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Abstract
We study the homeomorphisms of finite distortion from the unit ball

onto cusp domains in R3. Based on some works of Juhani Takkinen and
Pekka Koskela in R2, we are interested in the class of homeomorphism
of finite distortion with the distortion function Kf is locally exponen-
tial integrable, which means there exists some constant λ > 0 such that
exp(λKf (x)) is locally L1-integrable. This class of homeomorphisms
share many similar topological and geometric properties with quasicon-
formal mappings.

The origin of the problem can come back to Riemann mapping theo-
rem, which characterize the domains in the complex plane C that can be
obtained as a comformal image of the unit ball B2(0, 1). But for higher
dimensional case, this kind of Riemann mapping problem is pretty diffi-
cult, even for quasiconformal mappings, it is still open. Then we choose
the special cusp domain in R3 to study, maybe it will give us some in-
spiration in how to do this kind of problems.

Key words and phases: Homeomorphism of finite distortion, Rie-
mann mapping theorem, cusp domain, locally exponential integrable.
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1 Introduction

In this thesis, we are interested in homeomorphisms of finite distortion from the unit
ball B3(0, 1) ⊂ R3 onto a cusp domain Ωs ⊂ R3. The cusp domain Ωs is the set:

(1.1) Ωs = B3(0,
√

2) \
{
x = (x1, x2, x3) ∈ R3 : 0 ≤ x1,

√
x2

2 + x2
3 ≤ x1+s

1

}
.

See Figure 1 below.

Figure 1: Cusp domain Ωs

Definition 1.1. We say that a homeomorphism f : Ω → f(Ω) ⊂ R3 on an open
set Ω ⊂ R3 has finite distortion if f ∈ W 1,1

loc (Ω,R3) and there is a function K : Ω→
[1,∞] with K(x) <∞ almost everywhere such that

(1.2) |Df(x)|3 ≤ K(x)Jf (x),

for almost all x ∈ Ω. Here |Df(x)| := sup{||Df(x)e|| : e ∈ S2(0, 1)} and S2(0, 1) is
the unit sphere in R3.

If there is a constant K ≥ 1 such that Kf (x) ≤ K for a.e. x ∈ Ω, we call f a K-
quasiconformal mapping. This is the so called analytic definition of quasiconfromal
mappings. We will give the geometric and metric definitions of quasiconformal
mappings. For equivalence of these definitions in the Euclidean case, see [16].
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For a homeomorphism of finite distortion we define the optimal distortion func-
tion as

(1.3) Kf (x) :=

{
|Df(x)|3
Jf (x)

for all x ∈ {Jf > 0},
1 for all x ∈ {Jf = 0},

From now on, we only use the optimal distortion function.
In fact, there are different distortion functions. We call Kf (x) as the outer

distortion function of f . And sometimes, we also use the notation Kf
O(x) for the

outer distortion function. The optimal inner distortion function of f (f has finite
distortion a.e.) is defined by

(1.4) Kf
I (x) :=

{
|D#f(x)|3
(Jf (x))2

for all x ∈ {Jf > 0},
1 for all x ∈ {Jf = 0},

Here D#f(x) is the transpose of the cofactor matrix of Df(x), i.e. the matrix of
the 2× 2 subdeterminants. We call Kf

I (x) the inner distortion function of f . These
distortion functions coincide for n = 2 but in general they are different for n ≥ 3.
And by a simple computation, we have the following double inequality

(Kf
I (x))

1
2 ≤ Kf (x) ≤ (Kf

I (x))2,

see [7, Chapter 7].
Based on [16, Page 62] and [10, Page 81-82], we know that there does not exist a

quasiconformal mapping from the unit ball B3(0, 1) ⊂ R3 onto the cusp domain Ωs

for any s > 0. The fact that quasiconformal mappings preserve n-capacity up to a
constant plays a fundamental role in the proof of this result. For the convince of the
reader, we will give the proof of such nonexistence result. We follow the argument
in [10]. Here the capacity is a way to estimate the distance and the size of two sets
in Euclidean space. We will give the exact definition of capacity in Section 2. From
the definition, we see that homeomorphisms of finite distortion are generalizations
of the class of quasiconformal mappings. Thus it is natural to ask whether there
exists a homeomorphism of finite distortion from the unit ball B3(0, 1) ⊂ R3 onto
the cusp domain Ωs or not? More precisely, we hope that the distortion function of
the homeomorphism of finite distortion is locally exponentially integrable. We say
Kf (x) is locally exponentially integrable means that there exists a constant λ > 0
such that exp(λKf (x)) ∈ L1

loc(B
3(0, 1)). This class of homeomorphisms of finite

distortion share many topological and geometrical properties with quasiconformal
mappings.

For this kind of Riemann mapping problem for homeomorphisms of finite dis-
tortion, we obtain the following three results. Both existence and non-existence are
contained. First, we describe the existence result:
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Theorem 1.2. For every s > 0, there exists a homeomorphism of finite distortion f
from B3(0, 1) onto the cusp domain Ωs such that its distortion function Kf satisfies

exp(λKγ
f (x)) ∈ L1

loc(B
3(0, 1)),

for all 0 < λ and all 0 < γ < 1.

To prove the result above, we will construct a suitable homeomorphism from the
unit ball B3(0, 1) onto the cusp domain Ωs.

We will also obtain the following two non-existence results:

Theorem 1.3. For any s > 0, there does not exist a homeomorphism of finite dis-
tortion f from the unit ball B3(0, 1) onto the cusp domain Ωs such that its distortion
function Kf satisfies

(1.5) Jf (x) exp(λK
1
2
f (x)) ∈ L1

loc(B
3(0, 1)),

for any λ > 0.

Another one reads as following.

Theorem 1.4. For any s > 0, there does not exist a homeomorphism of finite
distortion from the unit ball B3(0, 1) onto the cusp domain Ωs such that its distortion
function Kf satisfies

exp(λKγ
f ) ∈ L1

loc(B
3(0, 1)),

for any λ > 0 and γ > 3
2
.

The method of estimating the capacity has been used in the proofs of Theorem 1.3
and Theorem 1.4. For proving Theorem 1.4, we need the sharp modulus of continuity
of homeomorphisms of finite distortion. These concepts will be explained.

From Theorem 1.2 and Theorem 1.4 above, the case of γ ∈ [1, 3
2
] is still open.

And we have the following conjecture.

Conjecture 1.5. For any s > 0, there does not exist a homeomorphism of finite
distortion from the unit ball B3(0, 1) onto the cusp domain Ωs such that its distortion
function Kf satisfies

exp(λKγ
f ) ∈ L1

loc(B
3(0, 1)),

for any λ > 0 and γ > 1.

For the case γ = 1, we believe there would exist such a homeomorphism f :
B3 → Ωs with exp(λKf (x)) ∈ L1

loc(B
3) for sufficiently small λ > 0. And for large

λ > 0, there does not exist a satisfying homeomorphism.
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2 History

Our final goal is to give a geometric characterization of the image of the unit ball B3

under a homeomorphism of finite distortion with a locally exponentially integrable
distortion function. This is the homeomorphism of finite distortion version of the
Riemann mapping theorem. Unfortunately, even a quasiconformal version of such
problem is not known. The class of homeomorphisms of finite distortion is a gener-
alization of the class of quasiconformal mappings; and the class of quasiconformal
mappings is a generalization of the class of conformal mappings. Next, we return to
conformal mappings.

2.1 Conformal mappings

Conformal mappings play a fundamental role in complex analysis. Let C denote the
complex plane, a complex-value function f : C → C has a derivative at z0 ∈ C, if
the limit

f
′
(z0) := lim

z→z0

f(z)− f(z0)

z − z0

exists. Let us give the definition of conformal mappings in the complex plane.

Definition 2.1. A complex-valued function f(z), defined on an open set Ω ⊂ C, is
said to be conformal in Ω if it is a homeomorphism and it has a derivative at each
point of Ω.

Conformal mappings enjoy many interesting properties. One of the most impor-
tant one is the Riemann Mapping Theorem. Intuitively, a domain U ⊂ C is said
to be simply connected if it is path-connected and there is no hole inside. Path-
connected means that for every two points x, y ∈ U , we can find a curve in U with
endpoints x and y. We call γ ⊂ U a curve, if we can find a continuous mapping from
[0, 1] onto γ. If there is a conformal mapping from a domain U ⊂ C onto another
domain V ⊂ C, then we say that V is analytically isomorphic to U . Indeed the in-
verse of a comformal mapping is also comformal, so we can say U is also analytically
isomorphic to V .

Theorem 2.2. Let U be a simply connected open set which is not the whole plane.
Then U is analytically isomorphic to the unit disc in the plane. More precisely,
given z0 ∈ U , there exists a comformal isomorphism

f : U → B2(0, 1)

from U onto the unit disc, such that f(z0) = 0. Such an isomorphism is uniquely
determined up to a rotation, i.e. multiplication by eiθ for some real θ, and is therefore
uniquely determined by the additional condition

f
′
(z0) > 0.
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A proof of this result can be found in almost any complex analysis textbook, see
e.g. [1, Theorem 1, Chapter 6].

From the theorem, we know that every simply connected open set which is not
the whole plane is conformally equivalent with the unit disc in the plane. Since the
inverse of a comformal mapping and the composition of conformal mappings are still
conformal mappings, two planar simply connected domains are always comformally
equivalent. However in the higher dimensional spaces, this is not correct.

A conformal mapping f : Ω → f(Ω) is a 1-quasiconformal; that is |Df(x)|2 =
Jf (x) for every x ∈ Ω. We use 1-quasiconformal mapping to extend the class of
conformal mapping to Rn(n ≥ 3). By a very famous theorem of Gehring, we know
that every 1-quasiconformal mapping in high dimension (larger than 2) is simply the
Möbius transformation. Recall that a Möbius transformation is a finite composition
of reflections with respect to spheres and hyperplanes.

Theorem 2.3. Let Ω,Ω
′ ⊂ Rn, n ≥ 3, be domains and f : Ω → Ω

′
be a 1-

quasiconformal mapping. Then f is the restriction of a Möbius transformation to
Ω.

Proof. See e.g. P. Koskela’s lecture notes [10].

We know that Möbius transformations transfer the unit ball to a ball or a half
space, and for every ball or half space, we can find a Möbius transformation which
transfers it to the unit ball. So in higher-dimension space, if a domain Ω is 1-
quasiconformally equivalent to the unit ball, then Ω must be a ball or a half space.

Next, we discuss some basic results about quasiconformal mappings.

2.2 Quasiconformal mappings

There are several definitions of quasiconformal mappings, e.g. analytic (Just let
Kf (x) be uniformly bounded from above, see Definition 1.1), metric and geometric.
J. Väisälä proved all these definitions are equivalent in R3, see [16]. In this thesis,
we just use the analytic definition of quasiconformal mappings. For those readers
who are interested in the other definitions of quasiconformal mappings, we refer to
Väisälä’s book [16].

We need the modulus of a curve family. Curve family means the family whose
elements are locally rectifiable curves. A curve in R3 is a continuous map γ of an
interval I ⊂ R into R3. We usually abuse terminology and call γ both the map
and the image γ(I). If I = [a, b] is a closed interval, then the length of a curve
γ : I → R3 is

l(γ) = length(γ) = sup
n∑
i=1

|γ(ti)− γ(ti+1)|,
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where the supremum is taken over all sequences a = t1 ≤ t2 ≤ · · · ≤ tn ≤ tn+1 = b.
If I is not closed, then we define the length of γ to be the supremum of the lengths
of all closed subcurves of γ. A curve γ is rectifiable if its length is finite, and it is
locally rectifiable if all its closed subcurves are rectifiable.

We will not distinguish among open, closed, or half-open intervals when they
are domains of a curve; such distinction makes no difference in the forthcoming
discussion. Notice, however, that if γ : I → R3 is rectifiable and I is not closed,
then γ has a unique extension to a rectifiable curve defined at the endpoints of I,
where “endpoints” should be understood in the generalized sense if I is unbouned.
(Strictly speaking, this extension takes values in the completion of R3, but we ignore
such issues here.)

Any rectifiable curve γ factors

(2.1) γ = γs ◦ Sγ,

where Sγ : I → [0, l(γ)] is the associated length function and γs : [0, l(γ)] → R3 is
the unique 1-Lipschitz continuous map such that the factorization in equation (2.1)
holds. The curve γs is the arclength parametrization of γ.

If γ is a rectifiable curve in R3, the line integral over γ of a Borel function
ρ : R3 → [0,∞] is ∫

γ

ρds =

∫ l(γ)

0

ρ ◦ γs(t)dt.

