜMv(k), then x − y ∈ M and Pv is one-to-one on
M and so maps x and y to distinct points.

Step 3: Defining the function g on X. Now we expound how to perform step 3
of the proof, that is how to define g on X. In steps 3A, 3B and 3C we assume always
that en /∈ M and M ∈ M(o) for some 1 ≤ o ≤ m. The case en ∈ M is dealt with in
3D. Step 3E then proves that g has the desired properties. We will make use of the
sets

ĤM
v(k) := ∂X

(
Qn−1

(
Pv(ẑv(k)),qr̂k

)
+ Pv(M)

)
\
( ⋃

w∈Vk−1

⋃
L∈M(m−1)

L⊂M

Q
(
ẑw, r̂k−1

)
+ Pv(L)

)
where Qn−1 is a cube in Rn−1 (specifically in X = Rn−1×{0}) and ∂XU is the relative
boundary of a set U with respect to X.

Step 3A. First we take a “pipe” ĤM
v(k) with en /∈M and k ≥ 2 and define

g(x) = −(ẑv(k))n for all x ∈ ĤM
v(k).

Again, first we remark that if ĤM
v(k) = ĤM

ṽ(k) then (ẑv(k))n = (ẑṽ(k))n because en /∈ M
and therefore g is well-defined at these points. It is easy to see that if we have two
pipes, both parallel to M , one inside another (that is ẑv(k+1) + M intersects Q̂v(k))
then

dist(ĤM
v(k), Ĥ

M
v(k+1)) ≥ Cr̂k for a suitable C > 0 independent of k.
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O1

C

O2

O3

Pv(z)

A

dist(A, B) ≥ min{|vi|}r̂k

B

dist(A, C) ≈ r̂k

O1 =
⋃
L′∈M(o−1) Q(Pv(z), r̂k) + L′,

O2 = Pv(z + L) \
⋃
L′∈M(o−1) Q(Pv(z), r̂k) + L′ for some L ∈M(o),

O3 =
(
Pv(x + L1) \

⋃
L′∈M(o−1) Q(Pv(z), r̂k) + L′

)
+ Q(0, r̂k+1) for some L1 ∈M(o).

Figure 10. Measuring the distances between sliced projected affine
spaces reduces to the case dealt with in Lemma 3.4 where we measured
the distance between sliced lines. The thickness of the ‘bars’ is r̂k+1

which can be made much smaller than the distance between them which
is comparable to r̂k.

Further considering x ∈ ĤM
v(k) and y ∈ ĤM

v(k+1) we have

|g(x)− g(y)| = | − (ẑv(k))n + (ẑv(k+1))n| = 1
2
r̂k.

Considering two distinct pipes ĤM
v̂(k+1) and ĤM

v(k+1) of the same generation, both inside

ĤM
v(k) we see that

dist(ĤM
v̂(k+1), Ĥ

M
v(k+1)) ≥ Cr̂k for a suitable C > 0 independent of k.

Furthermore, for x ∈ ĤM
v(k+1) and y ∈ ĤM

v(k+1) we have

|g(x)− g(y)| = | − (zv̂(k+1))n + (zv(k+1))n| ≤ r̂k .

This proves that g, thus defined, on the pipes ĤM
v(k) with en /∈ M is Lipschitz with

respect to parallel pipes, i.e. pipes given by the same subspace M .

Step 3B. Similarly, for M ∈M(o), 1 ≤ o ≤ m, and en /∈M we define

g(Pv(ẑv(k) +M)) = −(ẑv(k))n.

Also for every x ∈ CB we define

g(Pv(x+M)) = −xn.
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Note that by step 2 we know that these sets are pairwise disjoint whenever distinct
and Pv is one-to-one on KB and therefore this definition is correct. The estimates
from Lemma 3.4, step 3B easily generalize to this setting showing that our definition
of g is Lipschitz on the collection of all pipes, i.e., all sets of type Pv(ẑv(k) +M) and

Pv((CB ∩ Q̂v(k)) +M).

