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Abstract

In high energy particle physics, the collision of two protons leads to quantum

interactions through the strong force. This interactions produce highly energetic

scattered particles that start to produce more particles forming collimated cones of

particles, called jets. The phenomena that produces these jets from the scattered

particles is called hadronization, and is explained using the fragmentation function.

In this work, the fragmentation functions from with the PYTHIA Monte Carlo event

generator and the data from the ATLAS experiment in various jet energy ranges and

they were used to study a cascade model proposed by Richard Feymann and Richard

Field.

I found that PYTHIA is able to reproduce the ATLAS data with reasonable precision.

The model results are presented using two different kinds of data: one being the same

as used by ATLAS, and another with higher granularity data. The Feynman model

is able to describe the data within ranges of 20% for most of the jet energy ranges

available. It is remarkable how the results obtained by applying the model to the

ATLAS data agree with the results of the model with the PYTHIA simulation.

3



Contents

1 Introduction 6

2 Fragmentation Function 13

2.1 Fragmentation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Feynman and Field model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 ATLAS experiment 16

3.1 ATLAS detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Jet Reconstruction 20

4.1 Jet Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Reconstruction algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 PYTHIA Event Generator 24

5.1 ATLAS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 PYTHIA event generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.1 Configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.2 Code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Particle selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4 Time estimation and pT,hard . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Results 29

6.1 PYTHIA simulation validation . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1.1 Rapidity distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1.2 pT distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Z-distributions comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3 Splitting probability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4



7 Conclusions 43

8 Appendix A: Z-distribution figures for different jet energies. 44

9 Appendix B: Feynman analysis figures and tables for different jet energies. 46

9.1 Jet Energy: pT,jet = 25 < pT < 40 GeV . . . . . . . . . . . . . . . . . . . . 46

9.2 Jet Energy: pT,jet = 40 < pT < 60 GeV . . . . . . . . . . . . . . . . . . . . 47

9.3 Jet Energy: pT,jet = 60 < pT < 80 GeV . . . . . . . . . . . . . . . . . . . . 48

9.4 Jet Energy: pT,jet = 80 < pT < 110 GeV . . . . . . . . . . . . . . . . . . . . 49

9.5 Jet Energy: pT,jet = 110 < pT < 160 GeV . . . . . . . . . . . . . . . . . . . 50

9.6 Jet Energy: pT,jet = 160 < pT < 210 GeV . . . . . . . . . . . . . . . . . . . 51

9.7 Jet Energy: pT,jet = 210 < pT < 260 GeV . . . . . . . . . . . . . . . . . . . 52

9.8 Jet Energy: pT,jet = 260 < pT < 310 GeV . . . . . . . . . . . . . . . . . . . 53

9.9 Jet Energy: pT,jet = 310 < pT < 400 GeV . . . . . . . . . . . . . . . . . . . 54

9.10 Jet Energy: pT,jet = 400 < pT < 500 GeV . . . . . . . . . . . . . . . . . . . 55

5



1 Introduction

One of the main known constituents of the universe is the matter. The most of the matter

we observe is made of atoms, which are made of protons and neutrons in a nucleus, and

electrons orbiting around it. Protons, and hadrons in general, are made of quarks. In

the Standard Model of particle physics, quarks are elementary particles. Quarks interact

with each other mainly through the called strong force, and the gauge bosons (particles

that mediate the interaction) are called gluons. This force hold together the quarks in the

hadrons. Quarks and gluons are referred generally as partons.

Gell-Man postulated the existence of gluons in 1961 [1]. Gluons were confirmed experimentally

by the TASSO Collaboration in DESY in 1979 [2]. Zweig [3] and Gell-Man [4] postulated

independently the quarks in 1964. Initially only three quark flavors were proposed: up,

down and strange. Within one year the charm quark was also postulated by Bjorken [5].

Finally in 1973 the remaining two of the known flavours, bottom and top, were added into

the Standard Model [6]. The experimental evidence for the first quarks proposed came

through the Stanford Linear Accelerator Center (SLAC) experiment in 1968 [7,8], and the

other flavours were confirmed later: charm quark [9], bottom quark [10] and top quark [11].

The charge that mediates the strong force (as electric charge mediates the electromagnetic

force) is the color charge, and thus this field is called Quantum Chromodynamics (QCD).

This was firstly described shortly after the quark postulation by Greenberg [12]. Each

quark can exist with one of the different color states, called red, green or blue; but when

they combine to form hadrons, those must have zero color charge. The fact that is only

possible to observe isolated free particles with zero color charge is known as the color

confinement property. Nevertheless gluons have 8 possible color states [13]. As gluons

have a color charge, they interact among themselves and QCD has three and four gluon

interaction vertices [14]. This is one the main difference to QED, where photons do not
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interact 1. Mathematically the difference comes from non-abelian nature of QCD [16].

Another important property of QCD is the asymptotic freedom [17], for which the bond

between particles becomes weaker for larger energies or smaller distances. Figure 1 shows

the strong coupling constant αs as a function of the kinematic energy scale Q that can be

understood as the inverse distance scale in hard process [18]:

Figure 1: Figure that shows the dependence of the strong coupling constant αs with respect

to the kinematic energy scale Q. This coupling αs in QCD is the equivalent to the electric

charge in the electromagnetism. The scale Q is just a measure of the energy of the process.

For low energy, the coupling becomes large; and for high energy it becomes small.

An interaction with high energy means that is an interaction that happens in short

distance, and a phenomena with small energy means that is happens in long distance. Thus,

1Photons do not interact in the leading order of the perturbative expansion. In next-to-leading order,

two photons can interact via fermion loop described by so called box diagram [15].
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it is possible to classify the phenomena in short and long range phenomena depending on the

typical interaction scale. It is possible to describe the large scale phenomena (Q� 1 GeV)

by applying perturbation theory [19], but for low scale Q ∼ ΛQCD ≈ 200 MeV phenomena

one has to rely on experimental data.

QCD is a part of the called Standard Model of particles [20], together with Quantum

electrodynamics, and is one of the theories that has endured many tests in the whole field

of physics.

Figure 2: Collinear factorization schematic. It presents inclusive production of the hadron

h3 when two hadrons, h1 and h2, interact. The fh1,h2i,j (x1, Q
2
p) are the parton distribution

functions, stating the probability of finding a parton i or j in the hadrons h1 or h2; the dσ̂

is the partonic cross section, describes how the partons i and j interact with each other;

and finally Dl→h3(z, µ2frag), explains how a parton l, product of the interaction, fragments

into another hadron h3. This figure is taken from [21].