If γ is only locally rectifiable, we set∫
γ

ρds = sup

∫
γ′
ρds,

where the supremum is taken over all rectifiable subcurves γ
′

of γ. If γ is not
locally rectifiable, no line integrals are defined. Now we can give the definition of
the modulus of curve family.

Definition 2.4. Suppose that Γ is a curve family in R3. That is, the elements of
Γ are curves in R3. We denote by F (Γ) the set of all nonnegative Borel functions
ρ : R3 → [0,∞] such that ∫

γ

ρds ≥ 1,

for every locally rectifiable curve γ ∈ Γ. For each p ≥ 1 we set

Mp(Γ) = inf
ρ∈F (Γ)

∫
R3

ρpdm.

If F (Γ) = ∅, we define Mp(Γ) =∞.
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Here and what follows, we use the notation M(Γ) := M3(Γ) for a curve family
Γ. Suppose that f : D → D

′
is a homeomorphism, where D and D

′
are domains in

R3. Consider a curve family Γ in D and its image family Γ
′

= {f ◦ γ : γ ∈ Γ}. If
f is conformal, then we can prove M(Γ

′
) = M(Γ). This fact can be generalized for

quasiconformal mappings, see [16].

Corollary 2.5. Suppose that f : D → D
′

is a K-quasiconformal mapping, where D
and D

′
are domains in R3. Then there exists a constant K1 which just depends on

K and the dimension 3, such that

(2.2)
M(Γ)

K1

≤M(Γ
′
) ≤ K1M(Γ)

for every curve family Γ in D.

In fact, we can use inequality (2.2) to define quasiconformal mappings. Let
f : D → f(D) be a homeomorphism. If for every curve family Γ in D, the inequality
(2.2) is satisfied, then we can prove that f is a quasiconformal mapping. It is the
so-called geometric definition of quasiconformal mappings.

Corollary 2.6. Let f : D → f(D) be a K-quasiconformal mapping, where D is a
domain in R3. Let x ∈ D and r > 0. Define

Lf (x, r) := sup{|f(x)− f(y)| : y ∈ D, |x− y| ≤ r},

lf (x, r) := inf{|f(x)− f(y)| : y ∈ D, |x− y| ≥ r},

and

Hf (x, r) :=
Lf (x, r)

lf (x, r)
.

Then there exists a constant H <∞ which just depends on K and the dimension 3,
such that

Hf (x) := lim sup
r→0

Hf (x, r) ≤ H

for all x ∈ D.

We can also use Corollary (2.6) to define quasiconformal mappings. If a homeo-
morphism f : D → f(D) satisfies the result in the last corollary, then we can prove it
is a quasiconformal mapping. That is the so-called metric definition of quasiconfor-
mal mappings. Using this definition we can extend the definition of quasiconformal
mappings to general metric spaces.

As we emphasized before, it is a difficult problem to characterize the domains in
Euclidean n-space that can be obtained as a quasiconformal image of the the unit
ball Bn(0, 1). It is a type of n-dimensional Riemann mapping problem. Gehring
[3] reduced this problem to look at the boundary of domain. He showed that if a
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quasiconformal mapping exists from a neighborhood of the boundary of a domain
onto a neighborhood of Sn−1(0, 1) in Bn(0, 1), then a quasiconformal mapping exists
between the domain and Bn(0, 1). But unlike the Riemann mapping theorem (which
solves the problem for n = 2), no conditions pertaining solely to the boundary have
been discovered which guarantee a domain to be quasiconformally equivalent to
Bn(0, 1).

2.3 Homeomorphisms of finite distortion

The class of homeomorphisms of finite distortion is a generalization of the class of
quasiconformal mappings, see Definition 1.1. Notice that when Kf (x) ∈ L∞(Ω), we
recover the class of quasiconformal mappings. In this thesis, we will study home-
omorphisms of finite distortion from the unit ball B3(0, 1) onto the cusp domain
defined in (1.1).

3 Relative methods

In the proof of these results we got, we should use following several basic tools.

3.1 Sobolev functions

Theory of Sobolev functions is one of indispensable tools in some aspects of modern
mathematics, such as analysis, PDE and so on. In this subsection, we give the
definition and some properties of Sobolev functions. Throughout this subsection,
let Ω denote an open subset of R3. And f ∈ C∞0 (Ω) means that f is smooth and
supp(f) := {x : f(x) 6= 0} ⊂ Ω is compact.

Definition 3.1. Asssume f ∈ L1
loc(Ω), i = 1, 2, 3. We say gi ∈ L1

loc(Ω) is the weak
partial derivative of f with respect to xi in Ω if

(3.1)

∫
Ω

f
∂ϕ

∂xi
dx = −

∫
Ω

giϕdx

for all ϕ ∈ C∞0 (Ω).

By (3.1), we get that the weak partial derivative with respect to xi, if it exists,
is uniquely defined almost everywhere. We write

∂f

∂xi
≡ gi (i = 1, 2, 3)

and

Df ≡
(
∂f

∂x1

,
∂f

∂x2

,
∂f

∂x3

)
,

provided the weak derivatives ∂f
∂x1

, ∂f
∂x2

and ∂f
∂x3

exist.
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Definition 3.2. Let 1 ≤ p ≤ ∞, the function f belongs to the Sobolev space W 1,p(Ω)
if f ∈ Lp(Ω) and the weak partial derivatives ∂f

∂xi
exist and belong to Lp(Ω), i =

1, 2, 3. And we say f belongs to W 1,p
loc (Ω) if f ∈ W 1,p(V ) for each open set V ⊂⊂ Ω.

Here V ⊂⊂ Ω means that V ⊂ Ω and V ⊂ Ω. And if f = (f1, f2, f3) is a map from
Ω ⊂ R3 to R3 and fi ∈ W 1,p(Ω) for every i = 1, 2, 3, then we say f ∈ W 1,p(Ω,R3).

If f ∈ W 1,p(Ω) we define

||f ||W 1,p(Ω) ≡
(∫

Ω

|f |p + |Df |pdx
) 1

p

for 1 ≤ p <∞, and

||f ||W 1,∞(Ω) ≡ ess sup
Ω

(|f |+ |Df |) .

Here we denote ess supΩ f := inf{a ∈ R : |{x : |f(x)| > a}| = 0}. We say a sequence
of functions {fk}∞k=1 ⊂ W 1,p(Ω) converges to a function f ∈ W 1,p(Ω) in W 1,p(Ω),
if ||fk − f ||W 1,p(Ω) converges to 0 as k goes to infty. And fk → f in W 1,p

loc (Ω) if
||fk − f ||W 1,p(V ) for each V ⊂⊂ Ω. We are also interested in a subspace of W 1,p(Ω).

Definition 3.3. For 1 ≤ p <∞, we define W 1,p
0 (Ω) as the completion of C∞0 (Ω) in

W 1,p-norm.

Sobolev functions enjoy many interesting properties. We will give three proposi-
tions and for the proofs of these results, see [7, Theorem A.15].

Proposition 3.4. Let u ∈ W 1,p(Ω) for 1 ≤ p < ∞, then u has a representative ũ
(That means |{x ∈ Ω : u(x) 6= ũ(x)}| = 0) that is absolutely continuous on almost
all line segment in Ω parallel to the coordinate axes and whose (classical) partial
derivatives belong to Lp(Ω).

Proposition 3.5. For every Sobolev function u ∈ W 1,p(Ω) for 1 ≤ p < ∞, there
exists a sequence {ϕj}∞j=1 ⊂ C∞(Ω) so that ϕj → u in Lp(Ω) and {Dϕj}j is a
Cauchy sequences in Lp(Ω).

Indeed, from the proof of Theorem A.15 in [7], both two propositions above are
equivalent to the definition of Sobolev functions.

Proposition 3.6. Let u ∈ W 1,p(5B) and let p > 3. Then

|u(x)− u(y)| ≤ C(p)|x− y|1−
3
p

(∫
B(x,2|x−y|)

|Du|p
) 1

p

for all Lebesgue points x, y ∈ B of u.
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Since the topic of this thesis is homeomorphisms of finite distortion, from now
on we discuss some results about such homeomorphisms.

Definition 3.7. Let Ω ⊂ R3 be an open set, p ∈ [1,∞) and α ∈ R. We say
f : Ω→ R belongs to the space Lp logα L(Ω) if∫

Ω

|f(x)|p logα(e+ |f(x)|)dx <∞.

We say that f ∈ Lp logα Lloc(Ω) if f ∈ Lp logα L(V ) for all subdomains V ⊂⊂ Ω.

Lemma 3.8. Let f ∈ W 1,1
loc (Ω,R3) be a homeomorphism of finite distortion and

suppose there is λ > 0 such that exp(λKf ) ∈ L1
loc(Ω). Then |Df | ∈ Ln log−1 Lloc(Ω),

and we have that f is differentiable a.e.

Proof. See [7, Lemma 2.8 and Corollary 2.25].

3.2 Lusin (N) and (N−1) Condition

Definition 3.9. Let Ω ⊂ R3 be open. We say that f : Ω → R3 satisfies the Lusin
(N) condition if

for each E ⊂ Ω such that |E| = 0 we have |f(E)| = 0.

From the mathematical point of view this property plays a crucial role in the
change of variables formula which is an essential tool in the proof of Theorem 1.3.
Now we show that Lusin (N) condition implies the change of variables formula.

Theorem 3.10. Let f ∈ W 1,1
loc (Ω,R3) be an orientation-preserving homeomorphism

and let η be a nonnegative Borel measurable function on R3. Then

(3.2)

∫
Ω

η(f(x))Jf (x)dx ≤
∫
f(Ω)

η(y)dy.

and if f satisfy Lusin (N) condition, then there is an equality above.

Proof. See [7, Theorem A.35].

And we can see that Sobolev homeomorphisms are pretty good in this sense.

Theorem 3.11. Let Ω ⊂ R3 be open and let f ∈ W 1,3
loc (Ω,R3) be a homeomorphism.

Then the continuous representative of f satisfies the Lusin (N) condition.

Proof. See [7, Theorem 4.5].

Now using this theorem, we can prove that for the homeomorphism of finite
distortion whose distortion function satisfies the equation (1.5) enjoys the Lusin (N)
condition.
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Theorem 3.12. Let f : B3(0, 1) → f(B3(0, 1)) be a homeomorphism of finite dis-
tortion with the distortion function satisfies (1.5), then f satisfies the Lusin (N)
condition.

Proof. Let M be a compact subset of B3(0, 1). By the distortion inequalities (1.3),
(1.5) and Hölder’s inequality, we can get∫

M

|Df(x)|3dx≤
∫
M

Kf (x)Jf (x)dx

≤
(∫

M

K2
f (x)Jf (x)dx

) 1
2

·
(∫

M

Jf (x)dx

) 1
2

<∞.

By (1.5), we know that Jf (x) exp(λK
1
2
f (x)) ∈ L1

loc(B
3(0, 1)), then we can get that(∫

M
K2
f (x)Jf (x)dx

) 1
2 < ∞ immediately. Since f is a homeomorphism which maps

a compact set to a compact set, then we have
(∫

M
Jf (x)dx

) 1
2 < |f(M)| 12 < ∞.

Then by Theorem 3.11, we know f ∈ W 1,3
loc (Ω,Ω

′
) and f satisfies the Lusin (N)

condition.

In many applications it is also important to know when the preimages of null
sets are null sets.

Definition 3.13. Let Ω ⊂ R3 be open. We say that f : Ω→ R3 satisfies the Lusin
(N−1) condition if

for each E ⊂ f(Ω) such that |E| = 0 we have |f−1(E)| = 0.

The next theorem shows that, for the validity of the (N−1) condition, it is enough

to assume that the distortion satisfies Kf ∈ L
1
2
loc, provided f is a homeomorphism

of finite distortion.

Theorem 3.14. Let f ∈ W 1,1
loc (Ω,R3) be a homeomorphism of finite distortion with

K
1
2
f ∈ L1

loc(Ω). Then Jf (x) > 0 a.e. in Ω and hence f satisfies the Lusin (N−1)
condition.

Proof. See [7, Theorem 4.13]. It gives a more general result.

3.3 Capacity estimates

First, let us give the definition of p-capacity between two sets E and F in a domain
Ω.
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Definition 3.15. Let E and F be two sets in a domain Ω ⊂ R3, let A(E,F ; Ω) :=
{u ∈ W 1,1

loc (Ω) : u ≥ 1 on F and u ≤ 0 on E}. For every p > 0 we define the
p-capacity between E and F with respect to Ω by

Capp(E,F ; Ω) := inf
u∈A(E,F ;Ω)

∫
Ω

|Du|pdx.

For us the most interesting one is the 3-capacity, since it is conformally invariant.
So we also call it conformal capacity (variational 3-capacity, 3-capacity). And by
Proposition 3.5, W 1,1

loc (Ω)∩C∞(Ω) is dense in W 1,1
loc (Ω) in W 1,p-norm, so we can also

take the admissible function in the class W 1,1
loc (Ω) ∩ C∞(Ω).