Step 3C. Now we will fix k ≥ 2, v(k) ∈ Vk, 1 ≤ o ≤ m and M ∈ M(o) (we still
assume that en /∈M) and define g on

LMv(k) := ŜMv(k) \
⋃

v(k+1)∈Vk+1

ŜMv(k+1).

Call YM = M⊥ ∩ X and denote πYM the orthogonal projection onto this subspace.
In general one can only claim that the projection of a pair of sets does not increase
the distance between them. Here however we consider sets parallel to a given vector
space M and project them onto YM , which is perpendicular to M . In this case the
projection does not decrease the distance between the sets either. That is to say (in
the following we use Pv(M) = M , see (6.7))

dist(πYM (ĤM
v(k)), πYM (ĤM

v(k+1))) = dist(ĤM
v(k), Ĥ

M
v(k+1)).

Similarly
dist(πYM (ĤM

v(k)), πYM (ẑv(k) +M)) = dist(ĤM
v(k), ẑv(k) +M)

and
dist(πYM (ĤM

v(k)), πYM (x+M)) = dist(ĤM
v(k), x+M)

for x ∈ Pv(CB ∩ Q̂v(k)). We defined g as constant on sets ĤM
v(k), therefore we may

define a function g̃ on YM as g̃(πYM (x)) = g(x) for any x ∈ ĤM
v(k) and this definition

is correct. The above estimates on the distances of the sets projected onto YM shows
that g̃ is Lipschitz with respect to the projection of those sets. Therefore we may use
the McShane extension theorem to get a Lipschitz g̃ defined on YM . For x ∈ LMv(k) we

define g(x) = g̃(πYM (x)) and so get a function g, which is constant on the intersection
of any affine space parallel to M with the set LMv(k).

Once we have defined g on all ŜMv(k) for all k,v(k) and M we still need to fill in

certain “gaps”, where we transition from M ∈ M(o) to L ∈ M(o− 1). Considering
Figure 10 we need to define g on sets corresponding to O3. Specifically, for M ∈M(o)
we need to define g on

T̂Mv(k) =
(
Qn−1

(
Pv(zv(k)), qr̂k

)
+ Pv(M)

)
\
( ⋃

L̃∈M(o−2)

L̃⊂M

(
Qn−1

(
Pv(zv(k)), r̂k−1

)
+ Pv(L̃)

)
∪ ŜMv(k)

)
.

These gaps were necessary as they made the sets SMv(k) disjoint (whenever distinct)
and this made the definition of g in step 3A and 3B correct. Note that it was not
possible to define g as constant on entire m-dimensional subspaces (without removing
m− 1 dimensional subspaces) because they intersect other m-dimensional subspaces
where g has a different value. Informally speaking, in each o− 1 dimensional gap we
project onto a corresponding perpendicular n− 1− (o− 1) dimensional subspace on
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which, g is already defined in some points by step 3A and 3B. We keep those values
and extend them as a Lipschitz function on the perpendicular subspace and then, by
projecting along the o− 1 dimensional subspace we define g everywhere in the gap.

If x ∈ T̂Mv(k) and o ≥ 2 then there exists exactly one coordinate, let us say the i-th
coordinate where ei ∈M ,

|xi −
(
Pv(zv(k))

)
i
| ≤ r̂k−1

but for all j 6= i such that ej ∈M we have

|xj −
(
Pv(zv(k))

)
j
| > r̂k−1.

So, set M ∈ M(o), L ∈ M(o − 1) and ei such that span{L, ei} = M . Recall that

M ⊂ X and Pv is identity on X to see that a point x ∈ T̂Mv(k) can be expressed as

x = Pv(zv(k)) +
∑
ej∈L

λjej + tei +
∑

el∈M⊥∩X

λ̃lel

where λj > r̂k−1, λ̃l < qr̂k, t < r̂k−1. We project T̂Mv(k) onto YL = L⊥ ∩X. Since g is

constant on affine subsets contained in ˆSMv(k) parallel to L it is also constant on affine

subsets of ∂T̂Mv(k)∩∂ŜMv(k) parallel to L (note that these affine sets on boundaries have

dimension o− 1). Thus the following definition is correct

g̃(y) = g(x) whenever y = πYL(x)

and x ∈ ∂T̂Mv(k) ∩ ∂ŜMv(k). The function g̃ is Lipschitz and can be Lipschitz extended

onto YL by the McShane Theorem. For x ∈ T̂Mv(k) we define

g(x) = g̃(πYL(x)).