In order to study most of the QCD properties, the main process used are the proton-proton
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collisions. In Figure 2 is shown a simple schema on this process [22]. In the left hand side

are the incoming protons (which are hadrons with three quarks [23]), called h1 and h2.

Each of this protons contribute with one parton (which can be a quark or a gluon) i and j.

The probability of finding a parton i in the hadron h1 is given by the parton distribution

function (PDF) [24] fi(x1, Q
2
p) and respectively the probability of finding a parton j in the

hadron h2 is given by the parton distribution function fj(x2, Q
2
p). The PDFs describe the

structure of free proton in rest, that is a long range phenomena. PDFs cannot be obtained

from QCD with perturbation theory, and hence that they are non-perturbative. They can

be determined experimentally mainly from the deep inelastic scattering data [24], since it

is a high energy phenomena, the coupling constant becomes small and the QCD processes

become important.

The next part is the interaction between these partons, described by dσij→k+X , which

is called the partonic cross section [25]. You can view the partonic cross section as a

(dimensional) probability that a parton k is produced in the scattering of partons i and

j. The cross section is inclusive, meaning we do not measure what else (anything, X) is

produced at the same time. It is known that the scattered parton k will start to fragment

after the collision and those fragments will combine to produce hadrons. All the hadrons

coming from the scattered parton form a collimated cone of particles named a jet. This

phenomena is explained by the fragmentation function [26] Dk→h3(z,Q2
F ), and would read

as the probability, for scattered parton k, to form a hadron of type h3. All the described

quantities are assembled together in the collinear factorization theorem [27]:

dσh1h2→h3+X =
∑
ijk

fi(x1, Q
2
p)⊗ fj(x2, Q2

p)⊗ dσij→k+X︸ ︷︷ ︸
Jet cross section

⊗ Dk→h3(z,Q2
F )︸ ︷︷ ︸

Fragmentation function

(1)

where x stands for the momentum fraction of the interacting partons 1 and 2, Q2
F/p are

scale factors, and z is momentum fraction 3 with respect to the jet momentum. When doing

QCD calculations it is assumed that Q2
F = Q2

p = Qhard for simplicity. The convolution of
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the parton distribution functions and the partonic cross section is the jet cross section.

After the scattering process, the result is a bunch of particles, forming a collimated cone.

This is called jet in high energy particle physics, as stated before. In Figure 3 is shown an

example on how a jet could look experimental. There the green tracks would correspond

to particles that belong to the jet and the grey cone shaped volume correspond to the

geometrical definition of the cone (how this is done can be found in Chapter 5). The

momentum of the jet is calculated summing the momenta from all the particles in the jet.

The momentum of the jet defines the jet axis, to which we can relate the momentum of

each and every particle in it. The contribution perpendicular to the axis is called jT , but

the study of jT goes beyond the scope of this thesis, but it has been widely studied [28,29].

In the Equation 1 is shown that Dk→h3(z,Q2
F ) only depends on Q2

F , which is a scale factor,

and z, which is a kinematic variable, describing the longitudinal momentum fraction with

respect to the jet axis. The mathematical definition is, as ATLAS experiment uses [30]:

z =
pjet · pch
|pjet|2

(2)

where pT,jetis the total momentum of the jet and pch is the momentum of the charged

particle we are studying. An important feature of the fragmentation function is that it

does not depend on the incoming hadrons of the hard process, but it depends only on what

is the flavor k of the fragmenting parton. Hence it is said that fragmentation function is

an universal function.
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Figure 3: Vector ~P stands for the total momentum of the jet and gives the direction of the

jet axis. Momentum fraction of a constituent in the jet along the jet axis is given by z.

This variable z is the same as in the fragmentation function dependence, Dk→h3(z,Q2
F ),

and will be the nucleus of this analysis. Similarly the jet transverse momentum jT is the

projection of constituents momentum perpendicular to the jet axis.

For this study, I have tested a model presented by Feynman and Field [31] with new

proton-proton data on the fragmentation function, produced by the ATLAS collaboration

[32] in 2011. This study included the comparison of several Monte Carlo samples with

the data, but the data was limited with large error bars. This motivated the use of the

PYTHIA event generator, one of the available event generators, to test the data, and use

it to improve the quality of a fit in further analysis.

In this work I will produce simulated data with the help of a Monte Carlo simulator,

PYTHIA8 8.212, I will compare it to the real data from ATLAS, and then I will test the

Feynman and Field model with the data produced by the simulation.

The following chapters are organized in the following way. In Chapter 2 I introduce the

cascade model proposed by Feynman and Field, to simulate the fragmentation function.

Then I will introduce ATLAS experiment in Chapter 3, where I describe the details of the
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experimental setups for the jet analysis. I will explain the jet reconstruction method used

in Chapter 4. Next in Chapter 5 the PYTHIA event generator is presented, with all the

details on the parameter settings of pythia and jet reconstruction parameters used for the

analysis. At the end the results are shown and the conclusions made. I will finish with my

results and conclusions in Chapters 6 and 7.
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2 Fragmentation Function

2.1 Fragmentation function

As discussed in the introduction, the fragmentation function Dk→h3(z,Q2
F ) is the function

that describes the hadronization of the products of a deep inelastic scattering process.

After the scattered parton starts to move away from the collision center, the coupling

constant (αs) starts to become larger and larger until there is enough potential energy to

start producing pairs of quark anti-quark to satisfy the color confinement. Some useful

relations that the fragmentation function must fulfill are [33]:

∑
h3

∫ 1

0
zDk→h3(z)dz = 1 (3)

∑
k

∫ 1

zmin

Dk→h3(z)dz = nh3 (4)

where zmin is the minimum energy for producing the hadron h3. The first equation

basically means that the sum of the energy of all the products of the fragmentation must

be equal to the energy of the initial fragmented scattered parton. The second equation

shows how many hadrons of type h3 are produced for all scattered partons k.

2.2 Feynman and Field model

In 1970s, Feynman and Field [31] presented a model that tries to explain how a parton

originating from a proton-proton collision will fragment into other partons. The model

includes a full flavor description, but the focus in this work will be the kinematic part. The

idea is to reproduce the fragmentation through a sequential cascade of particles. Figure 4

illustrates how the cascade is build in this model.
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Figure 4: Cascading model by Feynman and Field.