For K-quasiconformal mappings f : Ω ⊂ R3 → f(Ω) ⊂ R3, we have

(3.3)
1

K
Cap3(E,F ; f(Ω)) ≤ Capn(f−1(E), f−1(F ); Ω) ≤ KCap3(E,F ; f(Ω)).

For the proof of (3.3), see the more general result Lemma 3.18.
For 3-capacity, basic estimates are:
(i) If E ⊂ E

′
, F ⊂ F

′
and Ω ⊂ Ω

′
, then

(3.4) Cap3(E,F ; Ω) ≤ Cap3(E
′
, F
′
; Ω
′
).

(ii) If B(x, r) ⊂ B(x,R) ⊂ Ω, then

Cap3(B(x, r), S2(x,R); Ω) = Cap3(B(x, r), S2(x,R);B(x,R))(3.5)

≤ ω2(
log R

r

)2 .

Here ω2 is the (2)-dimensional volume of the unit sphere S2(0, 1). In fact, the in-
equality can also be reserved. Indeed if u ∈ A(B(x, r), S2(x,R);B(x,R))∩C∞(B(x,R)),
then the fundamental theorem of calculus and Hölder’s inequality give

1 ≤
∫ R

r

|Du(tw)|dt

≤
∫ R

r

|Du(tw)|t
2
3
− 2

3dt

≤
(∫ R

r

dt

t

) 2
3
(∫ R

r

|Du(tw)|3t2dt
) 1

3

for every w ∈ S2(0, 1). The desired inequality follows by raising the both sides of
this inequality to the power 3 and integrating over S2(0, 1) with respect to w.

(iii) If E,F ⊂ B(x, r) are continua with

min{ diamE, diamF}
r

≥ δ1 > 0,
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then

(3.6) Cap3(E,F ;B(x, r)) ≥ δ(δ1) > 0.

According to the definition of capacity, the estimates (i) and (ii) are obvious. For
(iii), we can find the proof of a more general result in [5].

Now we estimate of p-capacity, 2 < p < 3, between the two continuum in a 3-
dimension ball. The proof of the result is based on the Sobolev imbedding theorem
on spheres.

First for a L1-integrable function ω, we denote –
∫
A
ω(x)dx := 1

|A|

∫
A
ω(x)dx, here

A is a measurable set.

Lemma 3.16. Let p > 2 and u ∈ W 1,p(B3(0, R)). Then up to a measure-zero set
in B3(0, R), for almost every t ∈ (0, R) and almost every x, y ∈ S2(0, t) we have

(3.7) |u(x)− u(y)| ≤ Ct

(
–

∫
S2(0,t)

|Du|p
) 1

p

,

where C = C(p) and S2(0, t) is the 2-dimensional sphere centered at the origin with
radius t.

Proof. See [7, Lemma 2.19].

Lemma 3.17. Let E and F be two continuum in a ball B3(a, r), and assume that
there exists constants 0 < A < B < 1 such that S2(a, t)∩E 6= ∅ and S2(a, t)∩F 6= ∅
for every t ∈ [Ar,Br]. Let p ∈ (2, 3) be fixed, suppose that u ∈ W 1,p(B3(a, r),R) is
continuous and satisfies: u ≡ 0 on E, u ≡ 1 on F and 0 ≤ u(x) ≤ 1. Then there is
a constant C(A,B, p) > 0 such that.∫

B3(a,r)

|Du|pdx ≥ C(A,B, p)r3−p.

Proof. By the Fubini’s theorem, u ∈ W 1,p(S2(a, t)) for a.e. t ∈ [Ar,Br]. Then
by inequality (3.7), for a.e. t ∈ [Ar,Br] and almost all x ∈ E ∩ S2(a, t) and
y ∈ F ∩ S2(a, t), we have

1 ≤ |u(x)− u(y)| ≤ C|x− y|1−
2
p

(∫
S2(a,t)

|Du(x)|pdδ
) 1

p

≤ Ct1−
2
p

(∫
S2(a,t)

|Du(x)|pdδ
) 1

p

.

Here dδ means we integral with respect to the area measure of sphere. Thus we have∫
S2(a,t)

|Du(x)|pdδ ≥ Ct2−p for a.e. t ∈ [Ar,Br],
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which yields the desired conclusion∫
B3(a,r)

|Du(x)|pdx ≥ C1

∫
[Ar,Br]

t2−pdt ≥ C2r
3−p

with C2 =
C1(B3−p−A3−p)

3−p .

3.4 Kf and 1
Kf

- inequalities

We give the so-called Kf and 1
Kf

-inequalities in the following lemma, and the proofs

are based on the change of variables formula. For a L1-integrable function ω ≥ 0
almost everywhere, we denote the weighted capacity by

(3.8) Capω3 (E,F ; Ω) = inf
µ∈A(E,F ;Ω)

∫
Ω

|Dµ(x)|3ω(x)dx.

Here Ω ⊂ R3 is a domain, and E, F are compact subsets of Ω.

Lemma 3.18. Let f be a homeomorphism of finite distortion from Ω to Ω
′
, and let

E and F be two continuum in Ω. Then we have

Cap
1/Kf (x)
3 (E,F ; Ω) ≤ Cap3(f(E), f(F ); Ω

′
),

and
Cap3(E,F ; Ω) ≤ Cap

Kf (f−1(y))
3 (f(E), f(F ); Ω

′
).

Proof. Since f = (f1, f2, f3) ∈ W 1,1
loc (Ω,Ω

′
), by Proposition 3.4, we know that fi,

i = 1, 2, 3, is absolutely continuous on almost all line segment in Ω parallel to the
coordinate axes. Let µ ∈ A(f(E), f(F ); Ω

′
) ∩ C∞(Ω

′
) be an admissible function,

then µ ◦ f is absolutely continuous on almost all line segment in Ω parallel to the
coordinate axes and (classical) partial derivatives exists. Even we have

∂(µ ◦ f)(x)

∂xi
=

3∑
j=1

∂µ(f(x))

∂xj
· ∂fj(x)

∂xi
, i = 1, 2, 3.

Then

D(µ ◦ f)(x) :=

(
∂µ(f(x))

∂x1

,
∂µ(f(x))

∂x2

,
∂µ(f(x))

∂x3

)
= Dµ(f(x)) ·Df(x).

and |Dµ◦f(x)| ≤ |Dµ(f(x))| · |Df(x)|. By the argument above we get that µ◦f(x)
satisfies Proposition 3.4, then we know µ◦f(x) ∈ W 1,1

loc (Ω) and µ◦f(x) ∈ A(E,F ; Ω).
Then by distortion inequality (1.2) and change of variables formula (3.2), we have

Cap
1/Kf (x)
3 (E,F ; Ω) ≤

∫
Ω

|Dµ ◦ f(x)|3

Kf (x)
dx
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≤
∫

Ω

|Dµ(f(x))|3 |Df(x)|3

Kf (x)
dx

≤
∫

Ω

|Dµ(f(x))|3Jf (x)dx

≤
∫

Ω′
|Dµ(y)|3dy,

and

Cap3(E,F ; Ω) ≤
∫

Ω

|Dµ ◦ f(x)|3dx

≤
∫

Ω

|Dµ(f(x))|3|Df(x)|3dx

≤
∫

Ω

|Dµ(f(x))|3Kf (x)Jf (x)dx

≤
∫

Ω
′
|Dµ(y)|3Kf (f

−1(y))dy

Since µ is arbitrary, we get the desired result.

3.5 Orlicz functions

In this subsection, we introduce some results on Orlicz functions. Our results have
the standard assumptions that

(3.9) exp (A(Kf (x))) ∈ L1
loc(B

3(0, 1))

for some special Orlicz function A. Let us give the definition of Orlicz functions.

Definition 3.19. We call a strictly increasing function A : [0,∞) → [0,∞) with
A(0) = 0 and limt→∞A(t) =∞ an Orlicz function.

Indeed someone always assume that Orlicz functions are also differentiable. In
this thesis, we will always assume our Orlicz function A satisfies several conditions,
for example, we assume that A satisfies

(3.10)

∫ ∞
1

A′(s)
s

ds =
1

β

∫ [C/ exp{A(1)}]1/β

0

1

tA−1(logC/tβ)
dt =∞

for all C, β > 0. We wish to warn the reader that the conditions (3.9) and (3.10)
do not imply Kf (x) to be even locally integrable and thus an additional technical
assumption on A must be posed. To fill up this gap, we assume that A satisfies also
the following condition:

(3.11) ∃t0 ∈ (0,∞) : A′(t)t→∞ ∀t ≥ t0.
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It was proven in [13] that, under these assumptions on the distortion function, a
mapping f of finite distortion is continuous. It was also shown in [13] that assump-
tion (3.10) is sharp for continuity.

In this section, we associate with A two other Orlicz functions:

Φ(t) = t exp(A(t)),
P (s) = s

Φ−1(s)
− 1, s > 0, and P (0) = 0

(3.12)

We notice that Φ is strictly increasing, since A is strictly increasing. Therefore the
inverse function Φ−1 is well defined. We immediately have

(3.13) P (Φ(t)) = exp(A(t))− 1.

Then for the Orlicz functions above, we have the following proposition from [13] and
three lemmata from [11].

Proposition 3.20. Assume that A is an Orlicz function satisfying (3.10) and (3.11).
Then for the associated Orlicz function P defined in (3.12), we have the pointwise
inequality

(3.14) P (KJ) ≤ J + exp(A(K))− 1

for all K, J ≥ 0, where the Orlicz function P satisfies the integrability condition

(3.15)

∫ ∞
1

P (s)

s2
ds =∞

and also for every 0 < ε, there exists a constant s0 > 0 such that we have

(3.16) (s−1P (s))
′ ≤ 0 ≤

(
sε−1P (s)

)′
for all s ≥ s0.

Proof. For the proof of (3.14) and (3.15), we just use the assumption (3.10).
Indeed, by the change of variables s = Φ(t), (3.12) and (3.10) we obtain∫ ∞

Φ(1)

P (s) + 1

s2
ds =

∫ ∞
1

(P (Φ(t)) + 1)Φ
′
(t)

Φ(t)2
dt

=

∫ ∞
1

Φ
′
(t)

tΦ(t)
dt

=

∫ ∞
1

(1 + tA′(t)) exp(A(t))

t2 exp(A(t))
dt

=

∫ ∞
1

(
1

t2
+
A′(t)
t

)
dt =∞.
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This proves (3.15). Regarding (3.14), we distinguish two cases; naturally we may
assume K 6= 0 6= J . If KJ ≤ Φ(K), then by (3.13)

P (KJ) ≤ P (Φ(K)) = exp(A(K))− 1.

If KJ ≥ Φ(K), then

P (KJ) =
KJ

Φ−1(KJ)
− 1 ≤ KJ

K
− 1 = J − 1.

This proves (3.14). Regarding (3.16), we just need to use (3.11), we divide the proof
into two cases; when ε > 1, it is obviously that sε−1P (s) is increasing as the product
of two positive increasing functions. For 0 < ε < 1 we define h(s) = sε−1P (s) and
h1(s) := h(s) + sε−1. By (3.13)

h1(Φ(t)) = Φ(t)ε−1(1 + P (Φ(t))) = tε−1 exp(εA(t)).

Hence
(h1(Φ(t)))

′
= tε−2 exp(εA(t))[εA′(t)− (1− ε)].

By (3.11) we find a t0 such that h1(Φ(t)) increases for t > t0. We conclude that
h(s) = sε−1(P (s) + 1)− sε−1 is increasing on (s0,∞), where s0 = Φ(t0).

We define H(s) = s−1P (s), then H(Φ(t)) = 1
t
− 1

Φ(t)
. Then (H(Φ(t)))

′
= −1

t2
(1−

1
exp(A(t))

) + A′ (t)
t exp(A(t))

and it is always negative. So H(Φ(t)) is decreasing. And since

Φ(t) is an Orlicz function, so H(s) = s−1P (s) is also decreasing.

Lemma 3.21. Assume that A is an Orlicz function satisfying (3.11), and let p ∈
[1,∞). Then there exists t2 := t2(p,A) ∈ (0,∞) such that the function

t→ t−p exp(A(t))

is increasing on (t2,∞).

Proof. The claim follows from the identity

d

dt
t−p exp(A(t)) = t−p−1 exp(A(t))[A′(t)t− p].