In this manner we extend g for all M,L, ẑv(k) and all k in the case where en /∈M .

Step 3D. Next we will define g on pipes ĤM
v(k) with en ∈M and k ≥ 2. For this, let

us next denote ṽ :=
(
2−n, 21−n, . . . , 1

4

)
and define

Yn := {w ∈ Rn−1 : 〈w, ṽ〉 = 0}.
Then we separate Rn−1 into the direct sum Rṽ ⊕ Yn. Suppose now that λ0 ∈ R and
w0 ∈ Yn are such that

Pv(ẑv(k)) = w0 + λ0ṽ.(6.15)

Then, if x̃ ∈ ĤM
v(k) ∪ Pv(ẑv(k) + M) we may find λ ∈ R such that x̃ = w + λṽ with

w ∈ Yn which leads us to define

g(x̃) = λ− λ0 − (ẑv(k))n for every x̃ ∈ ĤM
v(k) ∪ Pv(ẑv(k) +M).(6.16)

This means that g has been defined as constant on the intersections of the sets in
question with hyperplanes in X parallel to ṽ⊥.

We claim that the definition in (6.16) and the definition g(Pv(x)) = −xn for x ∈ KB
gives us a g Lipschitz on the collection of sets ĤM

v(k), Pv(ẑv(k) +M) and Pv(KB). The
proof of this is just a repetition of step 3D from Lemma 3.4. Once again we extend
our map by creating a Lipschitz extension on YM and by using g(x) = g̃(πYM (x)).
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Where not yet defined we may extend g Lipschitz arbitrarily, for example by the
McShane extension theorem.

Step 3E: verifying the condition (6.4). Now we define the spaghetti strand map
Fg,v again as

Fg,v(x) = x+ vg(Pv(x)).

Analogously to the proof in dimension n = 4 it is possible to show that

Di

(
Fg,u ◦ Fg,v

)
(x) =

{
ei if i = 1, 2, . . . , n− 1
−ei if i = n

whenever xi ∈ [−1, 1] \ Ûk and we can find a set of n −m indexes {j1, j2, . . . jn−m}
such that xj1 , xj2 , . . . , xjn−m ∈ Ûk+2. There are two possibilities. Either i 6= n and g is
constant on Pv(x+Rei) or i = n and g(Pv(x+ ten)) = c− t. This is true because all x

such that xi ∈ [−1, 1] \ Ûk and xj1 , xj2 , . . . , xjn−m ∈ Ûk+2 belong to some ŜMv(k) which

is projected into ŜMv(k) and we defined g on ŜMv(k) to have precisely these qualities. The
rest of the calculations are just a repetition of step 3E of Lemma 3.4. �

Proof of Theorem 6.1. It suffices to repeat the proof from Theorem 3.1 to show that
the mapping F = Fg,u ◦ Fg,v with g, v, u from Lemma 6.2 satisfies (6.2). Also we see
that F is sense preserving for the same reason as before. The proof of the behavior of
F on m-dimensional planes close to KB is the same as it was for lines in the previous
too. The choice of NF follows from the same arguments as in Theorem 3.1 and
an adaption of Lemma 3.5, where we replace lines with affine spaces and the proof
remains the same. �

6.2. Mapping f in higher dimensions. We define our mapping in much the same
way as in the 4-dimensional case. We set

f = St ◦ F ◦ Sq,

where Sq = (q(x1), q(x2), . . . , q(xn)), F is the mapping from Theorem 6.1 and St is
defined exactly as before. More precisely, we define St by

(6.17) St(x) = di,k(x)Hn−1,i
3k−3 (x) + (1− di,k(x))Hn−1,i

3k (x) + t(xi)ei for x ∈ Êi,k,

where the mappings Hn−1,i
3k−3 and Hn−1,i

3k are the obvious higher dimensional general-

izations of the mappings H3,i
3k−3 and H3,i

3k in Section 4, and

Êi,k = {x ∈ (Ûk−1)n \ (Ûk)
n : di,k(x) ≥ dj,k(x), j 6= i}.