The idea is that the parton initiating the cascade starts to split into lower energy

partons. This splitting is described by the probability distribution f(z) that assigns the

momentum fraction z to each splitting such that z ∗ pT,jet is the momentum of the first

outgoing hadron from the jet and (1 − z) ∗ pT,jet is momenta left for the next splitting.

The splitting of the cascade continues as long as the remaining momentum is higher than

a predefined cut of scale.

In order to be implemented, this model requires the knowledge of the splitting probability

f(z) to be made. This is different from the fragmentation function (FF), since the integral

of the FF is not 1, but it is
∫ 1
0 Dk→h3(z,Q2

F )dz = number of hadrons of type h3 in the

jet, as explained in the previous subsection. Nevertheless Feynman and Field were able to

relate these two quantities using an integral equation:

F (z)dz = f(1− z)dz +

∫ 1−z

0
dz1f(1− z1)F (

z

1− z1
)d(

z

1− z1
), (5)

where the F(z) is

F (z) =
1

Njets

dNch

dz
(6)

The first term represents the probability that the first particle on the decay leaves the

momentum fraction η = 1− z to the remaining cascade. In the second term z1 represents

the momentum fraction that the first particle takes as integration variable. If the first

particle takes a momentum z1 > 1 − z the value of the integral will be zero, since it

is not possible that any other particle gets the chance of achieving enough momentum
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fraction. For instance, if we want to know the probability of a particle getting z = 0.7,

that would be the probability for the first particle f(0.3) plus for the rest of the particles

if the first particle takes a momentum fraction between 0 and 0.3. The integrand accounts

for the probability that some particle gets a momentum fraction z if the first particle takes

momentum z1 (F ( z
1−z1 )d( z

1−z1 )), weighted with the probability of the first particle taking

that momentum z1 (f(1− z1)).
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3 ATLAS experiment

3.1 ATLAS detector

ATLAS (A Toroidal LHC Apparatus) [34] is one of the major experiments, together with

ALICE (A Large Ion Collider Experiment) [35], CMS (Compact Muon Solenoid) [36] and

LHCb (LHC-beauty) [37], located at the LHC (Large Hadron Collider) in Geneva. The

main goals of ATLAS experiments are to search for new particles and for new interactions

beyond the standard model, together with CMS. It is made of a set of detectors with

different purposes.

Figure 5: Schema of the different detector parts of the ATLAS experiment, where the blue

part corresponds to the hadronic calorimeter (measurement of the energy of the hadrons),

the brown part is the electromagnetic calorimeter (measurement of the energy of all the

electric charged particles, and the inner detectors track the momenta of the electric charged

particles.2
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The ATLAS detector is of special importance for this thesis since the data used is from

it. Figure 5 shows a schema on the different detectors that compound ATLAS experiment

and it illustrates how the different particles interact with the different type of detectors.

The inner detectors, the yellow lines and the grid, are trackers for charged particles to

measure the momenta of charged particles. This is done through a magnetic field, that

bends the trajectories of the charged particles, and thus is possible to know the momenta.

The trajectory of the particles are usually measured using gas detectors, that the detect

the ionization produced by the passing of a charged particle3 [14].

The next detector is the electromagnetic calorimeter [14], the brown region on the figure.

This device is used to detect electrons and photons, and gives a good measure of the energy

of those particles. Keeping the same order, from inner detectors to outer detectors, the

next detector is the hadronic calorimeter in the blue region. It has the same function

as the electromagnetic calorimeter, but for the hadrons, such as neutrons or protons4.

Usually calorimeters have two components, absorber material and active material. When

a particle enters the calorimeter reacts with the absorber material and leaves energy in the

active material. Later the energy is summed and thus obtaining the energy of the original

incoming particle. ATLAS calorimeters are composed by: steel as the absorber material,

and scintillating tiles as active material. The full description about each detector can be

found at [34].

ATLAS has done a study [32] in which, for reconstruction of the jets, all particles

detected are used. All kinematic calculations are done using charged tracks since tracker

detectors provide the best momentum information for the observed particles. The results

obtained are compared to different event generators such as PYTHIA [38] and Herwig [39].

In a part of this thesis I will do the same analysis, trying to reproduce as closely as possible

2http : //stanford.edu/group/stanford atlas/4Particle%20Collision%20and%20Detection
3http://atlas.cern/discover/detector/inner-detector
4http://atlas.cern/discover/detector/calorimeter

17



this ATLAS experiment.

A typical di-jet event, measured in a proton-proton collisions, is presented in Figure

6. The part at the left-top corner shows the event from the beam axis perspective, and

shows the transverse plane. The momentum the particle has in this plane is called as the

transverse momentum, pT . The left-low corner shows another section of the same event,

in this case the protons come from the left and right and collide in the center. In these

two pictures it is possible to distinguish the different detectors in the experiment. The

central dark region, where the lines with color appear is the tracker detector. Next, the

green region corresponds to the electromagnetic calorimeter. The remaining red region is

the hadronic calorimeters. All the yellow tiles on the calorimeters show where particles are

detected. The right corner corresponds to the measurement in a calorimeter, all circles in

the plane are jets that the anti-kT algorithm gives out. This is a typical di-jet event; with

two leading jets, the two yellow towers, and the rest with small energies.
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Figure 6: This example shows a di-jet event measured by ATLAS collaboration in a

proton-proton collision at
√
s = 7 TeV. In the left hand side, the upper figure shows the

transverse view, and the lower figure the longitudinal view, of the collision. Colored lines

are tracks of charged particles, and yellow boxes hits to the calorimeter towers. Figure at

right shows the energy deposited into calorimeter towers in (φ, η) plane and circles present

the area of jets reconstructed by the jet algorithm. Figure is taken from www-page 5.

5https : //twiki.cern.ch/twiki/pub/AtlasPublic/EventDisplayF irstCollisions7TeV/ATLAS2010 152166 810258.png
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4 Jet Reconstruction

4.1 Jet Definition

One of the key concept in high energy physics is the idea of jets. The notion of jet

correspond to a shower of particles in a very narrow cone, product of a collision of particles

at very high energy [40].

The first thing that should be done is to define what a jet is. After the process described for

the jet cross section in the collinear factorization, the scattered parton starts to fragment

into other partons. This is known as the partonic shower [41]. In Figure 7 this would be

the area right next to the collision, where the splitting into quarks and gluons happens.