Lemma 3.22. Assume that A is an Orlicz function satisfying (3.11), and let p ∈
[1,∞). Then there exists t3 := t3(p,A) ∈ (0,∞) such that the function

t→ t

A−1(log tp)

is increasing on (t3,∞).
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Proof. Because

d

dt
exp

(
A(t)

p

)
t−1 = exp

(
A(t)

p

)
t−2

(
1

p
A′(t)t− 1

)
,

by Lemma 3.21, we find a number t̃0(p,A) such that exp
(
A(t)
p

)
t−1 is increasing for

t > t̃0. We conclude that

t

A−1 (log tp)
=

exp
(
A(A−1(p log t))

p

)
A−1(p log t)

is increasing on (t3,∞), where t3 = exp(A(t̃0)/p).

Lemma 3.23. Assume that A is an Orlicz function satisfying (3.11), and let p ∈
[1,∞). Then there exists t4 := t4(p,A) ∈ (0,∞) such that the function

t→ exp
(
A
(
t
1
p

))
is convex on (t4,∞).

Proof. Because

d

dt
exp

(
A
(
t
1
p

))
=

1

p
exp

(
A
(
t
1
p

))
A′
(
t
1
p

)
t
1
p
−1,

it suffices to show that the function

t→
exp

(
A
(
t
1
p

))
t

is increasing for large values of t. This holds by Lemma 3.21, and so the claim
follows.

3.6 Weakly monotone functions

As the beginning of this subsection, we first introduce the definition and some results
about monotone functions.

Definition 3.24. Let u be a continuous function in a domain D ⊂ R3 and let u
have boundary values at each point of ∂D. We say that u is monotone in D if

sup
∂∆

u = sup
∆
u and inf

∂∆
u = inf

∆
u

for each domain ∆ ⊂ D.
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We have the following proposition for monotone functions.

Proposition 3.25. A function u is monotone in D ⊂ R3 if and only if there exists
no domain ∆ ⊂ D such that u is constant on ∂∆ without being constant in ∆.

Proof. First, we prove the necessity. If there is a domain ∆ ⊂ D such that u ≡ C
(Here C is a constant.) on ∂∆ without being constant in ∆. Then, there must be
a point x ∈ D such that u(x) < C or u(x) > C. It contradicts the fact that u is
monotone in D.

For the sufficiency, assume u is not monotone in D, then there exists a domain
∆ ⊂ D such that we have sup∂∆ u < sup∆ u or inf∂∆ u > inf∆ u. We consider the
first case sup∂∆ u < sup∆ u, for another case the proof is similar. By the topological
property of D, there exists a point x1 ∈ ∆ such that C1 := u(x1) = sup∆ u (here C1

can be ∞) and x2 ∈ ∂∆ such that C2 := u(x2) = sup∂∆ u, then we have C2 < C1.
For every C3 ∈ (C2, C1), by the continuity of u, We consider the domain ∆C3 ⊂ ∆
with the boundary {x ∈ D : u(x) ≡ C3} ⊂ D. Obviously x1 ∈ ∆C3 , then we know
C1 = sup∆C3

> C3 = sup∂∆C3
u. So we have proven that if u is not monotone in D,

we can find a domain which is a subset of D such that u is constant on the boundary
of the domain without being constant in the domain itself.

The class of weakly monotone functions is a generalization of monotone functions.
For a function u : Ω→ R, we define u+(x) := max{u(x), 0} for x ∈ Ω.

Definition 3.26. A real valued function u ∈ W 1,1(Ω) is said to be weakly monotone
if for every ball B ⊂ Ω and all constants m ≤M such that

(3.17) ϕ = (u−M)+ − (m− u)+ ∈ W 1,1
0 (B),

we have

(3.18) m ≤ u(x) ≤M

for almost every x ∈ B.

Now we collect results which enable us to derive regularity properties of a map-
ping of finite distortion from integrability of its differential. Let us consider a class
X(Ω) ⊂ Ln−1(Ω) of measurable functions on Ω satisfying the following two condi-
tions:
(X-1) Jf (·) ∈ L1

loc(Ω) and detDf =Det Df provided f ∈ W 1,1(Ω,Rn), |Df | ∈ X(Ω)
and Jf (·) ≥ 0 almost everywhere.
(X-2) If g, h ≥ 0 are measurable, g ≤ ch for some 0 < c < ∞ and h ∈ X(Ω), then
g ∈ X(Ω).

Here the statement detDf =DetDf means that

(3.19)

∫
Ω

ϕJf (x)dx = −
∫

Ω

fiJ(x, f1, ..., fi−1, ϕ, fi+1, ..., fn)dx

for each i = 1, ..., n and for all ϕ ∈ C∞0 (Ω).
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Proposition 3.27. For every mapping f ∈ C2(Ω,Rn) the equation (3.19) is satisfied
for each i = 1, ..., n and for all ϕ ∈ C∞0 (Ω). Moreover, the same extends to hold for
every f ∈ W 1,n(Ω,Rn).

Proof. See [7, Proposition 2.10].

Proposition 3.28. Let X be a space of measurable functions satisfying (X-1) and
(X-2). Let f = (f1, ..., fn) ∈ W 1,n−1(Ω) be a mapping of finite distortion with
|Df | ∈ X(Ω). Then the coordinate functions of f are weakly monotone.

Proof. We follow the standard idea as in [8, Section 4]. Let us consider a ball
B ⊂⊂ Ω. We prove e.g. that if f1 ≤ M on ∂B in the sence of traces, i.e. the
positive part of f1 −M belongs to W 1,1

0 (B), then f1 ≤ M a.e. in B. We consider
the truncated function f̃1 = min(f1,M) and the mapping f̃ = (f̃1, f2, ..., fn). Notice
that, by (X-2), |Df̃ | ∈ X(Ω). Let ϕ be a smooth test function with compact support
in Ω such that ϕ = 1 on B. Since f1 differs from f̃1 only on B where Dϕ = 0, we
have f1Dϕ = f̃1Dϕ, and thus∫

Ω

ϕJf (x)dx = −
∫

Ω

f1J(x, ϕ, f2, ..., fn)dx

= −
∫

Ω

f̃1J(x, ϕ, f2, ..., fn)dx

=

∫
Ω

ϕJf̃ (x)dx.

Hence, if we set E = {f̃ 6= f}, we have∫
E

Jf (x)dx =

∫
E

Jf̃ (x)dx = 0.

Since Jf (x) ≥ 0, it follows that Jf = 0 a.e. on E and thus, as f is a mapping of
finite distortion, Df = 0 a.e. in E. It follows that D(f1 − f̃1) = 0 a.e. in Ω which
yields that f1 = f̃1 ≤M a.e. in B.

Based on the proposition above, we have the following corollary.

Corollary 3.29. If there exists an Orlicz function A : [0,∞) → [0,∞) satisfying
(3.10) and (3.11), and the distortion function Kf (x) satisfies (3.9). Then f satisfies
the assumptions of Proposition 3.28. That means that the coordinate functions of f
are weakly monotone.

Proof. See [13].

The next proposition comes from [12, Corollary 1.3].
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Proposition 3.30. Let Φ be an Orlicz-function that satisfies
(Φ− 1)

∫∞
1

Φ(t)
t1+n

dt =∞.
(Φ− 2) There is p ∈ (n− 1, n) such that t 7−→ t−pΦ(t) increases for large values of
t.

Let f ∈ W 1,1(Ω,Rn) satisfy Jf (x) ≥ 0 a.e. x ∈ Ω, and assume that∫
Ω

Φ(|Df(x)|)dx <∞.

Then detDf ∈ L1
loc(Ω) and detDf = DetDf .

Proof. See [12].

There is a particularly elegant geometric approach to the continuity estimate of
monotone functions. The idea goes back to the oscillation lemma by F.W. Gering [4].
While many interesting implications of Gehring’s lemma have been discussed in the
literature, the fact that one can use it for weakly monotone functions seems to be less
familiar. It is surprising that the usual convolution procedure with mollifiers of Dirac
distribution has little effect on the monotonicity of functions. Consequently, we take
the time here to state and give a rigorous proof of this fact. Let u ∈ W 1,p(B(a,R))
be a Sobolev function in a ball B(a,R). Fix a nonnegative χ ∈ C∞0 (B) supported in
the unit ball such that

∫
B
χ(y)dy = 1. The mollifiers χj(y) = jnχ(jy), j = 1, ..., n, ...

give rise to the sequence uj ∈ C∞(Rn) defined by

(3.20) uj(x) = χj ∗ u(x) =

∫
B

u(y)χj(x− y)dy.

It is well known that {uj} converges to u in W 1,p
loc (B(a,R)) and uj(x0) → u(x0),

uj(y0)→ u(y0) at the Lebesgue points x0, y0 ∈ B(a,R) of u. For a locally integrable
function f : Rn → R, we say x0 ∈ Rn is a Lebesgue point of f , if we have

lim
r→0+

1

|B(x0, r)|

∫
B(x0,r)

|f(y)− f(x0)|dy = 0.

Here by |B(x0, r)| we denote the volume of the ball B(x0, r). There is a precise
statement concerning monotonicity, see book [7, Lemma 2.18].

Lemma 3.31. Let u ∈ W 1,p(B(a,R)) be weakly monotone in the ball B(a,R) and
x0, y0 be Lebesgue points in B(a, r), r < R. For each δ > 0 there exists N such that

(3.21) |uj(x0)− uj(y0)| ≤ osc(uj, ∂B(a, t)) + 2δ

for all j ≥ N and every t ∈ [r, R].
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Proof. We claim that the estimates

(3.22) uj(x0) ≤ max{uj(x) : x ∈ ∂B(a, t)}+ δ

and

(3.23) uj(y0) ≥ min{uj(y) : y ∈ ∂B(a, t)} − δ

hold for all r ≤ t ≤ R, whenever j is sufficiently large. We only need to show
the first inequality. The second inequality follows by applying the first one to the
function −u and to the point y0 in place of x0. Suppose, to the contrary, that there
exists a sequence {jk} and radii r ≤ tk ≤ R, k = 1, 2, 3, ..., such that

ujk(x0) > max{ujk(x) : x ∈ ∂B(a, tk)}+ δ.

Without loss of generality we may assume that {tk} converges to some number
t ∈ [r, R] and that |t− tk| < t

2
. Define

vjk(x) := ujk(x)− ujk(x0) + δ for x ∈ B(a, tk).

Since vjk(x) ≤ 0 for all x ∈ Sn−1(a, tk), we conclude that (vjk)
+ ∈ W 1,p

0 (B(a, tk)).
Let us define

ṽjk(x) = vjk

(
a+ (x− a)

tk
t

)
for x ∈ B(a, t).

It is easy to see that (ṽjk)
+ ∈ W 1,p

0 (B(a, t)). By (3.20), we know that vjk(x) →
u(x)− u(x0) + δ in W 1,p because x0 is a Lebesgue point of u. Therefore∣∣∣∣∣∣∣∣ṽjk(x)−

(
u(a+ (x− a)

tk
t

)− u(x0) + δ

) ∣∣∣∣∣∣∣∣
W 1,p

→ 0.

It is not difficult to show that∣∣∣∣∣∣∣∣u(x)− u
(
a+ (x− a)

tk
t

) ∣∣∣∣∣∣∣∣
W 1,p

→ 0.

Indeed, this is easy for C1-functions and for general u it follows by approximation.
Therefore we obtain ṽjku − u(x0) + δ in W 1,p(B(a,R)). This implies however that
(u− u(x0) + δ)+ ∈ W 1,p

0 (B(a, t)).
As u is weakly monotone it follows that u(x) ≤ u(x0) − δ for almost every

x ∈ B(a, t), then we have 1
|B(x0,r)|

∫
B(x0,r)

u(y)dy < u(x0) for all 0 < r < t− |a− x0|.
But this is impossible since x0 is a Lebesgue point of u in B(a, r) ⊂ B(a, t).

Now inequalities (3.22) and (3.23) imply

uj(x0)− uj(y0) ≤ osc(uj, ∂B(a, t)) + 2δ.

One may interchange x0 with y0 to conclude with inequality (3.21).
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By Fubini’s theorem we observe that the function t →
∫
∂B(a,t)

|Du|p belongs to

L1
loc(0, R). Consequently, its Lebesgue points form a set of full linear measure on the

interval (0, R). With these preliminaries, we can now prove the following variant of
the oscillation lemma.

Lemma 3.32. Let u ∈ W 1,p(B), n − 1 < p < n, be weakly monotone in a ball
B = B(a, r) and x0, y0 be Lebesgue points of u in B(a, r), r < R. Then

(3.24) |u(x0)− u(y0)| ≤ C(p, n)t

(
–

∫
∂B(a,t)

|Du|p
) 1

p

for almost every t ∈ (r, R).