By following the arguments in Section 4 the reader may generalize Lemma 4.1 in all
dimensions:

Lemma 6.3. Suppose that St : (−1, 1)n → (−1, 1)n is defined as in (6.17) where
n ≥ 4. Then St is a sense-preserving homeomorphisms which satisfies the following
conditions:

(i) St maps CB onto CA and St = S−1
q on CB.

(ii) Mapping St is locally Lipschitz on (−1, 1)n \ CB.
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(iii) If Li is a line parallel to xi-axis with Li ∩ (Ûk)
n 6= ∅ then

|DiSt(x)| ≤ C
2βk

kα+1

for every x ∈ Li ∩
(
(Ûk−1)n \ (Ûk)

n
)
.

(iv) If k ≤ j ≤ 3k + 2 and z ∈ (Ûj \ Ûj+1)×
(
(Ûk)

n−1 \ (Ûk+1)n−1
)

then

|DSt(x)| ≤ C2βj.

The same holds for x ∈
(
(Ûk)

n−1 \ (Ûk+1)n−1
)
× (Ûj \ Ûj+1) and also for n− 2

other permutations of coordinates.
(v) If x ∈ Û3k+3 ×

(
(Ûk)

n−1 \ (Ûk+1)n−1
)

then

|DSt(x)| ≤ C2β(3k+3).

The same holds for z ∈
(
(Ûk)

n−1 \ (Ûk+1)n−1
)
× (Û3k+3) and also for n − 2

other permutations of coordinates.

Sobolev regularity of f . Just as before f , as the composition of homeomorphisms,
is a homeomorphism. Our aim is to prove that if 1 ≤ p < [n

2
] then for an aptly

chosen α > 0 in the definition of CA the corresponding mapping f belongs to W 1,p.
Therefore we are interested in calculating the integral∫

(1,1)n−1

∫
(−1,1)

|D1f(x1, x̃)|p dx1dx̃.

The integrals over lines in other directions can all be estimated in the same way as
the reader may easily check. Recall that n is even and we start by fixing the exponent
1 ≤ p < [n/2] and

α =
2p

n/2− p
and the index k0 ≥ 4NF + 5, where NF ∈ N is from Lemma 3.5, large enough so that

(6.18) max{2−kpβ/2k(p−1)(α+1), 2−pβ(k+1
k

)α} < 1 for all k ≥ k0.

The reasoning in the arguments in section 5 for the ACL condition and the use of
the chain rule hold here too. Both Sq and F are Lipschitz maps. By Lemma 6.3 (ii)

we see that St is C(k0)-Lipschitz on [−1, 1]n \ Ûn
k0+NF

. Therefore it follows that f is
Lipschitz on [−1, 1]n \ Un

k0
, and it remains to consider the set Un

k0
.

We use the ACL property of f to make the following estimates on the derivatives
of |D1f |. For convenience sake we will denote x = (x1, x̃). Now we will fix k ∈ N
with k ≥ k0 ≥ 4NF + 5 and in the further we assume that x̃ ∈ (Uk)

n−1 \ (Uk+1)n−1.
We define the following divisions of a segment L = [−1, 1]× {x̃}:

Lj(x̃) = Lj = {(x1, x̃) : x1 ∈ (Uj \ Uj+1)}.

In the following we use the simpler notation Lj to aid readability. The aim of the
following calculations is to prove the estimate (6.31) below.
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Case 1: Let us first assume that k ≥ k0 and

x ∈ Lj with j = 1, . . . , k − 2NF − 3.