The next step is the hadronization of this partons [42]. All the particles that carry color

charge are affected by the color confinement, and this phenomenon forces quarks and gluons

to unite in order to be colorless hadrons [43]. According to Feynman [31], also pairs of

quark-antiquarks are created in this process to fulfill this condition. This way, all the

hadrons whose mother is the original scattered parton will form a jet.
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Figure 7: Representation of a proton-proton collision and the different stages in the

formation of jets. After the collision the scattered parton starts to fragment into more

partons that later hadronize and form the jet. Figure taken from [44].

In an experiment jets are defined in different ways. In the proton-proton collision, there

are many particles that do not originate from fragmentation of the hard parton. These

uncorrelated particles are the result of the underlying event. This underlying event consists

mostly from the beam remnants, the parts of the protons that do not interact. Other forms

of underlying event are multiple interactions or soft processes [45]. During a proton-proton

collision, the parton interacting also radiate, and this phenomena is known as initial and

final state radiation, depending if it happens before or after the hard process respectively.

Figure 8 shows this schematically.
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Figure 8: Schematic view of the proton-(anti)proton event. The blue arrows are incoming

beams, red and magenta arrows depict the hard physics in the event and black arrows

represent the underlying event. Figure is taken from [45].

4.2 Reconstruction algorithms

To solve the classification of particles into jets, the solution is the application of a certain

algorithm to reconstruct the jets. Depending on how these algorithms classify the particles

into jets, they are divided into two main groups [46]: cone algorithms and sequential

recombination algorithms.

The cone algorithms are based on the idea of a rigid cone in the η − φ plane, being η the

pseudorapidity and φ the azimuthal angle. The most simple cone algorithm searches for

the most energetic hadron in the final list of particles, and defines a cone around it, using

the parameter R. This R is the cone radius in the η − φ plane, and therefore defines an

area A = πR2. All the hadron trajectories inside that area would belong to the jet.

The sequential recombination algorithms more based on the idea of recombining particles.

In this particular study, the important algorithms are the kT algorithms [47]. The kT

algorithms are defined using the distance between particles dij and the distance from every

particle to the beam axis diB using the following formulas:
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dij = min(k2pti , k
2p
tj )

∆2
ij

R2
, (7)

diB = k2pti , (8)

where ∆2
ij = (yi − yj)2 + (φi − φj)2, kti is the transverse momentum, yi is the rapidity

and φi is the azimuth of the particle i. R is also a parameter given and p defines what

type of algorithm is used. The algorithm starts by defining both quantities for every

particle, which now become protojets. From all the calculated distances, the algorithm

picks the smallest one. If it is a distance between two particles dij the algorithm merges

both particles defining a new protojet. If the smallest distance is a diB the protojet is ”not

mergable”, becomes a final jet, and is taken out from the protojet list. This algorithm is

repeated until there are no more protojets.

With p = 1 it corresponds the kT algorithm, with p = 0 it corresponds the Cambridge/Aachen

[48] algorithm and with p = −1 it corresponds the anti−kT algorithm [49]. For our

simulation the algorithm used was the anti−kT algorithm, as ATLAS did on their analysis.
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5 PYTHIA Event Generator

5.1 ATLAS characteristics

In order to reproduce the data from ATLAS I need to know the limitations of the detector,

and implement them in the simulation. In the ATLAS measurement paper [32] the following

acceptance of the particles and the parameters of the jet reconstruction algorithm were

taken into account in the measurement and the following simulations:

• Jet pT cut: pT,jet > 20 GeV, this cut is applied in order to discard jets that are not

product of the hard process.

• Particle energy cut: minimum pT cut is required,pTtrack > 0.5 GeV,

• η Acceptance: |ηparticles| < 1.8, where ηparticles is the pseudorapidity of the particles,

and it is required to be less than 1.8 to enter into the jet reconstruction. Taking this

into account, if jets with radius R = 0.6 are considered, then |etajet| < |etaparticles|−

R⇒ |ηjet| < 1.2, this is called the fiducial acceptance.

• Charged Particles: Only charged particles will be used for the kinematic analysis.

5.2 PYTHIA event generator

PYTHIA [38] is a particle physics collision event generator, able to generate proton-proton

collision events given certain parameters such as incoming particles, energy of the particles,

number of events to simulate or decay criteria. Some other settings can be also applied

to enhance certain characteristics the researcher might be interested in. This tool is

widely used nowadays in the particle physics field. For this study the version used was

PYTHIA8.2.1.2.
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5.2.1 Configuration file

In order to run the simulation, PYTHIA can use a configuration file, detailing information

regarding the process studied. The use of configuration files make PYTHIA more flexible,

allowing to make the same simulation with different parameters, and not having to recompile

the code in just to change some configuration. For the purposes of this thesis the following

main parameters where set in order to reproduce the ATLAS data:

• Random Number Seed (Random:setSeed): This feature should be turned on and

given a value on Random:seed to generate a random number sequence for the Monte

Carlo simulation.

• Beam ID (Beams:id(A or B)): Beam ID stands for what kind of particle is colliding

in the simulation. In the case of a proton to proton collision would be Beams:idA =

2212 and Beams:idB = 2212

• HardQCD : HardQCD setting is on, so all QCD jets and jet processes are possible,

and the diffractive events are not simulated.

• pTHard (PhaseSpace:mHat): With this setting you can enrich the hard jet events

in the produced sample. This setting forces all outcoming partons from the hard

process to have pT > 15 GeV/c. This setting is discussed in detail later.

• Particle decay: Finally, this states if a particle can be consider stable or if it decays.

All particles with a lifetime shorter than tau0Max (mm/c) will decay. In order to

reproduce ATLAS results, it was used: ParticleDecays:limitTau0 = On and ParticleDecays:tau0Max

= 10.0.

5.2.2 Code structure

After including the appropriate headers in the code to make PYTHIA work, the data from

the configuration file is read. The next step is to create a loop to initiate the events. Once
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the event is created, some cuts are applied. Firstly, some histograms are filled with all the

final state particles in the event, or in other words the particles do not decay before they are

detected. Also a minimum pT cut is made for all particles, in this case pT,min = 0.5 GeV;

and pseudorapidity cut is also made, |η| = 1.8. All these cuts are made in accordance with

the ones described in ATLAS measurements [32].

Following to the cuts, it is possible to extract and store the information regarding the

outgoing particles in vectors called PseudoJet. If a particle fulfills the above requirements,

then the main attributes are written in a vector. This vector includes the energy and the

three momentum of each particle. Then the vector is added to a list of final state particles,

which will be used to reconstruct the jets.