Proof. We apply Sobolev’s inequality on spheres (3.7) to a function uj ∈ C∞(B) at
(3.21) to get:

|uj(x0)− uj(y0)| ≤ osc(uj, ∂B(a, t)) + 2δ

≤ C(p, n)t

(
–

∫
∂B(a,t)

|Duj|p
) 1

p

+ 2δ

for all r ≤ t ≤ R. Here C(p, n) is a constant depends on p and n. Fix a Lebesgue
point r < t0 < R of the function t →

∫
∂B(a,t)

|Du|p. For sufficiently small ε > 0,

integrate over the interval t0 − ε < t < t0 + ε, we obtain∫ t0+ε

t0−ε

(
|uj(x0)− uj(y0)| − 2δ

C(p, n)t

)p
ωn−1t

n−1dt ≤
∫
t0−ε≤|x|≤t0+ε

|Duj|p.

Now we can pass to the limit as j →∞, because uj is just convolution of u. Because
δ can be sufficiently small, it is also legitimate to take δ = 0 in this limit inequality.∫ t0+ε

t0−ε

|u(x0)− u(y0)|p

Cp(p, n)tp
ωn−1t

n−1dt ≤
∫ t0+ε

t0−ε

(∫
∂B(a,t0)

|Du|p
)
.

Divide by 2ε and let ε go to zero to obtain

|u(x0)− u(y0)|pωn−1t
n−1
0

Cp(p, n)tp0
≤
∫
∂B(a,t0)

|Du|p.

This means that

|u(x0)− u(y0)| ≤ C(p, n)t0

(
–

∫
∂B(a,t0)

|Du|p
) 1

p

as desired.
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3.7 Modulus of continuity

Next we study the modulus of continuity under the assumption exp(A(Kf )) ∈
L1
loc(Ω) for A which satisfies (3.10) and (3.11). The result comes from [15].

Let A be an Orlicz function satisfying the integrability condition (3.10), n ∈
{2, 3, 4, ...}, K > 0, and β > 0. We introduce the strictly increasing function
α(r) = αA,K,n,β(r) defined for 0 < rn < nK/ωn−1 by the formula

(3.25) αA,K,n,β(r) = sup

{
t ∈ (0,

r

2
) :

∫ r/2

t

1

sA−1(log nK/ωn−1sn)
ds ≥ β

}
.

Now we can formulate our theorem.

Theorem 3.33. Assume that an Orlicz function A satisfies both (3.10) and (3.11).
Let f : Ω→ Rn be an orientation-preserving (which means Jf (x) ≥ 0 for a.e. x ∈ Ω)
homeomorphism of finite distortion whose distortion function satisfies

(3.26) K =

∫
B

exp{A(Kf (x))}dx <∞,

where B = B(x0, R) ⊂⊂ Ω. Then

|f(x)− f(x0)| ≤CA,K(n, β)

(∫
B

Jf (z)dz

)1/n

· exp

{
−
∫ R/80

α−1(|x−x0|)

dt

tA−1 (logCA,n (nK/ωn−1tn))

}
(3.27)

whenever x ∈ B(x0, α(R/80)).

We split the proof of Theorem 3.33 into two parts, Lemma 3.34 and Lemma 3.36.
Lemma 3.34 is proved in [11, Lemma 4.2] and Lemma 3.36 is proved in [15, Lemma
2].

Lemma 3.34. Under the hypotheses of Theorem 3.33, we have

|f(x)− f(y)|n
∫ R/2

r

dt

tA−1 (log nK/ωn−1tn)
≤ CA,K(n)

∫
B(x0,R)

Jf (z)dz(3.28)

whenever x, y ∈ B(x0, r) ⊂ B(x0, R/2) are Lebesgue points of f .

Proof. Combining the distortion inequality |Df(x)|n ≤ Kf (x)Jf (x) with Proposi-

tion 3.20, we obtain that P (|Df |n) ∈ L1
loc(Ω), where

∫∞
1

P (s)
s2
ds = ∞ and for every

ε > 0, there exists a constant t1 such that the function t→ tε−1P (t) is increasing for
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all t ≥ t1. Using Proposition 3.28 and Proposition 3.30, we conclude that the coor-
dinate functions of f are weakly monotone (see Definition 3.26). This is based on
the fact that Jf (·) coincides with the distributional Jacobian, i.e., (3.19) holds. Let
p = n − 1

2
, r < R/2 and x, y ∈ B(x0, r) be Lebesgue points. Then |Df | ∈ Lploc(Ω).

Using Lemma 3.32, which holds for mappings whose coordinate functions are weakly
monotone, we have the estimate

(3.29)
|f(x)− f(y)|
C(n, p)t

≤
(

–

∫
∂B(x0,t)

|Df |p
) 1

p

for almost every t ∈ [r, R]. Write Bs = B(x0, s) and Ai = B2ir \ B2i−1r, for all
i ∈ {1, 2, ...}. Define

Gi =

{
t ∈ [2i−1r, 2ir] :

∫
∂Bt

exp (A(Kf (x))) dx ≤ 3

2i−1r

∫
Ai

exp (A(Kf (x))) dx

}
for all i ∈ {1, 2, ...}∩ [1, log2

R
r
] = I. Because 2r ≤ R, we have I 6= ∅. Using Fubini’s

theorem, we conclude that

|Gi| ≥
2i−1

2
r,

for all i ∈ I. Combining the distortion inequality and Hölder’s inequality with the
inequality (3.29), we have that

(3.30)
|f(x)− f(y)|n

C(n, p)tn
≤
(

–

∫
∂Bt

|Kf (x)|
p

n−p

)n−p
p

–

∫
∂Bt

Jf (x)dx

for almost every t ∈ [r, R]. By Lemma 3.21, we find a number t2 := t2( p
n−p ,A) such

that the function t→ t−
p

n−p exp(A(t)) is increasing on (t2,∞). Let t ∈ [r, R] be such
that –

∫
∂Bt

exp(A(Kf (x)))dx <∞, and pick τ so that

exp(A(τ)) = –

∫
∂Bt

exp (A(Kf (x))) dx.

Write λ = max{τ, t2}. Then we estimate

–

∫
∂Bt

|Kf (x)|
p

n−pdx≤ 1

|∂Bt|

∫
∂Bt∩{|Kf (x)|>λ}

|Kf (x)|
p

n−pdx

+
1

|∂Bt|

∫
∂Bt∩{|Kf (x)|≤λ}

|Kf (x)|
p

n−pdx

≤ λ
p

n−p

exp(A(λ))
–

∫
∂Bt

exp(A(Kf (x)))dx+ λ
p

n−p ≤ 2λ
p

n−p
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It follows that

(3.31)
|f(x)− f(y)|n

t
≤ C(p, n)λ

∫
∂Bt

Jf (x)dx,

and use Jensen’s inequality we get

|f(x)− f(y)|n

t
≤C(p, n,A)A−1

(
log

(
–

∫
∂Bt

exp (A(Kf (x)))

)
dx

)
·
∫
∂Bt

Jf (x)dx

for almost every t ∈ [r, R]. Fix i ∈ I. For almost every t ∈ Gi, we have that

(3.32)
|f(x)− f(y)|n

t
≤ C(p, n,A)A−1

(
log

(
6K

ωn−1tn−12ir

))∫
∂Bt

Jf (x)dx.

Here the constant K comes from (3.26). Integrating this estimate over the set Gi

with respect to t, we arrive at

(3.33) |f(x)− f(y)|n
∫
Gi

dt

tA−1
(

log 6nK
ωn−1tn

) ≤ C(p, n,A)

∫
Ai

Jf (x)dx.

By Lemma 3.22, we fix t3 = t3(n,A) ≥ 1 so that the function h(t) =
(
tA−1

(
log
(

1
tn

)))−1

is decreasing on
(

0, 1
t3

)
. Then t → h

(
t
t3

n
√

ωn−1

6nK

)
is decreasing on

(
0, n

√
6nK
ωn−1

)
⊃

(0, R). Combining this with the estimate |Gi| ≥ 2i−1

2
r, we conclude that

|f(x)− f(y)|n
∫ 2ir

2i−23r

dt

tA−1
(

log
tn3nK

ωn−1tn

) ≤ C(p, n,A)

∫
Ai

Jf (x)dx.

Because∫ 2ir

2i−23r

dt

tA−1
(

log
tn3nK

ωn−1tn

) =

∫ 2i−23r

2i−1r

ds

(s+ 2i−2r)A−1
(

log
(

tn3nK

ωn−1(s+2i−2r)n

))
≥
∫ 2i−23r

2i−1r

1

3

dt

tA−1
(

log
tn3nK

ωn−1tn

) ,(3.34)

we obtain the estimate

(3.35) |f(x)− f(y)|n
∫ 2ir

2i−1r

dt

tA−1
(

log
tn3nK

ωn−1tn

) ≤ C(p, n,A)

∫
Ai

Jf (x)dx.
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Summing over the set I, we arrive at

(3.36) |f(x)− f(y)|n
∫ R/2

r

dt

tA−1
(

log
tn3nK

ωn−1tn

) ≤ C(p, n,A)

∫
Ai

Jf (x)dx.

In the case t ∈
(

0, n

√
nK

ωn−1t3

)
, we have that

1

tA−1
(

log
tn3nK

ωn−1tn

) =
1

t3

t3

tA−1
(

log
tn3nK

ωn−1tn

)(3.37)

≥ 1

t3

1

tA−1
(

log nK
ωn−1tn

) .
Here we used the fact that the function s → s

A−1(log sn)
is increasing on (t3,∞).

Furthermore

(3.38) sup

tA
−1
(

log
tn3nK

ωn−1tn

)
tA−1

(
log nK

ωn−1tn

) :
nK

ωn−1t3
≤ tn ≤ Rn ≤ 6nK

ωn−1

 ≤ CA,K(n),

and so also in the case Rn ≥ tn ≥ nK
ωn−1t3

we have the inequality

(3.39) tA−1

(
log

nK

ωn−1tn

)
≥ CA,KtA−1

(
log

tn3nK

ωn−1tn

)
.

Combining the inequality (3.36) with the estimates (3.37) and (3.39), we complete
the proof of Lemma 3.34.

Inequality (3.28) together with the following Lemma 3.36 gives us the desired
modulus of continuity. And for the proof of the following Lemma 3.36, we need a
crucial tool that is the following integral-type isoperimetric inequality:

(3.40) –

∫
B(x0,s)

Jf (x)dx ≤
(

–

∫
∂B(x0,s)

|Df |n−1dδ

) n
n−1

for almost every 0 < s < dist (x0, ∂Ω), where dδ is the area measure of the sphere
∂B(x0, s).

Let us give a theorem from [14, Theorem 1.1].

Theorem 3.35. If f satisfy the assumptions of Theorem 3.33. Then f satisfies the
isoperimetric inequality

(3.41) |
∫
Br

Jf (x)dx| ≤ I(n)

(∫
∂Br

|D#f(x)|dx
) n

n−1

with I(n) = (n n−1
√
ωn−1)−1, for every x0 ∈ Ω and almost every radius r ∈ (0, dist (x0, ∂Ω)).
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Proof. First, we want to show that under the assumptions of Theorem 3.33, we can

get f ∈ W 1, n
2

n+1

loc (Ω,Rn). By (3.11) we have limt→∞
A(t)
log t

= ∞, which in turn implies

that exp(A(t)) dominates tp for every p ∈ [1,∞). Therefore, Kf (x) ∈ Lp(Ω) for
1 ≤ p <∞. Then by the definition of distortion function and the Hölder inequality,
for every B(x,R) ⊂⊂ Ω, we have∫

B(x,R)

|Df(x)|
n2

n+1dx≤
∫
B(x,R)

(Kf (x)Jf (x))
n
n+1dx

≤
(∫

B(x,R)

Kn
f (x)dx

) 1
n+1
(∫

B(x,R)

Jf (x)dx

) n
n+1

<∞.

The last inequality follows from the discussion above and the fact that f is a home-
omorphism of finite distortion such that

∫
B(x,R)

Jf (x)dx ≤ |f(B(x,R))| <∞.

Let BR = B(x0, R) ⊂ Ω be a ball such that B̄R ⊂ Ω. We approximate f in

W 1, n
2

n+1 (BR,Rn) by mappings f i ∈ C∞(BR,Rn). Since the function |D#f i| converge
to |D#f | in L1(BR) (observe that the cofactor matrix is made up from (n − 1)-
subdeterminants of the differential matrix and n2

n+1
≥ n − 1), we find by Fubini’s

theorem that |D#f i| converges to |D#f | in L1(∂Br) for almost every radius r ∈
(0, R). Fix r ∈ (0, R) so that the functions |D#f i| converges to |D#f | in L1(∂Br).
Pick 0 < ε < r

2
. We take a convolution approximation uεt to the characteristic

function χBr−ε of the ball Br−ε by using the standard modifiers Φt (see [9, Formula
(4.6)]) where t is chosen to be so small that uεt ∈ C∞0 (Br). Then 0 ≤ uεt ≤ 1 and by
the isoperimetric inequality for smooth functions, we have

(3.42)

∫
Br

uεt(x)Jf i(x)dx ≤
∫
Br

Jf i(x)dx ≤ I(n)

(∫
∂Br

|D#f i(x)|dx
) n

n−1

.