Then Sq maps the line segment Lj to a line segment L1
j which is parallel to x1-axis

and lies inside the set (Ûj \ Ûj+1)× (P̂k \ P̂k+1). Furthermore, we have

|D1Sq(x)| ≤ C2−βjjα+1,(6.19)

with C independent of j, k.
Recall that the sets AL,j,k are defined in (6.1). Observe that

L1
j ⊂ ARe1,(j+NF+2)−NF−1,(k−NF+1)+NF ,

where NF < j +NF + 2 ≤ k−NF + 1, and thus it follows from Theorem 6.1 that the
bi-Lipschitz map F maps L1

j to a line segment L2
j parallel to x1-axis and such that

L2
j ⊂ ARe1,(j+NF+2)−1,k−NF+1.

Moreover, we have

|DF (Sq(x))| ≤ Lip(F ) for a.e. x ∈ Lj.(6.20)

Finally, because L2
j is a line segment parallel to the x1-axis which is contained in

[−1, 1]n \ (Ûj+NF+1)n it follows from Lemma 6.3 (iii) that

|D1St(F (Sq(x)))| ≤ C2βjj−(α+1),(6.21)

with C independent of j, k.
If we now combine (6.19), (6.20) and (6.21) we get

|D1f(x)| ≤ C for a.e. x ∈ Lj,(6.22)

with C independent of j, k.

Case 2: Let us next assume that

x ∈ Lj with k − 2NF − 3 < j ≤ 3k − 3NF − 3.

Again Sq maps the line segment Lj to a line segment L1
j which is parallel to x1-axis

and lies inside the set (Ûj \ Ûj+1)× (P̂k \ P̂k+1). Furthermore, we have

|D1Sq(x)| ≤ C2−βjjα+1,(6.23)

with C independent of j, k.
Next, we recall that

|D1F (Sq(x))| ≤ Lip(F ) for a.e. x ∈ Lj.(6.24)

Moreover, it follows from the assumption j ≥ k − 2NF − 2 that

L1
j ⊂ {x ∈ [−1, 1]4 : dist(x,KB) > min{r̂j − r̂j+1, r̂k − r̂k+1}

}
⊂
{
x ∈ [−1, 1]4 : dist(x,KB) > min{2−β(j+1)−(j+1), 2−β(k+1)−(k+1)}

}
⊂
{
x ∈ [−1, 1]4 : dist(x,KB) > min{2−β(j+1)−(j+1), 2−β(j+2NF+3)−(j+2NF+3)}

}
⊂
{
x ∈ [−1, 1]4 : dist(x,KB) > 2−β(j+2NF+3)−(j+2NF+3)

}
.
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Suppose now that C̃ > 0 is the constant given by Lemma 3.5. Then we may choose
NF ∈ N to be so large that C̃−1 > 23β+32−βNF−NF . Then it follows from Lemma 3.5
and from the inclusion above that

F (L1
j) ⊂

{
x ∈ [−1, 1]4 : dist(x,KB) > C̃−12−β(j+2NF+3)−(j+2NF+3)

}
⊂
{
x ∈ [−1, 1]4 : dist(x,KB) > 2−β(j+3NF )−(j+3NF )

}
.

Thus, we have that F (L1
j) is contained in the following union of n sets

F (L1
j) ⊂

(
([−1, 1] \ Ûj+3NF )×

(
[−1, 1]n−1 \ (Ûj+3NF )n−1

))
∪

· · · ∪
((

[−1, 1]n−1 \ (Ûj+3NF )n−1
)
× ([−1, 1] \ Ûj+3NF )

)
.

Without loss of generality suppose that

F (L1
j) ⊂ ([−1, 1] \ Ûj+3NF )×

(
[−1, 1]n−1 \ (Ûj+3NF )n−1

)
.

Then by Lemma 6.3 (iv) it follows that

|DSt(F (Sq(x)))| ≤ C2βj for a.e. x ∈ Lj.(6.25)

If we now combine the estimates (6.23), (6.24) and (6.25) the chain rule gives us

|D1f(x)| ≤ Cjα+1 for a.e. x ∈ Lj,(6.26)

with C independent of j, k.