5.3 Particle selection

When simulating collisions, PYTHIA generates an event and a list of all particles according

with the configuration file. In the configuration file it is written specifically the ’ParticleDecays’

configuration. According to the PYTHIA documentation6 this class is in charge of the

decays of all unstable hadrons. By activating this feature a limit is set to the particles that

can be detected. Specifically the parameter was set to be τ0Max = 10.0 mm/c. Thus all

the particles with a lifetime shorter than 10.0 mm/c≈ 1
310−10s will decay. This means that

π0, with lifetime 8.4× 10−17s will decay. This represents a challenge experimentally since

it is difficult to say whether a photon comes from a decay or from something else. This is

another reason to justify the use only of charged particles in the kinematic analysis.

The next part of the code is the jet reconstruction. The anti−kT algorithm is the method

used in ATLAS experiment, and also for this study. The algorithm was implemented in

the FastJet package [50] and called inside the PYTHIA code. I used the same R parameter

value as ATLAS did R = 0.6.

6http : //home.thep.lu.se/ torbjorn/pythia81html/ParticleDecays.html
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5.4 Time estimation and pT,hard

The pT spectra is used as one of the sanity checks of the simulation. It has a typical

exponential shape in low pT and powerlaw shape in high pT, which is the interesting

region for this study. In order to compare the results of the simulation on fragmentation

function, is important to first analyze how well the simulation reproduces the experimental

pT spectra.

During the construction of the code it was necessary to estimate how much time would take

a simulation to produce significant statistics. Taking advantage of the powerlaw form of

the pT spectra, it is possible to predict how long it will take to produce a certain amount of

statistics in a pT region. This can be done by fitting the spectra with an powerlaw shape,

and knowing the time that took to get certain amount of data, extrapolate and calculate

how much time would be needed to get the amount of data wanted. The conclusion of

that analysis was that using minimum-bias simulation (pT,hard = 0 GeV) would take a

considerably long period of time, so in order to have enough data it is required to add a

new parameter to the simulation.

The pT,hard is a convenient feature of PYTHIA for this purpose. As described before it

enhances the production of higher pT phenomena by raising the invariant pT. This reduces

considerably the time needed by the simulation to reach certain pT regions, which makes it

useful for this kind of study. The usage of this feature shifts the spectra towards higher pT,

and this changes the pT spectra as shown in the left part of Figure 9. The minimum-bias

pT spectra presents closely an powerlaw trend for all pT. Nevertheless, for a non-zero

pT,hard (pT,hard = 15 GeV in the figure), at low pT regions the spectra has a peak, around

pT = 15 GeV, and then starts to decrease until resembles an powerlaw trend. It is necessary

to make sure that the usage of this feature does not affect the shape of the pt region used

for the analysis.

In order to use a simulation with pT,hard = 15 GeV it is sufficient to compare the pT spectra

with a minimum biased simulation and determine the difference as a scaling factor. The left
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hand side of the Figure 9 shows the both spectras together, enhancing the pT,hard = 0 GeV

one by a factor of 800, and is possible to conclude that the high pTpower is not modified

by this pT,hardrequirement. Thus is possible to assume that no distortions will appear in

the jet spectra in the range of study, and the data generated with pT,hard > 15 GeV.
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Figure 9: The left panel shows the pT distribution for pT,hard = 0 (blue squares) and

pT,hard = 15 GeV/c (black circles). It is clear that higher pT,hard enriches the high-pTjet

production. The right panel shows the same except that pT,hard = 0 spectrum is scaled by

a factor of 800 and histograms are rebinned in order to reduce the statistical fluctuations

between 19 < pT,jet < 70 GeV.
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6 Results

6.1 PYTHIA simulation validation

Once the pT,hard setting is proven safe, is necessary to make sure the simulation is producing

the results we are interested in. To justify the simulation two observables can be analyzed:

the rapidity and the pT. This is not only to confirm the result but also in case of finding

disagreements, these tests can indicate what causes them.

6.1.1 Rapidity distributions

The rapidity variable is related to the relativistic velocity. In particle physics the rapidity

is commonly defined using:

y =
1

2
ln
E + pz
E − pz

(9)

where E is energy and pz is the longitudinal momentum of the particle along the beam

axis. Rapidity is related with longitudinal velocity, as y → vz/c, when vz/c � 1, but

it is convenient in relativistic calculations since it is additive in longitudinal Lorentz

transformations. At the ultrarelativistic limit rapidity coincides with pseudo-rapidity, i.e.

y → η, when m/E � 1. As the pseudorapidity is directly related with scattering angle, it is

easier to access it experimentally. The rapidity distribution for the simulation is presented

in Figure 10.
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Figure 10: Rapidity (red) and pseudorapidity (black) distributions of jets in the lowest jet

transverse momentum bin, 25 < pT,jet < 40 GeV and their ratio. One observes that there

is no significant difference between them in these jet energies. For higher jet energies the

distributions become noisy due to the lack of jets in those energies.

6.1.2 pT distributions

The other test of the simulation is comparing the pT distribution of the simulation to the

results obtained by ATLAS. In the simulation this is done by creating a histogram with the

transverse momentum pT values of the jets and comparing it to the ATLAS measurement.

In order to do the comparison it is required to make sure that both distributions are in the

same units. ATLAS pT,jet spectra are in dσ
dpT dy

[pb/GeV] and PYTHIA are in 1
Nevents

dN
dpT

.

This two quantities can be related using the following equation [51]:
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dσ

dpT,jetdy
[pb/GeV] =

σgen
Naccepted

1

∆η

dN

dpT,jet
(10)

where σgen is related to the cross section given in milibarns (here is included the contribution

of the pT,hard), Naccepted stands for the amount of events accepted to be simulated [38]. This

are values the PYTHIA simulation provides. There is also ∆η stands for the pseudorapidity

value (∆η = ηmax − ηmin). Figure 11 shows the comparison of measured and simulated

pT distribution of jets. Neither in my simulation or in ATLAS data the underlying event

was subtracted. The original data from ATLAS [30] had |y = 0.3| thus, a run of the

simulation was made only generating the jet pT spectra to compare with the ATLAS jet

pT spectra.
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Figure 11: Jet cross section in |y| < 0.3 measure by ATLAS [30] as compared to PYTHIA

simulation made using pT,hard > 15 GeV. The solid line is a powerlaw fit to the ATLAS

data and lower panel shows the ratio of the data and the PYTHIA simulation to the fit.

The values that scales the simulation pT distribution is obtained through the Equation 10.