Applying Stokes’ theorem for the smooth mapping f i we find that

(3.43)

∫
Br

uεt(x)Jf i(x)dx = −
∫
Br

f i1(x)J(x, uεt, f
i
2, ..., f

i
n)dx.

The telescoping decomposition of the Jacobian (cf.[9, Chapter 8]) leads the equation∫
Br

f1(x)J(x, uεt, f2, ..., fn) −
∫
Br

f i1(x)J(x, uεt, f
i
2, ..., f

i
n)dx

=

∫
Br

(f1(x)− f i1(x))J(x, uεt, f2, ..., fn)dx

+
n∑
k=2

∫
Br

f1(x)J(x, uεt, f
i
2, ..., f

i
k−1, fk − f ik, fk+1, ..., fn)dx.(3.44)
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Combining Hadamard’s inequality with Hölder’s inequality we find that

|
∫
Br

f1(x)J(x, uεt, f2, ..., fn) −
∫
Br

f i1(x)J(x, uεt, f
i
2, ..., f

i
n)dx|

≤
∫
Br

|f1 − f i1||Duεt||Df |n−1

+
n∑
k=2

∫
Br

|f1||Duεt||Df i|k−2|Df −Df i||Df |n−k

≤ |Duεt|L∞(Br)

(∫
Br

|f1 − f i1|n
2

) 1
n2
(∫

Br

|Df |
n2

n+1

)n2−1

n2

≤ C(n)|Duεt|L∞(Br)

(
|f1|n

2
) 1
n2

(∫
Br

(
|Df i|+ |Df |

) n2

n+1

)n2−n−2

n2

·
(∫

Br

|Df −Df i|
n2

n+1

)n+1

n2

.(3.45)

By the Sobolev-Poincaré inequality we see that the right hand side of inequality
(3.45) tends to zero as i goes to ∞. Combining this with inequality (3.42) and
equation (3.43) we find that

(3.46) −
∫
Br

f1(x)J(x, uεt, f2, ..., fn)dx ≤ I(n)

(∫
∂Br

|D#f(x)|dx
) n

n−1

.

Applying the assumptions uεt ∈ C∞0 (Br) and (3.19) we conclude that

(3.47)

∫
Br

uεt(x)Jf (x)dx ≤ I(n)

(∫
∂Br

|D#f(x)|dx
) n

n−1

.

Since uεt(x)Jf (x) ≤ χBr(x)Jf (x) and J(·, f) ∈ L1
loc(Ω), we can use the Dominated

convergence theorem. Let first t→ 0 and then ε→ 0, the claim follows.

It is easy to obtain (3.40) from (3.41).

Lemma 3.36. Under the hypotheses of Theorem 3.33, we have∫
B(x0,r)

Jf (x)dx ≤ exp

{
−n
∫ R/e3

r

dt

tA−1(logCA,n(ε)(nK/ωn−1tn))

}
·
∫
B(x0,R)

Jf (x)dx(3.48)

whenever r ∈ (0, R/e3).
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Proof. Under the assumptions of Theorem 3.33, the assumptions of Theorem 3.35
are fulfilled and hence (3.40) holds; see [13] and also [12].

Write Bs = B(x0, s). The distortion |Df(x)|n ≤ Kf (x)Jf (x) together with
Hölder’s inequality applied to the right-hand side of (3.40) yields

(3.49) –

∫
Bs

Jf (x)dx ≤
(

–

∫
∂Bs

Kf (x)n−1dδ

) 1
n−1

–

∫
∂Bs

Jf (x)dδ.

Hence, the following elementary differential equation is satisfied:

(3.50)
d

ds

(
log

(∫
Bs

Jf (x)dx

))
≥ n

s
(

–
∫
∂Bs

Kf (x)n−1dδ
) 1
n−1

.

By the assumption (3.11), it is easy to prove that there exists a τ0 = τ0(n,A) > 0

such that the functions τ → exp(A(τ)) and τ → exp
(
A
(
τ

1
n−1

))
are convex on

(τ0,∞); see Lemma 3.23. We define an auxiliary distortion function

(3.51) K̃f (x) :=

{
Kf (x), if Kf (x) > τ0,
τ0, if Kf (x) ≤ τ0.

The preceding differential equation gets a slightly weaker form

(3.52)
d

ds

(
log

(∫
Bs

Jf (x)dx

))
≥ n

s
(

–
∫
∂Bs

K̃f (x)n−1dδ
) 1
n−1

.

The desired decay estimate (3.48) on the integrals of Jacobian of f over balls then
follows if we can show that

(3.53)

∫ R

r

ds

s
(

–
∫
∂Bs

K̃f (x)n−1dδ
) 1
n−1

≥
∫ R/e3

r

dt

A−1(log(nCA,K/ωn−1tn))
.

Toward this end, let iR and ir be integers such that logR − 1 < iR ≤ logR and
log r ≤ ir < log r + 1. We have

(3.54)

∫ R

r

ds

s
(

–
∫
∂Bs

K̃f (x)n−1dδ
) 1
n−1

≥
iR−1∑
i=ir

∫ ei+1

ei

ds

s
(

–
∫
∂Bs

K̃f (x)n−1dδ
) 1
n−1

.

We estimate each integral in the right-hand side of (3.54) in the following way. Fix
i ∈ {ir, ir + 1, ..., iR − 1}. Changing the variable by setting s = et, we have

(3.55)

∫ ei+1

ei

ds

s
(

–
∫
∂Bs

K̃f (x)n−1dδ
) 1
n−1

=

∫ i+1

i

dt(
–
∫
∂Bt
K̃f (x)n−1dδ

) 1
n−1

.
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Since the function τ → 1/τ defined on (0,∞) is convex, the Jensen’s inequality
yields

(3.56)

∫ i+1

i

dt(
–
∫
∂Bt
K̃f (x)n−1dδ

) 1
n−1

≥

[∫ i+1

i

(
–

∫
∂Bt

K̃f (x)n−1dδ

) 1
n−1

dt

]−1

.

Recall that the functions τ → exp
(
A
(
τ

1
n−1

))
and τ → exp(A(τ)) are convex on

(τ0,∞). We apply the Jensen’s inequality twice to obtain that

∫ i+1

i

(
–

∫
∂Bet

K̃f (x)n−1dδ

) 1
n−1

dt ≤
∫ i+1

i

A−1

(
log –

∫
∂Bet

exp(A(K̃f (x)))dδ

)
dt

≤ A−1

(
log

∫ i+1

i

–

∫
∂Bet

exp(A(K̃f ))dδdt

)

= A−1

(
log

∫ ei+1

ei

1

s
–

∫
∂Bs

exp(A(K̃f (x)))dδds

)
.(3.57)

We made a change of variable in the last step. Now an easy computation gives

(3.58)

∫ ei+1

ei

(
1

s
–

∫
∂Bs

exp
(
A(K̃f (x))dδ

)
ds

)
≤ eτ0K

ωn−1eni
.

Here K comes from (3.26). Combining inequalities (3.54)-(3.58), we conclude that∫ R

r

ds

s
(

–
∫
∂Bs

K̃n−1
f dδ

) 1
n−1

≥
iR−1∑
i=ir

[
A−1

(
log

(
eτ0K

ωn−1eni

))]−1

≥
∫ iR−2

ir

[
A−1

(
log

(
eτ0K

ωn−1ens

))]−1

ds

≥
∫ R/e3

r

[
tA−1

(
log

(
eτ0K

ωn−1tn

))]−1

dt,(3.59)

which proves (3.53).

Now we complete the proof of Theorem 3.33 as follows.
Given x ∈ B

(
x0, α

(
R
80

))
, we consider the ball B(x0, r), r = α−1

A,n,K,β(|x − x0|).
By Lemma 3.34, we have the estimate

(3.60) |f(x)− f(y)| ≤ CA,K(n, β)

(∫
B(x0,r)

Jf (z)dz

) 1
n

.
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Using Lemma 3.36, we further obtain the estimate

∫
B(x0,r)

Jf (z)dz ≤ 2 exp

−n∫ R/e3

2r

dt

tA−1
(

log
(
CA,n(ε) nK

ωn−1tn

))


·
∫
B(x0,R)

Jf (x)dx.(3.61)

Combining the inequality (3.60) with the estimate (3.61), we finally obtain the
desired modulus of continuity (3.27).

Remark 3.37. The integral in (3.27) of Theorem 3.33 can be taken from |x − y|
to R/80 when |x − y| is sufficiently small. To see this, notice that the ratio of this
integral, taken from |x − x0| to α−1(|x − x0|), with the corresponding integral from
|x− x0| to R/80 tends to zero when |x− x0| tends to zero. Then we will obtain the
following inequality

|f(x)− f(x0)| ≤ CA,K(n, β)

(∫
B

Jf (z)dz

)1/n

· exp

{
(ε− 1)

∫ R/80

|x−x0|

dt

tA−1 (logCA,n(nK/ωn−1tn))

}
(3.62)

where ε tends to zero as |x− x0| tends to zero.

4 Main results

Base on the tools above, we are ready to give our results about the homeomorphisms
of finite distortion from the unit ball B3(0, 1) onto the cusp domain Ωs. The non-
existence of quasiconformal mappings has been understood before, and the other
three results are new.

4.1 Non-existence of quasiconformal mappings

In this subsection, we show that there does not exist a quasiconformal mapping
from the unit ball B3(0, 1) onto the cusp domain Ωs. We can find the result in [16]
and [10]. The proofs are based on the fact that quasiconformal mappings preserve
n-capacity.

Theorem 4.1. For any s > 0, there does not exist a quasiconformal mapping f
from the unit ball B3(0, 1) onto the cusp domain Ωs.
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Figure 2: Cusp domain Ωs

Proof. Suppose there is a quasiconformal mapping such that f(B3(0, 1)) = Ωs. Pick
a circle Ft of radius 2t1+s around the cusp at the level x1 = t. Let E = {(x, 0, 0) :
−1 ≤ x ≤ 0} on x1-axis. See Figure 2 above. Since Ft ⊂ B3((t, 0, 0), 2t1+s) and
E ⊂ B3((t, 0, 0), t)C , then by (3.4) and (3.5), we have

Cap3(E,Ft; Ωs) ≤ Cap3(B̄((t, 0, 0), 2t1+s), S2((t, 0, 0), t); Ωs)

≤ ω2(
log t

2t1+s

)2 → 0 when t→ 0.

Because f is a K-quasiconformal mapping for some K > 0, by (3.3) it follows
that

(4.1) Cap3(f−1(E), f−1(Ft);B
3(0, 1)) ≤ KCap3(E,Ft; Ωs)→ 0

as t → 0. But, on the other hand, since the curve f−1(E) passes through the
topological loop f−1(Ft) for t > 0 small enough, we have

min { diam f−1(E), diam f−1(Ft)}
d(f−1(E), f−1(Ft))

≥ 10−6

for all small enough t, and thus by (3.6)

Cap3(f−1(E), f−1(Ft);B
3(0, 1)) ≥ δ(3, 10−6) > 0.

It is a contradiction with the inequality (4.1), so the claim follows.
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4.2 Proof of Theorem 1.2

In this subsection, we construct an example which satisfies the assumption exp(λKγ
f ) ∈

L1
loc(B

3(0, 1)) for all 0 < γ < 1 and λ > 0. Let us start from a lemma which shows
the distortion function of the composition of two mappings is less than or equivalent
to the product of the corresponding distortion functions.

Lemma 4.2. Let f1, f2 : R3 → R3 be two homeomorphisms of finite distortion.

Assume they are differentiable almost everywhere and K
1
2
f1

(x) ∈ L1
loc, then for almost

every x ∈ R3 we have

Kf2◦f1(x) ≤ Kf2(f1(x)) ·Kf1(x).

Proof. Since f1 and f2 are homeomorphisms of finite distortion, we know f1(x), f2(x) ∈
W 1,1
loc (R3,R3). By Theorem 3.14, we know {x ∈ R3 : f1is differentiable at x and f2 is

differentiable at f1(x)} is full-measure. For such x ∈ R3 such that f1 is differentiable
at x and f2 is differentiable at f1(x), if Jf1(x) = 0 or Jf2(f1(x)) = 0 is satisfied, then
since D(f2 ◦f1)(x) = D(f2)(f1(x)) ·D(f1)(x), we get Jf2◦f1(x) = 0. By the definition
of optimal distortion function and that every distortion function is not less than 1,
we get 1 = Kf2◦f1(x) ≤ Kf2(f1(x)) ·Kf1(x).