Case 3: Let us now assume that

x ∈ Lj with j > 3k − 3NF − 3.

Also in this case Sq maps the line segment Lj to a line segment L1
j parallel to x1-axis

and inside the set (Ûj \ Ûj+1)× (P̂k \ P̂k+1), and we have

|D1Sq(x)| ≤ C2−βjjα+1,(6.27)

with C independent of j, k. Furthermore, also the derivative of F can be estimated
again by

|D1F (Sq(x))| ≤ Lip(F ) for a.e. x ∈ Lj.(6.28)

Moreover, as x ∈ [−1, 1]n \ (Ûk+1)n we have

[−1, 1]n \ (Ûk+1)n ⊂ {y ∈ [−1, 1]n : dist(y, CB) > r̂k+1 − r̂k+2}
⊂ {y ∈ [−1, 1]n : dist(y, CB) > 2−β(k+2)−(k+2)}.

If we then assume that C̃ > 0 is the constant in Lemma 3.5 we may again assume
that C̃−1 > 2β+12−βNF−NF (see case 2). Then it follows from Lemma 3.5 and from
the inclusion above that

F (Sq(x)) ∈ {z ∈ [−1, 1]n : dist(z, CB) > C̃−12−β(k+2)+(k+2)}
⊂ {z ∈ [−1, 1]n : dist(z, CB) > 2−β(k+NF+2)−(k+NF+2)}

⊂ [−1, 1]n \ (Ûk+NF+2)n.
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Thus, it follows from Lemma 6.3 (iv) and (v) that we may estimate

|DSt(F (Sq(x)))| ≤ C2β(3k−3NF−3),(6.29)

with C independent of j, k.
If we now combine (6.27), (6.28) and (6.29) the chain rule gives us

|D1f(x)| ≤ Cjα+12−β(j−3k) for a.e. x ∈ Lj,(6.30)

with C independent of j, k.

Estimating the Sobolev norm of f : The above estimates (6.22), (6.26) and (6.30)
can be summarized as follows. Suppose that k ≥ k0 and let x ∈ Lj := (Uj\Uj+1)×{x̃}
with x̃ ∈ Pk \ Pk+1. Then

(6.31) |D1f(x)| ≤


C if 1 ≤ j ≤ k − 2NF − 3

Cjα+1 if k − 2NF − 3 < j ≤ 3k − 3NF − 3

Cjα+12−β(j−3k) if j > 3k − 3NF − 3,

where the constant C := C(n, α, β,NF ,Lip(F )) does not depend on k or j.
Also note that Sq maps CA×Rn−1 onto CB×Rn−1 and using |CA| > 0 and |CB| = 0

we easily obtain |D1Sq| = 0 on CA×Rn−1. As F is just a reflection on CB ×Rn−1 and
St is locally Lipschitz on [−1, 1]n \ CB, we easily obtain that

|D1f | = 0 on (CA × Rn−1) \ CA.

Therefore, for x̃ ∈ Pk \ Pk+1 we can calculate∫
(−1,1)

|D1f(x1, x̃)|p dx1 =

∫
(−1,1)\CA

|D1f(x1, x̃)|p dx1

=
∞∑
j=1

∫
Uj\Uj+1

|Df(x1, x̃)|p dx1.

We use the fact that f is C-Lipschitz on [−1, 1]n \ (Uk0)
n (k0 fixed in (6.18)) to see

that ∫
(−1,1)

|D1f(x1, x̃)|p dx1 ≤ Cp

for every x̃ ∈ [−1, 1]n−1 \ (Uk0)
n−1.

Therefore we may now restrict to the case that x̃ ∈ Pk \ Pk+1 for k ≥ k0. By the
same reasoning as in Section 5 we have

L1(Uj \ Uj+1) ≤ C

jα+1
.