6.2 Z-distributions comparison

Once the pT and the rapidity distributions are done, the next step is to compare the

z-distributions. As defined before, the z-distribution show the part of the momentum

a certain particle takes from the jet during the fragmentation process. Figure 12 left

hand side shows the fragmentation function in bin 25 < pT,jet < 40 GeV measured by

ATLAS (black circles) [32] and my PYTHIA simulation (red circles). Lower panel shows

how much PYTHIA results deviate from the measured data. PYTHIA and the data
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agree within 20% for all z ranges, for all pT,jet energies. Right hand side in Figure 12

is taken from [32] and it shows the comparison to many different event generators and

their tunes, made by ATLAS. The PYTHIA8.2.1.2 results from this work on the left panel

agree well to the PYTHIA8.1.4.5 used for ATLAS paper shown on the right panel; with

both event generators overestimating the fragmentation function in low z region, and also

underestimating for high z region. The results from other jet momentum bins can be

found in Appendix A. For increasing pT,jet energies, the overestimation in low z region of

the fragmentation function maximum appears in lowers z’s, and the underestimation tends

to get slightly bigger.
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Figure 12: Left Figure shows the ATLAS results for fragmentation function (solid black) for

jets 25 < pT,jet < 40 GeV [32]. Red open circles are results from my PYTHIA simulation.

Lower panel shows how much the simulation deviates from experimental results (%). The

right Figure is made by ATLAS [32] and presents the same for different event generators and

their tunes. The same results in different jet momentum bins are presented in Appendix

A.
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Figure 13 shows a comparison of the z-distributions for all the different pT,jet energies

for my PYTHIA simulation on the left panel, and the ATLAS on the right panel. As

has been said, the fragmentation function, Dk→h3(z,Q2
F ), depends on the z variable, but

also on the Q2
F scaling. The pT,jet dependance observed in Figure 13 is a manifestation of

this dependance with respect the Q2
F scaling. The simplest parton model would predict

a scale independent D = D(z), but perturbative quantum chromodynamics corrects this

and shows logarithmic scaling violations [52]. As shown at the ratio panel on both figures,

the lower pT,jet energies tend to have lower values for smaller z, and also to peak around

z = 0.3. For higher pT,jet energies the differences start to be small. Nevertheless one

observes that the differences between the simulation and the experimental data are within

20%.
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Figure 13: Fragmentation function in different jet transverse momentum (pT,jet) bins. Left

Figure shows the results from my PYTHIA simulation. Lower panel shows the ratio to the

bin 110 < pT,jet < 160 GeV. Right Figure shows the same but for ATLAS data [32].
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FF parameter limits Norm α β γ

Top limit 20 50 10 50

Low limit 0 0 0.1 0.1

Table 1: Table showing the limits applied to the parameters of the KKP parametrization.

On the top row are the name of the parameters, the next row shows the higher limit this

parameters can take, and the last row shows the lower limit for the parameters.

6.3 Splitting probability analysis

The final part of the analysis is the test of the Feynman and Field cascading model. For

this purpose the following procedure was followed. First the PYTHIA simulation data was

fitted using the called KKP parametrization [53] form:

F (z) = Nz−α(1 + z)β(1− z)γ (11)

This form includes three parameters (α,β and γ); where the z−α term is dominating at

low z; (1− z)γ dominates at high z, shrinking the function towards F (z) = 0; and finally

(1 + z)β term modules in intermediate z ranges. It was not possible to fit over the whole

range of z, because the fit became unstable if the fitting range was extended below z =

0.03. Hence the final fitting range was 0.03 < z < 0.99. In the plots, the fit is represented

using a solid black line. When doing the fits, some limits were applied to the parameters

in order to avoid strange solutions. The limits to the KKP parametrization fit are shown

in Table 1. Those limits are purely empirical, in order to get results:

Tables 2 and 3 shows examples of the values obtained from the fit. Three different

fragmentation function data were used: ATLAS [32], PYTHIA simulation using same z

binning as ATLAS, and using finer bins especially in higher z ranges for 0 < z < 1.

Most of the parameters show agreement for the different initial data. This makes the

process more reliable.
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pT,jet = 25 < pT < 40GeV Norm α β γ

ATLAS data 15.2816 0.643743 0.0100002 11.037

PYTHIA Atlas bin 20 0.576186 0.726743 10.5294

PYTHIA Log bin 20 0.578006 0.765603 10.6373

Table 2: Table showing example of the values after the fit procedure for each different

fragmentation function data, according to equation 11 for 25 < pT,jet < 40 GeV.

pT,jet = 110 < pT < 160GeV Norm α β γ

ATLAS data 4.96688 1.00499 0.01 9.15151

PYTHIA Log bin 5.3872 1.01577 0.519693 9.28972

PYTHIA Atlas bin 5.4077 1.01394 0.537594 9.15479

Table 3: Table showing example of the values after the fit procedure for each different

fragmentation function data, according to equation 11 for 110 < pT,jet < 160 GeV.
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Splitting probability limits Norm ν λ

Top limit 20 20 20

Low limit 0.01 0.15 0.01

Table 4: Table showing the limits applied to the parameters of the KKP parametrization.

On the top row are the name of the parameters, the next row shows the higher limit this

parameters can take, and the last row shows the lower limit for the parameters.

In order to solve the integral equation given in Eq. (5), a numerical method was used,

since with the given forms, the equation does not have analytical solution. The method

used was to fit the left hand side (the sum and the integral) of the equation with the right

hand side (which was done using the fitted data with the error of the data). The solution

is presented as the dashed line and is the probability splitting distribution.

In order to do so it is used the KKP fit obtained from the data as F (z), and as f(z) is

used:

f(z) = N(1− z)νe−zλ (12)

This shape is suggested from a previous study in our reserach group [54]. It includes only

two parameters (λ and ν this one is different from the KKP form), where the exponential

term e−zλ dominates at low z and (1− z)ν dominates at high z. This shape, only having

two parameters might be to stiff, but is able to get the general idea, as shown in [54]. The

limits to the splitting probability are shown in Table 4. As previously, the limits are purely

empirical.

Tables 5 and 6 shows examples of the values obtained on the fit. Making the limits

more flexible lead to irregularities and clearly mistaken values. In some cases, without any

limitation on the parameters, the fit gave parameters with negative values.