For x ∈ R3, if both Jf1(x) > 0 and Jf2(f1(x)) > 0, we have

Kf2◦f1(x) =
|D(f2 ◦ f1)(x)|3

Jf2◦f1(x)

= sup
|υ|≤1

||D(f2 ◦ f1)(x)υ||3

Jf2◦f1(x)

= sup
|υ|≤1

||D(f2)(f1(x)) D(f1)(x)
|D(f1)(x)|υ||

3

Jf2(f1(x))
· |D(f1)(x)|3

Jf1(x)

≤ |D(f2)(f1(x))|3

Jf2(f1(x))
· |D(f1)(x)|3

Jf1(x)

= Kf2(f1(x)) ·Kf1(x)

as desired.

Now we begin the proof of Theorem 1.2

Proof of Theorem 1.2. Let 0 < γ < 1 be fixed. Our goal is to construct a homeo-
morphism f : B3(0, 1)→ Ωs of finite distortion such that exp(λKγ

f ) ∈ L1
loc(B

3(0, 1))
for all λ > 0. We divide the proof into five steps.

Step 1: First, for the convience of the compositions below, we enlarge the
ball B3(0, 1) to B3(0,

√
2). We define the mapping f0 : B3(0, 1) → B3(0,

√
2) by

f0(x, y, z) = (
√

2x,
√

2y,
√

2z). Obviously, it is a conformal mapping, so Kf0(x) ≡ 1.



41

Step 2: we construct a homeomorphism f1, which maps the ball B(0,
√

2) onto
the following Lipschitz domain,

∆l := B(0,
√

2)\

({
(x1, x2, x3) : x1 ≥

√
10

5

}
∪
{

(x1, x2, x3) : x1 ≥ 0,
√
x2

2 + x2
3 ≤ x1

})
.

Then we construct the homeomorphism discussed above from B(0,
√

2) to ∆l in
cylindrical coordinates by:

f1(x, r, θ) :=


(√

2−r2+r
2
√

2−r2 x+ r−
√

2−r2
2

, r, θ
)
, if 0 ≤ r <

√
10
5(√

2−r2+
√

10/5

2
√

2−r2 x+
√

10/5−
√

2−r2
2

, r, θ
)
, if

√
10
5
≤ r < 2

√
10

5

(x, r, θ) , if 2
√

10
5
≤ r <

√
2.

And by a simple computation, we find that f1 is a quasiconformal mapping.
Step 3: First, we define a subdomain of the cusp domain Ωs by

Ωl := Ωs \

{
(x1, x2, x3) : x1 ≥

√
10

5

}
.

As we can see Ωl has the same cusp at origin as the cusp domain Ωs. Then we
will give a homeomorphism of finite distortion f2 from ∆l onto Ωl and prove its
distortion function satisfies exp(λKγ

f2
) ∈ L1

loc(∆l) for all 0 < γ < 1 and λ > 0. For
the convenience of computation, we divide our argument into two parts:

First, using the cylindrical coordinates and we define f2 on the domain D1 :=
∆l ∩ {(x, r, θ) : 0 ≤ x <

√
10
5

and x < r < 2x} by

f2(x, r, θ) =

(
g(x),

2g(x)− g1+s(x)

x
r + 2g1+s(x)− 2g(x), θ

)
,

where g(x) =

√
10
5

log log
(

5√
10

)
log log( 1

x)
, and we set Ĉ :=

√
10
5

log log
(

5√
10

)
. We define a linear

function Lx(r) : (x, 2x)→ (g1+s(x), 2g(x)) by

Lx(r) =
2g(x)− g1+s(x)

x
r + 2g1+s(x)− 2g(x).

Now we can write f2(x, r, θ) = (g(x), Lx(r), θ) for (x, r, θ) ∈ D1 ⊂ ∆l.
For the left part D2 := ∆l \D1, we use the spherical coordinates and define the

mapping f2 on D2 by

f2(r, θ, φ) =

(√
5g

(
r√
5

)
, θ, φ

)
.
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Now let us prove that exp(λKγ
f2

(x)) ∈ L1
loc(∆l) for all λ > 0. We need to figure

out the differential matrix of f2 , and give an upper bound to distortion function.
According to two subdomain D1 and D2, we have and |D1∩D2| = 0, then we divide
the full processing into two cases.

Case 1 (a ∈ D1): To compute Kf2(a), here we employ the cylindrical coordinates
a = (x, r, θ) ∈ D1. We choose a local cylindrical coordinate system at every a ∈
D1 ⊂ Ωl by setting ea1 = (1, 0, 0), ea2 = (0, cos θ, sin θ) and ea3 = (0,− sin θ, cos θ).
Notice that in Cartesian coordinate system in R3, ea1 points to the x-direction, both
ea2 and ea3 point to the directions which are perpendicular to the x-direction and lie

in the plane {(0, y, z) ∈ R3} and det
(
D(ea1 ,e

a
2 ,e

a
3)

D(x1,x2,x3)

)
= 1. If we restrict to the Cartesian

plane {(0, y, z) ∈ R3}, we find that the vector ea2 points to the radial direction and
ea3 is perpendicular to it, so it points to the angular direction. To this basis on
the preimage side we associate a similar basis on the image side, denoting it by
(e
f2(a)
1 , e

f2(a)
2 , e

f2(a)
3 ). We now represent the differential matrix of f2 at the point a by

using bases (ea1, e
a
2, e

a
3) and (e

f2(a)
1 , e

f2(a)
2 , e

f2(a)
3 ) which we will refer to Ea and Ef2(a),

respectively. The resulting differential matrix is

Df2(x, r, θ) =

 d
dx
g(x) 0 0

d
dx
Lx(r)

d
dr
Lx(r) 0

0 0 Lx(r)
r

d
dθ
θ

(4.2)

=

g
′
(x) 0 0

α 2g(x)−g1+s(x)
x

0

0 0 2g(x)−g1+s(x)
x

+ 2g1+s(x)−g(x)
r



where α = (2g
′
(x)−(1+s)gs(x)g

′
(x))x−(2g(x)−g1+s(x))
x2

r + (2(1 + s)gs(x)g
′
(x)− 2g

′
(x)). The

elements inside the matrix are computed as follows. For the convenience, we call the
three parts of f2(x, r, θ) = (g(x), Lx(r), θ) as Cartesian part, radial part and angular
part, respectively.

As the Cartesian part of f2 depends only on x, the partial derivative of the first
component of f2 in the basis Ef2(a) in the ea1-direction is d

dx
g(x). The Cartesian part

does not depend on r and θ, and so the partial derivatives of the first component of
f2 in the basis Ef2(a) in the ea2 and ea3-direction are zeros.

Next we observe that for ε > 0 the change in the radial part, and thus in the
e
f2(a)
2 -direction, is Lx+ε(r)−Lx(r) when the change to the ea1-direction is ε. Thus the

partial derivative of the second component of f2 in the basis Ef2(a) in the ea1-direction
is

lim
ε→0

Lx+ε(r)− Lx(r)
ε

=
d

dx
Lx(r).
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Similarly, the partial derivative of the second component of f2 in the basis Ef2(a) in
ea2-direction is

lim
ε→0

Lx(r + ε)− Lx(r)
ε

=
d

dr
Lx(r).

And obviously, Lx(r) does not depend on θ, so d
dθ
Lx(r) = 0.

For the third component of f2, since we observe that the angular part does not
depend on x and r, so the partial derivatives of the third component of f2 in the
basis Ef2(a) in the ea1 and ea2-directions are zeros. As discussed above, the partial
derivative of the third component of f2 in the basis Ef2(a) in the ea3-direction is

lim
ε→0

Lx(r)((θ + ε)− θ)
rε

=
Lx(r)

r

d

dθ
θ.

To estimate Kf2(x) from 4.2 we use the following known result (see [16]) which
states that for a linear bijection A : R3 → R3 the distortion K of A satisfies

(4.3) K ≤
(
∑3

i,j=1 a
2
i,j)

3/2

det(A)
.

Here (ai,j) is the matrix of A, and it gives us a simple upper estimate for K. And
we give the relative estimates below.

The determinant of the differential matrix is

det(Df2(x, r, θ)) =

(
Ĉ

x log 1
x

(
log log 1

x

)2

)(
2g(x)− g1+s(x)

x

)
·
(

2g(x)− g1+s(x)

x
+

2g1+s(x)− 2g(x)

r

)
=

(
Ĉ

x log 1
x

(
log log 1

x

)2

)
·

(
2Ĉ

x log log 1
x

− Ĉ1+s

x
(
log log 1

x

)1+s

)

·

(
2Ĉ

x log log 1
x

− Ĉ1+s

x
(
log log 1

x

)1+s +
2Ĉ1+s

r
(
log log 1

x

)1+s −
2Ĉ

r log log 1
x

)

≥ Ĉ3+s

x3 log 1
x

(
log log 1

x

)4+s ,

the last inerquality follows from x < r < 2x and gs(x) ≤ 1. And by a simple
calculation, we have(

d

dx
g(x)

)2

= (g
′
(x))2 =

Ĉ2

x2
(
log 1

x

)2 (
log log 1

x

)4 ;
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(
d

dr
Lx(r)

)2

=

(
2g(x)− g1+s(x)

x

)2

=

 2Ĉ
log log 1

x

−
(

Ĉ
log log 1

x

)1+s

x


2

≤ Ĉ2

x2
(
log log 1

x

)2 ;

(
Lx(r)

r

)2

=

(
2g(x)− g1+s(x)

x
+

2(g1+s(x)− g(x))

r

)2

=


2Ĉ

log log 1
x

− Ĉ1+s

(log log 1
x)

1+s

x
+

2

(
Ĉ1+s

(log log 1
x)

1+s − Ĉ
log log 1

x

)
r


2

≤

(
Ĉ

x log log 1
x

+
Ĉ1+s

x
(
log log 1

x

)1+s

)2

=
Ĉ2

x2
(
log log 1

x

)2 +
2Ĉ2+s

x2
(
log log 1

x

)2+s +
Ĉ2+2s

x2
(
log log 1

x

)2+2s ;

and

d

dx
Lx(r) = α =

(2g
′
(x)− (1 + s)gs(x)g

′
(x))x− (2g(x)− g1+s(x))

x2
r

+(2(1 + s)gs(x)g
′
(x)− 2g

′
(x))

=

(
2rg

′
(x)

x
+
rg1+s(x)

x2
+ 2(1 + s)gs(x)g

′
(x)

)
−
(
r(1 + s)gs(x)g

′
(x)

x
+

2rg(x)

x2
+ 2g

′
(x)

)
=: I1 − I2.

Now it is obvious that α2 ≤ I2
1 + I2

2 . Let us estimate I2
1 and I2

2 .

I2
1 =

(
2rg

′
(x)

x
+
rg1+s(x)

x2
+ 2(1 + s)gs(x)g

′
(x)

)2

=

(
2Ĉr

x2 log 1
x

(
log log 1

x

)2 +
Ĉ1+sr

x2
(
log log 1

x

)1+s +
2(1 + s)Ĉ1+s

x log 1
x

(
log log 1

x

)2+s

)2

≤ C1(s, Ĉ)

x2
(
log log 1

x

)2+2s .
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The last inequality follows x < r < 2x and 0 ≤ x <
√

10
5

. And similarly

I2
2 =

(
r(1 + s)gs(x)g

′
(x)

x
+

2rg(x)

x2
+ 2g

′
(x)

)2

=

(
(1 + s)Ĉ1+sr

x2 log 1
x

(
log log 1

x

)2+s +
2Ĉr

x2 log log 1
x

+
2Ĉ

x log 1
x

(
log log 1

x

)2

)2

≤ C2(s, Ĉ)

x2
(
log log 1

x

)2 .

Then by the computations above, we can estimate the distortion function from
above by

Kf2(x, r, θ) ≤

((
d
dx
g(x)

)2
+
(
d
dr
Lx(r)

)2
+
(
d
dx
Lx(r)

)2
+
(
Lx(r)
r

)2
) 3

2

det(Df2)

≤ C3(s, Ĉ) log
1

x

(
log log

1

x

)1+s

.

then we get exp(λKγ
f2

) ∈ L1(D1), for all 0 < γ < 1 and λ > 0.
Case 2 (a ∈ D2): The ideas are similar to Case 1. Here we attach a local coordi-

nate system at every point a ∈ D2 by setting ea1 = (cos θ cosφ, cos θ sinφ, sin θ), ea2 =

(sin θ cosφ, sin θ sinφ,− cos θ) and ea3 = (sinφ,− cosφ, 0) and we have det
(
D(ea1 ,e

a
2 ,e

a
3)

D(x1,x2,x3)

)
=

1. To this basis on the preimage side we associate a similar basis on the image side,
denoting by (e

f2(a)
1 , e

f2(a)
2 , e

f2(a)
3 ). The result differential matrix is

Df2(r, θ, φ) =


√

5Ĉ

r log
(√

5
r

)(
log log

(√
5
r

)) 0 0

0
√

5Ĉ

r log log
(√

5
r

) 0

0 0
√

5Ĉ

r log log
(√

5
r

)

 .