Therefore, for the line segment L = [−1, 1]× {x̃} we have using (6.31)∫
L

|D1f |pdx1 = C +
∞∑
j=k0

∫
Lj

|Df(x1, x̃)|pdx1

≤ C

(
1 +

k−2NF−3∑
j=k0

1

jα+1
+

4k−3NF−3∑
j=k−2NF−2

jp(α+1)

jα+1
+

∞∑
j=4k−3NF−2

2−pβ(j−3k) j
p(α+1)

jα+1

)
.



59

The first sum converges even if we sum to infinity, the second sum will be estimated
simply by taking an estimate of the largest summand and multiplying by an estimate
of the total number of summands. We will use (6.18) to estimate the final sum by
a convergent geometric sum (

∑∞
l=k 2−plβ/2). Continuing the calculation and using

k ≥ 4NF + 5 we have

(6.32)

∫
L

|D1f |p dx1 ≤ C + C4k(4k)(p−1)(α+1) +
C

1− 2−kpβ/2

≤ C + C
kpα+p

kα
.

The estimate (6.32) holds for all lines L = [−1, 1]×{x̃} such that x̃ in Pk \Pk+1 with
k ≥ k0. Furthermore, since f is Lipschitz on [−1, 1]n \ Un

k0
, we may estimate∫

L

|D1f |p dx1 ≤ C for all x̃ ∈ Pk \ Pk+1 with k < k0,(6.33)

which proves the validity of (6.32) for all k ∈ N (not only for k ≥ k0). We will use
the estimate (6.32) on those lines which are not entirely contained in KA and on lines
which are entirely contained in KA we will use again the fact that

(6.34) |D1f(x)| ≤ C for a.e. x ∈ L.
Now we integrate the above estimates over x̃ ∈ [−1, 1]n−1. Calling K̃A the set of

those x̃ such that L(x̃) is contained entirely in KA we claim that

(6.35) Ln−1
(
Un−1
k \ (Un−1

k+1 ∪ K̃A)
)
< Ln−1

(
Un−1
k \ K̃A

)
≤ Ck−mα

where m := n
2
− 1. Once we will have established this estimate the rest of the proof

follows quickly from the following calculations. We continue by multiplying (6.32) by
the measure estimate (6.35) and summing over k plus (6.34) multiplied by the measure
Ln−1([−1, 1]n−1) > Ln−1(K̃B ∩ [−1, 1]n−1). Assuming (6.35) we have (it holds that
αm > 1)

(6.36)

∫
(−1,1)n

|D1f(x)|pdx ≤
∞∑
k=1

Ck−mα + C
∞∑
k=1

kp(α+1)

kα(m+1)
+ C

≤ C + C

∞∑
k=1

kp

k(m+1−p)α = C
∞∑

k=k0

kp

k2p
<∞

by our choice α = 2p
n/2−p at the beginning of the proof.

Therefore it remains to prove (6.35). We notice that a line segment L := [−1, 1]×
{x̃} parallel to x1-axis is contained in KA if and only if L ⊂ CA + M for some
M ∈ M(m) containing e1. We write all such subspaces M as Re1 + M̃ for some
M̃ ∈M(m− 1, n− 1). Hereby we see that

L ⊂ KA if and only if x̃ ∈ K̃A :=
⋃

M̃∈M(m−1,n−1)

(
Cn−1
A + M̃

)
.

Next, we estimate

(6.37)
Ln−1

(
Un−1
k \(Un−1

k+1 ∪ K̃A)
)
< Ln−1

(
Un−1
k \ K̃A

)
= 2k(n−1)

(
2−k(1 + k−α)

)n−1 − Ln−1
(
(Uk)

n−1 ∩ K̃A
)
.
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and therefore it suffices to calculate Ln−1
(
(Uk)

n−1∩K̃A
)
. We do this by decomposing

the set Un−1
k ∩ K̃A into the disjoint union of m sets Ek

0 , E
k
1 , . . . , E

k
m−1 and each Ek

i is

the disjoint union of
(
n−1
i

)
measurable rectangles. For simplicity of the notation call

Gk = Uk \ CA. We denote

Ek
0 := Cn−1

A

Ek
1 := (Gk × Cn−2

A ) ∪ (CA ×Gk × Cn−3
A ) ∪ · · · ∪ (Cn−3

A ×Gk × CA) ∪ (Cn−2
A ×Gk)

...