From the solution, which is a probability distribution by definition, the cascading model
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pT,jet = 25 < pT < 40GeV Norm ν λ

ATLAS data 7.74873 0.150001 8.51991

PYTHIA Atlas bin 7.77324 0.15 8.37711

PYTHIA Log bin 7.97211 0.15 8.60002

Table 5: Table showing example of the values of the splitting probability, according to

equation 12 for 25 < pT,jet < 40 GeV.

pT,jet = 110 < pT < 160GeV Norm ν λ

ATLAS data 7.24494 0.15 8.48338

PYTHIA Atlas bin 7.30905 0.15 8.59116

PYTHIA Log bin 7.46366 0.15 8.79180

Table 6: Table showing example of the values of the splitting probability, according to

equation 12 for 110 < pT,jet < 160 GeV.
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is implemented. At first is required the mean of the pT trigger histogram, which is the

mean of the pT distribution in certain pT,jet. The next step is, taking this pT value as the

initial, to start splitting from it according to the probability distribution, until a limit, in

this case 1 GeV. Each value obtained from the splitting is divided by the original energy

value obtaining the z. The z values correspond to the red circles in Figs. 14, 15 and 16.

The results are presented with three different initial data. Figure 14 is the result of the

previously described analysis using as the data to be fitted by the KKP parametrization the

ATLAS data [32]. The cascade is able to reproduce the data reasonably, although is clear

that is not equivalent. Also the data has large error bars, which lead us to do the PYTHIA

simulation to improve the statistical errors. Figure 15 shows the same analysis taking

PYTHIA simulated data. The error bars are clearly diminished with respect to Figure 14,

but there is not significant difference in the shape, and in most cases the cascade done

starting with ATLAS data shows a closer shape to the original data than the PYTHIA

one. Finally, Figure 16 shows the results for logarithmic binning. The results become more

similar to the ones obtained using ATLAS simulation.

In the appendixes is possible to find a more detailed analysis, for 25 < pT,jet < 500 GeV energies,

of the fitting and cascading performance. For higher energies the error bars of the PYTHIA

data start to become larger, and above 260 GeV their fluctuations make them not so reliable

for this analysis. The KKP fits agree decently with the data in most of the cases, showing

always an underestimation for z < 0.03, which makes sense knowing the fit limits; and an

overestimation for z > 0.5 ,which also makes sense, since in there are only a couple of points

above that value. ATLAS data shows a stable pattern above 100 GeV for the cascading,

and so does PYTHIA simulation in logarithmic binning. Nevertheless this latter data starts

fluctuating above 260 GeV, as mentioned before. This same pattern is also can be seen in

the PYTHIA simulation with ATLAS binning, but tends to exaggerate the values.
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Figure 14: Fragmentation function obtained from ATLAS data [32] in 25 < pT,jet < 40 GeV

(left) and 110 < pT,jet < 160 GeV (right). Solid black line shows a fit to the fragmentation

function in the form of Equation 11, and dotted black line a corresponding probability

distribution solved from integral Equation 5. Open red circles are obtained trough cascade

and should reproduce the solid line. The cascading circles have different position on the

x-axis because the bin shift correction was not applied [55]. Lower panels show the ratio

of ATLAS data and cascade result into the fit. Results in other jet transverse momentum

bins are collected into Appendix B.
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Figure 15: The same as in Figure 14, but using the PYTHIA data obtanined in my

simulation, using the same binning as the ATLAS collaboration did. Results in other jet

transverse momentum bins are collected into Appendix B.
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Figure 16: The same as in Figure 15, but using a logarithmic binning, using 50 bins in

the region 0 < z < 1. Results in other jet transverse momentum bins are collected into

Appendix B.
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7 Conclusions

The fragmentation functions from with the PYTHIA Monte Carlo event generator and

the data from the ATLAS experiment in various jet energy ranges were used to study

a cascade model proposed by Richard Feymann and Richard Field. Finally the analysis

of the results lead to the following conclusions: PYTHIA8 8.212 is able to estimate the

measured fragmentation function from the ATLAS experiment within a 20% for most of

the pT,jet energies. These discrepancies are reached in regions around z = 0.1 (+20%) and

z > 0.7 (−20%) for lower pT,jet energies; for the higher momentum jets, PYTHIA tends

to describe the data better but still overestimates (+10%) the data at the lower z, good

description in the intermediate z ranges.

The PYTHIA simulation or real ATLAS data are fitted with the KKP parametrization.

For most of the data sets, the fit tends to underestimate the data (−20%) at 0 < z < 0.05.

This might be explained by the fact that for convergence, the fit is made in the range

0.03 < z < 0.99. Then at z > 0.6 the fit starts to overestimate the data. The fit

performance is better when using logarithmic binning. Nevertheless, for higher energies in

high z this binning form shows more fluctuations. With ATLAS data the fit stays mostly

within the error bars.

After solving the Integral equation (5) using the fit, the splitting probability is obtained.

The cascading model is able to reproduce the data within a 20% in most of the pT,jet energy

ranges. When the pT,jet increases, the cascade simulation starts to deviate more from the

data. For z = 0 usually presents an underestimation (−20%), then starts to grow linearly

(with logarithmic scale on the x-axis) up to z = 0.3 giving an overestimation around +50%,

crossing with the data around z = 0.06. Then starts again to decrease to match the data

for z > 0.7. The cause of this discrepancy might be the functional form chosen for the

splitting probability on equation 12. Using a more flexible form with more parameters

might improve the results, but that would difficult the solution of the integral equation 5.
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8 Appendix A: Z-distribution figures for different jet energies.

In this Appendix, the fragmentation function comparison between ATLAS and PYTHIA

simulation data is shown for all the pT,jet ranges available (from 25 to 500 GeV).
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Figure 17: Z-distribution for PYTHIA simulation compared to ATLAS data for 25 <

pT,bin < 40, 40 < pT,bin < 60 and 60 < pT,bin < 80.