Then by a simple computation, we know that the distortion function is

Kf2(x, r, θ) = log

√
5

r

(
log log

√
5

r

)2

Then we get exp(λKγ
f2

) ∈ L1(D2) for all 0 < γ < 1 and λ > 0.
Step 4: We give the homeomorphism from Ωl to Ωs by

f3(x, r, θ) :=


(

5r1+s√
10
x, r, θ

)
, if 0 ≤ x <

√
10
5

and
(√

10
5

)1+s

< r < 1,(
5
√

2−r2√
10

x, r, θ
)
, if 0 ≤ x <

√
10
5

and 1 ≤ r < 2
√

10
5
,

(x, r, θ), elsewhere.



46

By a simple computation, we know it is a quasiconformal mapping.
Step 5: By the result above, we know f(x) = f3 ◦ f2 ◦ f1 ◦ f0(x) is a homeo-

morphism of finite distortion between the ball B(0, 1) and cusp domain Ωs. It is
easy to check fi (i = 0, 1, 2, 3) is differentiable almost everywhere and satisfy Lusin
(N−1) condition. By Lemma 4.2, we get Kf (x) ≤ Kf3(f2(f1(f0(x))))·Kf2(f1(f0(x)))·
Kf1(f0(x))·Kf0(x). Since f0 is conformal, both f1 and f3 are quasiconformal and Kf2

satisfies exp(λKγ
f2

) ∈ L1
loc(∆l) for all 0 < γ < 1 and λ > 0, then we get that Kf (x)

satisfies exp(λKγ
f ) ∈ L1

loc(B(0, 1)) for all 0 < γ < 1 and λ > 0 as deserved.

4.3 Proof of Theorem 1.3

Proof of Theorem 1.3. Let us assume there is such a homeomorphism of finite dis-
tortion f with Kf satisfies the inequality (1.5), then by Lemma 3.18, we have

Cap3(f−1(E), f−1(Ft), B
3(0, 1)) ≤ Cap

Kf (f−1(y))
3 (E,Ft,∆s).

Since
min{ diam f−1(E), diam f−1(Ft)}

d(f−1(E), f−1(Ft))
≥ 10−6

for all t, and following (3.6), we have

Cap3(f−1(E), f−1(Ft), B
3(0, 1)) ≥ δ(3, 10−6) > 0.

for the estimates above please refer the proof of Theorem 4.1. Next, we will show

that Cap
Kf (f−1(y))
3 (E,Ft,∆s)→ 0 as t→ 0, and this gives us a desired contradiction.

We write ω(y) = Kf (f
−1(y)) and define

v(r) =

∫ r

t1+s

ds(∫
S2((t,0,0),s)

ωdδ
) 1

2

,

for t1+s ≤ r ≤ t and further define u : B((t, 0, 0), t)\B((t, 0, 0), t1+s)→ R by setting

u(x) = 1− v(|x|)
v(t)

.

We extend u in an obvious way to the exterior of B((t, 0, 0), t)\B((t, 0, 0), t1+s) and
we obtain a Lipschitz function (Since Kf ≥ 1, and also ω ≥ 1 and it is easy to check
that v is Lipschitz). We conclude by the Fubini theorem that

∫
B((t,0,0),t)

|Du(x)|3ω(x)dx ≤
∫ t

t1+s

∫
S2((t,0,0),s)

(
1

v(t)(
∫
S2(s)

ωdσ)
1
2

)3

ωdσds
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≤ v(t)−3

∫ t

t1+s

ds(∫
S2((t,0,0),s)

ωdσ
) 1

2

= v(t)−2.

Hence it suffices to show v(t)→∞ as t→ 0.

Next, pick integers it and it1+s so that log t− 1 < it ≤ log t and log t1+s ≤ it1+s <
log t1+s + 1. Then

v(t) ≥
it−1∑

i=it1+s

∫ ei+1

ei

ds(∫
S2((t,0,0),s)

ωdσ
) 1

2

.

Now, a change of variable, convexity of t→ 1
t

and Jensen’s inequality show that

∫ ei+1

ei

ds(∫
S2((t,0,0),s)

ωdσ
) 1

2

=

∫ ei+1

ei

ds

s
(
ω2 –
∫
S2((t,0,0),s)

ωdσ
) 1

2

=

∫ i+1

i

dr

(ω2 –
∫
S2((t,0,0),er)

ωdσ)
1
2

≥
(∫ i+1

i

(ω2 –

∫
S2((t,0,0),er)

ωdσ)
1
2dr

)−1

,

for each it1+s ≤ i ≤ it − 1. Applying Jensen’s inequality again, for the convex
functions r → exp(r) and r → max{e, exp(r

1
2 )}, we see that

∫ i+1

i

(
ω2 –

∫
S2((t,0,0),er)

ωdσ

) 1
2

dr ≤ ω
1
2
2

λ
log

(∫ i+1

i

exp

((
–

∫
S2((t,0,0),er)

λ2ωdσ

) 1
2

)
dr

)

≤ ω
1
2
2

λ
log

(∫ i+1

i

–

∫
S2((t,0,0),er)

exp(λω̂
1
2 )dσdr

)
,

where ω̂ = max{1, ω}. An easy computation shows that

∫ i+1

i

–

∫
S2(er)

exp(λω̂
1
2 )dσdr =

∫ ei+1

ei

1

s
–

∫
S2((t,0,0),s)

exp(λω̂
1
2 )dσds

≤ 1

ω2e3i

∫ ei+1

ei

∫
S2((t,0,0),s)

exp(λω̂
1
2 )dσds

≤ CI

ω2e3i
,
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where C = 1 + exp(λ) and I =
∫
B((t,0,0),t)

exp(λK
1
2
f (f−1(y))), by (1.5) and Theorem

3.10, we know I < ∞. It is easy to see CI
ω2e3i

& 2 for all i ≤ it − 1. Combining the
inequalities above, we conclude that

v(t) ≥
it−1∑

i=it1+s

∫ ei+1

ei

ds(∫
S2(s)

ωdσ
) 1

2

≥ λ

ω
1
2
2

it−1∑
i=it1+s

log−1

(
CI

ω2e3i

)

≥ λ

ω
1
2
2

∫ t/e3

t1+s

dr

r log
(

CI
ω2r3

)

and we get v(t)→∞ as t→ 0. Hence we know Capω3 (E,Ft,∆s) goes to 0, as t goes
to 0.

For every admissible function ρ, we have∫
Ωs

ρ3(y)Kf (f
−1(y))dy =

∫
Ωs

ρ3ω(y)dy,

and since Capω3 (E,Ft,Ωs) goes to 0, as t goes to 0, we have Cap
Kf (f−1(y))
3 goes to 0

as t goes to 0, then we get a contradiction and we finish the proof.

4.4 Proof of Theorem 1.4

Proof of Theorem 1.4. First, let us assume there exists such a homeomorphism.
Pick a circle Ft of radius 2t1+s around the cusp at the level x1 = t and let E =
{(x, 0, 0) : −1 ≤ x ≤ 0}, see Figure 2. Then by the same argument as in the Proof
of Theorem 1.3, we have

Cap3(E,Ft; Ωs) ≤ Cap3(B̄((t, 0, 0), 2t1+s), S2((t, 0, 0), t); Ωs)

≤ ω2(
log t

2t1+s

)2 → 0 when t→ 0.

We denote E
′

= f−1(E) and F
′
t = f−1(Ft). Then E

′
is a curve passing through

the topological circle F
′
t . Therefore, for every t close enough to 0, we can find

xt0 ∈ F
′
t and xt1 ∈ E

′
such that r2 = dist (xt0, x

t
1) = dist (E

′
, F
′
t ). We define

r1 = max{ dist (xt0, x) : x ∈ F ′t}, and it is not difficult to check that r1 ≥
√

2r2 and
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r1, r2 tend to zero as t tends to zero. So for every r ∈ [r2,
√

2r2], E
′ ∩S(xt0, r) 6= ∅ 6=

F
′
t ∩ S(xt0, r). Then by the Lemma 3.17, we get

(4.4) C(p, 3)r3−p
2 ≤

∫
B3(xt0,

√
2r2)∩B3(0,1)

|Du|pdx,

for every u ∈ A(E
′
, F
′
t ;B

3(xt0,
√

2r2) ∩ B3(0, 1)) ∩ C∞(B(0, 1)). Then for such ad-
missible function u, using the Hölder’s inequality and Jensen’s inequality for the

convex function t→ max{exp
(
p−γ(3−p)
γ(3−p)

)
, exp

(
t
γ(3−p)
p

)
} we have

C(p, 3)≤ rp2 –

∫
B3(xt0,

√
2r2)∩B3(0,1)

|Du|p

λ
p
3γK

p
3
f (x)

λ
p
3γK

p
3
f (x)dx

≤

(∫
B3(xt0,

√
2r2)∩B3(0,1)

|Du(x)|3

λ
1
γKf (x)

dx

) p
3

·

(
–

∫
B3(xt0,

√
2r2)∩B3(0,1)

λ
p

γ(3−p)K
p

3−p
f (x)dx

) 3−p
3

≤

(∫
B3(xt0,

√
2r2)∩B3(0,1)

|Du(x)|3

λ
1
γKf (x)

dx

) p
3

· log
p
3γ

exp

( –

∫
B3(xt0,

√
2r2)∩B3(0,1)

λ
p

γ(3−p)K
p

3−p
f (x)dx

) γ(3−p)
p


≤

(∫
B3(xt0,

√
2r2)∩B3(0,1)

|Du(x)|3

λ
1
γKf (x)

dx

) p
3

· log
p
3γ

(
–

∫
B3(xt0,

√
2r2)∩B3(0,1)

exp
(
λK̂γ

f (x)
)
dx

)
,

where K̂f (x) = max{
(
γ−1
λ

)
, Kf (x)}. Then for every admissible function u, we get

(4.5)
C(p, 3, λ, γ)

log
1
γ

(
1
rn2

) ≤ ∫
B3(xt0,

√
2r2)∩B3(0,1)

|Du(x)|3

Kf (x)
dx.

Because f is a homeomorphism of finite distortion with the distortion function
Kf (x), by Lemma 3.18

Cap
1/Kf (x)
3 (f−1(E), f−1(Ft);B

3(0, 1)) ≤ Cap3(E,Ft,Ωs),

And by the discussion above we get

(4.6)
C(p, 3, λ, γ)

log
1
γ

(
1
rn2

) ≤ Cap
1/Kf (x)
3 (f−1(E), f−1(Ft);B

3(0, 1)).

By the discussion above, we can obtain

Cap3(E,Ft; Ωs) ≤
ω2(

log 1
2ts

)2 ≤
C(

log 1
|f(x)−f(x0)|

)2 .(4.7)
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we take A(t) = λtγ, and by the modulus of continuity (exactly, by inequality(3.62)),
we get

Cap3(E,Ft; Ωs) ≤
C(

log 1
|f(x)−f(x0)|

)2

≤ C(
log 1

CA,K(3,β)(
∫
B Jf (z)dz)

1
3

exp

(
(ε− 1)

∫ 1/4

|x−x0|
1

tA−1
(

log
3CA,3K
ω2t

3

)
))2

≤ C(
log 1

CA,K(3,β)(
∫
B Jf (z)dz)

1
3

+ 1−ε
λ

1
γ

∫ 1/4

|x−x0|
dt

t log
1
γ

3CA,3K
ω2t

3

)2

≤ C(
γ(1−ε)

λ
1
γ (3γ−3)

(
log1− 1

γ

(
3CA,3K

ω2|x−x0|3

)
− log1− 1

γ
192CA,3K

ω2

))2

≤ C
′(

log1− 1
γ C1

|x−x0|

)2 ,(4.8)

where K =
∫
B

exp(λKγ
f )dx <∞ and |x− x0| = r2.

Then by the inequalities (4.5), (4.8) and Lemma 3.18, we can get

(4.9)
C
′′

log
1
γ

(
1
r2

) ≤ C
′

log2− 2
γ C1

r2

.

Since γ > 3
2
, we have 1

γ
< 2− 2

γ
, which contradicts the above inequality (4.9) as r2

tends to zero. Thus we get the desired result.
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