Ek
m−1 := (Gm−1

k × Cm+3
A ) ∪ · · · ∪ (Cm+3

A ×Gm−1
k ).

So each Ek
j is a union of

(
n−1
j

)
sets Fl(j, k), l = 1, 2, . . . ,

(
n−1
j

)
. Each Fl(j, k) is a

measurable rectangle and Gk appears in its product j times and the set CA appears
n − 1 − j times. Each Fl(j, k) is uniquely determined by the sequence of sets in its
product. So if Fl(j, k) 6= Fl′(j

′, k′) then there is a direction such that one of the sets
is projected onto CA and the other is projected onto Gk and CA ∩Gk = ∅.

Now simple calculation gives

L1(C̃A) = 1 and L1(Gk) =
1

(k + 1)α

and so by definition

Ln−1(Ek
j ) =

(
n− 1

j

)
Ln−1

(
(Gk)

j × (C̃A)n−1−j)
=

(
n− 1

j

)[
L1(Gk)

]j[L1(C̃A)
]n−1−j

=

(
n− 1

j

)
1

(k + 1)αj

for each j = 0, 1, . . . ,m− 1. Therefore, we see that

Ln−1
(
(Uk)

n−1 ∩ K̃A
)

= Ln−1

(m−1⋃
j=0

Ek
j

)
=

m−1∑
j=0

Ln−1
(
Ek
j

)
=

m−1∑
j=0

(
n− 1

j

)
1

(k + 1)αj
.

(6.38)

When we now combine (6.37) and (6.38) we get

Ln−1
(
Un−1
k \ (Un−1

k+1 ∪ K̃A)
)

≤
(

1 +
1

(k + 1)α

)n−1

−
m−1∑
j=0

(
n− 1

j

)
1

(k + 1)α
≤ C

kmα
,

which is exactly what we claimed in (6.35). As shown in (6.36) This ends the proof
of Theorem 1.2 for all n ≥ 4. �

Acknowledgement. The authors would like to thank Tapio Rajala for the discussion
on the projections of Cantor sets into lower dimensional subspaces.

References

[1] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity
problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press,
New York, 2000.



61

[2] S.S. Antman, Fundamental mathematical problems in the theory of nonlinear elasticity, Numer-
ical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ.
Maryland, College Park, Md., 1975) Academic Press, New York, 1976, 35–54.

[3] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational
Mech. Anal. 63, no. 4, (1977), 337–403.

[4] J.M. Ball, The calculus of variations and material science, Current and future challenges in
the applications of mathematics, (Providence, RI, 1997), Quart. Appl. Math. 56, no. 4, (1998),
719–740.

[5] J.M. Ball, Singularities and computation of minimizers for variational problems, Foundations of
computational mathematics (Oxford, 1999), 1–20, London Math. Soc. Lecture Note Ser., 284,
Cambridge Univ. Press, Cambridge, 2001.

[6] J.M. Ball, Progress and puzzles in Nonlinear Elasticity, Proceedings of course on Poly-, Quasi-
and Rank-One Convexity in Applied Mechanics. CISM Courses and Lectures. Springer, 2010.

[7] J.C. Bellido and C. Mora-Corral, Approximation of Hölder continuous homeomorphisms by
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[11] R. Černý, Homeomorphism with zero Jacobian: Sharp integrability of the derivative, J. Math.

Anal. Appl 373 (2011), 161–174.
[12] P.G. Ciarlet, Mathematical Elasticity. Vol. I. Three-dimensional elasticity., Studies in Mathe-

matics and its Applications, 20. North-Holland Publishing Co., Amsterdam, 1987.
[13] E.H. Connell, Approximating stable homeomorphisms by piecewise linear ones, Ann. of Math.

78 (1963), 326–338.
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