dN
/d

z
je

t
F

(z
)=

1/
N

1−10

1

10

210  <  110 GeV
T,jet

   80 < p

ATLAS data

PYTHIA8 8.212

=0.6c, R
T

=7 TeV, anti-ks

 =1.2η>0.5 GeV, 
T,track

p

 > 15 GeV
THard

p

z
1−10

(P
yt

hi
a-

D
at

a)
/D

at
a 

%

60−

40−

20−

0

20

40

60

dN
/d

z
je

t
F

(z
)=

1/
N

1−10

1

10

210  <  160 GeV
T,jet

  110 < p

ATLAS data

PYTHIA8 8.212

=0.6c, R
T

=7 TeV, anti-ks

 =1.2η>0.5 GeV, 
T,track

p

 > 15 GeV
THard

p

z
1−10

(P
yt

hi
a-

D
at

a)
/D

at
a 

%

60−

40−

20−

0

20

40

60

dN
/d

z
je

t
F

(z
)=

1/
N

1−10

1

10

210  <  210 GeV
T,jet

  160 < p

ATLAS data

PYTHIA8 8.212

=0.6c, R
T

=7 TeV, anti-ks

 =1.2η>0.5 GeV, 
T,track

p

 > 15 GeV
THard

p

z
1−10

(P
yt

hi
a-

D
at

a)
/D

at
a 

%

60−

40−

20−

0

20

40

60

Figure 18: Z-distribution for PYTHIA simulation compared to ATLAS data for 80 <

pT,bin < 110, 110 < pT,bin < 160 and 160 < pT,bin < 210
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Figure 19: Z-distribution for PYTHIA simulation compared to ATLAS data for 210 <

pT,bin < 260, 260 < pT,bin < 310 and 310 < pT,bin < 400
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Figure 20: Z-distribution for PYTHIA simulation compared to ATLAS data for 400 <

pT,bin < 500

45



9 Appendix B: Feynman analysis figures and tables for different

jet energies.

In this Appendix, the Feynman cascading model is implemented taking as the true fragmentation

function ATLAS data, PYTHIA simulation and PYTHIA simulation with logarithmic

binning. For each energy there is also a table with the deviation of the KKP functional form

fit and the cascade simulation. For each initial data (ATLAS data, PYTHIA simulation

and PYTHIA simulation with logarithmic binning) is given the highest deviation of the

data for high z and low z in percentage according to the ratio panels. The arrows next to

the values show if the deviation of the data is above or below the KKP fit

9.1 Jet Energy: pT,jet = 25 < pT < 40 GeV
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Figure 21

pT,jet = 25 < pT < 40GeV Original data Feynman cascade

Low z High z Low z High z

ATLAS data 15% ↓ 5% ↓ 35% ↑ 20% ↓

PYTHIA Atlas bin 20% ↓ 10% ↑ 10% ↑ 20% ↑

PYTHIA Log bin 20% ↓ 25% ↑ 45% ↑ 25% ↓

46



9.2 Jet Energy: pT,jet = 40 < pT < 60 GeV
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pT,jet = 40 < pT < 60GeV Original data Feynman cascade

Low z High z Low z High z

ATLAS data 10% ↓ 20% ↑ 20% ↑ 20% ↓

PYTHIA Atlas bin 20% ↓ 20% ↑ 20% ↓ 60% ↑

PYTHIA Log bin 10% ↓ 10% ↑ 35% ↑ diverges ↓

Figure 22
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9.3 Jet Energy: pT,jet = 60 < pT < 80 GeV
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Figure 23

pT,jet = 60 < pT < 80GeV Original data Feynman cascade

Low z High z Low z High z

ATLAS data 15% ↓ 30% ↑ 5% ↑ 15% ↑

PYTHIA Atlas bin 15% ↓ 15% ↑ 15% ↓ 45% ↓

PYTHIA Log bin 10% ↓ 10% ↑ 20% ↑ diverges ↓
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9.4 Jet Energy: pT,jet = 80 < pT < 110 GeV
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Figure 24: In this figure, on the ATLAS data figure the cascading process diverges

completely. The solution of the integral equation might be wrong for this particular case

owe to parameter limitation. It is possible that the probability distribution.

pT,jet = 80 < pT < 110GeV Original data Feynman cascade

Low z High z Low z High z

ATLAS data 15% ↓ 30% ↑ - -

PYTHIA Atlas bin 15% ↓ 20% ↑ 15% ↓ 40% ↓

PYTHIA Log bin 10% ↓ 20% ↑ 10% ↑ diverges ↓
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9.5 Jet Energy: pT,jet = 110 < pT < 160 GeV
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Figure 25

pT,jet = 110 < pT < 160GeV Original data Feynman cascade

Low z High z Low z High z

ATLAS data 5% ↓ 20% ↑ 10% ↓ 15% ↓

PYTHIA Atlas bin 15% ↓ 20% ↑ 20% ↓ 60% ↓

PYTHIA Log bin 10% ↓ 20% ↑ 10% ↑ diverges ↓
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9.6 Jet Energy: pT,jet = 160 < pT < 210 GeV
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Figure 26

pT,jet = 160 < pT < 210GeV Original data Feynman cascade

Low z High z Low z High z

ATLAS data 10% ↓ 5% ↓ 10% ↓ 30% ↓

PYTHIA Atlas bin 15% ↓ 15% ↑ 25% ↓ 55% ↓

PYTHIA Log bin 10% ↓ 20% ↑ 5% ↑ diverges ↓
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9.7 Jet Energy: pT,jet = 210 < pT < 260 GeV
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Figure 27

pT,jet = 210 < pT < 260GeV Original data Feynman cascade

Low z High z Low z High z

ATLAS data 15% ↓ 5% ↑ 20% ↓ 35% ↑

PYTHIA Atlas bin 15% ↓ 5% ↑ 25% ↓ 50% ↓

PYTHIA Log bin 5% ↓ lack of statistics 5% ↑ diverges ↓
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9.8 Jet Energy: pT,jet = 260 < pT < 310 GeV
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Figure 28

pT,jet = 260 < pT < 310GeV Original data Feynman cascade

Low z High z Low z High z

ATLAS data 10% ↓ 5% ↑ 10% ↓ 35% ↑

PYTHIA Atlas bin 20% ↓ 15% ↑ 35% ↓ 55% ↓

PYTHIA Log bin 10% ↓ lack of statistics 10% ↑ diverges ↓
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9.9 Jet Energy: pT,jet = 310 < pT < 400 GeV
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Figure 29

pT,jet = 310 < pT < 400GeV Original data Feynman cascade

Low z High z Low z High z

ATLAS data 10% ↓ 5% ↑ 20% ↓ 40% ↑

PYTHIA Atlas bin 20% ↓ 30% ↑ 35% ↓ 50% ↓

PYTHIA Log bin 10% ↓ lack of statistics 10% ↑ diverges ↓
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9.10 Jet Energy: pT,jet = 400 < pT < 500 GeV
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Figure 30

pT,jet = 400 < pT < 500GeV Original data Feynman cascade

Low z High z Low z High z

ATLAS data 10% ↓ 5% ↑ 20% ↓ 40% ↑

PYTHIA Atlas bin 5% ↓ 35% ↑ 20% ↓ 50% ↓

PYTHIA Log bin lack of statistics lack of statistics - -
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